Sample records for component technology program

  1. Component technology for stirling power converters

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    1991-01-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.

  2. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  3. Audiovisual Programming. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on audiovisual programming for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections…

  4. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: INNOVATION MAKING A DIFFERENCE

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program encourages commercialization of innovative technologies for characterizing and remediating hazardous waste site contamination through four components: Demonstration, Emerging Technology, and Monitoring & Measurement Pr...

  5. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1990-01-01

    Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  6. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  7. NASA/ESTO investments in remote sensing technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Babu, Sachidananda R.

    2017-02-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  8. ESTO Investments in Innovative Sensor Technologies for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Babu, Sachidananda R.

    2017-01-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  9. NASA helicopter transmission system technology program

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1983-01-01

    The purpose of the NASA Helicopter Transmission System Technology Program is to improve specific mechanical components and the technology for combining these into advanced drive systems to make helicopters more viable and cost competitive for commerical applications. The history, goals, and elements of the program are discussed.

  10. Parental Decision Making about Technology and Quality in Child Care Programs

    ERIC Educational Resources Information Center

    Rose, Katherine K.; Vittrup, Brigitte; Leveridge, Tinney

    2013-01-01

    Background: This study investigated parental decision making about non-parental child care programs based on the technological and quality components of the program, both child-focused and parent-focused. Child-focused variables related to children's access to technology such as computers, educational television programming, and the internet.…

  11. Supporting learner-centered technology integration through situated mentoring

    NASA Astrophysics Data System (ADS)

    Rosenberg, Marian Goode

    Situated mentoring was used as a professional development method to help 11 high school science teachers integrate learner-centered technology. The teachers' learner-centered technology beliefs and practices as well as their perception of barriers to learner-centered technology integration were explored before and after participating in the mentoring program. In addition, the participants' thoughts about the effectiveness of various components of the mentoring program were analyzed along with the mentor's observations of their practices. Situated mentoring can be effective for supporting learner-centered technology integration, in particular decreasing the barriers teachers experience. Goal setting, collaborative planning, reflection, and onsite just-in-time support were thought to be the most valuable components of the mentoring program.

  12. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  13. Solar thermal program summary. Volume 1: Overview, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-02-01

    The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

  14. Test program for transmitter experiment package and heat pipe system for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Depauw, J. F.; Reader, K. E.; Staskus, J. V.

    1976-01-01

    The test program is described for the 200 watt transmitter experiment package and the variable conductance heat pipe system which are components of the high-power transponder aboard the Communications Technology Satellite. The program includes qualification tests to demonstrate design adequacy, acceptance tests to expose latent defects in flight hardware, and development tests to integrate the components into the transponder system and to demonstrate compatibility.

  15. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  16. Optoelectronic Technology Consortium: Precompetitive Consortium for Optoelectronic Interconnect Technology

    DTIC Science & Technology

    1992-09-01

    demonstrating the producibility of optoelectronic components for high-density/high-data-rate processors and accelerating the insertion of this technology...technology development stage, OETC will advance the development of optical components, produce links for a multiboard processor testbed demonstration, and...components that are affordable, initially at <$100 per line, and reliable, with a li~e BER᝺-15 and MTTF >10 6 hours. Under the OETC program, Honeywell will

  17. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1987-01-01

    Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  18. Materials technology assessment for stirling engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.

    1977-01-01

    A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.

  19. Suicide Prevention in the Dot Com Era: Technological Aspects of a University Suicide Prevention Program

    ERIC Educational Resources Information Center

    Manning, Jessica; VanDeusen, Karen

    2011-01-01

    Western Michigan University's Suicide Prevention Program utilizes multiple technological components, including an online training course, a Web site, and 2 social networking Web site profiles, as integral aspects of a comprehensive program. This article discusses the development, maintenance, use, and impact of the technological aspects of this…

  20. Development of a Training Program for Enhancement of Technology Competencies of University Lecturers

    ERIC Educational Resources Information Center

    Cruthaka, Chomsupak; Pinngern, Ouen

    2016-01-01

    The objectives were: (1) the components of the technology competencies of university lecturers were studied. The researchers also described and analyzed (2) the development of a training program for enhancement of the technology competencies of these lecturers. Also, the researchers evaluated (3) the program they had constructed. The sample…

  1. ECITE: A Testbed for Assessment of Technology Interoperability and Integration wiht Architecture Components

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Keiser, K.; Law, E.; Yang, C. P.; Djorgovski, S. G.

    2016-12-01

    ECITE (EarthCube Integration and Testing Environment) is providing both cloud-based computational testing resources and an Assessment Framework for Technology Interoperability and Integration. NSF's EarthCube program is funding the development of cyberinfrastructure building block components as technologies to address Earth science research problems. These EarthCube building blocks need to support integration and interoperability objectives to work towards a coherent cyberinfrastructure architecture for the program. ECITE is being developed to provide capabilities to test and assess the interoperability and integration across funded EarthCube technology projects. EarthCube defined criteria for interoperability and integration are applied to use cases coordinating science problems with technology solutions. The Assessment Framework facilitates planning, execution and documentation of the technology assessments for review by the EarthCube community. This presentation will describe the components of ECITE and examine the methodology of cross walking between science and technology use cases.

  2. Technology in Nonformal Education: A Critical Appraisal. Issues in Nonformal Education No. 2.

    ERIC Educational Resources Information Center

    Evans, David R.

    In analyzing efforts to utilize technology in nonformal education programs, the applied communications aspects of instructional technology are most relevant, and locus of control and the technology of educational organization are two major components of analysis. Growing out of these components is the increasing recognition that educational…

  3. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: TECHNOLOGY WITH AN IMPACT

    EPA Science Inventory

    SITE promotes the development and implementation of innovative technologies for remediating hazardous waste sites and for evaluating the nature and extent of hazardous waste site contamination through four component segments. The SITE Program is a key element in EPA's efforts...

  4. A Status of the Advanced Space Transportation Program from Planning to Action

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and dramatically reduce the propellant and structural mass of orbit transfer and deep space systems. Flight demonstration of ion propulsion is progressing towards launch. Ion propulsion is the primary propulsion for Deep Space 1; a flyby of comet West-kohoutek-lkemura and asteroid 3352 McAuliffe. Testing of critical solar-thermal propulsion subsystems have been accomplished and planning is continuing for the flight demonstration of an electrodynamic tether orbit transfer system. The forth and final element of the program, Space Transportation Research, has progressed in several areas of propulsion research. This element of the program is focused at long-term (25 years) breakthrough concepts that could bring launch costs to a factor of one hundred below today's cost or dramatically expand planetary travel and enable interstellar travel.

  5. Marginalized Student Access to Technology Education

    NASA Astrophysics Data System (ADS)

    Kurtcu, Wanda M.

    The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the United States, if not the world economy, is developing at a rapid pace. Many areas of day to day living, from applying for a job to checking one's bank account online, involve a component of science and technology. The 'gap' in technology education is emphasized between the 'haves and have-nots', which is delineated along socio-economic lines. Marginalized students in alternative education programs use this equipment for little else than remedial programs and credit recovery. This level of inequity further widens in alternative education programs and affects the achievement of marginalized students in credit recovery or alternative education classes instead of participation technology classes. For the purposes of this paper I focus on how can I decrease the inequity of student access to 21st century technology education in an alternative education program by addressing the established curriculum of the program and modifying structural barriers of marginalized student access to a technology focused curriculum.

  6. Variable Cycle Engine Technology Program Planning and Definition Study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  7. How Programming Fits with Technology Education Curriculum

    ERIC Educational Resources Information Center

    Wright, Geoffrey A.; Rich, Peter; Leatham, Keith R.

    2012-01-01

    Programming is a fundamental component of modern society. Programming and its applications influence much of how people work and interact. Because of people's reliance on programming in one or many of its applications, there is a need to teach students to be programming literate. Because the purpose of the International Technology and Engineering…

  8. CSTI Earth-to-orbit propulsion research and technology program overview

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.

    1993-01-01

    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.

  9. Business Technology Education. Vocational Education Program Courses Standards.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Applied Tech., Adult, and Community Education.

    This document contains vocational education program course standards (curriculum frameworks and student performance standards) for exploratory courses, practical arts courses, and job preparatory programs offered at the secondary and postsecondary level as part of the business technology education component of Florida's comprehensive vocational…

  10. Technology Education. Vocational Education Program Courses Standards.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Applied Tech., Adult, and Community Education.

    This document contains vocational education program course standards (curriculum frameworks and student performance standards) for exploratory courses, practical arts courses, and job preparatory programs offered at the secondary and postsecondary level as part of the technology education component of Florida's comprehensive vocational education…

  11. Arthropod surveillance programs: Basic components, strategies, and analysis

    USDA-ARS?s Scientific Manuscript database

    Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium “Advancements in arthro...

  12. A Practical Approach to Starting Fission Surface Power Development

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.

  13. Listening Technologies for Individuals and the Classroom

    ERIC Educational Resources Information Center

    Marttila, Joan

    2004-01-01

    Assistive technology has always been an important component of individualized education programs. The individualized education program process can be used to supply hearing assistive technology to students. One goal of audiologists and educators is to improve the acoustic environment of classrooms for all students by constructing school buildings…

  14. Introducing the First Hybrid Doctoral Program in Educational Technology

    ERIC Educational Resources Information Center

    Koehler, Matthew J.; Zellner, Andrea L.; Roseth, Cary J.; Dickson, Robin K.; Dickson, W. Patrick; Bell, John

    2013-01-01

    In 2010 Michigan State University launched the first hybrid doctoral program in Educational Technology. This 5-year program blends face-to-face and online components to engage experienced, working education professionals in doctoral study. In this paper, we describe the design and evolution of the program as well as the response from students. We…

  15. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  16. Life assessment of structural components using inelastic finite element analyses

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    1993-01-01

    The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.

  17. e-Phys: a suite of intracellular neurophysiology programs integrating COM (component object model) technologies.

    PubMed

    Nguyen, Quoc-Thang; Miledi, Ricardo

    2003-09-30

    Current computer programs for intracellular recordings often lack advanced data management, are usually incompatible with other applications and are also difficult to adapt to new experiments. We have addressed these shortcomings in e-Phys, a suite of electrophysiology applications for intracellular recordings. The programs in e-Phys use Component Object Model (COM) technologies available in the Microsoft Windows operating system to provide enhanced data storage, increased interoperability between e-Phys and other COM-aware applications, and easy customization of data acquisition and analysis thanks to a script-based integrated programming environment. Data files are extensible, hierarchically organized and integrated in the Windows shell by using the Structured Storage technology. Data transfers to and from other programs are facilitated by implementing the ActiveX Automation standard and distributed COM (DCOM). ActiveX Scripting allows experimenters to write their own event-driven acquisition and analysis programs in the VBScript language from within e-Phys. Scripts can reuse components available from other programs on other machines to create distributed meta-applications. This paper describes the main features of e-Phys and how this package was used to determine the effect of the atypical antipsychotic drug clozapine on synaptic transmission at the neuromuscular junction.

  18. Ultralightweight optics for space applications

    NASA Astrophysics Data System (ADS)

    Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.

    2000-07-01

    Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.

  19. CARES/Life Ceramics Durability Evaluation Software Used for Mars Microprobe Aeroshell

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    1998-01-01

    The CARES/Life computer program, which was developed at the NASA Lewis Research Center, predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs-which resolve a component's temperature and stress distribution-to-reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength. The capability, flexibility, and uniqueness of CARES/Life has attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer.

  20. Report on Employer-Based Training, 1983-84.

    ERIC Educational Resources Information Center

    Cronin, Doug; Parkison, Teresa

    California's Employer-Based Training (EBT) Program focuses on preparing individuals for the new technologies of the future and responding to the real and current skills training needs of business and industry. The three major program components are: new programs in high and emerging technologies; private sector support for worksite-based training;…

  1. The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  2. The status of spacecraft bus and platform technology development under the NASA ISPT program

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  3. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  4. Overview of Advanced Turbine Systems Program

    NASA Astrophysics Data System (ADS)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  5. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  6. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  7. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  8. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  9. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  10. Developing and Implementing a Content Structure for Educational Television Programming in the Area of Career Education. Satellite Technology Demonstration, Technical Report No. 0506.

    ERIC Educational Resources Information Center

    Lonsdale, Helen C.; McWilliams, Alfred E., Jr.

    The Program Component of the Satellite Technology Demonstration (STD) developed the programing for a television series on career planning for junior high school students. A program called "Time Out" was designed, developed, and implemented to be broadcast throughout the Rocky Mountain States. A staff of educators and communicators…

  11. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  12. Technological Literacy and Its Effects on First-Year Liberal Studies College Students.

    ERIC Educational Resources Information Center

    Gathercoal, Paul

    This study examined the effects of including a technology literacy component in first-year students' programs at a liberal arts college. The program was designed to systematically help students use and critically evaluate the technology and what it can do to enhance the living and learning environment. The study employed a non-equivalent control…

  13. Accomplishing PETE Learning Standards and Program Accreditation through Teacher Candidates' Technology-Based Service Learning Projects

    ERIC Educational Resources Information Center

    Gibbone, Anne; Mercier, Kevin

    2014-01-01

    Teacher candidates' use of technology is a component of physical education teacher education (PETE) program learning goals and accreditation standards. The methods presented in this article can help teacher candidates to learn about and apply technology as an instructional tool prior to and during field or clinical experiences. The goal in…

  14. VERIFICATION OF HIGH-RATE DISINFECTION TECHNOLOGIES FOR WET-WEATHER FLOWS

    EPA Science Inventory

    This paper describes the critical components of the USEPA's Environmental Technology Verification Program for two specific technologies categories: ultraviolet disinfection technologies for treating combined sewer overflow (CSO) and sanitary sewer overflow (SSO), and; induction m...

  15. AGT (Advanced Gas Turbine) technology project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated; (7) Small turbine engine aerodynamic and mechanical design capability has been initiated; and (8) An infrastructure of manpower, facilities, materials, and fabrication capabilities has been established which is available for continued development of ceramic component technology in gas turbine and other heat engines.

  16. Learning Resources and Technology. A Guide to Program Development.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford.

    This guide provides a framework to assist all Connecticut school districts in planning effective learning resources centers and educational technology programs capable of providing: a well developed library media component; shared instructional design responsibilities; reading for enrichment; integration of computers into instruction; distance…

  17. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  18. VERIFICATION OF HIGH-RATE DISINFECTION TECHNOLOGIES FOR WET-WEATHER FLOW APPLICATIONS

    EPA Science Inventory

    This paper describes the critical components of the USEPA's Environmental Technology Verification Program for two specific technologies categories: ultraviolet disinfection technologies for treating combined sewer overflow (CSO) and sanitary sewer overflow (SSO), and; and mechani...

  19. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  20. MLS student active learning within a "cloud" technology program.

    PubMed

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  1. Language Integrated Technology Project Final Evaluation Report.

    ERIC Educational Resources Information Center

    Stiegemeier, Lois

    The goal of the Language Integrated Technology Grant Project (LIT) consortium was to help provide critical components of successful reading programs through a combination of proven computer/print programs and teacher training. Through leadership provided by the Educational Service District 113 (Olympia, Washington), the LIT consortium of schools…

  2. Training Students as Technology Assistants.

    ERIC Educational Resources Information Center

    Onishi, Esther; Peto, Erica

    1996-01-01

    Describes a program where fifth and sixth graders are trained as school technology assistants. The childrens' duties include installation of software, making minor repairs, cleaning computer equipment, and assisting teachers and students. Outlines components of the program, lists forms the assistants use and skills they are taught, and provides…

  3. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  4. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  5. Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.

  6. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  7. Cooperative Demonstration Program for High Technology Training. Performance Report.

    ERIC Educational Resources Information Center

    Indian Hills Community Coll., Ottumwa, IA.

    A program at Indian Hills Community College (Ottumwa, Iowa) consisted of a sex equity component aimed to prepare women to enter nontraditional occupations and a building trades component to enable electrical workers to upgrade their skills. Both of the targeted groups underwent assessment and upgrading coordinated through the college's SUCCESS…

  8. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less

  9. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  10. BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.

  11. NASA funding opportunities for optical fabrication and testing technology development

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  12. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  13. Summary of Fuel Cell Programs at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla

    2000-01-01

    The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.

  14. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  15. Integrating Information Competencies into the Allied Health Curriculum at Gavilan College.

    ERIC Educational Resources Information Center

    Hausrath, Don; Auyeung, Shuk-Chun; Howell, Jo Anne; Bedell, Kaye

    2003-01-01

    Describes a new program at Gavilan College, California, that introduces Allied Health students and faculty to information technologies. States that the program's goal is to reconfigure Allied Health curriculum to reflect the impact of information technology on the health professions by inserting information competency components into courses.…

  16. Annual Science and Engineering Technology Conference Presentations (8th)

    DTIC Science & Technology

    2007-04-19

    Technology 11:30 am Wrap Up & Adjourn 12:00 pm BUFFET LUNCHEON Session III: Army Future Combat System (Brigade Combat Team) (FCS(BCT)) Program The Future...acquisitions by firms from other nations. Non UK/Canada transactions accounted for 58% of all CFIUS filings. 19 Outline • Industrial Policy • Emerging...requirements are accounted for Document and model the component Minimize inter-component dependencies Support rapid, affordable technology

  17. Engine structures analysis software: Component Specific Modeling (COSMO)

    NASA Astrophysics Data System (ADS)

    McKnight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-08-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  18. Engine Structures Analysis Software: Component Specific Modeling (COSMO)

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-01-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  19. NASA Tech Briefs, June 1993. Volume 17, No. 6

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  20. NASA Tech Briefs, February 1993. Volume 17, No. 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  1. Exploring Students' Technology Acceptance in College Developmental Mathematics

    ERIC Educational Resources Information Center

    Williams, Handan

    2012-01-01

    Technology has become a large component of teaching and learning in mathematics education. Gaining insight into students' technology acceptance factors is a crucial step in understanding instructional design and implementation of technology-based learning programs. Despite the widespread use of technology in education, few research efforts…

  2. Entrepreneurship. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on entrepreneurship for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…

  3. Introduction to Animation. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on introduction to animation for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Section components are described next. The…

  4. Health Occupations. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on health occupations for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…

  5. Electronic Publishing. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on electronic publishing for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor and student sections are…

  6. Career Search. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on career search for students in grades 6-10 consists of a technology education overview, information on use, and the instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…

  7. NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.

  8. The Effects of a Multi-Component Intervention on Preschool Children's Literacy Skills

    ERIC Educational Resources Information Center

    Dennis, Lindsay R.

    2016-01-01

    This study examined the effects of a multi-component intervention program (i.e., extended instruction and iPad app technology) on preschool children's vocabulary. Instruction utilizing the intervention program was provided across 6 storybooks, 4 verbs per book, for a total of 24 verbs. Dependent variables included expressive vocabulary,…

  9. Energy efficient engine. Volume 1: Component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.

  10. Projection display technology for avionics applications

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.; Tompkins, Richard D.

    2000-08-01

    Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.

  11. Composite armored vehicle advanced technology demonstator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.

    1996-12-31

    Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less

  12. Ion beam applications research. A summary of Lewis Research Center Programs

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1981-01-01

    A summary of the ion beam applications research (IBAR) program organized to enable the development of materials, products, and processes through the nonpropulsive application of ion thruster technology is given. Specific application efforts utilizing ion beam sputter etching, deposition, and texturing are discussed as well as ion source and component technology applications.

