Component technology for stirling power converters
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.
1991-01-01
NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.
1992-09-01
demonstrating the producibility of optoelectronic components for high-density/high-data-rate processors and accelerating the insertion of this technology...technology development stage, OETC will advance the development of optical components, produce links for a multiboard processor testbed demonstration, and...components that are affordable, initially at <$100 per line, and reliable, with a li~e BER-15 and MTTF >10 6 hours. Under the OETC program, Honeywell will
Ceramic Matrix Composites for Rotorcraft Engines
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2011-01-01
Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Hirt, Evelyn H.; Pitman, Stan G.
The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components.more » This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.« less
NASA Technical Reports Server (NTRS)
Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin
2000-01-01
The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2004-01-01
The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).
Structures Technology for Future Aerospace Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.
2000-01-01
An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.
Fundamental Technology Development for Gas-Turbine Engine Health Management
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Simon, Donald L.; Hunter, Gary W.; Arnold, Steven M.; Reveley, Mary S.; Anderson, Lynn M.
2007-01-01
Integrated vehicle health management technologies promise to dramatically improve the safety of commercial aircraft by reducing system and component failures as causal and contributing factors in aircraft accidents. To realize this promise, fundamental technology development is needed to produce reliable health management components. These components include diagnostic and prognostic algorithms, physics-based and data-driven lifing and failure models, sensors, and a sensor infrastructure including wireless communications, power scavenging, and electronics. In addition, system assessment methods are needed to effectively prioritize development efforts. Development work is needed throughout the vehicle, but particular challenges are presented by the hot, rotating environment of the propulsion system. This presentation describes current work in the field of health management technologies for propulsion systems for commercial aviation.
NASA Technical Reports Server (NTRS)
Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.
1981-01-01
The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.
Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments
NASA Technical Reports Server (NTRS)
Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.
1987-01-01
The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.
van Witteloostuijn, Arjen
2018-01-01
In this paper, we develop an ecological, multi-level model that can be used to study the evolution of emerging technology. More specifically, by defining technology as a system composed of a set of interacting components, we can build upon the argument of multi-level density dependence from organizational ecology to develop a distribution-independent model of technological evolution. This allows us to distinguish between different stages of component development, which provides more insight into the emergence of stable component configurations, or dominant designs. We validate our hypotheses in the biotechnology industry by using patent data from the USPTO from 1976 to 2003. PMID:29795575
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Petko, Jeannie F.
2004-01-01
Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.
Development of high purity large forgings for nuclear power plants
NASA Astrophysics Data System (ADS)
Tanaka, Yasuhiko; Sato, Ikuo
2011-10-01
The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, A.P.; Rimkevich, V.S.; Dem'yanova, L.P.
2009-05-15
Based on the physico-technical operations involved in the mineral processing technologies, the optimal production conditions are found for refractory fiber materials, aluminium, silicium, their compounds and other valued components. Ecologically safe and efficient aggregate technologies are developed for recovery of valued components from nonmetallic minerals and anthracides (brown coals).
Automated reuseable components system study results
NASA Technical Reports Server (NTRS)
Gilroy, Kathy
1989-01-01
The Automated Reusable Components System (ARCS) was developed under a Phase 1 Small Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of the ARCS program were: (1) to investigate issues associated with automated reuse of software components, identify alternative approaches, and select promising technologies, and (2) to develop tools that support component classification and retrieval. The approach followed was to research emerging techniques and experimental applications associated with reusable software libraries, to investigate the more mature information retrieval technologies for applicability, and to investigate the applicability of specialized technologies to improve the effectiveness of a reusable component library. Various classification schemes and retrieval techniques were identified and evaluated for potential application in an automated library system for reusable components. Strategies for library organization and management, component submittal and storage, and component search and retrieval were developed. A prototype ARCS was built to demonstrate the feasibility of automating the reuse process. The prototype was created using a subset of the classification and retrieval techniques that were investigated. The demonstration system was exercised and evaluated using reusable Ada components selected from the public domain. A requirements specification for a production-quality ARCS was also developed.
A Practical Approach to Starting Fission Surface Power Development
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2006-01-01
The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.
Efficient Computational Prototyping of Mixed Technology Microfluidic Components and Systems
2002-08-01
AFRL-IF-RS-TR-2002-190 Final Technical Report August 2002 EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC...SUBTITLE EFFICIENT COMPUTATIONAL PROTOTYPING OF MIXED TECHNOLOGY MICROFLUIDIC COMPONENTS AND SYSTEMS 6. AUTHOR(S) Narayan R. Aluru, Jacob White...Aided Design (CAD) tools for microfluidic components and systems were developed in this effort. Innovative numerical methods and algorithms for mixed
Materials technology assessment for stirling engines
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.
1977-01-01
A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Conceptual design study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Warren, J. R.
1986-01-01
An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
NASA Technical Reports Server (NTRS)
Jacobs, J. A.
1976-01-01
A project was initiated to develop, implement, and evaluate a prototype component for self-pacing, individualized instruction on basic materials science. Results of this project indicate that systematically developed, self-paced instruction provides an effective means for orienting nontraditional college students and secondary students, especially minorities, to both engineering technology and basic materials science. In addition, students using such a system gain greater chances for mastering subject matter than with conventional modes of instruction.
NASA Astrophysics Data System (ADS)
Graves, S. J.; Keiser, K.; Law, E.; Yang, C. P.; Djorgovski, S. G.
2016-12-01
ECITE (EarthCube Integration and Testing Environment) is providing both cloud-based computational testing resources and an Assessment Framework for Technology Interoperability and Integration. NSF's EarthCube program is funding the development of cyberinfrastructure building block components as technologies to address Earth science research problems. These EarthCube building blocks need to support integration and interoperability objectives to work towards a coherent cyberinfrastructure architecture for the program. ECITE is being developed to provide capabilities to test and assess the interoperability and integration across funded EarthCube technology projects. EarthCube defined criteria for interoperability and integration are applied to use cases coordinating science problems with technology solutions. The Assessment Framework facilitates planning, execution and documentation of the technology assessments for review by the EarthCube community. This presentation will describe the components of ECITE and examine the methodology of cross walking between science and technology use cases.
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.
2010-01-01
Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.
Advanced Electrical Materials and Components Being Developed
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2004-01-01
All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
ERIC Educational Resources Information Center
Lee, Chwee Beng
2018-01-01
With the rapid developments in emerging technologies and the emphasis on technologies in learning environments, the connection between technologies and meaningful learning has strengthened. Developing an understanding of the components of meaningful learning with technology is pivotal, as this may enable educators to make more informed decisions…
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
Reducing Risk in DoD Software-Intensive Systems Development
2016-03-01
intensive systems development risk. This research addresses the use of the Technical Readiness Assessment (TRA) using the nine-level software Technology...The software TRLs are ineffective in reducing technical risk for the software component development. • Without the software TRLs, there is no...effective method to perform software TRA or reduce the technical development risk. The software component will behave as a new, untried technology in nearly
Knowledge-based reusable software synthesis system
NASA Technical Reports Server (NTRS)
Donaldson, Cammie
1989-01-01
The Eli system, a knowledge-based reusable software synthesis system, is being developed for NASA Langley under a Phase 2 SBIR contract. Named after Eli Whitney, the inventor of interchangeable parts, Eli assists engineers of large-scale software systems in reusing components while they are composing their software specifications or designs. Eli will identify reuse potential, search for components, select component variants, and synthesize components into the developer's specifications. The Eli project began as a Phase 1 SBIR to define a reusable software synthesis methodology that integrates reusabilityinto the top-down development process and to develop an approach for an expert system to promote and accomplish reuse. The objectives of the Eli Phase 2 work are to integrate advanced technologies to automate the development of reusable components within the context of large system developments, to integrate with user development methodologies without significant changes in method or learning of special languages, and to make reuse the easiest operation to perform. Eli will try to address a number of reuse problems including developing software with reusable components, managing reusable components, identifying reusable components, and transitioning reuse technology. Eli is both a library facility for classifying, storing, and retrieving reusable components and a design environment that emphasizes, encourages, and supports reuse.
MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection
NASA Astrophysics Data System (ADS)
Bierden, Paul; Cornelissen, S.; Ryan, P.
2014-01-01
In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.
Interactive Television: The State of the Industry.
ERIC Educational Resources Information Center
Galbreath, Jeremy
1996-01-01
Discusses interactive television in the context of the developing information superhighway. Topics include potential applications, including video on demand; telecommunications companies; digital media technologies; content; regulatory issues; the nature of technology users; origination components; distribution/infrastructure components;…
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
NASA Astrophysics Data System (ADS)
Jiang, Shan; Liu, Shuihua
2004-04-01
Current optical communication systems are more and more relying on the advanced opto-electronic components. A series of revolutionary optical and optoelectronics components technology accounts for the fast progress and field deployment of high-capacity telecommunication and data-transmission systems. Since 1990s, the optical communication industry in China entered a high-speed development period and its wide deployment had already established the solid base for China information infrastructure. In this presentation, the main progress of optoelectronics components and technology in China are reviewed, which includes semiconductor laser diode/photo receiver, fiber optical amplifier, DWDM multiplexer/de-multiplexer, dispersion compensation components and all optical network node components, such as optical switch, OADM, tunable optical filters and variable optical attenuators, etc. Integration discrete components into monolithic/hybrid platform component is an inevitable choice for the consideration of performance, mass production and cost reduction. The current status and the future trends of OEIC and PIC components technology in China will also be discuss mainly on the monolithic integration DFB LD + EA modulator, and planar light-wave circuit (PLC) technology, etc.
High-Power, High-Temperature Superconductor Technology Development
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.
2005-01-01
Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.
Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid
NASA Technical Reports Server (NTRS)
Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick
2015-01-01
The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.
Overview of NASA/OAST efforts related to manufacturing technology
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1976-01-01
Activities of the Office of Aeronautics and Space Technology (OAST) in a number of areas related to manufacturing technology are considered. In the computer-aided design area improved approaches are developed for the design of specific classes of components or structural subsystems. A generalized approach for the design of a complete aerospace vehicle is also developed. Efforts directed toward an increased use of composite materials in aerospace structures are also discussed and attention is given to projects concerned with the manufacture of turbine engine components.
A component-based problem list subsystem for the HOLON testbed. Health Object Library Online.
Law, V.; Goldberg, H. S.; Jones, P.; Safran, C.
1998-01-01
One of the deliverables of the HOLON (Health Object Library Online) project is the specification of a reference architecture for clinical information systems that facilitates the development of a variety of discrete, reusable software components. One of the challenges facing the HOLON consortium is determining what kinds of components can be made available in a library for developers of clinical information systems. To further explore the use of component architectures in the development of reusable clinical subsystems, we have incorporated ongoing work in the development of enterprise terminology services into a Problem List subsystem for the HOLON testbed. We have successfully implemented a set of components using CORBA (Common Object Request Broker Architecture) and Java distributed object technologies that provide a functional problem list application and UMLS-based "Problem Picker." Through this development, we have overcome a variety of obstacles characteristic of rapidly emerging technologies, and have identified architectural issues necessary to scale these components for use and reuse within an enterprise clinical information system. PMID:9929252
A component-based problem list subsystem for the HOLON testbed. Health Object Library Online.
Law, V; Goldberg, H S; Jones, P; Safran, C
1998-01-01
One of the deliverables of the HOLON (Health Object Library Online) project is the specification of a reference architecture for clinical information systems that facilitates the development of a variety of discrete, reusable software components. One of the challenges facing the HOLON consortium is determining what kinds of components can be made available in a library for developers of clinical information systems. To further explore the use of component architectures in the development of reusable clinical subsystems, we have incorporated ongoing work in the development of enterprise terminology services into a Problem List subsystem for the HOLON testbed. We have successfully implemented a set of components using CORBA (Common Object Request Broker Architecture) and Java distributed object technologies that provide a functional problem list application and UMLS-based "Problem Picker." Through this development, we have overcome a variety of obstacles characteristic of rapidly emerging technologies, and have identified architectural issues necessary to scale these components for use and reuse within an enterprise clinical information system.
Life assessment of structural components using inelastic finite element analyses
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
Photonics technology development for optical fuzing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.J.; Geib, Kent Martin; von der Lippe, C.M.
2005-07-01
This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employmore » discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.« less
Ceramic Technology for Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-01
The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less
Spaceborne sensors (1983-2000 AD): A forecast of technology
NASA Technical Reports Server (NTRS)
Kostiuk, T.; Clark, B. P.
1984-01-01
A technical review and forecast of space technology as it applies to spaceborne sensors for future NASA missions is presented. A format for categorization of sensor systems covering the entire electromagnetic spectrum, including particles and fields is developed. Major generic sensor systems are related to their subsystems, components, and to basic research and development. General supporting technologies such as cryogenics, optical design, and data processing electronics are addressed where appropriate. The dependence of many classes of instruments on common components, basic R&D and support technologies is also illustrated. A forecast of important system designs and instrument and component performance parameters is provided for the 1983-2000 AD time frame. Some insight into the scientific and applications capabilities and goals of the sensor systems is also given.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.
2011-01-01
The Fission Power System (FPS) project is developing a Technology Demonstration Unit (TDU) to verify the performance and functionality of a subscale version of the FPS reference concept in a relevant environment, and to verify component and system models. As hardware is developed for the TDU, component and system models must be refined to include the details of specific component designs. This paper describes the development of a Sage-based pseudo-steady-state Stirling convertor model and its implementation into a system-level model of the TDU.
NASA Technical Reports Server (NTRS)
Carrio, Miguel A., Jr.
1988-01-01
Rapidly emerging technology and methodologies have out-paced the systems development processes' ability to use them effectively, if at all. At the same time, the tools used to build systems are becoming obsolescent themselves as a consequence of the same technology lag that plagues systems development. The net result is that systems development activities have not been able to take advantage of available technology and have become equally dependent on aging and ineffective computer-aided engineering tools. New methods and tools approaches are essential if the demands of non-stop and Mission and Safety Critical (MASC) components are to be met.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Development of a Novel Brayton-Cycle Cryocooler and Key Component Technologies
NASA Astrophysics Data System (ADS)
Nieczkoski, S. J.; Mohling, R. A.
2004-06-01
Brayton-cycle cryocoolers are being developed to provide efficient cooling in the 6 K to 70 K temperature range. The cryocoolers are being developed for use in space and in terrestrial applications where combinations of long lifetime, high efficiency, compactness, low mass, low vibration, flexible interfacing, load variability, and reliability are essential. The key enabling technologies for these systems are a mesoscale expander and an advanced oil-free scroll compressor. Both these components are nearing completion of their prototype development phase. The emphasis on the component and system development has been on invoking fabrication processes and techniques that can be evolved to further reduction in scale tending toward cryocooler miniaturization.
Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project
NASA Technical Reports Server (NTRS)
2004-01-01
During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.
Technology User Groups and Early Childhood Education: A Preliminary Study
ERIC Educational Resources Information Center
Parette, Howard P.; Hourcade, Jack J.; Blum, Craig; Watts, Emily H.; Stoner, Julia B.; Wojcik, Brian W.; Chrismore, Shannon B.
2013-01-01
This article presents a preliminary examination of the potential of Technology User Groups as a professional development venue for early childhood education professionals in developing operational and functional competence in using hardware and software components of a Technology toolkit. Technology user groups are composed of varying numbers of…
Ultralightweight optics for space applications
NASA Astrophysics Data System (ADS)
Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.
2000-07-01
Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.
ERIC Educational Resources Information Center
Thompson, B. M.; Schielack, J. F.; Vestal, T. A.
2004-01-01
Decades of research have provided evidence that food irradiation is a safe technology that can decrease the incidence of foodborne diseases; however, adoption of this technology has been slow. The purpose of our study was to qualitatively explore the effectiveness of various components of a professional development training on family and consumer…
Novel Thin Film Sensor Technology for Turbine Engine Hot Section Components
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.
2007-01-01
Degradation and damage that develops over time in hot section components can lead to catastrophic failure of the turbine section of aircraft engines. A range of thin film sensor technology has been demonstrated enabling on-component measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Conductive ceramics are beginning to be investigated as new materials for use as thin film sensors in the hot section, leveraging expertise in thin films and high temperature materials. The current challenges are to develop new sensor and insulation materials capable of withstanding the extreme hot section environment, and to develop techniques for applying sensors onto complex high temperature structures for aging studies of hot propulsion materials. The technology research and development ongoing at NASA Glenn Research Center for applications to future aircraft, launch vehicles, space vehicles, and ground systems is outlined.
Future Concepts for Modular, Intelligent Aerospace Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.; Soeder, James F.
2004-01-01
Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
James, A. M.
1984-01-01
Topics addressed include: strength and hygrothermal response of L-1011 fin components; wing fuel containment and damage tolerance development; impact dynamics; acoustic transmission; fuselage structure; composite transport wing technology development; spar/assembly concepts.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
X-33/RLV Program Aerospike Engines
NASA Technical Reports Server (NTRS)
1999-01-01
Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
The WCSAR telerobotics test bed
NASA Technical Reports Server (NTRS)
Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.
1988-01-01
Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.
NASA Technical Reports Server (NTRS)
1991-01-01
Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.
Flow Induced Vibration Program at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
1984-01-01
The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.
Using Aerospace Technology To Design Orthopedic Implants
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Mraz, P. J.; Davy, D. T.
1996-01-01
Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.
Future superconductivity applications in space - A review
NASA Astrophysics Data System (ADS)
Krishen, Kumar; Ignatiev, Alex
High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C C
The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svetlana Shasharina
The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-03-01
The task of developing principles of cyber-physical system constitution at the Industry 4.0 company of the item designing components of mechanical assembly production is being studied. The task has been solved by analyzing the components and technologies, which have some practical application in the digital production organization. The list of components has been defined and the authors proposed the scheme of the components and technologies interconnection in the Industry 4.0 of mechanical assembly production to make an uninterrupted manufacturing route of the item designing components with application of some cyber-physical systems.
Innovation processes in technologies for the processing of refractory mineral raw materials
NASA Astrophysics Data System (ADS)
Chanturiya, V. A.
2008-12-01
Analysis of the grade of mineral resources of Russia and other countries shows that end products that are competitive in terms of both technological and environmental criteria in the world market can only be obtained by the development and implementation of progressive technologies based on the up-to-date achievements of fundamental sciences. The essence of modern innovation processes in technologies developed in Russia for the complex and comprehensive processing of refractory raw materials with a complex composition is ascertained. These processes include (i) radiometric methods of concentration of valuable components, (ii) high-energy methods of disintegration of highly dispersed mineral components, and (iii) electrochemical methods of water conditioning to obtain target products for solving specific technological problems.
Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Alan
2014-10-21
This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.
The Dairy Technology System in Venezuela. Summary of Research 79.
ERIC Educational Resources Information Center
Nieto, Ruben D.; Henderson, Janet L.
A study examined the agricultural technology system in Venezuela with emphasis on the dairy industry. An analytical framework was used to identify the strengths and weaknesses of the following components of Venezuela's agricultural technology system: policy, technology development, technology transfer, and technology use. Selected government…
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1994-01-01
Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.
Zhang, Wenxuan; Xu, Chengjian; He, Wenzhi; Li, Guangming; Huang, Juwen
2018-02-01
The wide use of lithium ion batteries (LIBs) has brought great numbers of discarded LIBs, which has become a common problem facing the world. In view of the deleterious effects of spent LIBs on the environment and the contained valuable materials that can be reused, much effort in many countries has been made to manage waste LIBs, and many technologies have been developed to recycle waste LIBs and eliminate environmental risks. As a review article, this paper introduces the situation of waste LIB management in some developed countries and in China, and reviews separation technologies of electrode components and refining technologies of LiCoO 2 and graphite. Based on the analysis of these recycling technologies and the structure and components characteristics of the whole LIB, this paper presents a recycling strategy for all components from obsolete LIBs, including discharge, dismantling, and classification, separation of electrode components and refining of LiCoO 2 /graphite. This paper is intended to provide a valuable reference for the management, scientific research, and industrial implementation on spent LIBs recycling, to recycle all valuable components and reduce the environmental pollution, so as to realize the win-win situation of economic and environmental benefits.
Recent advances in Ni-H2 technology at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Gonzalezsanabria, O. D.; Britton, D. L.; Smithrick, J. J.; Reid, M. A.
1986-01-01
The NASA Lewis Research Center has concentrated its efforts on advancing the Ni-H2 system technology for low Earth orbit applications. Component technology as well as the design principles were studied in an effort to understand the system behavior and failure mechanisms in order to increase performance and extend cycle life. The design principles were previously addressed. The component development is discussed, in particular the separator and nickel electrode and how these efforts will advance the Ni-H2 system technology.
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
Factors Influencing Cloud-Computing Technology Adoption in Developing Countries
ERIC Educational Resources Information Center
Hailu, Alemayehu
2012-01-01
Adoption of new technology has complicating components both from the selection, as well as decision-making criteria and process. Although new technology such as cloud computing provides great benefits especially to the developing countries, it has challenges that may complicate the selection decision and subsequent adoption process. This study…
The Educational Technology of Ethical Development for Students
ERIC Educational Resources Information Center
Song, Ting; Ustin, Pavel N.; Popov, Leonid M.; Mudarisov, Marat M.
2017-01-01
The relevance of this work was connected with the problem of ethical competencies forming among future psychologists during their learning in university. The first task of research was to work out the technology of ethical development for students-psychologists. The structure of this technology included four main educational components:…
Advanced Electrical Materials and Components Development: An Update
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2005-01-01
The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.
