Time Series Decomposition into Oscillation Components and Phase Estimation.
Matsuda, Takeru; Komaki, Fumiyasu
2017-02-01
Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.
Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, V.
2018-06-01
Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.
The method of trend analysis of parameters time series of gas-turbine engine state
NASA Astrophysics Data System (ADS)
Hvozdeva, I.; Myrhorod, V.; Derenh, Y.
2017-10-01
This research substantiates an approach to interval estimation of time series trend component. The well-known methods of spectral and trend analysis are used for multidimensional data arrays. The interval estimation of trend component is proposed for the time series whose autocorrelation matrix possesses a prevailing eigenvalue. The properties of time series autocorrelation matrix are identified.
Detecting Land Cover Change by Trend and Seasonality of Remote Sensing Time Series
NASA Astrophysics Data System (ADS)
Oliveira, J. C.; Epiphanio, J. N.; Mello, M. P.
2013-05-01
Natural resource managers demand knowledge of information on the spatiotemporal dynamics of land use and land cover change, and detection and characteristics change over time is an initial step for the understanding of the mechanism of change. The propose of this research is the use the approach BFAST (Breaks For Additive Seasonal and Trend) for detects trend and seasonal changes within Normalized Difference Vegetation Index (NDVI) time series. BFAST integrates the decomposition of time series into trend, seasonal, and noise components with methods for detecting change within time series without the need to select a reference period, set a threshold, or define a change trajectory. BFAST iteratively estimates the time and number of changes, and characterizes change by its magnitude and direction. The general model is of the form Yt = Tt + St + et (t= 1,2,3,…, n) where Yt is the observed data at time t, Tt is the trend component, St is the seasonal component, and et is the remainder component. In this study was used MODIS NDVI time series datasets (MOD13Q1) over 11 years (2000 - 2010) on an intensive agricultural area in Mato Grosso - Brazil. At first it was applied a filter for noise reduction (4253H twice) over spectral curve of each MODIS pixel, and subsequently each time series was decomposed into seasonal, trend, and remainder components by BFAST. Were detected one abrupt change from a single pixel of forest and two abrupt changes on trend component to a pixel of the agricultural area. Figure 1 shows the number of phonological change with base in seasonal component for study area. This paper demonstrated the ability of the BFAST to detect long-term phenological change by analyzing time series while accounting for abrupt and gradual changes. The algorithm iteratively estimates the dates and number of changes occurring within seasonal and trend components, and characterizes changes by extracting the magnitude and direction of change. Changes occurring in the seasonal component indicate phenological changes, while changes occurring in the trend component indicate gradual and abrupt change. BFAST can be used to analyze different types of remotely sensed time series and can be applied to other time series such as econometrics, climatology, and hydrology. The algorithm used in this study is available in BFAT package for R from CRAN (http://cran.r-project.org/package=bfast).; Figure 1 - Number of the phonological change with base in seasonal component.
Multivariate Time Series Decomposition into Oscillation Components.
Matsuda, Takeru; Komaki, Fumiyasu
2017-08-01
Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.
Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series.
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
2001-01-01
Proposes a special rotation procedure for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average.…
Multiscale structure of time series revealed by the monotony spectrum.
Vamoş, Călin
2017-03-01
Observation of complex systems produces time series with specific dynamics at different time scales. The majority of the existing numerical methods for multiscale analysis first decompose the time series into several simpler components and the multiscale structure is given by the properties of their components. We present a numerical method which describes the multiscale structure of arbitrary time series without decomposing them. It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments with respect to the mean local time scale during successive averagings of the time series, the local time scales being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time series.
Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio
2015-12-01
This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.
A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis
NASA Astrophysics Data System (ADS)
Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz
2018-04-01
For the first time, we introduced the probabilistic principal component analysis (pPCA) regarding the spatio-temporal filtering of Global Navigation Satellite System (GNSS) position time series to estimate and remove Common Mode Error (CME) without the interpolation of missing values. We used data from the International GNSS Service (IGS) stations which contributed to the latest International Terrestrial Reference Frame (ITRF2014). The efficiency of the proposed algorithm was tested on the simulated incomplete time series, then CME was estimated for a set of 25 stations located in Central Europe. The newly applied pPCA was compared with previously used algorithms, which showed that this method is capable of resolving the problem of proper spatio-temporal filtering of GNSS time series characterized by different observation time span. We showed, that filtering can be carried out with pPCA method when there exist two time series in the dataset having less than 100 common epoch of observations. The 1st Principal Component (PC) explained more than 36% of the total variance represented by time series residuals' (series with deterministic model removed), what compared to the other PCs variances (less than 8%) means that common signals are significant in GNSS residuals. A clear improvement in the spectral indices of the power-law noise was noticed for the Up component, which is reflected by an average shift towards white noise from - 0.98 to - 0.67 (30%). We observed a significant average reduction in the accuracy of stations' velocity estimated for filtered residuals by 35, 28 and 69% for the North, East, and Up components, respectively. CME series were also subjected to analysis in the context of environmental mass loading influences of the filtering results. Subtraction of the environmental loading models from GNSS residuals provides to reduction of the estimated CME variance by 20 and 65% for horizontal and vertical components, respectively.
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, Vinayakam
2017-04-01
Precipitation is the major component in the hydrologic cycle. Awareness of not only the total amount of rainfall pertaining to a catchment, but also the pattern of its spatial and temporal distribution are equally important in the management of water resources systems in an efficient way. Trend is the long term direction of a time series; it determines the overall pattern of a time series. Singular Spectrum Analysis (SSA) is a time series analysis technique that decomposes the time series into small components (eigen triples). This property of the method of SSA has been utilized to extract the trend component of the rainfall time series. In order to derive trend from the rainfall time series, we need to select components corresponding to trend from the eigen triples. For this purpose, periodogram analysis of the eigen triples have been proposed to be coupled with SSA, in the present study. In the study, seasonal data of England and Wales Precipitation (EWP) for a time period of 1766-2013 have been analyzed and non linear trend have been derived out of the precipitation data. In order to compare the performance of SSA in deriving trend component, Mann Kendall (MK) test is also used to detect trends in EWP seasonal series and the results have been compared. The result showed that the MK test could detect the presence of positive or negative trend for a significance level, whereas the proposed methodology of SSA could extract the non-linear trend present in the rainfall series along with its shape. We will discuss further the comparison of both the methodologies along with the results in the presentation.
Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki
2004-04-01
We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.
Symplectic geometry spectrum regression for prediction of noisy time series
NASA Astrophysics Data System (ADS)
Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie
2016-05-01
We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).
A Four-Stage Hybrid Model for Hydrological Time Series Forecasting
Di, Chongli; Yang, Xiaohua; Wang, Xiaochao
2014-01-01
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782
A four-stage hybrid model for hydrological time series forecasting.
Di, Chongli; Yang, Xiaohua; Wang, Xiaochao
2014-01-01
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
A Nonlinear Dynamical Systems based Model for Stochastic Simulation of Streamflow
NASA Astrophysics Data System (ADS)
Erkyihun, S. T.; Rajagopalan, B.; Zagona, E. A.
2014-12-01
Traditional time series methods model the evolution of the underlying process as a linear or nonlinear function of the autocorrelation. These methods capture the distributional statistics but are incapable of providing insights into the dynamics of the process, the potential regimes, and predictability. This work develops a nonlinear dynamical model for stochastic simulation of streamflows. In this, first a wavelet spectral analysis is employed on the flow series to isolate dominant orthogonal quasi periodic timeseries components. The periodic bands are added denoting the 'signal' component of the time series and the residual being the 'noise' component. Next, the underlying nonlinear dynamics of this combined band time series is recovered. For this the univariate time series is embedded in a d-dimensional space with an appropriate lag T to recover the state space in which the dynamics unfolds. Predictability is assessed by quantifying the divergence of trajectories in the state space with time, as Lyapunov exponents. The nonlinear dynamics in conjunction with a K-nearest neighbor time resampling is used to simulate the combined band, to which the noise component is added to simulate the timeseries. We demonstrate this method by applying it to the data at Lees Ferry that comprises of both the paleo reconstructed and naturalized historic annual flow spanning 1490-2010. We identify interesting dynamics of the signal in the flow series and epochal behavior of predictability. These will be of immense use for water resources planning and management.
Filter-based multiscale entropy analysis of complex physiological time series.
Xu, Yuesheng; Zhao, Liang
2013-08-01
Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account.
Characterizing Time Series Data Diversity for Wind Forecasting: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Chartan, Erol Kevin; Feng, Cong
Wind forecasting plays an important role in integrating variable and uncertain wind power into the power grid. Various forecasting models have been developed to improve the forecasting accuracy. However, it is challenging to accurately compare the true forecasting performances from different methods and forecasters due to the lack of diversity in forecasting test datasets. This paper proposes a time series characteristic analysis approach to visualize and quantify wind time series diversity. The developed method first calculates six time series characteristic indices from various perspectives. Then the principal component analysis is performed to reduce the data dimension while preserving the importantmore » information. The diversity of the time series dataset is visualized by the geometric distribution of the newly constructed principal component space. The volume of the 3-dimensional (3D) convex polytope (or the length of 1D number axis, or the area of the 2D convex polygon) is used to quantify the time series data diversity. The method is tested with five datasets with various degrees of diversity.« less
Option pricing from wavelet-filtered financial series
NASA Astrophysics Data System (ADS)
de Almeida, V. T. X.; Moriconi, L.
2012-10-01
We perform wavelet decomposition of high frequency financial time series into large and small time scale components. Taking the FTSE100 index as a case study, and working with the Haar basis, it turns out that the small scale component defined by most (≃99.6%) of the wavelet coefficients can be neglected for the purpose of option premium evaluation. The relevance of the hugely compressed information provided by low-pass wavelet-filtering is related to the fact that the non-gaussian statistical structure of the original financial time series is essentially preserved for expiration times which are larger than just one trading day.
Common mode error in Antarctic GPS coordinate time series on its effect on bedrock-uplift estimates
NASA Astrophysics Data System (ADS)
Liu, Bin; King, Matt; Dai, Wujiao
2018-05-01
Spatially-correlated common mode error always exists in regional, or-larger, GPS networks. We applied independent component analysis (ICA) to GPS vertical coordinate time series in Antarctica from 2010 to 2014 and made a comparison with the principal component analysis (PCA). Using PCA/ICA, the time series can be decomposed into a set of temporal components and their spatial responses. We assume the components with common spatial responses are common mode error (CME). An average reduction of ˜40% about the RMS values was achieved in both PCA and ICA filtering. However, the common mode components obtained from the two approaches have different spatial and temporal features. ICA time series present interesting correlations with modeled atmospheric and non-tidal ocean loading displacements. A white noise (WN) plus power law noise (PL) model was adopted in the GPS velocity estimation using maximum likelihood estimation (MLE) analysis, with ˜55% reduction of the velocity uncertainties after filtering using ICA. Meanwhile, spatiotemporal filtering reduces the amplitude of PL and periodic terms in the GPS time series. Finally, we compare the GPS uplift velocities, after correction for elastic effects, with recent models of glacial isostatic adjustment (GIA). The agreements of the GPS observed velocities and four GIA models are generally improved after the spatiotemporal filtering, with a mean reduction of ˜0.9 mm/yr of the WRMS values, possibly allowing for more confident separation of various GIA model predictions.
Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.
Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa
2017-02-01
Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture-for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments-as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series-daily Poaceae pollen concentrations over the period 2006-2014-was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.
NASA Astrophysics Data System (ADS)
Kryanev, A. V.; Ivanov, V. V.; Romanova, A. O.; Sevastyanov, L. A.; Udumyan, D. K.
2018-03-01
This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the "trend component." At the second stage, the method of least squares is used to find the unknown variance σ2 of the noise component.
Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie
2018-04-01
A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.
Finding hidden periodic signals in time series - an application to stock prices
NASA Astrophysics Data System (ADS)
O'Shea, Michael
2014-03-01
Data in the form of time series appear in many areas of science. In cases where the periodicity is apparent and the only other contribution to the time series is stochastic in origin, the data can be `folded' to improve signal to noise and this has been done for light curves of variable stars with the folding resulting in a cleaner light curve signal. Stock index prices versus time are classic examples of time series. Repeating patterns have been claimed by many workers and include unusually large returns on small-cap stocks during the month of January, and small returns on the Dow Jones Industrial average (DJIA) in the months June through September compared to the rest of the year. Such observations imply that these prices have a periodic component. We investigate this for the DJIA. If such a component exists it is hidden in a large non-periodic variation and a large stochastic variation. We show how to extract this periodic component and for the first time reveal its yearly (averaged) shape. This periodic component leads directly to the `Sell in May and buy at Halloween' adage. We also drill down and show that this yearly variation emerges from approximately half of the underlying stocks making up the DJIA index.
A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...
NASA Astrophysics Data System (ADS)
Cohen-Waeber, J.; Bürgmann, R.; Chaussard, E.; Giannico, C.; Ferretti, A.
2018-02-01
Long-term landslide deformation is disruptive and costly in urbanized environments. We rely on TerraSAR-X satellite images (2009-2014) and an improved data processing algorithm (SqueeSAR™) to produce an exceptionally dense Interferometric Synthetic Aperture Radar ground deformation time series for the San Francisco East Bay Hills. Independent and principal component analyses of the time series reveal four distinct spatial and temporal surface deformation patterns in the area around Blakemont landslide, which we relate to different geomechanical processes. Two components of time-dependent landslide deformation isolate continuous motion and motion driven by precipitation-modulated pore pressure changes controlled by annual seasonal cycles and multiyear drought conditions. Two components capturing more widespread seasonal deformation separate precipitation-modulated soil swelling from annual cycles that may be related to groundwater level changes and thermal expansion of buildings. High-resolution characterization of landslide response to precipitation is a first step toward improved hazard forecasting.
NASA Astrophysics Data System (ADS)
Crockett, R. G. M.; Perrier, F.; Richon, P.
2009-04-01
Building on independent investigations by research groups at both IPGP, France, and the University of Northampton, UK, hourly-sampled radon time-series of durations exceeding one year have been investigated for periodic and anomalous phenomena using a variety of established and novel techniques. These time-series have been recorded in locations having no routine human behaviour and thus are effectively free of significant anthropogenic influences. With regard to periodic components, the long durations of these time-series allow, in principle, very high frequency resolutions for established spectral-measurement techniques such as Fourier and maximum-entropy. However, as has been widely observed, the stochastic nature of radon emissions from rocks and soils, coupled with sensitivity to a wide variety influences such as temperature, wind-speed and soil moisture-content has made interpretation of the results obtained by such techniques very difficult, with uncertain results, in many cases. We here report developments in the investigation of radon-time series for periodic and anomalous phenomena using spectral-decomposition techniques. These techniques, in variously separating ‘high', ‘middle' and ‘low' frequency components, effectively ‘de-noise' the data by allowing components of interest to be isolated from others which (might) serve to obscure weaker information-containing components. Once isolated, these components can be investigated using a variety of techniques. Whilst this is very much work in early stages of development, spectral decomposition methods have been used successfully to indicate the presence of diurnal and sub-diurnal cycles in radon concentration which we provisionally attribute to tidal influences. Also, these methods have been used to enhance the identification of short-duration anomalies, attributable to a variety of causes including, for example, earthquakes and rapid large-magnitude changes in weather conditions. Keywords: radon; earthquakes; tidal-influences; anomalies; time series; spectral-decomposition.
Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing
NASA Astrophysics Data System (ADS)
Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa
2017-02-01
Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.
NASA Astrophysics Data System (ADS)
Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.
2008-11-01
We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.
NASA Astrophysics Data System (ADS)
Juckett, David A.
2001-09-01
A more complete understanding of the periodic dynamics of the Sun requires continued exploration of non-11-year oscillations in addition to the benchmark 11-year sunspot cycle. In this regard, several solar, geomagnetic, and cosmic ray time series were examined to identify common spectral components and their relative phase relationships. Several non-11-year oscillations were identified within the near-decadal range with periods of ~8, 10, 12, 15, 18, 22, and 29 years. To test whether these frequency components were simply low-level noise or were related to a common source, the phases were extracted for each component in each series. The phases were nearly identical across the solar and geomagnetic series, while the corresponding components in four cosmic ray surrogate series exhibited inverted phases, similar to the known phase relationship with the 11-year sunspot cycle. Cluster analysis revealed that this pattern was unlikely to occur by chance. It was concluded that many non-11-year oscillations truly exist in the solar dynamical environment and that these contribute to the complex variations observed in geomagnetic and cosmic ray time series. Using the different energy sensitivities of the four cosmic ray surrogate series, a preliminary indication of the relative intensities of the various solar-induced oscillations was observed. It provides evidence that many of the non-11-year oscillations result from weak interplanetary magnetic field/solar wind oscillations that originate from corresponding variations in the open-field regions of the Sun.
NASA Astrophysics Data System (ADS)
Xie, Hong-Bo; Dokos, Socrates
2013-06-01
We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.
Xie, Hong-Bo; Dokos, Socrates
2013-06-01
We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.
The promise of the state space approach to time series analysis for nursing research.
Levy, Janet A; Elser, Heather E; Knobel, Robin B
2012-01-01
Nursing research, particularly related to physiological development, often depends on the collection of time series data. The state space approach to time series analysis has great potential to answer exploratory questions relevant to physiological development but has not been used extensively in nursing. The aim of the study was to introduce the state space approach to time series analysis and demonstrate potential applicability to neonatal monitoring and physiology. We present a set of univariate state space models; each one describing a process that generates a variable of interest over time. Each model is presented algebraically and a realization of the process is presented graphically from simulated data. This is followed by a discussion of how the model has been or may be used in two nursing projects on neonatal physiological development. The defining feature of the state space approach is the decomposition of the series into components that are functions of time; specifically, slowly varying level, faster varying periodic, and irregular components. State space models potentially simulate developmental processes where a phenomenon emerges and disappears before stabilizing, where the periodic component may become more regular with time, or where the developmental trajectory of a phenomenon is irregular. The ultimate contribution of this approach to nursing science will require close collaboration and cross-disciplinary education between nurses and statisticians.
Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S
2016-06-01
We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.
Noise analysis of GPS time series in Taiwan
NASA Astrophysics Data System (ADS)
Lee, You-Chia; Chang, Wu-Lung
2017-04-01
Global positioning system (GPS) usually used for researches of plate tectonics and crustal deformation. In most studies, GPS time series considered only time-independent noises (white noise), but time-dependent noises (flicker noise, random walk noise) which were found by nearly twenty years are also important to the precision of data. The rate uncertainties of stations will be underestimated if the GPS time series are assumed only time-independent noise. Therefore studying the noise properties of GPS time series is necessary in order to realize the precision and reliability of velocity estimates. The lengths of our GPS time series are from over 500 stations around Taiwan with time spans longer than 2.5 years up to 20 years. The GPS stations include different monument types such as deep drill braced, roof, metal tripod, and concrete pier, and the most common type in Taiwan is the metal tripod. We investigated the noise properties of continuous GPS time series by using the spectral index and amplitude of the power law noise. During the process we first remove the data outliers, and then estimate linear trend, size of offsets, and seasonal signals, and finally the amplitudes of the power-law and white noise are estimated simultaneously. Our preliminary results show that the noise amplitudes of the north component are smaller than that of the other two components, and the largest amplitudes are in the vertical. We also find that the amplitudes of white noise and power-law noises are positively correlated in three components. Comparisons of noise amplitudes of different monument types in Taiwan reveal that the deep drill braced monuments have smaller data uncertainties and therefore are more stable than other monuments.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)
2000-01-01
The use of the Principal Component Analysis technique for the analysis of geophysical time series has been questioned in particular for its tendency to extract components that mix several physical phenomena even when the signal is just their linear sum. We demonstrate with a data simulation experiment that the Independent Component Analysis, a recently developed technique, is able to solve this problem. This new technique requires the statistical independence of components, a stronger constraint, that uses higher-order statistics, instead of the classical decorrelation a weaker constraint, that uses only second-order statistics. Furthermore, ICA does not require additional a priori information such as the localization constraint used in Rotational Techniques.
Defense Applications of Signal Processing
1999-08-27
class of multiscale autoregressive moving average (MARMA) processes. These are generalisations of ARMA models in time series analysis , and they contain...including the two theoretical sinusoidal components. Analysis of the amplitude and frequency time series provided some novel insight into the real...communication channels, underwater acoustic signals, radar systems , economic time series and biomedical signals [7]. The alpha stable (aS) distribution has
NASA Astrophysics Data System (ADS)
Forootan, Ehsan; Kusche, Jürgen
2016-04-01
Geodetic/geophysical observations, such as the time series of global terrestrial water storage change or sea level and temperature change, represent samples of physical processes and therefore contain information about complex physical interactionswith many inherent time scales. Extracting relevant information from these samples, for example quantifying the seasonality of a physical process or its variability due to large-scale ocean-atmosphere interactions, is not possible by rendering simple time series approaches. In the last decades, decomposition techniques have found increasing interest for extracting patterns from geophysical observations. Traditionally, principal component analysis (PCA) and more recently independent component analysis (ICA) are common techniques to extract statistical orthogonal (uncorrelated) and independent modes that represent the maximum variance of observations, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the auto-covariance matrix or diagonalizing higher (than two)-order statistical tensors from centered time series. However, the stationary assumption is obviously not justifiable for many geophysical and climate variables even after removing cyclic components e.g., the seasonal cycles. In this paper, we present a new decomposition method, the complex independent component analysis (CICA, Forootan, PhD-2014), which can be applied to extract to non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA (Forootan and Kusche, JoG-2012), where we (i) define a new complex data set using a Hilbert transformation. The complex time series contain the observed values in their real part, and the temporal rate of variability in their imaginary part. (ii) An ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex data set in (i). (iii) Dominant non-stationary patterns are recognized as independent complex patterns that can be used to represent the space and time amplitude and phase propagations. We present the results of CICA on simulated and real cases e.g., for quantifying the impact of large-scale ocean-atmosphere interaction on global mass changes. Forootan (PhD-2014) Statistical signal decomposition techniques for analyzing time-variable satellite gravimetry data, PhD Thesis, University of Bonn, http://hss.ulb.uni-bonn.de/2014/3766/3766.htm Forootan and Kusche (JoG-2012) Separation of global time-variable gravity signals into maximally independent components, Journal of Geodesy 86 (7), 477-497, doi: 10.1007/s00190-011-0532-5
A first application of independent component analysis to extracting structure from stock returns.
Back, A D; Weigend, A S
1997-08-01
This paper explores the application of a signal processing technique known as independent component analysis (ICA) or blind source separation to multivariate financial time series such as a portfolio of stocks. The key idea of ICA is to linearly map the observed multivariate time series into a new space of statistically independent components (ICs). We apply ICA to three years of daily returns of the 28 largest Japanese stocks and compare the results with those obtained using principal component analysis. The results indicate that the estimated ICs fall into two categories, (i) infrequent large shocks (responsible for the major changes in the stock prices), and (ii) frequent smaller fluctuations (contributing little to the overall level of the stocks). We show that the overall stock price can be reconstructed surprisingly well by using a small number of thresholded weighted ICs. In contrast, when using shocks derived from principal components instead of independent components, the reconstructed price is less similar to the original one. ICA is shown to be a potentially powerful method of analyzing and understanding driving mechanisms in financial time series. The application to portfolio optimization is described in Chin and Weigend (1998).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... the prices originally quoted for each of the component option series within two hours after the time... series for the strategy at any one point in time over the previous two hours, not at separate points in time for each of the series.\\21\\ For example, an ATP Holder could not use the price of the April 2790...
Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)
NASA Technical Reports Server (NTRS)
Adelfang, Stanley I.
2008-01-01
Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected design case, the equations, the process and the simulated time series at multiple vehicle stations are presented.
Probe-Independent EEG Assessment of Mental Workload in Pilots
2015-05-18
Teager Energy Operator - Frequency Modulated Component - z- score 10.94 17.46 10 Hurst Exponent - Discrete Second Order Derivative 7.02 17.06 D. Best...Teager Energy Operator– Frequency Modulated Component – Z-score 45. Line Length – Time Series 46. Line Length – Time Series – Z-score 47. Hurst Exponent ...Discrete Second Order Derivative 48. Hurst Exponent – Wavelet Based Adaptation 49. Hurst Exponent – Rescaled Range 50. Hurst Exponent – Discrete
Duality between Time Series and Networks
Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.
2011-01-01
Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093
Røislien, Jo; Winje, Brita
2013-09-20
Clinical studies frequently include repeated measurements of individuals, often for long periods. We present a methodology for extracting common temporal features across a set of individual time series observations. In particular, the methodology explores extreme observations within the time series, such as spikes, as a possible common temporal phenomenon. Wavelet basis functions are attractive in this sense, as they are localized in both time and frequency domains simultaneously, allowing for localized feature extraction from a time-varying signal. We apply wavelet basis function decomposition of individual time series, with corresponding wavelet shrinkage to remove noise. We then extract common temporal features using linear principal component analysis on the wavelet coefficients, before inverse transformation back to the time domain for clinical interpretation. We demonstrate the methodology on a subset of a large fetal activity study aiming to identify temporal patterns in fetal movement (FM) count data in order to explore formal FM counting as a screening tool for identifying fetal compromise and thus preventing adverse birth outcomes. Copyright © 2013 John Wiley & Sons, Ltd.
Adaptive Decomposition of Highly Resolved Time Series into Local and Non‐local Components
Highly time-resolved air monitoring data are widely being collected over long time horizons in order to characterizeambient and near-source air quality trends. In many applications, it is desirable to split the time-resolved data into two ormore components (e.g., local and region...
NASA Astrophysics Data System (ADS)
García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.
2018-07-01
In the past few decades, it has been recognized that 1 / f fluctuations are ubiquitous in nature. The most widely used mathematical models to capture the long-term memory properties of 1 / f fluctuations have been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a model based on fractal stochastic and deterministic components that can provide a valuable basis for the study of complex systems with long-term correlations. The fractal stochastic component is assumed to be a fractional Brownian motion process and the deterministic component is assumed to be a band-limited signal. We also provide a method that, under the assumptions of this model, is able to characterize the fractal stochastic component and to provide an estimate of the deterministic components present in a given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-similar properties of the fractal processes in the wavelet domain. This method has been validated over simulated signals and over real signals with economical and biological origin. Real examples illustrate how our model may be useful for exploring the deterministic-stochastic duality of complex systems, and uncovering interesting patterns present in time series.
Comparison between four dissimilar solar panel configurations
NASA Astrophysics Data System (ADS)
Suleiman, K.; Ali, U. A.; Yusuf, Ibrahim; Koko, A. D.; Bala, S. I.
2017-12-01
Several studies on photovoltaic systems focused on how it operates and energy required in operating it. Little attention is paid on its configurations, modeling of mean time to system failure, availability, cost benefit and comparisons of parallel and series-parallel designs. In this research work, four system configurations were studied. Configuration I consists of two sub-components arranged in parallel with 24 V each, configuration II consists of four sub-components arranged logically in parallel with 12 V each, configuration III consists of four sub-components arranged in series-parallel with 8 V each, and configuration IV has six sub-components with 6 V each arranged in series-parallel. Comparative analysis was made using Chapman Kolmogorov's method. The derivation for explicit expression of mean time to system failure, steady state availability and cost benefit analysis were performed, based on the comparison. Ranking method was used to determine the optimal configuration of the systems. The results of analytical and numerical solutions of system availability and mean time to system failure were determined and it was found that configuration I is the optimal configuration.
Modelling of Vortex-Induced Loading on a Single-Blade Installation Setup
NASA Astrophysics Data System (ADS)
Skrzypiński, Witold; Gaunaa, Mac; Heinz, Joachim
2016-09-01
Vortex-induced integral loading fluctuations on a single suspended blade at various inflow angles were modeled in the presents work by means of stochastic modelling methods. The reference time series were obtained by 3D DES CFD computations carried out on the DTU 10MW reference wind turbine blade. In the reference time series, the flapwise force component, Fx, showed both higher absolute values and variation than the chordwise force component, Fz, for every inflow angle considered. For this reason, the present paper focused on modelling of the Fx and not the Fz whereas Fz would be modelled using exactly the same procedure. The reference time series were significantly different, depending on the inflow angle. This made the modelling of all the time series with a single and relatively simple engineering model challenging. In order to find model parameters, optimizations were carried out, based on the root-mean-square error between the Single-Sided Amplitude Spectra of the reference and modelled time series. In order to model well defined frequency peaks present at certain inflow angles, optimized sine functions were superposed on the stochastically modelled time series. The results showed that the modelling accuracy varied depending on the inflow angle. None the less, the modelled and reference time series showed a satisfactory general agreement in terms of their visual and frequency characteristics. This indicated that the proposed method is suitable to model loading fluctuations on suspended blades.
SaaS Platform for Time Series Data Handling
NASA Astrophysics Data System (ADS)
Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail
2018-02-01
The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.
The impact of seasonal signals on spatio-temporal filtering
NASA Astrophysics Data System (ADS)
Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz
2016-04-01
Existence of Common Mode Errors (CMEs) in permanent GNSS networks contribute to spatial and temporal correlation in residual time series. Time series from permanently observing GNSS stations of distance less than 2 000 km are similarly influenced by such CME sources as: mismodelling (Earth Orientation Parameters - EOP, satellite orbits or antenna phase center variations) during the process of the reference frame realization, large-scale atmospheric and hydrospheric effects as well as small scale crust deformations. Residuals obtained as a result of detrending and deseasonalising of topocentric GNSS time series arranged epoch-by-epoch form an observation matrix independently for each component (North, East, Up). CME is treated as internal structure of the data. Assuming a uniform temporal function across the network it is possible to filter CME out using PCA (Principal Component Analysis) approach. Some of above described CME sources may be reflected as a wide range of frequencies in GPS residual time series. In order to determine an impact of seasonal signals modeling to existence of spatial correlation in network and consequently the results of CME filtration, we chose two ways of modeling. The first approach was commonly presented by previous authors, who modeled with the Least-Squares Estimation (LSE) only annual and semi-annual oscillations. In the second one the set of residuals was a result of modeling of deterministic part that included fortnightly periods plus up to 9th harmonics of Chandlerian, tropical and draconitic oscillations. Correlation coefficients for residuals in parallel with KMO (Kaiser-Meyer-Olkin) statistic and Bartlett's test of sphericity were determined. For this research we used time series expressed in ITRF2008 provided by JPL (Jet Propulsion Laboratory). GPS processing was made using GIPSY-OASIS software in a PPP (Precise Point Positioning) mode. In order to form GPS station network that meet demands of uniform spatial response to the CME we chose 18 stations located in Central Europe. Created network extends up to 1500 kilometers. The KMO statistic indicate whether a component analysis may be useful for a chosen data set. We obtained KMO statistic value of 0.87 and 0.62 for residuals of Up component after first and second approaches were applied, what means that both residuals share common errors. Bartlett's test of sphericity analysis met a requirement that in both cases there are correlations in residuals. Another important results are the eigenvalues expressed as a percentage of the total variance explained by the first few components in PCA. For North, East and Up component we obtain respectively 68%, 75%, 65% and 47%, 54%, 52% after first and second approaches were applied. The results of CME filtration using PCA approach performed on both residual time series influence directly the uncertainty of the velocity of permanent stations. In our case spatial filtering reduces the uncertainty of velocity from 0.5 to 0.8 mm for horizontal components and from 0.6 to 0.9 mm on average for Up component when annual and semi-annual signals were assumed. Nevertheless, while second approach to the deterministic part modelling was used, deterioration of velocity uncertainty was noticed only for Up component, probably due to much higher autocorrelation in the time series when comparing to horizontal components.
Interpretation of a compositional time series
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, R.; van den Boogaart, K. G.
2012-04-01
Common methods for multivariate time series analysis use linear operations, from the definition of a time-lagged covariance/correlation to the prediction of new outcomes. However, when the time series response is a composition (a vector of positive components showing the relative importance of a set of parts in a total, like percentages and proportions), then linear operations are afflicted of several problems. For instance, it has been long recognised that (auto/cross-)correlations between raw percentages are spurious, more dependent on which other components are being considered than on any natural link between the components of interest. Also, a long-term forecast of a composition in models with a linear trend will ultimately predict negative components. In general terms, compositional data should not be treated in a raw scale, but after a log-ratio transformation (Aitchison, 1986: The statistical analysis of compositional data. Chapman and Hill). This is so because the information conveyed by a compositional data is relative, as stated in their definition. The principle of working in coordinates allows to apply any sort of multivariate analysis to a log-ratio transformed composition, as long as this transformation is invertible. This principle is of full application to time series analysis. We will discuss how results (both auto/cross-correlation functions and predictions) can be back-transformed, viewed and interpreted in a meaningful way. One view is to use the exhaustive set of all possible pairwise log-ratios, which allows to express the results into D(D - 1)/2 separate, interpretable sets of one-dimensional models showing the behaviour of each possible pairwise log-ratios. Another view is the interpretation of estimated coefficients or correlations back-transformed in terms of compositions. These two views are compatible and complementary. These issues are illustrated with time series of seasonal precipitation patterns at different rain gauges of the USA. In this data set, the proportion of annual precipitation falling in winter, spring, summer and autumn is considered a 4-component time series. Three invertible log-ratios are defined for calculations, balancing rainfall in autumn vs. winter, in summer vs. spring, and in autumn-winter vs. spring-summer. Results suggest a 2-year correlation range, and certain oscillatory behaviour in the last balance, which does not occur in the other two.