  13. Information Technology Integration in Teacher Education: Supporting the Paradigm Shift in Hong Kong.

    ERIC Educational Resources Information Center

    Lee, Kar Tin

    2001-01-01

    Examines the integration of information technology (IT) at the Hong Kong Institute of Education, presenting the rationale for this move, characteristics of IT integration, and program development issues for making IT application a critical component of contemporary teacher education. The paper presents a framework for program development and…

  14. Assessing for Technological Literacy

    ERIC Educational Resources Information Center

    Engstrom, Daniel E.

    2004-01-01

    Designing standards-based assessment is a key component of a quality technology education program. For students to become technologically literate, it is important that the teacher understands how to measure student understandings and abilities in the study of technology. This article is written to help teachers and teacher educators recognize the…

  15. Assistive technology for postsecondary students with learning disabilities.

    PubMed

    Day, S L; Edwards, B J

    1996-09-01

    An increasing number of students with learning disabilities are attending postsecondary institutions. To meet the educational demands of these students, support service providers will likely rely on assistive technology. This article lists types of assistive technology appropriate for use with persons with learning disabilities at the postsecondary level and discusses ways in which assistive technology enhances learning. Additionally, an overview of legislation that has had an impact on assistive technology at the postsecondary level is presented. Issues involving assistive technology programs at the postsecondary level are discussed. Postsecondary assistive technology program components, device selection, and training guidelines also are outlined.

  16. NASA Tech Briefs, January 1994. Volume 18, No. 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics include: Communications Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  17. The 1991/92 graduate student researchers program, including the underrepresented minority focus component

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Graduate Student Research Program (GSRP) was expanded in 1987 to include the Underrepresented Minority Focus Component (UMFC). This program was designed to increase minority participation in graduate study and research, and ultimately, in space science and aerospace technology careers. This booklet presents the areas of research activities at NASA facilities for the GSRP and summarizes and presents the objectives of the UMFC.

  18. Aerospace and Flight. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on aerospace and flight for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…

  19. Problem Solving: The "Wright" Math. The Centennial of Flight Special Edition. An Educator Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT[TM].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of integrated mathematics, science, and technology instructional distance learning programs for students in grades 6-8. This program is designed for students to learn about the evolution of flight. The program has three components--television broadcast, Web activity, and lesson guide--which are designed as an…

  20. A Component-based Programming Model for Composite, Distributed Applications

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  1. Power management and distribution technology

    NASA Astrophysics Data System (ADS)

    Dickman, John Ellis

    Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.

  2. Power management and distribution technology

    NASA Technical Reports Server (NTRS)

    Dickman, John Ellis

    1993-01-01

    Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.

  3. USEPA'S SITE PROGRAM IMPACT ON THE DEVELOPMENT AND USE OF INNOVATIVE HAZARDOUS WASTE TREATMENT

    EPA Science Inventory

    The USEPA's SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. The SITE Program has two components: The Demonstration Program and ...

  4. Refinery evaluation of optical imaging to locate fugitive emissions.

    PubMed

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  5. Integration of Study Abroad with Social Media Technologies and Decision-Making Applications

    ERIC Educational Resources Information Center

    Deans, P. Candace

    2012-01-01

    This article describes the design and delivery of a program, "Global Business in a Digital World." The program integrates the use of social media technologies and business applications in a series of courses that include short-term study abroad components that focus on emerging markets. The objectives are to: (1) provide additional…

  6. Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies

    PubMed Central

    Wherton, Joseph; Papoutsi, Chrysanthi; Lynch, Jennifer; Hughes, Gemma; A'Court, Christine; Hinder, Susan; Fahy, Nick; Procter, Rob; Shaw, Sara

    2017-01-01

    Background Many promising technological innovations in health and social care are characterized by nonadoption or abandonment by individuals or by failed attempts to scale up locally, spread distantly, or sustain the innovation long term at the organization or system level. Objective Our objective was to produce an evidence-based, theory-informed, and pragmatic framework to help predict and evaluate the success of a technology-supported health or social care program. Methods The study had 2 parallel components: (1) secondary research (hermeneutic systematic review) to identify key domains, and (2) empirical case studies of technology implementation to explore, test, and refine these domains. We studied 6 technology-supported programs—video outpatient consultations, global positioning system tracking for cognitive impairment, pendant alarm services, remote biomarker monitoring for heart failure, care organizing software, and integrated case management via data sharing—using longitudinal ethnography and action research for up to 3 years across more than 20 organizations. Data were collected at micro level (individual technology users), meso level (organizational processes and systems), and macro level (national policy and wider context). Analysis and synthesis was aided by sociotechnically informed theories of individual, organizational, and system change. The draft framework was shared with colleagues who were introducing or evaluating other technology-supported health or care programs and refined in response to feedback. Results The literature review identified 28 previous technology implementation frameworks, of which 14 had taken a dynamic systems approach (including 2 integrative reviews of previous work). Our empirical dataset consisted of over 400 hours of ethnographic observation, 165 semistructured interviews, and 200 documents. The final nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework included questions in 7 domains: the condition or illness, the technology, the value proposition, the adopter system (comprising professional staff, patient, and lay caregivers), the organization(s), the wider (institutional and societal) context, and the interaction and mutual adaptation between all these domains over time. Our empirical case studies raised a variety of challenges across all 7 domains, each classified as simple (straightforward, predictable, few components), complicated (multiple interacting components or issues), or complex (dynamic, unpredictable, not easily disaggregated into constituent components). Programs characterized by complicatedness proved difficult but not impossible to implement. Those characterized by complexity in multiple NASSS domains rarely, if ever, became mainstreamed. The framework showed promise when applied (both prospectively and retrospectively) to other programs. Conclusions Subject to further empirical testing, NASSS could be applied across a range of technological innovations in health and social care. It has several potential uses: (1) to inform the design of a new technology; (2) to identify technological solutions that (perhaps despite policy or industry enthusiasm) have a limited chance of achieving large-scale, sustained adoption; (3) to plan the implementation, scale-up, or rollout of a technology program; and (4) to explain and learn from program failures. PMID:29092808

  7. Plasma contactor technology for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy

    1993-01-01

    Hollow cathode plasma contactors were baselined for Space Station Freedom (SSF) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contact or subsystems include the plasma contact or unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities were developed, and existing facilities were augmented, to support characterizations and life testing of contactor components and systems. The magnitude, scope, and status of the plasma contactor hardware development program now underway and preliminary test results on system components are discussed.

  8. Plasma contactor technology for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy

    1993-01-01

    Hollow cathode plasma contactors have been baselined for Space Station Freedom to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities have been developed, and existing facilities have been augmented, to support characterizations and life testing of contactor components and systems. This paper discusses the magnitude, scope, and status of the plasma contactor hardware development program now under way and preliminary test results on system components.

  9. Technology for aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  10. Beyond Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and Sustainability of Health and Care Technologies.

    PubMed

    Greenhalgh, Trisha; Wherton, Joseph; Papoutsi, Chrysanthi; Lynch, Jennifer; Hughes, Gemma; A'Court, Christine; Hinder, Susan; Fahy, Nick; Procter, Rob; Shaw, Sara

    2017-11-01

    Many promising technological innovations in health and social care are characterized by nonadoption or abandonment by individuals or by failed attempts to scale up locally, spread distantly, or sustain the innovation long term at the organization or system level. Our objective was to produce an evidence-based, theory-informed, and pragmatic framework to help predict and evaluate the success of a technology-supported health or social care program. The study had 2 parallel components: (1) secondary research (hermeneutic systematic review) to identify key domains, and (2) empirical case studies of technology implementation to explore, test, and refine these domains. We studied 6 technology-supported programs-video outpatient consultations, global positioning system tracking for cognitive impairment, pendant alarm services, remote biomarker monitoring for heart failure, care organizing software, and integrated case management via data sharing-using longitudinal ethnography and action research for up to 3 years across more than 20 organizations. Data were collected at micro level (individual technology users), meso level (organizational processes and systems), and macro level (national policy and wider context). Analysis and synthesis was aided by sociotechnically informed theories of individual, organizational, and system change. The draft framework was shared with colleagues who were introducing or evaluating other technology-supported health or care programs and refined in response to feedback. The literature review identified 28 previous technology implementation frameworks, of which 14 had taken a dynamic systems approach (including 2 integrative reviews of previous work). Our empirical dataset consisted of over 400 hours of ethnographic observation, 165 semistructured interviews, and 200 documents. The final nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework included questions in 7 domains: the condition or illness, the technology, the value proposition, the adopter system (comprising professional staff, patient, and lay caregivers), the organization(s), the wider (institutional and societal) context, and the interaction and mutual adaptation between all these domains over time. Our empirical case studies raised a variety of challenges across all 7 domains, each classified as simple (straightforward, predictable, few components), complicated (multiple interacting components or issues), or complex (dynamic, unpredictable, not easily disaggregated into constituent components). Programs characterized by complicatedness proved difficult but not impossible to implement. Those characterized by complexity in multiple NASSS domains rarely, if ever, became mainstreamed. The framework showed promise when applied (both prospectively and retrospectively) to other programs. Subject to further empirical testing, NASSS could be applied across a range of technological innovations in health and social care. It has several potential uses: (1) to inform the design of a new technology; (2) to identify technological solutions that (perhaps despite policy or industry enthusiasm) have a limited chance of achieving large-scale, sustained adoption; (3) to plan the implementation, scale-up, or rollout of a technology program; and (4) to explain and learn from program failures. ©Trisha Greenhalgh, Joseph Wherton, Chrysanthi Papoutsi, Jennifer Lynch, Gemma Hughes, Christine A'Court, Susan Hinder, Nick Fahy, Rob Procter, Sara Shaw. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 01.11.2017.

  11. Program Development for Disadvantaged High-Ability Students

    ERIC Educational Resources Information Center

    Kim, Mihyeon; Cross, Jennifer; Cross, Tracy

    2017-01-01

    Examining lessons learned through 4 years of experience of hosting Camp Launch, a university-based residential science, technology, engineering, and mathematics (STEM) enrichment program for low-income, high-ability, middle school students, this article explores components of the program and offers suggestions for implementing programs that serve…

  12. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  13. GSFC Cutting Edge Avionics Technologies for Spacecraft

    NASA Technical Reports Server (NTRS)

    Luers, Philip J.; Culver, Harry L.; Plante, Jeannette

    1998-01-01

    With the launch of NASA's first fiber optic bus on SAMPEX in 1992, GSFC has ushered in an era of new technology development and insertion into flight programs. Predating such programs the Lewis and Clark missions and the New Millenium Program, GSFC has spearheaded the drive to use cutting edge technologies on spacecraft for three reasons: to enable next generation Space and Earth Science, to shorten spacecraft development schedules, and to reduce the cost of NASA missions. The technologies developed have addressed three focus areas: standard interface components, high performance processing, and high-density packaging techniques enabling lower cost systems. To realize the benefits of standard interface components GSFC has developed and utilized radiation hardened/tolerant devices such as PCI target ASICs, Parallel Fiber Optic Data Bus terminals, MIL-STD-1773 and AS1773 transceivers, and Essential Services Node. High performance processing has been the focus of the Mongoose I and Mongoose V rad-hard 32-bit processor programs as well as the SMEX-Lite Computation Hub. High-density packaging techniques have resulted in 3-D stack DRAM packages and Chip-On-Board processes. Lower cost systems have been demonstrated by judiciously using all of our technology developments to enable "plug and play" scalable architectures. The paper will present a survey of development and insertion experiences for the above technologies, as well as future plans to enable more "better, faster, cheaper" spacecraft. Details of ongoing GSFC programs such as Ultra-Low Power electronics, Rad-Hard FPGAs, PCI master ASICs, and Next Generation Mongoose processors.

  14. Perceptions and Practices of Technology Student Association Advisors on Implementation Strategies and Teaching Methods

    ERIC Educational Resources Information Center

    Haynie, W. J.; DeLuca, V. W.; Matthews, B.

    2005-01-01

    A study conducted in 1989 surveyed Technology Student Association (TSA) advisors to find their perceptions concerning characteristics of technology education programs with a TSA component and the relationship between participation in co-curricular organizations and the teaching methods used by TSA technology teachers (DeLuca & Haynie, 1991).…

  15. Implementation of a Computerized Maintenance Management System

    NASA Technical Reports Server (NTRS)

    Shen, Yong-Hong; Askari, Bruce

    1994-01-01

    A primer Computerized Maintenance Management System (CMMS) has been established for NASA Ames pressure component certification program. The CMMS takes full advantage of the latest computer technology and SQL relational database to perform periodic services for vital pressure components. The Ames certification program is briefly described and the aspects of the CMMS implementation are discussed as they are related to the certification objectives.

  16. What's technology cooking up? A systematic review of the use of technology in adolescent food literacy programs.

    PubMed

    Wickham, Catherine A; Carbone, Elena T

    2018-06-01

    Over one-third of adolescents are overweight or obese. Food literacy (FL), the ability to plan and manage, select, prepare, and eat healthy foods, is a contemporary concept that provides a mechanism to understand the relationship between food-related knowledge and skills and dietary intake. Innovative interventions which focus on the core concepts of FL and include generationally appropriate technology have the potential to provide positive impact on the dietary habits of adolescents. This systematic review followed PRISMA guidelines and employed the Downs and Black criteria for rating studies. Titles and abstracts of 545 articles were collected and reviewed from 13 electronic databases. Studies were selected if they were peer-reviewed, included adolescents 12-19 years-old, incorporated concepts related to FL, and employed technology as part of the intervention. Eight studies, six randomized controlled trials (RCT) and two interventions without controls were included. Seven of the interventions used Internet or web-based platforms to access program components and all RCTs incorporated game elements. Studies included between two and four constructs of FL. All reported positive changes in food intake with five reporting significant positive pre- and post-intervention changes. Few technology-driven FL-related studies exist within the literature. Although all studies reported improvements in dietary intake, due to variation in program design, delivery, and evaluation it is difficult to tease out the effect of the technology component. Continued research is needed to: 1) determine the degree to which FL should be included in interventions to effect a positive change on dietary intake; 2) develop adolescent-specific FL measures to more appropriately evaluate changes in knowledge, food-related skills, and dietary intake; and 3) design technology-driven interventions so that technology components can be analyzed separately from other program elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Impact and promise of NASA aeropropulsion technology

    NASA Technical Reports Server (NTRS)

    Saunders, Neal T.; Bowditch, David N.

    1987-01-01

    The aeropropulsion industry in the United States has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. The NASA aeropropulsion propulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstrations such as the Refan, Engine Component Improvement, and the Energy Efficient Engine Programs. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane (NASP) are discussed.

  18. Redding Responder phase I final report.

    DOT National Transportation Integrated Search

    2005-12-19

    The Redding Responder Study was initiated as a component of the Redding Incident : Management Enhancement (RIME) Program. The goals of the RIME program are to leverage : technology and communications deployments for emergency communication providers ...

  19. Evaluating the Effectiveness of the Self-Test on Structured Classroom Learning

    ERIC Educational Resources Information Center

    Gilkey, Anthony Dean

    1977-01-01

    The study focused on the effect of the self-evaluation component of self-instructional packets in radiologic technology programs. It was found that the self-evaluation component clearly had a significant positive effect on learning, although the relative learning contribution of the component was not established. (MF)

  20. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A fuel cell technology program was established to advance the state-of-the art of hydrogen oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Cell and component testing confirmed that low temperature, potassium hydroxide electrolyte technology is compatible with the requirements of the space shuttle Phase B contractors. Testing of the DM-1 powerplant demonstrated all of the important requirements of the shuttle except operating life. Testing also identified DM-1 powerplant life limiting mechanisms; hydrogen pump gear wear and pressurization of the cell stack over its design limits.

  1. Communication strategies to optimize commitments and investments in iron programming.

    PubMed

    Griffiths, Marcia

    2002-04-01

    There is consensus that a communications component is crucial to the success of iron supplementation and fortification programs. However, in many instances, we have not applied what we know about successful advocacy and program communications to iron programs. Communication must play a larger and more central role in iron programs to overcome several common shortcomings and allow the use of new commitments and investments in iron programming to optimum advantage. One shortcoming is that iron program communication has been driven primarily by the supply side of the supply-demand continuum. That is, technical information has been given without thought for what people want to know or do. To overcome this, the communication component, which should be responsive to the consumer perspective, must be considered at program inception, not enlisted late in the program cycle as a remedy when interventions fail to reach their targets. Another shortcoming is the lack of program focus on behavior. Because the "technology" of iron, a supplement, or fortified or specific local food must be combined with appropriate consumer behavior, it is not enough to promote the technology. The appropriate use of technology must be ensured, and this requires precise and strategically crafted communications. A small number of projects from countries as diverse as Indonesia, Egypt, Nicaragua and Peru offer examples of successful communications efforts and strategies for adaptation by other countries.

  2. Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 1: Mach 6 component integration

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine (HRE) Project was initiated for the purpose of advancing the technology of airbreathing propulsion for hypersonic flight. A large component (inlet, combustor, and nozzle) and structures development program was encompassed by the project. The tests of a full-scale (18 in. diameter cowl and 87 in. long) HRE concept, designated the Aerothermodynamic Integration Model (AIM), at Mach numbers of 5, 6, and 7. Computer program results for Mach 6 component integration tests are presented.

  3. Application of CFCC technology to hot gas filtration applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richlen, S.

    1995-06-01

    Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurementmore » of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.« less

  4. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  5. Project KITES: Kids Interacting with Technology and Education Students.

    ERIC Educational Resources Information Center

    Taylor, Harriet G.; Stuhlmann, Janice M.

    Faculty and administrators at the College of Education at Louisiana State University recognized the need to incorporate technology into all of their programs. Project KITES (Kids Interacting with Technology and Education Students) was developed to give students just beginning their professional education component real experiences with children…

  6. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  7. Overview of the National Aeronautics and Space Administration's Nondestructive Evaluation (NDE) Program

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2002-01-01

    NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.

  8. Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program

    NASA Technical Reports Server (NTRS)

    Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.

    1981-01-01

    Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.

  9. Status of nickel-hydrogen cell technology

    NASA Technical Reports Server (NTRS)

    Warnock, D. R.

    1980-01-01

    Nickel hydrogen cell technology has been developed which solves the problems of thermal management, oxygen management, electrolyte management, and electrical and mechanical design peculiar to this new type of battery. This technology was weight optimized for low orbit operation using computer modeling programs but is near optimum for other orbits. Cells ranging in capacity up to about 70 ampere-hours can be made from components of a single standard size and are available from two manufacturers. The knowledge gained is now being applied to the development of two extensions to the basic design: a second set of larger standard components that will cover the capacity range up to 150 ampere-hours; and the development of multicell common pressure vessel modules to reduce volume, cost and weight. A manufacturing technology program is planned to optimize the producibility of the cell design and reduce cost. The most important areas for further improvement are life and reliability which are governed by electrode and separator technology.

  10. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.

  11. Measurement, Ratios, and Graphing: Safety First. A Lesson Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of free integrated mathematics, science, and technology instructional distance learning programs for students in grades 5-8. Each program has three components: (1) a 30-minute television broadcast which can be viewed live or taped for later use; (2) an interactive Web activity that allows teachers to integrate…

  12. NETL’s Rare Earth Elements Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The National Energy Technology Laboratory has established a Rare Earth Elements (REE) program. REEs are a series of 17 chemical elements found in the Earth’s crust. They are an essential component to technology, health care, transportation and national defense.

  13. Aerothermal modeling. Executive summary

    NASA Technical Reports Server (NTRS)

    Kenworthy, M. K.; Correa, S. M.; Burrus, D. L.