Electrical/electronics working group summary
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.
1984-01-01
The electrical/electronics, technology area was considered. It was found that there are no foreseeable circuit or component problems to hinder the implementation of the flywheel energy storage concept. The definition of the major component or technology developments required to permit a technology ready date of 1987 was addressed. Recommendations: motor/generators, suspension electronics, power transfer, power conditioning and distribution, and modeling. An introduction to the area of system engineering is also included.
Improved components for engine fuel savings
NASA Technical Reports Server (NTRS)
Antl, R. J.; Mcaulay, J. E.
1980-01-01
NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.
Shape optimization of tibial prosthesis components
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Mraz, P. J.; Davy, D. T.
1993-01-01
NASA technology and optimal design methodologies originally developed for the optimization of composite structures (engine blades) are adapted and applied to the optimization of orthopaedic knee implants. A method is developed enabling the shape tailoring of the tibial components of a total knee replacement implant for optimal interaction within the environment of the tibia. The shape of the implant components are optimized such that the stresses in the bone are favorably controlled to minimize bone degradation, to improve the mechanical integrity of the implant/interface/bone system, and to prevent failures of the implant components. A pilot tailoring system is developed and the feasibility of the concept is demonstrated and evaluated. The methodology and evolution of the existing aerospace technology from which this pilot optimization code was developed is also presented and discussed. Both symmetric and unsymmetric in-plane loading conditions are investigated. The results of the optimization process indicate a trend toward wider and tapered posts as well as thicker backing trays. Unique component geometries were obtained for the different load cases.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
Klotzsche, M. (Compiler)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.
Solar thermal program summary. Volume 1: Overview, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-02-01
The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less
A compendium of solar dish/Stirling technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stine, W.B.; Diver, R.B.
1994-01-01
This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Prototype Units (DFARS Case 2009-D034) AGENCY: Defense Acquisition Regulations System, Department of Defense... Component Development or Prototype Units.'' Section 819 is intended to prevent a contract for new technology... development of advanced components or the procurement of prototype units. To do so, section 819 places...
Laser rapid forming technology of high-performance dense metal components with complex structure
NASA Astrophysics Data System (ADS)
Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin
2005-01-01
Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.
Organizational Development: Values, Process, and Technology.
ERIC Educational Resources Information Center
Margulies, Newton; Raia, Anthony P.
The current state-of-the-art of organizational development is the focus of this book. The five parts into which the book is divided are as follows: Part One--Introduction (Organizational Development in Perspective--the nature, values, process, and technology of organizational development); Part Two--The Components of Organizational Developments…
Forest fire advanced system technology (FFAST) conceptual design study
NASA Technical Reports Server (NTRS)
Nichols, J. David; Warren, John R.
1987-01-01
The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
Exploration Systems Health Management Facilities and Testbed Workshop
NASA Technical Reports Server (NTRS)
Wilson, Scott; Waterman, Robert; McCleskey, Carey
2004-01-01
Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).
Miniaturization of components and systems for space using MEMS-technology
NASA Astrophysics Data System (ADS)
Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin
2007-06-01
Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty of this micropropulsion system is that all critical components such as thrust chamber/nozzle assembly including internal heaters, valves and filters are manufactured using MEMS technology. Moreover, miniaturized pressure sensors, relying on MEMS technology, is also part of the system as a self-standing component. The flight opportunity on PRISMA represents one of the few and thus important opportunities to demonstrate MEMS technology in space. The present paper aims at describing this development effort and highlights the benefits of miniaturized components and systems for space using MEMS technology.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
A technical review of cellular radio and analysis of a possible protocol
NASA Astrophysics Data System (ADS)
Reese, William D.
1992-09-01
Radio and television technology made the field of cellular radio possible. This thesis shows the development of radio and television technology from both a historical and technical aspect. A review of the important researchers and their contributions is followed by a technical explanation of the theories behind electromagnetic radiation of radio and television signals and the technology which was developed to implement such transmissions. The evolution of development which the paper outlines begins with some of the first theories about electricity and magnetism and the subsequent mathematical foundation developed to explain them. This is followed by a number of experimental and developmental researchers and their contributions. The bulk of the paper is concentrated on explaining the earliest generations of radio and all generations of television. The major components of both radio and television are described in detail along with an explanation of what they do and how they work. Such components, in many cases, found important uses in fields outside those for which they were developed. A brief overview of the regulatory environment of each technology and the U.S. and international standardization efforts is also included. Finally, the paper illustrates a modern-day application of radio technology--the cellular radio industry. A description of the components and their functions is followed by a possible cellular radio protocol and analysis.
Hydrogen-bromine fuel cell advance component development
NASA Technical Reports Server (NTRS)
Charleston, Joann; Reed, James
1988-01-01
Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.
Wave Rotor Research and Technology Development
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1998-01-01
Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Taylor, A.J.; Weber, G.W.
Progress is described in a research program to develop advanced tooling concepts, processing techniques, and related technology for the economical high-volume manufacture of ceramic engine components. Because of the success of the initial fabrication effort for hot pressing fully dense ceramic turbine blades to shape and/or contour, the effort has been extended to include the fabrication of more complex shapes and the evaluation of alternative pressure-assisted, high-temperature, consolidation methods.
Development of a Training Program for Enhancement of Technology Competencies of University Lecturers
ERIC Educational Resources Information Center
Cruthaka, Chomsupak; Pinngern, Ouen
2016-01-01
The objectives were: (1) the components of the technology competencies of university lecturers were studied. The researchers also described and analyzed (2) the development of a training program for enhancement of the technology competencies of these lecturers. Also, the researchers evaluated (3) the program they had constructed. The sample…
Developing a TPCK-SRL Assessment Scheme for Conceptually Advancing Technology in Education
ERIC Educational Resources Information Center
Kohen, Zehavit; Kramarski, Bracha
2012-01-01
The present study aimed to: (a) develop a conceptual TPCK-SRL scheme for assessing teachers' integration of self-regulated learning (SRL) considerations while infusing technology into a TPCK classroom context (blending K = knowledge about T = technology, P = pedagogy, and C = content), which reflects all three knowledge components' dynamic…
An Assessment of Integrated Flywheel System Technology
NASA Technical Reports Server (NTRS)
Keckler, C. R. (Editor); Bechtel, R. T. (Editor); Groom, N. J. (Editor)
1984-01-01
The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented.
School-Based Technology Use Planning.
ERIC Educational Resources Information Center
Cradler, John
1994-01-01
Describes how to conduct systematic planning for technology use. The components of an effective technology use plan, derived from a comprehensive study of school-based technology, are given. Planning development, implementation, and evaluation steps are provided. Ten planning resource books are listed. (Contains five references.) (KRN)
10 CFR 960.5-2-7 - Transportation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... using reasonably available technology; (iii) will not require transportation system components to meet... require the development of new packaging containment technology; (iv) will allow transportation operations... the affected State that are completed or being developed. (9) A regional meteorological history...
SNAP-8 electrical generating system development program
NASA Technical Reports Server (NTRS)
1971-01-01
The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.
NASA Technical Reports Server (NTRS)
Porter, F. J., Jr.
1972-01-01
Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.
Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Zwitter; Phillip Nash; Xiaoyan Xu
2011-03-31
This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.« less
Ceramic Technology Project semiannual progress report, April 1992--September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-07-01
This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less
Thermoelectric Energy Conversion: Future Directions and Technology Development Needs
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre
2007-01-01
This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.
Martin, J B; Wilkins, A S; Stawski, S K
1998-08-01
The evolving health care environment demands that health care organizations fully utilize information technologies (ITs). The effective deployment of IT requires the development and implementation of a comprehensive IT strategic plan. A number of approaches to health care IT strategic planning exist, but they are outdated or incomplete. The component alignment model (CAM) introduced here recognizes the complexity of today's health care environment, emphasizing continuous assessment and realignment of seven basic components: external environment, emerging ITs, organizational infrastructure, mission, IT infrastructure, business strategy, and IT strategy. The article provides a framework by which health care organizations can develop an effective IT strategic planning process.
Perspectives on energy storage wheels for space station application
NASA Technical Reports Server (NTRS)
Oglevie, R. E.
1984-01-01
Several of the issues of the workshop are addressed from the perspective of a potential Space Station developer and energy wheel user. Systems' considerations are emphasized rather than component technology. The potential of energy storage wheel (ESW) concept is discussed. The current status of the technology base is described. Justification for advanced technology development is also discussed. The study concludes that energy storage in wheels is an attractive concept for immediate technology development and future Space Station application.
Propulsion system research and development for electric and hybrid vehicles
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1980-01-01
An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
Space flight requirements for fiber optic components: qualification testing and lessons learned
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2006-04-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam
2007-01-01
"Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
Power management and distribution technology
NASA Astrophysics Data System (ADS)
Dickman, John Ellis
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Power management and distribution technology
NASA Technical Reports Server (NTRS)
Dickman, John Ellis
1993-01-01
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
ERIC Educational Resources Information Center
Leahy, Kevin B.
2013-01-01
The CIO fulfills an important role for most business organizations by leading the information technology department and by aligning the firm's information technology assets with its corporate strategy. There is little research regarding the important components of CIO development and the relationships among these elements. This study examines…
Smoliński, Adam; Bondaruk, Jan; Pichlak, Magdalena; Trząski, Leszek; Uszok, Elżbieta
2015-01-01
The regional smart specializations include the innovative activities within a common science-economy-technology sector, which open the opportunities to gain a competitive advantage. The original procedure of science-economy-technology concordance matrix development on an example of smart specializations of the Silesian Voivodeship was presented in the paper. The procedure developed includes recognition of the research and economic components of the regional smart specialization and the connection between the economic components of the regional specialization and the technological innovation through the international patent classification. It also comprises recognition of key enabling technologies (KETs) and high technologies (of high R&D intensity) other than KET in the economic and technological dimensions of innovation as well as the high R&D intensity services in the economic dimension of innovation. The in-depth expert analyses with the application of the Delphi method were also taken into account. The methodological approach developed and the visualization method applied are both of cognitive and practical importance since they contribute significantly to the creation of efficient development policies, to the enhancement and facilitation of cross-sectoral cooperation, and to the focusing on the fields of key importance in terms of the competitive advantage of a region. PMID:26697528
Smoliński, Adam; Bondaruk, Jan; Pichlak, Magdalena; Trząski, Leszek; Uszok, Elżbieta
2015-01-01
The regional smart specializations include the innovative activities within a common science-economy-technology sector, which open the opportunities to gain a competitive advantage. The original procedure of science-economy-technology concordance matrix development on an example of smart specializations of the Silesian Voivodeship was presented in the paper. The procedure developed includes recognition of the research and economic components of the regional smart specialization and the connection between the economic components of the regional specialization and the technological innovation through the international patent classification. It also comprises recognition of key enabling technologies (KETs) and high technologies (of high R&D intensity) other than KET in the economic and technological dimensions of innovation as well as the high R&D intensity services in the economic dimension of innovation. The in-depth expert analyses with the application of the Delphi method were also taken into account. The methodological approach developed and the visualization method applied are both of cognitive and practical importance since they contribute significantly to the creation of efficient development policies, to the enhancement and facilitation of cross-sectoral cooperation, and to the focusing on the fields of key importance in terms of the competitive advantage of a region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective
Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon
2015-01-01
Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078
Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.
Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon
2015-09-07
Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.
FY2014 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2016 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2015 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
ERIC Educational Resources Information Center
Stewart, James; Williams, Robin
1998-01-01
Criticizes "technologically deterministic" approaches, which seek to extrapolate social change from technological potential. Shows how a three-layer model of component, system, and application technologies can be used to integrate findings from the use and development of technology in specific sectors. Examines three cases of…
Connecting Learners: The South Carolina Educational Technology Plan.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia.
This educational technology plan for South Carolina contains the following sections: (1) statewide progress related to the telecommunications infrastructure, professional development, video infrastructure, administrative infrastructure, and funding; (2) introduction to educational technology concepts, including major components and factors…
FRAMES and Other IEM Technologies
A presentation package is developed that describes the FRAMES software technology system. The philosophy of FRAMES is discussed; its components and editors are reviewed; its relationship to integrated environmental modeling technologies; such as D4EM and SuperMUSE, are described;...
Additive Manufacturing of Low Cost Upper Stage Propulsion Components
NASA Technical Reports Server (NTRS)
Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda
2014-01-01
NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.
Huang, Ean-Wen; Chiou, Shwu-Fen; Pan, Mei-Lien; Wu, Hua-Huan; Jiang, Jia-Rong; Lu, Yi-De
2017-08-01
Rapid progress in information and communication technologies and the increasing popularity of healthcare-related applications has increased interest in the topic of intelligent medical care. This topic emphasizes the use of information and communication technologies to collect and analyze a variety of data in order to provide physicians and other healthcare professionals with clinical decision support. At present, so-called smart hospitals are the focal point of most intelligent-systems development activity, with little attention currently being focused on long-term care needs. The present article discusses the application of intelligent systems in the field of long-term care, especially in community and home-based models of care. System-implementation components such as the data entry interface components of mobile devices, the data transmission and synchronization components between the mobile device and file server, the data presentation, and the statistics analysis components are also introduced. These components have been used to develop long-term care service-related applications, including home health nursing, home-care services, meals on wheels, and assistive devices rental. We believe that the findings will be useful for the promotion of innovative long-term care services as well as the improvement of healthcare quality and efficiency.
Making Ceramic Components For Advanced Aircraft Engines
NASA Technical Reports Server (NTRS)
Franklin, J. E.; Ezis, A.
1994-01-01
Lightweight, oxidation-resistant silicon nitride components containing intricate internal cooling and hydraulic passages and capable of withstanding high operating temperatures made by ceramic-platelet technology. Used to fabricate silicon nitride test articles of two types: components of methane-cooled regenerator for air turbo ramjet engine and components of bipropellant injector for rocket engine. Procedures for development of more complex and intricate components established. Technology has commercial utility in automotive, aircraft, and environmental industries for manufacture of high-temperature components for use in regeneration of fuels, treatment of emissions, high-temperature combustion devices, and application in which other high-temperature and/or lightweight components needed. Potential use in fabrication of combustors and high-temperature acoustic panels for suppression of noise in future high-speed aircraft.
Using Work Breakdown Structure Models to Develop Unit Treatment Costs
This article presents a new cost modeling approach called work breakdown structure (WBS), designed to develop unit costs for drinking water technologies. WBS involves breaking the technology into its discrete components for the purposes of estimating unit costs. The article dem...
MRMAide: a mixed resolution modeling aide
NASA Astrophysics Data System (ADS)
Treshansky, Allyn; McGraw, Robert M.
2002-07-01
The Mixed Resolution Modeling Aide (MRMAide) technology is an effort to semi-automate the implementation of Mixed Resolution Modeling (MRM). MRMAide suggests ways of resolving differences in fidelity and resolution across diverse modeling paradigms. The goal of MRMAide is to provide a technology that will allow developers to incorporate model components into scenarios other than those for which they were designed. Currently, MRM is implemented by hand. This is a tedious, error-prone, and non-portable process. MRMAide, in contrast, will automatically suggest to a developer where and how to connect different components and/or simulations. MRMAide has three phases of operation: pre-processing, data abstraction, and validation. During pre-processing the components to be linked together are evaluated in order to identify appropriate mapping points. During data abstraction those mapping points are linked via data abstraction algorithms. During validation developers receive feedback regarding their newly created models relative to existing baselined models. The current work presents an overview of the various problems encountered during MRM and the various technologies utilized by MRMAide to overcome those problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.
2015-03-01
Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performancemore » of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.« less
Status of nickel-hydrogen cell technology
NASA Technical Reports Server (NTRS)
Warnock, D. R.
1980-01-01
Nickel hydrogen cell technology has been developed which solves the problems of thermal management, oxygen management, electrolyte management, and electrical and mechanical design peculiar to this new type of battery. This technology was weight optimized for low orbit operation using computer modeling programs but is near optimum for other orbits. Cells ranging in capacity up to about 70 ampere-hours can be made from components of a single standard size and are available from two manufacturers. The knowledge gained is now being applied to the development of two extensions to the basic design: a second set of larger standard components that will cover the capacity range up to 150 ampere-hours; and the development of multicell common pressure vessel modules to reduce volume, cost and weight. A manufacturing technology program is planned to optimize the producibility of the cell design and reduce cost. The most important areas for further improvement are life and reliability which are governed by electrode and separator technology.
Energy efficient engine. Volume 1: Component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.
ERIC Educational Resources Information Center
Anderson, Frank; And Others
The Satellite Technology Demonstration (STD) of the Federation of Rocky Mountain States (FRMS) employed a technical delivery system to merge effectively hardware and software, products and services. It also needed a nontechnical component to insure product and service acceptance. Accordingly, the STD's Utilization Component was responsible for…
Environmental Aspects Of The Green Surface Plastic Deformation Technology Of Car Parts
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Bobrovskij, N. M.; Bobrovskij, I. N.; Melnikov, P. A.; Lukyanov, A. A.
2017-01-01
Foreign and domestic experience in development of dry processing technologies are considered. The results of the introduction of dry processing technologies (cutting, boring, milling, drilling) on the industrial companies in Germany are given. The negative impact on the environment and human health is shown. The possible ways of leakage of lubricoolant components in the atmosphere and soil are considered. Lubricoolants are considered as a required permanent component. Three main tasks for lubricoolant: cooling, lubricating and chip disposal are discribed.
SNAP-8 electrical generating system development program
NASA Technical Reports Server (NTRS)
1971-01-01
The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology has been demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.
The Use of Technology by Nonformal Environmental Educators
ERIC Educational Resources Information Center
Peffer, Tamara Elizabeth; Bodzin, Alec M.; Smith, Judith Duffield
2013-01-01
This study examined the use of instructional and learning technologies by nonformal environmental educators. A 40-question survey was developed to inquire about practitioner demographics, technology use in practice, and beliefs about technology. The survey consisted of multiple choice, open-ended questions, and a Likert-type scale component--the…
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: TECHNOLOGY WITH AN IMPACT
SITE promotes the development and implementation of innovative technologies for remediating hazardous waste sites and for evaluating the nature and extent of hazardous waste site contamination through four component segments. The SITE Program is a key element in EPA's efforts...
ERIC Educational Resources Information Center
Signer, Barbara
2008-01-01
This article provides a model of online professional development that is consistent with recommendations from the fields of teacher education, technology staff development and online learning. A graduate mathematics education course designed and implemented using the model is presented to exemplify the model's core components and interactions. The…
NASA Astrophysics Data System (ADS)
Thylén, Lars
2006-07-01
The design and manufacture of components and systems underpin the European and indeed worldwide photonics industry. Optical materials and photonic components serve as the basis for systems building at different levels of complexity. In most cases, they perform a key function and dictate the performance of these systems. New products and processes will generate economic activity for the European photonics industry into the 21 st century. However, progress will rely on Europe's ability to develop new and better materials, components and systems. To achieve success, photonic components and systems must: •be reliable and inexpensive •be generic and adaptable •offer superior functionality •be innovative and protected by Intellectual Property •be aligned to market opportunities The challenge in the short-, medium-, and long-term is to put a coordinating framework in place which will make the European activity in this technology area competitive as compared to those in the US and Asia. In the short term the aim should be to facilitate the vibrant and profitable European photonics industry to further develop its ability to commercialize advances in photonic related technologies. In the medium and longer terms the objective must be to place renewed emphasis on materials research and the design and manufacturing of key components and systems to form the critical link between science endeavour and commercial success. All these general issues are highly relevant for the component intensive broadband communications industry. Also relevant for this development is the convergence of data and telecom, where the low cost of data com meets with the high reliability requirements of telecom. The text below is to a degree taken form the Strategic Research Agenda of the Technology Platform Photonics 21 [1], as this contains a concerted effort to iron out a strategy for EU in the area of photonics components and systems.
Learning Resources and Technology. A Guide to Program Development.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford.
This guide provides a framework to assist all Connecticut school districts in planning effective learning resources centers and educational technology programs capable of providing: a well developed library media component; shared instructional design responsibilities; reading for enrichment; integration of computers into instruction; distance…
Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.; Starr, Stanley O.; Eisenman, David J.; Suzuki, Nantel H.; Anderson, Molly S.; O'Malley, Terrence F.; Araghi, Koorosh R.
2017-01-01
In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications.
Adding an Online Component to a Teacher Training Program Helps Increase Participation and Engagement
ERIC Educational Resources Information Center
Martin, Roger; Smith, Dianne
2006-01-01
We liked our training model. We were bringing in teachers during their contract time for a full day of technology staff development. We offered, through one of two training labs at our District Educational Technology Center (ETC), more than 30 different courses on skill development or how to implement technology into instructional practices. Our…
NASA Technical Reports Server (NTRS)
Jeng, Frank F.
2007-01-01
Development of analysis guidelines for Exploration Life Support (ELS) technology tests was completed. The guidelines were developed based on analysis experiences gained from supporting Environmental Control and Life Support System (ECLSS) technology development in air revitalization systems and water recovery systems. Analyses are vital during all three phases of the ELS technology test: pre-test, during test and post test. Pre-test analyses of a test system help define hardware components, predict system and component performances, required test duration, sampling frequencies of operation parameters, etc. Analyses conducted during tests could verify the consistency of all the measurements and the performance of the test system. Post test analyses are an essential part of the test task. Results of post test analyses are an important factor in judging whether the technology development is a successful one. In addition, development of a rigorous model for a test system is an important objective of any new technology development. Test data analyses, especially post test data analyses, serve to verify the model. Test analyses have supported development of many ECLSS technologies. Some test analysis tasks in ECLSS technology development are listed in the Appendix. To have effective analysis support for ECLSS technology tests, analysis guidelines would be a useful tool. These test guidelines were developed based on experiences gained through previous analysis support of various ECLSS technology tests. A comment on analysis from an experienced NASA ECLSS manager (1) follows: "Bad analysis was one that bent the test to prove that the analysis was right to begin with. Good analysis was one that directed where the testing should go and also bridged the gap between the reality of the test facility and what was expected on orbit."