Theoretical Series Elastic Element Length in Rana pipiens Sartorius Muscles
Matsumoto, Yorimi
1967-01-01
Assuming a two component system for the muscle, a series elastic element and a contractile component, the analyses of the isotonic and isometric data points were related to obtain the series elastic stiffness, dP/dls, from the relation, See PDF for Equation From the isometric data, dP/dt was obtained and shortening velocity, v, was a result of the isotonic experiments. Substituting (P 0 - P)/T for dP/dt and (P 0 - P)/(P + a) times b for v, dP/dls = (P + a) /bT, where P < P 0, and a, b are constants for any lengths l ≤ l 0 (Matsumoto, 1965). If the isometric tension and the shortening velocity are recorded for a given muscle length, l 0, although the series elastic, ls, and the contractile component, lc, are changing, the total muscle length, l 0 remains fixed and therefore the time constant, T. Integrating, See PDF for Equation the stress-strain relation for the series elastic element, See PDF for Equation is obtained; l sc0 - ls + l c0where l co equals the contractile component length for a muscle exerting a tension of P 0. For a given P/P 0, ls is uniquely determined and must be the same whether on the isotonic or isometric length-tension-time curve. In fact, a locus on one surface curve can be associated with the corresponding locus on the other. PMID:6033578
Time series, correlation matrices and random matrix models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinayak; Seligman, Thomas H.
2014-01-08
In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series.more » By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.« less
Temporal evolution of total ozone and circulation patterns over European mid-latitudes
NASA Astrophysics Data System (ADS)
Monge Sanz, B. M.; Casale, G. R.; Palmieri, S.; Siani, A. M.
2003-04-01
Linear correlation analysis and the running correlation technique are used to investigate the interannual and interdecadal variations of total ozone (TO) over several mid-latitude European locations. The study includes the longest series of ozone data, that of the Swiss station of Arosa. TO series have been related to time series of two circulation indices, the North Atlantic Oscillation Index (NAOI) and the Arctic Oscillation Index (AOI). The analysis has been performed with monthly data, and both series containing all the months of the year and winter (DJFM) series have been used. Special attention has been given to winter series, which exhibit very high correlation coefficients with NAOI and AOI; interannual variations of this relationship are studied by applying the running correlation technique. TO and circulation indices data series have been also partitioned into their different time-scale components with the Kolmogorov-Zurbenko method. Long-term components indicate the existence of strong opposite connection between total ozone and circulation patterns over the studied region during the last three decades. However, it is also observed that this relation has not always been so, and in previous times differences in the correlation amplitude and sign have been detected.
Extending the soil moisture record of the climate reference network with machine learning
USDA-ARS?s Scientific Manuscript database
Soil moisture estimation is crucial for agricultural decision-support and a key component of hydrological and climatic research. Unfortunately, quality-controlled soil moisture time series data are uncommon before the most recent decade. However, time series data for precipitation are accessible at ...
Model Performance Evaluation and Scenario Analysis ...
This tool consists of two parts: model performance evaluation and scenario analysis (MPESA). The model performance evaluation consists of two components: model performance evaluation metrics and model diagnostics. These metrics provides modelers with statistical goodness-of-fit measures that capture magnitude only, sequence only, and combined magnitude and sequence errors. The performance measures include error analysis, coefficient of determination, Nash-Sutcliffe efficiency, and a new weighted rank method. These performance metrics only provide useful information about the overall model performance. Note that MPESA is based on the separation of observed and simulated time series into magnitude and sequence components. The separation of time series into magnitude and sequence components and the reconstruction back to time series provides diagnostic insights to modelers. For example, traditional approaches lack the capability to identify if the source of uncertainty in the simulated data is due to the quality of the input data or the way the analyst adjusted the model parameters. This report presents a suite of model diagnostics that identify if mismatches between observed and simulated data result from magnitude or sequence related errors. MPESA offers graphical and statistical options that allow HSPF users to compare observed and simulated time series and identify the parameter values to adjust or the input data to modify. The scenario analysis part of the too
Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C
2004-09-08
Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of alpha-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Calpha coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of alpha-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of alpha-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins. Copyright 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C.
2004-09-01
Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of α-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Cα coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of α-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of α-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins.
Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...
39 CFR 262.6 - Retention and disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of time between the creation of a series and its authorized disposal date; however, in some cases it... series that are maintained by components of the Postal Service; it provides maintenance, retention, transfer, and disposal instructions for each series listed, and serves as the authority for Postal...
39 CFR 262.6 - Retention and disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of time between the creation of a series and its authorized disposal date; however, in some cases it... series that are maintained by components of the Postal Service; it provides maintenance, retention, transfer, and disposal instructions for each series listed, and serves as the authority for Postal...
39 CFR 262.6 - Retention and disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of time between the creation of a series and its authorized disposal date; however, in some cases it... series that are maintained by components of the Postal Service; it provides maintenance, retention, transfer, and disposal instructions for each series listed, and serves as the authority for Postal...
39 CFR 262.6 - Retention and disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of time between the creation of a series and its authorized disposal date; however, in some cases it... series that are maintained by components of the Postal Service; it provides maintenance, retention, transfer, and disposal instructions for each series listed, and serves as the authority for Postal...
39 CFR 262.6 - Retention and disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of time between the creation of a series and its authorized disposal date; however, in some cases it... series that are maintained by components of the Postal Service; it provides maintenance, retention, transfer, and disposal instructions for each series listed, and serves as the authority for Postal...
NASA Astrophysics Data System (ADS)
Li, Lingqi; Gottschalk, Lars; Krasovskaia, Irina; Xiong, Lihua
2018-01-01
Reconstruction of missing runoff data is of important significance to solve contradictions between the common situation of gaps and the fundamental necessity of complete time series for reliable hydrological research. The conventional empirical orthogonal functions (EOF) approach has been documented to be useful for interpolating hydrological series based upon spatiotemporal decomposition of runoff variation patterns, without additional measurements (e.g., precipitation, land cover). This study develops a new EOF-based approach (abbreviated as CEOF) that conditions EOF expansion on the oscillations at outlet (or any other reference station) of a target basin and creates a set of residual series by removing the dependence on this reference series, in order to redefine the amplitude functions (components). This development allows a transparent hydrological interpretation of the dimensionless components and thereby strengthens their capacities to explain various runoff regimes in a basin. The two approaches are demonstrated on an application of discharge observations from the Ganjiang basin, China. Two alternatives for determining amplitude functions based on centred and standardised series, respectively, are tested. The convergence in the reconstruction of observations at different sites as a function of the number of components and its relation to the characteristics of the site are analysed. Results indicate that the CEOF approach offers an efficient way to restore runoff records with only one to four components; it shows more superiority in nested large basins than at headwater sites and often performs better than the EOF approach when using standardised series, especially in improving infilling accuracy for low flows. Comparisons against other interpolation methods (i.e., nearest neighbour, linear regression, inverse distance weighting) further confirm the advantage of the EOF-based approaches in avoiding spatial and temporal inconsistencies in estimated series.
Forecasting daily meteorological time series using ARIMA and regression models
NASA Astrophysics Data System (ADS)
Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir
2018-04-01
The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
NASA Astrophysics Data System (ADS)
Forootan, Ehsan; Kusche, Jürgen; Talpe, Matthieu; Shum, C. K.; Schmidt, Michael
2017-12-01
In recent decades, decomposition techniques have enabled increasingly more applications for dimension reduction, as well as extraction of additional information from geophysical time series. Traditionally, the principal component analysis (PCA)/empirical orthogonal function (EOF) method and more recently the independent component analysis (ICA) have been applied to extract, statistical orthogonal (uncorrelated), and independent modes that represent the maximum variance of time series, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the autocovariance matrix and diagonalizing higher (than two) order statistical tensors from centered time series, respectively. However, the stationarity assumption in these techniques is not justified for many geophysical and climate variables even after removing cyclic components, e.g., the commonly removed dominant seasonal cycles. In this paper, we present a novel decomposition method, the complex independent component analysis (CICA), which can be applied to extract non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA, where (a) we first define a new complex dataset that contains the observed time series in its real part, and their Hilbert transformed series as its imaginary part, (b) an ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex dataset in (a), and finally, (c) the dominant independent complex modes are extracted and used to represent the dominant space and time amplitudes and associated phase propagation patterns. The performance of CICA is examined by analyzing synthetic data constructed from multiple physically meaningful modes in a simulation framework, with known truth. Next, global terrestrial water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) gravimetry mission (2003-2016), and satellite radiometric sea surface temperature (SST) data (1982-2016) over the Atlantic and Pacific Oceans are used with the aim of demonstrating signal separations of the North Atlantic Oscillation (NAO) from the Atlantic Multi-decadal Oscillation (AMO), and the El Niño Southern Oscillation (ENSO) from the Pacific Decadal Oscillation (PDO). CICA results indicate that ENSO-related patterns can be extracted from the Gravity Recovery And Climate Experiment Terrestrial Water Storage (GRACE TWS) with an accuracy of 0.5-1 cm in terms of equivalent water height (EWH). The magnitude of errors in extracting NAO or AMO from SST data using the complex EOF (CEOF) approach reaches up to 50% of the signal itself, while it is reduced to 16% when applying CICA. Larger errors with magnitudes of 100% and 30% of the signal itself are found while separating ENSO from PDO using CEOF and CICA, respectively. We thus conclude that the CICA is more effective than CEOF in separating non-stationary patterns.
Computation of canonical correlation and best predictable aspect of future for time series
NASA Technical Reports Server (NTRS)
Pourahmadi, Mohsen; Miamee, A. G.
1989-01-01
The canonical correlation between the (infinite) past and future of a stationary time series is shown to be the limit of the canonical correlation between the (infinite) past and (finite) future, and computation of the latter is reduced to a (generalized) eigenvalue problem involving (finite) matrices. This provides a convenient and essentially, finite-dimensional algorithm for computing canonical correlations and components of a time series. An upper bound is conjectured for the largest canonical correlation.
Fitzgerald, Michael G.; Karlinger, Michael R.
1983-01-01
Time-series models were constructed for analysis of daily runoff and sediment discharge data from selected rivers of the Eastern United States. Logarithmic transformation and first-order differencing of the data sets were necessary to produce second-order, stationary time series and remove seasonal trends. Cyclic models accounted for less than 42 percent of the variance in the water series and 31 percent in the sediment series. Analysis of the apparent oscillations of given frequencies occurring in the data indicates that frequently occurring storms can account for as much as 50 percent of the variation in sediment discharge. Components of the frequency analysis indicate that a linear representation is reasonable for the water-sediment system. Models that incorporate lagged water discharge as input prove superior to univariate techniques in modeling and prediction of sediment discharges. The random component of the models includes errors in measurement and model hypothesis and indicates no serial correlation. An index of sediment production within or between drain-gage basins can be calculated from model parameters.
3-component time-dependent crustal deformation in Southern California from Sentinel-1 and GPS
NASA Astrophysics Data System (ADS)
Tymofyeyeva, E.; Fialko, Y. A.
2017-12-01
We combine data from the Sentinel-1 InSAR mission collected between 2014-2017 with continuous GPS measurements to calculate the three components of the interseismic surface velocity field in Southern California at the resolution of InSAR data ( 100 m). We use overlapping InSAR tracks with two different look geometries (descending tracks 71, 173, and 144, and ascending tracks 64 and 166) to obtain the 3 orthogonal components of surface motion. Because of the under-determined nature of the problem, we use the local azimuth of the horizontal velocity vector as an additional constraint. The spatially variable azimuths of the horizontal velocity are obtained by interpolating data from the continuous GPS network. We estimate both secular velocities and displacement time series. The latter are obtained by combining InSAR time series from different lines of sight with time-dependent azimuths computed using continuous GPS time series at every InSAR epoch. We use the CANDIS method [Tymofyeyeva and Fialko, 2015], a technique based on iterative common point stacking, to correct the InSAR data for tropospheric and ionospheric artifacts when calculating secular velocities and time series, and to isolate low-amplitude deformation signals in our study region. The obtained horizontal (East and North) components of secular velocity exhibit long-wavelength patterns consistent with strain accumulation on major faults of the Pacific-North America plate boundary. The vertical component of velocity reveals a number of localized uplift and subsidence anomalies, most likely related to hydrologic effects and anthropogenic activity. In particular, in the Los Angeles basin we observe localized uplift of about 10-15mm/yr near Anaheim, Long Beach, and Redondo Beach, as well as areas of rapid subsidence near Irvine and Santa Monica, which are likely caused by the injection of water in the oil fields, and the pumping and recharge cycles of the aquifers in the basin.
Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations.
Buras, Allan; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Ahlgrimm, Svenja; Hermann, Philipp; Simard, Sonia; Heinrich, Ingo; Helle, Gerd; Unterseher, Martin; Schnittler, Martin; Eusemann, Pascal; Wilmking, Martin
2016-01-01
This paper introduces a new approach-the Principal Component Gradient Analysis (PCGA)-to detect ecological gradients in time-series populations, i.e. several time-series originating from different individuals of a population. Detection of ecological gradients is of particular importance when dealing with time-series from heterogeneous populations which express differing trends. PCGA makes use of polar coordinates of loadings from the first two axes obtained by principal component analysis (PCA) to define groups of similar trends. Based on the mean inter-series correlation (rbar) the gain of increasing a common underlying signal by PCGA groups is quantified using Monte Carlo Simulations. In terms of validation PCGA is compared to three other existing approaches. Focusing on dendrochronological examples, PCGA is shown to correctly determine population gradients and in particular cases to be advantageous over other considered methods. Furthermore, PCGA groups in each example allowed for enhancing the strength of a common underlying signal and comparably well as hierarchical cluster analysis. Our results indicate that PCGA potentially allows for a better understanding of mechanisms causing time-series population gradients as well as objectively enhancing the performance of climate transfer functions in dendroclimatology. While our examples highlight the relevance of PCGA to the field of dendrochronology, we believe that also other disciplines working with data of comparable structure may benefit from PCGA.
Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations
Buras, Allan; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Ahlgrimm, Svenja; Hermann, Philipp; Simard, Sonia; Heinrich, Ingo; Helle, Gerd; Unterseher, Martin; Schnittler, Martin; Eusemann, Pascal; Wilmking, Martin
2016-01-01
This paper introduces a new approach–the Principal Component Gradient Analysis (PCGA)–to detect ecological gradients in time-series populations, i.e. several time-series originating from different individuals of a population. Detection of ecological gradients is of particular importance when dealing with time-series from heterogeneous populations which express differing trends. PCGA makes use of polar coordinates of loadings from the first two axes obtained by principal component analysis (PCA) to define groups of similar trends. Based on the mean inter-series correlation (rbar) the gain of increasing a common underlying signal by PCGA groups is quantified using Monte Carlo Simulations. In terms of validation PCGA is compared to three other existing approaches. Focusing on dendrochronological examples, PCGA is shown to correctly determine population gradients and in particular cases to be advantageous over other considered methods. Furthermore, PCGA groups in each example allowed for enhancing the strength of a common underlying signal and comparably well as hierarchical cluster analysis. Our results indicate that PCGA potentially allows for a better understanding of mechanisms causing time-series population gradients as well as objectively enhancing the performance of climate transfer functions in dendroclimatology. While our examples highlight the relevance of PCGA to the field of dendrochronology, we believe that also other disciplines working with data of comparable structure may benefit from PCGA. PMID:27467508
ERIC Educational Resources Information Center
Smallwood, Jonathan; McSpadden, Merrill; Luus, Bryan; Schooler, Joanthan
2008-01-01
Using principal component analysis, we examined whether structural properties in the time series of response time would identify different mental states during a continuous performance task. We examined whether it was possible to identify regular patterns which were present in blocks classified as lacking controlled processing, either…
Plazas-Nossa, Leonardo; Torres, Andrés
2014-01-01
The objective of this work is to introduce a forecasting method for UV-Vis spectrometry time series that combines principal component analysis (PCA) and discrete Fourier transform (DFT), and to compare the results obtained with those obtained by using DFT. Three time series for three different study sites were used: (i) Salitre wastewater treatment plant (WWTP) in Bogotá; (ii) Gibraltar pumping station in Bogotá; and (iii) San Fernando WWTP in Itagüí (in the south part of Medellín). Each of these time series had an equal number of samples (1051). In general terms, the results obtained are hardly generalizable, as they seem to be highly dependent on specific water system dynamics; however, some trends can be outlined: (i) for UV range, DFT and PCA/DFT forecasting accuracy were almost the same; (ii) for visible range, the PCA/DFT forecasting procedure proposed gives systematically lower forecasting errors and variability than those obtained with the DFT procedure; and (iii) for short forecasting times the PCA/DFT procedure proposed is more suitable than the DFT procedure, according to processing times obtained.
NASA Astrophysics Data System (ADS)
Menne, Matthew J.; Williams, Claude N., Jr.
2005-10-01
An evaluation of three hypothesis test statistics that are commonly used in the detection of undocumented changepoints is described. The goal of the evaluation was to determine whether the use of multiple tests could improve undocumented, artificial changepoint detection skill in climate series. The use of successive hypothesis testing is compared to optimal approaches, both of which are designed for situations in which multiple undocumented changepoints may be present. In addition, the importance of the form of the composite climate reference series is evaluated, particularly with regard to the impact of undocumented changepoints in the various component series that are used to calculate the composite.In a comparison of single test changepoint detection skill, the composite reference series formulation is shown to be less important than the choice of the hypothesis test statistic, provided that the composite is calculated from the serially complete and homogeneous component series. However, each of the evaluated composite series is not equally susceptible to the presence of changepoints in its components, which may be erroneously attributed to the target series. Moreover, a reference formulation that is based on the averaging of the first-difference component series is susceptible to random walks when the composition of the component series changes through time (e.g., values are missing), and its use is, therefore, not recommended. When more than one test is required to reject the null hypothesis of no changepoint, the number of detected changepoints is reduced proportionately less than the number of false alarms in a wide variety of Monte Carlo simulations. Consequently, a consensus of hypothesis tests appears to improve undocumented changepoint detection skill, especially when reference series homogeneity is violated. A consensus of successive hypothesis tests using a semihierarchic splitting algorithm also compares favorably to optimal solutions, even when changepoints are not hierarchic.
Time series analysis of ozone data in Isfahan
NASA Astrophysics Data System (ADS)
Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.
2008-07-01
Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.
NASA Astrophysics Data System (ADS)
Wang, H.; Cheng, J.
2017-12-01
A method to Synthesis natural electric and magnetic Time series is proposed whereby the time series of local site are derived using an Impulse Response and a reference (STIR). The method is based on the assumption that the external source of magnetic fields are uniform, and the electric and magnetic fields acquired at the surface satisfy a time-independent linear relation in frequency domain.According to the convolution theorem, we can synthesize natural electric and magnetic time series using the impulse responses of inter-station transfer functions with a reference. Applying this method, two impulse responses need to be estimated: the quasi-MT impulse response tensor and the horizontal magnetic impulse response tensor. These impulse response tensors relate the local horizontal electric and magnetic components with the horizontal magnetic components at a reference site, respectively. Some clean segments of times series are selected to estimate impulse responses by using least-square (LS) method. STIR is similar with STIN (Wang, 2017), but STIR does not need to estimate the inter-station transfer functions, and the synthesized data are more accurate in high frequency, where STIN fails when the inter-station transfer functions are contaminated severely. A test with good quality of MT data shows that synthetic time-series are similar to natural electric and magnetic time series. For contaminated AMT example, when this method is used to remove noise present at the local site, the scatter of MT sounding curves are clear reduced, and the data quality are improved. *This work is funded by National Key R&D Program of China(2017YFC0804105),National Natural Science Foundation of China (41604064, 51574250), State Key Laboratory of Coal Resources and Safe Mining ,China University of Mining & Technology,(SKLCRSM16DC09)
Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...
Using Exponential Smoothing to Specify Intervention Models for Interrupted Time Series.
ERIC Educational Resources Information Center
Mandell, Marvin B.; Bretschneider, Stuart I.
1984-01-01
The authors demonstrate how exponential smoothing can play a role in the identification of the intervention component of an interrupted time-series design model that is analogous to the role that the sample autocorrelation and partial autocorrelation functions serve in the identification of the noise portion of such a model. (Author/BW)
Dynamic correlations at different time-scales with empirical mode decomposition
NASA Astrophysics Data System (ADS)
Nava, Noemi; Di Matteo, T.; Aste, Tomaso
2018-07-01
We introduce a simple approach which combines Empirical Mode Decomposition (EMD) and Pearson's cross-correlations over rolling windows to quantify dynamic dependency at different time scales. The EMD is a tool to separate time series into implicit components which oscillate at different time-scales. We apply this decomposition to intraday time series of the following three financial indices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatility index USA), obtaining time-varying multidimensional cross-correlations at different time-scales. The correlations computed over a rolling window are compared across the three indices, across the components at different time-scales and across different time lags. We uncover a rich heterogeneity of interactions, which depends on the time-scale and has important lead-lag relations that could have practical use for portfolio management, risk estimation and investment decisions.
NASA Astrophysics Data System (ADS)
Tian, Yunfeng; Shen, Zheng-Kang
2016-02-01
We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common-mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long-term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root-mean-square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long-range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation-based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.
2017-10-03
and Microbiome Research Seminar Series . Baylor College of Medicine. 10/26/16. 12. "Rewiring the DNA binding domains ofbacterial two-component system...Structural and Quantitative Biology Seminar Series . 11/16/15. 16. "Engineering bacterial two component signal transduction systems to function as sensors...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
POD Model Reconstruction for Gray-Box Fault Detection
NASA Technical Reports Server (NTRS)
Park, Han; Zak, Michail
2007-01-01
Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.
NASA Astrophysics Data System (ADS)
Yu, Hongjuan; Guo, Jinyun; Kong, Qiaoli; Chen, Xiaodong
2018-04-01
The static observation data from a relative gravimeter contain noise and signals such as gravity tides. This paper focuses on the extraction of the gravity tides from the static relative gravimeter data for the first time applying the combined method of empirical mode decomposition (EMD) and independent component analysis (ICA), called the EMD-ICA method. The experimental results from the CG-5 gravimeter (SCINTREX Limited Ontario Canada) data show that the gravity tides time series derived by EMD-ICA are consistent with the theoretical reference (Longman formula) and the RMS of their differences only reaches 4.4 μGal. The time series of the gravity tides derived by EMD-ICA have a strong correlation with the theoretical time series and the correlation coefficient is greater than 0.997. The accuracy of the gravity tides estimated by EMD-ICA is comparable to the theoretical model and is slightly higher than that of independent component analysis (ICA). EMD-ICA could overcome the limitation of ICA having to process multiple observations and slightly improve the extraction accuracy and reliability of gravity tides from relative gravimeter data compared to that estimated with ICA.
NASA Astrophysics Data System (ADS)
Chanard, Kristel; Fleitout, Luce; Calais, Eric; Rebischung, Paul; Avouac, Jean-Philippe
2018-04-01
We model surface displacements induced by variations in continental water, atmospheric pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree-1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field from a comparison between our GRACE-derived model, with no a priori degree 1 loads, and the GNSS observations. We show that this approach reconciles GRACE-derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree-1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE-derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first-order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series.
Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue
2017-01-01
Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques. PMID:28383496
Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue
2017-04-06
Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)
2001-01-01
The Independent Component Analysis is a recently developed technique for component extraction. This new method requires the statistical independence of the extracted components, a stronger constraint that uses higher-order statistics, instead of the classical decorrelation, a weaker constraint that uses only second-order statistics. This technique has been used recently for the analysis of geophysical time series with the goal of investigating the causes of variability in observed data (i.e. exploratory approach). We demonstrate with a data simulation experiment that, if initialized with a Principal Component Analysis, the Independent Component Analysis performs a rotation of the classical PCA (or EOF) solution. This rotation uses no localization criterion like other Rotation Techniques (RT), only the global generalization of decorrelation by statistical independence is used. This rotation of the PCA solution seems to be able to solve the tendency of PCA to mix several physical phenomena, even when the signal is just their linear sum.
NASA Technical Reports Server (NTRS)
Levy, Lionel L., Jr.; Yoshikawa, Kenneth K.
1959-01-01
A method based on linearized and slender-body theories, which is easily adapted to electronic-machine computing equipment, is developed for calculating the zero-lift wave drag of single- and multiple-component configurations from a knowledge of the second derivative of the area distribution of a series of equivalent bodies of revolution. The accuracy and computational time required of the method to calculate zero-lift wave drag is evaluated relative to another numerical method which employs the Tchebichef form of harmonic analysis of the area distribution of a series of equivalent bodies of revolution. The results of the evaluation indicate that the total zero-lift wave drag of a multiple-component configuration can generally be calculated most accurately as the sum of the zero-lift wave drag of each component alone plus the zero-lift interference wave drag between all pairs of components. The accuracy and computational time required of both methods to calculate total zero-lift wave drag at supersonic Mach numbers is comparable for airplane-type configurations. For systems of bodies of revolution both methods yield similar results with comparable accuracy; however, the present method only requires up to 60 percent of the computing time required of the harmonic-analysis method for two bodies of revolution and less time for a larger number of bodies.
A novel water quality data analysis framework based on time-series data mining.
Deng, Weihui; Wang, Guoyin
2017-07-01
The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eckert, Sandra
2016-08-01
The SPOT-5 Take 5 campaign provided SPOT time series data of an unprecedented spatial and temporal resolution. We analysed 29 scenes acquired between May and September 2015 of a semi-arid region in the foothills of Mount Kenya, with two aims: first, to distinguish rainfed from irrigated cropland and cropland from natural vegetation covers, which show similar reflectance patterns; and second, to identify individual crop types. We tested several input data sets in different combinations: the spectral bands and the normalized difference vegetation index (NDVI) time series, principal components of NDVI time series, and selected NDVI time series statistics. For the classification we used random forests (RF). In the test differentiating rainfed cropland, irrigated cropland, and natural vegetation covers, the best classification accuracies were achieved using spectral bands. For the differentiation of crop types, we analysed the phenology of selected crop types based on NDVI time series. First results are promising.
NASA Astrophysics Data System (ADS)
Bengulescu, Marc; Blanc, Philippe; Wald, Lucien
2016-04-01
An analysis of the variability of the surface solar irradiance (SSI) at different local time-scales is presented in this study. Since geophysical signals, such as long-term measurements of the SSI, are often produced by the non-linear interaction of deterministic physical processes that may also be under the influence of non-stationary external forcings, the Hilbert-Huang transform (HHT), an adaptive, noise-assisted, data-driven technique, is employed to extract locally - in time and in space - the embedded intrinsic scales at which a signal oscillates. The transform consists of two distinct steps. First, by means of the Empirical Mode Decomposition (EMD), the time-series is "de-constructed" into a finite number - often small - of zero-mean components that have distinct temporal scales of variability, termed hereinafter the Intrinsic Mode Functions (IMFs). The signal model of the components is an amplitude modulation - frequency modulation (AM - FM) one, and can also be thought of as an extension of a Fourier series having both time varying amplitude and frequency. Following the decomposition, Hilbert spectral analysis is then employed on the IMFs, yielding a time-frequency-energy representation that portrays changes in the spectral contents of the original data, with respect to time. As measurements of surface solar irradiance may possibly be contaminated by the manifestation of different type of stochastic processes (i.e. noise), the identification of real, physical processes from this background of random fluctuations is of interest. To this end, an adaptive background noise null hypothesis is assumed, based on the robust statistical properties of the EMD when applied to time-series of different classes of noise (e.g. white, red or fractional Gaussian). Since the algorithm acts as an efficient constant-Q dyadic, "wavelet-like", filter bank, the different noise inputs are decomposed into components having the same spectral shape, but that are translated to the next lower octave in the spectral domain. Thus, when the sampling step is increased, the spectral shape of IMFs cannot remain at its original position, due to the new lower Nyquist frequency, and is instead pushed toward the lower scaled frequency. Based on these features, the identification of potential signals within the data should become possible without any prior knowledge of the background noises. When applying the above outlined procedure to decennial time-series of surface solar irradiance, only the component that has an annual time-scale of variability is shown to have statistical properties that diverge from those of noise. Nevertheless, the noise-like components are not completely devoid of information, as it is found that their AM components have a non-null rank correlation coefficient with the annual mode, i.e. the background noise intensity seems to be modulated by the seasonal cycle. The findings have possible implications on the modelling and forecast of the surface solar irradiance, by discriminating its deterministic from its quasi-stochastic constituents, at distinct local time-scales.
USDA-ARS?s Scientific Manuscript database
A time-scale-free approach was developed for estimation of water fluxes at boundaries of monitoring soil profile using water content time series. The approach uses the soil water budget to compute soil water budget components, i.e. surface-water excess (Sw), infiltration less evapotranspiration (I-E...
Association mining of dependency between time series
NASA Astrophysics Data System (ADS)
Hafez, Alaaeldin
2001-03-01
Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.
NASA Astrophysics Data System (ADS)
Quan, Jinling; Zhan, Wenfeng; Chen, Yunhao; Wang, Mengjie; Wang, Jinfei
2016-03-01
Previous time series methods have difficulties in simultaneous characterization of seasonal, gradual, and abrupt changes of remotely sensed land surface temperature (LST). This study proposed a model to decompose LST time series into trend, seasonal, and noise components. The trend component indicates long-term climate change and land development and is described as a piecewise linear function with iterative breakpoint detection. The seasonal component illustrates annual insolation variations and is modeled as a sinusoidal function on the detrended data. This model is able to separate the seasonal variation in LST from the long-term (including gradual and abrupt) change. Model application to nighttime Moderate Resolution Imaging Spectroradiometer (MODIS)/LST time series during 2000-2012 over Beijing yielded an overall root-mean-square error of 1.62 K between the combination of the decomposed trend and seasonal components and the actual MODIS/LSTs. LST decreased (~ -0.086 K/yr, p < 0.1) in 53% of the study area, whereas it increased with breakpoints in 2009 (~0.084 K/yr before and ~0.245 K/yr after 2009) between the fifth and sixth ring roads. The decreasing trend was stronger over croplands than over urban lands (p < 0.05), resulting in an increasing trend in surface urban heat island intensity (SUHII, 0.022 ± 0.006 K/yr). This was mainly attributed to the trends in urban-rural differences in rainfall and albedo. The SUHII demonstrated a concave seasonal variation primarily due to the seasonal variations of urban-rural differences in temperature cooling rate (related to canyon structure, vegetation, and soil moisture) and surface heat dissipation (affected by humidity and wind).
A novel hybrid ensemble learning paradigm for tourism forecasting
NASA Astrophysics Data System (ADS)
Shabri, Ani
2015-02-01
In this paper, a hybrid forecasting model based on Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH) is proposed to forecast tourism demand. This methodology first decomposes the original visitor arrival series into several Intrinsic Model Function (IMFs) components and one residual component by EMD technique. Then, IMFs components and the residual components is forecasted respectively using GMDH model whose input variables are selected by using Partial Autocorrelation Function (PACF). The final forecasted result for tourism series is produced by aggregating all the forecasted results. For evaluating the performance of the proposed EMD-GMDH methodologies, the monthly data of tourist arrivals from Singapore to Malaysia are used as an illustrative example. Empirical results show that the proposed EMD-GMDH model outperforms the EMD-ARIMA as well as the GMDH and ARIMA (Autoregressive Integrated Moving Average) models without time series decomposition.
A new methodological approach for worldwide beryllium-7 time series analysis
NASA Astrophysics Data System (ADS)
Bianchi, Stefano; Longo, Alessandro; Plastino, Wolfango
2018-07-01
Time series analyses of cosmogenic radionuclide 7Be and 22Na atmospheric activity concentrations and meteorological data observed at twenty-five International Monitoring System (IMS) stations of the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) have shown great variability in terms of noise structures, harmonic content, cross-correlation patterns and local Hurst exponent behaviour. Noise content and its structure has been extracted and characterised for the two radionuclides time series. It has been found that the yearly component, which is present in most of the time series, is not stationary, but has a percentage weight that varies with time. Analysis of atmospheric activity concentrations of 7Be, measured at IMS stations, has shown them to be influenced by distinct meteorological patterns, mainly by atmospheric pressure and temperature.
Ryberg, Karen R.; Vecchia, Aldo V.
2012-01-01
Hydrologic time series data and associated anomalies (multiple components of the original time series representing variability at longer-term and shorter-term time scales) are useful for modeling trends in hydrologic variables, such as streamflow, and for modeling water-quality constituents. An R package, called waterData, has been developed for importing daily hydrologic time series data from U.S. Geological Survey streamgages into the R programming environment. In addition to streamflow, data retrieval may include gage height and continuous physical property data, such as specific conductance, pH, water temperature, turbidity, and dissolved oxygen. The package allows for importing daily hydrologic data into R, plotting the data, fixing common data problems, summarizing the data, and the calculation and graphical presentation of anomalies.
Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803
Effects on noise properties of GPS time series caused by higher-order ionospheric corrections
NASA Astrophysics Data System (ADS)
Jiang, Weiping; Deng, Liansheng; Li, Zhao; Zhou, Xiaohui; Liu, Hongfei
2014-04-01
Higher-order ionospheric (HOI) effects are one of the principal technique-specific error sources in precise global positioning system (GPS) analysis. These effects also influence the non-linear characteristics of GPS coordinate time series. In this paper, we investigate these effects on coordinate time series in terms of seasonal variations and noise amplitudes. Both power spectral techniques and maximum likelihood estimators (MLE) are used to evaluate these effects quantitatively and qualitatively. Our results show an overall improvement for the analysis of global sites if HOI effects are considered. We note that the noise spectral index that is used for the determination of the optimal noise models in our analysis ranged between -1 and 0 both with and without HOI corrections, implying that the coloured noise cannot be removed by these corrections. However, the corrections were found to have improved noise properties for global sites. After the corrections were applied, the noise amplitudes at most sites decreased, among which the white noise amplitudes decreased remarkably. The white noise amplitudes of up to 81.8% of the selected sites decreased in the up component, and the flicker noise of 67.5% of the sites decreased in the north component. Stacked periodogram results show that, no matter whether the HOI effects are considered or not, a common fundamental period of 1.04 cycles per year (cpy), together with the expected annual and semi-annual signals, can explain all peaks of the north and up components well. For the east component, however, reasonable results can be obtained only based on HOI corrections. HOI corrections are useful for better detecting the periodic signals in GPS coordinate time series. Moreover, the corrections contributed partly to the seasonal variations of the selected sites, especially for the up component. Statistically, HOI corrections reduced more than 50% and more than 65% of the annual and semi-annual amplitudes respectively at the selected sites.
Testing for intracycle determinism in pseudoperiodic time series.
Coelho, Mara C S; Mendes, Eduardo M A M; Aguirre, Luis A
2008-06-01
A determinism test is proposed based on the well-known method of the surrogate data. Assuming predictability to be a signature of determinism, the proposed method checks for intracycle (e.g., short-term) determinism in the pseudoperiodic time series for which standard methods of surrogate analysis do not apply. The approach presented is composed of two steps. First, the data are preprocessed to reduce the effects of seasonal and trend components. Second, standard tests of surrogate analysis can then be used. The determinism test is applied to simulated and experimental pseudoperiodic time series and the results show the applicability of the proposed test.
Rigler, E. Joshua
2017-04-26
A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.
Whiting, Joshua; Sacks, Richard
2003-05-15
A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.
Investigation on the coloured noise in GPS-derived position with time-varying seasonal signals
NASA Astrophysics Data System (ADS)
Gruszczynska, Marta; Klos, Anna; Bos, Machiel Simon; Bogusz, Janusz
2016-04-01
The seasonal signals in the GPS-derived time series arise from real geophysical signals related to tidal (residual) or non-tidal (loadings from atmosphere, ocean and continental hydrosphere, thermo elastic strain, etc.) effects and numerical artefacts including aliasing from mismodelling in short periods or repeatability of the GPS satellite constellation with respect to the Sun (draconitics). Singular Spectrum Analysis (SSA) is a method for investigation of nonlinear dynamics, suitable to either stationary or non-stationary data series without prior knowledge about their character. The aim of SSA is to mathematically decompose the original time series into a sum of slowly varying trend, seasonal oscillations and noise. In this presentation we will explore the ability of SSA to subtract the time-varying seasonal signals in GPS-derived North-East-Up topocentric components and show properties of coloured noise from residua. For this purpose we used data from globally distributed IGS (International GNSS Service) permanent stations processed by the JPL (Jet Propulsion Laboratory) in a PPP (Precise Point Positioning) mode. After introducing a threshold of 13 years, 264 stations left with a maximum length reaching 23 years. The data was initially pre-processed for outliers, offsets and gaps. The SSA was applied to pre-processed series to estimate the time-varying seasonal signals. We adopted a 3-years window as the optimal dimension of its size determined with the Akaike's Information Criteria (AIC) values. A Fisher-Snedecor test corrected for the presence of temporal correlation was used to determine the statistical significance of reconstructed components. This procedure showed that first four components describing annual and semi-annual signals, are significant at a 99.7% confidence level, which corresponds to 3-sigma criterion. We compared the non-parametric SSA approach with a commonly chosen parametric Least-Squares Estimation that assumes constant amplitudes and phases over time. We noticed a maximum difference in seasonal oscillation of 3.5 mm and a maximum change in velocity of 0.15 mm/year for Up component (YELL, Yellowknife, Canada), when SSA and LSE are compared. The annual signal has the greatest influence on data variability in time series, while the semi-annual signal in Up component has much smaller contribution in the total variance of data. For some stations more than 35% of the total variance is explained by annual signal. According to the Power Spectral Densities (PSD) we proved that SSA has the ability to properly subtract the seasonals changing in time with almost no influence on power-law character of stochastic part. Then, the modified Maximum Likelihood Estimation (MLE) in Hector software was applied to SSA-filtered time series. We noticed a significant improvement in spectral indices and power-law amplitudes in comparison to classically determined ones with LSE, which will be the main subject of this presentation.
A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades
Dai, Weiwei; Selesnick, Ivan; Rizzo, John-Ross; Rucker, Janet; Hudson, Todd
2017-01-01
The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter. PMID:28813566
A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades.
Dai, Weiwei; Selesnick, Ivan; Rizzo, John-Ross; Rucker, Janet; Hudson, Todd
2017-08-01
The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter.
NASA Astrophysics Data System (ADS)
Katselis, George; Koukou, Katerina; Dimitriou, Evagelos; Koutsikopoulos, Constantin
2007-07-01
In the present study we analysed the daily seaward migratory behaviour of four dominant euryhaline fish species (Mugilidae: Liza saliens, Liza aurata, Mugil cephalus and Sparidae: Sparus aurata) in the Messolonghi Etoliko lagoon system (Western Greek coast) based on the daily landings' time series of barrier traps and assessed the relationship between their migratory behaviour and various climatic variables (air temperature and atmospheric pressure) and the lunar cycle. A 2-year time series of daily fish landings (1993 and 1994), a long time series of daily air temperature and daily temperature range (1991 1998) as well as a 4-year time series of the daily atmospheric pressure (1994 1997) and daily pressure range were used. Harmonic models (HM) consisting of annual and lunar cycle harmonic components explained most (R2 > 0.80) of the mean daily species landings and temperature variations, while a rather low part of the variation (0.18 < R2 < 0.27) was explained for pressure, daily pressure range and daily temperature range. In all the time series sets the amplitude of the annual component was highest. The model values of all species revealed two important migration periods (summer and winter) corresponding to the spawning and refuge migrations. The lunar cycle effect on species' daily migration rates and the short-term fluctuation of daily migration rates were rather low. However, the short-term fluctuation of some species' daily migration rates during winter was greater than during summer. In all species, the main migration was the spawning migration. The model lunar components of the species landings showed a monthly oscillation synchronous to the full moon (S. aurata and M. cephalus) or a semi-monthly oscillation synchronous to the new and full moon (L. aurata and L. saliens). Bispectral analysis of the model values and the model residuals' time series revealed that the species daily migration were correlated (coherencies > 0.6) to the daily fluctuations of the climatic variables at seasonal, mid and short-term scales.
On Digital Simulation of Multicorrelated Random Processes and Its Applications. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Sinha, A. K.
1973-01-01
Two methods are described to simulate, on a digital computer, a set of correlated, stationary, and Gaussian time series with zero mean from the given matrix of power spectral densities and cross spectral densities. The first method is based upon trigonometric series with random amplitudes and deterministic phase angles. The random amplitudes are generated by using a standard random number generator subroutine. An example is given which corresponds to three components of wind velocities at two different spatial locations for a total of six correlated time series. In the second method, the whole process is carried out using the Fast Fourier Transform approach. This method gives more accurate results and works about twenty times faster for a set of six correlated time series.
Westenbroek, Stephen M.; Doherty, John; Walker, John F.; Kelson, Victor A.; Hunt, Randall J.; Cera, Timothy B.
2012-01-01
The TSPROC (Time Series PROCessor) computer software uses a simple scripting language to process and analyze time series. It was developed primarily to assist in the calibration of environmental models. The software is designed to perform calculations on time-series data commonly associated with surface-water models, including calculation of flow volumes, transformation by means of basic arithmetic operations, and generation of seasonal and annual statistics and hydrologic indices. TSPROC can also be used to generate some of the key input files required to perform parameter optimization by means of the PEST (Parameter ESTimation) computer software. Through the use of TSPROC, the objective function for use in the model-calibration process can be focused on specific components of a hydrograph.
Effect of noise in principal component analysis with an application to ozone pollution
NASA Astrophysics Data System (ADS)
Tsakiri, Katerina G.
This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction
Geodetic imaging of tectonic deformation with InSAR
NASA Astrophysics Data System (ADS)
Fattahi, Heresh
Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and evaluated the rate of strain accumulation along the Chaman fault system (Chapter 5). I also evaluate the co-seismic and post-seismic displacement of a moderate M5.5 earthquake on the Ghazaband fault (Chapter 6). The developed methods to mitigate the systematic noise from InSAR time-series, significantly improve the accuracy of the InSAR displacement time-series and velocity. The approaches to evaluate the effect of the stochastic components of noise in InSAR displacement time-series enable us to obtain the variance-covariance matrix of the InSAR displacement time-series and to express their uncertainties. The effect of the topographic residuals in the InSAR range-change time-series is proportional to the perpendicular baseline history of the set of SAR acquisitions. The proposed method for topographic residual correction, efficiently corrects the displacement time-series. Evaluation of the uncertainty of velocity due to the orbital errors shows that for modern SAR satellites with precise orbits such as TerraSAR-X and Sentinel-1, the uncertainty of 0.2 mm/yr per 100 km and for older satellites with less accurate orbits such as ERS and Envisat, the uncertainty of 1.5 and 0.5mm/yr per 100 km, respectively are achievable. However, the uncertainty due to the orbital errors depends on the orbital uncertainties, the number and time span of SAR acquisitions. Contribution of the tropospheric delay to the InSAR range-change time-series can be subdivided to systematic (seasonal delay) and stochastic components. The systematic component biases the displacement times-series and velocity field as a function of the acquisition time and the non-seasonal component significantly contributes to the InSAR uncertainty. Both components are spatially correlated and therefore the covariance of noise between pixels should be considered for evaluating the uncertainty due to the random tropospheric delay. The relative velocity uncertainty due to the random tropospheric delay depends on the scatter of the random tropospheric delay, and is inversely proportional to the number of acquisitions, and the total time span covered by the SAR acquisitions. InSAR observations across the Chaman fault system shows that relative motion between India and Eurasia in the western boundary is distributed among different faults. The InSAR velocity field indicates strain localization on the Chaman fault and Ghazaband fault with slip rates of ~8 and ~16 mm/yr, respectively. High rate of strain accumulation on the Ghazaband fault and lack of evidence for rupturing the fault during the 1935 Quetta earthquake indicates that enough strain has been accumulated for large (M>7) earthquake, which threatens Balochistan and the City of Quetta. Chaman fault from latitudes ~29.5 N to ~32.5 N is creeping with a maximum surface creep rate of 8 mm/yr, which indicates that Chaman fault is only partially locked and therefore moderate earthquakes (M<7) similar to what has been recorded in last 100 years are expected.
Esposito, Fabrizio; Formisano, Elia; Seifritz, Erich; Goebel, Rainer; Morrone, Renato; Tedeschi, Gioacchino; Di Salle, Francesco
2002-07-01
Independent component analysis (ICA) has been successfully employed to decompose functional MRI (fMRI) time-series into sets of activation maps and associated time-courses. Several ICA algorithms have been proposed in the neural network literature. Applied to fMRI, these algorithms might lead to different spatial or temporal readouts of brain activation. We compared the two ICA algorithms that have been used so far for spatial ICA (sICA) of fMRI time-series: the Infomax (Bell and Sejnowski [1995]: Neural Comput 7:1004-1034) and the Fixed-Point (Hyvärinen [1999]: Adv Neural Inf Proc Syst 10:273-279) algorithms. We evaluated the Infomax- and Fixed Point-based sICA decompositions of simulated motor, and real motor and visual activation fMRI time-series using an ensemble of measures. Log-likelihood (McKeown et al. [1998]: Hum Brain Mapp 6:160-188) was used as a measure of how significantly the estimated independent sources fit the statistical structure of the data; receiver operating characteristics (ROC) and linear correlation analyses were used to evaluate the algorithms' accuracy of estimating the spatial layout and the temporal dynamics of simulated and real activations; cluster sizing calculations and an estimation of a residual gaussian noise term within the components were used to examine the anatomic structure of ICA components and for the assessment of noise reduction capabilities. Whereas both algorithms produced highly accurate results, the Fixed-Point outperformed the Infomax in terms of spatial and temporal accuracy as long as inferential statistics were employed as benchmarks. Conversely, the Infomax sICA was superior in terms of global estimation of the ICA model and noise reduction capabilities. Because of its adaptive nature, the Infomax approach appears to be better suited to investigate activation phenomena that are not predictable or adequately modelled by inferential techniques. Copyright 2002 Wiley-Liss, Inc.
36 CFR 1225.12 - How are records schedules developed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...
36 CFR 1225.12 - How are records schedules developed?
Code of Federal Regulations, 2011 CFR
2011-07-01
... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...
36 CFR 1225.12 - How are records schedules developed?
Code of Federal Regulations, 2012 CFR
2012-07-01
... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...
Phenomenological analysis of medical time series with regular and stochastic components
NASA Astrophysics Data System (ADS)
Timashev, Serge F.; Polyakov, Yuriy S.
2007-06-01
Flicker-Noise Spectroscopy (FNS), a general approach to the extraction and parameterization of resonant and stochastic components contained in medical time series, is presented. The basic idea of FNS is to treat the correlation links present in sequences of different irregularities, such as spikes, "jumps", and discontinuities in derivatives of different orders, on all levels of the spatiotemporal hierarchy of the system under study as main information carriers. The tools to extract and analyze the information are power spectra and difference moments (structural functions), which complement the information of each other. The structural function stochastic component is formed exclusively by "jumps" of the dynamic variable while the power spectrum stochastic component is formed by both spikes and "jumps" on every level of the hierarchy. The information "passport" characteristics that are determined by fitting the derived expressions to the experimental variations for the stochastic components of power spectra and structural functions are interpreted as the correlation times and parameters that describe the rate of "memory loss" on these correlation time intervals for different irregularities. The number of the extracted parameters is determined by the requirements of the problem under study. Application of this approach to the analysis of tremor velocity signals for a Parkinsonian patient is discussed.
Buonaccorsi, G A; Rose, C J; O'Connor, J P B; Roberts, C; Watson, Y; Jackson, A; Jayson, G C; Parker, G J M
2010-01-01
Clinical trials of anti-angiogenic and vascular-disrupting agents often use biomarkers derived from DCE-MRI, typically reporting whole-tumor summary statistics and so overlooking spatial parameter variations caused by tissue heterogeneity. We present a data-driven segmentation method comprising tracer-kinetic model-driven registration for motion correction, conversion from MR signal intensity to contrast agent concentration for cross-visit normalization, iterative principal components analysis for imputation of missing data and dimensionality reduction, and statistical outlier detection using the minimum covariance determinant to obtain a robust Mahalanobis distance. After applying these techniques we cluster in the principal components space using k-means. We present results from a clinical trial of a VEGF inhibitor, using time-series data selected because of problems due to motion and outlier time series. We obtained spatially-contiguous clusters that map to regions with distinct microvascular characteristics. This methodology has the potential to uncover localized effects in trials using DCE-MRI-based biomarkers.
Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.
Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H
2017-12-01
To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.
Problems in Analyzing Time Series with Gaps and Their Solution with the WinABD Software Package
NASA Astrophysics Data System (ADS)
Desherevskii, A. V.; Zhuravlev, V. I.; Nikolsky, A. N.; Sidorin, A. Ya.
2017-12-01
Technologies for the analysis of time series with gaps are considered. Some algorithms of signal extraction (purification) and evaluation of its characteristics, such as rhythmic components, are discussed for series with gaps. Examples are given for the analysis of data obtained during long-term observations at the Garm geophysical test site and in other regions. The technical solutions used in the WinABD software are considered to most efficiently arrange the operation of relevant algorithms in the presence of observational defects.
Wang, Wen-chuan; Chau, Kwok-wing; Qiu, Lin; Chen, Yang-bo
2015-05-01
Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for the effective reservoir management. In this research, an artificial neural network (ANN) model coupled with the ensemble empirical mode decomposition (EEMD) is presented for forecasting medium and long-term runoff time series. First, the original runoff time series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and a residual series using EEMD technique for attaining deeper insight into the data characteristics. Then all IMF components and residue are predicted, respectively, through appropriate ANN models. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an ensemble forecast for the original annual runoff series. Two annual reservoir runoff time series from Biuliuhe and Mopanshan in China, are investigated using the developed model based on four performance evaluation measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting accuracy and the proposed EEMD-ANN model can attain significant improvement over ANN approach in medium and long-term runoff time series forecasting. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.
2012-01-01
We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…
New insights into soil temperature time series modeling: linear or nonlinear?
NASA Astrophysics Data System (ADS)
Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram
2018-03-01
Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and ANFIS (respectively) were optimized with the particle swarm optimization (PSO) algorithm in conjunction with the wavelet transform and nonlinear methods (Wavelet-MLP & Wavelet-ANFIS). A comparison of the proposed methodology with individual and hybrid nonlinear models in predicting DST time series indicates the lowest Akaike Information Criterion (AIC) index value, which considers model simplicity and accuracy simultaneously at different depths and stations. The methodology presented in this study can thus serve as an excellent alternative to complex nonlinear methods that are normally employed to examine DST.
Ruhí, Albert; Datry, Thibault; Sabo, John L
2017-12-01
The concept of metacommunity (i.e., a set of local communities linked by dispersal) has gained great popularity among community ecologists. However, metacommunity research mostly addresses questions on spatial patterns of biodiversity at the regional scale, whereas conservation planning requires quantifying temporal variation in those metacommunities and the contributions that individual (local) sites make to regional dynamics. We propose that recent advances in diversity-partitioning methods may allow for a better understanding of metacommunity dynamics and the identification of keystone sites. We used time series of the 2 components of beta diversity (richness and replacement) and the contributions of local sites to these components to examine which sites controlled source-sink dynamics in a highly dynamic model system (an intermittent river). The relative importance of the richness and replacement components of beta diversity fluctuated over time, and sample aggregation led to underestimation of beta diversity by up to 35%. Our literature review revealed that research on intermittent rivers would benefit greatly from examination of beta-diversity components over time. Adequately appraising spatiotemporal variability in community composition and identifying sites that are pivotal for maintaining biodiversity at the landscape scale are key needs for conservation prioritization and planning. Thus, our framework may be used to guide conservation actions in highly dynamic ecosystems when time-series data describing biodiversity across sites connected by dispersal are available. © 2017 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish
2018-02-01
Conventional bias correction is usually applied on a grid-by-grid basis, meaning that the resulting corrections cannot address biases in the spatial distribution of climate variables. To solve this problem, a two-step bias correction method is proposed here to correct time series at multiple locations conjointly. The first step transforms the data to a set of statistically independent univariate time series, using a technique known as independent component analysis (ICA). The mutually independent signals can then be bias corrected as univariate time series and back-transformed to improve the representation of spatial dependence in the data. The spatially corrected data are then bias corrected at the grid scale in the second step. The method has been applied to two CMIP5 General Circulation Model simulations for six different climate regions of Australia for two climate variables—temperature and precipitation. The results demonstrate that the ICA-based technique leads to considerable improvements in temperature simulations with more modest improvements in precipitation. Overall, the method results in current climate simulations that have greater equivalency in space and time with observational data.
Spectral analysis of hydrological time series of a river basin in southern Spain
NASA Astrophysics Data System (ADS)
Luque-Espinar, Juan Antonio; Pulido-Velazquez, David; Pardo-Igúzquiza, Eulogio; Fernández-Chacón, Francisca; Jiménez-Sánchez, Jorge; Chica-Olmo, Mario
2016-04-01
Spectral analysis has been applied with the aim to determine the presence and statistical significance of climate cycles in data series from different rainfall, piezometric and gauging stations located in upper Genil River Basin. This river starts in Sierra Nevada Range at 3,480 m a.s.l. and is one of the most important rivers of this region. The study area has more than 2.500 km2, with large topographic differences. For this previous study, we have used more than 30 rain data series, 4 piezometric data series and 3 data series from gauging stations. Considering a monthly temporal unit, the studied period range from 1951 to 2015 but most of the data series have some lacks. Spectral analysis is a methodology widely used to discover cyclic components in time series. The time series is assumed to be a linear combination of sinusoidal functions of known periods but of unknown amplitude and phase. The amplitude is related with the variance of the time series, explained by the oscillation at each frequency (Blackman and Tukey, 1958, Bras and Rodríguez-Iturbe, 1985, Chatfield, 1991, Jenkins and Watts, 1968, among others). The signal component represents the structured part of the time series, made up of a small number of embedded periodicities. Then, we take into account the known result for the one-sided confidence band of the power spectrum estimator. For this study, we established confidence levels of <90%, 90%, 95%, and 99%. Different climate signals have been identified: ENSO, QBO, NAO, Sun Spot cycles, as well as others related to sun activity, but the most powerful signals correspond to the annual cycle, followed by the 6 month and NAO cycles. Nevertheless, significant differences between rain data series and piezometric/flow data series have been pointed out. In piezometric data series and flow data series, ENSO and NAO signals could be stronger than others with high frequencies. The climatic peaks in lower frequencies in rain data are smaller and the confidence level too. On the other hand, the most important influence on groundwater resources and river flows are NAO, Sun Spot, ENSO and annual cycle. Acknowledgments: This research has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO funds and Junta de Andalucía (Group RNM122).
NASA Astrophysics Data System (ADS)
Jiang, Weiping; Deng, Liansheng; Zhou, Xiaohui; Ma, Yifang
2014-05-01
Higher-order ionospheric (HIO) corrections are proposed to become a standard part for precise GPS data analysis. For this study, we deeply investigate the impacts of the HIO corrections on the coordinate time series by implementing re-processing of the GPS data from Crustal Movement Observation Network of China (CMONOC). Nearly 13 year data are used in our three processing runs: (a) run NO, without HOI corrections, (b) run IG, both second- and third-order corrections are modeled using the International Geomagnetic Reference Field 11 (IGRF11) to model the magnetic field, (c) run ID, the same with IG but dipole magnetic model are applied. Both spectral analysis and noise analysis are adopted to investigate these effects. Results show that for CMONOC stations, HIO corrections are found to have brought an overall improvement. After the corrections are applied, the noise amplitudes decrease, with the white noise amplitudes showing a more remarkable variation. Low-latitude sites are more affected. For different coordinate components, the impacts vary. The results of an analysis of stacked periodograms show that there is a good match between the seasonal amplitudes and the HOI corrections, and the observed variations in the coordinate time series are related to HOI effects. HOI delays partially explain the seasonal amplitudes in the coordinate time series, especially for the U component. The annual amplitudes for all components are decreased for over one-half of the selected CMONOC sites. Additionally, the semi-annual amplitudes for the sites are much more strongly affected by the corrections. However, when diplole model is used, the results are not as optimistic as IGRF model. Analysis of dipole model indicate that HIO delay lead to the increase of noise amplitudes, and that HIO delays with dipole model can generate false periodic signals. When dipole model are used in modeling HIO terms, larger residual and noise are brought in rather than the effective improvements.
Comparison of ITRF2014 station coordinate input time series of DORIS, VLBI and GNSS
NASA Astrophysics Data System (ADS)
Tornatore, Vincenza; Tanır Kayıkçı, Emine; Roggero, Marco
2016-12-01
In this paper station coordinate time series from three space geodesy techniques that have contributed to the realization of the International Terrestrial Reference Frame 2014 (ITRF2014) are compared. In particular the height component time series extracted from official combined intra-technique solutions submitted for ITRF2014 by DORIS, VLBI and GNSS Combination Centers have been investigated. The main goal of this study is to assess the level of agreement among these three space geodetic techniques. A novel analytic method, modeling time series as discrete-time Markov processes, is presented and applied to the compared time series. The analysis method has proven to be particularly suited to obtain quasi-cyclostationary residuals which are an important property to carry out a reliable harmonic analysis. We looked for common signatures among the three techniques. Frequencies and amplitudes of the detected signals have been reported along with their percentage of incidence. Our comparison shows that two of the estimated signals, having one-year and 14 days periods, are common to all the techniques. Different hypotheses on the nature of the signal having a period of 14 days are presented. As a final check we have compared the estimated velocities and their standard deviations (STD) for the sites that co-located the VLBI, GNSS and DORIS stations, obtaining a good agreement among the three techniques both in the horizontal (1.0 mm/yr mean STD) and in the vertical (0.7 mm/yr mean STD) component, although some sites show larger STDs, mainly due to lack of data, different data spans or noisy observations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... means a distinct component of a file series, as defined in this section, that should be maintained as a... of records covering either a specific topic or a range of time such as presidential administration or a 5-year retirement schedule within a specific file series that is retired from active use as a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... means a distinct component of a file series, as defined in this section, that should be maintained as a... of records covering either a specific topic or a range of time such as presidential administration or a 5-year retirement schedule within a specific file series that is retired from active use as a...
Structural Time Series Model for El Niño Prediction
NASA Astrophysics Data System (ADS)
Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodo, Xavier
2015-04-01
ENSO is a dominant feature of climate variability on inter-annual time scales destabilizing weather patterns throughout the globe, and having far-reaching socio-economic consequences. It does not only lead to extensive rainfall and flooding in some regions of the world, and anomalous droughts in others, thus ruining local agriculture, but also substantially affects the marine ecosystems and the sustained exploitation of marine resources in particular coastal zones, especially the Pacific South American coast. As a result, forecasting of ENSO and especially of the warm phase of the oscillation (El Niño/EN) has long been a subject of intense research and improvement. Thus, the present study explores a novel method for the prediction of the Niño 3.4 index. In the state-of-the-art the advantageous statistical modeling approach of Structural Time Series Analysis has not been applied. Therefore, we have developed such a model using a State Space approach for the unobserved components of the time series. Its distinguishing feature is that observations consist of various components - level, seasonality, cycle, disturbance, and regression variables incorporated as explanatory covariates. These components are aimed at capturing the various modes of variability of the N3.4 time series. They are modeled separately, then combined in a single model for analysis and forecasting. Customary statistical ENSO prediction models essentially use SST, SLP and wind stress in the equatorial Pacific. We introduce new regression variables - subsurface ocean temperature in the western equatorial Pacific, motivated by recent (Ramesh and Murtugudde, 2012) and classical research (Jin, 1997), (Wyrtki, 1985), showing that subsurface processes and heat accumulation there are fundamental for initiation of an El Niño event; and a southern Pacific temperature-difference tracer, the Rossbell dipole, leading EN by about nine months (Ballester, 2011).
NASA Astrophysics Data System (ADS)
Chen, Feier; Tian, Kang; Ding, Xiaoxu; Miao, Yuqi; Lu, Chunxia
2016-11-01
Analysis of freight rate volatility characteristics attracts more attention after year 2008 due to the effect of credit crunch and slowdown in marine transportation. The multifractal detrended fluctuation analysis technique is employed to analyze the time series of Baltic Dry Bulk Freight Rate Index and the market trend of two bulk ship sizes, namely Capesize and Panamax for the period: March 1st 1999-February 26th 2015. In this paper, the degree of the multifractality with different fluctuation sizes is calculated. Besides, multifractal detrending moving average (MF-DMA) counting technique has been developed to quantify the components of multifractal spectrum with the finite-size effect taken into consideration. Numerical results show that both Capesize and Panamax freight rate index time series are of multifractal nature. The origin of multifractality for the bulk freight rate market series is found mostly due to nonlinear correlation.
Li, Jia; Xia, Yunni; Luo, Xin
2014-01-01
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.
Irreversibility of financial time series: A graph-theoretical approach
NASA Astrophysics Data System (ADS)
Flanagan, Ryan; Lacasa, Lucas
2016-04-01
The relation between time series irreversibility and entropy production has been recently investigated in thermodynamic systems operating away from equilibrium. In this work we explore this concept in the context of financial time series. We make use of visibility algorithms to quantify, in graph-theoretical terms, time irreversibility of 35 financial indices evolving over the period 1998-2012. We show that this metric is complementary to standard measures based on volatility and exploit it to both classify periods of financial stress and to rank companies accordingly. We then validate this approach by finding that a projection in principal components space of financial years, based on time irreversibility features, clusters together periods of financial stress from stable periods. Relations between irreversibility, efficiency and predictability are briefly discussed.
Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing
NASA Astrophysics Data System (ADS)
Bałdysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; KroszczyńSki, Krzysztof
2015-08-01
The GPS system can play an important role in activities related to the monitoring of climate. Long time series, coherent strategy, and very high quality of tropospheric parameter Zenith Tropospheric Delay (ZTD) estimated on the basis of GPS data analysis allows to investigate its usefulness for climate research as a direct GPS product. This paper presents results of analysis of 16-year time series derived from EUREF Permanent Network (EPN) reprocessing performed by the Military University of Technology. For 58 stations Lomb-Scargle periodograms were performed in order to obtain information about the oscillations in ZTD time series. Seasonal components and linear trend were estimated using Least Square Estimation (LSE) and Mann—Kendall trend test was used to confirm the presence of a linear trend designated by LSE method. In order to verify the impact of the length of time series on trend value, comparison between 16 and 18 years were performed.
Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes
NASA Astrophysics Data System (ADS)
Barucca, Paolo
2014-12-01
We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high- and low-temperature components are the most localized ones.
Schoellhamer, D.H.
2002-01-01
Singular spectrum analysis for time series with missing data (SSAM) was used to reconstruct components of a 6-yr time series of suspended-sediment concentration (SSC) from San Francisco Bay. Data were collected every 15 min and the time series contained missing values that primarily were due to sensor fouling. SSAM was applied in a sequential manner to calculate reconstructed components with time scales of variability that ranged from tidal to annual. Physical processes that controlled SSC and their contribution to the total variance of SSC were (1) diurnal, semidiurnal, and other higher frequency tidal constituents (24%), (2) semimonthly tidal cycles (21%), (3) monthly tidal cycles (19%), (4) semiannual tidal cycles (12%), and (5) annual pulses of sediment caused by freshwater inflow, deposition, and subsequent wind-wave resuspension (13%). Of the total variance 89% was explained and subtidal variability (65%) was greater than tidal variability (24%). Processes at subtidal time scales accounted for more variance of SSC than processes at tidal time scales because sediment accumulated in the water column and the supply of easily erodible bed sediment increased during periods of increased subtidal energy. This large range of time scales that each contained significant variability of SSC and associated contaminants can confound design of sampling programs and interpretation of resulting data.
Lee, E Henry; Wickham, Charlotte; Beedlow, Peter A; Waschmann, Ronald S; Tingey, David T
2017-10-01
A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for climate and forest disturbances (i.e., pests, diseases, fire). The statistical method is illustrated with a tree-ring width time series for a mature closed-canopy Douglas-fir stand on the west slopes of the Cascade Mountains of Oregon, USA that is impacted by Swiss needle cast disease caused by the foliar fungus, Phaecryptopus gaeumannii (Rhode) Petrak. The likelihood-based TSIA method is proposed for the field of dendrochronology to understand the interaction of temperature, water, and forest disturbances that are important in forest ecology and climate change studies.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.; Au, Andrew Y.
2004-01-01
Recent Satellite Laser Ranging derived long wavelength gravity time series analysis has focused to a large extent on the effects of the recent large changes in the Earth s 52, and the potential causes. However, it is difficult to determine whether there are corresponding signals in the shorter wavelength zonals from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic coefficient series have significant interannual signal that appears to be related to mass transport. The non-zonal degree 2 terms show reasonable correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. While the formal uncertainty of these terms is significantly higher than that for J2, it is also clear that there is useful signal to be extracted. Consequently, the SLR time series is being reprocessed to improve the time variable gravity field recovery. We will present recent updates on the J2 evolution, as well as a look at other components of the interannual variations of the gravity field, complete through degree 4, and possible geophysical and climatic causes.
Liver DCE-MRI Registration in Manifold Space Based on Robust Principal Component Analysis.