    1983-01-01

    One of the significant ways in which the performance level of aircraft turbine engines has been improved is by the use of advanced materials and cooling concepts that allow a significant increase in turbine inlet temperature level, with attendant thermodynamic cycle benefits. Further cycle improvements have been achieved with higher pressure ratio compressors. The higher turbine inlet temperatures and compressor pressure ratios with corresponding higher temperature cooling air has created a very hostile environment for the hot section components. To provide the technology needed to reduce the hot section maintenance costs, NASA has initiated the Hot Section Technology (HOST) program. One key element of this overall program is the Aerothermal Modeling Program. The overall objective of his program is to evolve and validate improved analysis methods for use in the design of aircraft turbine engine combustors. The use of such combustor analysis capabilities can be expected to provide significant improvement in the life and durability characteristics of both combustor and turbine components.

  14. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  15. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.

  16. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    NASA Technical Reports Server (NTRS)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  17. Lightning Protection

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.

  18. Returning nurses to the workforce: developing a fast track back program.

    PubMed

    Burns, Helen K; Sakraida, Teresa J; Englert, Nadine C; Hoffmann, Rosemary L; Tuite, Patricia; Foley, Susan M

    2006-01-01

    Fast Track Back: Re-entry into Nursing Practice program. Describes the development, implementation, and evaluation of a state-of-the-art re-entry program facilitating the return of licensed nonpracticing RNs to the workforce through a quality education program that retools them for the workforce in the areas of pharmacology, skill development using the latest technology, practice standards, and nursing issues. The program consists of didactic content taught via classroom, Internet, skills laboratory, and high fidelity human simulated technology and a clinical component. The program is a mechanism that enables re-entry nurses to improve skills and competencies necessary to practice in today's healthcare environment.

  19. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  20. STochastic Analysis of Technical Systems (STATS): A model for evaluating combined effects of multiple uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kranz, L.; VanKuiken, J.C.; Gillette, J.L.

    1989-12-01

    The STATS model, now modified to run on microcomputers, uses user- defined component uncertainties to calculate composite uncertainty distributions for systems or technologies. The program can be used to investigate uncertainties for a single technology on to compare two technologies. Although the term technology'' is used throughout the program screens, the program can accommodate very broad problem definitions. For example, electrical demand uncertainties, health risks associated with toxic material exposures, or traffic queuing delay times can be estimated. The terminology adopted in this version of STATS reflects the purpose of the earlier version, which was to aid in comparing advancedmore » electrical generating technologies. A comparison of two clean coal technologies in two power plants is given as a case study illustration. 7 refs., 35 figs., 7 tabs.« less

  1. Food Science and Technology. Teacher's Instructional Guide [and] Reference Book.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Curriculum Center for Family and Consumer Sciences.

    This reference book and teacher's instructional guide are intended for use in one- and two-year food science and technology programs for Texas high school students. The reference book provides information needed by employees in the food science and technology occupational area. Each chapter includes the following components: (1) a list of the…

  2. Clementine. Mining new uses for SDI technology

    NASA Astrophysics Data System (ADS)

    Rustan, Pedro L.

    1994-01-01

    Using ballistic missile defense technologies for NASA science missions can dramatically reduce program costs and development time. Described is the Clementine spacecraft scheduled for launch to flight-qualify advanced lightweight technologies. The 500-lb spacecraft, which uses lightweight components and minimal redundancy, was built by the Naval Research Laboratory in less than two years.

  3. MMIC technology for advanced space communications systems

    NASA Astrophysics Data System (ADS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  4. MMIC technology for advanced space communications systems

    NASA Technical Reports Server (NTRS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  5. Translations from Kommunist, Number 13, September 1978

    DTIC Science & Technology

    1978-10-30

    programmed machine tool here is merely a component of a more complex reprogrammable technological system. This includes the robot machine tools with...sufficient possibilities for changing technological operations and processes and automated technological lines. 52 The reprogrammable automated sets will...simulate the possibilities of such sets. A new technological level will be developed in industry related to reprogrammable automated sets, their design

  6. Emissions Performance and In-Use Durability of Retrofit After-Treatment Technologies (SAE Paper 2014-01-2347)

    EPA Science Inventory

    In-use testing of diesel emissoin control technologies is an integral component of EPA's verification program. EPA identified and recovered a variety of retrofit devices, installed on heavy-duty vehicles for test.

  7. Aircraft fuel conservation technology. Task force report, September 10, 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An advanced technology program is described for reduced fuel consumption in air transport. Cost benefits and estimates are given for improved engine design and components, turboprop propulsion systems, active control systems, laminar flow control, and composite primary structures.

  8. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    EPA Science Inventory

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  9. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  10. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  11. The research of .NET framework based on delegate of the LCE

    NASA Astrophysics Data System (ADS)

    Chen, Yi-peng

    2011-10-01

    Programmers realize LCE Enterprise services provided by NET framework when they develop applied VC# programming design language with component technology facing objects Lots of basic codes used to be compiled in the traditional programming design. However, nowadays this can be done just by adding corresponding character at class, interface, method, assembly with simple declarative program. This paper mainly expatiates the mechanism to realize LCE event services with delegate mode in C#. It also introduces the procedure of applying event class, event publisher, subscriber and client in LCE technology. It analyses the technology points of LCE based on delegate mode with popular language and practicing cases.

  12. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  13. Evaluating the Effectiveness of the 2003-2004 NASA CONNECT(trademark)Program

    NASA Technical Reports Server (NTRS)

    Caton, Randall H.; Pinelli, Thomas E.; Giersch, Christopher E.; Holmes, Ellen B.; Lambert, Matthew A.

    2005-01-01

    NASA CONNECT is an Emmy-award-winning series of instructional (distance learning) programs for grades 6-8. Produced by the NASA Center for Distance Learning, the nine programs in the 2003-2004 NASA CONNECT series are research-, inquiry-, standards-, teacher-, and technology-based and include a 30-minute program, an educator guide containing a hands-on activity, and a web-based component. The 1,500 randomly selected NASA CONNECT registered users were invited to complete an electronic (self-reported) survey that employed a 5-point Likert-type scale. Regarding NASA CONNECT, respondents reported that the programs (1) enhance the teaching of mathematics, science, and technology (4.53); (2) are aligned with the national mathematics, science, and technology standards (4.52); (3) raise student awareness of careers requiring mathematics, science, and technology (4.48); (4) demonstrate the application of mathematics, science, and technology (4.47); and (5) present women and minorities performing challenging engineering and science tasks (4.50).

  14. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology has been demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  15. Evaluation of Uncertainty in Constituent Input Parameters for Modeling the Fate of IMX 101 Components

    DTIC Science & Technology

    2017-05-01

    ER D C/ EL T R- 17 -7 Environmental Security Technology Certification Program (ESTCP) Evaluation of Uncertainty in Constituent Input...Environmental Security Technology Certification Program (ESTCP) ERDC/EL TR-17-7 May 2017 Evaluation of Uncertainty in Constituent Input Parameters...Environmental Evaluation and Characterization Sys- tem (TREECS™) was applied to a groundwater site and a surface water site to evaluate the sensitivity

  16. Fluid machines: Expanding the limits, past and future

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.; Sandercock, D. M.

    1985-01-01

    During the 40 yr period from 1940 to 1980, the capabilities and operating limits of fluid machines were greatly extended. This was due to a research program, carried out to meet the needs of aerospace programs. Some of the events are reviewed. Overall advancements of all machinery components are discussed followed by a detailed examination of technology advancements in axial compressors and pumps. Future technology needs are suggested.

  17. Service evaluation of aircraft composite structural components

    NASA Technical Reports Server (NTRS)

    Brooks, W. A., Jr.; Dow, M. B.

    1973-01-01

    The advantages of the use of composite materials in structural applications have been identified in numerous engineering studies. Technology development programs are underway to correct known deficiencies and to provide needed improvements. However, in the final analysis, flight service programs are necessary to develop broader acceptance of, and confidence in, any new class of materials such as composites. Such flight programs, initiated by NASA Langley Research Center, are reviewed. These programs which include the selectively reinforced metal and the all-composite concepts applied to both secondary and primary aircraft structural components, are described and current status is indicated.

  18. Cost as a technology driver. [in aerospace R and D

    NASA Technical Reports Server (NTRS)

    Fitzgerald, P. E., Jr.; Savage, M.

    1976-01-01

    Cost managment as a guiding factor in optimum development of technology, and proper timing of cost-saving programs in the development of a system or technology with payoffs in development and operational advances are discussed and illustrated. Advances enhancing the performance of hardware or software advances raising productivity or reducing cost, are outlined, with examples drawn from: thermochemical thrust maximization, development of cryogenic storage tanks, improvements in fuel cells for Space Shuttle, design of a spacecraft pyrotechnic initiator, cost cutting by reduction in the number of parts to be joined, and cost cutting by dramatic reductions in circuit component number with small-scale double-diffused integrated circuitry. Program-focused supporting research and technology models are devised to aid judicious timing of cost-conscious research programs.

  19. Communications technology

    NASA Astrophysics Data System (ADS)

    Sokoloski, Martin M.

    1988-09-01

    The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.

  20. Communications technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.

  1. Technology readiness levels for the new millennium program

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Minning, C. P.; Stocky, J. F.

    2003-01-01

    NASA's New Millennium Program (NMP) seeks to advance space exploration by providing an in-space validating mechanism to verify the maturity of promising advanced technologies that cannot be adequately validated with Earth-based testing alone. In meeting this objective, NMP uses NASA Technology Readiness Levels (TRL) as key indicators of technology advancement and assesses development progress against this generalized metric. By providing an opportunity for in-space validation, NMP can mature a suitable advanced technology from TRL 4 (component and/or breadboard validation in laboratory environment) to a TRL 7 (system prototype demonstrated in an Earth-based space environment). Spaceflight technology comprises a myriad of categories, types, and functions, and as each individual technology emerges, a consistent interpretation of its specific state of technological advancement relative to other technologies is problematic.

  2. An assessment of the benefits of the use of NASA developed fuel conservative technology in the US commercial aircraft fleet

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.

  3. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long-term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  4. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  5. An exploratory examination of the predictors of success for a science education program enhanced by communication technologies: Contributions from qualitative and quantitative methods

    NASA Astrophysics Data System (ADS)

    Love, Curtis Clinton

    New hybrid educational programs are evolving to challenge traditional definitions of distance education. One such program is the Integrated Science (IS) program of The University of Alabama's Center for Communication and Educational Technology (CCET), which was developed to address concerns about scientific illiteracy in middle school education. IS relies on a multilayered use of communication technologies (primarily videotape and e-mail) for delivery of student instruction, as a delivery vehicle for curriculum materials, and as a feedback mechanism. The IS program serves to enhance classroom science instruction by providing professionally developed videotaped educational lectures and curriculum materials used by classroom science teachers. To date, such hybrid forms of distance education have seldom been examined. Using both qualitative and quantitative methodologies, this study examines 64 IS classrooms visited from October 1992 to April 1995 by researchers at the Institute for Communication Research at The University of Alabama. Detailed qualitative information was gathered from each classroom by student, teacher, and administrator interviews; focus groups; questionnaires; and recording observations of classroom activity. From the reports of the site visits, key components of the IS classroom experience thought to be predictors of the success of the program for individual classrooms are identified. Exemplars of both positive and negative components are provided in narrative form. A model is posited to describe the potential relationships between the various components and their impact on the overall success of the IS program in an individual classroom. Quantitative assessments were made of the 21 key variables identified in the qualitative data that appeared to enhance the likelihood of success for the IS program in an individual classroom. Accounting for 90% of the variance in the regression model, the factor with the greatest predictive potential for success of Integrated Science was "how effective the teacher was in using classroom management skills." The results suggest that despite extensive research and curriculum development, use of sophisticated communication technologies, high video production standards, and expertise of IS video instructors, ultimately the classroom teacher plays the most critical role in determining a class's success and in achieving the goals of the Integrated Science program.

  6. Examining Interactivity in Synchronous Virtual Classrooms

    ERIC Educational Resources Information Center

    Martin, Florence; Parker, Michele A.; Deale, Deborah F.

    2012-01-01

    Interaction is crucial to student satisfaction in online courses. Adding synchronous components (virtual classroom technologies) to online courses can facilitate interaction. In this study, interaction within a synchronous virtual classroom was investigated by surveying 21 graduate students in an instructional technology program in the…

  7. NASA Tech Briefs, April 1989. Volume 13, No. 4

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A special feature of this issue is an article about the evolution of high technology in Texas. Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.

  8. 75 FR 66739 - Technology Innovation Program (TIP) Seeks White Papers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... network analyses in the following areas--sustainable manufacturing models, resource management and... manufacturing, all endeavors require energy as input. Escalating energy demands throughout the world can lead to... such as: Technologies for improved manufacturing of critical components for alternative energy...

  9. Reusable launch vehicle: Technology development and test program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) assess the Reusable Launch Vehicle (RLV) technology development and test programs in the most critical component technologies. At a time when discretionary government spending is under close scrutiny, the RLV program is designed to reduce the cost of access to space through a combination of robust vehicles and a streamlined infrastructure. Routine access to space has obvious benefits for space science, national security, commercial technologies, and the further exploration of space. Because of technological challenges, knowledgeable people disagree about the feasibility of a single-stage-to-orbit (SSTO) vehicle. The purpose of the RLV program proposed by NASA and industry contractors is to investigate the status of existing technology and to identify and advance key technology areas required for development and validation of an SSTO vehicle. This report does not address the feasibility of an SSTO vehicle, nor does it revisit the roles and responsibilities assigned to NASA by the National Transportation Policy. Instead, the report sets forth the NRC committee's findings and recommendations regarding the RLV technology development and test program in the critical areas of propulsion, a reusable cryogenic tank system (RCTS), primary vehicle structure, and a thermal protection system (TPS).

  10. The Technology Boom

    PubMed Central

    Gilmore, L. Anne; Duhé, Abby F.; Frost, Elizabeth A.

    2014-01-01

    As technology continues to develop rapidly, the incidence of obesity also continues to climb at an alarming rate. The increase in available technology is thought to be a contributor in the obesogenic environment, yet at the same time technology can also be used to intervene and improve health and health behaviors. This article reviews the components of effective weight management programs and the novel role that technology, such as SMS, websites, and smartphone apps, is playing to improve the success of such programs. Use of these modern technologies can now allow for individualized treatment recommendations to be delivered to individuals remotely, increased self-monitoring/tracking of health-related data, broader and more rapid dissemination of health information/recommendations, and increased patient–dietician/physician contact. The use of technology in weight management programs results in improved long-term weight management, and in most cases improved cost-effectiveness. Rather than blaming increased food intake and sedentary lifestyle on technology, rapidly developing and innovative technologies should be used to our advantage and deployed to combat the obesity epidemic. PMID:24876625

  11. Energy Efficient Engine Program: Technology Benefit/Cost Study, Volume II

    NASA Technical Reports Server (NTRS)

    Gray, D. E.; Gardner, W. B.

    1983-01-01

    The Benefit/Cost Study portion of the NASA-sponsored Energy Efficient Engine Component Development and Integration program was successful in achieving its objectives: identification of air transport propulsion system technology requirements for the years 2000 and 2010, and formulation of programs for developing these technologies. It is projected that the advanced technologies identified, when developed to a state of readiness, will provide future commercial and military turbofan engines with significant savings in fuel consumption and related operating costs. These benefits are significant and far from exhausted. The potential savings translate into billions of dollars in annual savings for the airlines. Analyses indicate that a significant portion of the overall savings is attributed to aerodynamic and structure advancements. Another important consideration in acquiring these benefits is developing a viable reference technology base that will permit engines to operate at substantially higher overall pressure ratios and bypass ratios. Results have pointed the direction for future research and a comprehensive program plan for achieving this was formulated. The next major step is initiating the program effort that will convert the advanced technologies into the expected benefits.

  12. Data systems elements technology assessment and system specifications, issue no. 2. [nasa programs

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.

  13. Analysis of whisker-toughened CMC structural components using an interactive reliability model

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Palko, Joseph L.

    1992-01-01

    Realizing wider utilization of ceramic matrix composites (CMC) requires the development of advanced structural analysis technologies. This article focuses on the use of interactive reliability models to predict component probability of failure. The deterministic William-Warnke failure criterion serves as theoretical basis for the reliability model presented here. The model has been implemented into a test-bed software program. This computer program has been coupled to a general-purpose finite element program. A simple structural problem is presented to illustrate the reliability model and the computer algorithm.

  14. Systems Engineering and Integration for Technology Programs

    NASA Technical Reports Server (NTRS)

    Kennedy, Kruss J.

    2006-01-01

    The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.

  15. Technology and Teacher Education: A Brief Glimpse of the Research and Practice That Have Shaped the Field

    ERIC Educational Resources Information Center

    Bakir, Nesrin

    2016-01-01

    Technology integration, an integral component of teaching and learning, has been widely investigated during the past several decades as teacher education programs have struggled to implement and model best teaching technology integration practices in the preparation of pre-service teachers. Initiatives led by educational organizations at the…

  16. Development of manufacturing processes: improved technology for ceramic engine components. Monthly report, August 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Taylor, A.J.; Weber, G.W.

    Progress is described in a research program to develop advanced tooling concepts, processing techniques, and related technology for the economical high-volume manufacture of ceramic engine components. Because of the success of the initial fabrication effort for hot pressing fully dense ceramic turbine blades to shape and/or contour, the effort has been extended to include the fabrication of more complex shapes and the evaluation of alternative pressure-assisted, high-temperature, consolidation methods.

  17. Form versus Function: Using Technology to Develop Individualized Education Programs for Students with Disabilities

    ERIC Educational Resources Information Center

    Wilson, Gloria Lodato; Michaels, Craig A.; Margolis, Howard

    2005-01-01

    This article discusses the use of IEP software applications from the perspectives of form (i.e., legally correct documents) and function (i.e., educationally appropriate individualized programs). The article provides an overview of the basic components of two fairly comprehensive IEP software programs and discusses the general strengths and…

  18. A Model Program of Comprehensive Educational Services for Students With Learning Problems.

    ERIC Educational Resources Information Center

    Union Township Board of Education, NJ.

    Programs are described for learning-disabled or mantally-handicapped elementary and secondary students in regular and special classes in Union, New Jersey, and approximately 58 instructional episodes involving student made objects for understanding technology are presented. In part one, components of the model program such as the multi-learning…

  19. Improved components for engine fuel savings

    NASA Technical Reports Server (NTRS)

    Antl, R. J.; Mcaulay, J. E.

    1980-01-01

    NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.

  20. 32 CFR 310.6 - Responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Assess the impact of technology on the privacy of personal information and, when feasible, adopt privacy-enhancing technology both to preserve and protect personal information contained in Component systems of... Privacy Program support for DoD Field Activities. (c) The General Counsel of the Department of Defense...

  1. 32 CFR 310.6 - Responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Assess the impact of technology on the privacy of personal information and, when feasible, adopt privacy-enhancing technology both to preserve and protect personal information contained in Component systems of... Privacy Program support for DoD Field Activities. (c) The General Counsel of the Department of Defense...

  2. 32 CFR 310.6 - Responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Assess the impact of technology on the privacy of personal information and, when feasible, adopt privacy-enhancing technology both to preserve and protect personal information contained in Component systems of... Privacy Program support for DoD Field Activities. (c) The General Counsel of the Department of Defense...

  3. 32 CFR 310.6 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Assess the impact of technology on the privacy of personal information and, when feasible, adopt privacy-enhancing technology both to preserve and protect personal information contained in Component systems of... Privacy Program support for DoD Field Activities. (c) The General Counsel of the Department of Defense...

  4. 32 CFR 310.6 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Assess the impact of technology on the privacy of personal information and, when feasible, adopt privacy-enhancing technology both to preserve and protect personal information contained in Component systems of... Privacy Program support for DoD Field Activities. (c) The General Counsel of the Department of Defense...