AGT (Advanced Gas Turbine) technology project
NASA Technical Reports Server (NTRS)
1988-01-01
An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated; (7) Small turbine engine aerodynamic and mechanical design capability has been initiated; and (8) An infrastructure of manpower, facilities, materials, and fabrication capabilities has been established which is available for continued development of ceramic component technology in gas turbine and other heat engines.
Melioli, Giovanni; Passalacqua, Giovanni; Canonica, Giorgio W
2014-12-01
'Allergen microarrays, in poly-sensitized allergic patients, represent a real value added in the accurate IgE profiling and in the identification of allergen(s) to administer for an effective allergen immunotherapy.' Allergen microarrays (AMA) were developed in the early 2000s to improve the diagnostic pathway of patients with allergic reactions. Nowadays, AMA are constituted by more than 100 different components (either purified or recombinant), representing genuine and cross-reacting molecules from plants and animals. The cost of the procedure had suggested its use as third-level diagnostics (following in vivo- and in vitro-specific IgE tests) in poly-sensitized patients. The complexity of the interpretation had inspired the development of in silico technologies to help clinicians in their work. Both machine learning techniques and expert systems are now available. In particular, an expert system that has been recently developed not only identifies positive and negative components but also lists dangerous components and classifies patients based on their potential responsiveness to allergen immunotherapy, on the basis of published algorithms. For these characteristics, AMA represents the state-of-the-art technology for allergy diagnosis in poly-sensitized patients.
NASA Technical Reports Server (NTRS)
Adams, Marc A.; Zwissler, James G.; Hayes, Charles; Fabensky, Beth; Cornelison, Charles; Alexander, Lesley; Bishop, Karen
2005-01-01
A new technology is being developed that can protect spacecraft and satellite components against damage from meteoroid strikes and control the thermal environment of the protected components. This technology, called Foam Core Shield (FCS) systems, has the potential to replace the multi-layer insulation blankets (MLI) that have been used on spacecraft for decades. In order to be an attractive candidate for replacing MLI, FCS systems should not only provide superior protection against meteoroid strikes but also provide an equal or superior ability to control the temperature of the protected component. Properly designed FCS systems can provide these principal functions, meteoroid strike protection and thermal control, with lower system mass and a smaller system envelope than ML.
In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV
2004-01-01
An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.
Advanced structures technology and aircraft safety
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr.
1983-01-01
NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.
Electrolysis Propulsion for Spacecraft Applications
NASA Technical Reports Server (NTRS)
deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.
1997-01-01
Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.
NASA/ESTO investments in remote sensing technologies (Conference Presentation)
NASA Astrophysics Data System (ADS)
Babu, Sachidananda R.
2017-02-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
ESTO Investments in Innovative Sensor Technologies for Remote Sensing
NASA Technical Reports Server (NTRS)
Babu, Sachidananda R.
2017-01-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
NASA Astrophysics Data System (ADS)
Radchenko, Mikhail V.; Kiselev, Vadim S.; Shevtsov, Yuri O.; Radchenko, Tatyana B.
2017-10-01
The article is devoted to the research and development of technological recommendations of supersonic gas-powder surfacing, an example of the practical use of the developed technology is given. Market research indicates that demand for these products is stable due to the growing quality requirements of components and parts produced by the largest machine-building enterprises of Russia.
Introduction to the Portable Life Support Schematic and Technology Development Components
NASA Technical Reports Server (NTRS)
Conger, Bruce
2008-01-01
Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.
A comparison of forming technologies for ceramic gas-turbine engine components
NASA Technical Reports Server (NTRS)
Hengst, R. R.; Heichel, D. N.; Holowczak, J. E.; Taglialavore, A. P.; Mcentire, B. J.
1990-01-01
For over ten years, injection molding and slip casting have been actively developed as forming techniques for ceramic gas turbine components. Co-development of these two processes has continued within the U.S. DOE-sponsored Advanced Turbine Technology Application Project (ATTAP). Progress within ATTAP with respect to these two techniques is summarized. A critique and comparison of the two processes are given. Critical aspects of both processes with respect to size, dimensional control, material properties, quality, cost, and potential for manufacturing scale-up are discussed.
Cost/benefit analysis of advanced material technologies for small aircraft turbine engines
NASA Technical Reports Server (NTRS)
Comey, D. H.
1977-01-01
Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.
NASA Technical Reports Server (NTRS)
1995-01-01
HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.
Systems Engineering and Integration for Technology Programs
NASA Technical Reports Server (NTRS)
Kennedy, Kruss J.
2006-01-01
The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.
Overview of Advanced Turbine Systems Program
NASA Astrophysics Data System (ADS)
Webb, H. A.; Bajura, R. A.
The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.
Progress update of NASA's free-piston Stirling space power converter technology project
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald
1992-01-01
A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.
Introduction to Satellite Communications Technology for NREN
NASA Technical Reports Server (NTRS)
Stone, Thom
2004-01-01
NREN requirements for development of seamless nomadic networks necessitates that NREN staff have a working knowledge of basic satellite technology. This paper addresses the components required for a satellite-based communications system, applications, technology trends, orbits, and spectrum, and hopefully will afford the reader an end-to-end picture of this important technology.
ERIC Educational Resources Information Center
Shapley, Kelly; Sheehan, Daniel; Maloney, Catherine; Caranikas-Walker, Fanny
2010-01-01
In the study of the Technology Immersion model, high-need middle schools were "immersed" in technology by providing laptops for each teacher and student, instructional and learning resources, professional development, and technical and pedagogical support. This article reports third-year findings for the teacher component of the…
Advanced High Pressure O2/H2 Technology
NASA Technical Reports Server (NTRS)
Morea, S. F. (Editor); Wu, S. T. (Editor)
1985-01-01
Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.
NASA Astrophysics Data System (ADS)
Hickmott, Curtis W.
Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional tooling methods. Components made with the cellular core tooling method showed an improved strength at the joints. It is expected that this knowledge will help optimize the processing of complex, integrated structures and benefit applications in aerospace where lighter, structurally efficient components would be advantageous.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
2002-01-01
NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.
ERIC Educational Resources Information Center
Lim, Cher Ping; Yan, Hanbing; Xiong, Xibei
2015-01-01
This paper examines how the design and implementation of a core teacher education course develops pre-service teachers' information communication technology (ICT) in education competencies in a mainland Chinese university. This course adopted a four-component instructional design system to develop its curriculum, incorporated an inquiry-based…
Development of expert systems for analyzing electronic documents
NASA Astrophysics Data System (ADS)
Abeer Yassin, Al-Azzawi; Shidlovskiy, S.; Jamal, A. A.
2018-05-01
The paper analyses a Database Management System (DBMS). Expert systems, Databases, and database technology have become an essential component of everyday life in the modern society. As databases are widely used in every organization with a computer system, data resource control and data management are very important [1]. DBMS is the most significant tool developed to serve multiple users in a database environment consisting of programs that enable users to create and maintain a database. This paper focuses on development of a database management system for General Directorate for education of Diyala in Iraq (GDED) using Clips, java Net-beans and Alfresco and system components, which were previously developed in Tomsk State University at the Faculty of Innovative Technology.
Nuclear Cryogenic Propulsion Stage Affordable Development Strategy
NASA Technical Reports Server (NTRS)
Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.
2014-01-01
The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.
Plasma contactor technology for Space Station Freedom
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy
1993-01-01
Hollow cathode plasma contactors were baselined for Space Station Freedom (SSF) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contact or subsystems include the plasma contact or unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities were developed, and existing facilities were augmented, to support characterizations and life testing of contactor components and systems. The magnitude, scope, and status of the plasma contactor hardware development program now underway and preliminary test results on system components are discussed.
Plasma contactor technology for Space Station Freedom
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy
1993-01-01
Hollow cathode plasma contactors have been baselined for Space Station Freedom to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities have been developed, and existing facilities have been augmented, to support characterizations and life testing of contactor components and systems. This paper discusses the magnitude, scope, and status of the plasma contactor hardware development program now under way and preliminary test results on system components.
The Next Technology Revolution - Nano Electronic Technology
NASA Astrophysics Data System (ADS)
Turlik, Iwona
2004-03-01
Nanotechnology is a revolutionary engine that will engender enormous changes in a vast majority of today's industries and markets, while potentially creating whole new industries. The impact of nanotechnology is particularly significant in the electronics industry, which is constantly driven by the need for higher performance, increased functionality, smaller size and lower cost. Nanotechnology can influence many of the hundreds of components that are typically assembled to manufacture modern electronic devices. Motorola manufactures electronics for a wide range of industries and communication products. In this presentation, the typical components of a cellular phone are outlined and technology requirements for future products, the customer benefits, and the potential impact of nanotechnology on many of the components are discussed. Technology needs include reliable materials supply, processes for high volume production, experimental and simulation tools, etc. For example, even routine procedures such as failure characterization may require the development of new tools for investigating nano-scale phenomena. Business needs include the development of an effective, high volume supply chain for nano-materials and devices, disruptive product platforms, and visible performance impact on the end consumer. An equally significant long-term industry need is the availability of science and engineering graduates with a multidisciplinary focus and a deep understanding of the fundamentals of nano-technology, that can harness the technology to create revolutionary products.
FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.
FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
2011-01-01
The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
Supporting learner-centered technology integration through situated mentoring
NASA Astrophysics Data System (ADS)
Rosenberg, Marian Goode
Situated mentoring was used as a professional development method to help 11 high school science teachers integrate learner-centered technology. The teachers' learner-centered technology beliefs and practices as well as their perception of barriers to learner-centered technology integration were explored before and after participating in the mentoring program. In addition, the participants' thoughts about the effectiveness of various components of the mentoring program were analyzed along with the mentor's observations of their practices. Situated mentoring can be effective for supporting learner-centered technology integration, in particular decreasing the barriers teachers experience. Goal setting, collaborative planning, reflection, and onsite just-in-time support were thought to be the most valuable components of the mentoring program.
Characteristics of the Creative Development Technologies Applying during the Work with Students
ERIC Educational Resources Information Center
Krinitsyna, Anastasiya Vyacheslavovna; Nikitin, Oleg Denisovich; Boyakova, Ekaterina Vyacheslavovna
2016-01-01
Present article explores the characteristics of the influence of creative influence technologies for school and college students on their professional and personal self-identification. The aim of the study is students' creative development, which represents the process of integration of mental, emotional and physical personality components, which…
NASA Astrophysics Data System (ADS)
Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.
2004-08-01
Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of special metal/ceramic and ceramic/ceramic joining techniques as well as studying and verifying non destructive investigation processes for the purpose of testing components.
Use of Field Programmable Gate Array Technology in Future Space Avionics
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.; Tate, Robert
2005-01-01
Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.
NASA Astrophysics Data System (ADS)
Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.
2018-02-01
In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.
Ad hoc Laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi
2016-03-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
Ad hoc laser networks component technology for modular spacecraft
NASA Astrophysics Data System (ADS)
Huang, Xiujun; Shi, Dele; Shen, Jingshi
2017-10-01
Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less
Developing a GIS for CO2 analysis using lightweight, open source components
NASA Astrophysics Data System (ADS)
Verma, R.; Goodale, C. E.; Hart, A. F.; Kulawik, S. S.; Law, E.; Osterman, G. B.; Braverman, A.; Nguyen, H. M.; Mattmann, C. A.; Crichton, D. J.; Eldering, A.; Castano, R.; Gunson, M. R.
2012-12-01
There are advantages to approaching the realm of geographic information systems (GIS) using lightweight, open source components in place of a more traditional web map service (WMS) solution. Rapid prototyping, schema-less data storage, the flexible interchange of components, and open source community support are just some of the benefits. In our effort to develop an application supporting the geospatial and temporal rendering of remote sensing carbon-dioxide (CO2) data for the CO2 Virtual Science Data Environment project, we have connected heterogeneous open source components together to form a GIS. Utilizing widely popular open source components including the schema-less database MongoDB, Leaflet interactive maps, the HighCharts JavaScript graphing library, and Python Bottle web-services, we have constructed a system for rapidly visualizing CO2 data with reduced up-front development costs. These components can be aggregated together, resulting in a configurable stack capable of replicating features provided by more standard GIS technologies. The approach we have taken is not meant to replace the more established GIS solutions, but to instead offer a rapid way to provide GIS features early in the development of an application and to offer a path towards utilizing more capable GIS technology in the future.
Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)
2000-01-01
Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Advanced Integrated Traction System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Smith; Charles Gough
2011-08-31
The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotivemore » platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.« less
"Handy Manny" and the Emergent Literacy Technology Toolkit
ERIC Educational Resources Information Center
Hourcade, Jack J.; Parette, Howard P., Jr.; Boeckmann, Nichole; Blum, Craig
2010-01-01
This paper outlines the use of a technology toolkit to support emergent literacy curriculum and instruction in early childhood education settings. Components of the toolkit include hardware and software that can facilitate key emergent literacy skills. Implementation of the comprehensive technology toolkit enhances the development of these…
NASA Technical Reports Server (NTRS)
Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.
1996-01-01
This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. This paper provides an overview of the turboelectric and hybrid electric technologies being developed under NASA's Advanced Air Transportation Technology (AATT) Project and discusses how these technologies can impact vehicle design. The discussion includes an overview of key hybrid electric studies and technology investments, the approach to making informed investment decisions based on key performance parameters and mission studies, and the power system architectures for two candidate aircraft. Finally, the power components for a single-aisle turboelectric aircraft with an electrically driven tail cone thruster and for a hybrid-electric nine-passenger aircraft with a range extender are parametrically sized, and the sensitivity of these components to key parameters is presented.
NASA Astrophysics Data System (ADS)
Gladkii, V. P.; Nikitin, V. A.; Prokhorov, V. P.; Yakovenko, N. A.
1995-10-01
The results are given of technologic and circuit-engineering development of planar micro-optics components made of glasses and of lithium niobate. These components are intended for devices to be used in logic—arithmetic processing of information.
2002-08-01
An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.
The Future of Single- to Multi-band Detector Technologies: Review
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Bhat, Ishwara; Gunapala, Sarath D.; Bandara, Sumith V.; Refaat, Tamer F.; Sandford, Stephen P.; Singh, Upendra N.
2006-01-01
Using classical optical components such as filters, prisms and gratings to separate the desired wavelengths before they reach the detectors results in complex optical systems composed of heavy components. A simpler system will result by utilizing a single optical system and a detector that responds separately to each wavelength band. Therefore, a continuous endeavors to develop the capability to reliably fabricate detector arrays that respond to multiple wavelength regions. In this article, we will review the state-of-the-art single and multicolor detector technologies over a wide spectral-range, for use in space-based and airborne remote sensing applications. Discussions will be focused on current and the most recently developed focal plane arrays (FPA) in addition to emphasizing future development in UV-to-Far infrared multicolor FPA detectors for next generation space-based instruments to measure water vapor and greenhouse gases. This novel detector component will make instruments designed for these critical measurements more efficient while reducing complexity and associated electronics and weight. Finally, we will discuss the ongoing multicolor detector technology efforts at NASA Langley Research Center, Jet Propulsion Laboratory, Rensselaer Polytechnic Institute, and others.
Advancing Sensor Technology for Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Mercer, Carolyn R.
2002-01-01
NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.
Fuel conservative aircraft engine technology
NASA Technical Reports Server (NTRS)
Nored, D. L.
1978-01-01
Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.
Development of Electronics for Low-Temperature Space Missions
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott S.; Overton, Eric
2001-01-01
Electronic systems that are capable of operating at cryogenic temperatures will be needed for many future NASA space missions, including deep space probes and spacecraft for planetary surface exploration. In addition to being able to survive the harsh deep space environment, low-temperature electronics would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An ongoing research and development project for the design, fabrication, and characterization of low-temperature electronics and supporting technologies at NASA Glenn Research Center focuses on efficient power systems capable of surviving in and exploiting the advantages of low-temperature environments. Supporting technologies include dielectric and insulating materials, semiconductor devices, passive power components, optoelectronic devices, and packaging and integration of the developed components into prototype flight hardware. An overview of the project is presented, including a description of the test facilities, a discussion of selected data from component testing, and a presentation of ongoing research activities being performed in collaboration with various organizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less
Systems Engineering Programmatic Estimation Using Technology Variance
NASA Technical Reports Server (NTRS)
Mog, Robert A.
2000-01-01
Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.
Wang, Junjun; Chen, Ming
2012-11-01
Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented.
Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D
NASA Technical Reports Server (NTRS)
Dhar, Manmohan
1999-01-01
The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.
ERIC Educational Resources Information Center
Yurdakul, Isil Kabakci; Odabasi, Hatice Ferhan; Kilicer, Kerem; Coklar, Ahmet Naci; Birinci, Gurkay; Kurt, Adile Askim
2012-01-01
The purpose of this study is to develop a TPACK (technological pedagogical content knowledge) scale based on the centered component of TPACK framework in order to measure preservice teachers' TPACK. A systematic and step-by-step approach was followed for the development of the scale. The validity and reliability studies of the scale were carried…
Emergence of telerobotic control enhancement from research in machine autonomy
NASA Astrophysics Data System (ADS)
Haddad, Albert G., Sr.; Adams, John C.; Berardo, Peter A.; Ohlund, Kent O.; Van Vactor, David L.
1992-03-01
This paper provides a description of the Robotic Research Program being conducted at the Lockheed Research and Development Division Laboratories. It details the approach taken to fuse autonomy with teleoperative control. The component/enabling technologies are defined and the status of the development of those technologies is reported. CASE tools used in an accelerated development environment are identified and discussed.
ERIC Educational Resources Information Center
Lonsdale, Helen C.; McWilliams, Alfred E., Jr.
The Program Component of the Satellite Technology Demonstration (STD) developed the programing for a television series on career planning for junior high school students. A program called "Time Out" was designed, developed, and implemented to be broadcast throughout the Rocky Mountain States. A staff of educators and communicators…
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.
1984-01-01
The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.
Automation of cutting and drilling of composite components
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1991-01-01
The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.
Proton Exchange Membrane (PEM) Fuel Cells for Space Applications
NASA Technical Reports Server (NTRS)
Bradley, Karla
2004-01-01
This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.
Project KITES: Kids Interacting with Technology and Education Students.
ERIC Educational Resources Information Center
Taylor, Harriet G.; Stuhlmann, Janice M.
Faculty and administrators at the College of Education at Louisiana State University recognized the need to incorporate technology into all of their programs. Project KITES (Kids Interacting with Technology and Education Students) was developed to give students just beginning their professional education component real experiences with children…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ding; Han, Xiaoyan; Newaz, Golam
Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developingmore » the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.« less
Technology, the Columbus Effect, and the Third Revolution in Learning.
ERIC Educational Resources Information Center
Fletcher, J. D.
This work was performed under a task entitled "Development and Assessment of ADL Prototypes." This task is intended to promote collaboration by the Services and by other government and academic partners in developing technology-based instruction. It is an essential component of the Advanced Distributed Learning (ADL) initiative being undertaken by…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... manufacturing; manufacture an innovative technology product or an integral component of such a product; or, to... use or production of innovative technologies for manufacturing? Dated: April 10, 2013. Matt Erskine.... SUMMARY: The Economic Development Administration (EDA) seeks public comment on, how to design and...
Information Technology Integration in Teacher Education: Supporting the Paradigm Shift in Hong Kong.
ERIC Educational Resources Information Center
Lee, Kar Tin
2001-01-01
Examines the integration of information technology (IT) at the Hong Kong Institute of Education, presenting the rationale for this move, characteristics of IT integration, and program development issues for making IT application a critical component of contemporary teacher education. The paper presents a framework for program development and…
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
Process technology and effects of spallation products: Circuit components, maintenance, and handling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigg, B.; Haines, S.J.; Dressler, R.
1996-06-01
Working Session D included an assessment of the status of the technology and components required to: (1) remove impurities from the liquid metal (mercury or Pb-Bi) target flow loop including the effects of spallation products, (2) provide the flow parameters necessary for target operations, and (3) maintain the target system. A series of brief presentations were made to focus the discussion on these issues. The subjects of these presentations, and presenters were: (1) Spallation products and solubilities - R. Dressler; (2) Spallation products for Pb-Bi - Y. Orlov; (3) Clean/up/impurity removal components - B. Sigg; (4) {open_quotes}Road-Map{close_quotes} and remote handlingmore » needs - T. McManamy; (5) Remote handling issues and development - M. Holding. The overall conclusion of this session was that, with the exception of (i) spallation product related processing issues, (ii) helium injection and clean-up, and (iii) specialized remote handling equipment, the technology for all other circuit components (excluding the target itself) exists. Operating systems at the Institute of Physics in Riga, Latvia (O. Lielausis) and at Ben-Gurion University in Beer Shiva, Israel (S. Lesin) have demonstrated that other liquid metal circuit components including pumps, heat exchangers, valves, seals, and piping are readily available and have been reliably used for many years. In the three areas listed above, the designs and analysis are not judged to be mature enough to determine whether and what types of technology development are required. Further design and analysis of the liquid metal target system is therefore needed to define flow circuit processing and remote handling equipment requirements and thereby identify any development needs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud
The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysismore » and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms« less
Test and Demonstration Assets of New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstrationmore » and validation environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
Current technology in ion and electrothermal propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Murch, C. K.