Feng, Qianjin; Zhou, Yujia; Li, Xueli; Mei, Yingjie; Lu, Zhentai; Zhang, Yu; Feng, Yanqiu; Liu, Yaqin; Yang, Wei; Chen, Wufan
2016-09-29
A technical challenge in the registration of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in the liver is intensity variations caused by contrast agents. Such variations lead to the failure of the traditional intensity-based registration method. To address this problem, a manifold-based registration framework for liver DCE-MR time series is proposed. We assume that liver DCE-MR time series are located on a low-dimensional manifold and determine intrinsic similarities between frames. Based on the obtained manifold, the large deformation of two dissimilar images can be decomposed into a series of small deformations between adjacent images on the manifold through gradual deformation of each frame to the template image along the geodesic path. Furthermore, manifold construction is important in automating the selection of the template image, which is an approximation of the geodesic mean. Robust principal component analysis is performed to separate motion components from intensity changes induced by contrast agents; the components caused by motion are used to guide registration in eliminating the effect of contrast enhancement. Visual inspection and quantitative assessment are further performed on clinical dataset registration. Experiments show that the proposed method effectively reduces movements while preserving the topology of contrast-enhancing structures and provides improved registration performance.
Scaling analysis of bilateral hand tremor movements in essential tremor patients.
Blesic, S; Maric, J; Dragasevic, N; Milanovic, S; Kostic, V; Ljubisavljevic, Milos
2011-08-01
Recent evidence suggests that the dynamic-scaling behavior of the time-series of signals extracted from separate peaks of tremor spectra may reveal existence of multiple independent sources of tremor. Here, we have studied dynamic characteristics of the time-series of hand tremor movements in essential tremor (ET) patients using the detrended fluctuation analysis method. Hand accelerometry was recorded with (500 g) and without weight loading under postural conditions in 25 ET patients and 20 normal subjects. The time-series comprising peak-to-peak (PtP) intervals were extracted from regions around the first three main frequency components of power spectra (PwS) of the recorded tremors. The data were compared between the load and no-load condition on dominant (related to tremor severity) and non-dominant tremor side and with the normal (physiological) oscillations in healthy subjects. Our analysis shows that, in ET, the dynamic characteristics of the main frequency component of recorded tremors exhibit scaling behavior. Furthermore, they show that the two main components of ET tremor frequency spectra, otherwise indistinguishable without load, become significantly different after inertial loading and that they differ between the tremor sides (related to tremor severity). These results show that scaling, a time-domain analysis, helps revealing tremor features previously not revealed by frequency-domain analysis and suggest that distinct oscillatory central circuits may generate the tremor in ET patients.
Borehole Volumetric Strainmeters Detect Very Long-period Ocean Level Changes in Tokai Area
NASA Astrophysics Data System (ADS)
Takanami, T.; Linde, A. T.; Sacks, S. I.; Kitagawa, G.; Hirata, N.; Rydelek, P. A.
2015-12-01
We detected a clear very long-period strain signal with a predominant period of about 2 months in the data from Sacks-Evertson borehole volumetric strainmeters. These have been operated by the Japan Meteorological Agency (JMA) since 1976 in Tokai area, Japan, the area of an expected Tokai eartquake. Earth's surface is always influenced by natural force such as earth tide, air pressure, and precipitation as well as by human induced sources. In order to decompose into their components in the maximum likelihood estimation, state-space modeling (Takanami et al., 2013) is applied to the observed time series data for 15 months before and after the earthquake M6.5 that occurred on 11th August 2009 in Suruga Bay. In the analysis, the strain data are decomposed into trend, air pressure, earth tide, precipitation effects and observation noise. Clear long-period strain signals are seen in the normalized trend component time series. Time series data from JMA tide gages around Suruga Bay are similarly decomposed. Then spectral analyses are applied to the trend components for the same time interval. Comparison of amplitude peaks in spectra for both data sets show all have a peak at period of about 1464 hours. Thus strain changes may be influenced by very long-period ocean level changes; it is necessary to consider this possibility before attributing tectonic significance to such variations.
Bayesian wavelet PCA methodology for turbomachinery damage diagnosis under uncertainty
NASA Astrophysics Data System (ADS)
Xu, Shengli; Jiang, Xiaomo; Huang, Jinzhi; Yang, Shuhua; Wang, Xiaofang
2016-12-01
Centrifugal compressor often suffers various defects such as impeller cracking, resulting in forced outage of the total plant. Damage diagnostics and condition monitoring of such a turbomachinery system has become an increasingly important and powerful tool to prevent potential failure in components and reduce unplanned forced outage and further maintenance costs, while improving reliability, availability and maintainability of a turbomachinery system. This paper presents a probabilistic signal processing methodology for damage diagnostics using multiple time history data collected from different locations of a turbomachine, considering data uncertainty and multivariate correlation. The proposed methodology is based on the integration of three advanced state-of-the-art data mining techniques: discrete wavelet packet transform, Bayesian hypothesis testing, and probabilistic principal component analysis. The multiresolution wavelet analysis approach is employed to decompose a time series signal into different levels of wavelet coefficients. These coefficients represent multiple time-frequency resolutions of a signal. Bayesian hypothesis testing is then applied to each level of wavelet coefficient to remove possible imperfections. The ratio of posterior odds Bayesian approach provides a direct means to assess whether there is imperfection in the decomposed coefficients, thus avoiding over-denoising. Power spectral density estimated by the Welch method is utilized to evaluate the effectiveness of Bayesian wavelet cleansing method. Furthermore, the probabilistic principal component analysis approach is developed to reduce dimensionality of multiple time series and to address multivariate correlation and data uncertainty for damage diagnostics. The proposed methodology and generalized framework is demonstrated with a set of sensor data collected from a real-world centrifugal compressor with impeller cracks, through both time series and contour analyses of vibration signal and principal components.
A Methodology for the Parametric Reconstruction of Non-Steady and Noisy Meteorological Time Series
NASA Astrophysics Data System (ADS)
Rovira, F.; Palau, J. L.; Millán, M.
2009-09-01
Climatic and meteorological time series often show some persistence (in time) in the variability of certain features. One could regard annual, seasonal and diurnal time variability as trivial persistence in the variability of some meteorological magnitudes (as, e.g., global radiation, air temperature above surface, etc.). In these cases, the traditional Fourier transform into frequency space will show the principal harmonics as the components with the largest amplitude. Nevertheless, meteorological measurements often show other non-steady (in time) variability. Some fluctuations in measurements (at different time scales) are driven by processes that prevail on some days (or months) of the year but disappear on others. By decomposing a time series into time-frequency space through the continuous wavelet transformation, one is able to determine both the dominant modes of variability and how those modes vary in time. This study is based on a numerical methodology to analyse non-steady principal harmonics in noisy meteorological time series. This methodology combines both the continuous wavelet transform and the development of a parametric model that includes the time evolution of the principal and the most statistically significant harmonics of the original time series. The parameterisation scheme proposed in this study consists of reproducing the original time series by means of a statistically significant finite sum of sinusoidal signals (waves), each defined by using the three usual parameters: amplitude, frequency and phase. To ensure the statistical significance of the parametric reconstruction of the original signal, we propose a standard statistical t-student analysis of the confidence level of the amplitude in the parametric spectrum for the different wave components. Once we have assured the level of significance of the different waves composing the parametric model, we can obtain the statistically significant principal harmonics (in time) of the original time series by using the Fourier transform of the modelled signal. Acknowledgements The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (València, Spain). This study has been partially funded by the European Commission (FP VI, Integrated Project CIRCE - No. 036961) and by the Ministerio de Ciencia e Innovación, research projects "TRANSREG” (CGL2007-65359/CLI) and "GRACCIE” (CSD2007-00067, Program CONSOLIDER-INGENIO 2010).
Describing temporal variability of the mean Estonian precipitation series in climate time scale
NASA Astrophysics Data System (ADS)
Post, P.; Kärner, O.
2009-04-01
Applicability of the random walk type models to represent the temporal variability of various atmospheric temperature series has been successfully demonstrated recently (e.g. Kärner, 2002). Main problem in the temperature modeling is connected to the scale break in the generally self similar air temperature anomaly series (Kärner, 2005). The break separates short-range strong non-stationarity from nearly stationary longer range variability region. This is an indication of the fact that several geophysical time series show a short-range non-stationary behaviour and a stationary behaviour in longer range (Davis et al., 1996). In order to model series like that the choice of time step appears to be crucial. To characterize the long-range variability we can neglect the short-range non-stationary fluctuations, provided that we are able to model properly the long-range tendencies. The structure function (Monin and Yaglom, 1975) was used to determine an approximate segregation line between the short and the long scale in terms of modeling. The longer scale can be called climate one, because such models are applicable in scales over some decades. In order to get rid of the short-range fluctuations in daily series the variability can be examined using sufficiently long time step. In the present paper, we show that the same philosophy is useful to find a model to represent a climate-scale temporal variability of the Estonian daily mean precipitation amount series over 45 years (1961-2005). Temporal variability of the obtained daily time series is examined by means of an autoregressive and integrated moving average (ARIMA) family model of the type (0,1,1). This model is applicable for daily precipitation simulating if to select an appropriate time step that enables us to neglet the short-range non-stationary fluctuations. A considerably longer time step than one day (30 days) is used in the current paper to model the precipitation time series variability. Each ARIMA (0,1,1) model can be interpreted to be consisting of random walk in a noisy environment (Box and Jenkins, 1976). The fitted model appears to be weakly non-stationary, that gives us the possibility to use stationary approximation if only the noise component from that sum of white noise and random walk is exploited. We get a convenient routine to generate a stationary precipitation climatology with a reasonable accuracy, since the noise component variance is much larger than the dispersion of the random walk generator. This interpretation emphasizes dominating role of a random component in the precipitation series. The result is understandable due to a small territory of Estonia that is situated in the mid-latitude cyclone track. References Box, J.E.P. and G. Jenkins 1976: Time Series Analysis, Forecasting and Control (revised edn.), Holden Day San Francisco, CA, 575 pp. Davis, A., Marshak, A., Wiscombe, W. and R. Cahalan 1996: Multifractal characterizations of intermittency in nonstationary geophysical signals and fields.in G. Trevino et al. (eds) Current Topics in Nonsstationarity Analysis. World-Scientific, Singapore, 97-158. Kärner, O. 2002: On nonstationarity and antipersistency in global temperature series. J. Geophys. Res. D107; doi:10.1029/2001JD002024. Kärner, O. 2005: Some examples on negative feedback in the Earth climate system. Centr. European J. Phys. 3; 190-208. Monin, A.S. and A.M. Yaglom 1975: Statistical Fluid Mechanics, Vol 2. Mechanics of Turbulence , MIT Press Boston Mass, 886 pp.
NASA Astrophysics Data System (ADS)
Ozawa, Taku; Ueda, Hideki
2011-12-01
InSAR time series analysis is an effective tool for detecting spatially and temporally complicated volcanic deformation. To obtain details of such deformation, we developed an advanced InSAR time series analysis using interferograms of multiple-orbit tracks. Considering only right- (or only left-) looking SAR observations, incidence directions for different orbit tracks are mostly included in a common plane. Therefore, slant-range changes in their interferograms can be expressed by two components in the plane. This approach estimates the time series of their components from interferograms of multiple-orbit tracks by the least squares analysis, and higher accuracy is obtained if many interferograms of different orbit tracks are available. Additionally, this analysis can combine interferograms for different incidence angles. In a case study on Miyake-jima, we obtained a deformation time series corresponding to GPS observations from PALSAR interferograms of six orbit tracks. The obtained accuracy was better than that with the SBAS approach, demonstrating its effectiveness. Furthermore, it is expected that higher accuracy would be obtained if SAR observations were carried out more frequently in all orbit tracks. The deformation obtained in the case study indicates uplift along the west coast and subsidence with contraction around the caldera. The speed of the uplift was almost constant, but the subsidence around the caldera decelerated from 2009. A flat deformation source was estimated near sea level under the caldera, implying that deceleration of subsidence was related to interaction between volcanic thermal activity and the aquifer.
Time series models on analysing mortality rates and acute childhood lymphoid leukaemia.
Kis, Maria
2005-01-01
In this paper we demonstrate applying time series models on medical research. The Hungarian mortality rates were analysed by autoregressive integrated moving average models and seasonal time series models examined the data of acute childhood lymphoid leukaemia.The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality rates of ischemic heart diseases and analysis of the mortality rates of cancer of digestive system. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia. We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.
Dunea, Daniel; Pohoata, Alin; Iordache, Stefania
2015-07-01
The paper presents the screening of various feedforward neural networks (FANN) and wavelet-feedforward neural networks (WFANN) applied to time series of ground-level ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM10 and PM2.5 fractions) recorded at four monitoring stations located in various urban areas of Romania, to identify common configurations with optimal generalization performance. Two distinct model runs were performed as follows: data processing using hourly-recorded time series of airborne pollutants during cold months (O3, NO2, and PM10), when residential heating increases the local emissions, and data processing using 24-h daily averaged concentrations (PM2.5) recorded between 2009 and 2012. Dataset variability was assessed using statistical analysis. Time series were passed through various FANNs. Each time series was decomposed in four time-scale components using three-level wavelets, which have been passed also through FANN, and recomposed into a single time series. The agreement between observed and modelled output was evaluated based on the statistical significance (r coefficient and correlation between errors and data). Daubechies db3 wavelet-Rprop FANN (6-4-1) utilization gave positive results for O3 time series optimizing the exclusive use of the FANN for hourly-recorded time series. NO2 was difficult to model due to time series specificity, but wavelet integration improved FANN performances. Daubechies db3 wavelet did not improve the FANN outputs for PM10 time series. Both models (FANN/WFANN) overestimated PM2.5 forecasted values in the last quarter of time series. A potential improvement of the forecasted values could be the integration of a smoothing algorithm to adjust the PM2.5 model outputs.
Measuring Multiple Resistances Using Single-Point Excitation
NASA Technical Reports Server (NTRS)
Hall, Dan; Davies, Frank
2009-01-01
In a proposed method of determining the resistances of individual DC electrical devices connected in a series or parallel string, no attempt would be made to perform direct measurements on individual devices. Instead, (1) the devices would be instrumented by connecting reactive circuit components in parallel and/or in series with the devices, as appropriate; (2) a pulse or AC voltage excitation would be applied at a single point on the string; and (3) the transient or AC steady-state current response of the string would be measured at that point only. Each reactive component(s) associated with each device would be distinct in order to associate a unique time-dependent response with that device.
Use of a Principal Components Analysis for the Generation of Daily Time Series.
NASA Astrophysics Data System (ADS)
Dreveton, Christine; Guillou, Yann
2004-07-01
A new approach for generating daily time series is considered in response to the weather-derivatives market. This approach consists of performing a principal components analysis to create independent variables, the values of which are then generated separately with a random process. Weather derivatives are financial or insurance products that give companies the opportunity to cover themselves against adverse climate conditions. The aim of a generator is to provide a wider range of feasible situations to be used in an assessment of risk. Generation of a temperature time series is required by insurers or bankers for pricing weather options. The provision of conditional probabilities and a good representation of the interannual variance are the main challenges of a generator when used for weather derivatives. The generator was developed according to this new approach using a principal components analysis and was applied to the daily average temperature time series of the Paris-Montsouris station in France. The observed dataset was homogenized and the trend was removed to represent correctly the present climate. The results obtained with the generator show that it represents correctly the interannual variance of the observed climate; this is the main result of the work, because one of the main discrepancies of other generators is their inability to represent accurately the observed interannual climate variance—this discrepancy is not acceptable for an application to weather derivatives. The generator was also tested to calculate conditional probabilities: for example, the knowledge of the aggregated value of heating degree-days in the middle of the heating season allows one to estimate the probability if reaching a threshold at the end of the heating season. This represents the main application of a climate generator for use with weather derivatives.
Assessment of New Load Schedules for the Machine Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.; Kew, R.
2015-01-01
New load schedules for the machine calibration of a six-component force balance are currently being developed and evaluated at the NASA Ames Balance Calibration Laboratory. One of the proposed load schedules is discussed in the paper. It has a total of 2082 points that are distributed across 16 load series. Several criteria were applied to define the load schedule. It was decided, for example, to specify the calibration load set in force balance format as this approach greatly simplifies the definition of the lower and upper bounds of the load schedule. In addition, all loads are assumed to be applied in a calibration machine by using the one-factor-at-a-time approach. At first, all single-component loads are applied in six load series. Then, three two-component load series are applied. They consist of the load pairs (N1, N2), (S1, S2), and (RM, AF). Afterwards, four three-component load series are applied. They consist of the combinations (N1, N2, AF), (S1, S2, AF), (N1, N2, RM), and (S1, S2, RM). In the next step, one four-component load series is applied. It is the load combination (N1, N2, S1, S2). Finally, two five-component load series are applied. They are the load combination (N1, N2, S1, S2, AF) and (N1, N2, S1, S2, RM). The maximum difference between loads of two subsequent data points of the load schedule is limited to 33 % of capacity. This constraint helps avoid unwanted load "jumps" in the load schedule that can have a negative impact on the performance of a calibration machine. Only loadings of the single- and two-component load series are loaded to 100 % of capacity. This approach was selected because it keeps the total number of calibration points to a reasonable limit while still allowing for the application of some of the more complex load combinations. Data from two of NASA's force balances is used to illustrate important characteristics of the proposed 2082-point calibration load schedule.
Rivera, Ana Leonor; Toledo-Roy, Juan C.; Ellis, Jason; Angelova, Maia
2017-01-01
Circadian rhythms become less dominant and less regular with chronic-degenerative disease, such that to accurately assess these pathological conditions it is important to quantify not only periodic characteristics but also more irregular aspects of the corresponding time series. Novel data-adaptive techniques, such as singular spectrum analysis (SSA), allow for the decomposition of experimental time series, in a model-free way, into a trend, quasiperiodic components and noise fluctuations. We compared SSA with the traditional techniques of cosinor analysis and intradaily variability using 1-week continuous actigraphy data in young adults with acute insomnia and healthy age-matched controls. The findings suggest a small but significant delay in circadian components in the subjects with acute insomnia, i.e. a larger acrophase, and alterations in the day-to-day variability of acrophase and amplitude. The power of the ultradian components follows a fractal 1/f power law for controls, whereas for those with acute insomnia this power law breaks down because of an increased variability at the 90min time scale, reminiscent of Kleitman’s basic rest-activity (BRAC) cycles. This suggests that for healthy sleepers attention and activity can be sustained at whatever time scale required by circumstances, whereas for those with acute insomnia this capacity may be impaired and these individuals need to rest or switch activities in order to stay focused. Traditional methods of circadian rhythm analysis are unable to detect the more subtle effects of day-to-day variability and ultradian rhythm fragmentation at the specific 90min time scale. PMID:28753669
Detection of "noisy" chaos in a time series
NASA Technical Reports Server (NTRS)
Chon, K. H.; Kanters, J. K.; Cohen, R. J.; Holstein-Rathlou, N. H.
1997-01-01
Time series from biological system often displays fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". The output from most biological systems is probably the result of both the internal dynamics of the systems, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.
Behavior of road accidents: Structural time series approach
NASA Astrophysics Data System (ADS)
Junus, Noor Wahida Md; Ismail, Mohd Tahir; Arsad, Zainudin
2014-12-01
Road accidents become a major issue in contributing to the increasing number of deaths. Few researchers suggest that road accidents occur due to road structure and road condition. The road structure and condition may differ according to the area and volume of traffic of the location. Therefore, this paper attempts to look up the behavior of the road accidents in four main regions in Peninsular Malaysia by employing a structural time series (STS) approach. STS offers the possibility of modelling the unobserved component such as trends and seasonal component and it is allowed to vary over time. The results found that the number of road accidents is described by a different model. Perhaps, the results imply that the government, especially a policy maker should consider to implement a different approach in ways to overcome the increasing number of road accidents.
NASA Astrophysics Data System (ADS)
Huang, Liang; Ni, Xuan; Ditto, William L.; Spano, Mark; Carney, Paul R.; Lai, Ying-Cheng
2017-01-01
We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on-off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.
NASA Astrophysics Data System (ADS)
Osada, Y.; Ohta, Y.; Demachi, T.; Kido, M.; Fujimoto, H.; Azuma, R.; Hino, R.
2013-12-01
Large interplate earthquake repeatedly occurred in Japan Trench. Recently, the detail crustal deformation revealed by the nation-wide inland GPS network called as GEONET by GSI. However, the maximum displacement region for interplate earthquake is mainly located offshore region. GPS/Acoustic seafloor geodetic observation (hereafter GPS/A) is quite important and useful for understanding of shallower part of the interplate coupling between subducting and overriding plates. We typically conduct GPS/A in specific ocean area based on repeated campaign style using research vessel or buoy. Therefore, we cannot monitor the temporal variation of seafloor crustal deformation in real time. The one of technical issue on real time observation is kinematic GPS analysis because kinematic GPS analysis based on reference and rover data. If the precise kinematic GPS analysis will be possible in the offshore region, it should be promising method for real time GPS/A with USV (Unmanned Surface Vehicle) and a moored buoy. We assessed stability, precision and accuracy of StarFireTM global satellites based augmentation system. We primarily tested for StarFire in the static condition. In order to assess coordinate precision and accuracy, we compared 1Hz StarFire time series and post-processed precise point positioning (PPP) 1Hz time series by GIPSY-OASIS II processing software Ver. 6.1.2 with three difference product types (ultra-rapid, rapid, and final orbits). We also used difference interval clock information (30 and 300 seconds) for the post-processed PPP processing. The standard deviation of real time StarFire time series is less than 30 mm (horizontal components) and 60 mm (vertical component) based on 1 month continuous processing. We also assessed noise spectrum of the estimated time series by StarFire and post-processed GIPSY PPP results. We found that the noise spectrum of StarFire time series is similar pattern with GIPSY-OASIS II processing result based on JPL rapid orbit products with 300 seconds interval clock information. And we report stability, precision and accuracy of StarFire in the moving conditon.
Functional mixed effects spectral analysis
KRAFTY, ROBERT T.; HALL, MARTICA; GUO, WENSHENG
2011-01-01
SUMMARY In many experiments, time series data can be collected from multiple units and multiple time series segments can be collected from the same unit. This article introduces a mixed effects Cramér spectral representation which can be used to model the effects of design covariates on the second-order power spectrum while accounting for potential correlations among the time series segments collected from the same unit. The transfer function is composed of a deterministic component to account for the population-average effects and a random component to account for the unit-specific deviations. The resulting log-spectrum has a functional mixed effects representation where both the fixed effects and random effects are functions in the frequency domain. It is shown that, when the replicate-specific spectra are smooth, the log-periodograms converge to a functional mixed effects model. A data-driven iterative estimation procedure is offered for the periodic smoothing spline estimation of the fixed effects, penalized estimation of the functional covariance of the random effects, and unit-specific random effects prediction via the best linear unbiased predictor. PMID:26855437
Burnt area mapping from ERS-SAR time series using the principal components transformation
NASA Astrophysics Data System (ADS)
Gimeno, Meritxell; San-Miguel Ayanz, Jesus; Barbosa, Paulo M.; Schmuck, Guido
2003-03-01
Each year thousands of hectares of forest burnt across Southern Europe. To date, remote sensing assessments of this phenomenon have focused on the use of optical satellite imagery. However, the presence of clouds and smoke prevents the acquisition of this type of data in some areas. It is possible to overcome this problem by using synthetic aperture radar (SAR) data. Principal component analysis (PCA) was performed to quantify differences between pre- and post- fire images and to investigate the separability over a European Remote Sensing (ERS) SAR time series. Moreover, the transformation was carried out to determine the best conditions to acquire optimal SAR imagery according to meteorological parameters and the procedures to enhance burnt area discrimination for the identification of fire damage assessment. A comparative neural network classification was performed in order to map and to assess the burnts using a complete ERS time series or just an image before and an image after the fire according to the PCA. The results suggest that ERS is suitable to highlight areas of localized changes associated with forest fire damage in Mediterranean landcover.
NASA Astrophysics Data System (ADS)
Shirota, Yukari; Hashimoto, Takako; Fitri Sari, Riri
2018-03-01
It has been very significant to visualize time series big data. In the paper we shall discuss a new analysis method called “statistical shape analysis” or “geometry driven statistics” on time series statistical data in economics. In the paper, we analyse the agriculture, value added and industry, value added (percentage of GDP) changes from 2000 to 2010 in Asia. We handle the data as a set of landmarks on a two-dimensional image to see the deformation using the principal components. The point of the analysis method is the principal components of the given formation which are eigenvectors of its bending energy matrix. The local deformation can be expressed as the set of non-Affine transformations. The transformations give us information about the local differences between in 2000 and in 2010. Because the non-Affine transformation can be decomposed into a set of partial warps, we present the partial warps visually. The statistical shape analysis is widely used in biology but, in economics, no application can be found. In the paper, we investigate its potential to analyse the economic data.
Advanced methods for modeling water-levels and estimating drawdowns with SeriesSEE, an Excel add-in
Halford, Keith; Garcia, C. Amanda; Fenelon, Joe; Mirus, Benjamin B.
2012-12-21
Water-level modeling is used for multiple-well aquifer tests to reliably differentiate pumping responses from natural water-level changes in wells, or “environmental fluctuations.” Synthetic water levels are created during water-level modeling and represent the summation of multiple component fluctuations, including those caused by environmental forcing and pumping. Pumping signals are modeled by transforming step-wise pumping records into water-level changes by using superimposed Theis functions. Water-levels can be modeled robustly with this Theis-transform approach because environmental fluctuations and pumping signals are simulated simultaneously. Water-level modeling with Theis transforms has been implemented in the program SeriesSEE, which is a Microsoft® Excel add-in. Moving average, Theis, pneumatic-lag, and gamma functions transform time series of measured values into water-level model components in SeriesSEE. Earth tides and step transforms are additional computed water-level model components. Water-level models are calibrated by minimizing a sum-of-squares objective function where singular value decomposition and Tikhonov regularization stabilize results. Drawdown estimates from a water-level model are the summation of all Theis transforms minus residual differences between synthetic and measured water levels. The accuracy of drawdown estimates is limited primarily by noise in the data sets, not the Theis-transform approach. Drawdowns much smaller than environmental fluctuations have been detected across major fault structures, at distances of more than 1 mile from the pumping well, and with limited pre-pumping and recovery data at sites across the United States. In addition to water-level modeling, utilities exist in SeriesSEE for viewing, cleaning, manipulating, and analyzing time-series data.
Reliability Prediction of Ontology-Based Service Compositions Using Petri Net and Time Series Models
Li, Jia; Xia, Yunni; Luo, Xin
2014-01-01
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy. PMID:24688429
Nonlinear Dynamics, Poor Data, and What to Make of Them?
NASA Astrophysics Data System (ADS)
Ghil, M.; Zaliapin, I. V.
2005-12-01
The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict variability in the geosciences. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this talk we will describe the connections between time series analysis and nonlinear dynamics, discuss signal-to-noise enhancement, and present some of the novel methods for spectral analysis. These fall into two broad categories: (i) methods that try to ferret out regularities of the time series; and (ii) methods aimed at describing the characteristics of irregular processes. The former include singular-spectrum analysis (SSA), the multi-taper method (MTM), and the maximum-entropy method (MEM). The various steps, as well as the advantages and disadvantages of these methods, will be illustrated by their application to several important climatic time series, such as the Southern Oscillation Index (SOI), paleoclimatic time series, and instrumental temperature time series. The SOI index captures major features of interannual climate variability and is used extensively in its prediction. The other time series cover interdecadal and millennial time scales. The second category includes the calculation of fractional dimension, leading Lyapunov exponents, and Hurst exponents. More recently, multi-trend analysis (MTA), binary-decomposition analysis (BDA), and related methods have attempted to describe the structure of time series that include both regular and irregular components. Within the time available, I will try to give a feeling for how these methods work, and how well.
NASA Astrophysics Data System (ADS)
Berx, Barbara; Payne, Mark R.
2017-04-01
Scientific interest in the sub-polar gyre of the North Atlantic Ocean has increased in recent years. The sub-polar gyre has contracted and weakened, and changes in circulation pathways have been linked to changes in marine ecosystem productivity. To aid fisheries and environmental scientists, we present here a time series of the Sub-Polar Gyre Index (SPG-I) based on monthly mean maps of sea surface height. The established definition of the SPG-I is applied, and the first EOF (empirical orthogonal function) and PC (principal component) are presented. Sensitivity to the spatial domain and time series length are explored but found not to be important factors in terms of the SPG-I's interpretation. Our time series compares well with indices presented previously. The SPG-I time series is freely available online (http://dx.doi.org/10.7489/1806-1), and we invite the community to access, apply, and publish studies using this index time series.
Online Conditional Outlier Detection in Nonstationary Time Series
Liu, Siqi; Wright, Adam; Hauskrecht, Milos
2017-01-01
The objective of this work is to develop methods for detecting outliers in time series data. Such methods can become the key component of various monitoring and alerting systems, where an outlier may be equal to some adverse condition that needs human attention. However, real-world time series are often affected by various sources of variability present in the environment that may influence the quality of detection; they may (1) explain some of the changes in the signal that would otherwise lead to false positive detections, as well as, (2) reduce the sensitivity of the detection algorithm leading to increase in false negatives. To alleviate these problems, we propose a new two-layer outlier detection approach that first tries to model and account for the nonstationarity and periodic variation in the time series, and then tries to use other observable variables in the environment to explain any additional signal variation. Our experiments on several data sets in different domains show that our method provides more accurate modeling of the time series, and that it is able to significantly improve outlier detection performance. PMID:29644345
Online Conditional Outlier Detection in Nonstationary Time Series.
Liu, Siqi; Wright, Adam; Hauskrecht, Milos
2017-05-01
The objective of this work is to develop methods for detecting outliers in time series data. Such methods can become the key component of various monitoring and alerting systems, where an outlier may be equal to some adverse condition that needs human attention. However, real-world time series are often affected by various sources of variability present in the environment that may influence the quality of detection; they may (1) explain some of the changes in the signal that would otherwise lead to false positive detections, as well as, (2) reduce the sensitivity of the detection algorithm leading to increase in false negatives. To alleviate these problems, we propose a new two-layer outlier detection approach that first tries to model and account for the nonstationarity and periodic variation in the time series, and then tries to use other observable variables in the environment to explain any additional signal variation. Our experiments on several data sets in different domains show that our method provides more accurate modeling of the time series, and that it is able to significantly improve outlier detection performance.
Detection of chaotic determinism in time series from randomly forced maps
NASA Technical Reports Server (NTRS)
Chon, K. H.; Kanters, J. K.; Cohen, R. J.; Holstein-Rathlou, N. H.
1997-01-01
Time series from biological system often display fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". Despite this effort, it has been difficult to establish the presence of chaos in time series from biological sytems. The output from a biological system is probably the result of both its internal dynamics, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes, i.e., a positive characteristic exponent that leads to sensitivity to initial conditions. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.
NASA Astrophysics Data System (ADS)
Christensen, J. N.; Cliff, S. S.; Vancuren, R. A.; Perry, K. D.; Depaolo, D. J.
2006-12-01
Research over the past decade has highlighted the importance of intercontinental transport and exchange of atmospheric aerosols, including soil-derived dust and industrial pollutants. Far-traveled aerosols can affect air quality, atmospheric radiative forcing and cloud formation and can be an important component in soils. Principal component analysis of elemental data for aerosols collected over California has identified a persistent Asian soil dust component that peaks with Asian dust storm events [1]. Isotopic fingerprinting can provide an additional and potentially more discriminating tool for tracing sources of dust. For example, the naturally variable isotopic compositions of Sr and Nd reflect both the geochemistry of the dust source and its pre- weathering geologic history. Sr and Nd isotopic data and chemical data have been collected for a time series of PM2.5 filter samples from Hefei, China taken from eraly April into early May, 2002. This period encompassed a series of dust storms. The sampling time frame overlapped with the 2002 Intercontinental Transport and Chemical Transformation (ITCT-2K2) experiment along the Pacific coast of North America and inland California. Highs in 87Sr/86Sr in the Hefei time series coincide with peaks in Ca and Si representing peaks in mineral particulate loading resulting from passing dust storms. Mixing diagrams combining isotopic data with chemical data identify several components; a high 87Sr/86Sr component that we identify with mineral dust (loess), and two different low 87Sr/86Sr components (local sources and marine aerosol). Using our measured isotopic composition of the "loess" standard CJ-1 [2] as representative of the pure high 87Sr/86Sr component, we calculate 24 hour average loess particulate concentrations in air which range up to 35 micrograms per cubic meter. Marine aerosol was a major component on at least one of the sampled days. The results for the Hefei samples provide a basis for our isotopic study of California mineral aerosols, including the identification and apportionment of local and far-traveled Asian dust components and their variation in time. [1]VanCuren R.A., Cliff, S.S., Perry, K.D. and Jimenez-Cruz, M. (2005) J. Geophys. Res., 110, D09S90, doi: 10.1029/2004JD004973 [2]Nishikawa, M., Hao, Q. and Morita, M. (2000) Global Environ. Res. 4, 1:103-113.
Inflow forecasting model construction with stochastic time series for coordinated dam operation
NASA Astrophysics Data System (ADS)
Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.
2014-12-01
Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
Improving Photometry and Stellar Signal Preservation with Pixel-Level Systematic Error Correction
NASA Technical Reports Server (NTRS)
Kolodzijczak, Jeffrey J.; Smith, Jeffrey C.; Jenkins, Jon M.