  5. Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

  6. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  7. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  8. Free-piston Stirling component test power converter test results and potential Stirling applications

    NASA Technical Reports Server (NTRS)

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  9. NASA Tech Briefs, December 1991. Volume 15, No. 12

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences,

  10. NASA Tech Briefs, December 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.

  11. Recommendations for strengthening the infrared technology component of any condition monitoring program

    NASA Astrophysics Data System (ADS)

    Nicholas, Jack R., Jr.; Young, R. K.

    1999-03-01

    This presentation provides insights of a long term 'champion' of many condition monitoring technologies and a Level III infra red thermographer. The co-authors present recommendations based on their observations of infra red and other components of predictive, condition monitoring programs in manufacturing, utility and government defense and energy activities. As predictive maintenance service providers, trainers, informal observers and formal auditors of such programs, the co-authors provide a unique perspective that can be useful to practitioners, managers and customers of advanced programs. Each has over 30 years experience in the field of machinery operation, maintenance, and support the origins of which can be traced to and through the demanding requirements of the U.S. Navy nuclear submarine forces. They have over 10 years each of experience with programs in many different countries on 3 continents. Recommendations are provided on the following: (1) Leadership and Management Support (For survival); (2) Life Cycle View (For establishment of a firm and stable foundation for a program); (3) Training and Orientation (For thermographers as well as operators, managers and others); (4) Analyst Flexibility (To innovate, explore and develop their understanding of machinery condition); (5) Reports and Program Justification (For program visibility and continued expansion); (6) Commitment to Continuous Improvement of Capability and Productivity (Through application of updated hardware and software); (7) Mutual Support by Analysts (By those inside and outside of the immediate organization); (8) Use of Multiple Technologies and System Experts to Help Define Problems (Through the use of correlation analysis of data from up to 15 technologies. An example correlation analysis table for AC and DC motors is provided.); (9) Root Cause Analysis (Allows a shift from reactive to proactive stance for a program); (10) Master Equipment Identification and Technology Application (To place the condition monitoring program in perspective); (11) Use of procedures for Predictive, Condition Monitoring and maintenance in general (To get consistent results); (12) Developing a scheme for predictive, condition monitoring personnel qualification and certification (To provide a career path and incentive to advance skill level and value to the company); (13) Analyst Assignment to Technologies and Related Duties (To make intelligent use of the skills of individuals assigned); (14) Condition Monitoring Analyst Selection Criteria (Key attributes for success are mentioned.); (15) Design and Modification to Support Monitoring (For old and new machinery to facilitate data acquisition); (16) Establishment of a Museum of Components and Samples Pulled from Service for Cause (For orientation and awareness training of operators and managers and exchange of information between analysts); (17) Goals (To promote a proactive program approach for machinery condition improvement).

  12. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  13. Geospatial Technology and Geosciences - Defining the skills and competencies in the geosciences needed to effectively use the technology (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, A.

    2010-12-01

    Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.

  14. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less

  15. Miniaturization of components and systems for space using MEMS-technology

    NASA Astrophysics Data System (ADS)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty of this micropropulsion system is that all critical components such as thrust chamber/nozzle assembly including internal heaters, valves and filters are manufactured using MEMS technology. Moreover, miniaturized pressure sensors, relying on MEMS technology, is also part of the system as a self-standing component. The flight opportunity on PRISMA represents one of the few and thus important opportunities to demonstrate MEMS technology in space. The present paper aims at describing this development effort and highlights the benefits of miniaturized components and systems for space using MEMS technology.

  16. NASA's program on icing research and technology

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.; Shaw, Robert J.; Ranaudo, Richard J.

    1989-01-01

    NASA's program in aircraft icing research and technology is reviewed. The program relies heavily on computer codes and modern applied physics technology in seeking icing solutions on a finer scale than those offered in earlier programs. Three major goals of this program are to offer new approaches to ice protection, to improve our ability to model the response of an aircraft to an icing encounter, and to provide improved techniques and facilities for ground and flight testing. This paper reviews the following program elements: (1) new approaches to ice protection; (2) numerical codes for deicer analysis; (3) measurement and prediction of ice accretion and its effect on aircraft and aircraft components; (4) special wind tunnel test techniques for rotorcraft icing; (5) improvements of icing wind tunnels and research aircraft; (6) ground de-icing fluids used in winter operation; (7) fundamental studies in icing; and (8) droplet sizing instruments for icing clouds.

  17. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  18. NASA Tech Briefs, November 1991. Volume 15, No. 11

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences,

  19. Liquid Rocket Propulsion Technology: An evaluation of NASA's program. [for space transportation systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The liquid rocket propulsion technology needs to support anticipated future space vehicles were examined including any special action needs to be taken to assure that an industrial base in substained. Propulsion system requirements of Earth-to-orbit vehicles, orbital transfer vehicles, and planetary missions were evaluated. Areas of the fundamental technology program undertaking these needs discussed include: pumps and pump drives; combustion heat transfer; nozzle aerodynamics; low gravity cryogenic fluid management; and component and system life reliability, and maintenance. The primary conclusion is that continued development of the shuttle main engine system to achieve design performance and life should be the highest priority in the rocket engine program.

  20. The NASA program in Space Energy Conversion Research and Technology

    NASA Astrophysics Data System (ADS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  1. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  2. Remote Classroom Observations with Preservice Teachers

    ERIC Educational Resources Information Center

    Wash, Pamela D.; Bradley, Gary; Beck, Judy

    2014-01-01

    According to O'Brien, Aguinaga, Hines, and Hartsborne (2011), "Delivery of course content via various distance education technologies (e.g., interactive video, asynchronous and/or synchronous online delivery) is becoming an accepted and expected component of many teacher preparation programs" (p. 3). With the infusion of technology in…

  3. Crocodile Technology. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This high school physics computer software resource is a systems and control simulator that covers the topics of electricity, electronics, mechanics, and programming. Circuits can easily be simulated on the screen and electronic and mechanical components can be combined. In addition to those provided in Crocodile Technology, a student can create…

  4. On the Interfaces among Educational Technology, Creativity, and Chess

    ERIC Educational Resources Information Center

    Bart, William

    2016-01-01

    This article provides an examination of interrelationships among educational technology, creativity, and chess. It presents the argument that chess training fosters significant gains in scholastic achievement and cognitive ability. As a vital component in chess training programs, contemporary chess software such as Fritz serves as impressive…

  5. Definition study of a Variable Cycle Experimental Engine (VCEE) and associated test program and test plan

    NASA Technical Reports Server (NTRS)

    Allan, R. D.

    1978-01-01

    The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.

  6. Small Engine Component Technology (SECT) study. Program report

    NASA Technical Reports Server (NTRS)

    Almodovar, E.; Exley, T.; Kaehler, H.; Schneider, W.

    1986-01-01

    The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At $2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals.

  7. From Domain Specific Languages to DEVS Components: Application to Cognitive M&S

    DTIC Science & Technology

    2011-04-01

    AND SUBTITLE From Domain Specific Languages to DEVS Components: Application to Cognitive M&S 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ...that is devoid of any DEVS and programming language constructs (Figure 4). The key idea being domain specialists need not delve in the DEVS world to...DSL. DSLs can be created using many available tools and technologies such as: Generic Modeling Environment (GME) [23], Xtext, Ruby, Scala and many

  8. Dual-Shaft Electric Propulsion (DSEP) Technology Development Program

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The background, progress, and current state of the DOE-sponsored Advanced Dual-Shaft Electric Propulsion Technology Development are presented. Three electric-drive vehicles were build as conversions of a commercial gasoline-powered van, using program-designed components and systems as required. The vehicles were tested primarily on dynamometer or test tract. Component and system testing represented a major portion of the development effort. Test data are summarized in this report, and an Appendix contains the final component design specifications. This major programmatic concerns were the traction battery, the battery management system, the dc-to-ac inverter, the drive motor, the transaxle and its ancillary equipment, and the vehicle controller. Additional effort was devoted to vehicle-related equipment: gear selector, power steering, power brakes, accelerator, dashboard instrumentation, and heater. Design, development, and test activities are reported for each of these items, together with an appraisal (lessons learned) and recommendations for possible further work. Other programmatic results include a Cost and Commercialization Analysis, a Reliability and Hazards Analysis Study, Technical Recommendations for Next-Generation Development, and an assessment of overall program efforts.

  9. Evaluating practical vs. theoretical inspection system capability with a new programmed defect test mask designed for 3X and 4X technology nodes

    NASA Astrophysics Data System (ADS)

    Glasser, Joshua; Pratt, Tim

    2008-10-01

    Programmed defect test masks serve the useful purpose of evaluating inspection system sensitivity and capability. It is widely recognized that when evaluating inspection system capability, it is important to understand the actual sensitivity of the inspection system in production; yet unfortunately we have observed that many test masks are a more accurate judge of theoretical sensitivity rather than real-world usable capability. Use of ineffective test masks leave the purchaser of inspection equipment open to the risks of over-estimating the capability of their inspection solution and overspecifying defect sensitivity to their customers. This can result in catastrophic yield loss for device makers. In this paper we examine some of the lithography-related technology advances which place an increasing burden on mask inspection complexity, such as MEEF, defect printability estimation, aggressive OPC, double patterning, and OPC jogs. We evaluate the key inspection system component contributors to successful mask inspection, including what can "go wrong" with these components. We designed and fabricated a test mask which both (a) more faithfully represents actual production use cases; and (b) stresses the key components of the inspection system. This mask's patterns represent 32nm, 36nm, and 45nm logic and memory technology including metal and poly like background patterns with programmed defects. This test mask takes into consideration requirements of advanced lithography, such as MEEF, defect printability, assist features, nearly-repetitive patterns, and data preparation. This mask uses patterns representative of 32nm, 36nm, and 45nm logic, flash, and DRAM technology. It is specifically designed to have metal and poly like background patterns with programmed defects. The mask is complex tritone and was designed for annular immersion lithography.

  10. Modeling the missile-launch tube problem in DYSCO

    NASA Technical Reports Server (NTRS)

    Berman, Alex; Gustavson, Bruce A.

    1989-01-01

    DYSCO is a versatile, general purpose dynamic analysis program which assembles equations and solves dynamics problems. The executive manages a library of technology modules which contain routines that compute the matrix coefficients of the second order ordinary differential equations of the components. The executive performs the coupling of the equations of the components and manages the solution of the coupled equations. Any new component representation may be added to the library if, given the state vector, a FORTRAN program can be written to compute M, C, K, and F. The problem described demonstrates the generality of this statement.

  11. Measurement component technology. Volume 1: Cryogenic pressure measurement technology, high pressure flange seals, hydrogen embrittlement of pressure transducer material, close coupled versus remote transducer installation and temperature compensation of pressure transducers

    NASA Technical Reports Server (NTRS)

    Hayakawa, K. K.; Udell, D. R.; Iwata, M. M.; Lytle, C. F.; Chrisco, R. M.; Greenough, C. S.; Walling, J. A.

    1972-01-01

    The results are presented of an investigation into the availability and performance capability of measurement components in the area of cryogenic temperature, pressure, flow and liquid detection components and high temperature strain gages. In addition, technical subjects allied to the components were researched and discussed. These selected areas of investigation were: (1) high pressure flange seals, (2) hydrogen embrittlement of pressure transducer diaphragms, (3) The effects of close-coupled versus remote transducer installation on pressure measurement, (4) temperature transducer configuration effects on measurements, and (5) techniques in temperature compensation of strain gage pressure transducers. The purpose of the program was to investigate the latest design and application techniques in measurement component technology and to document this information along with recommendations for upgrading measurement component designs for future S-2 derivative applications. Recommendations are provided for upgrading existing state-of-the-art in component design, where required, to satisfy performance requirements of S-2 derivative vehicles.

  12. NASA Tech Briefs, August 1992. Volume 16, No. 8

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  13. NASA Tech Briefs, September 1992. Volume 16, No.9

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  14. NASA Tech Briefs, January 1993. Volume 17, No. 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  15. NASA Tech Briefs, November 1992. Volume 16, No. 11

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  16. NASA Tech Briefs, December 1992. Volume 16, No. 12

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  17. Adding an Online Component to a Teacher Training Program Helps Increase Participation and Engagement

    ERIC Educational Resources Information Center

    Martin, Roger; Smith, Dianne

    2006-01-01

    We liked our training model. We were bringing in teachers during their contract time for a full day of technology staff development. We offered, through one of two training labs at our District Educational Technology Center (ETC), more than 30 different courses on skill development or how to implement technology into instructional practices. Our…

  18. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  19. The Potential of Sonic IR to Inspect Aircraft Components Traditionally Inspected with Fluorescent Penetrant and or Magnetic Particle Inspection

    NASA Astrophysics Data System (ADS)

    DiMambro, J.; Ashbaugh, D. M.; Han, X.; Favro, L. D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G. M.; Thomas, R. L.

    2006-03-01

    Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry.

  20. Satisfying STEM Education Using the Arduino Microprocessor in C Programming

    NASA Astrophysics Data System (ADS)

    Hoffer, Brandyn M.

    There exists a need to promote better Science Technology Engineering and Math (STEM) education at the high school level. To satisfy this need a series of hands-on laboratory assignments were created to be accompanied by 2 educational trainers that contain various electronic components. This project provides an interdisciplinary, hands-on approach to teaching C programming that meets several standards defined by the Tennessee Board of Education. Together the trainers and lab assignments also introduce key concepts in math and science while allowing students hands-on experience with various electronic components. This will allow students to mimic real world applications of using the C programming language while exposing them to technology not currently introduced in many high school classrooms. The developed project is targeted at high school students performing at or above the junior level and uses the Arduino Mega open-source Microprocessor and software as the primary control unit.

  1. The DOE photovoltaics program

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1980-01-01

    As part of the National Solar Energy program, the US Department of Energy is now engaged in the development of technically feasible, low cost candidate component and system technologies to the point where technical readiness can be demonstrated by 1982. The overall strategy is to pursue parallel options that continue to show promise of meeting the program goals, thus increasing the probability that at least one technology will be successful. Included in technology development are both flat plate solar collectors and concentrator solar collectors, as well as the balance of system components, such as structures, power conditioning, power controls, protection, and storage. Generally, these last items are common to both flat plate and concentrator systems, but otherwise there is considerable disparity in design philosophy, photovoltaic cell requirements, and possible applications between the two systems. Objectives for research activities at NASA Lewis for stand alone applications, and at Sandia Laboratories where intermediate load center applications are addressed, are highlighted as well as college projects directed by Oak Ridge National Laboratory, and international applications managed by the Solar Energy Research Institute. Joint DOD/DOE effects for military applications are also summarized.

  2. Supporting research and technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The development of definition of the modular space station is discussed. The modular approach was evaluated, the requirements were defined, and program definition and design were accomplished. The features of the program which significantly affect the initial development and early operating costs were identified and their impacts on the program were assessed. Specifications of various systems and components are included.

  3. Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1995-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.

  4. Automated reuseable components system study results

    NASA Technical Reports Server (NTRS)

    Gilroy, Kathy

    1989-01-01

    The Automated Reusable Components System (ARCS) was developed under a Phase 1 Small Business Innovative Research (SBIR) contract for the U.S. Army CECOM. The objectives of the ARCS program were: (1) to investigate issues associated with automated reuse of software components, identify alternative approaches, and select promising technologies, and (2) to develop tools that support component classification and retrieval. The approach followed was to research emerging techniques and experimental applications associated with reusable software libraries, to investigate the more mature information retrieval technologies for applicability, and to investigate the applicability of specialized technologies to improve the effectiveness of a reusable component library. Various classification schemes and retrieval techniques were identified and evaluated for potential application in an automated library system for reusable components. Strategies for library organization and management, component submittal and storage, and component search and retrieval were developed. A prototype ARCS was built to demonstrate the feasibility of automating the reuse process. The prototype was created using a subset of the classification and retrieval techniques that were investigated. The demonstration system was exercised and evaluated using reusable Ada components selected from the public domain. A requirements specification for a production-quality ARCS was also developed.

  5. 1990 fuel cell seminar: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  6. Multimethod-Multisource Approach for Assessing High-Technology Training Systems.

    ERIC Educational Resources Information Center

    Shlechter, Theodore M.; And Others

    This investigation examined the value of using a multimethod-multisource approach to assess high-technology training systems. The research strategy was utilized to provide empirical information on the instructional effectiveness of the Reserve Component Virtual Training Program (RCVTP), which was developed to improve the training of Army National…

  7. The Purposeful Use of Technology.

    ERIC Educational Resources Information Center

    Asfeldt, Morten; Hvenegaard, Glen

    2003-01-01

    Equipment use in outdoor education is secondary to having clear goals and sound pedagogy. Examples from the authors' 21-day canoe expeditions to the Canadian tundra illustrate how the reflection component of an outdoor program can mitigate the potential negative side effects of emerging technology. Involving the group in decisions concerning…

  8. Demonstrating Enabling Technologies for the High-Resolution Imaging Spectrometer of the Next NASA X-ray Astronomy Mission

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.

    2014-01-01

    NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.

  9. 28 CFR 800.5 - Agency components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the Director (including the Deputy Director). (2) Planning, Analysis and Evaluation. (3) Community Justice Programs. (4) Office of Operations (including Information Technology and Forensic Toxicology and...

  10. 28 CFR 800.5 - Agency components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the Director (including the Deputy Director). (2) Planning, Analysis and Evaluation. (3) Community Justice Programs. (4) Office of Operations (including Information Technology and Forensic Toxicology and...

  11. 28 CFR 800.5 - Agency components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the Director (including the Deputy Director). (2) Planning, Analysis and Evaluation. (3) Community Justice Programs. (4) Office of Operations (including Information Technology and Forensic Toxicology and...

  12. 28 CFR 800.5 - Agency components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the Director (including the Deputy Director). (2) Planning, Analysis and Evaluation. (3) Community Justice Programs. (4) Office of Operations (including Information Technology and Forensic Toxicology and...

  13. 28 CFR 800.5 - Agency components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the Director (including the Deputy Director). (2) Planning, Analysis and Evaluation. (3) Community Justice Programs. (4) Office of Operations (including Information Technology and Forensic Toxicology and...

  14. NASA Tech Briefs, October 1989. Volume 13, No. 10

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  15. NASA Tech Briefs, February 1990. Volume 14, No. 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  16. NASA Tech Briefs, January 1990. Volume 14, No. 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  17. Teaching Biochemistry to Medical Technology Students.

    ERIC Educational Resources Information Center

    Gomez-Silva, Benito; And Others

    1997-01-01

    Describes the biochemistry component of study to become a medical technologist in a Chilean university. Provides details of program structure, course content descriptions, and teaching strategies. (DDR)

  18. NASA Tech Briefs, November 1989. Volume 13, No. 11

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  19. NASA Tech Briefs, September 1989. Volume 13, No. 9

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.

  20. NASA Tech Briefs, October 1992. Volume 16, No. 10

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences.

  1. NASA Tech Briefs, December 1989. Volume 13, No. 12

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.

  2. NASA Tech Briefs, April 1993. Volume 17, No. 4

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Optoelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  3. NASA Tech Briefs, March 1990. Volume 14, No. 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  4. Status of the NASA Space Power Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Holcomb, L.

    1977-01-01

    The NASA Space Power Research and Technology Program has the objective to provide the technological basis for satisfying the nation's future needs regarding electrical power in space. The development of power sources of low mass and increased environmental resistance is considered. Attention is given to advances in the area of photovoltaic energy conversion, improved Ni-Cd battery components, a nickel-hydrogen battery, remotely activated silver-zinc and lithium-water batteries, the technology of an advanced water electrolysis/regenerative fuel cell system, aspects of thermal-to-electric conversion, environmental interactions, multi-kW low cost systems, and high-performance systems.