1973-01-01
High performance propulsion devices, such as electrostatic ion engines and electrothermal thrusters, are achieving wide user acceptance. The current technology and projected development trends in the areas of ion and electrothermal propulsion systems and components are surveyed.
Full-Scale Dynamic Testing of Locomotive Crashworthy Components.
DOT National Transportation Integrated Search
2015-10-01
The Office of Research, Development, and Technology of the Federal Railroad Administration (FRA) and the Volpe Center are evaluating new occupant protection technologies to increase the safety of passengers and operators in rail equipment. In view of...
NASA Technical Reports Server (NTRS)
Depauw, J. F.; Reader, K. E.; Staskus, J. V.
1976-01-01
The test program is described for the 200 watt transmitter experiment package and the variable conductance heat pipe system which are components of the high-power transponder aboard the Communications Technology Satellite. The program includes qualification tests to demonstrate design adequacy, acceptance tests to expose latent defects in flight hardware, and development tests to integrate the components into the transponder system and to demonstrate compatibility.
Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less
Application of CFCC technology to hot gas filtration applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richlen, S.
1995-06-01
Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurementmore » of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.« less
Melli, Virginia; Rondelli, Gianni; Sandrini, Enrico; Altomare, Lina; Bolelli, Giovanni; Bonferroni, Benedetta; Lusvarghi, Luca; Cigada, Alberto; De Nardo, Luigi
2013-10-01
Industrial manufacturing of prosthesis components could take significant advantage by the introduction of new, cost-effective manufacturing technologies with near net-shape capabilities, which have been developed during the last years to fulfill the needs of different technological sectors. Among them, metal injection molding (MIM) appears particularly promising for the production of orthopedic arthroplasty components with significant cost saving. These new manufacturing technologies, which have been developed, however, strongly affect the chemicophysical structure of processed materials and their resulting properties. In order to investigate this relationship, here we evaluated the effects on electrochemical properties, ion release, and in vitro response of medical grade CoCrMo alloy processed via MIM compared to conventional processes. MIM of the CoCrMo alloy resulted in coarser polygonal grains, with largely varying sizes; however, these microstructural differences between MIM and forged/cast CoCrMo alloys showed a negligible effect on electrochemical properties. Passive current densities values observed were 0.49 µA cm(-2) for MIM specimens and 0.51 µA cm(-2) for forged CoCrMo specimens, with slightly lower transpassive potential in the MIM case; open circuit potential and Rp stationary values showed no significant differences. Moreover, in vitro biocompatibility tests resulted in cell viability levels not significantly different for MIM and conventionally processed alloys. Although preliminary, these results support the potential of MIM technology for the production of CoCrMo components of implantable devices. Copyright © 2013 Wiley Periodicals, Inc.
FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
Progress and profit through microtechnologies: commercial applications of MEMS/MOEMS
NASA Astrophysics Data System (ADS)
Ehrfeld, Wolfgang; Ehrfeld, Ursula
2001-09-01
Micro technology deals with miniaturization and integration in all areas of technology outside of microelectronics like micro mechanics, micro optics, micro acoustics, micro fluid technology, micro reaction technology and further disciplines which are focused on technical components and systems with characteristic dimensions in the micrometer range. Within a period of about ten years a multi-billion dollar market has been set up with many products for daily life. The growth rate of the market of micro technology will remain on a high level for the years to come. Mega trends resulting from fundamental human wishes for health, information, mobility and sustainable development are creating a further growing basis for micro technical products. A broad spectrum of production processes and materials has been developed to meet the requirements of a strongly diversified range of applications. For the development of new components and systems the importance of software tools for simulation of functional properties, production processes and comprehensive optimization is growing rapidly. Micro devices are meanwhile used extensively in information, automotive, and medical technologies. In addition, micro technology is generating a completely novel basis for chemical engineering, life sciences, industrial automation and optical communication, to mention only a few disciplines where future innovation will be dominated by miniaturization.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.
The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
2002-01-01
The Optical Vector Analyzer (OVA) 1550 significantly reduces the time and cost of testing sophisticated optical components. The technology grew from the research Luna Technologies' Dr. Mark Froggatt conducted on optical fiber strain measurement while working at Langley Research Center. Dr. Froggatt originally developed the technology for non- destructive evaluation testing at Langley. The new technique can provide 10,000 independent strain measurements while adding less than 10 grams to the weight of the vehicle. The OVA is capable of complete linear characterization of single-mode optical components used in high- bit-rate applications. The device can test most components over their full range in less than 30 seconds, compared to the more than 20 minutes required by other testing methods. The dramatically shortened measurement time results in increased efficiency in final acceptance tests of optical devices, and the comprehensive data produced by the instrument adds considerable value for component consumers. The device eliminates manufacturing bottlenecks, while reducing labor costs and wasted materials during production.
TRC research products: Components for service robots
NASA Technical Reports Server (NTRS)
Lob, W. Stuart
1994-01-01
Transitions Research Corporation has developed a variety of technologies to accomplish its central mission: the creation of commercially viable robots for the service industry. Collectively, these technologies comprise the TRC 'robot tool kit.' The company started by developing a robot base that serves as a foundation for mobile robot research and development, both within TRC and at customer sites around the world. A diverse collection of sensing techniques evolved more recently, many of which have been made available to the international mobile robot research community as commercial products. These 'tool-kit' research products are described in this paper. The largest component of TRC's commercial operation is a product called HelpMate for material transport and delivery in health care institutions.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Watts, Carly
2011-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Iacovidou, Eleni; Purnell, Phil; Lim, Ming K
2018-06-15
The exploitation of Radio Frequency Identification (RFID) for tracking and archiving the properties of structural construction components could be a potentially innovative disruption for the construction sector. This is because RFID can stimulate the reuse of construction components and reduce their wastage, hence addressing sustainability issues in the construction sector. To test the plausibility of that idea, this study explores the potential pre-conditions for RFID to facilitate construction components reuse, and develops a guidance for promoting their redistribution back to the supply chain. It also looks at how integrating RFID with Building Information Modelling (BIM) can possibly be a valuable extension of its capabilities, providing the opportunity for tracked components to be incorporated into new structures in an informed, sound way. A preliminary assessment of the strengths, weaknesses, opportunities and threats of the RFID technology is presented in order to depict its current and future potential in promoting construction components' sustainable lifecycle management, while emphasis has been laid on capturing their technical, environmental, economic and social value. Findings suggest that the collection of the right amount of information at the design-construction-deconstruction-reuse-disposal stage is crucial for RFID to become a successful innovation in the construction sector. Although a number of limitations related to the technical operability and recycling of RFID tags seem to currently hinder its uptake for structural components' lifecycle management, future technological innovations could provide solutions that would enable it to become a mainstream practice. Taken together these proposals advocate that the use of RFID and its integration with BIM can create the right environment for the development of new business models focused on sustainable resource management. These models may then unlock multiple values that are otherwise dissipated in the system. If the rapid technological development of RFID capability can be allied to policy interventions that control and manage its uptake along the supply chain, the sustainable lifecycle management of construction components could be radically enhanced. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Reflections on Component Computing from the Boxer Project's Perspective
ERIC Educational Resources Information Center
diSessa, Andrea A.
2004-01-01
The Boxer Project conducted the research that led to the synthetic review "Issues in Component Computing." This brief essay provides a platform from which to develop our general perspective on educational computing and how it relates to components. The two most important lines of our thinking are (1) the goal to open technology's creative…
NASA Technical Reports Server (NTRS)
Williams, G. M.; Fraser, J. C.
1991-01-01
The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.
NASA Astrophysics Data System (ADS)
Ye, Ming; Li, Yun; He, Yongning; Daneshmand, Mojgan
2017-05-01
With the development of space technology, microwave components with increased power handling capability and reduced weight have been urgently required. In this work, the perforated waveguide technology is proposed to suppress the multipactor effect of high power microwave components. Meanwhile, this novel method has the advantage of reducing components' weight, which makes it to have great potential in space applications. The perforated part of the waveguide components can be seen as an electron absorber (namely, its total electron emission yield is zero) since most of the electrons impacting on this part will go out of the components. Based on thoroughly benchmarked numerical simulation procedures, we simulated an S band and an X band waveguide transformer to conceptually verify this idea. Both electron dynamic simulations and electrical loss simulations demonstrate that the perforation technology can improve the multipactor threshold at least ˜8 dB while maintaining the acceptable insertion loss level compared with its un-perforated components. We also found that the component with larger minimum gap is easier to achieve multipactor suppression. This effect is interpreted by a parallel plate waveguide model. What's more, to improve the multipactor threshold of the X band waveguide transformer with a minimum gap of ˜0.1 mm, we proposed a perforation structure with the slope edge and explained its mechanism. Future study will focus on further optimization of the perforation structure, size, and distribution to maximize the comprehensive performances of microwave components.
NEXT Ion Propulsion System Development Status and Capabilities
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Benson, Scott W.
2008-01-01
NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.
Promising Electric Aircraft Drive Systems
NASA Technical Reports Server (NTRS)
Dudley, Michael R.
2010-01-01
An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.
Prototyping the HPDP Chip on STM 65 NM Process
NASA Astrophysics Data System (ADS)
Papadas, C.; Dramitinos, G.; Syed, M.; Helfers, T.; Dedes, G.; Schoellkopf, J.-P.; Dugoujon, L.
2011-08-01
Currently Astrium GmbH is involved in the of the High Performance Data Processor (HPDP) development programme for telecommunication applications under a DLR contract. The HPDP project targets the implementation of the commercially available reconfigurable array processor IP (XPP from the company PACT XPP Technologies) in a radiation hardened technology.In the current complementary development phase funded under the Greek Industry Incentive scheme, it is planned to prototype the HPDP chip in commercial STM 65 nm technology. In addition it is also planned to utilise the preliminary radiation hardened components of this library wherever possible.This abstract gives an overview of the HPDP chip architecture, the basic details of the STM 65 nm process and the design flow foreseen for the prototyping. The paper will discuss the development and integration issues involved in using the STM 65 nm process (also including the available preliminary radiation hardened components) for designs targeted to be used in space applications.
ERIC Educational Resources Information Center
Cornelius, Fran; Glasgow, Mary Ellen Smith
2007-01-01
Technology's impact on the delivery of health care mandates that nursing faculty use all technologies at their disposal to better prepare students to work in technology-infused health care environments. Essential components of an infrastructure to grow technology-infused nursing education include a skilled team comprised of tech-savvy faculty and…
Translations from Kommunist, Number 13, September 1978
1978-10-30
programmed machine tool here is merely a component of a more complex reprogrammable technological system. This includes the robot machine tools with...sufficient possibilities for changing technological operations and processes and automated technological lines. 52 The reprogrammable automated sets will...simulate the possibilities of such sets. A new technological level will be developed in industry related to reprogrammable automated sets, their design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less
Ion Thruster Development at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Sarver-Verhey, Timothy R.
1992-01-01
Recent ion propulsion technology efforts at NASA's Lewis Research Center including development of kW-class xenon ion thrusters, high power xenon and krypton ion thrusters, and power processors are reviewed. Thruster physical characteristics, performance data, life projections, and power processor component technology are summarized. The ion propulsion technology program is structured to address a broad set of mission applications from satellite stationkeeping and repositioning to primary propulsion using solar or nuclear power systems.
NASA Technical Reports Server (NTRS)
Yin, J.; Oyaki, A.; Hwang, C.; Hung, C.
2000-01-01
The purpose of this research and study paper is to provide a summary description and results of rapid development accomplishments at NASA/JPL in the area of advanced distributed computing technology using a Commercial-Off--The-Shelf (COTS)-based object oriented component approach to open inter-operable software development and software reuse.
NASA Astrophysics Data System (ADS)
Ashley, P. R.; Temmen, M. G.; Diffey, W. M.; Sanghadasa, M.; Bramson, M. D.
2007-10-01
Active and passive polymer materials have been successfully used in the development of highly accurate, compact and low cost guided-wave components: an optical transceiver and a phase modulator, for inertial measurement units (IMUs) based on the interferometric fibre optic gyroscope (IFOG) technology for precision guidance in navigation systems. High performance and low noise transceivers with high optical power and good spectral quality were fabricated using a silicon-bench architecture. Low loss phase modulators with low halfwave drive voltage (Vπ) have been fabricated with a backscatter compensated design using polarizing waveguides consisting of CLD- and FTC-type high performance electro-optic (E-O) chromophores. Gyro bias stability of less than 0.02° h-1 has been demonstrated with these guided-wave components.
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.
2014-01-01
NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.
DOE/JPL advanced thermionic technology program
NASA Technical Reports Server (NTRS)
1979-01-01
Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.
Selected Topics in Overset Technology Development and Applications At NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Chan, William M.; Kwak, Dochan (Technical Monitor)
2002-01-01
This paper presents a general overview of overset technology development and applications at NASA Ames Research Center. The topics include: 1) Overview of overset activities at NASA Ames; 2) Recent developments in Chimera Grid Tools; 3) A general framework for multiple component dynamics; 4) A general script module for automating liquid rocket sub-systems simulations; and 5) Critical future work.
GSFC Cutting Edge Avionics Technologies for Spacecraft
NASA Technical Reports Server (NTRS)
Luers, Philip J.; Culver, Harry L.; Plante, Jeannette
1998-01-01
With the launch of NASA's first fiber optic bus on SAMPEX in 1992, GSFC has ushered in an era of new technology development and insertion into flight programs. Predating such programs the Lewis and Clark missions and the New Millenium Program, GSFC has spearheaded the drive to use cutting edge technologies on spacecraft for three reasons: to enable next generation Space and Earth Science, to shorten spacecraft development schedules, and to reduce the cost of NASA missions. The technologies developed have addressed three focus areas: standard interface components, high performance processing, and high-density packaging techniques enabling lower cost systems. To realize the benefits of standard interface components GSFC has developed and utilized radiation hardened/tolerant devices such as PCI target ASICs, Parallel Fiber Optic Data Bus terminals, MIL-STD-1773 and AS1773 transceivers, and Essential Services Node. High performance processing has been the focus of the Mongoose I and Mongoose V rad-hard 32-bit processor programs as well as the SMEX-Lite Computation Hub. High-density packaging techniques have resulted in 3-D stack DRAM packages and Chip-On-Board processes. Lower cost systems have been demonstrated by judiciously using all of our technology developments to enable "plug and play" scalable architectures. The paper will present a survey of development and insertion experiences for the above technologies, as well as future plans to enable more "better, faster, cheaper" spacecraft. Details of ongoing GSFC programs such as Ultra-Low Power electronics, Rad-Hard FPGAs, PCI master ASICs, and Next Generation Mongoose processors.
Free-piston Stirling component test power converter test results and potential Stirling applications
NASA Technical Reports Server (NTRS)
Dochat, G. R.
1992-01-01
As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.
10 CFR 960.5-2-7 - Transportation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... using reasonably available technology; (iii) will not require transportation system components to meet... require the development of new packaging containment technology; (iv) will allow transportation operations... impacts, taking into account programmatic, technical, social, economic, and environmental factors; and (2...
10 CFR 960.5-2-7 - Transportation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... using reasonably available technology; (iii) will not require transportation system components to meet... require the development of new packaging containment technology; (iv) will allow transportation operations... impacts, taking into account programmatic, technical, social, economic, and environmental factors; and (2...
10 CFR 960.5-2-7 - Transportation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... using reasonably available technology; (iii) will not require transportation system components to meet... require the development of new packaging containment technology; (iv) will allow transportation operations... impacts, taking into account programmatic, technical, social, economic, and environmental factors; and (2...
14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that access to technology developments under this Agreement by foreign firms or institutions must be... software or documentation related to sales of products or components, or (3) Transfers to foreign...
ERIC Educational Resources Information Center
Manning, Jessica; VanDeusen, Karen
2011-01-01
Western Michigan University's Suicide Prevention Program utilizes multiple technological components, including an online training course, a Web site, and 2 social networking Web site profiles, as integral aspects of a comprehensive program. This article discusses the development, maintenance, use, and impact of the technological aspects of this…
Clementine. Mining new uses for SDI technology
NASA Astrophysics Data System (ADS)
Rustan, Pedro L.
1994-01-01
Using ballistic missile defense technologies for NASA science missions can dramatically reduce program costs and development time. Described is the Clementine spacecraft scheduled for launch to flight-qualify advanced lightweight technologies. The 500-lb spacecraft, which uses lightweight components and minimal redundancy, was built by the Naval Research Laboratory in less than two years.
Technology efficacy in active prosthetic knees for transfemoral amputees: a quantitative evaluation.
El-Sayed, Amr M; Hamzaid, Nur Azah; Abu Osman, Noor Azuan
2014-01-01
Several studies have presented technological ensembles of active knee systems for transfemoral prosthesis. Other studies have examined the amputees' gait performance while wearing a specific active prosthesis. This paper combined both insights, that is, a technical examination of the components used, with an evaluation of how these improved the gait of respective users. This study aims to offer a quantitative understanding of the potential enhancement derived from strategic integration of core elements in developing an effective device. The study systematically discussed the current technology in active transfemoral prosthesis with respect to its functional walking performance amongst above-knee amputee users, to evaluate the system's efficacy in producing close-to-normal user performance. The performances of its actuator, sensory system, and control technique that are incorporated in each reported system were evaluated separately and numerical comparisons were conducted based on the percentage of amputees' gait deviation from normal gait profile points. The results identified particular components that contributed closest to normal gait parameters. However, the conclusion is limitedly extendable due to the small number of studies. Thus, more clinical validation of the active prosthetic knee technology is needed to better understand the extent of contribution of each component to the most functional development.
Varifocal MOEMS fiber scanner for confocal endomicroscopy.
Meinert, Tobias; Weber, Niklas; Zappe, Hans; Seifert, Andreas
2014-12-15
Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.
NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2007-01-01
NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-12-01
The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.
Novel EO/IR sensor technologies
NASA Astrophysics Data System (ADS)
Lewis, Keith
2011-10-01
The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.
TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I
A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...
ERIC Educational Resources Information Center
Failla, Victor A.; Birk, Thomas A.
1999-01-01
Discusses the electrical power problems that can arise when schools try to integrate educational technology components into an existing facility, and how to plan the electrical power design to avoid power failures. Examines setting objectives, evaluating current electrical conditions, and developing the technology power design. (GR)
Advanced 3-V semiconductor technology assessment. [space communications
NASA Technical Reports Server (NTRS)
Nowogrodzki, M.
1983-01-01
Against a background of an extensive survey of the present state of the art in the field of III-V semiconductors for operation at microwave frequencies (or gigabit rate speeds), likely requirements of future space communications systems are identified, competing technologies and physical device limitations are discussed, and difficulties in implementing emerging technologies are projected. On the basis of these analyses, specific research and development programs required for the development of future systems components are recommended.
ERIC Educational Resources Information Center
Hacker, Michael; Barak, Moshe
2017-01-01
Engineering and technology education (ETE) are receiving increased attention as components of STEM education. Curriculum development should be informed by perceptions of academic engineering educators (AEEs) and classroom technology teachers (CTTs) as both groups educate students to succeed in the technological world. The purpose of this study was…
CMC Technology Advancements for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2013-01-01
CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
NASA Technical Reports Server (NTRS)
Evans, D. G.; Miller, T. J.
1978-01-01
The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.
Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC
NASA Technical Reports Server (NTRS)
Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.
2007-01-01
NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.
Photonic technology revolution influence on the defence area
NASA Astrophysics Data System (ADS)
Galas, Jacek; Litwin, Dariusz; Błocki, Narcyz; Daszkiewicz, Marek
2017-10-01
Revolutionary progress in the photonic technology provides the ability to develop military systems of new properties not possible to obtain with the use of classical technologies. In recent years, this progress has resulted in developing advanced, complex, multifunctional and relatively cheap Photonic Integrated Circuits (PIC) or Hybrid Photonics Circuits (HPC) built of a collection of standardized optical, optoelectronic and photonic components. This idea is similar to the technology of Electronic Integrated Circuits, which has revolutionized the microelectronic market. The novel approach to photonic technology is now revolutionizing the photonics' market. It simplifies the photonics technology and enables creation of technological centers for designing, development and production of advanced optical and photonic systems in the EU and other countries. This paper presents some selected photonic technologies and their impact on such defense systems like radars, radiolocation, telecommunication, and radio-communication systems.
Energy harvesting concepts for small electric unmanned systems
NASA Astrophysics Data System (ADS)
Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.
2004-07-01
In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
NASA Technical Reports Server (NTRS)
1984-01-01
Standardized methods are established for screening of JAN B microcircuits and JANTXV semiconductor components for space mission or other critical applications when JAN S devices are not available. General specifications are provided which outline the DPA (destructive physical analysis), environmental, electrical, and data requirements for screening of various component technologies. This standard was developed for Air Force Space Division, and is available for use by other DOD agencies, NASA, and space systems contractors for establishing common screening methods for electronic components.
The Common Data Acquisition Platform in the Helmholtz Association
NASA Astrophysics Data System (ADS)
Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.
2017-04-01
Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ``Matter and Technology'': ``Detector Technology and Systems'' and ``Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.
A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft
NASA Technical Reports Server (NTRS)
Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.