2013-01-01
The Kepler Mission has demonstrated that excellent stellar photometric performance can be achieved using apertures constructed from optimally selected CCD pixels. The clever methods used to correct for systematic errors, while very successful, still have some limitations in their ability to extract long-term trends in stellar flux. They also leave poorly correlated bias sources, such as drifting moiré pattern, uncorrected. We will illustrate several approaches where applying systematic error correction algorithms to the pixel time series, rather than the co-added raw flux time series, provide significant advantages. Examples include, spatially localized determination of time varying moiré pattern biases, greater sensitivity to radiation-induced pixel sensitivity drops (SPSDs), improved precision of co-trending basis vectors (CBV), and a means of distinguishing the stellar variability from co-trending terms even when they are correlated. For the last item, the approach enables physical interpretation of appropriately scaled coefficients derived in the fit of pixel time series to the CBV as linear combinations of various spatial derivatives of the pixel response function (PRF). We demonstrate that the residuals of a fit of soderived pixel coefficients to various PRF-related components can be deterministically interpreted in terms of physically meaningful quantities, such as the component of the stellar flux time series which is correlated with the CBV, as well as, relative pixel gain, proper motion and parallax. The approach also enables us to parameterize and assess the limiting factors in the uncertainties in these quantities.
Measuring information interactions on the ordinal pattern of stock time series
NASA Astrophysics Data System (ADS)
Zhao, Xiaojun; Shang, Pengjian; Wang, Jing
2013-02-01
The interactions among time series as individual components of complex systems can be quantified by measuring to what extent they exchange information among each other. In many applications, one focuses not on the original series but on its ordinal pattern. In such cases, trivial noises appear more likely to be filtered and the abrupt influence of extreme values can be weakened. Cross-sample entropy and inner composition alignment have been introduced as prominent methods to estimate the information interactions of complex systems. In this paper, we modify both methods to detect the interactions among the ordinal pattern of stock return and volatility series, and we try to uncover the information exchanges across sectors in Chinese stock markets.
Capattery double layer capacitor life performance
NASA Astrophysics Data System (ADS)
Evans, David A.; Clark, Nancy H.; Baca, W. E.; Miller, John R.; Barker, Thomas B.
Double layer capacitors (DLCs) have received increased use in computer memory backup applications for consumer products during the past ten years. Their extraordinarily high capacitance density along with their maintenance-free operation makes them particularly suited for these products. These same features also make DLCs very attractive in military type applications. Unfortunately, lifetime performance data has not been reported in the literature for any DLC component. Our objective in this study was to investigate the effects that voltage and temperature have on the properties and performance of single and series-connected DLCs as a function of time. Evans model RE110474, 0.47-farad, 11.0-volt Capatteries were evaluated. These components have a tantalum package, use welded construction, and contain a glass-to-metal seal, all incorporated to circumvent the typical DLC failure modes of electrolyte loss and container corrosion. A five-level, two-factor Central Composite Design was used in the study. Single and series-connected Capatteries rated at 85 C, 11.0-volts operation were subjected to test temperatures between 25 and 95 C, and voltages between 0 and 12.9 volts (9 test conditions). Measured responses included capacitance, equivalent series resistance, and discharge time. Data were analyzed using a regression analysis to obtain response functions relating DLC properties to their voltage, temperature, and test time history. These results are described and should aid system and component engineers in using DLCs in critical applications.
Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.
2015-01-01
Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919
NASA Astrophysics Data System (ADS)
Sasmita, Yoga; Darmawan, Gumgum
2017-08-01
This research aims to evaluate the performance of forecasting by Fourier Series Analysis (FSA) and Singular Spectrum Analysis (SSA) which are more explorative and not requiring parametric assumption. Those methods are applied to predicting the volume of motorcycle sales in Indonesia from January 2005 to December 2016 (monthly). Both models are suitable for seasonal and trend component data. Technically, FSA defines time domain as the result of trend and seasonal component in different frequencies which is difficult to identify in the time domain analysis. With the hidden period is 2,918 ≈ 3 and significant model order is 3, FSA model is used to predict testing data. Meanwhile, SSA has two main processes, decomposition and reconstruction. SSA decomposes the time series data into different components. The reconstruction process starts with grouping the decomposition result based on similarity period of each component in trajectory matrix. With the optimum of window length (L = 53) and grouping effect (r = 4), SSA predicting testing data. Forecasting accuracy evaluation is done based on Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The result shows that in the next 12 month, SSA has MAPE = 13.54 percent, MAE = 61,168.43 and RMSE = 75,244.92 and FSA has MAPE = 28.19 percent, MAE = 119,718.43 and RMSE = 142,511.17. Therefore, to predict volume of motorcycle sales in the next period should use SSA method which has better performance based on its accuracy.
Quantifying and Reducing Uncertainty in Correlated Multi-Area Short-Term Load Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Hou, Zhangshuan; Meng, Da
2016-07-17
In this study, we represent and reduce the uncertainties in short-term electric load forecasting by integrating time series analysis tools including ARIMA modeling, sequential Gaussian simulation, and principal component analysis. The approaches are mainly focusing on maintaining the inter-dependency between multiple geographically related areas. These approaches are applied onto cross-correlated load time series as well as their forecast errors. Multiple short-term prediction realizations are then generated from the reduced uncertainty ranges, which are useful for power system risk analyses.
NASA Astrophysics Data System (ADS)
Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou
2006-06-01
In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.
Fractal structure of the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Klein, L. W.
1985-01-01
Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.
Empirical mode decomposition and long-range correlation analysis of sunspot time series
NASA Astrophysics Data System (ADS)
Zhou, Yu; Leung, Yee
2010-12-01
Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the proposed EMD-based method—are further compared, and possible reasons for the different results are given. Two numerical experiments are designed for quantitatively evaluating the performances of these three methods in removing periodic trends with inexact/exact cycles and in detecting the possible crossover points.
Binding Isotherms and Time Courses Readily from Magnetic Resonance.
Xu, Jia; Van Doren, Steven R
2016-08-16
Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.
Second-degree Stokes coefficients from multi-satellite SLR
NASA Astrophysics Data System (ADS)
Bloßfeld, Mathis; Müller, Horst; Gerstl, Michael; Štefka, Vojtěch; Bouman, Johannes; Göttl, Franziska; Horwath, Martin
2015-09-01
The long wavelength part of the Earth's gravity field can be determined, with varying accuracy, from satellite laser ranging (SLR). In this study, we investigate the combination of up to ten geodetic SLR satellites using iterative variance component estimation. SLR observations to different satellites are combined in order to identify the impact of each satellite on the estimated Stokes coefficients. The combination of satellite-specific weekly or monthly arcs allows to reduce parameter correlations of the single-satellite solutions and leads to alternative estimates of the second-degree Stokes coefficients. This alternative time series might be helpful for assessing the uncertainty in the impact of the low-degree Stokes coefficients on geophysical investigations. In order to validate the obtained time series of second-degree Stokes coefficients, a comparison with the SLR RL05 time series of the Center of Space Research (CSR) is done. This investigation shows that all time series are comparable to the CSR time series. The precision of the weekly/monthly and coefficients is analyzed by comparing mass-related equatorial excitation functions with geophysical model results and reduced geodetic excitation functions. In case of , the annual amplitude and phase of the DGFI solution agrees better with three of four geophysical model combinations than other time series. In case of , all time series agree very well to each other. The impact of on the ice mass trend estimates for Antarctica are compared based on CSR GRACE RL05 solutions, in which different monthly time series are used for replacing. We found differences in the long-term Antarctic ice loss of Gt/year between the GRACE solutions induced by the different SLR time series of CSR and DGFI, which is about 13 % of the total ice loss of Antarctica. This result shows that Antarctic ice mass loss quantifications must be carefully interpreted.
Statistical analysis of low level atmospheric turbulence
NASA Technical Reports Server (NTRS)
Tieleman, H. W.; Chen, W. W. L.
1974-01-01
The statistical properties of low-level wind-turbulence data were obtained with the model 1080 total vector anemometer and the model 1296 dual split-film anemometer, both manufactured by Thermo Systems Incorporated. The data obtained from the above fast-response probes were compared with the results obtained from a pair of Gill propeller anemometers. The digitized time series representing the three velocity components and the temperature were each divided into a number of blocks, the length of which depended on the lowest frequency of interest and also on the storage capacity of the available computer. A moving-average and differencing high-pass filter was used to remove the trend and the low frequency components in the time series. The calculated results for each of the anemometers used are represented in graphical or tabulated form.
Application of blind source separation to real-time dissolution dynamic nuclear polarization.
Hilty, Christian; Ragavan, Mukundan
2015-01-20
The use of a blind source separation (BSS) algorithm is demonstrated for the analysis of time series of nuclear magnetic resonance (NMR) spectra. This type of data is obtained commonly from experiments, where analytes are hyperpolarized using dissolution dynamic nuclear polarization (D-DNP), both in in vivo and in vitro contexts. High signal gains in D-DNP enable rapid measurement of data sets characterizing the time evolution of chemical or metabolic processes. BSS is based on an algorithm that can be applied to separate the different components contributing to the NMR signal and determine the time dependence of the signals from these components. This algorithm requires minimal prior knowledge of the data, notably, no reference spectra need to be provided, and can therefore be applied rapidly. In a time-resolved measurement of the enzymatic conversion of hyperpolarized oxaloacetate to malate, the two signal components are separated into computed source spectra that closely resemble the spectra of the individual compounds. An improvement in the signal-to-noise ratio of the computed source spectra is found compared to the original spectra, presumably resulting from the presence of each signal more than once in the time series. The reconstruction of the original spectra yields the time evolution of the contributions from the two sources, which also corresponds closely to the time evolution of integrated signal intensities from the original spectra. BSS may therefore be an approach for the efficient identification of components and estimation of kinetics in D-DNP experiments, which can be applied at a high level of automation.
Physical habitat simulation system reference manual: version II
Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.
1989-01-01
There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.
NASA Astrophysics Data System (ADS)
LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.
2017-12-01
To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for the two magnetometers. Once the angle of rotation and the direction of the rotation axis for each couple of CYG and no. 1 and of CYG and no. 2 estimated, we rotated the measured time series of vectors using quaternion rotation to get 3 time series of magnetic fields all on geographical coordinate system, which were used for tracing the moving magnetic bodies along time in that area.
Utilization of Historic Information in an Optimisation Task
NASA Technical Reports Server (NTRS)
Boesser, T.
1984-01-01
One of the basic components of a discrete model of motor behavior and decision making, which describes tracking and supervisory control in unitary terms, is assumed to be a filtering mechanism which is tied to the representational principles of human memory for time-series information. In a series of experiments subjects used the time-series information with certain significant limitations: there is a range-effect; asymmetric distributions seem to be recognized, but it does not seem to be possible to optimize performance based on skewed distributions. Thus there is a transformation of the displayed data between the perceptual system and representation in memory involving a loss of information. This rules out a number of representational principles for time-series information in memory and fits very well into the framework of a comprehensive discrete model for control of complex systems, modelling continuous control (tracking), discrete responses, supervisory behavior and learning.
NASA Astrophysics Data System (ADS)
Lakshmi, K.; Rama Mohan Rao, A.
2014-10-01
In this paper, a novel output-only damage-detection technique based on time-series models for structural health monitoring in the presence of environmental variability and measurement noise is presented. The large amount of data obtained in the form of time-history response is transformed using principal component analysis, in order to reduce the data size and thereby improve the computational efficiency of the proposed algorithm. The time instant of damage is obtained by fitting the acceleration time-history data from the structure using autoregressive (AR) and AR with exogenous inputs time-series prediction models. The probability density functions (PDFs) of damage features obtained from the variances of prediction errors corresponding to references and healthy current data are found to be shifting from each other due to the presence of various uncertainties such as environmental variability and measurement noise. Control limits using novelty index are obtained using the distances of the peaks of the PDF curves in healthy condition and used later for determining the current condition of the structure. Numerical simulation studies have been carried out using a simply supported beam and also validated using an experimental benchmark data corresponding to a three-storey-framed bookshelf structure proposed by Los Alamos National Laboratory. Studies carried out in this paper clearly indicate the efficiency of the proposed algorithm for damage detection in the presence of measurement noise and environmental variability.
NASA Astrophysics Data System (ADS)
Gualandi, A.; Serpelloni, E.; Belardinelli, M. E.
2014-12-01
A critical point in the analysis of ground displacements time series is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies. Indeed, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here we present the application of the vbICA technique to GPS position time series. First, we use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise), and study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, we apply vbICA to different tectonically active scenarios, such as earthquakes in central and northern Italy, as well as the study of slow slip events in Cascadia.
NASA Astrophysics Data System (ADS)
Usowicz, Jerzy, B.; Marczewski, Wojciech; Usowicz, Boguslaw; Lipiec, Jerzy; Lukowski, Mateusz I.
2010-05-01
This paper presents the results of the time series analysis of the soil moisture observed at two test sites Podlasie, Polesie, in the Cal/Val AO 3275 campaigns in Poland, during the interval 2006-2009. The test sites have been selected on a basis of their contrasted hydrological conditions. The region Podlasie (Trzebieszow) is essentially drier than the wetland region Polesie (Urszulin). It is worthwhile to note that the soil moisture variations can be represented as a non-stationary random process, and therefore appropriate analysis methods are required. The so-called Empirical Mode Decomposition (EMD) method has been chosen, since it is one of the best methods for the analysis of non-stationary and nonlinear time series. To confirm the results obtained by the EMD we have also used the wavelet methods. Firstly, we have used EMD (analyze step) to decompose the original time series into the so-called Intrinsic Mode Functions (IMFs) and then by grouping and addition similar IMFs (synthesize step) to obtain a few signal components with corresponding temporal scales. Such an adaptive procedure enables to decompose the original time series into diurnal, seasonal and trend components. Revealing of all temporal scales which operates in the original time series is our main objective and this approach may prove to be useful in other studies. Secondly, we have analyzed the soil moisture time series from both sites using the cross-wavelet and wavelet coherency. These methods allow us to study the degree of spatial coherence, which may vary in various intervals of time. We hope the obtained results provide some hints and guidelines for the validation of ESA SMOS data. References: B. Usowicz, J.B. Usowicz, Spatial and temporal variation of selected physical and chemical properties of soil, Institute of Agrophysics, Polish Academy of Sciences, Lublin 2004, ISBN 83-87385-96-4 Rao, A.R., Hsu, E.-C., Hilbert-Huang Transform Analysis of Hydrological and Environmental Time Series, Springer, 2008, ISBN: 978-1-4020-6453-1 Acknowledgements. This work was funded in part by the PECS - Programme for European Cooperating States, No. 98084 "SWEX/R - Soil Water and Energy Exchange/Research".
Climate-driven seasonal geocenter motion during the GRACE period
NASA Astrophysics Data System (ADS)
Zhang, Hongyue; Sun, Yu
2018-03-01
Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.
Pan, Yuanjin; Shen, Wen-Bin; Ding, Hao; Hwang, Cheinway; Li, Jin; Zhang, Tengxu
2015-10-14
Modeling nonlinear vertical components of a GPS time series is critical to separating sources contributing to mass displacements. Improved vertical precision in GPS positioning at stations for velocity fields is key to resolving the mechanism of certain geophysical phenomena. In this paper, we use ensemble empirical mode decomposition (EEMD) to analyze the daily GPS time series at 89 continuous GPS stations, spanning from 2002 to 2013. EEMD decomposes a GPS time series into different intrinsic mode functions (IMFs), which are used to identify different kinds of signals and secular terms. Our study suggests that the GPS records contain not only the well-known signals (such as semi-annual and annual signals) but also the seldom-noted quasi-biennial oscillations (QBS). The quasi-biennial signals are explained by modeled loadings of atmosphere, non-tidal and hydrology that deform the surface around the GPS stations. In addition, the loadings derived from GRACE gravity changes are also consistent with the quasi-biennial deformations derived from the GPS observations. By removing the modeled components, the weighted root-mean-square (WRMS) variation of the GPS time series is reduced by 7.1% to 42.3%, and especially, after removing the seasonal and QBO signals, the average improvement percentages for seasonal and QBO signals are 25.6% and 7.5%, respectively, suggesting that it is significant to consider the QBS signals in the GPS records to improve the observed vertical deformations.
Pan, Yuanjin; Shen, Wen-Bin; Ding, Hao; Hwang, Cheinway; Li, Jin; Zhang, Tengxu
2015-01-01
Modeling nonlinear vertical components of a GPS time series is critical to separating sources contributing to mass displacements. Improved vertical precision in GPS positioning at stations for velocity fields is key to resolving the mechanism of certain geophysical phenomena. In this paper, we use ensemble empirical mode decomposition (EEMD) to analyze the daily GPS time series at 89 continuous GPS stations, spanning from 2002 to 2013. EEMD decomposes a GPS time series into different intrinsic mode functions (IMFs), which are used to identify different kinds of signals and secular terms. Our study suggests that the GPS records contain not only the well-known signals (such as semi-annual and annual signals) but also the seldom-noted quasi-biennial oscillations (QBS). The quasi-biennial signals are explained by modeled loadings of atmosphere, non-tidal and hydrology that deform the surface around the GPS stations. In addition, the loadings derived from GRACE gravity changes are also consistent with the quasi-biennial deformations derived from the GPS observations. By removing the modeled components, the weighted root-mean-square (WRMS) variation of the GPS time series is reduced by 7.1% to 42.3%, and especially, after removing the seasonal and QBO signals, the average improvement percentages for seasonal and QBO signals are 25.6% and 7.5%, respectively, suggesting that it is significant to consider the QBS signals in the GPS records to improve the observed vertical deformations. PMID:26473882
GATE: software for the analysis and visualization of high-dimensional time series expression data.
MacArthur, Ben D; Lachmann, Alexander; Lemischka, Ihor R; Ma'ayan, Avi
2010-01-01
We present Grid Analysis of Time series Expression (GATE), an integrated computational software platform for the analysis and visualization of high-dimensional biomolecular time series. GATE uses a correlation-based clustering algorithm to arrange molecular time series on a two-dimensional hexagonal array and dynamically colors individual hexagons according to the expression level of the molecular component to which they are assigned, to create animated movies of systems-level molecular regulatory dynamics. In order to infer potential regulatory control mechanisms from patterns of correlation, GATE also allows interactive interroga-tion of movies against a wide variety of prior knowledge datasets. GATE movies can be paused and are interactive, allowing users to reconstruct networks and perform functional enrichment analyses. Movies created with GATE can be saved in Flash format and can be inserted directly into PDF manuscript files as interactive figures. GATE is available for download and is free for academic use from http://amp.pharm.mssm.edu/maayan-lab/gate.htm
NASA Astrophysics Data System (ADS)
Abe, R.; Hamada, K.; Hirata, N.; Tamura, R.; Nishi, N.
2015-05-01
As well as the BIM of quality management in the construction industry, demand for quality management of the manufacturing process of the member is higher in shipbuilding field. The time series of three-dimensional deformation of the each process, and are accurately be grasped strongly demanded. In this study, we focused on the shipbuilding field, will be examined three-dimensional measurement method. The shipyard, since a large equipment and components are intricately arranged in a limited space, the installation of the measuring equipment and the target is limited. There is also the element to be measured is moved in each process, the establishment of the reference point for time series comparison is necessary to devise. In this paper will be discussed method for measuring the welding deformation in time series by using a total station. In particular, by using a plurality of measurement data obtained from this approach and evaluated the amount of deformation of each process.
THE ANALYSIS OF THE TIME-SERIES FLUCTUATION OF WATER DEMAND FOR THE SMALL WATER SUPPLY BLOCK
NASA Astrophysics Data System (ADS)
Koizumi, Akira; Suehiro, Miki; Arai, Yasuhiro; Inakazu, Toyono; Masuko, Atushi; Tamura, Satoshi; Ashida, Hiroshi
The purpose of this study is to define one apartment complex as "the water supply block" and to show the relationship between the amount of water supply for an apartment house and its time series fluctuation. We examined the observation data which were collected from 33 apartment houses. The water meters were installed at individual observation points for about 20 days in Tokyo. This study used Fourier analysis in order to grasp the irregularity in a time series data. As a result, this paper demonstrated that the smaller the amount of water supply became, the larger irregularity the time series fluctuation had. We also found that it was difficult to describe the daily cyclical pattern for a small apartment house using the dominant periodic components which were obtained from a Fourier spectrum. Our research give useful information about the design for a directional water supply system, as to making estimates of the hourly fluctuation and the maximum daily water demand.
Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W
2018-02-16
Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dergachev, V. A.; Dmitriev, P. B.
2017-12-01
An inhomogeneous time series of measurements of the percentage content of biogenic silica in the samples of joint cores BDP-96-1 and BDP-96-2 from the bottom of Lake Baikal drilled at a depth of 321 m under water has been analyzed. The composite depth of cores is 77 m, which covers the Pleistocene Epoch to 1.8 Ma. The time series was reduced to a regular form with a time step of 1 kyr, which allowed 16 distinct quasi-periodic components with periods from 19 to 251 kyr to be revealed in this series at a significance level of their amplitudes exceeding 4σ. For this, the combined spectral periodogram (a modification of the spectral analysis method) was used. Some of the revealed quasi-harmonics are related to the characteristic cyclical oscillations of the Earth's orbital parameters. Special focus was payed to the temporal change in the parameters of the revealed quasi-harmonic components over the Pleistocene Epoch, which was studied by constructing the spectral density of the analyzed data in the running window of 201 and 701 kyr.
40 CFR 86.1725-99 - Maintenance.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and... the first time the minimum performance level is observed for all battery system components. Possible... system consisting of a light that shall illuminate the first time the battery system is unable to achieve...
40 CFR 86.1725-99 - Maintenance.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and... the first time the minimum performance level is observed for all battery system components. Possible... system consisting of a light that shall illuminate the first time the battery system is unable to achieve...
40 CFR 86.1725-99 - Maintenance.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and... the first time the minimum performance level is observed for all battery system components. Possible... system consisting of a light that shall illuminate the first time the battery system is unable to achieve...
40 CFR 86.1725-99 - Maintenance.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and... the first time the minimum performance level is observed for all battery system components. Possible... system consisting of a light that shall illuminate the first time the battery system is unable to achieve...
NASA Astrophysics Data System (ADS)
Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye
2018-05-01
The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.
Assessment of 3D hydrologic deformation using GRACE and GPS
NASA Astrophysics Data System (ADS)
Watson, C. S.; Tregoning, P.; Fleming, K.; Burgette, R. J.; Featherstone, W. E.; Awange, J.; Kuhn, M.; Ramillien, G.
2009-12-01
Hydrological processes cause variations in gravitational potential and surface deformations, both of which are detectable with ever increasing precision using space geodetic techniques. By comparing the elastic deformation computed from continental water load estimates derived from the Gravity Recovery and Climate Experiment (GRACE), with three-dimensional surface deformation derived from GPS observations, there is clear potential to better understand global to regional hydrological processes, in addition to acquiring further insight into the systematic error contributions affecting each space geodetic technique. In this study, we compare elastic deformation derived from water load estimates taken from the CNES, CSR, GFZ and JPL time variable GRACE fields. We compare these surface displacements with those derived at a global network of GPS sites that have been homogeneously reprocessed in the GAMIT/GLOBK suite. We extend our comparison to include a series of different GPS solutions, with each solution only subtly different based on the methodology used to down weight the height component in realizing site coordinates on the terrestrial reference frame. Each of the GPS solutions incorporate modeling of atmospheric loading and utilization of the VMF1 and a priori zenith hydrostatic delays derived via ray tracing through ECMWF meteorological fields. The agreement between GRACE and GPS derived deformations is not limited to the vertical component, with excellent agreement in the horizontal component across areas where large hydrologic signals occur over broad spatial scales (with correlation in horizontal components as high as 0.9). Agreement is also observed at smaller scales, including across Europe. These comparisons assist in understanding the magnitude of current error contributions within both space geodetic techniques. With the emergence of homogeneously reprocessed GPS time series spanning the GRACE mission, this technique offers one possible means of validating the amplitude and phase of quasi-periodic signals present in GPS time series.
NASA Technical Reports Server (NTRS)
Dong, D.; Fang, P.; Bock, F.; Webb, F.; Prawirondirdjo, L.; Kedar, S.; Jamason, P.
2006-01-01
Spatial filtering is an effective way to improve the precision of coordinate time series for regional GPS networks by reducing so-called common mode errors, thereby providing better resolution for detecting weak or transient deformation signals. The commonly used approach to regional filtering assumes that the common mode error is spatially uniform, which is a good approximation for networks of hundreds of kilometers extent, but breaks down as the spatial extent increases. A more rigorous approach should remove the assumption of spatially uniform distribution and let the data themselves reveal the spatial distribution of the common mode error. The principal component analysis (PCA) and the Karhunen-Loeve expansion (KLE) both decompose network time series into a set of temporally varying modes and their spatial responses. Therefore they provide a mathematical framework to perform spatiotemporal filtering.We apply the combination of PCA and KLE to daily station coordinate time series of the Southern California Integrated GPS Network (SCIGN) for the period 2000 to 2004. We demonstrate that spatially and temporally correlated common mode errors are the dominant error source in daily GPS solutions. The spatial characteristics of the common mode errors are close to uniform for all east, north, and vertical components, which implies a very long wavelength source for the common mode errors, compared to the spatial extent of the GPS network in southern California. Furthermore, the common mode errors exhibit temporally nonrandom patterns.
Wald, Lawrence L; Polimeni, Jonathan R
2017-07-01
We review the components of time-series noise in fMRI experiments and the effect of image acquisition parameters on the noise. In addition to helping determine the total amount of signal and noise (and thus temporal SNR), the acquisition parameters have been shown to be critical in determining the ratio of thermal to physiological induced noise components in the time series. Although limited attention has been given to this latter metric, we show that it determines the degree of spatial correlations seen in the time-series noise. The spatially correlations of the physiological noise component are well known, but recent studies have shown that they can lead to a higher than expected false-positive rate in cluster-wise inference based on parametric statistical methods used by many researchers. Based on understanding the effect of acquisition parameters on the noise mixture, we propose several acquisition strategies that might be helpful reducing this elevated false-positive rate, such as moving to high spatial resolution or using highly-accelerated acquisitions where thermal sources dominate. We suggest that the spatial noise correlations at the root of the inflated false-positive rate problem can be limited with these strategies, and the well-behaved spatial auto-correlation functions (ACFs) assumed by the conventional statistical methods are retained if the high resolution data is smoothed to conventional resolutions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kappler, Karl N.; Schneider, Daniel D.; MacLean, Laura S.; Bleier, Thomas E.
2017-08-01
A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of interest are first identified in geomagnetic time series by inspection. Time series of these "training events" are represented in matrix form and transpose-multiplied to generate time-domain covariance matrices. The ranked eigenvectors of this matrix are stored as a feature of the pulsation. In the second stage of the algorithm, a sliding window (approximately the width of the training event) is moved across the vector-valued time-series comprising the channels on which the training event was observed. At each window position, the data covariance matrix and associated eigenvectors are calculated. We compare the orientation of the dominant eigenvectors of the training data to those from the windowed data and flag windows where the dominant eigenvectors directions are similar. This was successful in automatically identifying pulses which share polarization and appear to be from the same source process. We apply the method to a case study of continuously sampled (50 Hz) data from six observatories, each equipped with three-component induction coil magnetometers. We examine a 90-day interval of data associated with a cluster of four observatories located within 50 km of Napa, California, together with two remote reference stations-one 100 km to the north of the cluster and the other 350 km south. When the training data contains signals present in the remote reference observatories, we are reliably able to identify and extract global geomagnetic signals such as solar-generated noise. When training data contains pulsations only observed in the cluster of local observatories, we identify several types of non-plane wave signals having similar polarization.
Attractor States in Teaching and Learning Processes: A Study of Out-of-School Science Education.
Geveke, Carla H; Steenbeek, Henderien W; Doornenbal, Jeannette M; Van Geert, Paul L C
2017-01-01
In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the instructor-pupil system that is constructed in real-time interaction. When PCK is evident in real-time interaction, we define it as Expressed Pedagogical Content Knowledge (EPCK). The aim of this study is to empirically explore whether EPCK shows a systematic pattern of variation, and if so whether the pattern occurs in recurrent and temporary stable attractor states as predicted in the complex dynamic systems theory. This study concerned nine out-of-school activities in which pupils of upper primary school classes participated. A multivariate coding scheme was used to capture EPCK in real time. A principal component analysis of the time series of all the variables reduced the number of components. A cluster revealed general descriptions of the components across all cases. Cluster analyses of individual cases divided the time series into sequences, revealing High-, Low-, and Non-EPCK states. High-EPCK attractor states emerged at particular moments during activities, rather than being present all the time. Such High-EPCK attractor states were only found in a few cases, namely those where the pupils were prepared for the visit and the instructors were trained.
Diffusive and subdiffusive dynamics of indoor microclimate: a time series modeling.
Maciejewska, Monika; Szczurek, Andrzej; Sikora, Grzegorz; Wyłomańska, Agnieszka
2012-09-01
The indoor microclimate is an issue in modern society, where people spend about 90% of their time indoors. Temperature and relative humidity are commonly used for its evaluation. In this context, the two parameters are usually considered as behaving in the same manner, just inversely correlated. This opinion comes from observation of the deterministic components of temperature and humidity time series. We focus on the dynamics and the dependency structure of the time series of these parameters, without deterministic components. Here we apply the mean square displacement, the autoregressive integrated moving average (ARIMA), and the methodology for studying anomalous diffusion. The analyzed data originated from five monitoring locations inside a modern office building, covering a period of nearly one week. It was found that the temperature data exhibited a transition between diffusive and subdiffusive behavior, when the building occupancy pattern changed from the weekday to the weekend pattern. At the same time the relative humidity consistently showed diffusive character. Also the structures of the dependencies of the temperature and humidity data sets were different, as shown by the different structures of the ARIMA models which were found appropriate. In the space domain, the dynamics and dependency structure of the particular parameter were preserved. This work proposes an approach to describe the very complex conditions of indoor air and it contributes to the improvement of the representative character of microclimate monitoring.
NASA Astrophysics Data System (ADS)
Zhang, G.; Ganguly, S.; Saatchi, S. S.; Hagen, S. C.; Harris, N.; Yu, Y.; Nemani, R. R.
2013-12-01
Spatial and temporal patterns of forest disturbance and regrowth processes are key for understanding aboveground terrestrial vegetation biomass and carbon stocks at regional-to-continental scales. The NASA Carbon Monitoring System (CMS) program seeks key input datasets, especially information related to impacts due to natural/man-made disturbances in forested landscapes of Conterminous U.S. (CONUS), that would reduce uncertainties in current carbon stock estimation and emission models. This study provides a end-to-end forest disturbance detection framework based on pixel time series analysis from MODIS (Moderate Resolution Imaging Spectroradiometer) and Landsat surface spectral reflectance data. We applied the BFAST (Breaks for Additive Seasonal and Trend) algorithm to the Normalized Difference Vegetation Index (NDVI) data for the time period from 2000 to 2011. A harmonic seasonal model was implemented in BFAST to decompose the time series to seasonal and interannual trend components in order to detect abrupt changes in magnitude and direction of these components. To apply the BFAST for whole CONUS, we built a parallel computing setup for processing massive time-series data using the high performance computing facility of the NASA Earth Exchange (NEX). In the implementation process, we extracted the dominant deforestation events from the magnitude of abrupt changes in both seasonal and interannual components, and estimated dates for corresponding deforestation events. We estimated the recovery rate for deforested regions through regression models developed between NDVI values and time since disturbance for all pixels. A similar implementation of the BFAST algorithm was performed over selected Landsat scenes (all Landsat cloud free data was used to generate NDVI from atmospherically corrected spectral reflectances) to demonstrate the spatial coherence in retrieval layers between MODIS and Landsat. In future, the application of this largely parallel disturbance detection setup will facilitate large scale processing and wall-to-wall mapping of forest disturbance and regrowth of Landsat data for the whole of CONUS. This exercise will aid in improving the present capabilities of the NASA CMS effort in reducing uncertainties in national-level estimates of biomass and carbon stocks.
RankExplorer: Visualization of Ranking Changes in Large Time Series Data.
Shi, Conglei; Cui, Weiwei; Liu, Shixia; Xu, Panpan; Chen, Wei; Qu, Huamin
2012-12-01
For many applications involving time series data, people are often interested in the changes of item values over time as well as their ranking changes. For example, people search many words via search engines like Google and Bing every day. Analysts are interested in both the absolute searching number for each word as well as their relative rankings. Both sets of statistics may change over time. For very large time series data with thousands of items, how to visually present ranking changes is an interesting challenge. In this paper, we propose RankExplorer, a novel visualization method based on ThemeRiver to reveal the ranking changes. Our method consists of four major components: 1) a segmentation method which partitions a large set of time series curves into a manageable number of ranking categories; 2) an extended ThemeRiver view with embedded color bars and changing glyphs to show the evolution of aggregation values related to each ranking category over time as well as the content changes in each ranking category; 3) a trend curve to show the degree of ranking changes over time; 4) rich user interactions to support interactive exploration of ranking changes. We have applied our method to some real time series data and the case studies demonstrate that our method can reveal the underlying patterns related to ranking changes which might otherwise be obscured in traditional visualizations.