  5. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  6. German for Engineers and Scientists: Initiatives in International Education.

    ERIC Educational Resources Information Center

    Weinmann, Sigrid

    The Michigan Technological University program in German area studies is described. The program is designed for science and engineering students at both undergraduate and graduate levels. Its components include: a 1-year scientific German sequence, stressing specialized vocabulary, reading skills, use of reference materials, translation into…

  7. Hardwoods for timber bridges : a national program emphasis by the USDA Forest Service

    Treesearch

    James P. Wacker; Ed Cesa

    2005-01-01

    This paper describes the joint efforts of the Forest Service and the FHWA to administer national programs including research, demonstration bridges, and technology transfer components. Summary information on a number of Forest Service-WIT demonstration bridges constructed with hardwoods is also provided.

  8. 2nd Generation RLV Risk Reduction Definition Program: Pratt & Whitney Propulsion Risk Reduction Requirements Program (TA-3 & TA-4)

    NASA Technical Reports Server (NTRS)

    Matlock, Steve

    2001-01-01

    This is the final report and addresses all of the work performed on this program. Specifically, it covers vehicle architecture background, definition of six baseline engine cycles, reliability baseline (space shuttle main engine QRAS), and component level reliability/performance/cost for the six baseline cycles, and selection of 3 cycles for further study. This report further addresses technology improvement selection and component level reliability/performance/cost for the three cycles selected for further study, as well as risk reduction plans, and recommendation for future studies.

  9. Composite components on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1980-01-01

    Commercial aircraft manufacturers are making production commitments to composite structure for future aircraft and modifications to current production aircraft. Flight service programs with advanced composites sponsored by NASA during the past 10 years are described. Approximately 2.5 million total composite component flight hours have been accumulated since 1970 on both commercial transports and helicopters. Design concepts with significant mass savings were developed, appropriate inspection and maintenance procedures were established, and satisfactory service was achieved for the various composite components. A major NASA/U.S. industry technology program to reduce fuel consumption of commercial transport aircraft through the use of advanced composites was undertaken. Ground and flight environmental effects on the composite materials used in the flight service programs supplement the flight service evaluation.

  10. Diamond High Assurance Security Program: Trusted Computing Exemplar

    DTIC Science & Technology

    2002-09-01

    computing component, the Embedded MicroKernel Prototype. A third-party evaluation of the component will be initiated during development (e.g., once...target technologies and larger projects is a topic for future research. Trusted Computing Reference Component – The Embedded MicroKernel Prototype We...Kernel The primary security function of the Embedded MicroKernel will be to enforce process and data-domain separation, while providing primitive

  11. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.

  12. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.

  13. X-33/RLV Program Aerospike Engines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.

  14. Technology initiatives for the autonomous guidance, navigation, and control of single and multiple satellites

    NASA Astrophysics Data System (ADS)

    Croft, John; Deily, John; Hartman, Kathy; Weidow, David

    1998-01-01

    In the twenty-first century, NASA envisions frequent low-cost missions to explore the solar system, observe the universe, and study our planet. To realize NASA's goal, the Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center sponsors technology programs that enhance spacecraft performance, streamline processes and ultimately enable cheaper science. Our technology programs encompass control system architectures, sensor and actuator components, electronic systems, design and development of algorithms, embedded systems and space vehicle autonomy. Through collaboration with government, universities, non-profit organizations, and industry, the GNCC incrementally develops key technologies that conquer NASA's challenges. This paper presents an overview of several innovative technology initiatives for the autonomous guidance, navigation, and control (GN&C) of satellites.

  15. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    NASA Technical Reports Server (NTRS)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  16. NASA Tech Briefs, January 1989. Volume 13, No. 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics include: Electronic Components & and Circuits. Electronic Systems, A Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.

  17. NASA Tech Briefs, November 1993. Volume 17, No. 11

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics covered: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  18. NASA Tech Briefs, April 1992. Volume 16, No. 4

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  19. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    Fuel cells are both a longstanding and emerging technology for stationary and transportation applications, and their future use will likely be critical for the deep decarbonization of global energy systems. As we look into future applications, a key challenge for policy-makers and technology market forecasters who seek to track and/or accelerate their market adoption is the ability to forecast market costs of the fuel cells as technology innovations are incorporated into market products. Specifically, there is a need to estimate technology learning rates, which are rates of cost reduction versus production volume. Unfortunately, no literature exists for forecasting future learningmore » rates for fuel cells. In this paper, we look retrospectively to estimate learning rates for two fuel cell deployment programs: (1) the micro-combined heat and power (CHP) program in Japan, and (2) the Self-Generation Incentive Program (SGIP) in California. These two examples have a relatively broad set of historical market data and thus provide an informative and international comparison of distinct fuel cell technologies and government deployment programs. We develop a generalized procedure for disaggregating experience-curve cost-reductions in order to disaggregate the Japanese fuel cell micro-CHP market into its constituent components, and we derive and present a range of learning rates that may explain observed market trends. Finally, we explore the differences in the technology development ecosystem and market conditions that may have contributed to the observed differences in cost reduction and draw policy observations for the market adoption of future fuel cell technologies. The scientific and policy contributions of this paper are the first comparative experience curve analysis of past fuel cell technologies in two distinct markets, and the first quantitative comparison of a detailed cost model of fuel cell systems with actual market data. The resulting approach is applicable to analyzing other fuel cell markets and other energy-related technologies, and highlights the data needed for cost modeling and quantitative assessment of key cost reduction components.« less

  1. Evaluating the Effectiveness of the 1999-2000 NASA CONNECT Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou

    2002-01-01

    NASA CONNECT is a standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (satellite and television) programs for students in grades 6-8. Each of the five programs in the 1999-2000 NASA CONNECT series included a lesson, an educator guide, a student activity or experiment, and a web-based component. In March 2000, a mail (self-reported) survey (booklet) was sent to a randomly selected sample of 1,000 NASA CONNECT registrants. A total of 336 surveys (269 usable) were received by the established cut-off date. Most survey questions employed a 5-point Likert-type response scale. Survey topics included (1) instructional technology and teaching, (2) instructional programming and technology in the classroom, (3) the NASA CONNECT program, (4) classroom use of computer technology, and (5) demographics. About 73% of the respondents were female, about 92% identified "classroom teacher" as their present professional duty, about 90% worked in a public school, and about 62% held a master's degree or master's equivalency. Regarding NASA CONNECT, respondents reported that (1) they used the five programs in the 1999-2000 NASA CONNECT series; (2) the stated objectives for each program were met (4.54); (3) the programs were aligned with the national mathematics, science, and technology standards (4.57); (4) program content was developmentally appropriate for grade level (4.17); and (5) the programs in the 1999-2000 NASA CONNECT series enhanced/enriched the teaching of mathematics, science, and technology (4.51).

  2. Evaluating the Effectiveness of the 1998-1999 NASA CONNECT Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; House, Patricia L.

    2000-01-01

    NASA CONNECT is a standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (satellite and television) programs for students in grades 5-8. Each of the five programs in the 1998-1999 NASA CONNECT series included a lesson, an educator guide, a student activity or experiment, and a web-based component. In March 1999, a mail (self-reported) survey (booklet) was sent to a randomly selected sample of 1,000 NASA CONNECT registrants. A total of 401 surveys (351 usable) were received by the established cut-off date. Most survey questions employed a 5-point Likert-type response scale. Survey topics included: (1) instructional technology and teaching, (2) instructional programming and technology in the classroom, (3) the NASA CONNECT program, (4) classroom use of computer technology, and (5) demographics. About 68% of the respondents were female, about 88% identified "classroom teacher" as their present professional duty, about 75% worked in a public school, and about 67% held a master's degree or master's equivalency. Regarding NASA CONNECT, respondents reported that: (1) they used the five programs in the 1998-1999 NASA CONNECT series; (2) the stated objectives for each program were met (4.49); (3) the programs were aligned with the national mathematics, science, and technology standards (4.61); (4) program content was developmentally appropriate for grade level (4.25); and (5) the programs in the 1998-1999 NASA CONNECT series enhanced/enriched the teaching of mathematics, science, and technology (4.45).

  3. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

  4. ERDA-NASA wind energy project ready to involve users

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1976-01-01

    The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.

  5. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  6. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  7. Space Telerobotics and Rover Research at JPL

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Hayati, S.; Rodriguez, G.

    1995-01-01

    The goal of our program is to develop, integrate and demonstrate the science and technology of remote telerobotics leading to increases in operational capability, safety, cost effectiveness and probability of success of NASA missions. To that end, the program fosters the development of innovative system concepts for on-orbit servicing and planetary surface missions which use telerobotic systems as an important central component. These concepts are carried forward into develoments which are used to evaluate and demonstrate technology in realistic flight and ground experiments.

  8. NASA Tech Briefs, May 1992. Volume 16, No. 5

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  9. NASA Tech Briefs, May 1988. Volume 12, No. 5

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics : New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics ; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  10. NASA Tech Briefs, July 1992. Volume 16, No. 7

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  11. NASA Tech Briefs, November 1990. Volume 14, No. 11

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  12. NASA Tech Briefs, March 1992. Volume 16, No. 3

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  13. NASA Tech Briefs, April 1990. Volume 14, No. 4

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  14. NASA Tech Briefs, September 1994. Volume 18, No. 9

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  15. Department of Defense Program Solicitation 94; Small Business Technology Transfer (STTR) Program; Fiscal Year 1994.

    DTIC Science & Technology

    1994-01-01

    advanced diesel engine components; high-temperature titanium aluminide and Al-Fe alloys for aircraft and missile engines; environmentally compliant...gun-chamber liners and KE penetrator stabilizer fins, tips, and leading edges; low cost, ceramic thermal barrier coatings for gas turbine blades and

  16. Design of conveyor type machine with numerical control for manufacturing of extrusion thermoplastic thread

    NASA Astrophysics Data System (ADS)

    Gorbunova, T. N.; Koltunov, I. I.; Tumanova, M. B.

    2018-05-01

    The article is devoted to the development of a model and control program for a 3D printer working based on extrusion technology. The article contains descriptions of all components of the machine and blocks of the interface of the control program.

  17. E-Sponsor Mentoring: Support for Students in Developmental Education

    ERIC Educational Resources Information Center

    Hodges, Russ; Payne, Emily Miller; Dietz, Albert; Hajovsky, Michelle

    2014-01-01

    Researchers investigated the use of two mentoring programs for students who were part of a support component of Fundamentals of Conceptual Understanding and Success (FOCUS), a comprehensive intervention grant for students enrolled in developmental mathematics coursework at a large public Texas university. The technology-based mentoring program,…

  18. Planning and Implementing a Public Health Professional Distance Learning Program

    ERIC Educational Resources Information Center

    Escoffery, Cam; Leppke, Allison M.; Robinson, Kara B.; Mettler, Erik P.; Miner, Kathleen R.; Smith, Iris

    2005-01-01

    Training of public health professionals through web-based technology is rapidly increasing. This article describes one school of public health's effort to establish an online Master's program that serves students nationally and internationally. It examines the critical components in the design and implementation of distance education, including…

  19. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  20. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  1. Contracts, grants and funding summary of supersonic cruise research and variable-cycle engine technology programs, 1972 - 1982

    NASA Technical Reports Server (NTRS)

    Hoffman, S.; Varholic, M. C.

    1983-01-01

    NASA-SCAR (AST) program was initiated in 1972 at the direct request of the Executive Office of the White House and Congress following termination of the U.S. SST program. The purpose of SCR was to conduct a focused research and technology program on those technology programs which contributed to the SST termination and, also, to provide an expanded data base for future civil and military supersonic transport aircraft. Funding for the Supersonic Cruise Research (SCR) Program was initiated in fiscal year 1973 and terminated in fiscal year 1981. The program was implemented through contracts and grants with industry, universities, and by in-house investigations at the NASA/OAST centers. The studies included system studies and five disciplines: propulsion, stratospheric emissions impact, materials and structures, aerodynamic performance, and stability and control. The NASA/Lewis Variable-Cycle Engine (VCE) Component Program was initiated in 1976 to augment the SCR program in the area of propulsion. After about 2 years, the title was changed to VCE Technology program. The total number of contractors and grantees on record at the AST office in 1982 was 101 for SCR and 4 for VCE. This paper presents a compilation of all the contracts and grants as well as the funding summaries for both programs.

  2. Assessment of Lithium-based Battery Electrolytes Developed under the NASA PERS Program

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2006-01-01

    Recently, NASA formally completed the Polymer Energy Rechargeable System (PERS) Program, which was established in 2000 in collaboration with the Air Force Research Laboratory (AFRL) to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The goal of this program was to ultimately develop an advanced, space-qualified battery technology, which embodied a solid polymer electrolyte (SPE) and complementary components, with improved performance characteristics that would address future aerospace battery requirements. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. A variety of cell and polymeric electrolyte concepts were pursued as part of the development efforts undertaken at numerous governmental, industrial and academic laboratories. Numerous candidate electrolyte materials were developed, synthesized and optimized for evaluation. Utilizing the component screening facility and the "standardized" test procedures developed at the NASA Glenn Research Center, electrochemical screening and performance evaluations of promising candidate materials were completed. This overview summarizes test results for a variety of candidate electrolyte materials that were developed under the PERS Program. Electrolyte properties are contrasted and compared to the original project goals, and the strengths and weaknesses of the electrolyte chemistries are discussed. Limited cycling data for full-cells using lithium metal and vanadium oxide electrodes are also presented. Based on measured electrolyte properties, the projected performance characteristics and temperature limitations of batteries utilizing the advanced electrolytes and components have been estimated. Limitations for the achievement of practical performance levels are also discussed, as well as needs for future research and development.

  3. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  4. Beyond Academic and Social Integration: Understanding the Impact of a STEM Enrichment Program on the Retention and Degree Attainment of Underrepresented Students

    PubMed Central

    Lane, Tonisha B.

    2016-01-01

    The current study used a case study methodological approach, including document analysis, semistructured interviews, and participant observations, to investigate how a science, technology, engineering, and mathematics (STEM) enrichment program supported retention and degree attainment of underrepresented students at a large, public, predominantly white institution. From this study, a model emerged that encompassed four components: proactive care, holistic support, community building, and catalysts for STEM identity development. These components encompassed a number of strategies and practices that were instrumental in the outcomes of program participants. This paper concludes with implications for practice, such as using models to inform program planning, assessment, and evaluation. PMID:27543638

  5. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less

  6. NASA Tech Briefs, June 1988. Volume 12, No. 6

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  7. LASER Tech Briefs, Winter 1994. Volume 2, No. 1

    NASA Technical Reports Server (NTRS)

    Schnirring, Bill (Editor)

    1994-01-01

    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences, and Books and reports

  8. NASA Tech Briefs, May 1993. Volume 17, No. 5

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Advanced Composites and Plastics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  9. NASA Tech Briefs, February 1992. Volume 16, No. 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics covered include: New Product Development; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  10. NASA Tech Briefs, July 1993. Volume 17, No. 7

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Data Acquisition and Analysis: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  11. NASA Tech Briefs, June 1992. Volume 16, No. 6

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  12. NASA Tech Briefs, January 1995. Volume 19, No. 1

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Topics include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports

  13. NASA Tech Briefs, April 1988. Volume 12, No. 4

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  14. NASA Tech Briefs, July 1989. Volume 13, No. 7

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics include New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials;;Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  15. 78 FR 22801 - Request for Comments on Developing a Program To Provide Loan Guarantees to Small- or Medium-Sized...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... manufacturing; manufacture an innovative technology product or an integral component of such a product; or, to... use or production of innovative technologies for manufacturing? Dated: April 10, 2013. Matt Erskine.... SUMMARY: The Economic Development Administration (EDA) seeks public comment on, how to design and...

  16. Teaching of Computer Science Topics Using Meta-Programming-Based GLOs and LEGO Robots

    ERIC Educational Resources Information Center

    Štuikys, Vytautas; Burbaite, Renata; Damaševicius, Robertas

    2013-01-01

    The paper's contribution is a methodology that integrates two educational technologies (GLO and LEGO robot) to teach Computer Science (CS) topics at the school level. We present the methodology as a framework of 5 components (pedagogical activities, technology driven processes, tools, knowledge transfer actors, and pedagogical outcomes) and…

  17. Developing Pre-Service English Teachers' Competencies for Integration of Technology in Language Classrooms in Kazakhstan

    ERIC Educational Resources Information Center

    Egorov, Victor V.; Jantassova, Damira D.; Churchill, Natalia

    2007-01-01

    This article discusses the implementation of the "Information and Communication Technologies in Foreign Language Teaching and Learning" course conducted as a component of the pre-service English language teacher training program in the Buketov Karaganda State University, Kazakhstan. The course was introduced in 2003. The central…

  18. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  19. High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.

    2005-01-01

    Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.

  20. Introduction to the Portable Life Support Schematic and Technology Development Components

    NASA Technical Reports Server (NTRS)

    Conger, Bruce

    2008-01-01

    Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.

  1. NASP X-30 Propulsion technology status

    NASA Technical Reports Server (NTRS)

    Powell, William E.

    1992-01-01

    The performance goals of the NASP program require an aero-propulsion system with a high effective specific impulse. In order to achieve these goals, the high potential performance of air-breathing engines must be achieved over a very wide Mach number operating range. This, in turn, demands high component performance and involves many important technical issues which must be resolved. Scramjet Propulsion Technology is divided into five major areas: (1) inlets, (2) combustors, (3) nozzles, (4) component integration, and (5) test facilities. A status report covering the five areas is presented.

  2. NASA Tech Briefs, May 1991. Volume 15, No. 5

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  3. NASA Tech Briefs, January 1991. Volume 15, No. 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;Life Sciences.

  4. NASA Tech Briefs, September 1991. Volume 15, No. 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  5. NASA Tech Briefs, June 1990. Volume 14, No. 6

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  6. NASA Tech Briefs, August 1991. Volume 15, No. 8

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  7. NASA Tech Briefs, February 1991. Volume 15, No. 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  8. NASA Tech Briefs, March 1991. Volume 15, No. 3

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  9. NASA Tech Briefs, December 1990. Volume 14, No. 12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  10. NASA Tech Briefs, June 1991. Volume 15, No. 6

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  11. NASA Tech Briefs, August 1993. Volume 17, No. 8

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Computer Graphics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  12. NASA Tech Briefs, May 1990. Volume 14, No. 5

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  13. NASA Tech Briefs, March 1993. Volume 17, No. 3

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;

  14. NASA Tech Briefs, April 1991. Volume 15, No. 4

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  15. NASA Tech Briefs, October 1990. Volume 14, No. 10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical' Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  16. NASA Tech Briefs, October 1991. Volume 15, No. 10

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  17. Evaluation of the Introduction of an e-Health Skills Component for Dietetics Students.