1985-01-01
A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.
Transformational Systems Concepts and Technologies for Our Future in Space
NASA Technical Reports Server (NTRS)
Howell, J. T.; George,P.; Mankins, J. C. (Editor); Christensen, C. B.
2004-01-01
NASA is constantly searching for new ideas and approaches yielding opportunities for assuring maximum returns on space infrastructure investments. Perhaps the idea of transformational innovation in developing space systems is long overdue. However, the concept of utilizing modular space system designs combined with stepping-stone development processes has merit and promises to return several times the original investment since each new space system or component is not treated as a unique and/or discrete design and development challenge. New space systems can be planned and designed so that each builds on the technology of previous systems and provides capabilities to support future advanced systems. Subsystems can be designed to use common modular components and achieve economies of scale, production, and operation. Standards, interoperability, and "plug and play" capabilities, when implemented vigorously and consistently, will result in systems that can be upgraded effectively with new technologies. This workshop explored many building-block approaches via way of example across a broad spectrum of technology discipline areas for potentially transforming space systems and inspiring future innovation. Details describing the workshop structure, process, and results are contained in this Conference Publication.
Review on energy harvesting for structural health monitoring in aeronautical applications
NASA Astrophysics Data System (ADS)
Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean
2015-11-01
This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
USDA-ARS?s Scientific Manuscript database
A garbage-processing technology has been developed that shreds, sterilizes, and separates inorganic and organic components of municipal solid waste. The technology not only greatly reduces waste volume, but the non-composted byproduct of this process, Fluff®, has the potential to be utilized as a s...
NASA Tech Briefs, Winter 1977. Volume 2, No. 4
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1979. Volume 4, No. 2
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of neW products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1981. Volume 6, No. 2
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1980. Volume 5, No. 4
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1980. Volume 5, No. 3
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovatio.ns of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1978. Volume 3, No. 3
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1984. Volume 8, No. 4
NASA Technical Reports Server (NTRS)
1984-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Science.
NASA Tech Briefs, Fall/Winter 1981. Vol. 6, No. 3
NASA Technical Reports Server (NTRS)
1981-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
The Growth of m-Learning and the Growth of Mobile Computing: Parallel Developments
ERIC Educational Resources Information Center
Caudill, Jason G.
2007-01-01
m-Learning is made possible by the existence and application of mobile hardware and networking technology. By exploring the capabilities of these technologies, it is possible to construct a picture of how different components of m-Learning can be implemented. This paper will explore the major technologies currently in use: portable digital…
NASA Tech Briefs, Spring 1978. Volume 3, No. 1
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact
ERIC Educational Resources Information Center
Fraser, John
2010-01-01
Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…
NASA Tech Briefs, Winter 1978. Volume 3, No. 4
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1983. Volume 8, No. 2
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Winter 1982. Volume 7, No. 2
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1981. Volume 6, No. 1
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1984. Volume 8, No. 3
NASA Technical Reports Server (NTRS)
1984-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1976. Volume 1, No. 3
NASA Technical Reports Server (NTRS)
1976-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of seloc.ted Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Solar Energy; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1979. Volume 4, No. 4
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1977. Volume 2, No. 3
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1980. Volume 5, No. 2
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1977. Volume 2, No. 1
NASA Technical Reports Server (NTRS)
1977-01-01
Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selted innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1982. Volume 7, No. 1
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the develop ment of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1979. Volume 4, No. 1
NASA Technical Reports Server (NTRS)
1979-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Fall 1983. Volume 8, No. 1
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1976. Volume 1, No. 4
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of val ue to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1977. Volume 2, No. 2
NASA Technical Reports Server (NTRS)
1977-01-01
Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1983. Volume 7, No. 3
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Spring 1980. Volume 5, No. 1
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1979. Volume 4, No. 3
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1983. Volume 7, No. 4
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and information Sciences.
Dual-Shaft Electric Propulsion (DSEP) Technology Development Program
NASA Astrophysics Data System (ADS)
1992-08-01
The background, progress, and current state of the DOE-sponsored Advanced Dual-Shaft Electric Propulsion Technology Development are presented. Three electric-drive vehicles were build as conversions of a commercial gasoline-powered van, using program-designed components and systems as required. The vehicles were tested primarily on dynamometer or test tract. Component and system testing represented a major portion of the development effort. Test data are summarized in this report, and an Appendix contains the final component design specifications. This major programmatic concerns were the traction battery, the battery management system, the dc-to-ac inverter, the drive motor, the transaxle and its ancillary equipment, and the vehicle controller. Additional effort was devoted to vehicle-related equipment: gear selector, power steering, power brakes, accelerator, dashboard instrumentation, and heater. Design, development, and test activities are reported for each of these items, together with an appraisal (lessons learned) and recommendations for possible further work. Other programmatic results include a Cost and Commercialization Analysis, a Reliability and Hazards Analysis Study, Technical Recommendations for Next-Generation Development, and an assessment of overall program efforts.
CAT/RF Simulation Lessons Learned
2003-06-11
IVSS-2003-MAS-7 CAT /RF Simulation Lessons Learned Christopher Mocnik Vetronics Technology Area, RDECOM TARDEC Tim Lee DCS Corporation...developed a re- configurable Unmanned Ground Vehicle (UGV) simulation for the Crew integration and Automation Test bed ( CAT ) and Robotics Follower (RF...Advanced Technology Demonstration (ATD) experiments. This simulation was developed as a component of the Embedded Simulation System (ESS) of the CAT
ERIC Educational Resources Information Center
Zinger, Doron; Naranjo, Ashley; Amador, Isabel; Gilbertson, Nicole; Warschauer, Mark
2017-01-01
Incorporating technology in classrooms to promote student learning is an ongoing instructional challenge. Teacher professional development (PD) is a central component of teacher education to support student use of technology and can improve student learning, but PD has had mixed results. In this study, researchers investigated a PD program…
Automotive Stirling Engine Development Project
NASA Technical Reports Server (NTRS)
Ernst, William D.; Shaltens, Richard K.
1997-01-01
The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.
Study of advanced techniques for determining the long term performance of components
NASA Technical Reports Server (NTRS)
1973-01-01
The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System
NASA Technical Reports Server (NTRS)
Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher
2001-01-01
The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.
Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Gustafson, N. B.; Harmon, T. J.
1993-01-01
An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.
The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
Periodic Cellular Structure Technology for Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Chen, Edward Y.
2015-01-01
Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.
Projection display technology for avionics applications
NASA Astrophysics Data System (ADS)
Kalmanash, Michael H.; Tompkins, Richard D.
2000-08-01
Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.
Advanced technology component derating
NASA Astrophysics Data System (ADS)
Jennings, Timothy A.
1992-02-01
A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.
Commercial technologies from the SP-100 program
NASA Astrophysics Data System (ADS)
Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.
1995-01-01
For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.
[Development and application of component-based Chinese medicine theory].
Zhang, Jun-Hua; Fan, Guan-Wei; Zhang, Han; Fan, Xiao-Hui; Wang, Yi; Liu, Li-Mei; Li, Chuan; Gao, Yue; Gao, Xiu-Mei; Zhang, Bo-Li
2017-11-01
Traditional Chinese medicine (TCM) prescription is the main therapies for disease prevention and treatment in Chinese medicine. Following the guidance of the theory of TCM and developing drug by composing prescriptions of TCM materials and pieces, it is a traditional application mode of TCM, and still widely used in clinic. TCM prescription has theoretical advantages and rich clinical application experience in dealing with multi-factor complex diseases, but scientific research is relatively weak. The lack of scientific cognition of the effective substances and mechanism of Chinese medicine leads to insufficient understanding of the efficacy regularity, which affects the stability of effect and hinders the improvement of quality of Chinese medicinal products. Component-based Chinese medicine (CCM) is an innovation based on inheritance, which breaks through the tradition of experience-based prescription and realize the transformation of compatibility from herbal pieces to components. CCM is an important achievement during the research process of modernization of Chinese medicine. Under the support of three national "973" projects, in order to reveal the scientific connotation of the prescription compatibility theory and develop innovative Chinese drugs, we have launched theoretical innovation and technological innovation around the "two relatively clear", and opened up the research field of CCM. CCM is an innovation based on inheritance, breaking through the tradition of experience based prescription, and realizing the transformation from compatibility of herbal pieces to component compatibility, which is an important achievement of the modernization of traditional Chinese medicine. In the past more than 10 years, with the deepening of research and the expansion of application, the theory and methods of CCM and efficacy-oriented compatibility have been continuously improved. The value of CCM is not only in developing new drug, more important is to build a communication bridge between traditional Chinese medicine and modern science and construct the system of key technologies which meet the need of innovation and development of TCM. This paper focused on the research progress, related concepts and technology development of CCM, as well as its application prospect in the theory research of Chinese medicine, development of innovative Chinese drugs, secondary development of Chinese patent medicine and upgrading of pharmaceutical technology. Copyright© by the Chinese Pharmaceutical Association.
Boulton, Elisabeth; Hawley-Hague, Helen; Vereijken, Beatrix; Clifford, Amanda; Guldemond, Nick; Pfeiffer, Klaus; Hall, Alex; Chesani, Federico; Mellone, Sabato; Bourke, Alan; Todd, Chris
2016-06-01
Recent Cochrane reviews on falls and fall prevention have shown that it is possible to prevent falls in older adults living in the community and in care facilities. Technologies aimed at fall detection, assessment, prediction and prevention are emerging, yet there has been no consistency in describing or reporting on interventions using technologies. With the growth of eHealth and data driven interventions, a common language and classification is required. The FARSEEING Taxonomy of Technologies was developed as a tool for those in the field of biomedical informatics to classify and characterise components of studies and interventions. The Taxonomy Development Group (TDG) comprised experts from across Europe. Through face-to-face meetings and contributions via email, five domains were developed, modified and agreed: Approach; Base; Components of outcome measures; Descriptors of technologies; and Evaluation. Each domain included sub-domains and categories with accompanying definitions. The classification system was tested against published papers and further amendments undertaken, including development of an online tool. Six papers were classified by the TDG with levels of consensus recorded. Testing the taxonomy with papers highlighted difficulties in definitions across international healthcare systems, together with differences of TDG members' backgrounds. Definitions were clarified and amended accordingly, but some difficulties remained. The taxonomy and manual were large documents leading to a lengthy classification process. The development of the online application enabled a much simpler classification process, as categories and definitions appeared only when relevant. Overall consensus for the classified papers was 70.66%. Consensus scores increased as modifications were made to the taxonomy. The FARSEEING Taxonomy of Technologies presents a common language, which should now be adopted in the field of biomedical informatics. In developing the taxonomy as an online tool, it has become possible to continue to develop and modify the classification system to incorporate new technologies and interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Liquid Oxygen/Liquid Methane Component Technology Development at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2010-01-01
The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. Besides existing in-house risk reduction activities, NASA has solicited from industry their participation on component technologies based on the potential application to the lunar ascent main engine (AME). Contracted and NASA efforts have ranged from valve technologies to engine system testbeds. The application for the AME is anticipated to be an expendable, pressure-fed engine for ascent from the moon at completion of its lunar stay. Additionally, the hardware is expected to provide an abort capability prior to landing, in the event that descent systems malfunction. For the past 4 years, MSFC has been working with the Glenn Research Center and the Johnson Space Center on methane technology development. This paper will focus on efforts specific to MSFC in pursuing ignition, injector performance, chamber material assessments and cryogenic valve technologies. Ignition studies have examined characteristics for torch, spark and microwave systems. Injector testing has yielded insight into combustion performance for shear, swirl and impinging type injectors. The majority of chamber testing has been conducted with ablative and radiatively cooled chambers with planned activities for regenerative and transpiration cooled chambers. Lastly, an effort is underway to examine the long duration exposure issues of cryogenic valve internal components. The paper will summarize the status of these efforts.
Innovations in food technology for health.
Hsieh, Yun-Hwa Peggy; Ofori, Jack Appiah
2007-01-01
Modern nutritional science is providing ever more information on the functions and mechanisms of specific food components in health promotion and/or disease prevention. In response to demands from increasingly health conscious consumers, the global trend is for food industries to translate nutritional information into consumer reality by developing food products that provide not only superior sensory appeal but also nutritional and health benefits. Today's busy life styles are also driving the development of healthy convenience foods. Recent innovations in food technologies have led to the use of many traditional technologies, such as fermentation, extraction, encapsulation, fat replacement, and enzyme technology, to produce new health food ingredients, reduce or remove undesirable food components, add specific nutrient or functional ingredients, modify food compositions, mask undesirable flavors or stabilize ingredients. Modern biotechnology has even revolutionized the way foods are created. Recent discoveries in gene science are making it possible to manipulate the components in natural foods. In combination with biofermentation, desirable natural compounds can now be produced in large amounts at a low cost and with little environmental impact. Nanotechnology is also beginning to find potential applications in the area of food and agriculture. Although the use of new technologies in the production of health foods is often a cause for concern, the possibility that innovative food technology will allow us to produce a wide variety of food with enhanced flavor and texture, while at the same time conferring multiple health benefits on the consumer, is very exciting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacombe, A.; Rouges, J.
1990-01-01
The current status of carbon-carbon and carbon-silicon carbide composites developed for aerospace applications is reviewed. In particular, attention is given to production facilities and technologies for the manufacture of C-C and C-SiC composites, mechanical and thermal characteristics of carbon-carbon and carbon-silicon carbide materials, applications to thermal structures and protection, and technologies developed to build large C-SiC thermostructural components within the Hermes program. 9 refs.
NASA Astrophysics Data System (ADS)
Valle, Fabio
The paper analyzes the satellite broadband systems for consumer from the perspective of technological innovation. The suggested interpretation relies upon such concepts as technological paradigm, technological trajectory and salient points. Satellite technology for broadband is a complex system on which each component (i.e. the satellite, the end-user equipment, the on-ground systems and related infrastructure) develops at different speed. Innovation in this industry concentrates recently on satellite space aircraft that seemed to be the component with the highest perceived opportunity for improvement. The industry has designed recently satellite systems with continuous dimensional increase of capacity available, suggesting that there is a technological trajectory in this area, similar to Moore’s law in the computer industry. The implications for industry players, Ka-band systems, and growth of future applications are also examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moawad, Ayman; Kim, Namdoo; Shidore, Neeraj
2016-01-01
The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of themore » rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.« less
Macro, mini, micro and nano (M(sup 3)N) technologies for the future
NASA Technical Reports Server (NTRS)
Friedrich, Craig R.; Warrington, Robert O.; Gao, Robert X.; Lin, Gang
1993-01-01
Microelectromechanical systems (MEMS), micro systems technologies (MST), and micromanufacturing are relatively recent phrases or acronyms that have become synonymous with the design, development, and manufacture of 'micro' devices and systems. Micromanufacturing encompasses MEMS or MST and, in addition, includes all of the processes involved in the production of micro things. Integration of mechanical and electrical components, including built-in computers, can be formed into systems which must be connected to the macroworld. Macro, mini, micro, and nano technologies are all a part of MEMS or micromanufacturing. At this point in the development of the technology, it is becoming apparent that mini systems, with micro components, could very well be the economic drivers of the technology for the foreseeable future. Initial research in the fabrication of microdevices using IC processing technology took place over thirty years ago. Anisotropic etching of silicon was used to produce piezoresistive diaphragms. Since the early 60's, there has been gradual progress in MEMS until the early 1980's when worldwide interest in the technology really started to develop. During this time high aspect ratio micromachining using x rays was started in Germany. In 1987 the concept of a 'silicon micromechanics foundry' was proposed. Since then the interest in the U.S., Germany, and Japan has increased to the point where hundreds of millions of dollars of research monies are being funneled into the technology (at least in Germany and Japan) and the technology has been classified as critical or as a technology or national importance by the U.S. government.
Integrated Evaluation of Closed Loop Air Revitalization System Components
NASA Technical Reports Server (NTRS)
Murdock, K.
2010-01-01
NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.
FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Holcomb, Robert S.
1993-01-01
A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.
Technological progress as a driver of innovation in infant foods.
Ferruzzi, Mario G; Neilson, Andrew P
2010-01-01
Advances in nutrition and food sciences are interrelated components of the innovative framework for infant formula and foods. While nutrition science continues to define the composition and functionality of human milk as a reference, food ingredient, formulation and processing technologies facilitate the design and delivery of nutritional and functional concepts to infant products. Expanding knowledge of both nutritive and non-nutritive components of human milk and their functionality guides selection and development of novel ingredient, formulation and processing methods to generate enhanced infant products targeting benefits including healthy growth, development as well as protection of health through the life cycle. In this chapter, identification and application of select novel ingredients/technologies will be discussed in the context of how these technological advancements have stimulated innovation in infant foods. Special focus will be given to advancements in protein technologies, as well as bioactive long-chain polyunsaturated fatty acids, prebiotics, probiotics that have allowed infant formula composition, and more critically functionality, to more closely align with that of human milk. Copyright © 2010 S. Karger AG, Basel.
Application of Additively Manufactured Components in Rocket Engine Turbopumps
NASA Technical Reports Server (NTRS)
Calvert, Marty, Jr.; Hanks, Andrew; Schmauch, Preston; Delessio, Steve
2015-01-01
The use of additive manufacturing technology has the potential to revolutionize the development of turbopump components in liquid rocket engines. When designing turbomachinery with the additive process there are several benefits and risks that are leveraged relative to a traditional development cycle. This topic explores the details and development of a 90,000 RPM Liquid Hydrogen Turbopump from which 90% of the parts were derived from the additive process. This turbopump was designed, developed and will be tested later this year at Marshall Space Flight Center.
Ceramic technology for automotive turbines
NASA Technical Reports Server (NTRS)
Mclean, A. F.
1982-01-01
The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.
Flexible design in water and wastewater engineering--definitions, literature and decision guide.
Spiller, Marc; Vreeburg, Jan H G; Leusbrock, Ingo; Zeeman, Grietje
2015-02-01
Urban water and wastewater systems face uncertain developments including technological progress, climate change and urban development. To ensure the sustainability of these systems under dynamic conditions it has been proposed that technologies and infrastructure should be flexible, adaptive and robust. However, in literature it is often unclear what these technologies and infrastructure are. Furthermore, the terms flexible, adaptive and robust are often used interchangeably, despite important differences. In this paper we will i) define the terminology, ii) provide an overview of the status of flexible infrastructure design alternatives for water and wastewater networks and treatment, and iii) develop guidelines for the selection of flexible design alternatives. Results indicate that, with the exception of Net Present Valuation methods, there is little research available on the design and evaluation of technologies that can enable flexibility. Flexible design alternatives reviewed include robust design, phased design, modular design, modular/component platform design and design for remanufacturing. As developments in the water sector are driven by slow variables (climate change, urban development), rather than market forces, it is suggested that phased design or component platform designs are suitable for responding to change, while robust design is an option when operations face highly dynamic variability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2004-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
A Retrospective of Four Decades of Military Interest in Thermophotovoltaics
NASA Astrophysics Data System (ADS)
Guazzoni, Guido; Matthews, Selma
2004-11-01
Following a short discussion on the origin of Thermophotovoltaic (TPV), this presentation offers a retrospective of the progress and results of the recurrent efforts in TPV conducted in the United States by the Military during the last 40 years. The US Army's interest in TPV, for the development of portable power sources, started a few years after the energy conversion approach was conceived. TPV technology was seen to offer a solution for the Army's need for power in the 10 to 1500 Watt range. The technology offered the means to overcome the limitation of size and weight found in existing commercial power sources, with the additional advantage of silent and multifuel operation. Hence, the Army invested research and development (R&D) funding to investigate TPV feasibility for tactical field application. After an initial decade of continuous research studies by the Army, the support for this technology has experienced cycles of significant efforts interrupted by temporary waiting periods to allow this technology to further mature. Over the last four decades, several TPV proof of concept systems were developed. The results of their testing and evaluation have demonstrated the feasibility of the technology for development of power sources with output of several watts to a few hundreds watts. To date, the results have not been found to adequately demonstrate the applicability of TPV to the development of military power generators with output above 500 watts. TPV power sources have not been developed yet for Army field use or troop testing. The development risk is still considered to be moderate-to-high since practical-size systems that go beyond the laboratory test units have not been designed, constructed, tested. The greatest need is for system development, along with concurrent continued component development and improvement. The Defense Advanced Research Project Agency (DARPA) support for TPV R&D effort has been drastically reduced. The Army is still pursuing a 500watt TPV unit demonstrator. No further collaboration among DARPA, Army, NASA is contemplated, which seems indicative of the beginning of a new period of waiting for additional maturing of this technology. The Army's assessment about the viability of TPV for integrated systems indicates that the technology will require a few more years of development. However, at this time, for the completion of component and system development, a strong effort is needed in the private sector. The achievement of the necessary ruggedness for some critical components, acceptable overall efficiency, and system thermal management, is essential for a new, strong restart of TPV effort by the Military.
Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components
Space mechanisms needs for future NASA long duration space missions
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1991-01-01
Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.
Improving the Reliability of Technological Subsystems Equipment for Steam Turbine Unit in Operation
NASA Astrophysics Data System (ADS)
Brodov, Yu. M.; Murmansky, B. E.; Aronson, R. T.