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.
Vernon Bermuda Workshop: A Course in Sub-tropical Island Ecology
NASA Technical Reports Server (NTRS)
Werdell, P. Jeremy
2012-01-01
More than 30 years ago, educators in central Connecticut developed the Vernon Bermuda Workshop as a means of introducing middle- and high-school students to subtropical island ecology. Each year, after months of classroom preparation, approximately 20 top students spend one week at the Bermuda Institute of Ocean Sciences (St. George's, Bermuda) studying the local flora and fauna in both the field and laboratory. The curriculum includes an additional array of activities, ranging from historical and ecological tours to spelunking, and culminates in a series of field-observation-related presentations. I am responsible for the meteorological and oceanographic components of the curriculum. In the field, my students collect time-series of biophysical variables over the course of a day, which they use to interpret diurnal patterns and interactions amongst the variables. I also add remote-sensing and phytoplankton biology components to the curriculum - in previous years, my students have studied time-series of Sea WIFS imagery collected at Bermuda during our trip. I have been an Instructor for this Workshop since 2003. The Workshop provides an outreach activity for GSFC Code 616.
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... secured borrowers within each year), the coefficients of variation of the time series of annual default... the method you use, please do not submit your comment multiple times via different methods. You may... component to directly recognize the credit risk on such loans.\\4\\ At the time of the Farm Bill's enactment...
30 CFR 18.98 - Enclosures, joints, and fastenings; pressure testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... consistent with unyielding components during a pressure-time history as derived from a series of oscillograms...; pressure testing. (a) Cast or welded enclosures shall be designed to withstand a minimum internal pressure...
30 CFR 18.98 - Enclosures, joints, and fastenings; pressure testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... consistent with unyielding components during a pressure-time history as derived from a series of oscillograms...; pressure testing. (a) Cast or welded enclosures shall be designed to withstand a minimum internal pressure...
30 CFR 18.98 - Enclosures, joints, and fastenings; pressure testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... consistent with unyielding components during a pressure-time history as derived from a series of oscillograms...; pressure testing. (a) Cast or welded enclosures shall be designed to withstand a minimum internal pressure...
30 CFR 18.98 - Enclosures, joints, and fastenings; pressure testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... consistent with unyielding components during a pressure-time history as derived from a series of oscillograms...; pressure testing. (a) Cast or welded enclosures shall be designed to withstand a minimum internal pressure...
30 CFR 18.98 - Enclosures, joints, and fastenings; pressure testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... consistent with unyielding components during a pressure-time history as derived from a series of oscillograms...; pressure testing. (a) Cast or welded enclosures shall be designed to withstand a minimum internal pressure...
Optimizing Use of Water Management Systems during Changes of Hydrological Conditions
NASA Astrophysics Data System (ADS)
Výleta, Roman; Škrinár, Andrej; Danáčová, Michaela; Valent, Peter
2017-10-01
When designing the water management systems and their components, there is a need of more detail research on hydrological conditions of the river basin, runoff of which creates the main source of water in the reservoir. Over the lifetime of the water management systems the hydrological time series are never repeated in the same form which served as the input for the design of the system components. The design assumes the observed time series to be representative at the time of the system use. However, it is rather unrealistic assumption, because the hydrological past will not be exactly repeated over the design lifetime. When designing the water management systems, the specialists may occasionally face the insufficient or oversized capacity design, possibly wrong specification of the management rules which may lead to their non-optimal use. It is therefore necessary to establish a comprehensive approach to simulate the fluctuations in the interannual runoff (taking into account the current dry and wet periods) in the form of stochastic modelling techniques in water management practice. The paper deals with the methodological procedure of modelling the mean monthly flows using the stochastic Thomas-Fiering model, while modification of this model by Wilson-Hilferty transformation of independent random number has been applied. This transformation usually applies in the event of significant asymmetry in the observed time series. The methodological procedure was applied on the data acquired at the gauging station of Horné Orešany in the Parná Stream. Observed mean monthly flows for the period of 1.11.1980 - 31.10.2012 served as the model input information. After extrapolation the model parameters and Wilson-Hilferty transformation parameters the synthetic time series of mean monthly flows were simulated. Those have been compared with the observed hydrological time series using basic statistical characteristics (e. g. mean, standard deviation and skewness) for testing the quality of the model simulation. The synthetic hydrological series of monthly flows were created having the same statistical properties as the time series observed in the past. The compiled model was able to take into account the diversity of extreme hydrological situations in a form of synthetic series of mean monthly flows, while the occurrence of a set of flows was confirmed, which could and may occur in the future. The results of stochastic modelling in the form of synthetic time series of mean monthly flows, which takes into account the seasonal fluctuations of runoff within the year, could be applicable in engineering hydrology (e. g. for optimum use of the existing water management system that is related to reassessment of economic risks of the system).
On the Impact of a Quadratic Acceleration Term in the Analysis of Position Time Series
NASA Astrophysics Data System (ADS)
Bogusz, Janusz; Klos, Anna; Bos, Machiel Simon; Hunegnaw, Addisu; Teferle, Felix Norman
2016-04-01
The analysis of Global Navigation Satellite System (GNSS) position time series generally assumes that each of the coordinate component series is described by the sum of a linear rate (velocity) and various periodic terms. The residuals, the deviations between the fitted model and the observations, are then a measure of the epoch-to-epoch scatter and have been used for the analysis of the stochastic character (noise) of the time series. Often the parameters of interest in GNSS position time series are the velocities and their associated uncertainties, which have to be determined with the highest reliability. It is clear that not all GNSS position time series follow this simple linear behaviour. Therefore, we have added an acceleration term in the form of a quadratic polynomial function to the model in order to better describe the non-linear motion in the position time series. This non-linear motion could be a response to purely geophysical processes, for example, elastic rebound of the Earth's crust due to ice mass loss in Greenland, artefacts due to deficiencies in bias mitigation models, for example, of the GNSS satellite and receiver antenna phase centres, or any combination thereof. In this study we have simulated 20 time series with different stochastic characteristics such as white, flicker or random walk noise of length of 23 years. The noise amplitude was assumed at 1 mm/y-/4. Then, we added the deterministic part consisting of a linear trend of 20 mm/y (that represents the averaged horizontal velocity) and accelerations ranging from minus 0.6 to plus 0.6 mm/y2. For all these data we estimated the noise parameters with Maximum Likelihood Estimation (MLE) using the Hector software package without taken into account the non-linear term. In this way we set the benchmark to then investigate how the noise properties and velocity uncertainty may be affected by any un-modelled, non-linear term. The velocities and their uncertainties versus the accelerations for different types of noise are determined. Furthermore, we have selected 40 globally distributed stations that have a clear non-linear behaviour from two different International GNSS Service (IGS) analysis centers: JPL (Jet Propulsion Laboratory) and BLT (British Isles continuous GNSS Facility and University of Luxembourg Tide Gauge Benchmark Monitoring (TIGA) Analysis Center). We obtained maximum accelerations of -1.8±1.2 mm2/y and -4.5±3.3 mm2/y for the horizontal and vertical components, respectively. The noise analysis tests have shown that the addition of the non-linear term has significantly whitened the power spectra of the position time series, i.e. shifted the spectral index from flicker towards white noise.
Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi
2018-04-01
Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.
NASA Astrophysics Data System (ADS)
Wu, Xiaoping; Abbondanza, Claudio; Altamimi, Zuheir; Chin, T. Mike; Collilieux, Xavier; Gross, Richard S.; Heflin, Michael B.; Jiang, Yan; Parker, Jay W.
2015-05-01
The current International Terrestrial Reference Frame is based on a piecewise linear site motion model and realized by reference epoch coordinates and velocities for a global set of stations. Although linear motions due to tectonic plates and glacial isostatic adjustment dominate geodetic signals, at today's millimeter precisions, nonlinear motions due to earthquakes, volcanic activities, ice mass losses, sea level rise, hydrological changes, and other processes become significant. Monitoring these (sometimes rapid) changes desires consistent and precise realization of the terrestrial reference frame (TRF) quasi-instantaneously. Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates. In addition to secular, periodic, and stochastic components for station coordinates, the Kalman filter state variables also include daily Earth orientation parameters and transformation parameters from input data frames to the combined TRF. Local tie measurements among colocated stations are used at their known or nominal epochs of observation, with comotion constraints applied to almost all colocated stations. The filter/smoother approach unifies different geodetic time series in a single geocentric frame. Fragmented and multitechnique tracking records at colocation sites are bridged together to form longer and coherent motion time series. While the time series approach to TRF reflects the reality of a changing Earth more closely than the linear approximation model, the filter/smoother is computationally powerful and flexible to facilitate incorporation of other data types and more advanced characterization of stochastic behavior of geodetic time series.
Analysis of crude oil markets with improved multiscale weighted permutation entropy
NASA Astrophysics Data System (ADS)
Niu, Hongli; Wang, Jun; Liu, Cheng
2018-03-01
Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.
Inference of Gene Regulatory Networks Using Time-Series Data: A Survey
Sima, Chao; Hua, Jianping; Jung, Sungwon
2009-01-01
The advent of high-throughput technology like microarrays has provided the platform for studying how different cellular components work together, thus created an enormous interest in mathematically modeling biological network, particularly gene regulatory network (GRN). Of particular interest is the modeling and inference on time-series data, which capture a more thorough picture of the system than non-temporal data do. We have given an extensive review of methodologies that have been used on time-series data. In realizing that validation is an impartible part of the inference paradigm, we have also presented a discussion on the principles and challenges in performance evaluation of different methods. This survey gives a panoramic view on these topics, with anticipation that the readers will be inspired to improve and/or expand GRN inference and validation tool repository. PMID:20190956
NASA Astrophysics Data System (ADS)
Gualandi, Adriano; Serpelloni, Enrico; Elina Belardinelli, Maria; Bonafede, Maurizio; Pezzo, Giuseppe; Tolomei, Cristiano
2015-04-01
A critical point in the analysis of ground displacement time series, as those measured by modern space geodetic techniques (primarly continuous GPS/GNSS and InSAR) is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies, since PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem. The recovering and separation of the different sources that generate the observed ground deformation is a fundamental task in order to provide a physical meaning to the possible different sources. PCA fails in the BSS problem since it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the displacement time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient deformation signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here we introduce the vbICA technique and present its application on synthetic data that simulate a GPS network recording ground deformation in a tectonically active region, with synthetic time-series containing interseismic, coseismic, and postseismic deformation, plus seasonal deformation, and white and coloured noise. We study the ability of the algorithm to recover the original (known) sources of deformation, and then apply it to a real scenario: the Emilia seismic sequence (2012, northern Italy), which is an example of seismic sequence occurred in a slowly converging tectonic setting, characterized by several local to regional anthropogenic or natural sources of deformation, mainly subsidence due to fluid withdrawal and sediments compaction. We apply both PCA and vbICA to displacement time-series recorded by continuous GPS and InSAR (Pezzo et al., EGU2015-8950).
Using wavelets to decompose the time frequency effects of monetary policy
NASA Astrophysics Data System (ADS)
Aguiar-Conraria, Luís; Azevedo, Nuno; Soares, Maria Joana
2008-05-01
Central banks have different objectives in the short and long run. Governments operate simultaneously at different timescales. Many economic processes are the result of the actions of several agents, who have different term objectives. Therefore, a macroeconomic time series is a combination of components operating on different frequencies. Several questions about economic time series are connected to the understanding of the behavior of key variables at different frequencies over time, but this type of information is difficult to uncover using pure time-domain or pure frequency-domain methods. To our knowledge, for the first time in an economic setup, we use cross-wavelet tools to show that the relation between monetary policy variables and macroeconomic variables has changed and evolved with time. These changes are not homogeneous across the different frequencies.
NASA Astrophysics Data System (ADS)
Baldysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; Kroszczynski, Krzysztof; Araszkiewicz, Andrzej
2015-04-01
In recent years, the GNSS system began to play an increasingly important role in the research related to the climate monitoring. Based on the GPS system, which has the longest operational capability in comparison with other systems, and a common computational strategy applied to all observations, long and homogeneous ZTD (Zenith Tropospheric Delay) time series were derived. This paper presents results of analysis of 16-year ZTD time series obtained from the EPN (EUREF Permanent Network) reprocessing performed by the Military University of Technology. To maintain the uniformity of data, analyzed period of time (1998-2013) is exactly the same for all stations - observations carried out before 1998 were removed from time series and observations processed using different strategy were recalculated according to the MUT LAC approach. For all 16-year time series (59 stations) Lomb-Scargle periodograms were created to obtain information about the oscillations in ZTD time series. Due to strong annual oscillations which disturb the character of oscillations with smaller amplitude and thus hinder their investigation, Lomb-Scargle periodograms for time series with the deleted annual oscillations were created in order to verify presence of semi-annual, ter-annual and quarto-annual oscillations. Linear trend and seasonal components were estimated using LSE (Least Square Estimation) and Mann-Kendall trend test were used to confirm the presence of linear trend designated by LSE method. In order to verify the effect of the length of time series on the estimated size of the linear trend, comparison between two different length of ZTD time series was performed. To carry out a comparative analysis, 30 stations which have been operating since 1996 were selected. For these stations two periods of time were analyzed: shortened 16-year (1998-2013) and full 18-year (1996-2013). For some stations an additional two years of observations have significant impact on changing the size of linear trend - only for 4 stations the size of linear trend was exactly the same for two periods of time. In one case, the nature of the trend has changed from negative (16-year time series) for positive (18-year time series). The average value of a linear trends for 16-year time series is 1,5 mm/decade, but their spatial distribution is not uniform. The average value of linear trends for all 18-year time series is 2,0 mm/decade, with better spatial distribution and smaller discrepancies.
Time Series Observations of the 2015 Eclipse of b Persei (not beta Persei) (Abstract)
NASA Astrophysics Data System (ADS)
Collins, D. F.
2016-06-01
(Abstract only) The bright (V = 4.6) ellipsoidal variable b Persei consists of a close non-eclipsing binary pair that shows a nearly sinusoidal light curve with a ~1.5 day period. This system also contains a third star that orbits the binary pair every 702 days. AAVSO observers recently detected the first ever optical eclipse of A-B binary pair by the third star as a series of snapshots (D. Collins, R. Zavala, J. Sanborn - AAVSO Spring Meeting, 2013); abstract published in Collins, JAAVSO, 41, 2, 391 (2013); b Per mis-printed as b Per therein. A follow-up eclipse campaign in mid-January 2015 recorded time-series observations. These new time-series observations clearly show multiple ingress and egress of each component of the binary system by the third star over the eclipse duration of 2 to 3 days. A simulation of the eclipse was created. Orbital and some astrophysical parameters were adjusted within constraints to give a reasonable fit to the observed light curve.
Radon anomalies: When are they possible to be detected?
NASA Astrophysics Data System (ADS)
Passarelli, Luigi; Woith, Heiko; Seyis, Cemil; Nikkhoo, Mehdi; Donner, Reik
2017-04-01
Records of the Radon noble gas in different environments like soil, air, groundwater, rock, caves, and tunnels, typically display cyclic variations including diurnal (S1), semidiurnal (S2) and seasonal components. But there are also cases where theses cycles are absent. Interestingly, radon emission can also be affected by transient processes, which inhibit or enhance the radon carrying process at the surface. This results in transient changes in the radon emission rate, which are superimposed on the low and high frequency cycles. The complexity in the spectral contents of the radon time-series makes any statistical analysis aiming at understanding the physical driving processes a challenging task. In the past decades there have been several attempts to relate changes in radon emission rate with physical triggering processes such as earthquake occurrence. One of the problems in this type of investigation is to objectively detect anomalies in the radon time-series. In the present work, we propose a simple and objective statistical method for detecting changes in the radon emission rate time-series. The method uses non-parametric statistical tests (e.g., Kolmogorov-Smirnov) to compare empirical distributions of radon emission rate by sequentially applying various time window to the time-series. The statistical test indicates whether two empirical distributions of data originate from the same distribution at a desired significance level. We test the algorithm on synthetic data in order to explore the sensitivity of the statistical test to the sample size. We successively apply the test to six radon emission rate recordings from stations located around the Marmara Sea obtained within the MARsite project (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). We conclude that the test performs relatively well on identify transient changes in the radon emission rate, but the results are strongly dependent on the length of the time window and/or type of frequency filtering. More importantly, when raw time-series contain cyclic components (e.g. seasonal or diurnal variation), the quest of anomalies related to transients becomes meaningless. We conclude that an objective identification of transient changes can be performed only after filtering the raw time-series for the physically meaningful frequency content.
Annual Report of the ECSU Home-Institution Support Program (1993)
1993-09-30
summer of 1992. Stephanie plans to attend graduate school at the University of Alabama at Birmingham. r 3 . Deborah Jones has attended the ISSP program for...computer equipment Component #2 A visiting lecturer series Component # 3 : Students pay & faculty release time Component #4 Student/sponsor travel program...DTXC QUA, ty rNpBT 3 S. 0. CODE: 1133 DISBURSING CODE: N001 79 AGO CODE: N66005 CAGE CODE: OJLKO 3 PART I: A succinct narrative which should
Ship Speed Retrieval From Single Channel TerraSAR-X Data
NASA Astrophysics Data System (ADS)
Soccorsi, Matteo; Lehner, Susanne
2010-04-01
A method to estimate the speed of a moving ship is presented. The technique, introduced in Kirscht (1998), is extended to marine application and validated on TerraSAR-X High-Resolution (HR) data. The generation of a sequence of single-look SAR images from a single- channel image corresponds to an image time series with reduced resolution. This allows applying change detection techniques on the time series to evaluate the velocity components in range and azimuth of the ship. The evaluation of the displacement vector of a moving target in consecutive images of the sequence allows the estimation of the azimuth velocity component. The range velocity component is estimated by evaluating the variation of the signal amplitude during the sequence. In order to apply the technique on TerraSAR-X Spot Light (SL) data a further processing step is needed. The phase has to be corrected as presented in Eineder et al. (2009) due to the SL acquisition mode; otherwise the image sequence cannot be generated. The analysis, when possible validated by the Automatic Identification System (AIS), was performed in the framework of the ESA project MARISS.
VizieR Online Data Catalog: RR Lyrae in SDSS Stripe 82 (Suveges+, 2012)
NASA Astrophysics Data System (ADS)
Suveges, M.; Sesar, B.; Varadi, M.; Mowlavi, N.; Becker, A. C.; Ivezic, Z.; Beck, M.; Nienartowicz, K.; Rimoldini, L.; Dubath, P.; Bartholdi, P.; Eyer, L.
2013-05-01
We propose a robust principal component analysis framework for the exploitation of multiband photometric measurements in large surveys. Period search results are improved using the time-series of the first principal component due to its optimized signal-to-noise ratio. The presence of correlated excess variations in the multivariate time-series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude delta Scuti variables. We also found 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample also comprises 25 multiperiodic or Blazhko RR Lyrae stars. (8 data files).
Moody, George B; Mark, Roger G; Goldberger, Ary L
2011-01-01
PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, J; Zhang, Q; Tilp, A
Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.
Reliability models applicable to space telescope solar array assembly system
NASA Technical Reports Server (NTRS)
Patil, S. A.
1986-01-01
A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.
A DDC Bibliography on Computers in Information Sciences. Volume I. Information Sciences Series.
ERIC Educational Resources Information Center
Defense Documentation Center, Alexandria, VA.
The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 249 annotated references grouped under two major headings: Time Shared, On-Line, and Real Time Systems, and Computer Components. The references are arranged in accesion number (AD-number)…
Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach
NASA Astrophysics Data System (ADS)
Koeppen, W. C.; Pilger, E.; Wright, R.
2011-07-01
We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.
Separation of components from a scale mixture of Gaussian white noises
NASA Astrophysics Data System (ADS)
Vamoş, Călin; Crăciun, Maria
2010-05-01
The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.
NASA Astrophysics Data System (ADS)
Luo, Qiu; Xin, Wu; Qiming, Xiong
2017-06-01
In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.
Long-Term Stability of Radio Sources in VLBI Analysis
NASA Technical Reports Server (NTRS)
Engelhardt, Gerald; Thorandt, Volkmar
2010-01-01
Positional stability of radio sources is an important requirement for modeling of only one source position for the complete length of VLBI data of presently more than 20 years. The stability of radio sources can be verified by analyzing time series of radio source coordinates. One approach is a statistical test for normal distribution of residuals to the weighted mean for each radio source component of the time series. Systematic phenomena in the time series can thus be detected. Nevertheless, an inspection of rate estimation and weighted root-mean-square (WRMS) variations about the mean is also necessary. On the basis of the time series computed by the BKG group in the frame of the ICRF2 working group, 226 stable radio sources with an axis stability of 10 as could be identified. They include 100 ICRF2 axes-defining sources which are determined independently of the method applied in the ICRF2 working group. 29 stable radio sources with a source structure index of less than 3.0 can also be used to increase the number of 295 ICRF2 defining sources.
Sensitivity analysis of machine-learning models of hydrologic time series
NASA Astrophysics Data System (ADS)
O'Reilly, A. M.
2017-12-01
Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.
NASA Astrophysics Data System (ADS)
Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal
2018-06-01
Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.
NASA Astrophysics Data System (ADS)
Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens
2017-04-01
Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.
Solar Cycle Variability and Surface Differential Rotation from Ca II K-line Time Series Data
NASA Astrophysics Data System (ADS)
Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.
2013-07-01
Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period ~ 11 yr), (b) quasi-periodic variations (periods ~ 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range ~0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.
SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scargle, Jeffrey D.; Worden, Simon P.; Keil, Stephen L.
Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structuremore » (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.« less
Standardized principal components for vegetation variability monitoring across space and time
NASA Astrophysics Data System (ADS)
Mathew, T. R.; Vohora, V. K.
2016-08-01
Vegetation at any given location changes through time and in space. In what quantity it changes, where and when can help us in identifying sources of ecosystem stress, which is very useful for understanding changes in biodiversity and its effect on climate change. Such changes known for a region are important in prioritizing management. The present study considers the dynamics of savanna vegetation in Kruger National Park (KNP) through the use of temporal satellite remote sensing images. Spatial variability of vegetation is a key characteristic of savanna landscapes and its importance to biodiversity has been demonstrated by field-based studies. The data used for the study were sourced from the U.S. Agency for International Development where AVHRR derived Normalized Difference Vegetation Index (NDVI) images available at spatial resolutions of 8 km and at dekadal scales. The study area was extracted from these images for the time-period 1984-2002. Maximum value composites were derived for individual months resulting in an image dataset of 216 NDVI images. Vegetation dynamics across spatio-temporal domains were analyzed using standardized principal components analysis (SPCA) on the NDVI time-series. Each individual image variability in the time-series is considered. The outcome of this study demonstrated promising results - the variability of vegetation change in the area across space and time, and also indicated changes in landscape on 6 individual principal components (PCs) showing differences not only in magnitude, but also in pattern, of different selected eco-zones with constantly changing and evolving ecosystem.
Attractor States in Teaching and Learning Processes: A Study of Out-of-School Science Education
Geveke, Carla H.; Steenbeek, Henderien W.; Doornenbal, Jeannette M.; Van Geert, Paul L. C.
2017-01-01
In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the instructor-pupil system that is constructed in real-time interaction. When PCK is evident in real-time interaction, we define it as Expressed Pedagogical Content Knowledge (EPCK). The aim of this study is to empirically explore whether EPCK shows a systematic pattern of variation, and if so whether the pattern occurs in recurrent and temporary stable attractor states as predicted in the complex dynamic systems theory. This study concerned nine out-of-school activities in which pupils of upper primary school classes participated. A multivariate coding scheme was used to capture EPCK in real time. A principal component analysis of the time series of all the variables reduced the number of components. A cluster revealed general descriptions of the components across all cases. Cluster analyses of individual cases divided the time series into sequences, revealing High-, Low-, and Non-EPCK states. High-EPCK attractor states emerged at particular moments during activities, rather than being present all the time. Such High-EPCK attractor states were only found in a few cases, namely those where the pupils were prepared for the visit and the instructors were trained. PMID:28316578
Exploring Low-Amplitude, Long-Duration Deformational Transients on the Cascadia Subduction Zone
NASA Astrophysics Data System (ADS)
Nuyen, C.; Schmidt, D. A.
2017-12-01
The absence of long-term slow slip events (SSEs) in Cascadia is enigmatic on account of the diverse group of subduction zone systems that do experience long-term SSEs. In particular, southwest Japan, Alaska, New Zealand and Mexico have observed long-term SSEs, with some of the larger events exhibiting centimeter-scale surface displacements over the course of multiple years. The conditions that encourage long-term slow slip are not well established due to the variability in thermal parameter and plate dip amongst subduction zones that host long-term events. The Cascadia Subduction Zone likely has the capacity to host long-term SSEs, and the lack of such events motivates further exploration of the observational data. In order to search for the existence of long-duration transients in surface displacements, we examine Cascadia GPS time series from PANGA and PBO to determine whether or not Cascadia has hosted a long-term slow slip event in the past 20 years. A careful review of the time series does not reveal any large-scale multi-year transients. In order to more clearly recognize possible small amplitude long-term SSEs in Cascadia, the GPS time series are reduced with two separate methods. The first method involves manually removing (1) continental water loading terms, (2) transient displacements of known short-term SSEs, and (3) common mode signals that span the network. The second method utilizes a seasonal-trend decomposition procedure (STL) to extract a long-term trend from the GPS time-series. Manual inspection of both of these products reveals intriguing long-term changes in the longitudinal component of several GPS stations in central Cascadia. To determine whether these shifts could be due to long-term slow slip, we invert the reduced surface displacement time series for fault slip using a principle component analysis-based inversion method. We also utilize forward fault models of various synthetic long-term SSEs to better understand how these events may appear in the time series for a range of magnitudes and durations. Results from this research have direct implications for the possible slip modes in Cascadia and how variations in slip over time can impact stress and strain accumulations along the margin.
Vial, Flavie; Wei, Wei; Held, Leonhard
2016-12-20
In an era of ubiquitous electronic collection of animal health data, multivariate surveillance systems (which concurrently monitor several data streams) should have a greater probability of detecting disease events than univariate systems. However, despite their limitations, univariate aberration detection algorithms are used in most active syndromic surveillance (SyS) systems because of their ease of application and interpretation. On the other hand, a stochastic modelling-based approach to multivariate surveillance offers more flexibility, allowing for the retention of historical outbreaks, for overdispersion and for non-stationarity. While such methods are not new, they are yet to be applied to animal health surveillance data. We applied an example of such stochastic model, Held and colleagues' two-component model, to two multivariate animal health datasets from Switzerland. In our first application, multivariate time series of the number of laboratories test requests were derived from Swiss animal diagnostic laboratories. We compare the performance of the two-component model to parallel monitoring using an improved Farrington algorithm and found both methods yield a satisfactorily low false alarm rate. However, the calibration test of the two-component model on the one-step ahead predictions proved satisfactory, making such an approach suitable for outbreak prediction. In our second application, the two-component model was applied to the multivariate time series of the number of cattle abortions and the number of test requests for bovine viral diarrhea (a disease that often results in abortions). We found that there is a two days lagged effect from the number of abortions to the number of test requests. We further compared the joint modelling and univariate modelling of the number of laboratory test requests time series. The joint modelling approach showed evidence of superiority in terms of forecasting abilities. Stochastic modelling approaches offer the potential to address more realistic surveillance scenarios through, for example, the inclusion of times series specific parameters, or of covariates known to have an impact on syndrome counts. Nevertheless, many methodological challenges to multivariate surveillance of animal SyS data still remain. Deciding on the amount of corroboration among data streams that is required to escalate into an alert is not a trivial task given the sparse data on the events under consideration (e.g. disease outbreaks).
NASA Astrophysics Data System (ADS)
Solazzo, E.; Galmarini, S.
2015-07-01
A more sensible use of monitoring data for the evaluation and development of regional-scale atmospheric models is proposed. The motivation stems from observing current practices in this realm where the quality of monitoring data is seldom questioned and model-to-data deviation is uniquely attributed to model deficiency. Efforts are spent to quantify the uncertainty intrinsic to the measurement process, but aspects connected to model evaluation and development have recently emerged that remain obscure, such as the spatial representativeness and the homogeneity of signals subjects of our investigation. By using time series of hourly records of ozone for a whole year (2006) collected by the European AirBase network the area of representativeness is firstly analysed showing, for similar class of stations (urban, suburban, rural), large heterogeneity and high sensitivity to the density of the network and to the noise of the signal, suggesting the mere station classification to be not a suitable candidate to help select the pool of stations used in model evaluation. Therefore a novel, more robust technique is developed based on the spatial properties of the associativity of the spectral components of the ozone time series, in an attempt to determine the level of homogeneity. The spatial structure of the associativity among stations is informative of the spatial representativeness of that specific component and automatically tells about spatial anisotropy. Time series of ozone data from North American networks have also been analysed to support the methodology. We find that the low energy components (especially the intra-day signal) suffer from a too strong influence of country-level network set-up in Europe, and different networks in North America, showing spatial heterogeneity exactly at the administrative border that separates countries in Europe and at areas separating different networks in North America. For model evaluation purposes these elements should be treated as purely stochastic and discarded, while retaining the portion of the signal useful to the evaluation process. Trans-boundary discontinuity of the intra-day signal along with cross-network grouping has been found to be predominant. Skills of fifteen regional chemical-transport modelling systems have been assessed in light of this result, finding an improved accuracy of up to 5% when the intra-day signal is removed with respect to the case where all components are analysed.
Du, Jiang; Ma, Guolin; Li, Shihong; Carl, Michael; Szeverenyi, Nikolaus M; VandenBerg, Scott; Corey-Bloom, Jody; Bydder, Graeme M
2014-01-01
White matter of the brain contains a majority of long T2 components as well as a minority of short T2 components. These are not detectable using clinical magnetic resonance imaging (MRI) sequences with conventional echo times (TEs). In this study we used ultrashort echo time (UTE) sequences to investigate the ultrashort T2 components in white matter of the brain and quantify their T2*s and relative proton densities (RPDs) (relative to water with a proton density of 100%) using a clinical whole body 3T scanner. An adiabatic inversion recovery prepared dual echo UTE (IR-dUTE) sequence was used for morphological imaging of the ultrashort T2 components in white matter. IR-dUTE acquisitions at a constant TR of 1000 ms and a series of TIs were performed to determine the optimal TI which corresponded to the minimum signal to noise ratio (SNR) in white matter of the brain on the second echo image. T2*s of the ultrashort T2 components were quantified using mono-exponential decay fitting of the IR-dUTE signal at a series of TEs. RPD was quantified by comparing IR-dUTE signal of the ultrashort T2 components with that of a rubber phantom. Nine healthy volunteers were studied. The IR-dUTE sequence provided excellent image contrast for the ultrashort T2 components in white matter of the brain with a mean signal to noise ratio of 18.7 ± 3.7 and a contrast to noise ratio of 14.6 ± 2.4 between the ultrashort T2 white matter and gray matter in a 4.4 min scan time with a nominal voxel size of 1.25×1.25×5.0 mm3. On average a T2* value of 0.42 ± 0.08 ms and a RPD of 4.05 ± 0.88% were demonstrated for the ultrashort T2 components in white matter of the brain of healthy volunteers at 3T. PMID:24188809
Neutron star dynamics under time-dependent external torques
NASA Astrophysics Data System (ADS)
Gügercinoǧlu, Erbil; Alpar, M. Ali
2017-11-01
The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.
Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition
NASA Astrophysics Data System (ADS)
Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.
2005-12-01
Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.
Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?
NASA Astrophysics Data System (ADS)
Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.
2017-12-01
The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.
Time series modeling by a regression approach based on a latent process.
Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice
2009-01-01
Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.
NASA Astrophysics Data System (ADS)
McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.
2006-02-01
We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.
2014-01-01
A brief overview is provided of cosinor-based techniques for the analysis of time series in chronobiology. Conceived as a regression problem, the method is applicable to non-equidistant data, a major advantage. Another dividend is the feasibility of deriving confidence intervals for parameters of rhythmic components of known periods, readily drawn from the least squares procedure, stressing the importance of prior (external) information. Originally developed for the analysis of short and sparse data series, the extended cosinor has been further developed for the analysis of long time series, focusing both on rhythm detection and parameter estimation. Attention is given to the assumptions underlying the use of the cosinor and ways to determine whether they are satisfied. In particular, ways of dealing with non-stationary data are presented. Examples illustrate the use of the different cosinor-based methods, extending their application from the study of circadian rhythms to the mapping of broad time structures (chronomes). PMID:24725531
Error-based Extraction of States and Energy Landscapes from Experimental Single-Molecule Time-Series
NASA Astrophysics Data System (ADS)
Taylor, J. Nicholas; Li, Chun-Biu; Cooper, David R.; Landes, Christy F.; Komatsuzaki, Tamiki
2015-03-01
Characterization of states, the essential components of the underlying energy landscapes, is one of the most intriguing subjects in single-molecule (SM) experiments due to the existence of noise inherent to the measurements. Here we present a method to extract the underlying state sequences from experimental SM time-series. Taking into account empirical error and the finite sampling of the time-series, the method extracts a steady-state network which provides an approximation of the underlying effective free energy landscape. The core of the method is the application of rate-distortion theory from information theory, allowing the individual data points to be assigned to multiple states simultaneously. We demonstrate the method's proficiency in its application to simulated trajectories as well as to experimental SM fluorescence resonance energy transfer (FRET) trajectories obtained from isolated agonist binding domains of the AMPA receptor, an ionotropic glutamate receptor that is prevalent in the central nervous system.