    PubMed

    Rollo, Megan E; Collins, Clare E; MacDonald-Wicks, Lesley

    2017-11-01

    Appropriate and effective use of technology within practice is a key competency outlined in Australian dietetics training standards. An e-health skills component (lecture and workshop) was introduced to undergraduate students enrolled in an Australian nutrition and dietetics program. The lecture orientated students to key e-health terms and concepts relating to telehealth and m-health technologies, while the workshop provided an opportunity to apply knowledge. The workshop consisted of four stations with activities relating to (1) orientation to telehealth equipment; (2) comparison of dietetic consultation components completed in person versus remotely via video call; (3) quality assessment of mobile apps; and (4) exploration of advantages and disadvantages, and the ethical, security, and privacy issues relating to use of e-health technologies in dietetic practice. Student experience of the training was evaluated via questionnaire. Forty-five students (62.2% aged ≤19-24 years, 86.7% female) completed the survey. Following the workshop, the level of understanding relating to each key e-health concept improved significantly (p < 0.001). The aspects relating to the impact and need for initial training and ongoing professional education to support the use of e-health technologies within dietetic practice were rated a high level of importance by most students (78-80%). The majority of students (93.3% to 97.8%) reported a positive experience at each of the four workshop stations, with "informative" the most common word selected to rate each station (37.8% to 44.4% of students across the four stations). The introduction of an e-health skills component resulted in an improved understanding of concepts for using these technologies. These findings provide preliminary support for integration of further e-health training within the dietetics program.

  18. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  19. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  20. Future superconductivity applications in space - A review

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar; Ignatiev, Alex

    High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.

  1. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  2. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-01-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  3. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Astrophysics Data System (ADS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-02-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  4. Space flight requirements for fiber optic components: qualification testing and lessons learned

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2006-04-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.

  5. Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2007-01-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.

  6. Use of COTS in the Multimission Advanced Ground Intelligent Control (MAGIC) program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, N.L.

    1997-11-01

    This tutorial will discuss the experiences of the Space System Technologies Division of the USAF Phillips Laboratory (PL/VTS) in developing a COTS-based satellite control system. The system`s primary use is a testbed for new technologies that are intended for future integration into the operational satellite control system. As such, the control system architecture must be extremely open and flexible so we can integrate new components and functions easily and also provide our system to contractors for their component work. The system is based on commercial hardware, is based on Windows NT, and makes the maximum use of COTS components andmore » industry standards.« less

  7. Closed-cycle gas dynamic laser design investigation

    NASA Technical Reports Server (NTRS)

    Ketch, G. W.; Young, W. E.

    1977-01-01

    A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.

  8. Fabrication technology

    NASA Astrophysics Data System (ADS)

    1988-05-01

    Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.

  9. NASA Tech Briefs, September 1988. Volume 12, No. 8

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  10. NASA Tech Briefs, July/August 1988. Volume 12, No. 7

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  11. LASER Tech Briefs, Fall 1994. Volume 2, No. 4

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics in this issue of LASER Tech briefs include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  12. NASA Tech Briefs, October 1988. Volume 12, No. 9

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  13. NASA Tech Briefs, July 1991. Volume 15, No. 7

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  14. NASA Tech Briefs, March 1987. Volume 11, No. 3

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  15. NASA Tech Briefs, May 1987. Volume 11, No. 5

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  16. NASA Tech Briefs, October 1987. Volume 11, No. 9

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  17. NASA Tech Briefs, June 1989. Volume 13, No. 6

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  18. NASA Tech Briefs, February 1987. Volume 11, No. 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  19. NASA Tech Briefs, January 1987. Volume 11, No. 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  20. NASA Tech Briefs, July 1990. Volume 14, No. 7

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  1. NASA Tech Briefs, August 1990. Volume 14, No. 8

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  2. NASA Tech Briefs, April 1987. Volume 11, No. 4

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  3. NASA Tech Briefs, September 1987. Volume 11, No. 8

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  4. NASA Tech Briefs, August 1994. Volume 18, No. 8

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics covered include: Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  5. NASA Tech Briefs, June 1987. Volume 11, No. 6

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  6. NASA Tech Briefs, August 1989. Volume 13, No. 8

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  7. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  8. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1987-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burn for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  9. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  10. Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.

    2015-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.

  11. Water Conservation and Reuse. Instructor Guide. Working for Clean Water: An Information Program for Advisory Committees.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., Middletown. Inst. of State and Regional Affairs.

    Described is a learning session on water conservation intended for citizen advisory groups interested in water quality planning. Topics addressed in this instructor's manual include water conservation needs, benefits, programs, technology, and problems. These materials are components of the Working for Clean Water Project. (Author/WB)

  12. On Solid Legal Ground: Bringing Information Literacy to Undergraduate-Level Law Courses

    ERIC Educational Resources Information Center

    Ryesky, Kenneth H.

    2007-01-01

    The complexities of the Internet and other electronic data technologies have greatly heightened the information literacy needs of students in all subjects. Law courses are common components of many undergraduate programs and other settings external to a law degree program. The field of law has many information literacy aspects which are…

  13. NASA CONNECT: Dancing in the Night Sky. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is a research and standards-based annual series of integrated mathematics, science, and technology instructional distance learning programs for students in grades 6-8. This program has three components: (1) a 30-minute television broadcast which can be viewed live or taped for later use; (2) a companion educator's guide including a…

  14. The NASA LeRC regenerative fuel cell system testbed program for goverment and commercial applications

    NASA Astrophysics Data System (ADS)

    Maloney, Thomas M.; Prokopius, Paul R.; Voecks, Gerald E.

    1995-01-01

    The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbed fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway.

  15. So, You Want to be a Science Communicator?

    NASA Astrophysics Data System (ADS)

    Radzilowicz, John G.

    2009-03-01

    The late Carl Sagan opined that somehow we have managed to create a global civilization dependant on science and technology in which almost no one understands science and technology. This is an unacceptable recipe for disaster with social, political and financial implications for the future of scientific research. And so, like it or not, popular science communication, more than ever before, is an important and necessary part of the scientific enterprise. Public outreach programs, media interviews, and popular articles have become required parts of the scientist's professional repertoire. But, what does it take to be a good science communicator? What is needed to develop and deliver meaningful public outreach programs? How do you handle non-technical presentations? And, what help is available in developing the necessary skills for good popular science communication? This presentation will look at the essential components of effective science communication aimed at a broad public audience. The components of successful science communication in programs, presentations and articles will be discussed. Specific attention will be given to how university-museum partnerships can expand the reach and enhance the quality of public outreach programs.

  16. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.

  17. Component-Level Electronic-Assembly Repair (CLEAR) Analysis of the Problem Reporting and Corrective Action (PRACA) Database of the International Space Station On-Orbit Electrical Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.

    2011-01-01

    The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing dependency on Earth-supplied logistics for future Constellation Program missions.

  18. Systems autonomy technology: Executive summary and program plan

    NASA Technical Reports Server (NTRS)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  19. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  20. Next-generation avionics packaging and cooling 'test results from a prototype system'

    NASA Astrophysics Data System (ADS)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  1. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  2. NASA's Morphing Project Research Summaries in Fiscal Year 2002

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Waszak, Martin R.

    2005-01-01

    The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.

  3. Hypersonic missile propulsion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazmar, R.R.

    1998-11-01

    Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technologymore » base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.« less

  4. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  5. NASA Tech Briefs, November 1988. Volume 12, No. 10

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  6. NASA Tech Briefs, September/October 1986. Volume 10, No. 5

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  7. NASA Tech Briefs, November/December 1986. Volume 10, No. 6

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  8. NASA Tech Briefs, October 1993. Volume 17, No. 10

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Topics include: Sensors; esign and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  9. NASA Tech Briefs, May/June 1986. Volume 10, No. 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics discussed include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  10. NASA Tech Briefs, September 1990. Volume 14, No. 9

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  11. NASA Tech Briefs, November/December 1987. Volume 11, No. 10

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  12. NASA Tech Briefs, February 1994. Volume 18, No. 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics covered include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports

  13. NASA Tech Briefs, March 1988. Volume 12, No. 3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.

  14. NASA Tech Briefs, July/August 1987. Volume 11, No. 7

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  15. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  16. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  17. The 4.5 inch diameter IPV Ni-H2 cell development program

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1986-01-01

    Interest in larger capacity Ni-H2 battery cells for space applications has resulted in the initiation of a development/qualification/production program. Cell component design was completed and component hardware fabricated and/or delivered. Finished cell design projections demonstrate favorable specific energies in the range of 70 to 75 Whr/Kg (32 to 34 Whr/Lb) for capacities of 100 to 250 Ah. It is further planned during this effort to evaluate the advanced cell design technology which has evolved from the work conducted at the NASA/Lewis Research Center.

  18. The 4.5 inch diameter IPV Ni-H2 cell development program

    NASA Astrophysics Data System (ADS)

    Miller, L.

    1986-09-01

    Interest in larger capacity Ni-H2 battery cells for space applications has resulted in the initiation of a development/qualification/production program. Cell component design was completed and component hardware fabricated and/or delivered. Finished cell design projections demonstrate favorable specific energies in the range of 70 to 75 Whr/Kg (32 to 34 Whr/Lb) for capacities of 100 to 250 Ah. It is further planned during this effort to evaluate the advanced cell design technology which has evolved from the work conducted at the NASA/Lewis Research Center.

  19. Millimeter-wave MMIC technology for smart weapons

    NASA Astrophysics Data System (ADS)

    Seashore, Charles R.

    1994-12-01

    Millimeter wave MMIC component technology has made dramatic progress over the last ten years largely due to funding stimulation received under the ARPA Tri-Service MIMIC program. In several smart weapon systems, MMIC components are now specified as the baseline approach for millimeter wave radar transceiver hardware. Availability of this new frontier in microelectronics has also enabled realization of sensor fusion for multispectral capability to defeat many forms of known countermeasures. The current frequency range for these MMIC-based components is approximately 30 to 100 GHz. In several cases, it has been demonstrated that the MMIC component performance has exceeded that available from hybrid microstrip circuits using selected discrete devices. However, challenges still remain in chip producibility enhancement and cost reduction since many of the essential device structure candidates are themselves emerging technologies with a limited wafer fabrication history and accumulated test databases. It is concluded that smart weapons of the future will rely heavily on advanced microelectronics to satisfy performance requirements as well as meeting stringent packaging and power source constraints.

  20. An Examination of Preferences for Social Presence in Online Courses with Regard to Personality Type

    ERIC Educational Resources Information Center

    Rose, Daniel Merritt

    2012-01-01

    The purpose of this research was to examine the connections between personality types as illustrated by the Myers Briggs Type Indicator and the desire for social presence components within a technology based learning environment. Participants in the study were undergraduate and graduate students enrolled in an educational technology program at a…

  1. The Use of Technology to Improve Staff Performance

    ERIC Educational Resources Information Center

    Nepo, Kaori G.

    2010-01-01

    The on-going staff training is one of critical components for the effective programming for adolescents and adults with autism, although it is often overlooked. The available technology can be useful to improve not only productivity and organization of our daily life, but also the work performance. The purpose of this study was to examine the…

  2. GIS Technology and E-Learning for Exposing College Graduates to Transcultural Education

    ERIC Educational Resources Information Center

    Kalra, Rajrani; Gupta, Vipin

    2014-01-01

    In recent years, one form of technology that has become quite popular in schools and higher education is the Geographical Information Systems (GIS). GIS is one kind of management information system. It includes both the hardware and software components and includes programming of real world problems. It provides support to managers in day-to-day…

  3. NASA Tech Briefs, August 1995. Volume 19, No. 8

    NASA Technical Reports Server (NTRS)

    1995-01-01

    There is a special focus on computer graphics and simulation in this issue. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer programs, Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. There is a section on for Laser Technology, which includes a feature on Moving closer to the suns power.

  4. Air Force Manufacturing Technology. Year 2000 Project Book

    DTIC Science & Technology

    2000-01-01

    Electronic Warfare Component Manufacturing 13 National Center for Manufacturing Science 14 Product Research Market Analysis System 15 Electronics Acoustic...other agile organizations that can respond to rapidly changing market demands. Approach This program demonstrated and evaluated the advanced design...production worker contact with customers and suppliers; shopfloor identification of new technologies, markets , and products; and strategic planning to assure

  5. Laser Science & Technology Program Annual Report - 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journalsmore » in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.« less

  6. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  7. Evaluation of GaAs low noise and power MMIC technologies to neutron, ionizing dose and dose rate effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derewonko, H.; Bosella, A.; Pataut, G.

    1996-06-01

    An evaluation program of Thomson CSF-TCS GaAs low noise and power MMIC technologies to 1 MeV equivalent neutron fluence levels, up to 1 {times} 10{sup 15} n/cm{sup 2}, ionizing 1.17--1.33 MeV CO{sup 60} dose levels in excess of 200 Mrad(GaAs) and dose rate levels reaching 1.89 {times} 10{sup 11} rad(GaAs)/s is presented in terms of proper components and parameter choices, DC/RF electrical measurements and test methods under irradiation. Experimental results are explained together with drift analyses of electrical parameters that have determined threshold limits of component degradations. Modelling the effects of radiation on GaAs components relies on degradation analysis ofmore » active layer which appears to be the most sensitive factor. MMICs degradation under neutron fluence was simulated from irradiated FET data. Finally, based on sensitivity of technological parameters, rad-hard design including material, technology and MMIC design enhancement is discussed.« less

  8. Advanced Thermionic Technology Program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Topics include surface studies (surface theory, basic surface experiments, and activation chamber experiments); plasma studies (converter theory and enhanced mode conversion experiments); and component development (low temperature conversion experiments, high efficiency conversion experiments, and hot shell development).

  9. NASA Tech Briefs, March/April 1986. Volume 10, No. 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics covered include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  10. NASA Tech Briefs, February 1988. Volume 12, No. 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Systems; and Life Sciences.

  11. NASA Tech Briefs, April 2000. Volume 24, No. 4

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Imaging/Video/Display Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Test and Measurement; Mathematics and Information Sciences; Books and Reports.

  12. NASA Tech Briefs, January 1988. Volume 12, No. 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.

  13. Compact, Robust Chips Integrate Optical Functions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.

  14. Isotope Brayton space power systems and their technology

    NASA Technical Reports Server (NTRS)

    Schwartz, H.

    1972-01-01

    The objectives of the NASA Brayton Space Power Program and the advantages of achieving an isotope Brayton space power system are enumerated. The paper describes the 2-15 kWe Brayton engine, its subsystems, and major components and summarizes the status of the test program. Two areas of Brayton constituent technology are discussed-gas bearings and heat exchangers. A summary is given of a 500-2500 W isotope Brayton space power system study that showed very attractive performance, simplicity, and low cost for a system in this power range.

  15. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  16. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less

  17. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less

  18. Ion Thruster Development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Sarver-Verhey, Timothy R.

    1992-01-01

    Recent ion propulsion technology efforts at NASA's Lewis Research Center including development of kW-class xenon ion thrusters, high power xenon and krypton ion thrusters, and power processors are reviewed. Thruster physical characteristics, performance data, life projections, and power processor component technology are summarized. The ion propulsion technology program is structured to address a broad set of mission applications from satellite stationkeeping and repositioning to primary propulsion using solar or nuclear power systems.

  19. Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System

    NASA Technical Reports Server (NTRS)

    Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher

    2001-01-01

    The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.

  20. NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino R.; Seible, Frieder

    1993-01-01

    Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.

  1. Power conditioning techniques

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.

    1989-01-01

    The technological developments required to reduce the electrical power system component weights from the state-of-the-art 2.0 kg/kW to the range of 0.1 to 0.2 kg/kW are discussed. Power level requirements and their trends in aerospace applications are identified and presented. The projected weight and launch costs for a 1MW power converter built using state-of-the-art technology are established to illustrate the need for reliable, ultralightweight advanced power components. The key factors affecting converter weight are given and some of the tradeoffs between component ratings and circuit topology are identified. The weight and launch costs for a 1MW converter using 0.1 kg/kW technology are presented. Finally, the objectives and goals of the Multi-Megawatt Program at the NASA Lewis Research Center, which is funded by the SDIO through the Air Force, are given.

  2. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    NASA Technical Reports Server (NTRS)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-01-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  3. Vocational exploration in an extracurricular technology program for youth with autism.

    PubMed

    Dunn, Louise; Diener, Marissa; Wright, Cheryl; Wright, Scott; Narumanchi, Amruta

    2015-01-01

    Within a life span approach, introducing opportunities to explore careers through activities of interest provide ways for children to learn to explore, problem solve, and envision a future for themselves. However, little information exists about programs to promote social engagement and to explore potential career interests for youth with autism. Explore engagement and learning in a technology-based extracurricular program (called iSTAR) for youth with autism. The researchers used a qualitative approach with grounded-theory analysis to explore the processes that contributed to engagement and learning for youth with autism in an technology-based extracurricular program. Youth Centered Learning and Opportunities to Demonstrate Skills emerged as themes that illuminated the processes by which engagement and learning occurred for the youth in the iSTAR program. Interest in the graphics program stimulated interactions amongst the youth with each other and with the adults. Modeling, demonstration, and scaffolded questioning supported engagement and learning for all the youth. Providing structure, encouraging choices, and following the youths' lead provided bridges for sharing and learning about the technology program. Career exploration through use of interests in technology can provide opportunities for youth with autism to develop social and technical skills needed later for employment. Providing an environment that recognizes and builds on the youths' strengths and supports their autonomy and choices are critical components to promote their positive development and career potential.

  4. AST Composite Wing Program: Executive Summary

    NASA Technical Reports Server (NTRS)

    Karal, Michael

    2001-01-01

    The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.

  5. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  6. Beyond computer literacy: supporting youth's positive development through technology.

    PubMed

    Bers, Marina Umaschi

    2010-01-01

    In a digital era in which technology plays a role in most aspects of a child's life, having the competence and confidence to use computers might be a necessary step, but not a goal in itself. Developing character traits that will serve children to use technology in a safe way to communicate and connect with others, and providing opportunities for children to make a better world through the use of their computational skills, is just as important. The Positive Technological Development framework (PTD), a natural extension of the computer literacy and the technological fluency movements that have influenced the world of educational technology, adds psychosocial, civic, and ethical components to the cognitive ones. PTD examines the developmental tasks of a child growing up in our digital era and provides a model for developing and evaluating technology-rich youth programs. The explicit goal of PTD programs is to support children in the positive uses of technology to lead more fulfilling lives and make the world a better place. This article introduces the concept of PTD and presents examples of the Zora virtual world program for young people that the author developed following this framework.

  7. Energy Efficient Engine core design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1982-01-01

    The Energy Efficient Engine (E3) is a NASA program to develop fuel saving technology for future large transport aircraft engines. Testing of the General Electric E3 core showed that the core component performance and core system performance necessary to meet the program goals can be achieved. The E3 core design and test results are described.

  8. Application of Terahertz Imaging and Backscatter Radiography to Space Shuttle Foam Inspection

    NASA Technical Reports Server (NTRS)

    Ussery, Warren

    2008-01-01

    Two state of the art technologies have been developed for External Fuel Tank foam inspections. Results of POD tests have shown Backscatter Radiography and Terahertz imaging detect critical defects with no false positive issue. These techniques are currently in use on the External Tank program as one component in the foam quality assurance program.

  9. Electronic Components, Transducers, and Basic Circuits. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Mowery, Donald R.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…

  10. E-Mentoring for New Principals: A Case Study of a Mentoring Program

    ERIC Educational Resources Information Center

    Russo, Erin D.

    2013-01-01

    This descriptive case study includes both new principals and their mentor principals engaged in e-mentoring activities. This study examines the components of a school district's mentoring program in order to make sense of e-mentoring technology. The literature review highlights mentoring practices in education, and also draws upon e-mentoring…

  11. Status of Propulsion Technology Development Under the NASA In-space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Dankanich, John; Pencil, Eric; Pinero, Luis

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-effect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The HEP system is composed of the High Voltage Hall Accelerator (HiVHAc) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HiVHAc are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs like: MAV propulsion and electric propulsion. And finally, one focus of the SystemsMission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  12. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  13. Flying the ST-5 Constellation with "Plug and Play" Autonomy Components and the GMSEC Bus

    NASA Technical Reports Server (NTRS)

    Shendock, Bob; Witt, Ken; Stanley, Jason; Mandl, Dan; Coyle, Steve

    2006-01-01

    The Space Technology 5 (ST5) Project, part of NASA's New Millennium Program, will consist of a constellation of three micro-satellites. This viewgraph document presents the components that will allow it to operate in an autonomous mode. The ST-5 constellation will use the GSFC Mission Services Evolution Center (GMSEC) architecture to enable cost effective model based operations. The ST-5 mission will demonstrate several principles of self managing software components.