2017-11-01
The authors’ conception is presented of an integrated approach to reliability improving of the steam turbine unit (STU) state along with its implementation examples for the various STU technological subsystems. Basing on the statistical analysis of damage to turbine individual parts and components, on the development and application of modern methods and technologies of repair and on operational monitoring techniques, the critical components and elements of equipment are identified and priorities are proposed for improving the reliability of STU equipment in operation. The research results are presented of the analysis of malfunctions for various STU technological subsystems equipment operating as part of power units and at cross-linked thermal power plants and resulting in turbine unit shutdown (failure). Proposals are formulated and justified for adjustment of maintenance and repair for turbine components and parts, for condenser unit equipment, for regeneration subsystem and oil supply system that permit to increase the operational reliability, to reduce the cost of STU maintenance and repair and to optimize the timing and amount of repairs.
Advanced Thermionic Technology Program
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include surface studies (surface theory, basic surface experiments, and activation chamber experiments); plasma studies (converter theory and enhanced mode conversion experiments); and component development (low temperature conversion experiments, high efficiency conversion experiments, and hot shell development).
The Municipal Environmental Research Laboratory is EPA's research component for the development of technology, systems and processes to combat environmental pollutants that trouble our communities and municipalities. The report discusses the development and demonstration of cost-...
A multidisciplinary approach to the development of low-cost high-performance lightwave networks
NASA Technical Reports Server (NTRS)
Maitan, Jacek; Harwit, Alex
1991-01-01
Our research focuses on high-speed distributed systems. We anticipate that our results will allow the fabrication of low-cost networks employing multi-gigabit-per-second data links for space and military applications. The recent development of high-speed low-cost photonic components and new generations of microprocessors creates an opportunity to develop advanced large-scale distributed information systems. These systems currently involve hundreds of thousands of nodes and are made up of components and communications links that may fail during operation. In order to realize these systems, research is needed into technologies that foster adaptability and scaleability. Self-organizing mechanisms are needed to integrate a working fabric of large-scale distributed systems. The challenge is to fuse theory, technology, and development methodologies to construct a cost-effective, efficient, large-scale system.
Cost as a technology driver. [in aerospace R and D
NASA Technical Reports Server (NTRS)
Fitzgerald, P. E., Jr.; Savage, M.
1976-01-01
Cost managment as a guiding factor in optimum development of technology, and proper timing of cost-saving programs in the development of a system or technology with payoffs in development and operational advances are discussed and illustrated. Advances enhancing the performance of hardware or software advances raising productivity or reducing cost, are outlined, with examples drawn from: thermochemical thrust maximization, development of cryogenic storage tanks, improvements in fuel cells for Space Shuttle, design of a spacecraft pyrotechnic initiator, cost cutting by reduction in the number of parts to be joined, and cost cutting by dramatic reductions in circuit component number with small-scale double-diffused integrated circuitry. Program-focused supporting research and technology models are devised to aid judicious timing of cost-conscious research programs.
NASA Technical Reports Server (NTRS)
McNeal, Curtis I., Jr.; Anderson, William
1999-01-01
NASA's current focus on technology roadmaps as a tool for guiding investment decisions leads naturally to a discussion of NASA's roadmap for peroxide propulsion system development. NASA's new Second Generation Space Transportation System roadmap calls for an integrated Reusable Upper-Stage (RUS) engine technology demonstration in the FY03/FY04 time period. Preceding this integrated demonstration are several years of component developments and subsystem technology demonstrations. NASA and the Air Force took the first steps at developing focused upper stage technologies with the initiation of the Upper Stage Flight Experiment with Orbital Sciences in December 1997. A review of this program's peroxide propulsion development is a useful first step in establishing the peroxide propulsion pathway that could lead to a RUS demonstration in 2004.
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
NASA Technical Reports Server (NTRS)
Aaron, Kim
1991-01-01
The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.
Space Mechanisms Technology Workshop
NASA Technical Reports Server (NTRS)
Oswald, Fred B. (Editor)
2001-01-01
The Mechanical Components Branch at NASA Glenn Research Center hosted a workshop to discuss the state of drive systems technology needed for space exploration. The Workshop was held Thursday, November 2, 2000. About 70 space mechanisms experts shared their experiences from working in this field and considered technology development that will be needed to support future space exploration in the next 10 to 30 years.
NASA Tech Briefs, Summer 1976. Volume 1, No. 2
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences. Also included are; NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; and New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products.
Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping
J. David Nichols; John R. Warren
1987-01-01
The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
Advanced RF Front End Technology
NASA Technical Reports Server (NTRS)
Herman, M. I.; Valas, S.; Katehi, L. P. B.
2001-01-01
The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.
High Power Silicon Carbide (SiC) Power Processing Unit Development
NASA Technical Reports Server (NTRS)
Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.
2015-01-01
NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.
Technology Requirements and Development for Affordable High-Temperature Distributed Engine Controls
2012-06-04
long lasting, high temperature modules is to use high temperature electronics on ceramic modules. The electronic components are “ brazed ” onto the...Copyright © 2012 by ISA Technology Requirements and Development for Affordable High - Temperature Distributed Engine Controls Alireza Behbahani 1...with regards to high temperature capability. The Government and Industry Distributed Engine Controls Working Group (DECWG) [5] has been established
Component-based integration of chemistry and optimization software.
Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L
2004-11-15
Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.
Shuttle cryogenic supply system optimization study
NASA Technical Reports Server (NTRS)
1971-01-01
Technical information on different cryogenic supply systems is presented for selecting representative designs. Parametric data and sensitivity studies, and an evaluation of related technology status are included. An integrated mathematical model for hardware program support was developed. The life support system, power generation, and propellant supply are considered. The major study conclusions are the following: Optimum integrated systems tend towards maximizing liquid storage. Vacuum jacketing of tanks is a major effect on integrated systems. Subcritical storage advantages over supercritical storage decrease as the quantity of propellant or reactant decreases. Shuttle duty cycles are not severe. The operational mode has a significant effect on reliability. Components are available for most subsystem applications. Subsystems and components require a minimum amount of technology development.
NASA Astrophysics Data System (ADS)
Torun, Ahmet R.; Mountasir, Adil; Hoffmann, Gerald; Cherif, Chokri
2013-06-01
3D textile preforms offer a high potential to increase mechanical properties of composites and/or decrease manufacturing costs. Within the scope of this study, production principles were developed for complex spacer preforms and integrated stiffeners. These principles were applied through technological further development of the well-known face-to-face and terry weaving techniques. Various woven preforms were produced with Glass fibre/Polypropylene (GF/PP) Commingled yarns, however, the technology is suitable for any type of reinforcement yarns. U-shaped woven spacer preform was consolidated into a sandwich composite component for lightweight applications.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Advanced electrical power system technology for the all electric aircraft
NASA Technical Reports Server (NTRS)
Finke, R. C.; Sundberg, G. R.
1983-01-01
The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.
NASA Astrophysics Data System (ADS)
Mittchell, Richard L.; Symko-Davies, Martha; Thomas, Holly P.; Witt, C. Edwin
1999-03-01
The Photovoltaic Manufacturing Technology (PVMaT) Project is a government/industry research and development (R&D) partnership between the U.S. federal government (through the U.S. Department of Energy [DOE]) and members of the U.S. PV industry. The goals of PVMaT are to assist the U.S. PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance investment opportunities for substantial scale-ups of U.S.-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share the R&D risk as industry explores new manufacturing options and ideas for improved PV modules and components, advances system and product integration, and develops new system designs. These activities will lead to overall reduced system life-cycle costs for reliable PV end-products. The 1994 PVMaT Product-Driven BOS and Systems activities, as well as Product-Driven Module Manufacturing R&D activities, are just being completed. Fourteen new subcontracts have just been awarded in the areas of PV System and Component Technology and Module Manufacturing Technology. Government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are also discussed.
Technology Efficacy in Active Prosthetic Knees for Transfemoral Amputees: A Quantitative Evaluation
El-Sayed, Amr M.; Abu Osman, Noor Azuan
2014-01-01
Several studies have presented technological ensembles of active knee systems for transfemoral prosthesis. Other studies have examined the amputees' gait performance while wearing a specific active prosthesis. This paper combined both insights, that is, a technical examination of the components used, with an evaluation of how these improved the gait of respective users. This study aims to offer a quantitative understanding of the potential enhancement derived from strategic integration of core elements in developing an effective device. The study systematically discussed the current technology in active transfemoral prosthesis with respect to its functional walking performance amongst above-knee amputee users, to evaluate the system's efficacy in producing close-to-normal user performance. The performances of its actuator, sensory system, and control technique that are incorporated in each reported system were evaluated separately and numerical comparisons were conducted based on the percentage of amputees' gait deviation from normal gait profile points. The results identified particular components that contributed closest to normal gait parameters. However, the conclusion is limitedly extendable due to the small number of studies. Thus, more clinical validation of the active prosthetic knee technology is needed to better understand the extent of contribution of each component to the most functional development. PMID:25110727
Silicon Micromachining for Terahertz Component Development
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Reck, Theodore J.; Jung-Kubiak, Cecile; Siles, Jose V.; Lee, Choonsup; Lin, Robert; Mehdi, Imran
2013-01-01
Waveguide component technology at terahertz frequencies has come of age in recent years. Essential components such as ortho-mode transducers (OMT), quadrature hybrids, filters, and others for high performance system development were either impossible to build or too difficult to fabricate with traditional machining techniques. With micromachining of silicon wafers coated with sputtered gold it is now possible to fabricate and test these waveguide components. Using a highly optimized Deep Reactive Ion Etching (DRIE) process, we are now able to fabricate silicon micromachined waveguide structures working beyond 1 THz. In this paper, we describe in detail our approach of design, fabrication, and measurement of silicon micromachined waveguide components and report the results of a 1 THz canonical E-plane filter.
ERIC Educational Resources Information Center
Money, William H.
Instructors should be concerned with how to incorporate the World Wide Web into an information systems (IS) curriculum organized across three areas of knowledge: information technology, organizational and management concepts, and theory and development of systems. The Web fits broadly into the information technology component. For the Web to be…
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
Melin, Alexander M.; Kisner, Roger A.
2018-04-03
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Diamond High Assurance Security Program: Trusted Computing Exemplar
2002-09-01
computing component, the Embedded MicroKernel Prototype. A third-party evaluation of the component will be initiated during development (e.g., once...target technologies and larger projects is a topic for future research. Trusted Computing Reference Component – The Embedded MicroKernel Prototype We...Kernel The primary security function of the Embedded MicroKernel will be to enforce process and data-domain separation, while providing primitive
NASA Funding Opportunities for Optical Fabrication and Testing Technology Development
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou; Han, Sen; Jin, Tao
2016-11-01
With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, R., E-mail: rifky-mec@yahoo.com; Tauviqirrahman, M., E-mail: rifky-mec@yahoo.com; Laboratory for Surface Technology and Tribology, Faculty of Engineering Technology, University of Twente, Enschede
This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boronmore » nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.« less
NASA Astrophysics Data System (ADS)
Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.
2009-09-01
This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.
Development of mass production technology for block copolymer lithographic materials
NASA Astrophysics Data System (ADS)
Himi, Toshiyuki; Matsuki, Ryota; Kosaka, Terumasa; Ogaki, Ryosuke; Kawaguchi, Yukio; Shimizu, Tetsuo
2017-03-01
We have successfully synthesized various and over wide range molecular weight block copolymers (BCPs): these are polystyrene(PS)-polymethylmethacrylate(PMMA) as general components and poly(4-trimethylsilylstyrene)(PTMSS)- poly(4-hydroxystyrene)(PHS) system as very strong segregated components (high chi) and multiblock type of those copolymers which form the microphase-separated structure pattern using living anionic polymerizing method by which the size of polymer can be precisely controlled. In addition, we were able to observe alternating lamellar and cylinder structures which were formed by our various BCPs using small angle X-ray scattering (SAXS). Moreover, we have successfully developed new apparatus for high volume manufacturing including our original technologies such as purification of monomer, improvement of wetted surface, and mechanical technology for high vacuum. And we have successfully synthesized all the BCPs with narrow molecular weight distribution (PDI <1.1) with large-scale apparatus.
EBF3 Design and Sustainability Considerations
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.
2015-01-01
Electron beam freeform fabrication (EBF3) is a cross-cutting technology for producing structural metal parts using an electron beam and wire feed in a layer-additive fashion. This process was developed by researchers at NASA Langley to specifically address needs for aerospace applications. Additive manufacturing technologies like EBF3 enable efficient design of materials and structures by tailoring microstructures and chemistries at the local level to improve performance at the global level. Additive manufacturing also facilitates design freedom by integrating assemblies into complex single-piece components, eliminating flanges, fasteners and joints, resulting in reduced size and mass. These same efficiencies that permit new design paradigms also lend themselves to supportability and sustainability. Long duration space missions will require a high degree of self-sustainability. EBF3 is a candidate technology being developed to allow astronauts to conduct repairs and fabricate new components and tools on demand, with efficient use of feedstock materials and energy.
Advancing Transportation through Vehicle Electrification - PHEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the developmentmore » of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Nelson S.; Sarobol, Pylin; Cook, Adam
There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less
Development of structural ceramic components for automobile applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamoto, H.
1995-12-01
Development efforts have been made in automobile technologies on heat engines to improve the power performance, the fuel economy, and so on. It is well recognized that ceramic applications are keys to succeed in such advanced heat engines, because of their good mechanical and thermal properties. This paper discusses present automobile applications of structural ceramic components and the expectations in automobile uses. The strength and reliability of mass-produced components for the engines are described with the manufacturing processes. The future R&D directions are recommended for structural ceramics.
Electric and hybrid vehicle system R/D
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1980-01-01
The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.
Definition of large components assembled on-orbit and robot compatible mechanical joints
NASA Technical Reports Server (NTRS)
Williamsen, J.; Thomas, F.; Finckenor, J.; Spiegel, B.
1990-01-01
One of four major areas of project Pathfinder is in-space assembly and construction. The task of in-space assembly and construction is to develop the requirements and the technology needed to build elements in space. A 120-ft diameter tetrahedral aerobrake truss is identified as the focus element. A heavily loaded mechanical joint is designed to robotically assemble the defined aerobrake element. Also, typical large components such as habitation modules, storage tanks, etc., are defined, and attachment concepts of these components to the tetrahedral truss are developed.
Enabling MEMS technologies for communications systems
NASA Astrophysics Data System (ADS)
Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne
2001-11-01
Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.
CARES/Life Ceramics Durability Evaluation Software Used for Mars Microprobe Aeroshell
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
1998-01-01
The CARES/Life computer program, which was developed at the NASA Lewis Research Center, predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs-which resolve a component's temperature and stress distribution-to-reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength. The capability, flexibility, and uniqueness of CARES/Life has attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer.
Reusable rocket engine turbopump condition monitoring
NASA Technical Reports Server (NTRS)
Hampson, M. E.; Barkhoudarian, S.
1985-01-01
Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.
Fabrication of micromechanical and microoptical systems by two-photon polymerization
NASA Astrophysics Data System (ADS)
Reinhardt, Carsten; Ovsianikov, A.; Passinger, Sven; Chichkov, Boris N.
2007-01-01
The recently developed two-photon polymerisation technique is used for the fabrication of two- and three-dimensional structures in photosensitive inorganic-organic hybrid material (ORMOCER), in SU8 , and in positive tone resist with resolutions down to 100nm. In this contribution we present applications of this powerful technology for the realization of micromechanical systems and microoptical components. We will demonstrate results on the fabrication of complex movable three-dimensional micromechanical systems and microfluidic components which cannot be realized by other technologies. This approach of structuring photosensitive materials also provides unique possibilities for the fabrication of different microoptical components such as arbitrary shaped microlenses, microprisms, and 3D-photonic crystals with high optical quality.
Use of COTS in the Multimission Advanced Ground Intelligent Control (MAGIC) program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, N.L.
1997-11-01
This tutorial will discuss the experiences of the Space System Technologies Division of the USAF Phillips Laboratory (PL/VTS) in developing a COTS-based satellite control system. The system`s primary use is a testbed for new technologies that are intended for future integration into the operational satellite control system. As such, the control system architecture must be extremely open and flexible so we can integrate new components and functions easily and also provide our system to contractors for their component work. The system is based on commercial hardware, is based on Windows NT, and makes the maximum use of COTS components andmore » industry standards.« less
Closed-cycle gas dynamic laser design investigation
NASA Technical Reports Server (NTRS)
Ketch, G. W.; Young, W. E.
1977-01-01
A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.
NASA Astrophysics Data System (ADS)
1988-05-01
Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.
Field-programmable lab-on-a-chip based on microelectrode dot array architecture.
Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi
2014-09-01
The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.
Power Management and Distribution (PMAD) Model Development: Final Report
NASA Technical Reports Server (NTRS)
Metcalf, Kenneth J.
2011-01-01
Power management and distribution (PMAD) models were developed in the early 1990's to model candidate architectures for various Space Exploration Initiative (SEI) missions. They were used to generate "ballpark" component mass estimates to support conceptual PMAD system design studies. The initial set of models was provided to NASA Lewis Research Center (since renamed Glenn Research Center) in 1992. They were developed to estimate the characteristics of power conditioning components predicted to be available in the 2005 timeframe. Early 90's component and device designs and material technologies were projected forward to the 2005 timeframe, and algorithms reflecting those design and material improvements were incorporated into the models to generate mass, volume, and efficiency estimates for circa 2005 components. The models are about ten years old now and NASA GRC requested a review of them to determine if they should be updated to bring them into agreement with current performance projections or to incorporate unforeseen design or technology advances. This report documents the results of this review and the updated power conditioning models and new transmission line models generated to estimate post 2005 PMAD system masses and sizes. This effort continues the expansion and enhancement of a library of PMAD models developed to allow system designers to assess future power system architectures and distribution techniques quickly and consistently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryden, Mark; Tucker, David A.
The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.
Composite armored vehicle advanced technology demonstator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.
1996-12-31
Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less
NASA Technical Reports Server (NTRS)
Baumann, E. D.
1989-01-01
The technological developments required to reduce the electrical power system component weights from the state-of-the-art 2.0 kg/kW to the range of 0.1 to 0.2 kg/kW are discussed. Power level requirements and their trends in aerospace applications are identified and presented. The projected weight and launch costs for a 1MW power converter built using state-of-the-art technology are established to illustrate the need for reliable, ultralightweight advanced power components. The key factors affecting converter weight are given and some of the tradeoffs between component ratings and circuit topology are identified. The weight and launch costs for a 1MW converter using 0.1 kg/kW technology are presented. Finally, the objectives and goals of the Multi-Megawatt Program at the NASA Lewis Research Center, which is funded by the SDIO through the Air Force, are given.
Multimethod-Multisource Approach for Assessing High-Technology Training Systems.
ERIC Educational Resources Information Center
Shlechter, Theodore M.; And Others
This investigation examined the value of using a multimethod-multisource approach to assess high-technology training systems. The research strategy was utilized to provide empirical information on the instructional effectiveness of the Reserve Component Virtual Training Program (RCVTP), which was developed to improve the training of Army National…
Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity
Selldorff, John; Atwell, Monte
2018-05-18
Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.
Technology-Based Lesson Plans: Preparation and Description
ERIC Educational Resources Information Center
Kubilinskiene, Svetlana; Dagiene, Valentina
2010-01-01
A lesson plan is an important methodological component of the learning process. The key purpose of the article is to analyse the current situation and suggest how the information technologies can assist in the development of lesson plans, their accumulation and retrieval, thus ensuring their effective application. The authors disclose the problems…
NASA Technical Reports Server (NTRS)
Blusiu, Julian O.
1997-01-01
Many Future NASA missions will be designed to robotically explore planets, moons and asteroids by collecting soil samples and conducting in-situ analyses to establish ground composition and look for the presence of specific components.
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
Autonomous intelligent assembly systems LDRD 105746 final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert J.
2013-04-01
This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control frameworkmore » for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.« less
Influence of IR sensor technology on the military and civil defense
NASA Astrophysics Data System (ADS)
Becker, Latika
2006-02-01
Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.
Open architectures for formal reasoning and deductive technologies for software development
NASA Technical Reports Server (NTRS)
Mccarthy, John; Manna, Zohar; Mason, Ian; Pnueli, Amir; Talcott, Carolyn; Waldinger, Richard
1994-01-01
The objective of this project is to develop an open architecture for formal reasoning systems. One goal is to provide a framework with a clear semantic basis for specification and instantiation of generic components; construction of complex systems by interconnecting components; and for making incremental improvements and tailoring to specific applications. Another goal is to develop methods for specifying component interfaces and interactions to facilitate use of existing and newly built systems as 'off the shelf' components, thus helping bridge the gap between producers and consumers of reasoning systems. In this report we summarize results in several areas: our data base of reasoning systems; a theory of binding structures; a theory of components of open systems; a framework for specifying components of open reasoning system; and an analysis of the integration of rewriting and linear arithmetic modules in Boyer-Moore using the above framework.
Beryllium processing technology review for applications in plasma-facing components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, R.G.; Jacobson, L.A.; Stanek, P.W.
1993-07-01
Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itselfmore » and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.« less
Ultrashort pulsed laser technology development program
NASA Astrophysics Data System (ADS)
Manke, Gerald C.
2014-10-01
The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.
ERIC Educational Resources Information Center
Kang, Haijun
2014-01-01
The purpose of this paper is to provide an account of how Information and Communication Technology (ICT) has evolved as a key topic and research area at the Comparative and International Education Society (CIES) conference. The past five years' CIES conference papers with an ICT component are reviewed for common development trends, opportunities,…
Analyzing Noise for the Muon Silicon Scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchan, Miguelangel; Utes, Michael
2017-01-01
The development of a silicon muon tomography detector is a joint project between Fermilab and National Security Technologies, LLC. The goal of this detector is to detect nuclear materials better than technology in the past. Using silicon strip detectors and readout chips used by experiments at CERN we have been developing the detector. This summer we have been testing components of the detector and have been analyzing noise characteristics.