NASA Astrophysics Data System (ADS)
Barnhart, B. L.; Eichinger, W. E.; Prueger, J. H.
2010-12-01
Hilbert-Huang transform (HHT) is a relatively new data analysis tool which is used to analyze nonstationary and nonlinear time series data. It consists of an algorithm, called empirical mode decomposition (EMD), which extracts the cyclic components embedded within time series data, as well as Hilbert spectral analysis (HSA) which displays the time and frequency dependent energy contributions from each component in the form of a spectrogram. The method can be considered a generalized form of Fourier analysis which can describe the intrinsic cycles of data with basis functions whose amplitudes and phases may vary with time. The HHT will be introduced and compared to current spectral analysis tools such as Fourier analysis, short-time Fourier analysis, wavelet analysis and Wigner-Ville distributions. A number of applications are also presented which demonstrate the strengths and limitations of the tool, including analyzing sunspot number variability and total solar irradiance proxies as well as global averaged temperature and carbon dioxide concentration. Also, near-surface atmospheric quantities such as temperature and wind velocity are analyzed to demonstrate the nonstationarity of the atmosphere.
A stacking method and its applications to Lanzarote tide gauge records
NASA Astrophysics Data System (ADS)
Zhu, Ping; van Ruymbeke, Michel; Cadicheanu, Nicoleta
2009-12-01
A time-period analysis tool based on stacking is introduced in this paper. The original idea comes from the classical tidal analysis method. It is assumed that the period of each major tidal component is precisely determined based on the astronomical constants and it is unchangeable with time at a given point in the Earth. We sum the tidal records at a fixed tidal component center period T then take the mean of it. The stacking could significantly increase the signal-to-noise ratio (SNR) if a certain number of stacking circles is reached. The stacking results were fitted using a sinusoidal function, the amplitude and phase of the fitting curve is computed by the least squares methods. The advantage of the method is that: (1) an individual periodical signal could be isolated by stacking; (2) one can construct a linear Stacking-Spectrum (SSP) by changing the stacking period Ts; (3) the time-period distribution of the singularity component could be approximated by a Sliding-Stacking approach. The shortcoming of the method is that in order to isolate a low energy frequency or separate the nearby frequencies, we need a long enough series with high sampling rate. The method was tested with a numeric series and then it was applied to 1788 days Lanzarote tide gauge records as an example.
A method to predict streamflow for ungauged basins of the Mid-Atlantic Region, USA was applied to the Rappahannock watershed in Virginia, USA. The method separates streamflow time series into magnitude and time sequence components. It uses the regionalized flow duration curve (RF...
Enrollment Projection within a Decision-Making Framework.
ERIC Educational Resources Information Center
Armstrong, David F.; Nunley, Charlene Wenckowski
1981-01-01
Two methods used to predict enrollment at Montgomery College in Maryland are compared and evaluated, and the administrative context in which they are used is considered. The two methods involve time series analysis (curve fitting) and indicator techniques (yield from components). (MSE)
29 CFR 1926.1050 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ladder component at any one time. Nosing means that portion of a tread projecting beyond the face of the... stairway means a series of steps attached to a vertical pole and progressing upward in a winding fashion...
NASA Astrophysics Data System (ADS)
Baldysz, Zofia; Nykiel, Grzegorz; Araszkiewicz, Andrzej; Figurski, Mariusz; Szafranek, Karolina
2016-09-01
The main purpose of this research was to acquire information about consistency of ZTD (zenith total delay) linear trends and seasonal components between two consecutive GPS reprocessing campaigns. The analysis concerned two sets of the ZTD time series which were estimated during EUREF (Reference Frame Sub-Commission for Europe) EPN (Permanent Network) reprocessing campaigns according to 2008 and 2015 MUT AC (Military University of Technology Analysis Centre) scenarios. Firstly, Lomb-Scargle periodograms were generated for 57 EPN stations to obtain a characterisation of oscillations occurring in the ZTD time series. Then, the values of seasonal components and linear trends were estimated using the LSE (least squares estimation) approach. The Mann-Kendall trend test was also carried out to verify the presence of linear long-term ZTD changes. Finally, differences in seasonal signals and linear trends between these two data sets were investigated. All these analyses were conducted for the ZTD time series of two lengths: a shortened 16-year series and a full 18-year one. In the case of spectral analysis, amplitudes of the annual and semi-annual periods were almost exactly the same for both reprocessing campaigns. Exceptions were found for only a few stations and they did not exceed 1 mm. The estimated trends were also similar. However, for the reprocessing performed in 2008, the trends values were usually higher. In general, shortening of the analysed time period by 2 years resulted in a decrease of the linear trends values of about 0.07 mm yr-1. This was confirmed by analyses based on two data sets.
Medina, Daniel C.; Findley, Sally E.; Guindo, Boubacar; Doumbia, Seydou
2007-01-01
Background Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. Methodology/Principal Findings In this longitudinal retrospective (01/1996–06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. Conclusions/Significance The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby potentially assisting with programming of public health interventions, as well as monitoring of disease dynamics modification. Therefore, these forecasts could improve infectious diseases management in the district of Niono, Mali, and elsewhere in the Sahel. PMID:18030322
Medina, Daniel C; Findley, Sally E; Guindo, Boubacar; Doumbia, Seydou
2007-11-21
Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. In this longitudinal retrospective (01/1996-06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby potentially assisting with programming of public health interventions, as well as monitoring of disease dynamics modification. Therefore, these forecasts could improve infectious diseases management in the district of Niono, Mali, and elsewhere in the Sahel.
Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.
Zhang, Sheng; Li, Chiang-Shan R
2017-11-01
As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p < 10 -6 , corrected, 49% of voxels on average overlapped among subdivisions. Compared with seed-region analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.
NASA Astrophysics Data System (ADS)
Visser, H.; Molenaar, J.
1995-05-01
The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of the model is rather poor, and possible explanations are discussed.
Using time series structural characteristics to analyze grain prices in food insecure countries
Davenport, Frank; Funk, Chris
2015-01-01
Two components of food security monitoring are accurate forecasts of local grain prices and the ability to identify unusual price behavior. We evaluated a method that can both facilitate forecasts of cross-country grain price data and identify dissimilarities in price behavior across multiple markets. This method, characteristic based clustering (CBC), identifies similarities in multiple time series based on structural characteristics in the data. Here, we conducted a simulation experiment to determine if CBC can be used to improve the accuracy of maize price forecasts. We then compared forecast accuracies among clustered and non-clustered price series over a rolling time horizon. We found that the accuracy of forecasts on clusters of time series were equal to or worse than forecasts based on individual time series. However, in the following experiment we found that CBC was still useful for price analysis. We used the clusters to explore the similarity of price behavior among Kenyan maize markets. We found that price behavior in the isolated markets of Mandera and Marsabit has become increasingly dissimilar from markets in other Kenyan cities, and that these dissimilarities could not be explained solely by geographic distance. The structural isolation of Mandera and Marsabit that we find in this paper is supported by field studies on food security and market integration in Kenya. Our results suggest that a market with a unique price series (as measured by structural characteristics that differ from neighboring markets) may lack market integration and food security.
Direct determination of geocenter motion by combining SLR, VLBI, GNSS, and DORIS time series
NASA Astrophysics Data System (ADS)
Wu, X.; Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Gross, R. S.; Heflin, M. B.; Jiang, Y.; Parker, J. W.
2013-12-01
The longest-wavelength surface mass transport includes three degree-one spherical harmonic components involving hemispherical mass exchanges. The mass load causes geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and deforms the solid Earth. Estimation of the degree-1 surface mass changes through CM-CF and degree-1 deformation signatures from space geodetic techniques can thus complement GRACE's time-variable gravity data to form a complete change spectrum up to a high resolution. Currently, SLR is considered the most accurate technique for direct geocenter motion determination. By tracking satellite motion from ground stations, SLR determines the motion between CM and the geometric center of its ground network (CN). This motion is then used to approximate CM-CF and subsequently for deriving degree-1 mass changes. However, the SLR network is very sparse and uneven in global distribution. The average number of operational tracking stations is about 20 in recent years. The poor network geometry can have a large CN-CF motion and is not ideal for the determination of CM-CF motion and degree-1 mass changes. We recently realized an experimental Terrestrial Reference Frame (TRF) through station time series using the Kalman filter and the RTS smoother. The TRF has its origin defined at nearly instantaneous CM using weekly SLR measurement time series. VLBI, GNSS and DORIS time series are combined weekly with those of SLR and tied to the geocentric (CM) reference frame through local tie measurements and co-motion constraints on co-located geodetic stations. The unified geocentric time series of the four geodetic techniques provide a much better network geometry for direct geodetic determination of geocenter motion. Results from this direct approach using a 90-station network compares favorably with those obtained from joint inversions of GPS/GRACE data and ocean bottom pressure models. We will also show that a previously identified discrepancy in X-component between direct SLR orbit-tracking and inverse determined geocenter motions is largely reconciled with the new unified network.
A better understanding of long-range temporal dependence of traffic flow time series
NASA Astrophysics Data System (ADS)
Feng, Shuo; Wang, Xingmin; Sun, Haowei; Zhang, Yi; Li, Li
2018-02-01
Long-range temporal dependence is an important research perspective for modelling of traffic flow time series. Various methods have been proposed to depict the long-range temporal dependence, including autocorrelation function analysis, spectral analysis and fractal analysis. However, few researches have studied the daily temporal dependence (i.e. the similarity between different daily traffic flow time series), which can help us better understand the long-range temporal dependence, such as the origin of crossover phenomenon. Moreover, considering both types of dependence contributes to establishing more accurate model and depicting the properties of traffic flow time series. In this paper, we study the properties of daily temporal dependence by simple average method and Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-range temporal dependence exert considerable influence on the traffic flow series. The DFA results reveal that the daily temporal dependence creates crossover phenomenon when estimating the Hurst exponent which depicts the long-range temporal dependence. Furthermore, through the comparison of the DFA test, PCA-based method turns out to be a better method to extract the daily temporal dependence especially when the difference between days is significant.
Calculation of power spectrums from digital time series with missing data points
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.
1980-01-01
Two algorithms are developed for calculating power spectrums from the autocorrelation function when there are missing data points in the time series. Both methods use an average sampling interval to compute lagged products. One method, the correlation function power spectrum, takes the discrete Fourier transform of the lagged products directly to obtain the spectrum, while the other, the modified Blackman-Tukey power spectrum, takes the Fourier transform of the mean lagged products. Both techniques require fewer calculations than other procedures since only 50% to 80% of the maximum lags need be calculated. The algorithms are compared with the Fourier transform power spectrum and two least squares procedures (all for an arbitrary data spacing). Examples are given showing recovery of frequency components from simulated periodic data where portions of the time series are missing and random noise has been added to both the time points and to values of the function. In addition the methods are compared using real data. All procedures performed equally well in detecting periodicities in the data.
Noise-assisted data processing with empirical mode decomposition in biomedical signals.
Karagiannis, Alexandros; Constantinou, Philip
2011-01-01
In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.
NASA Astrophysics Data System (ADS)
Khelifa, S.
2014-12-01
Using wavelet transform and Allan variance, we have analysed the solutions of weekly position residuals of 09 high latitude DORIS stations in STCD (STation Coordinate Difference) format provided from the three Analysis Centres : IGN-JPL (solution ign11wd01), INASAN (solution ina10wd01) and CNES-CLS (solution lca11wd02), in order to compare the spectral characteristics of their residual noise. The temporal correlations between the three solutions, two by two and station by station, for each component (North, East and Vertical) reveal a high correlation in the horizontal components (North and East). For the North component, the correlation average is about 0.88, 0.81 and 0.79 between, respectively, IGN-INA, IGN-LCA and INA-LCA solutions, then for the East component it is about 0.84, 0.82 and 0.76, respectively. However, the correlations for the Vertical component are moderate with an average of 0.64, 0.57 and 0.58 in, respectively, IGN-INA, IGN-LCA and INA-LCA solutions. After removing the trends and seasonal components from the analysed time series, the Allan variance analysis shows that the three solutions are dominated by a white noise in the all three components (North, East and Vertical). The wavelet transform analysis, using the VisuShrink method with soft thresholding, reveals that the noise level in the LCA solution is less important compared to IGN and INA solutions. Indeed, the standard deviation of the noise for the three components is in the range of 5-11, 5-12 and 4-9mm in the IGN, INA, and LCA solutions, respectively.
Change Mechanisms of Schema-Centered Group Psychotherapy with Personality Disorder Patients
Tschacher, Wolfgang; Zorn, Peter; Ramseyer, Fabian
2012-01-01
Background This study addressed the temporal properties of personality disorders and their treatment by schema-centered group psychotherapy. It investigated the change mechanisms of psychotherapy using a novel method by which psychotherapy can be modeled explicitly in the temporal domain. Methodology and Findings 69 patients were assigned to a specific schema-centered behavioral group psychotherapy, 26 to social skills training as a control condition. The largest diagnostic subgroups were narcissistic and borderline personality disorder. Both treatments offered 30 group sessions of 100 min duration each, at a frequency of two sessions per week. Therapy process was described by components resulting from principal component analysis of patients' session-reports that were obtained after each session. These patient-assessed components were Clarification, Bond, Rejection, and Emotional Activation. The statistical approach focused on time-lagged associations of components using time-series panel analysis. This method provided a detailed quantitative representation of therapy process. It was found that Clarification played a core role in schema-centered psychotherapy, reducing rejection and regulating the emotion of patients. This was also a change mechanism linked to therapy outcome. Conclusions/Significance The introduced process-oriented methodology allowed to highlight the mechanisms by which psychotherapeutic treatment became effective. Additionally, process models depicted the actual patterns that differentiated specific diagnostic subgroups. Time-series analysis explores Granger causality, a non-experimental approximation of causality based on temporal sequences. This methodology, resting upon naturalistic data, can explicate mechanisms of action in psychotherapy research and illustrate the temporal patterns underlying personality disorders. PMID:22745811
Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.
2018-01-01
This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt at large spatial coverage from remote sensing and LSM data series, and provide an innovative framework for future improvements.
NASA Astrophysics Data System (ADS)
Gemitzi, Alexandra; Stefanopoulos, Kyriakos
2011-06-01
SummaryGroundwaters and their dependent ecosystems are affected both by the meteorological conditions as well as from human interventions, mainly in the form of groundwater abstractions for irrigation needs. This work aims at investigating the quantitative effects of meteorological conditions and man intervention on groundwater resources and their dependent ecosystems. Various seasonal Auto-Regressive Integrated Moving Average (ARIMA) models with external predictor variables were used in order to model the influence of meteorological conditions and man intervention on the groundwater level time series. Initially, a seasonal ARIMA model that simulates the abstraction time series using as external predictor variable temperature ( T) was prepared. Thereafter, seasonal ARIMA models were developed in order to simulate groundwater level time series in 8 monitoring locations, using the appropriate predictor variables determined for each individual case. The spatial component was introduced through the use of Geographical Information Systems (GIS). Application of the proposed methodology took place in the Neon Sidirochorion alluvial aquifer (Northern Greece), for which a 7-year long time series (i.e., 2003-2010) of piezometric and groundwater abstraction data exists. According to the developed ARIMA models, three distinct groups of groundwater level time series exist; the first one proves to be dependent only on the meteorological parameters, the second group demonstrates a mixed dependence both on meteorological conditions and on human intervention, whereas the third group shows a clear influence from man intervention. Moreover, there is evidence that groundwater abstraction has affected an important protected ecosystem.
Moore, Ian C; Tompa, Emile
2011-11-01
The objective of this study is to better understand the inter-temporal variation in workers' compensation claim rates using time series analytical techniques not commonly used in the occupational health and safety literature. We focus specifically on the role of unemployment rates in explaining claim rate variations. The major components of workers' compensation claim rates are decomposed using data from a Canadian workers' compensation authority for the period 1991-2007. Several techniques are used to undertake the decomposition and assess key factors driving rates: (i) the multitaper spectral estimator, (ii) the harmonic F test, (iii) the Kalman smoother and (iv) ordinary least squares. The largest component of the periodic behaviour in workers' compensation claim rates is seasonal variation. Business cycle fluctuations in workers' compensation claim rates move inversely to unemployment rates. The analysis suggests that workers' compensation claim rates between 1991 and 2008 were driven by (in order of magnitude) a strong negative long term growth trend, periodic seasonal trends and business cycle fluctuations proxied by the Ontario unemployment rate.
Piecewise multivariate modelling of sequential metabolic profiling data.
Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan
2008-02-19
Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.
Recombinant Temporal Aberration Detection Algorithms for Enhanced Biosurveillance
Murphy, Sean Patrick; Burkom, Howard
2008-01-01
Objective Broadly, this research aims to improve the outbreak detection performance and, therefore, the cost effectiveness of automated syndromic surveillance systems by building novel, recombinant temporal aberration detection algorithms from components of previously developed detectors. Methods This study decomposes existing temporal aberration detection algorithms into two sequential stages and investigates the individual impact of each stage on outbreak detection performance. The data forecasting stage (Stage 1) generates predictions of time series values a certain number of time steps in the future based on historical data. The anomaly measure stage (Stage 2) compares features of this prediction to corresponding features of the actual time series to compute a statistical anomaly measure. A Monte Carlo simulation procedure is then used to examine the recombinant algorithms’ ability to detect synthetic aberrations injected into authentic syndromic time series. Results New methods obtained with procedural components of published, sometimes widely used, algorithms were compared to the known methods using authentic datasets with plausible stochastic injected signals. Performance improvements were found for some of the recombinant methods, and these improvements were consistent over a range of data types, outbreak types, and outbreak sizes. For gradual outbreaks, the WEWD MovAvg7+WEWD Z-Score recombinant algorithm performed best; for sudden outbreaks, the HW+WEWD Z-Score performed best. Conclusion This decomposition was found not only to yield valuable insight into the effects of the aberration detection algorithms but also to produce novel combinations of data forecasters and anomaly measures with enhanced detection performance. PMID:17947614
Hydrological deformation signals in karst systems: new evidence from the European Alps
NASA Astrophysics Data System (ADS)
Serpelloni, E.; Pintori, F.; Gualandi, A.; Scoccimarro, E.; Cavaliere, A.; Anderlini, L.; Belardinelli, M. E.; Todesco, M.
2017-12-01
The influence of rainfall on crustal deformation has been described at local scales, using tilt and strain meters, in several tectonic settings. However, the literature on the spatial extent of rainfall-induced deformation is still scarce. We analyzed 10 years of displacement time-series from 150 continuous GPS stations operating across the broad zone of deformation accommodating the N-S Adria-Eurasia convergence and the E-ward escape of the Eastern Alps toward the Pannonian basin. We applied a blind-source-separation algorithm based on a variational Bayesian Independent Component Analysis method to the de-trended time-series, being able to characterize the temporal and spatial features of several deformation signals. The most important ones are a common mode annual signal, with spatially uniform response in the vertical and horizontal components and a time-variable, non-cyclic, signal characterized by a spatially variable response in the horizontal components, with stations moving (up to 8 mm) in the opposite directions, reversing the sense of movement in time. This implies a succession of extensional/compressional strains, with variable amplitudes through time, oriented normal to rock fractures in karst areas. While seasonal displacements in the vertical component (with an average amplitude of 4 mm over the study area) are satisfactorily reproduced by surface hydrological loading, estimated from global assimilation models, the non seasonal signal is associated with groundwater flow in karst systems, and is mainly influencing the horizontal component. The temporal evolution of this deformation signal is correlated with cumulated precipitation values over periods of 200-300 days. This horizontal deformation can be explained by pressure changes associated with variable water levels within vertical fractures in the vadose zones of karst systems, and the water level changes required to open or close these fractures are consistent with the fluctuations of precipitation and with the dynamics of karst systems.
ControlShell - A real-time software framework
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Ullman, Marc A.; Chen, Vincent W.
1991-01-01
ControlShell is designed to enable modular design and impplementation of real-time software. It is an object-oriented tool-set for real-time software system programming. It provides a series of execution and data interchange mechansims that form a framework for building real-time applications. These mechanisms allow a component-based approach to real-time software generation and mangement. By defining a set of interface specifications for intermodule interaction, ControlShell provides a common platform that is the basis for real-time code development and exchange.
CLUSTERnGO: a user-defined modelling platform for two-stage clustering of time-series data.
Fidaner, Işık Barış; Cankorur-Cetinkaya, Ayca; Dikicioglu, Duygu; Kirdar, Betul; Cemgil, Ali Taylan; Oliver, Stephen G
2016-02-01
Simple bioinformatic tools are frequently used to analyse time-series datasets regardless of their ability to deal with transient phenomena, limiting the meaningful information that may be extracted from them. This situation requires the development and exploitation of tailor-made, easy-to-use and flexible tools designed specifically for the analysis of time-series datasets. We present a novel statistical application called CLUSTERnGO, which uses a model-based clustering algorithm that fulfils this need. This algorithm involves two components of operation. Component 1 constructs a Bayesian non-parametric model (Infinite Mixture of Piecewise Linear Sequences) and Component 2, which applies a novel clustering methodology (Two-Stage Clustering). The software can also assign biological meaning to the identified clusters using an appropriate ontology. It applies multiple hypothesis testing to report the significance of these enrichments. The algorithm has a four-phase pipeline. The application can be executed using either command-line tools or a user-friendly Graphical User Interface. The latter has been developed to address the needs of both specialist and non-specialist users. We use three diverse test cases to demonstrate the flexibility of the proposed strategy. In all cases, CLUSTERnGO not only outperformed existing algorithms in assigning unique GO term enrichments to the identified clusters, but also revealed novel insights regarding the biological systems examined, which were not uncovered in the original publications. The C++ and QT source codes, the GUI applications for Windows, OS X and Linux operating systems and user manual are freely available for download under the GNU GPL v3 license at http://www.cmpe.boun.edu.tr/content/CnG. sgo24@cam.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Global seasonal strain and stress models derived from GRACE loading, and their impact on seismicity
NASA Astrophysics Data System (ADS)
Chanard, K.; Fleitout, L.; Calais, E.; Craig, T. J.; Rebischung, P.; Avouac, J. P.
2017-12-01
Loading by continental water, atmosphere and oceans deforms the Earth at various spatio-temporal scales, inducing crustal and mantelic stress perturbations that may play a role in earthquake triggering.Deformation of the Earth by this surface loading is observed in GNSS position time series. While various models predict well vertical observations, explaining horizontal displacements remains challenging. We model the elastic deformation induced by loading derived from GRACE for coefficients 2 and higher. We estimate the degree-1 deformation field by comparison between predictions of our model and IGS-repro2 solutions at a globally distributed network of 700 GNSS sites, separating the horizontal and vertical components to avoid biases between components. The misfit between model and data is reduced compared to previous studies, particularly on the horizontal component. The associated geocenter motion time series are consistent with results derived from other datasets. We also discuss the impact on our results of systematic errors in GNSS geodetic products, in particular of the draconitic error.We then compute stress tensors time series induced by GRACE loads and discuss the potential link between large scale seasonal mass redistributions and seismicity. Within the crust, we estimate hydrologically induced stresses in the intraplate New Madrid Seismic Zone, where secular stressing rates are unmeasurably low. We show that a significant variation in the rate of micro-earthquakes at annual and multi-annual timescales coincides with stresses induced by hydrological loading in the upper Mississippi embayment, with no significant phase-lag, directly modulating regional seismicity. We also investigate pressure variations in the mantle transition zone and discuss potential correlations between the statistically significant observed seasonality of deep-focus earthquakes, most likely due to mineralogical transformations, and surface hydrological loading.
NASA Astrophysics Data System (ADS)
Genty, Dominique; Massault, Marc
1999-05-01
Twenty-two AMS 14C measurements have been made on a modern stalagmite from SW France in order to reconstruct the 14C activity history of the calcite deposit. Annual growth laminae provides a chronology up to 1919 A.D. Results show that the stalagmite 14C activity time series is sensitive to modern atmosphere 14C activity changes such as those produced by the nuclear weapon tests. The comparison between the two 14C time series shows that the stalagmite time series is damped: its amplitude variation between pre-bomb and post-bomb values is 75% less and the time delay between the two time series peaks is 16 years ±3. A model is developed using atmosphere 14C and 13C data, fractionation processes and three soil organic matter components whose mean turnover rates are different. The linear correlation coefficient between modeled and measured activities is 0.99. These results, combined with two other stalagmite 14C time series already published and compared with local vegetation and climate, demonstrate that most of the carbon transfer dynamics are controlled in the soil by soil organic matter degradation rates. Where vegetation produces debris whose degradation is slow, the fraction of old carbon injected in the system increases, the observed 14C time series is much more damped and lag time longer than that observed under grassland sites. The same mixing model applied on the 13C shows a good agreement ( R2 = 0.78) between modeled and measured stalagmite δ 13C and demonstrates that the Suess Effect due to fossil fuel combustion in the atmosphere is recorded in the stalagmite but with a damped effect due to SOM degradation rate. The different sources of dead carbon in the seepage water are calculated and discussed.
Coastal Atmosphere and Sea Time Series (CoASTS)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Berthon, Jean-Francoise; Zibordi, Giuseppe; Doyle, John P.; Grossi, Stefania; vanderLinde, Dirk; Targa, Cristina; McClain, Charles R. (Technical Monitor)
2002-01-01
In this document, the first three years of a time series of bio-optical marine and atmospheric measurements are presented and analyzed. These measurements were performed from an oceanographic tower in the northern Adriatic Sea within the framework of the Coastal Atmosphere and Sea Time Series (CoASTS) project, an ocean color calibration and validation activity. The data set collected includes spectral measurements of the in-water apparent (diffuse attenuation coefficient, reflectance, Q-factor, etc.) and inherent (absorption and scattering coefficients) optical properties, as well as the concentrations of the main optical components (pigment and suspended matter concentrations). Clear seasonal patterns are exhibited by the marine quantities on which an appreciable short-term variability (on the order of a half day to one day) is superimposed. This short-term variability is well correlated with the changes in salinity at the surface resulting from the southward transport of freshwater coming from the northern rivers. Concentrations of chlorophyll alpha and total suspended matter span more than two orders of magnitude. The bio-optical characteristics of the measurement site pertain to both Case-I (about 64%) and Case-II (about 36%) waters, based on a relationship between the beam attenuation coefficient at 660nm and the chlorophyll alpha concentration. Empirical algorithms relating in-water remote sensing reflectance ratios and optical components or properties of interest (chlorophyll alpha, total suspended matter, and the diffuse attenuation coefficient) are presented.
Langbein, John O.
2012-01-01
Recent studies have documented that global positioning system (GPS) time series of position estimates have temporal correlations which have been modeled as a combination of power-law and white noise processes. When estimating quantities such as a constant rate from GPS time series data, the estimated uncertainties on these quantities are more realistic when using a noise model that includes temporal correlations than simply assuming temporally uncorrelated noise. However, the choice of the specific representation of correlated noise can affect the estimate of uncertainty. For many GPS time series, the background noise can be represented by either: (1) a sum of flicker and random-walk noise or, (2) as a power-law noise model that represents an average of the flicker and random-walk noise. For instance, if the underlying noise model is a combination of flicker and random-walk noise, then incorrectly choosing the power-law model could underestimate the rate uncertainty by a factor of two. Distinguishing between the two alternate noise models is difficult since the flicker component can dominate the assessment of the noise properties because it is spread over a significant portion of the measurable frequency band. But, although not necessarily detectable, the random-walk component can be a major constituent of the estimated rate uncertainty. None the less, it is possible to determine the upper bound on the random-walk noise.
Systematic comparisons between PRISM version 1.0.0, BAP, and CSMIP ground-motion processing
Kalkan, Erol; Stephens, Christopher
2017-02-23
A series of benchmark tests was run by comparing results of the Processing and Review Interface for Strong Motion data (PRISM) software version 1.0.0 to Basic Strong-Motion Accelerogram Processing Software (BAP; Converse and Brady, 1992), and to California Strong Motion Instrumentation Program (CSMIP) processing (Shakal and others, 2003, 2004). These tests were performed by using the MatLAB implementation of PRISM, which is equivalent to its public release version in Java language. Systematic comparisons were made in time and frequency domains of records processed in PRISM and BAP, and in CSMIP, by using a set of representative input motions with varying resolutions, frequency content, and amplitudes. Although the details of strong-motion records vary among the processing procedures, there are only minor differences among the waveforms for each component and within the frequency passband common to these procedures. A comprehensive statistical evaluation considering more than 1,800 ground-motion components demonstrates that differences in peak amplitudes of acceleration, velocity, and displacement time series obtained from PRISM and CSMIP processing are equal to or less than 4 percent for 99 percent of the data, and equal to or less than 2 percent for 96 percent of the data. Other statistical measures, including the Euclidian distance (L2 norm) and the windowed root mean square level of processed time series, also indicate that both processing schemes produce statistically similar products.
NASA Astrophysics Data System (ADS)
Benz, N.; Bartlow, N. M.
2017-12-01
The addition of borehole strainmeter (BSM) to cGPS time series inversions can yield more precise slip distributions at the subduction interface during episodic tremor and slip (ETS) events in the Cascadia subduction zone. Traditionally very noisy BSM data has not been easy to incorporate until recently, but developments in processing noise, re-orientation of strain components, removal of tidal, hydrologic, and atmospheric signals have made this additional source of data viable (Roeloffs, 2010). The major advantage with BSMs is their sensitivity to spatial derivatives in slip, which is valuable for investigating the ETS nucleation process and stress changes on the plate interface due to ETS. Taking advantage of this, we simultaneously invert PBO GPS and cleaned BSM time series with the Network Inversion Filter (Segall and Matthews, 1997) for slip distribution and slip rate during selected Cascadia ETS events. Stress distributions are also calculated for the plate interface using these inversion results to estimate the amount of stress change during an ETS event. These calculations are performed with and without the utilization of BSM time series, highlighting the role of BSM data in constraining slip and stress.
Spectral Unmixing Analysis of Time Series Landsat 8 Images
NASA Astrophysics Data System (ADS)
Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.
2018-05-01
Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.
Practical aspects of telehealth: financial considerations.
Loh, P K; Sabesan, S; Allen, D; Caldwell, P; Mozer, R; Komesaroff, P A; Talman, P; Williams, M; Shaheen, N; Grabinski, O; Withnall, D
2013-07-01
The second in a series of articles about the practical aspects of telehealth, this paper includes information and a case history on the cost-benefits for patients and practitioners using telehealth. The case history demonstrates that telehealth can save travel time for patients, carers and specialists, and can reduce out-of-pocket expenses. The practical aspects of telehealth article series considers the contextual, clinical, technical and ethical components of online video consultations. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.
PROMIS series. Volume 8: Midlatitude ground magnetograms
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Russell, C. T.
1990-01-01
This is the eighth in a series of volumes pertaining to the Polar Region Outer Magnetosphere International Study (PROMIS). This volume contains 24 hour stack plots of 1-minute average, H and D component, ground magnetograms for the period March 10 through June 16, 1986. Nine midlatitude ground stations were selected from the UCLA magnetogram data base that was constructed from all available digitized magnetogram stations. The primary purpose of this publication is to allow users to define universal times and onset longitudes of magnetospheric substorms.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.
2004-01-01
Satellite laser-ranging (SLR) has been observing the tiny variations in Earth s global gravity for over 2 decades. The oblateness of the Earth's gravity field, J2, has been observed to undergo a secular decrease of J2 due mainly to the post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again towards normal. This anomaly signifies a large interannual change in global mass distribution. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing. In fact, a strong correlation has been found between the J2 variability and the Pacific decadal oscillation. It is relatively more difficult to solve for corresponding signals in the shorter wavelength harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal harmonic components have significant interannual signal that appears to be related to mass transport related to climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a monthly time sequence of low-degree component map of the time-variable gravity complete through degree 4, and examine possible geophysical/climatic causes.
Wavelet-based analysis of circadian behavioral rhythms.
Leise, Tanya L
2015-01-01
The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. © 2015 Elsevier Inc. All rights reserved.
Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture
NASA Technical Reports Server (NTRS)
Gloersen, Per (Inventor)
2004-01-01
An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.
Understanding light scattering by a coated sphere part 2: time domain analysis.
Laven, Philip; Lock, James A
2012-08-01
Numerical computations were made of scattering of an incident electromagnetic pulse by a coated sphere that is large compared to the dominant wavelength of the incident light. The scattered intensity was plotted as a function of the scattering angle and delay time of the scattered pulse. For fixed core and coating radii, the Debye series terms that most strongly contribute to the scattered intensity in different regions of scattering angle-delay time space were identified and analyzed. For a fixed overall radius and an increasing core radius, the first-order rainbow was observed to evolve into three separate components. The original component faded away, while the two new components eventually merged together. The behavior of surface waves generated by grazing incidence at the core/coating and coating/exterior interfaces was also examined and discussed.