  14. An asynchronous learning approach for the instructional component of a dual-campus pharmacy resident teaching program.

    PubMed

    Garrison, Gina Daubney; Baia, Patricia; Canning, Jacquelyn E; Strang, Aimee F

    2015-03-25

    To describe the shift to an asynchronous online approach for pedagogy instruction within a pharmacy resident teaching program offered by a dual-campus college. The pedagogy instruction component of the teaching program (Part I) was redesigned with a focus on the content, delivery, and coordination of the learning environment. Asynchronous online learning replaced distance technology or lecture capture. Using a pedagogical content knowledge framework, residents participated in self-paced online learning using faculty recordings, readings, and discussion board activities. A learning management system was used to assess achievement of learning objectives and participation prior to progressing to the teaching experiences component of the teaching program (Part II). Evaluation of resident pedagogical knowledge development and participation in Part I of the teaching program was achieved through the learning management system. Participant surveys and written reflections showed general satisfaction with the online learning environment. Future considerations include addition of a live orientation session and increased faculty presence in the online learning environment. An online approach framed by educational theory can be an effective way to provide pedagogy instruction within a teaching program.

  15. The design of a purpose-built exergame for fall prediction and prevention for older people.

    PubMed

    Marston, Hannah R; Woodbury, Ashley; Gschwind, Yves J; Kroll, Michael; Fink, Denis; Eichberg, Sabine; Kreiner, Karl; Ejupi, Andreas; Annegarn, Janneke; de Rosario, Helios; Wienholtz, Arno; Wieching, Rainer; Delbaere, Kim

    2015-01-01

    Falls in older people represent a major age-related health challenge facing our society. Novel methods for delivery of falls prevention programs are required to increase effectiveness and adherence to these programs while containing costs. The primary aim of the Information and Communications Technology-based System to Predict and Prevent Falls (iStoppFalls) project was to develop innovative home-based technologies for continuous monitoring and exercise-based prevention of falls in community-dwelling older people. The aim of this paper is to describe the components of the iStoppFalls system. The system comprised of 1) a TV, 2) a PC, 3) the Microsoft Kinect, 4) a wearable sensor and 5) an assessment and training software as the main components. The iStoppFalls system implements existing technologies to deliver a tailored home-based exercise and education program aimed at reducing fall risk in older people. A risk assessment tool was designed to identify fall risk factors. The content and progression rules of the iStoppFalls exergames were developed from evidence-based fall prevention interventions targeting muscle strength and balance in older people. The iStoppFalls fall prevention program, used in conjunction with the multifactorial fall risk assessment tool, aims to provide a comprehensive and individualised, yet novel fall risk assessment and prevention program that is feasible for widespread use to prevent falls and fall-related injuries. This work provides a new approach to engage older people in home-based exercise programs to complement or provide a potentially motivational alternative to traditional exercise to reduce the risk of falling.

  16. NASA Tech Briefs, July/August 1986. Volume 10, No. 4

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topic include: NASA TU Serv1ces; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Materials; Computer Programs; Mechanics; Physical Sciences; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences. 3

  17. Revised Standard Rules Tender Governing Motor Carrier Transportation

    DOT National Transportation Integrated Search

    2002-05-10

    The following case study provides an in-depth view of the deployment of the safety information exchange components of the Commercial Vehicle Information Systems and Networks (CVISN) technology program in Connecticut. It describes successful practices...

  18. NASA Tech Briefs, October 1994. Volume 18, No. 10

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics: Data Acquisition and Analysis; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports

  19. Technologies Advance UAVs for Science, Military

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  20. Toward the Design of Evidence-Based Mental Health Information Systems for People With Depression: A Systematic Literature Review and Meta-Analysis.

    PubMed

    Wahle, Fabian; Bollhalder, Lea; Kowatsch, Tobias; Fleisch, Elgar

    2017-05-31

    Existing research postulates a variety of components that show an impact on utilization of technology-mediated mental health information systems (MHIS) and treatment outcome. Although researchers assessed the effect of isolated design elements on the results of Web-based interventions and the associations between symptom reduction and use of components across computer and mobile phone platforms, there remains uncertainty with regard to which components of technology-mediated interventions for mental health exert the greatest therapeutic gain. Until now, no studies have presented results on the therapeutic benefit associated with specific service components of technology-mediated MHIS for depression. This systematic review aims at identifying components of technology-mediated MHIS for patients with depression. Consequently, all randomized controlled trials comparing technology-mediated treatments for depression to either waiting-list control, treatment as usual, or any other form of treatment for depression were reviewed. Updating prior reviews, this study aims to (1) assess the effectiveness of technology-supported interventions for the treatment of depression and (2) add to the debate on what components in technology-mediated MHIS for the treatment of depression should be standard of care. Systematic searches in MEDLINE, PsycINFO, and the Cochrane Library were conducted. Effect sizes for each comparison between a technology-enabled intervention and a control condition were computed using the standard mean difference (SMD). Chi-square tests were used to test for heterogeneity. Using subgroup analysis, potential sources of heterogeneity were analyzed. Publication bias was examined using visual inspection of funnel plots and Begg's test. Qualitative data analysis was also used. In an explorative approach, a list of relevant components was extracted from the body of literature by consensus between two researchers. Of 6387 studies initially identified, 45 met all inclusion criteria. Programs analyzed showed a significant trend toward reduced depressive symptoms (SMD -0.58, 95% CI -0.71 to -0.45, P<.001). Heterogeneity was large (I2≥76). A total of 15 components were identified. Technology-mediated MHIS for the treatment of depression has a consistent positive overall effect compared to controls. A total of 15 components have been identified. Further studies are needed to quantify the impact of individual components on treatment effects and to identify further components that are relevant for the design of future technology-mediated interventions for the treatment of depression and other mental disorders. ©Fabian Wahle, Lea Bollhalder, Tobias Kowatsch, Elgar Fleisch. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 31.05.2017.

  1. Toward the Design of Evidence-Based Mental Health Information Systems for People With Depression: A Systematic Literature Review and Meta-Analysis

    PubMed Central

    Fleisch, Elgar

    2017-01-01

    Background Existing research postulates a variety of components that show an impact on utilization of technology-mediated mental health information systems (MHIS) and treatment outcome. Although researchers assessed the effect of isolated design elements on the results of Web-based interventions and the associations between symptom reduction and use of components across computer and mobile phone platforms, there remains uncertainty with regard to which components of technology-mediated interventions for mental health exert the greatest therapeutic gain. Until now, no studies have presented results on the therapeutic benefit associated with specific service components of technology-mediated MHIS for depression. Objective This systematic review aims at identifying components of technology-mediated MHIS for patients with depression. Consequently, all randomized controlled trials comparing technology-mediated treatments for depression to either waiting-list control, treatment as usual, or any other form of treatment for depression were reviewed. Updating prior reviews, this study aims to (1) assess the effectiveness of technology-supported interventions for the treatment of depression and (2) add to the debate on what components in technology-mediated MHIS for the treatment of depression should be standard of care. Methods Systematic searches in MEDLINE, PsycINFO, and the Cochrane Library were conducted. Effect sizes for each comparison between a technology-enabled intervention and a control condition were computed using the standard mean difference (SMD). Chi-square tests were used to test for heterogeneity. Using subgroup analysis, potential sources of heterogeneity were analyzed. Publication bias was examined using visual inspection of funnel plots and Begg’s test. Qualitative data analysis was also used. In an explorative approach, a list of relevant components was extracted from the body of literature by consensus between two researchers. Results Of 6387 studies initially identified, 45 met all inclusion criteria. Programs analyzed showed a significant trend toward reduced depressive symptoms (SMD –0.58, 95% CI –0.71 to –0.45, P<.001). Heterogeneity was large (I2≥76). A total of 15 components were identified. Conclusions Technology-mediated MHIS for the treatment of depression has a consistent positive overall effect compared to controls. A total of 15 components have been identified. Further studies are needed to quantify the impact of individual components on treatment effects and to identify further components that are relevant for the design of future technology-mediated interventions for the treatment of depression and other mental disorders. PMID:28566267

  2. Commercial technologies from the SP-100 program

    NASA Astrophysics Data System (ADS)

    Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.

    1995-01-01

    For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.

  3. Emergence of telerobotic control enhancement from research in machine autonomy

    NASA Astrophysics Data System (ADS)

    Haddad, Albert G., Sr.; Adams, John C.; Berardo, Peter A.; Ohlund, Kent O.; Van Vactor, David L.

    1992-03-01

    This paper provides a description of the Robotic Research Program being conducted at the Lockheed Research and Development Division Laboratories. It details the approach taken to fuse autonomy with teleoperative control. The component/enabling technologies are defined and the status of the development of those technologies is reported. CASE tools used in an accelerated development environment are identified and discussed.

  4. The Role of Methods Textbooks in Providing Early Training for Teaching with Technology in the Language Classroom

    ERIC Educational Resources Information Center

    Arnold, Nike

    2013-01-01

    The ability to make effective use of technology is becoming increasingly important for prospective language teachers. As a result, many teacher preparation programs include some form of training in computer assisted language learning (CALL). This study focuses on one component of such training, the textbooks used in methods courses, and employs…

  5. Automotive Stirling Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  6. Integrated Vehicle Health Management (IVHM) for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Baroth, Edmund C.; Pallix, Joan

    2006-01-01

    To achieve NASA's ambitious Integrated Space Transportation Program objectives, aerospace systems will implement a variety of new concept in health management. System level integration of IVHM technologies for real-time control and system maintenance will have significant impact on system safety and lifecycle costs. IVHM technologies will enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. IVHM also has the potential to reduce, or even eliminate many of the costly inspections and operations activities required by current and future aerospace systems. This presentation will describe the array of NASA programs participating in the development of IVHM technologies for NASA missions. Future vehicle systems will use models of the system, its environment, and other intelligent agents with which they may interact. IVHM will be incorporated into future mission planners, reasoning engines, and adaptive control systems that can recommend or execute commands enabling the system to respond intelligently in real time. In the past, software errors and/or faulty sensors have been identified as significant contributors to mission failures. This presentation will also address the development and utilization of highly dependable sohare and sensor technologies, which are key components to ensure the reliability of IVHM systems.

  7. Testing Planetary Rovers: Technologies, Perspectives, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Thomas, Hans; Lau, Sonie (Technical Monitor)

    1998-01-01

    Rovers are a vital component of NASA's strategy for manned and unmanned exploration of space. For the past five years, the Intelligent Mechanisms Group at the NASA Ames Research Center has conducted a vigorous program of field testing of rovers from both technology and science team productivity perspective. In this talk, I will give an overview of the the last two years of the test program, focusing on tests conducted in the Painted Desert of Arizona, the Atacama desert in Chile, and on IMG participation in the Mars Pathfinder mission. An overview of autonomy, manipulation, and user interface technologies developed in response to these missions will be presented, and lesson's learned in these missions and their impact on future flight missions will be presented. I will close with some perspectives on how the testing program has affected current rover systems.

  8. Meyerhoff Scholars Program: a strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics.

    PubMed

    Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A

    2012-01-01

    The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.

  9. Validation of HVOF Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Hydraulic/Pneumatic Actuators

    DTIC Science & Technology

    2007-12-01

    Projects Agency (DARPA). The program evaluated HVOF, physical vapor deposition (PVD) and laser cladding , and concluded that HVOF was the best overall...components such as titanium flap tracks. 5 2.0 TECHNOLOGY DESCRIPTION 2.1 TECHNOLOGY DEVELOPMENT AND APPLICATION Technology background and...theory of operation: High-velocity oxygen-fuel (HVOF) is a standard commercial thermal spray process in which a powder of the material to be sprayed

  10. Advanced 3-V semiconductor technology assessment. [space communications

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Against a background of an extensive survey of the present state of the art in the field of III-V semiconductors for operation at microwave frequencies (or gigabit rate speeds), likely requirements of future space communications systems are identified, competing technologies and physical device limitations are discussed, and difficulties in implementing emerging technologies are projected. On the basis of these analyses, specific research and development programs required for the development of future systems components are recommended.

  11. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  12. Advanced Gas Turbine (AGT) powertrain system development for automotive applications report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This report describes progress and work performed during January through June 1984 to develop technology for an Advanced Gas Turbine (AGT) engine for automotive applications. Work performed during the first eight periods initiated design and analysis, ceramic development, component testing, and test bed evaluation. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range techology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. Technology resulting from this program is intended to reach the marketplace by the early 1990s.

  13. NASA's Spaceliner Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety and reductions in operational costs of future vehicles. The paper describes current status, future plans and technologies that are being matured by the Spaceliner Investment Area under the Advanced Space Transportation Program Office.

  14. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, K.

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Batterymore » R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.« less

  15. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    Free piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology Program. This five year program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussions are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators. Projections are made for future space power requirements over the next few decades. And a cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  16. General aviation crash safety program at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.

    1976-01-01

    The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.

  17. Facilitating Classroom Innovation in the Geosciences Through the NSF Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) Program

    NASA Astrophysics Data System (ADS)

    Singer, J.; Ryan, J. G.

    2012-12-01

    The Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) program seeks to improve the quality of science, technology, engineering, and mathematics (STEM) education for all undergraduate students. Activities supported by the TUES program include the creation, adaptation, and dissemination of learning materials and teaching strategies, development of faculty expertise, implementation of educational innovations, and research on STEM teaching and learning. The TUES program especially encourages projects that have the potential to transform undergraduate STEM education and active dissemination and building a community of users are critical components of TUES projects. To raise awareness about the TUES program and increase both the quality and quantity of proposals submitted by geoscientists to the program, information sessions and proposal writing retreats are being conducted. Digital resources developed especially for the geosciences community are available at www.buffalostate.edu/RTUGeoEd to share information about the TUES program and the many ways this NSF program supports innovation in geoscience education. This presentation also addresses identified impediments to submitting a TUES proposal and strategies for overcoming reasons discouraging geoscientists from preparing a proposal and/or resubmitting a declined proposal.

  18. 6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...

  19. 6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...

  20. 6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...

  1. 6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...

  2. 6 CFR Appendix A to Part 5 - FOIA/Privacy Act Offices of the Department of Homeland Security

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... development program. 5. The life sciences activities related to microbial pathogens of Biological and... and Infrastructure Protection Directorate of Science and Technology II. Requests made to components...

  3. NASA Tech Briefs, June 1995. Volume 19, No. 6

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Topics include: communications technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, life sciences, books and reports, a special section of laser Tech Briefs.

  4. 3-D inelastic analysis methods for hot section components (base program). [turbine blades, turbine vanes, and combustor liners

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1984-01-01

    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.

  5. Investigation of performance deterioration of the CF6/JT9D, high-bypass ratio turbofan engines

    NASA Technical Reports Server (NTRS)

    Ziemianski, J. A.; Mehalic, C. M.

    1980-01-01

    The aircraft energy efficiency program within NASA is developing technology required to improve the fuel efficiency of commercial subsonic transport aricraft. One segment of this program includes engine diagnostics which is directed toward determining the sources and causes of performance deterioration in the Pratt and Whitney Aircraft JT9D and General Electric CF6 high-bypass ratio turbofan engines and developing technology for minimizing the performance losses. Results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analysis of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.

  6. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  7. Component technology for space power systems

    NASA Technical Reports Server (NTRS)

    Finke, R.

    1982-01-01

    The Lewis/OAST program for the development of Component Technology for Space Power Systems is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and thermal control devices. Examples of progress in each of the five areas is discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 mu sec rise and fall time are presented. A new class of semiconductor devices with a possibility of switching 1000 000 V is described. Several 100 kW rotary power transformer designs and a 25 kW, 20 kHz transformer weighting 3.2 kg have been developed. Progress on the creation of diamond-like films for thermal devices and intercalated carbon fibers with the strength of steel and the conductivity of copper at one third the mass of copper is presented.

  8. Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.; Howe, D. C.

    1983-01-01

    The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.

  9. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  10. Energy Efficient Engine: Control system component performance report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Bennett, G. W.

    1984-01-01

    An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elementsmore » (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.« less

  12. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  13. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  14. SQL Collaborative Learning Framework Based on SOA

    NASA Astrophysics Data System (ADS)

    Armiati, S.; Awangga, RM

    2018-04-01

    The research is focused on designing collaborative learning-oriented framework fulfilment service in teaching SQL Oracle 10g. Framework built a foundation of academic fulfilment service performed by a layer of the working unit in collaboration with Program Studi Manajemen Informatika. In the design phase defined what form of collaboration models and information technology proposed for Program Studi Manajemen Informatika by using a framework of collaboration inspired by the stages of modelling a Service Oriented Architecture (SOA). Stages begin with analyzing subsystems, this activity is used to determine subsystem involved and reliance as well as workflow between the subsystems. After the service can be identified, the second phase is designing the component specifications, which details the components that are implemented in the service to include the data, rules, services, profiles can be configured, and variations. The third stage is to allocate service, set the service to the subsystems that have been identified, and its components. Implementation framework contributes to the teaching guides and application architecture that can be used as a landing realize an increase in service by applying information technology.

  15. Wireless Sensors Pinpoint Rotorcraft Troubles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Helicopters present many advantages over fixed-wing aircraft: they can take off from and land in tight spots, they can move in any direction with relative ease, and they can hover in one area for extended periods of time. But that maneuverability comes with costs. For example, one persistent issue in helicopter maintenance and operation is that their components are subject to high amounts of wear compared to fixed-wing aircraft. In particular, the rotor drive system that makes flight possible undergoes heavy vibration during routine performance, slowly degrading components in a way that can cause failures if left unmonitored. The level of attention required to ensure flight safety makes helicopters very expensive to maintain. As a part of NASA s Fundamental Aeronautics Program, the Subsonic Rotary Wing Project seeks to advance knowledge about and improve prediction capabilities for rotorcraft, with the aim of developing technology that will meet future civilian requirements like higher efficiency and lower noise flights. One of the program s goals is to improve technology to detect and assess the health of critical components in rotorcraft drive systems.

  16. RHETT and SCARLET: Synergistic power and propulsion technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Curran, F.M.; Sankovic, J.