Development of Critical Technologies for the COSMO/SkyMed Hyperspectral Camera
2000-10-01
Carbide (SiC) material (SiC or lightweighted Zerodur mirrors , carbon fiber technology. structures). - development of electronics blocks at high - High...investigation was Kcarried out to get the highest lightening factors on the Zerodur mirror substrates. Several samples of the TMA Fig. 5 - Prototypes of...implementation of state-of-the-art - manufacturing of very light mirrors with special manufacturing techniques for light components emphasis on Silicon
NASA Astrophysics Data System (ADS)
Vanden Brink, John A.
1995-08-01
Development of the DICOM standard and incremental developments in workstation, network, compression, archiving, and digital x-ray technology have produced cost effective image communication possibilities for selected medical applications. The emerging markets include modality PACS, mini PACS, and teleradiology. Military and VA programs lead the way in the move to adopt PACS technology. Commercial markets for PACS components and PAC systems are at LR400 million growing to LR500 million in 1996.
Emerging technologies in arthroplasty: additive manufacturing.
Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A
2014-06-01
Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Technical Reports Server (NTRS)
Johnson, K. L.; Reysa, R. P.; Fricks, D. H.
1981-01-01
Vapor compression distillation (VCD) is considered the most efficient water recovery process for spacecraft application. This paper reports on a preprototype VCD which has undergone the most extensive operational and component development testing of any VCD subsystem to date. The component development effort was primarily aimed at eliminating corrosion and the need for lubrication, upgrading electronics, and substituting nonmetallics in key rotating components. The VCD evolution is documented by test results on specific design and/or materials changes. Innovations worthy of further investigation and additional testing are summarized for future VCD subsystem development reference. Conclusions on experience gained are presented.
Data systems elements technology assessment and system specifications, issue no. 2. [nasa programs
NASA Technical Reports Server (NTRS)
1978-01-01
The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.
Ozak, Sule Tugba; Ozkan, Pelin
2013-01-01
Nanotechnology deals with the physical, chemical, and biological properties of structures and their components at nanoscale dimensions. Nanotechnology is based on the concept of creating functional structures by controlling atoms and molecules on a one-by-one basis. The use of this technology will allow many developments in the health sciences as well as in materials science, bio-technology, electronic and computer technology, aviation, and space exploration. With developments in materials science and biotechnology, nanotechnology is especially anticipated to provide advances in dentistry and innovations in oral health-related diagnostic and therapeutic methods. PMID:23408486
High temperature solar thermal technology
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.
1980-01-01
Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.
Data systems elements technology assessment and system specifications, issue no. 1
NASA Technical Reports Server (NTRS)
1977-01-01
The ability to satisfy the objectives of future NASA Office of Applications Programs is dependent on technology advances in a number of areas of data systems. The technology of end-to-end data systems (space generator elements through ground processing, dissemination, and presentation, is examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.
Godin, Jessica; Chen, Chun-Hao; Cho, Sung Hwan; Qiao, Wen; Tsai, Frank; Lo, Yu-Hwa
2008-10-01
Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.
Status of the Direct Data Distribution (D(exp 3)) Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence
2001-01-01
NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.
Development of a Free-Flight Simulation Infrastructure
NASA Technical Reports Server (NTRS)
Miles, Eric S.; Wing, David J.; Davis, Paul C.
1999-01-01
In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.
Architecture for Survivable System Processing (ASSP)
NASA Astrophysics Data System (ADS)
Wood, Richard J.
1991-11-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Architecture for Survivable System Processing (ASSP)
NASA Technical Reports Server (NTRS)
Wood, Richard J.
1991-01-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Engineering intelligent tutoring systems
NASA Technical Reports Server (NTRS)
Warren, Kimberly C.; Goodman, Bradley A.
1993-01-01
We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.
Military efforts in nanosensors, 3D printing, and imaging detection
NASA Astrophysics Data System (ADS)
Edwards, Eugene; Booth, Janice C.; Roberts, J. Keith; Brantley, Christina L.; Crutcher, Sihon H.; Whitley, Michael; Kranz, Michael; Seif, Mohamed; Ruffin, Paul
2017-04-01
A team of researchers and support organizations, affiliated with the Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC), has initiated multidiscipline efforts to develop nano-based structures and components for advanced weaponry, aviation, and autonomous air/ground systems applications. The main objective of this research is to exploit unique phenomena for the development of novel technology to enhance warfighter capabilities and produce precision weaponry. The key technology areas that the authors are exploring include nano-based sensors, analysis of 3D printing constituents, and nano-based components for imaging detection. By integrating nano-based devices, structures, and materials into weaponry, the Army can revolutionize existing (and future) weaponry systems by significantly reducing the size, weight, and cost. The major research thrust areas include the development of carbon nanotube sensors to detect rocket motor off-gassing; the application of current methodologies to assess materials used for 3D printing; and the assessment of components to improve imaging seekers. The status of current activities, associated with these key areas and their implementation into AMRDEC's research, is outlined in this paper. Section #2 outlines output data, graphs, and overall evaluations of carbon nanotube sensors placed on a 16 element chip and exposed to various environmental conditions. Section #3 summarizes the experimental results of testing various materials and resulting components that are supplementary to additive manufacturing/fused deposition modeling (FDM). Section #4 recapitulates a preliminary assessment of the optical and electromechanical components of seekers in an effort to propose components and materials that can work more effectively.
Micromanufacturing: Recent developments in this country and abroad
NASA Technical Reports Server (NTRS)
Warrington, Robert O.; Friedrich, Craig R.; Gao, Robert X.; Lin, Gang
1993-01-01
This paper has attempted to summarize some recent activities in this country and overseas. The effort in Louisiana is relatively new and growing. The Russian effort is not well coordinated or documented. A conference on Micro Systems Technologies is scheduled for June of 1993 in St. Petersburg, Russia. Serious consideration should be given to developing a strategy to not only participate in this meeting, but also to spend additional time in Russia assessing the technology. MEMS technologies will eventually affect virtually every aspect of our lives and, at least in the near term, mini-devices with micro-components will probably be the economic drivers for the technology.
Technology Assessment Need: Review on Attractiveness and Competitiveness
NASA Astrophysics Data System (ADS)
Salwa Sait, Siti; Merlinda Muharam, Farrah; Chin, Thoo Ai; Sulaiman, Zuraidah
2017-06-01
Technology assessment is crucial in managing technology for the purpose of technology exploitation. With business environment continuously changing, firms have to address this issue critically as technology is considered one of the important elements to evaluate performance and gain competitive advantage. Missteps in deciding the best technology to be developed, employed or maintained would cost the firm overall value. To fulfil the need of finding the appropriate scale to assess suitable technology, this paper summarizes that technology assessment (TA) should cover two main aspects, namely technology attractiveness and competitiveness. These components are seen capable to link the scale suggested towards evaluation of financial and non-financial performance towards competitive advantage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marker, Terry; Roberts, Michael; Linck, Martin
Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH 2). The IH 2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH 2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH 2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project,more » engineering work on IH 2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH 2 unit. These studies show when using IH 2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH 2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH 2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH 2 technology. Further larger-scale, continuous testing of IH 2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH 2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.« less
Component Technology for High-Performance Scientific Simulation Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epperly, T; Kohn, S; Kumfert, G
2000-11-09
We are developing scientific software component technology to manage the complexity of modem, parallel simulation software and increase the interoperability and re-use of scientific software packages. In this paper, we describe a language interoperability tool named Babel that enables the creation and distribution of language-independent software libraries using interface definition language (IDL) techniques. We have created a scientific IDL that focuses on the unique interface description needs of scientific codes, such as complex numbers, dense multidimensional arrays, complicated data types, and parallelism. Preliminary results indicate that in addition to language interoperability, this approach provides useful tools for thinking about themore » design of modem object-oriented scientific software libraries. Finally, we also describe a web-based component repository called Alexandria that facilitates the distribution, documentation, and re-use of scientific components and libraries.« less
Integration of today's digital state with tomorrow's visual environment
NASA Astrophysics Data System (ADS)
Fritsche, Dennis R.; Liu, Victor; Markandey, Vishal; Heimbuch, Scott
1996-03-01
New developments in visual communication technologies, and the increasingly digital nature of the industry infrastructure as a whole, are converging to enable new visual environments with an enhanced visual component in interaction, entertainment, and education. New applications and markets can be created, but this depends on the ability of the visual communications industry to provide market solutions that are cost effective and user friendly. Industry-wide cooperation in the development of integrated, open architecture applications enables the realization of such market solutions. This paper describes the work being done by Texas Instruments, in the development of its Digital Light ProcessingTM technology, to support the development of new visual communications technologies and applications.
An Overview of Aerospace Propulsion Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Reddy, D. R.
2007-01-01
NASA Glenn Research center is the recognized leader in aerospace propulsion research, advanced technology development and revolutionary system concepts committed to meeting the increasing demand for low noise, low emission, high performance, and light weight propulsion systems for affordable and safe aviation and space transportation needs. The technologies span a broad range of areas including air breathing, as well as rocket propulsion systems, for commercial and military aerospace applications and for space launch, as well as in-space propulsion applications. The scope of work includes fundamentals, components, processes, and system interactions. Technologies developed use both experimental and analytical approaches. The presentation provides an overview of the current research and technology development activities at NASA Glenn Research Center .
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.
2010-01-01
To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.
Lightwave technology in microwave systems
NASA Astrophysics Data System (ADS)
Popa, A. E.; Gee, C. M.; Yen, H. W.
1986-01-01
Many advanced microwave system concepts such as active aperture phased array antennas use distributed topologies in which lightwave circuits are being proposed to interconnect both the analog and digital modules of the system. Lightwave components designed to implement these interconnects are reviewed and their performance analyzed. The impact of trends in component development are discussed.
Q4 Titanium 6-4 Material Properties Development
NASA Technical Reports Server (NTRS)
Cooper, Kenneth; Nettles, Mindy
2015-01-01
This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.
NASA Astrophysics Data System (ADS)
DiMambro, J.; Ashbaugh, D. M.; Han, X.; Favro, L. D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G. M.; Thomas, R. L.
2006-03-01
Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry.
Fabrication and Testing of Ceramic Matrix Composite Propulsion Components
NASA Technical Reports Server (NTRS)
Effinger, Michael R.; Clinton, R. G., Jr.; Dennis, Jay; Elam, Sandy; Genge, Gary; Eckel, Andy; Jaskowiak, Martha H.; Kiser, J. Douglas; Lang, Jerry
2000-01-01
A viewgraph presentation outlines NASA's goals for the Second and Third Generation Reusable Launch Vehicles, placing emphasis on improving safety and decreasing the cost of transporting payloads to orbit. The use of ceramic matrix composite (CMC) technology is discussed. The development of CMC components, such as the Simplex CMC Blisk, cooled CMC nozzle ramps, cooled CMC thrust chambers, and CMC gas generators, are described, including challenges, test results, and likely future developments.
Component Verification and Certification in NASA Missions
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Penix, John; Norvig, Peter (Technical Monitor)
2001-01-01
Software development for NASA missions is a particularly challenging task. Missions are extremely ambitious scientifically, have very strict time frames, and must be accomplished with a maximum degree of reliability. Verification technologies must therefore be pushed far beyond their current capabilities. Moreover, reuse and adaptation of software architectures and components must be incorporated in software development within and across missions. This paper discusses NASA applications that we are currently investigating from these perspectives.
Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structure
NASA Technical Reports Server (NTRS)
Harris, C. E.
2001-01-01
This viewgraph presentation gives an assessment of the state-of-the-art in the design and manufacturing of large component structures, including details on the use of continuous fiber reinforced polymer matrix composites (CFRP) in commercial and military aircraft and in space launch vehicles. Project risk mitigation plans must include a building-block test approach to structural design development, manufacturing process scale-up development tests, and pre-flight ground tests to verify structural integrity. The potential benefits of composite structures justifies NASA's investment in developing the technology. Advanced composite structures technology is enabling to virtually every Aero-Space Technology Enterprise Goal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.
The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elementsmore » (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.« less
Fabrication of light water reactor tritium targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilger, J.P.
1991-11-01
The mission of the Fabrication Development Task of the Tritium Target Development Project is: to produce a documented technology basis, including specifications and procedures for target rod fabrication; to demonstrate that light water tritium targets can be manufactured at a rate consistent with tritium production requirements; and to develop quality control methods to evaluate target rod components and assemblies, and establish correlations between evaluated characteristics and target rod performance. Many of the target rod components: cladding tubes, end caps, plenum springs, etc., have similar counterparts in LWR fuel rods. High production rate manufacture and inspection of these components has beenmore » adequately demonstrated by nuclear fuel rod manufacturers. This summary describes the more non-conventional manufacturing processes and inspection techniques developed to fabricate target rod components whose manufacturability at required production rates had not been previously demonstrated.« less
Assessment of Lithium-based Battery Electrolytes Developed under the NASA PERS Program
NASA Technical Reports Server (NTRS)
Bennett, William R.; Baldwin, Richard S.
2006-01-01
Recently, NASA formally completed the Polymer Energy Rechargeable System (PERS) Program, which was established in 2000 in collaboration with the Air Force Research Laboratory (AFRL) to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The goal of this program was to ultimately develop an advanced, space-qualified battery technology, which embodied a solid polymer electrolyte (SPE) and complementary components, with improved performance characteristics that would address future aerospace battery requirements. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. A variety of cell and polymeric electrolyte concepts were pursued as part of the development efforts undertaken at numerous governmental, industrial and academic laboratories. Numerous candidate electrolyte materials were developed, synthesized and optimized for evaluation. Utilizing the component screening facility and the "standardized" test procedures developed at the NASA Glenn Research Center, electrochemical screening and performance evaluations of promising candidate materials were completed. This overview summarizes test results for a variety of candidate electrolyte materials that were developed under the PERS Program. Electrolyte properties are contrasted and compared to the original project goals, and the strengths and weaknesses of the electrolyte chemistries are discussed. Limited cycling data for full-cells using lithium metal and vanadium oxide electrodes are also presented. Based on measured electrolyte properties, the projected performance characteristics and temperature limitations of batteries utilizing the advanced electrolytes and components have been estimated. Limitations for the achievement of practical performance levels are also discussed, as well as needs for future research and development.
Wang, Chen; Zhao, Wu; Wang, Jie; Chen, Ling; Luo, Chun-Jing
2016-06-01
The printed circuit boards basis of electronic equipment have seen a rapid growth in recent years and played a significant role in modern life. Nowadays, the fact that electronic devices upgrade quickly necessitates a proper management of waste printed circuit boards. Non-destructive desoldering of waste printed circuit boards becomes the first and the most crucial step towards recycling electronic components. Owing to the diversity of materials and components, the separation process is difficult, which results in complex and expensive recovery of precious materials and electronic components from waste printed circuit boards. To cope with this problem, we proposed an innovative approach integrating Theory of Inventive Problem Solving (TRIZ) evolution theory and technology maturity mapping system to forecast the evolution trends of desoldering technology of waste printed circuit boards. This approach can be applied to analyse the technology evolution, as well as desoldering technology evolution, then research and development strategy and evolution laws can be recommended. As an example, the maturity of desoldering technology is analysed with a technology maturity mapping system model. What is more, desoldering methods in different stages are analysed and compared. According to the analysis, the technological evolution trends are predicted to be 'the law of energy conductivity' and 'increasing the degree of idealisation'. And the potential technology and evolutionary state of waste printed circuit boards are predicted, offering reference for future waste printed circuit boards recycling. © The Author(s) 2016.
Joining and Integration of Silicon Carbide for Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv
2010-01-01
The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.
NASA Astrophysics Data System (ADS)
Pavolotsky, Alexey
2018-01-01
Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.
Electric Field Imaging Project
NASA Technical Reports Server (NTRS)
Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward
2016-01-01
NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.
Report of the Power Sub systems Panel. [spacecraft instrumentation technology
NASA Technical Reports Server (NTRS)
1979-01-01
Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.
Modeling and Simulation Roadmap to Enhance Electrical Energy Security of U.S. Naval Bases
2012-03-01
evaluating power system architectures and technologies and, therefore, can become a valuable tool for the implementation of the described plan for Navy...a well validated and consistent process for evaluating power system architectures and technologies and, therefore, can be a valuable tool for the...process for evaluating power system architectures and component technologies is needed to support the development and implementation of these new
Tech-Prep Competency Profiles within the Engineering Technologies Cluster.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This document contains 12 competency profiles for tech prep courses within the engineering technologies cluster. The document consists of the following sections: (1) systemic curriculum reform philosophy--Ohio's vision of tech prep and its six critical components; (2) an explanation of the process of developing the tech prep competencies; (3) a…
Fluid technology (selected components, devices, and systems): A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids.
Ion beam applications research. A summary of Lewis Research Center Programs
NASA Technical Reports Server (NTRS)
Banks, B. A.
1981-01-01
A summary of the ion beam applications research (IBAR) program organized to enable the development of materials, products, and processes through the nonpropulsive application of ion thruster technology is given. Specific application efforts utilizing ion beam sputter etching, deposition, and texturing are discussed as well as ion source and component technology applications.
Working Smarter: The Skill Bias of Computer Technologies. The Evolving Workplace Series
ERIC Educational Resources Information Center
Wannell, Ted; Ali, Jennifer
2002-01-01
This document provides data from the new Workplace and Employee Survey (WES) conducted by Statistics Canada with the support of Human Resources Development Canada. The survey consists of two components: (1) a workplace survey on the adoption of technologies, organizational change, training and other human resource practices, business strategies,…
ERIC Educational Resources Information Center
Kim, Minkyun; Sharman, Raj; Cook-Cottone, Catherine P.; Rao, H. Raghav; Upadhyaya, Shambhu J.
2012-01-01
Emergency management systems are a critical factor in successful mitigation of natural and man-made disasters, facilitating responder decision making in complex situations. Based on socio-technical systems, have which four components (people, technology, structure and task), this study develops a research framework of factors affecting effective…
A Technology-Enhanced Intervention for Self-Regulated Learning in Science
ERIC Educational Resources Information Center
Berglas-Shapiro, Tali; Eylon, Bat-Sheva; Scherz, Zahava
2017-01-01
This article describes the development of a technology-enhanced self-regulated learning (Te- SRL) environment designed to foster students' SRL of complex science topics. The environment consists of three components, one of which is a specially designed computerized system that offers students a choice between different types of scaffolding and…
Fifth International Symposium on Liquid Space Propulsion
NASA Technical Reports Server (NTRS)
Garcia, R. (Compiler)
2005-01-01
Contents include the fiollowing: Theme: Life-life Combustion Devices Technology. Technical Sessions: International Perspectives. System Level Effects. Component Level Processes. Material Considerations. Design Environments -- Predictions. Injector Design Technology. Design Environments -- Measurements. Panel Discussion: Views on future research and development needs and Symposium observations. Aquarium Welcome and Southern Belle Riverboat Recognition Banquet evening events.
NASA Tech Briefs, Spring/Summer 1982. Volume 6, No. 4
NASA Technical Reports Server (NTRS)
1982-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; and Machinery.
ERIC Educational Resources Information Center
Egorov, Victor V.; Jantassova, Damira D.; Churchill, Natalia
2007-01-01
This article discusses the implementation of the "Information and Communication Technologies in Foreign Language Teaching and Learning" course conducted as a component of the pre-service English language teacher training program in the Buketov Karaganda State University, Kazakhstan. The course was introduced in 2003. The central…
An open, component-based information infrastructure for integrated health information networks.
Tsiknakis, Manolis; Katehakis, Dimitrios G; Orphanoudakis, Stelios C
2002-12-18
A fundamental requirement for achieving continuity of care is the seamless sharing of multimedia clinical information. Different technological approaches can be adopted for enabling the communication and sharing of health record segments. In the context of the emerging global information society, the creation of and access to the integrated electronic health record (I-EHR) of a citizen has been assigned high priority in many countries. This requirement is complementary to an overall requirement for the creation of a health information infrastructure (HII) to support the provision of a variety of health telematics and e-health services. In developing a regional or national HII, the components or building blocks that make up the overall information system ought to be defined and an appropriate component architecture specified. This paper discusses current international priorities and trends in developing the HII. It presents technological challenges and alternative approaches towards the creation of an I-EHR, being the aggregation of health data created during all interactions of an individual with the healthcare system. It also presents results from an ongoing Research and Development (R&D) effort towards the implementation of the HII in HYGEIAnet, the regional health information network of Crete, Greece, using a component-based software engineering approach. Critical design decisions and related trade-offs, involved in the process of component specification and development, are also discussed and the current state of development of an I-EHR service is presented. Finally, Human Computer Interaction (HCI) and security issues, which are important for the deployment and use of any I-EHR service, are considered.
A review of fracture mechanics life technology
NASA Technical Reports Server (NTRS)
Besuner, P. M.; Harris, D. O.; Thomas, J. M.
1986-01-01
Lifetime prediction technology for structural components subjected to cyclic loads is examined. The central objectives of the project are: (1) to report the current state of the art, and (2) recommend future development of fracture mechanics-based analytical tools for modeling subcritical fatigue crack growth in structures. Of special interest is the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. The authors conducted a survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.
A review of fracture mechanics life technology
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Besuner, P. M.; Harris, D. O.