    1995-12-31

    The Ballistic Missile Defense Organization (BMDO) sponsors an aggressive program to qualify high performance space power and electric propulsion technologies for space flight. Specifically, the BMDO space propulsion program is now integrating an advanced Hall thruster system including all components necessary for use in an operational spacecraft. This Russian Hall Effect Thruster Technology (RHETT) integrated pallet will be qualified for space flight later this year. This will be followed by a space flight demonstration and verification in 1996. The BMDO power program includes a parallel program to qualify and space flight demonstrate the Solar Concentrator Arrays with Refractive Linear Elementmore » Technology (SCARLET). The first flight SCARLET system is being fabricated for Use on the EER/CTA Comet spacecraft in late July. The space flight demonstration is the first full size, deployed concentrator solar array. The propulsion work is conducted by an industry team led by Space Power, Inc. and Olin Aerospace with their partners in Russia, NIITP and TsNIIMash. The power program is conducted by an industry team led by AEC-Able. This paper is to familiarize the space power community with the synergies between spacecraft power and electric propulsion.« less

  17. Army Science Board 1991 Summer Study - Soldier as a System

    DTIC Science & Technology

    1991-12-01

    munitions, unit radio. All the multiple components of the Soldier System - the programs, organization, systems, technologies, and soldier types - interact ...functional interaction between soldieis ar.d their clothing and individual equipment; (2) the functional interaction of the equipment components...which must operate alone or together; and (3) the interaction between 6-,ldier-pc’forinanc,, equipment weight and total soldier-carn-ed load. The need

  18. International Education in the 21st Century: The Importance of Faculty in Developing Study Abroad Research Opportunities

    ERIC Educational Resources Information Center

    Giedt, Todd; Gokcek, Gigi; Ghosh, Jayati

    2015-01-01

    This paper argues for a reimagining of education abroad that fuses short-term programming with some kind of experiential research component led by home campus disciplinary faculty, especially those in the sciences, technology, engineering, and math (STEM) fields, in order to better integrate the study abroad program into the core undergraduate…

  19. Engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle: An update

    NASA Astrophysics Data System (ADS)

    Gregg, Dane W.; Hall, Susan E.

    1995-04-01

    Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently used in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development by Loral Defense Systems-Akron (Loral) for the ARPA/Navy 44 in. diameter UUV test vehicle. The power plant consists of a cell stack, gas management, oxygen storage, electrolyte management, coolant and controller subsystems, designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modifications to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various material arid components is complete. Sub scale (Short stack) system testing is completed. A full-scale demonstration unit is now under construction in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussions of future directions for this technology. This program is sponsored by ARPA Maritime Systems Technology Office under NASA contract NAS3-26715.

  20. The NASA LeRC regenerative fuel cell system testbed program for goverment and commercial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, T.M.; Prokopius, P.R.; Voecks, G.E.

    1995-01-25

    The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbedmore » fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}« less

  1. Survey of lift-fan aerodynamic technology

    NASA Technical Reports Server (NTRS)

    Hickey, David H.; Kirk, Jerry V.

    1993-01-01

    Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

  2. High Speed Research Noise Prediction Code (HSRNOISE) User's and Theoretical Manual

    NASA Technical Reports Server (NTRS)

    Golub, Robert (Technical Monitor); Rawls, John W., Jr.; Yeager, Jessie C.

    2004-01-01

    This report describes a computer program, HSRNOISE, that predicts noise levels for a supersonic aircraft powered by mixed flow turbofan engines with rectangular mixer-ejector nozzles. It fully documents the noise prediction algorithms, provides instructions for executing the HSRNOISE code, and provides predicted noise levels for the High Speed Research (HSR) program Technology Concept (TC) aircraft. The component source noise prediction algorithms were developed jointly by Boeing, General Electric Aircraft Engines (GEAE), NASA and Pratt & Whitney during the course of the NASA HSR program. Modern Technologies Corporation developed an alternative mixer ejector jet noise prediction method under contract to GEAE that has also been incorporated into the HSRNOISE prediction code. Algorithms for determining propagation effects and calculating noise metrics were taken from the NASA Aircraft Noise Prediction Program.

  3. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2003-01-01

    NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  4. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  5. ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery

    NASA Astrophysics Data System (ADS)

    1988-06-01

    The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.

  6. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  7. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  8. Informatics Essentials for DNPs.

    PubMed

    Jenkins, Melinda L

    2018-01-01

    Doctor of Nursing Practice (DNP) programs are proliferating around the US as advanced practice nursing programs evolve to build capacity by adding content on professional leadership, policy, and quality improvement to the traditional clinical content. One of the eight "Essentials" for DNP education is "Information systems/technology and patient care technology for the improvement and transformation of health care."[1] A required graduate course was revised and updated in 2017 to provide a foundation in clinical informatics for DNPs, as well as for nursing informatics specialists. Components of the online course, assignments, and free online resources linked to the DNP Essentials are described in this paper.

  9. The NASA space power technology program

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1992-01-01

    NASA has a broad technology program in the field of space power. This paper describes that program, including the roles and responsibilities of the various NASA field centers and major contractors. In the power source area, the paper discusses the SP-100 Space Nuclear Power Project, which has been under way for about seven years and is making substantial progress toward development of components for a 100-kilowatt power system that can be scaled to other sizes. This system is a candidate power source for nuclear electric propulsion, as well as for a power plant for a lunar base. In the energy storage area, the paper describes NASA's battery- and fuel-cell development programs. NASA is actively working on NiCd, NiH2, and lithium batteries. A status update is also given on a U.S. Air Force-sponsored program to develop a large (150 ampere-hour) lithium-thionyl chloride battery for the Centaur upper-stage launch vehicle. Finally, the area of power management and distribution (PMAD) is addressed, including power system components such as solid-state switches and power integrated circuits. Automated load management and other computer-controlled functions offer considerable payoffs. The state of the art in space power is described, along with NASA's medium- and long-term goals in the area.

  10. The 1994 Fiber Optic Sensors for Aerospace Technology (FOSAT) Workshop

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert (Compiler); Adamovsky, Grigory (Compiler); Tuma, Meg (Compiler); Beheim, Glenn (Compiler); Sotomayor, Jorge (Compiler)

    1995-01-01

    The NASA Lewis Research Center conducted a workshop on fiber optic technology on October 18-20, 1994. The workshop objective was to discuss the future direction of fiber optics and optical sensor research, especially in the aerospace arena. The workshop was separated into four sections: (1) a Systems Section which dealt specifically with top level overall architectures for the aircraft and engine; (2) a Subsystems Section considered the parts and pieces that made up the subsystems of the overall systems; (3) a Sensor/Actuators section considered the status of research on passive optical sensors and optical powered actuators; and (4) Components Section which addressed the interconnects for the optical systems (e.g., optical connectors, optical fibers, etc.). This report contains the minutes of the discussion on the workshop, both in each section and in the plenary sessions. The slides used by a limited number of presenters are also included as presented. No attempt was made to homogenize this report. The view of most of the attendees was: (1) the government must do a better job of disseminating technical information in a more timely fashion; (2) enough work has been done on the components, and system level architecture definition must dictate what work should be done on components; (3) a Photonics Steering Committee should be formed to coordinate the efforts of government and industry in the photonics area, to make sure that programs complimented each other and that technology transferred from one program was used in other programs to the best advantage of the government and industry.

  11. Technology-Based Assessments for 21st Century Skills: Theoretical and Practical Implications from Modern Research. Current Perspectives on Cognition, Learning and Instruction

    ERIC Educational Resources Information Center

    Mayrath, Michael C., Ed.; Clarke-Midura, Jody, Ed.; Robinson, Daniel H., Ed.; Schraw, Gregory, Ed.

    2012-01-01

    Creative problem solving, collaboration, and technology fluency are core skills requisite of any nation's workforce that strives to be competitive in the 21st Century. Teaching these types of skills is an economic imperative, and assessment is a fundamental component of any pedagogical program. Yet, measurement of these skills is complex due to…

  12. Creating a Virtual Community with PT3: College of Education Students' Beliefs, Expectations and Attitudes toward Online Learning.

    ERIC Educational Resources Information Center

    Kurubacak, Gulsun; Baptiste, H. Prentice

    Through the Preparing Tomorrow's Teachers to Use Technology (PT3) project, online distance courses in College of Education at New Mexico State University (NMSU) have become an essential component of the Teacher Education Program. Pre-service teachers have been engaged in the process of learning with and about technology. The main purpose of this…

  13. Technology Insertion for Recapitalization of Legacy Systems

    DTIC Science & Technology

    2015-09-30

    peened, and 4) an Abcite coating will be flame sprayed on the component. The ALCM program (B) has 1) evaluated data provided, 2) gathered questions...Report Technology Insertion for the Recapitalization of Legacy Systems Laser sintering, thermal spray and cold spray are additive manufacturing methods... coatings Need an experienced operator Requires a special spray booth to limit overspray and protect operator Requires primer or surface treatment

  14. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  15. Student-Teacher Astronomy Resource (STAR) Program

    NASA Astrophysics Data System (ADS)

    Gaboardi, M.; Humayun, M.; Dixon, P.

    2006-12-01

    Our NASA-funded E/PO program, the Student-Teacher Astronomy Resource (STAR) Program, designed around the Stardust and Genesis Missions, focuses on the reciprocal relationship between technological progress and advances in scientific understanding. We work directly with the public, teachers, classrooms, and individual school students. Both formal and informal evaluations suggest that our four-step approach to outreach has been effective. This annual program may serve as a model for the partnership between a national research institution, local scientists, and local teachers. The program has four components: 1."Space Stations" developed around the technology and science of the Genesis and Stardust Missions, are offered as child-friendly booths at the annual National High Magnetic Field Laboratory (NHMFL) Open House. The stations allow for direct interaction between the scientists and the public (over 3000 visitors). 2. STAR teachers (15) receive training and supplies to lead their classrooms through "Technology for Studying Comets". After attending a one-day in-service at the NHMFL, teachers can bring to their students an inquiry-based space science unit about which they are knowledgeable and excited. 3. We offer "Comet Tales," an informal education experience based on the NASA classroom activity "Comet Basics," to 15 local classrooms. We visit local classrooms and engage students with inquiry about comets, sampling of Wild 2, and what scientists hope to learn from the Stardust Mission. Visits occur during the two-week "Technology for Studying Comets" unit taught by each STAR teacher. 4. The "Stellar Students" component involves 15 high-achieving students in research activities. From each classroom visited during "Comet Tales," one student is selected to visit the NHMFL for a day. Parents and teachers of the students are invited for an awards ceremony and student presentations. Evaluation consisted of focus groups, informal observation, and questionnaires. Responses were overwhelmingly positive. This format allows us to continuously improve the design of our program and ensure that we meet the needs of our local school district.

  16. Low Loss Graded Index Polymer Optical Fiber for Local Networking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, Richard Otto

    The objective of this Department of Energy SBIR program has been to develop technology for the advancement of advanced computing systems. NanoSonic worked with two subcontractors, the Polymicro Division of Molex, a U.S.-based manufacturer of specialized optical fiber and fiber components, and Virginia Tech, a research university involved through the Global Environment for Network Innovations (GENI) program in high-speed computer networking research. NanoSonic developed a patented molecular-level self-assembly process to manufacture polymer-based optical fibers in a way similar to the modified chemical vapor deposition (MCVD) approach typically used to make glass optical fibers. Although polymer fiber has a higher attenuationmore » per unit length than glass fiber, short connectorized polymer fiber jumpers offer significant cost savings over their glass counterparts, particularly due to the potential use of low-cost plastic fiber connectors. As part of the SBIR commercialization process, NanoSonic exclusively licensed this technology to a large ($100B+ market cap) U.S.-based manufacturing conglomerate near the end of the first year of the Phase II program. With this base technology developed and licensed, NanoSonic then worked with Polymicro to address secondary program goals of using related but not conflicting production methods to enhance the performance of other specialty optical fiber products and components, and Virginia Tech continued its evaluation of developed polymer fibers in its network infrastructure system on the university campus. We also report our current understanding of the observation during the Phase I program of quantum conductance and partial quantum conductance in metal-insulator-metal (MIM) devices. Such conductance behavior may be modeled as singlemode behavior in one-dimensional electrically conducting waveguides, similar in principle to singlemode optical propagation in dielectric fiber waveguides. Although NanoSonic has not licensed any of the additional technology developed during the second year of the program, several proprietary discussions with major materials companies are underway as of the conclusion of Phase II.« less

  17. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  18. NASA photovoltaic research and technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.

  19. Ceramic matrix composites - Forerunners of technological breakthrough in space vehicle hot structures and thermal protection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacombe, A.; Rouges, J.

    1990-01-01

    The current status of carbon-carbon and carbon-silicon carbide composites developed for aerospace applications is reviewed. In particular, attention is given to production facilities and technologies for the manufacture of C-C and C-SiC composites, mechanical and thermal characteristics of carbon-carbon and carbon-silicon carbide materials, applications to thermal structures and protection, and technologies developed to build large C-SiC thermostructural components within the Hermes program. 9 refs.

  20. Transmission research activities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Lewicki, D. G.

    1990-01-01

    A joint research program, to advance the technology of rotorcraft transmissions, consists of analytical and experimental efforts to achieve the overall goals of reducing transmission weight and noise, while increasing life and reliability. Recent activities in the areas of transmission and related component research are highlighted. Current areas include specific technologies in support of military rotary wing aviation, gearing technology, transmission noise reduction studies, a recent interest in gearbox diagnostics, and advanced transmission system studies. Results of recent activities are presented along with near term research plans.

  1. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less

  2. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C C

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less

  3. 75 FR 56059 - Patent Examiner Technical Training Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ...); statistical methods in validation of microarry data; personalized medicine, manufacture of carbon nanospheres... processing, growing monocrystals, hydrogen production, liquid and gas purification and separation, making... Systems and Components: Mixed signal design and architecture, flexible displays, OLED display technology...

  4. NASA Tech Briefs, February 1989. Volume 13, No. 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This issue contains a special feature on shaping the future with Ceramics. Other topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences,

  5. 49 CFR 268.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION MAGNETIC LEVITATION TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.1 Definitions. As..., including land, piers, guideways, propulsion equipment and other components attached to guideways, power... described in § 268.3. Maglev means transportation systems employing magnetic levitation that would be...

  6. Electric utility acid fuel cell stack technology advancement

    NASA Astrophysics Data System (ADS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-11-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  7. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  8. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  9. Design and evaluation of the ONC health information technology curriculum

    PubMed Central

    Mohan, Vishnu; Abbott, Patricia; Acteson, Shelby; Berner, Eta S; Devlin, Corkey; Hammond, William E; Kukafka, Rita; Hersh, William

    2014-01-01

    Objective As part of the Heath Information Technology for Economic and Clinical Health (HITECH) Act, the Office of the National Coordinator for Health Information Technology (ONC) implemented its Workforce Development Program, which included initiatives to train health information technology (HIT) professionals in 12 workforce roles, half of them in community colleges. To achieve this, the ONC tasked five universities with established informatics programs with creating curricular materials that could be used by community colleges. The five universities created 20 components that were made available for downloading from the National Training and Dissemination Center (NTDC) website. This paper describes an evaluation of the curricular materials by its intended audience of educators. Methods We measured the quantity of downloads from the NTDC site and administered a survey about the curricular materials to its registered users to determine use patterns and user characteristics. The survey was evaluated using mixed methods. Registered users downloaded nearly half a million units or components from the NTDC website. We surveyed these 9835 registered users. Results 1269 individuals completed all or part of the survey, of whom 339 identified themselves as educators (26.7% of all respondents). This paper addresses the survey responses of educators. Discussion Successful aspects of the curriculum included its breadth, convenience, hands-on and course planning capabilities. Several areas were identified for potential improvement. Conclusions The ONC HIT curriculum met its goals for community college programs and will likely continue to be a valuable resource for the larger informatics community in the future. PMID:23831832

  10. Design and evaluation of the ONC health information technology curriculum.

    PubMed

    Mohan, Vishnu; Abbott, Patricia; Acteson, Shelby; Berner, Eta S; Devlin, Corkey; Hammond, William E; Kukafka, Rita; Hersh, William

    2014-01-01

    As part of the Heath Information Technology for Economic and Clinical Health (HITECH) Act, the Office of the National Coordinator for Health Information Technology (ONC) implemented its Workforce Development Program, which included initiatives to train health information technology (HIT) professionals in 12 workforce roles, half of them in community colleges. To achieve this, the ONC tasked five universities with established informatics programs with creating curricular materials that could be used by community colleges. The five universities created 20 components that were made available for downloading from the National Training and Dissemination Center (NTDC) website. This paper describes an evaluation of the curricular materials by its intended audience of educators. We measured the quantity of downloads from the NTDC site and administered a survey about the curricular materials to its registered users to determine use patterns and user characteristics. The survey was evaluated using mixed methods. Registered users downloaded nearly half a million units or components from the NTDC website. We surveyed these 9835 registered users. 1269 individuals completed all or part of the survey, of whom 339 identified themselves as educators (26.7% of all respondents). This paper addresses the survey responses of educators. Successful aspects of the curriculum included its breadth, convenience, hands-on and course planning capabilities. Several areas were identified for potential improvement. The ONC HIT curriculum met its goals for community college programs and will likely continue to be a valuable resource for the larger informatics community in the future.

  11. Space Tethers Programmatic Infusion Opportunities

    NASA Technical Reports Server (NTRS)

    Bonometti, J. A.; Frame, K. L.

    2005-01-01

    Programmatic opportunities abound for space Cables, Stringers and Tethers, justified by the tremendous performance advantages that these technologies offer and the rather wide gaps that must be filled by the NASA Exploration program, if the "sustainability goal" is to be met. A definition and characterization of the three categories are presented along with examples. A logical review of exploration requirements shows how each class can be infused throughout the program, from small experimental efforts to large system deployments. The economics of tethers in transportation is considered along with the impact of stringers for structural members. There is an array of synergistic methodologies that interlace their fabrication, implementation and operations. Cables, stringers and tethers can enhance a wide range of other space systems and technologies, including power storage, formation flying, instrumentation, docking mechanisms and long-life space components. The existing tether (i.e., MXER) program's accomplishments are considered consistent with NASA's new vision and can readily conform to requirements-driven technology development.

  12. Space station environmental control and life support systems test bed program - an overview

    NASA Astrophysics Data System (ADS)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space Station ECLSS Test Bed Program. The Space Station ECLSS Test Bed Program, which is managed by the NASA, is designed to parallel and to provide continuing support to the Space Station Program. The prime objective of this multiphase test bed program is to provide viable, mature, and enhancing technical options in time for Space Station implementation. To accomplish this objective, NASA is actively continuing the development and testing of critical components and engineering preprototype subsystems for urine processing, washwater recovery, water quality monitoring, carbon dioxide removal and reduction, and oxygen generation. As part of the ECLSS Test Bed Program, these regenerative subsystems and critical components are tested in a development laboratory to characterize subsystem performance and to identify areas in which further technical development is required. Proven concepts are then selected for development into prototype subsystems in which flight issues such as packaging and maintenance are addressed. These subsystems then are to be assembled as an integrated system and installed in an integrated systems test bed facility for extensive unmanned and manned testing.

  13. NASA Orbit Transfer Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.

  14. Large solar arrays

    NASA Technical Reports Server (NTRS)

    Crabtree, W. L.

    1980-01-01

    A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.

  15. Bioenergy Feedstock Development Program Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energymore » crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.« less

  16. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  17. Using a computer-based simulation with an artificial intelligence component and discovery learning to formulate training needs for a new technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillis, D.R.

    A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for amore » new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.« less

  18. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less

  19. Sodium-NaK engineering handbook. Volume III. Sodium systems, safety, handling, and instrumentation. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, O J

    1978-01-01

    The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK componentsmore » and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.« less

  20. An Analysis of Serial Number Tracking Automatic Identification Technology as Used in Naval Aviation Programs

    NASA Astrophysics Data System (ADS)

    Csorba, Robert

    2002-09-01

    The Government Accounting Office found that the Navy, between 1996 and 1998, lost 3 billion in materiel in-transit. This thesis explores the benefits and cost of automatic identification and serial number tracking technologies under consideration by the Naval Supply Systems Command and the Naval Air Systems Command. Detailed cost-savings estimates are made for each aircraft type in the Navy inventory. Project and item managers of repairable components using Serial Number Tracking were surveyed as to the value of this system. It concludes that two thirds of the in-transit losses can be avoided with implementation of effective information technology-based logistics and maintenance tracking systems. Recommendations are made for specific steps and components of such an implementation. Suggestions are made for further research.

Top