1985-01-01
Current lifetime prediction technology for structural components subjected to cyclic loads was reviewed. The central objectives of the project were to report the current state of and recommend future development of fracture mechanics-based analytical tools for modeling and forecasting subcritical fatigue crack growth in structures. Of special interest to NASA was the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. A survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology were conducted. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include: development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.
NASA Astrophysics Data System (ADS)
Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory
2005-05-01
Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Singh, Mrityunjay; Lei, Jin-Fen; Martin, Lisa C.
1999-01-01
A novel attachment approach for positioning sensor lead wires on silicon carbide-based monolithic ceramic and fiber reinforced ceramic matrix composite (FRCMC) components has been developed. This approach is based on an affordable, robust ceramic joining technology, named ARCJoinT, which was developed for the joining of silicon carbide-based ceramic and fiber reinforced composites. The ARCJoinT technique has previously been shown to produce joints with tailorable thickness and good high temperature strength. In this study, silicon carbide-based ceramic and FRCMC attachments of different shapes and sizes were joined onto silicon carbide fiber reinforced silicon carbide matrix (SiC/ SiC) composites having flat and curved surfaces. Based on results obtained in previous joining studies. the joined attachments should maintain their mechanical strength and integrity at temperatures up to 1350 C in air. Therefore they can be used to position and secure sensor lead wires on SiC/SiC components that are being tested in programs that are focused on developing FRCMCs for a number of demanding high temperature applications in aerospace and ground-based systems. This approach, which is suitable for installing attachments on large and complex shaped monolithic ceramic and composite components, should enhance the durability of minimally intrusive high temperature sensor systems. The technology could also be used to reinstall attachments on ceramic components that were damaged in service.
V-band integrated quadriphase modulator
NASA Technical Reports Server (NTRS)
Grote, A.; Chang, K.
1983-01-01
A V-band integrated circuit quadriphase shift keyed modulator/exciter for space communications systems was developed. Intersatellite communications systems require direct modulation at 60 GHz to enhance signal processing capability. For most systems, particularly space applications, small and lightweight components are essential to alleviate severe system design constraints. Thus to achieve wideband, high data rate systems, direct modulation techniques at millimeter waves using solid state integrated circuit technology are an integral part of the overall technology developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neubauer, J.
2013-05-01
Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.
General presentation including new structure
NASA Astrophysics Data System (ADS)
Soons, A.
2002-12-01
Electrical, electronic and electro-mechanical components play an essential role in the functional performance, quality, life cycle and costs of space systems. Their standardisation, product specification, development, evaluation, qualification and procurement must be based on a coherent and efficient approach, paying due attention to present and prospective European space policies and must be commensurate with user needs, market developments and technology trends. The European Space Components Coordination (ESCC) is established with the objective of harmonising the efforts concerning the various aspects of EEE space components by ESA. European national and international public space organisations, the component manufacturers and the user industries. The goal of the ESCC is to improve the availability of strategic EEE space components with the required performance and at affordable costs for institutional and commercial space programmes. It is the objective of ESCC to achieve this goal by harmonising the resources and development efforts for space components in the ESA Member States and by providing a single and unified system for the standardisation, product specification, evaluation, qualification and procurement of European EEE space components and for the certification of components and component manufacturers.
Adaptive Engine Technologies for Aviation CO2 Emissions Reduction
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.
2006-01-01
Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Britten, R. A.; Parks, G. S.; Voss, J. M.
1990-01-01
NASA's JPL has completed a feasibility study using infrared technologies for wildland fire suppression and management. The study surveyed user needs, examined available technologies, matched the user needs with technologies, and defined an integrated infrared wildland fire mapping concept system configuration. System component trade-offs were presented for evaluation in the concept system configuration. The economic benefits of using infrared technologies in fire suppression and management were examined. Follow-on concept system configuration development and implementation were proposed.
Advanced electrical power system technology for the all electric aircraft
NASA Technical Reports Server (NTRS)
Finke, R. C.; Sundberg, G. R.
1983-01-01
The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764
Space evaluation of optical modulators for microwave photonic on-board applications
NASA Astrophysics Data System (ADS)
Le Kernec, A.; Sotom, M.; Bénazet, B.; Barbero, J.; Peñate, L.; Maignan, M.; Esquivias, I.; Lopez, F.; Karafolas, N.
2017-11-01
Since several years, perspectives and assets offered by photonic technologies compared with their traditional RF counterparts (mass and volume reduction, transparency to RF frequency, RF isolation), make them particularly attractive for space applications [1] and, in particular, telecommunication satellites [2]. However, the development of photonic payload concepts have concurrently risen and made the problem of the ability of optoelectronic components to withstand space environment more and more pressing. Indeed, photonic components used in such photonic payloads architectures come from terrestrial networks applications in order to benefit from research and development in this field. This paper presents some results obtained in the frame of an ESA-funded project, carried out by Thales Alenia Space France, as prime contractor, and Alter Technology Group Spain (ATG) and Universidad Politecnica de Madrid (UPM), as subcontractors, one objective of which was to assess commercial high frequency optical intensity modulators for space use through a functional and environmental test campaign. Their potential applications in microwave photonic sub-systems of telecom satellite payloads are identified and related requirements are presented. Optical modulator technologies are reviewed and compared through, but not limited to, a specific figure of merit, taking into account two key features of these components : optical insertion loss and RF half-wave voltage. Some conclusions on these different technologies are given, on the basis of the test results, and their suitability for the targeted applications and environment is highlighted.
EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle
NASA Technical Reports Server (NTRS)
Kurtz, D. W.; Levin, R. R.
1983-01-01
An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.
Chip in a lab: Microfluidics for next generation life science research
Streets, Aaron M.; Huang, Yanyi
2013-01-01
Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research. PMID:23460772
New developments in optical coherence tomography
Kostanyan, Tigran; Wollstein, Gadi; Schuman, Joel S.
2017-01-01
Purpose of review Optical coherence tomography (OCT) has become the cornerstone technology for clinical ocular imaging in the past few years. The technology is still rapidly evolving with newly developed applications. This manuscript reviews recent innovative OCT applications for glaucoma diagnosis and management. Recent findings The improvements made in the technology have resulted in increased scanning speed, axial and transverse resolution, and more effective use of the OCT technology as a component of multimodal imaging tools. At the same time, the parallel evolution in novel algorithms makes it possible to efficiently analyze the increased volume of acquired data. Summary The innovative iterations of OCT technology have the potential to further improve the performance of the technology in evaluating ocular structural and functional characteristics and longitudinal changes in glaucoma. PMID:25594766
Klein, Karsten; Wolff, Astrid C; Ziebold, Oliver; Liebscher, Thomas
2008-01-01
The ICW eHealth Framework (eHF) is a powerful infrastructure and platform for the development of service-oriented solutions in the health care business. It is the culmination of many years of experience of ICW in the development and use of in-house health care solutions and represents the foundation of ICW product developments based on the Java Enterprise Edition (Java EE). The ICW eHealth Framework has been leveraged to allow development by external partners - enabling adopters a straightforward integration into ICW solutions. The ICW eHealth Framework consists of reusable software components, development tools, architectural guidelines and conventions defining a full software-development and product lifecycle. From the perspective of a partner, the framework provides services and infrastructure capabilities for integrating applications within an eHF-based solution. This article introduces the ICW eHealth Framework's basic architectural concepts and technologies. It provides an overview of its module and component model, describes the development platform that supports the complete software development lifecycle of health care applications and outlines technological aspects, mainly focusing on application development frameworks and open standards.
Development of nanostructured antireflection coatings for infrared technologies and applications
NASA Astrophysics Data System (ADS)
Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.
2017-09-01
Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.
Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space
NASA Technical Reports Server (NTRS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler;
2015-01-01
NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.
Robust and Opportunistic Autonomous Science for a Potential Titan Aerobot
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara; Schaffer, Steve; Castano, Rebecca; Elfes, Alberto
2010-01-01
We are developing onboard planning and execution technologies to provide robust and opportunistic mission operations for a potential Titan aerobot. Aerobot have the potential for collecting a vast amount of high priority science data. However, to be effective, an aerobot must address several challenges including communication constraints, extended periods without contact with Earth, uncertain and changing environmental conditions, maneuverability constraints and potentially short-lived science opportunities. We are developing the AerOASIS system to develop and test technology to support autonomous science operations for a potential Titan Aerobot. The planning and execution component of AerOASIS is able to generate mission operations plans that achieve science and engineering objectives while respecting mission and resource constraints as well as adapting the plan to respond to new science opportunities. Our technology leverages prior work on the OASIS system for autonomous rover exploration. In this paper we describe how the OASIS planning component was adapted to address the unique challenges of a Titan Aerobot and we describe a field demonstration of the system with the JPL prototype aerobot.
Fiber-based, trace-gas, laser transmitter technology development for space
NASA Astrophysics Data System (ADS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James
2015-09-01
NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.
2010 Vehicle Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W
2011-06-01
In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies thatmore » will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.« less
USCA, a codeveloped piece of technology, is presented to Bridges, KSC Director, by Saputo, L-3 Commu
NASA Technical Reports Server (NTRS)
1997-01-01
William Saputo, L-3 Communications, presents a new piece of technology, developed through a National Aeronautics and Space Administration (NASA) partnership with industry, to Kennedy Space Center (KSC) Director Roy Bridges, Jr. (second from left). The piece of technology being presented, the Universal Signal Conditioning Amplifier (USCA), is a key component of the codeveloped Automated Data Acquisition System (ADAS) that measures temperature, pressure and vibration at KSC's launch pads. The breakthrough technology is expected to reduce sensor setup and configuration times from hours to seconds. KSC teamed up with Florida's Technological Research and Development Authority and manufacturer L-3 Communications to produce a system that would benefit the aerospace industry and other commercial markets.
NASA Astrophysics Data System (ADS)
Croft, John; Deily, John; Hartman, Kathy; Weidow, David
1998-01-01
In the twenty-first century, NASA envisions frequent low-cost missions to explore the solar system, observe the universe, and study our planet. To realize NASA's goal, the Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center sponsors technology programs that enhance spacecraft performance, streamline processes and ultimately enable cheaper science. Our technology programs encompass control system architectures, sensor and actuator components, electronic systems, design and development of algorithms, embedded systems and space vehicle autonomy. Through collaboration with government, universities, non-profit organizations, and industry, the GNCC incrementally develops key technologies that conquer NASA's challenges. This paper presents an overview of several innovative technology initiatives for the autonomous guidance, navigation, and control (GN&C) of satellites.
The success of the X-33 depends on its technology—an overview
NASA Astrophysics Data System (ADS)
Bunting, Jackie O.; Sasso, Steven E.
1996-03-01
The success of the X-33, and therefore the Reusable Launch Vehicle (RLV) program, is highly dependent on the maturity of the components and subsystems selected and the ability to verify their performance, cost, and operability goals. The success of the technology that will be developed to support these components and subsystems will be critical to developing an operationally efficient X-33 that is traceable to a full-scale RLV system. This paper will delineate the key objectives of each technology demonstration area and provide an assessment of its ability to meet the X-33/RLV requirements. It is our intent to focus on these key technology areas to achieve the ambitious but achievable goals of the RLV and X-33 programs. Based on our assessment of the X-33 and RLV systems, we have focused on the performance verification and validation of the linear aerospike engine. This engine, first developed in the mid-1960s, shows promise in achieving the RLV objectives. Equally critical to the engine selection is the development of cryogenic composite tanks and the associated health management system required to meet the operability goals. We are also developing a highly reusable form of thermal protection system based on years of hypersonic research and Space Shuttle experience. To meet the mass fraction goals, reduction in engine component weights will also be developed. Due to the high degree of operability required, we will investigate the use of real-time integrated system health management and propulsion systems diagnostics, and mature the use of electromechanical actuators for highly reusable systems. The rapid turn-around requirements will require an adaptive guidance, navigation, and control algorithm toolset, which is well underway. We envision our X-33 and RLV to use mature, low-risk technologies that will allow truly low-cost access to space (Lockheed Martin Internal Document, 1995).
Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.
2010-01-01
Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.
Electronic Reserve--A Staff Development Opportunity.
ERIC Educational Resources Information Center
Smith, Robyn
1997-01-01
The Queensland University of Technology (QUT) Library's experience in developing an electronic reserve service is offered as a case study. Discussion includes the limited access service, technical components, academic community support, lending staff training, usage, copyright, and future scenarios and solutions. (AEF)
Field testing of hand-held infrared thermography, phase II TPF-5(247) interim report.
DOT National Transportation Integrated Search
2015-12-01
This report describes research completed to develop and implement infrared thermography, a nondestructive evaluation (NDE) : technology for the condition assessment of concrete bridge components. The overall goal of this research was to develop new :...
NASA Technical Reports Server (NTRS)
Halbig,Michael C.; Singh, Mrityunjay
2008-01-01
Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding technology, titanium interlayers (coatings and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness, and processing time were investigated. Electron microprobe analysis was used to identify the reaction formed phases. In the diffusion bonds, an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner interlayers of pure titanium and/or longer processing times resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Nondestructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.
Developing a scalable modeling architecture for studying survivability technologies
NASA Astrophysics Data System (ADS)
Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David
2006-05-01
To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.
NASA Technical Reports Server (NTRS)
Williams, William B., Jr.
1999-01-01
The technologies associated with distance learning are evolving rapidly, giving to educators a potential tool for enhancing the educational experiences of large numbers of students simultaneously. This enhancement, in order to be effective, must take into account the various agendas of teachers, administrators, state systems, and of course students. It must also make use of the latest research on effective pedagogy. This combination, effective pedagogy and robust information technology, is a powerful vehicle for communicating, to a large audience of school children the excitement of mathematics and science--an excitement that for the most part is now well-hidden. This project,"Technology Development, Implementation and Assessment," proposed to bring to bear on the education of learners in grades 3 - 8 in science and mathematics both advances in information technology and in effective pedagogy. Specifically, the project developed components NASA CONNECT video series--problem-based learning modules that focus on the scientific method and that incorporate problem-based learning scenarios tied to national mathematics and science standards. These videos serve two purposes; they engage students in the excitement of hands-on learning and they model for the teachers of these students the problem-based learning practices that are proving to be excellent ways to teach science and mathematics to school students. Another component of NASA CONNECT is the accompanying web-site.
Experiences integrating autonomous components and legacy systems into tsunami early warning systems
NASA Astrophysics Data System (ADS)
Reißland, S.; Herrnkind, S.; Guenther, M.; Babeyko, A.; Comoglu, M.; Hammitzsch, M.
2012-04-01
Fostered by and embedded in the general development of Information and Communication Technology (ICT) the evolution of Tsunami Early Warning Systems (TEWS) shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors, e.g. sea level stations for the detection of tsunami waves and GPS stations for the detection of ground displacements. Furthermore, the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources serving near real-time data not only includes sensors but also other components and systems offering services such as the delivery of feasible simulations used for forecasting in an imminent tsunami threat. In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the project Distant Early Warning System (DEWS) a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC) and the Organization for the Advancement of Structured Information Standards (OASIS) have been successfully incorporated. In the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) new developments are used to extend the existing platform to realise a component-based technology framework for building distributed TEWS. This talk will describe experiences made in GITEWS, DEWS and TRIDEC while integrating legacy stand-alone systems and newly developed special-purpose software components into TEWS using different software adapters and communication strategies to make the systems work together in a corporate infrastructure. The talk will also cover task management and data conversion between the different systems. Practical approaches and software solutions for the integration of sensors, e.g. providing seismic and sea level data, and utilisation of special-purpose components, such as simulation systems, in TEWS will be presented.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Framework for a clinical information system.
Van De Velde, R; Lansiers, R; Antonissen, G
2002-01-01
The design and implementation of Clinical Information System architecture is presented. This architecture has been developed and implemented based on components following a strong underlying conceptual and technological model. Common Object Request Broker and n-tier technology featuring centralised and departmental clinical information systems as the back-end store for all clinical data are used. Servers located in the "middle" tier apply the clinical (business) model and application rules. The main characteristics are the focus on modelling and reuse of both data and business logic. Scalability as well as adaptability to constantly changing requirements via component driven computing are the main reasons for that approach.
Using laser technological unit ALTI "Karavella" for precision components of IEP production
NASA Astrophysics Data System (ADS)
Labin, N. A.; Chursin, A. D.; Paramonov, V. S.; Klimenko, V. I.; Paramonova, G. M.; Kolokolov, I. S.; Vinogradov, K. Y.; Betina, L. L.; Bulychev, N. A.; Dyakov, Yu. A.; Zakharyan, R. A.; Kazaryan, M. A.; Koshelev, K. K.; Kosheleva, O. K.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.; Chen, C.
2015-12-01
The paper revealed the using of industrial production equipment ALTI "Karavella-1", "Karavella-1M", "Karavella-2" and "Karavella-2M" precision components of IEP production [1-4]. The basis for the ALTI using in the IEP have become the positive results of research and development of technologies of foil (0.01-0.2 mm) and thin sheets (0.3-1 mm) materials micromachining by pulsed radiation CVL [5, 6]. To assess the micromachining quality and precision the measuring optical microscope (UHL VMM200), projection microscope (Mitutoyo PV5100) and Carl Zeiss microscope were used.
Energy Efficient Engine: Combustor component performance program
NASA Technical Reports Server (NTRS)
Dubiel, D. J.
1986-01-01
The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.
Beyond computer literacy: supporting youth's positive development through technology.
Bers, Marina Umaschi
2010-01-01
In a digital era in which technology plays a role in most aspects of a child's life, having the competence and confidence to use computers might be a necessary step, but not a goal in itself. Developing character traits that will serve children to use technology in a safe way to communicate and connect with others, and providing opportunities for children to make a better world through the use of their computational skills, is just as important. The Positive Technological Development framework (PTD), a natural extension of the computer literacy and the technological fluency movements that have influenced the world of educational technology, adds psychosocial, civic, and ethical components to the cognitive ones. PTD examines the developmental tasks of a child growing up in our digital era and provides a model for developing and evaluating technology-rich youth programs. The explicit goal of PTD programs is to support children in the positive uses of technology to lead more fulfilling lives and make the world a better place. This article introduces the concept of PTD and presents examples of the Zora virtual world program for young people that the author developed following this framework.
Optical components damage parameters database system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong
2012-10-01
Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.
Nahum-Shani, Inbal; Smith, Shawna N; Spring, Bonnie J; Collins, Linda M; Witkiewitz, Katie; Tewari, Ambuj; Murphy, Susan A
2018-05-18
The just-in-time adaptive intervention (JITAI) is an intervention design aiming to provide the right type/amount of support, at the right time, by adapting to an individual's changing internal and contextual state. The availability of increasingly powerful mobile and sensing technologies underpins the use of JITAIs to support health behavior, as in such a setting an individual's state can change rapidly, unexpectedly, and in his/her natural environment. Despite the increasing use and appeal of JITAIs, a major gap exists between the growing technological capabilities for delivering JITAIs and research on the development and evaluation of these interventions. Many JITAIs have been developed with minimal use of empirical evidence, theory, or accepted treatment guidelines. Here, we take an essential first step towards bridging this gap. Building on health behavior theories and the extant literature on JITAIs, we clarify the scientific motivation for JITAIs, define their fundamental components, and highlight design principles related to these components. Examples of JITAIs from various domains of health behavior research are used for illustration. As we enter a new era of technological capacity for delivering JITAIs, it is critical that researchers develop sophisticated and nuanced health behavior theories capable of guiding the construction of such interventions. Particular attention has to be given to better understanding the implications of providing timely and ecologically sound support for intervention adherence and retention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.
2011-09-30
Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guidedmore » wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.« less
Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank
NASA Astrophysics Data System (ADS)
Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.
2012-12-01
In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.
ERIC Educational Resources Information Center
Lowman, J. Joneen
2016-01-01
Professional development is a necessary component of maintaining competency in professional practice. Technology has opened the door to new formats for delivering professional development, in addition to more traditional modes of training. This study compared three professional development formats for improving the quality of standards-based…
A new technology for manufacturing scheduling derived from space system operations
NASA Technical Reports Server (NTRS)
Hornstein, R. S.; Willoughby, J. K.
1993-01-01
A new technology for producing finite capacity schedules has been developed in response to complex requirements for operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications. This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques associated with Materials Resources Planning (MRPII) and with factory simulation are not adequate for shop-floor work planning and control. The technology has three components. The first is a set of data structures that accommodate an extremely general description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of each factory. Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows work-in-process (WIP) to be generated and used; it permits constraints to be imposed or intermediate as well as finished goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule. Applications have been successful in both discrete and process manufacturing environments. The availability of a high-quality finite capacity production planning capability enhances the data management capabilities of MRP II systems. These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent functional capabilities and/or extensibility.
2011-07-27
Ion Battery Packs Advanced Chemistry Batteries EM Armor Power Brick 8 UNCLASSIFIED Concepts Platform Simulation Component Development Vehicle...Advanced Turbocharging, Supercharging, OPOC Efficient Powertrain Technologies Electrified Accessories Energy Harvesting SiC Electronics Lithium
Building Interoperable Learning Objects Using Reduced Learning Object Metadata
ERIC Educational Resources Information Center
Saleh, Mostafa S.
2005-01-01
The new e-learning generation depends on Semantic Web technology to produce learning objects. As the production of these components is very costly, they should be produced and registered once, and reused and adapted in the same context or in other contexts as often as possible. To produce those components, developers should use learning standards…
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1980-01-01
The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.