Temporal evolution of financial-market correlations.
Fenn, Daniel J; Porter, Mason A; Williams, Stacy; McDonald, Mark; Johnson, Neil F; Jones, Nick S
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Temporal evolution of financial-market correlations
NASA Astrophysics Data System (ADS)
Fenn, Daniel J.; Porter, Mason A.; Williams, Stacy; McDonald, Mark; Johnson, Neil F.; Jones, Nick S.
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Planning and conducting meetings effectively, part I: planning a meeting.
Harolds, Jay
2011-12-01
Meetings are held by leaders for many purposes, including conveying information, raising morale, asking for opinions, brain storming, making people part of the problem-solving process, building trust, getting to a consensus, and making decisions. However, many meetings waste time, some undermine the leader's power, and some decrease morale. Part I of this series of articles gives some tips on basic planning for decision-making meetings. Part II of this series of articles analyzes selected components of decision-making meetings. Part III of this series will be on how the chairperson keeps decision-making meetings on track to make them efficient and productive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, A.; Weisgraber, T. H.; Gee, R. H.
M97* and M9763 belong to the M97xx series of cellular silicone materials that have been deployed as stress cushions in some of the LLNL systems. Their purpose of these support foams is to distribute the stress between adjacent components, maintain relative positioning of various components, and mitigate the effects of component size variation due to manufacturing and temperature changes. In service these materials are subjected to a continuous compressive strain over long periods of time. In order to ensure their effectiveness, it is important to understand how their mechanical properties change over time. The properties we are primarily concerned aboutmore » are: compression set, load retention, and stress-strain response (modulus).« less
Krafty, Robert T; Rosen, Ori; Stoffer, David S; Buysse, Daniel J; Hall, Martica H
2017-01-01
This article considers the problem of analyzing associations between power spectra of multiple time series and cross-sectional outcomes when data are observed from multiple subjects. The motivating application comes from sleep medicine, where researchers are able to non-invasively record physiological time series signals during sleep. The frequency patterns of these signals, which can be quantified through the power spectrum, contain interpretable information about biological processes. An important problem in sleep research is drawing connections between power spectra of time series signals and clinical characteristics; these connections are key to understanding biological pathways through which sleep affects, and can be treated to improve, health. Such analyses are challenging as they must overcome the complicated structure of a power spectrum from multiple time series as a complex positive-definite matrix-valued function. This article proposes a new approach to such analyses based on a tensor-product spline model of Cholesky components of outcome-dependent power spectra. The approach exibly models power spectra as nonparametric functions of frequency and outcome while preserving geometric constraints. Formulated in a fully Bayesian framework, a Whittle likelihood based Markov chain Monte Carlo (MCMC) algorithm is developed for automated model fitting and for conducting inference on associations between outcomes and spectral measures. The method is used to analyze data from a study of sleep in older adults and uncovers new insights into how stress and arousal are connected to the amount of time one spends in bed.
Joint variability of global runoff and global sea surface temperatures
McCabe, G.J.; Wolock, D.M.
2008-01-01
Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.
Reliability analysis based on the losses from failures.
Todinov, M T
2006-04-01
The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the early-life failures region and the expected losses given failure characterizing the corresponding time intervals. For complex systems whose components are not logically arranged in series, discrete simulation algorithms and software have been created for determining the losses from failures in terms of expected lost production time, cost of intervention, and cost of replacement. Different system topologies are assessed to determine the effect of modifications of the system topology on the expected losses from failures. It is argued that the reliability allocation in a production system should be done to maximize the profit/value associated with the system. Consequently, a method for setting reliability requirements and reliability allocation maximizing the profit by minimizing the total cost has been developed. Reliability allocation that maximizes the profit in case of a system consisting of blocks arranged in series is achieved by determining for each block individually the reliabilities of the components in the block that minimize the sum of the capital, operation costs, and the expected losses from failures. A Monte Carlo simulation based net present value (NPV) cash-flow model has also been proposed, which has significant advantages to cash-flow models based on the expected value of the losses from failures per time interval. Unlike these models, the proposed model has the capability to reveal the variation of the NPV due to different number of failures occurring during a specified time interval (e.g., during one year). The model also permits tracking the impact of the distribution pattern of failure occurrences and the time dependence of the losses from failures.
Tipping point analysis of ocean acoustic noise
NASA Astrophysics Data System (ADS)
Livina, Valerie N.; Brouwer, Albert; Harris, Peter; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen
2018-02-01
We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations) of the time series.
Stochastic Forecasting of Labor Supply and Population: An Integrated Model.
Fuchs, Johann; Söhnlein, Doris; Weber, Brigitte; Weber, Enzo
2018-01-01
This paper presents a stochastic model to forecast the German population and labor supply until 2060. Within a cohort-component approach, our population forecast applies principal components analysis to birth, mortality, emigration, and immigration rates, which allows for the reduction of dimensionality and accounts for correlation of the rates. Labor force participation rates are estimated by means of an econometric time series approach. All time series are forecast by stochastic simulation using the bootstrap method. As our model also distinguishes between German and foreign nationals, different developments in fertility, migration, and labor participation could be predicted. The results show that even rising birth rates and high levels of immigration cannot break the basic demographic trend in the long run. An important finding from an endogenous modeling of emigration rates is that high net migration in the long run will be difficult to achieve. Our stochastic perspective suggests therefore a high probability of substantially decreasing the labor supply in Germany.
Wang, Guochao; Wang, Jun
2017-01-01
We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.
NASA Astrophysics Data System (ADS)
Wang, Guochao; Wang, Jun
2017-01-01
We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.
NASA Astrophysics Data System (ADS)
Bock, Y.; Fang, P.; Moore, A. W.; Kedar, S.; Liu, Z.; Owen, S. E.; Glasscoe, M. T.
2016-12-01
Detection of time-dependent crustal deformation relies on the availability of accurate surface displacements, proper time series analysis to correct for secular motion, coseismic and non-tectonic instrument offsets, periodic signatures at different frequencies, and a realistic estimate of uncertainties for the parameters of interest. As part of the NASA Solid Earth Science ESDR System (SESES) project, daily displacement time series are estimated for about 2500 stations, focused on tectonic plate boundaries and having a global distribution for accessing the terrestrial reference frame. The "combined" time series are optimally estimated from independent JPL GIPSY and SIO GAMIT solutions, using a consistent set of input epoch-date coordinates and metadata. The longest time series began in 1992; more than 30% of the stations have experienced one or more of 35 major earthquakes with significant postseismic deformation. Here we present three examples of time-dependent deformation that have been detected in the SESES displacement time series. (1) Postseismic deformation is a fundamental time-dependent signal that indicates a viscoelastic response of the crust/mantle lithosphere, afterslip, or poroelastic effects at different spatial and temporal scales. It is critical to identify and estimate the extent of postseismic deformation in both space and time not only for insight into the crustal deformation and earthquake cycles and their underlying physical processes, but also to reveal other time-dependent signals. We report on our database of characterized postseismic motions using a principal component analysis to isolate different postseismic processes. (2) Starting with the SESES combined time series and applying a time-dependent Kalman filter, we examine episodic tremor and slow slip (ETS) in the Cascadia subduction zone. We report on subtle slip details, allowing investigation of the spatiotemporal relationship between slow slip transients and tremor and their underlying physical mechanisms. (3) We present evolving strain dilatation and shear rates based on the SESES velocities for regional subnetworks as a metric for assigning earthquake probabilities and detection of possible time-dependent deformation related to underlying physical processes.
Immediate versus sustained effects: interrupted time series analysis of a tailored intervention.
Hanbury, Andria; Farley, Katherine; Thompson, Carl; Wilson, Paul M; Chambers, Duncan; Holmes, Heather
2013-11-05
Detailed intervention descriptions and robust evaluations that test intervention impact--and explore reasons for impact--are an essential part of progressing implementation science. Time series designs enable the impact and sustainability of intervention effects to be tested. When combined with time series designs, qualitative methods can provide insight into intervention effectiveness and help identify areas for improvement for future interventions. This paper describes the development, delivery, and evaluation of a tailored intervention designed to increase primary health care professionals' adoption of a national recommendation that women with mild to moderate postnatal depression (PND) are referred for psychological therapy as a first stage treatment. Three factors influencing referral for psychological treatment were targeted using three related intervention components: a tailored educational meeting, a tailored educational leaflet, and changes to an electronic system data template used by health professionals during consultations for PND. Evaluation comprised time series analysis of monthly audit data on percentage referral rates and monthly first prescription rates for anti-depressants. Interviews were conducted with a sample of health professionals to explore their perceptions of the intervention components and to identify possible factors influencing intervention effectiveness. The intervention was associated with a significant, immediate, positive effect upon percentage referral rates for psychological treatments. This effect was not sustained over the ten month follow-on period. Monthly rates of anti-depressant prescriptions remained consistently high after the intervention. Qualitative interview findings suggest key messages received from the intervention concerned what appropriate antidepressant prescribing is, suggesting this to underlie the lack of impact upon prescribing rates. However, an understanding that psychological treatment can have long-term benefits was also cited. Barriers to referral identified before intervention were cited again after the intervention, suggesting the intervention had not successfully tackled the barriers targeted. A time series design allowed the initial and sustained impact of our intervention to be tested. Combined with qualitative interviews, this provided insight into intervention effectiveness. Future research should test factors influencing intervention sustainability, and promote adoption of the targeted behavior and dis-adoption of competing behaviors where appropriate.
Geocenter Motion Derived from the JTRF2014 Combination
NASA Astrophysics Data System (ADS)
Abbondanza, C.; Chin, T. M.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; van Dam, T. M.; Wu, X.
2016-12-01
JTRF2014 represents the JPL Terrestrial Reference Frame (TRF) recently obtained as a result of the combination of the space-geodetic reprocessed inputs to the ITRF2014. Based upon a Kalman filter and smoother approach, JTRF2014 assimilates station positions and Earth-Orientation Parameters (EOPs) from GNSS, VLBI, SLR and DORIS and combine them through local tie measurements. JTRF is in its essence a time-series based TRF. In the JTRF2014 the dynamical evolution of the station positions is formulated by introducing linear and seasonal terms (annual and semi-annual periodic modes). Non-secular and non-seasonal motions of the geodetic sites are included in the smoothed time series by properly defining the station position process noise whose variance is characterized by analyzing station displacements induced by temporal changes of planetary fluid masses (atmosphere, oceans and continental surface water). With its station position time series output at a weekly resolution, JTRF2014 materializes a sub-secular frame whose origin is at the quasi-instantaneous Center of Mass (CM) as sensed by SLR. Both SLR and VLBI contribute to the scale of the combined frame. The sub-secular nature of the frame allows the users to directly access the quasi-instantaneous geocenter and scale information. Unlike standard combined TRF products which only give access to the secular component of the CM-CN motions, JTRF2014 is able to preserve -in addition to the long-term- the seasonal, non-seasonal and non-secular components of the geocenter motion. In the JTRF2014 assimilation scheme, local tie measurements are used to transfer the geocenter information from SLR to the space-geodetic techniques which are either insensitive to CM (VLBI) or whose geocenter motion is poorly determined (GNSS and DORIS). Properly tied to the CM frame through local ties and co-motion constraints, GNSS, VLBI and DORIS contribute to improve the SLR network geometry. In this paper, the determination of the weekly (CM-CN) time series as inferred from the JTRF2014 combination will be presented. Comparisons with geocenter time series derived from global inversions of GPS, GRACE and ocean bottom pressure models show the JTRF2014-derived geocenter favourably compares to the results of the inversion.
NASA Astrophysics Data System (ADS)
Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang
2017-02-01
Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.
Immediate versus sustained effects: interrupted time series analysis of a tailored intervention
2013-01-01
Background Detailed intervention descriptions and robust evaluations that test intervention impact—and explore reasons for impact—are an essential part of progressing implementation science. Time series designs enable the impact and sustainability of intervention effects to be tested. When combined with time series designs, qualitative methods can provide insight into intervention effectiveness and help identify areas for improvement for future interventions. This paper describes the development, delivery, and evaluation of a tailored intervention designed to increase primary health care professionals’ adoption of a national recommendation that women with mild to moderate postnatal depression (PND) are referred for psychological therapy as a first stage treatment. Methods Three factors influencing referral for psychological treatment were targeted using three related intervention components: a tailored educational meeting, a tailored educational leaflet, and changes to an electronic system data template used by health professionals during consultations for PND. Evaluation comprised time series analysis of monthly audit data on percentage referral rates and monthly first prescription rates for anti-depressants. Interviews were conducted with a sample of health professionals to explore their perceptions of the intervention components and to identify possible factors influencing intervention effectiveness. Results The intervention was associated with a significant, immediate, positive effect upon percentage referral rates for psychological treatments. This effect was not sustained over the ten month follow-on period. Monthly rates of anti-depressant prescriptions remained consistently high after the intervention. Qualitative interview findings suggest key messages received from the intervention concerned what appropriate antidepressant prescribing is, suggesting this to underlie the lack of impact upon prescribing rates. However, an understanding that psychological treatment can have long-term benefits was also cited. Barriers to referral identified before intervention were cited again after the intervention, suggesting the intervention had not successfully tackled the barriers targeted. Conclusion A time series design allowed the initial and sustained impact of our intervention to be tested. Combined with qualitative interviews, this provided insight into intervention effectiveness. Future research should test factors influencing intervention sustainability, and promote adoption of the targeted behavior and dis-adoption of competing behaviors where appropriate. PMID:24188718
Time series analysis of collective motions in proteins
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.
2004-01-01
The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.
Energy-Based Wavelet De-Noising of Hydrologic Time Series
Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu
2014-01-01
De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533
Application of computational mechanics to the analysis of natural data: an example in geomagnetism.
Clarke, Richard W; Freeman, Mervyn P; Watkins, Nicholas W
2003-01-01
We discuss how the ideal formalism of computational mechanics can be adapted to apply to a noninfinite series of corrupted and correlated data, that is typical of most observed natural time series. Specifically, a simple filter that removes the corruption that creates rare unphysical causal states is demonstrated, and the concept of effective soficity is introduced. We believe that computational mechanics cannot be applied to a noisy and finite data series without invoking an argument based upon effective soficity. A related distinction between noise and unresolved structure is also defined: Noise can only be eliminated by increasing the length of the time series, whereas the resolution of previously unresolved structure only requires the finite memory of the analysis to be increased. The benefits of these concepts are demonstrated in a simulated times series by (a) the effective elimination of white noise corruption from a periodic signal using the expletive filter and (b) the appearance of an effectively sofic region in the statistical complexity of a biased Poisson switch time series that is insensitive to changes in the word length (memory) used in the analysis. The new algorithm is then applied to an analysis of a real geomagnetic time series measured at Halley, Antarctica. Two principal components in the structure are detected that are interpreted as the diurnal variation due to the rotation of the Earth-based station under an electrical current pattern that is fixed with respect to the Sun-Earth axis and the random occurrence of a signature likely to be that of the magnetic substorm. In conclusion, some useful terminology for the discussion of model construction in general is introduced.
Self-healing concrete by use of microencapsulated bacterial spores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.Y.; Laboratory of Microbial Ecology and Technology; Soens, H.
Microcapsules were applied to encapsulate bacterial spores for self-healing concrete. The viability of encapsulated spores and the influence of microcapsules on mortar specimens were investigated first. Breakage of the microcapsules upon cracking was verified by Scanning Electron Microscopy. Self-healing capacity was evaluated by crack healing ratio and the water permeability. The results indicated that the healing ratio in the specimens with bio-microcapsules was higher (48%–80%) than in those without bacteria (18%–50%). The maximum crack width healed in the specimens of the bacteria series was 970 μm, about 4 times that of the non-bacteria series (max 250 μm). The overall watermore » permeability in the bacteria series was about 10 times lower than that in non-bacteria series. Wet–dry cycles were found to stimulate self-healing in mortar specimens with encapsulated bacteria. No self-healing was observed in all specimens stored at 95%RH, indicating that the presence of liquid water is an essential component for self-healing.« less
Neutron star dynamics under time dependent external torques
NASA Astrophysics Data System (ADS)
Alpar, M. A.; Gügercinoğlu, E.
2017-12-01
The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.; Keil, Stephen L.; Worden, Simon P.
2014-01-01
Analysis of more than 36 years of time series of seven parameters measured in the NSO/AFRL/Sac Peak K-line monitoring program elucidates five elucidates five components of the variation: (1) the solar cycle (period approx. 11 years), (2) quasi-periodic variations (periods approx 100 days), (3) a broad band stochastic process (wide range of periods), (4) rotational modulation, and (5) random observational errors. Correlation and power spectrum analyses elucidate periodic and aperiodic variation of the chromospheric parameters. Time-frequency analysis illuminates periodic and quasi periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (1) and (2) at time scales in the range approx 0.1 - 10 years. These results using only full-disk data further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (3) consists of variations over a range of timescales, in the manner of a 1/f random noise process. A timedependent Wilson-Bappu effect appears to be present in the solar cycle variations (1), but not in the stochastic process (3). Component (4) characterizes differential rotation of the active regions, and (5) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The recent data suggest that the current cycle is starting late and may be relatively weak. The data analyzed in this paper can be found at the National Solar Observatory web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.
NASA Astrophysics Data System (ADS)
Gunn, Grant; Duguay, Claude; Atwood, Don
2017-04-01
This study identifies the dominant scattering mechanism for C-, X- and Ku-band for bubbled freshwater lake ice in the Hudson Bay Lowlands near Churchill, Canada, using a winter time series of fully polarimetric ground-based (X- and Ku-band, UW-Scat) scatterometer and spaceborne (C-band) synthetic aperture radar (SAR, Radarsat-2) observations collected coincidentally to in-situ snow and ice measurements. Scatterometer observations identify two dominant backscatter sources from the ice cover: the snow-ice, and ice-water interface. Using in-situ measurements as ground-truth, a winter time series of scatterometer and satellite acquisitions show increases in backscatter from the ice-water interface prior to the timing of tubular bubble development in the ice cover. This timing indicates that scattering in the ice is independent of double-bounce scatter caused by tubular bubble inclusions. Concurrently, the co-polarized phase difference of interactions at the ice-water interface from both scatterometer and SAR observations are centred at 0° throughout the time series, indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of SAR observations is presented for C-band acquisitions indicating a dominant single-bounce scattering mechanism regime, which is hypothesized to be a result of an ice-water interface that presents a rough surface or a surface composed of preferentially oriented facets. This study is the first to present a winter time series of coincident ground-based and spaceborne fully polarimetric active microwave observations for bubbled freshwater lake ice.
NASA Astrophysics Data System (ADS)
Watkins, Nicholas; Clarke, Richard; Freeman, Mervyn
2002-11-01
We discuss how the ideal formalism of Computational Mechanics can be adapted to apply to a non-infinite series of corrupted and correlated data, that is typical of most observed natural time series. Specifically, a simple filter that removes the corruption that creates rare unphysical causal states is demonstrated, and the new concept of effective soficity is introduced. The benefits of these new concepts are demonstrated on simulated time series by (a) the effective elimination of white noise corruption from a periodic signal using the expletive filter and (b) the appearance of an effectively sofic region in the statistical complexity of a biased Poisson switch time series that is insensitive to changes in the word length (memory) used in the analysis. The new algorithm is then applied to analysis of a real geomagnetic time series measured at Halley, Antarctica. Two principal components in the structure are detected that are interpreted as the diurnal variation due to the rotation of the earth-based station under an electrical current pattern that is fixed with respect to the sun-earth axis and the random occurrence of a signature likely to be that of the magnetic substorm. In conclusion, a hypothesis is advanced about model construction in general (see also Clarke et al; arXiv::cond-mat/0110228).
Hazledine, Saul; Sun, Jongho; Wysham, Derin; Downie, J. Allan; Oldroyd, Giles E. D.; Morris, Richard J.
2009-01-01
Legume plants form beneficial symbiotic interactions with nitrogen fixing bacteria (called rhizobia), with the rhizobia being accommodated in unique structures on the roots of the host plant. The legume/rhizobial symbiosis is responsible for a significant proportion of the global biologically available nitrogen. The initiation of this symbiosis is governed by a characteristic calcium oscillation within the plant root hair cells and this signal is activated by the rhizobia. Recent analyses on calcium time series data have suggested that stochastic effects have a large role to play in defining the nature of the oscillations. The use of multiple nonlinear time series techniques, however, suggests an alternative interpretation, namely deterministic chaos. We provide an extensive, nonlinear time series analysis on the nature of this calcium oscillation response. We build up evidence through a series of techniques that test for determinism, quantify linear and nonlinear components, and measure the local divergence of the system. Chaos is common in nature and it seems plausible that properties of chaotic dynamics might be exploited by biological systems to control processes within the cell. Systems possessing chaotic control mechanisms are more robust in the sense that the enhanced flexibility allows more rapid response to environmental changes with less energetic costs. The desired behaviour could be most efficiently targeted in this manner, supporting some intriguing speculations about nonlinear mechanisms in biological signaling. PMID:19675679
SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS
NASA Technical Reports Server (NTRS)
Brownlow, J. D.
1994-01-01
The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval are removed by least-squares detrending. As many as ten channels of data may be analyzed at one time. Both tabular and plotted output may be generated by the SPA program. This program is written in FORTRAN IV and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 142K (octal) of 60 bit words. This core requirement can be reduced by segmentation of the program. The SPA program was developed in 1978.
A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting.
Ben Taieb, Souhaib; Atiya, Amir F
2016-01-01
Multistep-ahead forecasts can either be produced recursively by iterating a one-step-ahead time series model or directly by estimating a separate model for each forecast horizon. In addition, there are other strategies; some of them combine aspects of both aforementioned concepts. In this paper, we present a comprehensive investigation into the bias and variance behavior of multistep-ahead forecasting strategies. We provide a detailed review of the different multistep-ahead strategies. Subsequently, we perform a theoretical study that derives the bias and variance for a number of forecasting strategies. Finally, we conduct a Monte Carlo experimental study that compares and evaluates the bias and variance performance of the different strategies. From the theoretical and the simulation studies, we analyze the effect of different factors, such as the forecast horizon and the time series length, on the bias and variance components, and on the different multistep-ahead strategies. Several lessons are learned, and recommendations are given concerning the advantages, disadvantages, and best conditions of use of each strategy.
Hansen, J V; Nelson, R D
1997-01-01
Ever since the initial planning for the 1997 Utah legislative session, neural-network forecasting techniques have provided valuable insights for analysts forecasting tax revenues. These revenue estimates are critically important since agency budgets, support for education, and improvements to infrastructure all depend on their accuracy. Underforecasting generates windfalls that concern taxpayers, whereas overforecasting produces budget shortfalls that cause inadequately funded commitments. The pattern finding ability of neural networks gives insightful and alternative views of the seasonal and cyclical components commonly found in economic time series data. Two applications of neural networks to revenue forecasting clearly demonstrate how these models complement traditional time series techniques. In the first, preoccupation with a potential downturn in the economy distracts analysis based on traditional time series methods so that it overlooks an emerging new phenomenon in the data. In this case, neural networks identify the new pattern that then allows modification of the time series models and finally gives more accurate forecasts. In the second application, data structure found by traditional statistical tools allows analysts to provide neural networks with important information that the networks then use to create more accurate models. In summary, for the Utah revenue outlook, the insights that result from a portfolio of forecasts that includes neural networks exceeds the understanding generated from strictly statistical forecasting techniques. In this case, the synergy clearly results in the whole of the portfolio of forecasts being more accurate than the sum of the individual parts.
NASA Astrophysics Data System (ADS)
Lindholm, D. M.; Wilson, A.
2010-12-01
The Laboratory for Atmospheric and Space Physics at the University of Colorado has developed an Open Source, OPeNDAP compliant, Java Servlet based, RESTful web service to serve time series data. In addition to handling OPeNDAP style requests and returning standard responses, existing modules for alternate output formats can be reused or customized. It is also simple to reuse or customize modules to directly read various native data sources and even to perform some processing on the server. The server is built around a common data model based on the Unidata Common Data Model (CDM) which merges the NetCDF, HDF, and OPeNDAP data models. The server framework features a modular architecture that supports pluggable Readers, Writers, and Filters via the common interface to the data, enabling a workflow that reads data from their native form, performs some processing on the server, and presents the results to the client in its preferred form. The service is currently being used operationally to serve time series data for the LASP Interactive Solar Irradiance Data Center (LISIRD, http://lasp.colorado.edu/lisird/) and as part of the Time Series Data Server (TSDS, http://tsds.net/). I will present the data model and how it enables reading, writing, and processing concerns to be separated into loosely coupled components. I will also share thoughts for evolving beyond the time series abstraction and providing a general purpose data service that can be orchestrated into larger workflows.
NASA Astrophysics Data System (ADS)
Hoynant, G.
2007-12-01
Fourier analysis allows to identify periodical components in a time series of measurements under the form of a spectrum of the periodical components mathematically included in the series. The reading of a spectrum is often delicate and contradictory interpretations can be presented in some cases as for the luminosity of Seyfert galaxy NGC 4151 despite the very large number of observations since 1968. The present study identifies the causes of these difficulties thanks to an experimental approach based on analysis of synthetic series with one periodic component only. The total duration of the campaign must be long as compared to the periods to be identified: this ratio governs the separation capability of the spectral analysis. A large number of observations is obviously favourable but the intervals between measurements are not critical : the analysis can accommodate intervals significantly longer than the periods to be identified. But interruptions along the campaign, with separate sessions of observations, make the physical understanding of the analysis difficult and sometimes impossible. An analysis performed on an imperfect series shows peaks which are not significant of the signal itself but of the chronological distribution of the measurements. These chronological peaks are becoming numerous and important when there are vacancy periods in the campaign. A method for authentication of a peak as a peak of the signal is to cut the chronological series in pieces with the same length than the period to identify and to superpose all these pieces. The present study shows that some chronological peaks can exhibit superposition graphics almost as clear as those for the signal peaks. Practically, the search for periodical components necessitates to organise the campaign specifically with a neutral chronological distribution of measurements without vacancies and the authentication of a peak as a peak of the signal requires a dominating amplitude or a graphic of periodical superposition significantly clearer than for any peak with a comparable or bigger amplitude.
A time series analysis of the rabies control programme in Chile.
Ernst, S. N.; Fabrega, F.
1989-01-01
The classical time series decomposition method was used to compare the temporal pattern of rabies in Chile before and after the implementation of the control programme. In the years 1950-60, a period without control measures, rabies showed an increasing trend, a seasonal excess of cases in November and December and a cyclic behaviour with outbreaks occurring every 5 years. During 1961-1970 and 1971-86, a 26-year period that includes two different phases of the rabies programme which started in 1961, there was a general decline in the incidence of rabies. The seasonality disappeared when the disease reached a low frequency level and the cyclical component was not evident. PMID:2606167
Removing tidal-period variations from time-series data using low-pass digital filters
Walters, Roy A.; Heston, Cynthia
1982-01-01
Several low-pass, digital filters are examined for their ability to remove tidal Period Variations from a time-series of water surface elevation for San Francisco Bay. The most efficient filter is the one which is applied to the Fourier coefficients of the transformed data, and the filtered data recovered through an inverse transform. The ability of the filters to remove the tidal components increased in the following order: 1) cosine-Lanczos filter, 2) cosine-Lanczos squared filter; 3) Godin filter; and 4) a transform fitter. The Godin fitter is not sufficiently sharp to prevent severe attenuation of 2–3 day variations in surface elevation resulting from weather events.
Schiecke, Karin; Pester, Britta; Feucht, Martha; Leistritz, Lutz; Witte, Herbert
2015-01-01
In neuroscience, data are typically generated from neural network activity. Complex interactions between measured time series are involved, and nothing or only little is known about the underlying dynamic system. Convergent Cross Mapping (CCM) provides the possibility to investigate nonlinear causal interactions between time series by using nonlinear state space reconstruction. Aim of this study is to investigate the general applicability, and to show potentials and limitation of CCM. Influence of estimation parameters could be demonstrated by means of simulated data, whereas interval-based application of CCM on real data could be adapted for the investigation of interactions between heart rate and specific EEG components of children with temporal lobe epilepsy.
NASA Astrophysics Data System (ADS)
Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Bogusz, Janusz
2017-04-01
Seasonal oscillations in the GPS position time series can arise from real geophysical effects and numerical artefacts. According to Dong et al. (2002) environmental loading effects can account for approximately 40% of the total variance of the annual signals in GPS time series, however using generally acknowledged methods (e.g. Least Squares Estimation, Wavelet Decomposition, Singular Spectrum Analysis) to model seasonal signals we are not able to separate real from spurious signals (effects of mismodelling aliased into annual period as well as draconitic). Therefore, we propose to use Multichannel Singular Spectrum Analysis (MSSA) to determine seasonal oscillations (with annual and semi-annual periods) from GPS position time series and environmental loading displacement models. The MSSA approach is an extension of the classical Karhunen-Loève method and it is a special case of SSA for multivariate time series. The main advantage of MSSA is the possibility to extract common seasonal signals for stations from selected area and to investigate the causality between a set of time series as well. In this research, we explored the ability of MSSA application to separate real geophysical effects from spurious effects in GPS time series. For this purpose, we used GPS position changes and environmental loading models. We analysed the topocentric time series from 250 selected stations located worldwide, delivered from Network Solution obtained by the International GNSS Service (IGS) as a contribution to the latest realization of the International Terrestrial Reference System (namely ITRF2014, Rebishung et al., 2016). We also researched atmospheric, hydrological and non-tidal oceanic loading models provided by the EOST/IPGS Loading Service in the Centre-of-Figure (CF) reference frame. The analysed displacements were estimated from ERA-Interim (surface pressure), MERRA-land (soil moisture and snow) as well as ECCO2 ocean bottom pressure. We used Multichannel Singular Spectrum Analysis to determine common seasonal signals in two case studies with adopted a 3-years lag-window as the optimal window size. We also inferred the statistical significance of oscillations through the Monte Carlo MSSA method (Allen and Robertson, 1996). In the first case study, we investigated the common spatio-temporal seasonal signals for all stations. For this purpose, we divided selected stations with respect to the continents. For instance, for stations located in Europe, seasonal oscillations accounts for approximately 45% of the GPS-derived data variance. Much higher variance of seasonal signals is explained by hydrological loadings of about 92%, while the non-tidal oceanic loading accounted for 31% of total variance. In the second case study, we analysed the capability of the MSSA method to establish a causality between several time series. Each of estimated Principal Component represents pattern of the common signal for all analysed data. For ZIMM station (Zimmerwald, Switzerland), the 1st, 2nd and 9th, 10th Principal Components, which accounts for 35% of the variance, corresponds to the annual and semi-annual signals. In this part, we applied the non-parametric MSSA approach to extract the common seasonal signals for GPS time series and environmental loadings for each of the 250 stations with clear statement, that some part of seasonal signal reflects the real geophysical effects. REFERENCES: 1. Allen, M. and Robertson, A.: 1996, Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12, No. 11, 775-784. DOI: 10.1007/s003820050142. 2. Dong, D., Fang, P., Bock, Y., Cheng, M.K. and Miyazaki, S.: 2002, Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 107, No. B4, 2075. DOI: 10.1029/2001JB000573. 3. Rebischung, P., Altamimi, Z., Ray, J. and Garayt, B.: 2016, The IGS contribution to ITRF2014. Journal of Geodesy, 90, No. 7, 611-630. DOI:10.1007/s00190-016-0897-6.
9 CFR 441.10 - Retained water.
Code of Federal Regulations, 2014 CFR
2014-01-01
... standard for Salmonella as set forth in the PR/HACCP regulations (9 CFR 310.25(b), 381.94(b)) and the time... chillers in a series and arrangements of chilling system components, and the number of evisceration lines... equipment used should be accurately described. Any mechanical or design changes made to the chilling...
Wiring Pathways to Replace Aggression
ERIC Educational Resources Information Center
Bath, Howard
2006-01-01
The previous article in this series introduced the triune brain, the three components of which handle specialized life tasks. The survival brain, or brain stem, directs automatic physiological functions, such as heartbeat and breathing, and mobilizes fight/flight behaviour in times of threat. The emotional (or limbic) brain activates positive or…
USDA-ARS?s Scientific Manuscript database
The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g., cardiomyocytes, vascular smooth muscle cells) and possess...
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia. Office of Vocational Education.
This module on the knife machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the knife machine (a single needle or multi-needle machine which sews and cuts at the same time). These components are provided: an introduction, directions, an objective,…
Coagulopathy: Its Pathophysiology and Treatment in the Injured Patient
2007-03-30
death. In fact, in their series, 77% of brain-injured patients who died had a coagulopathy at the time of hospital admission.8 Similarly, Faringer et...coagulation process. Arch Surg 1996;131:923–927. 9. Faringer PD, Mullins RJ, Johnson RL, Trunkey DD. Blood component supplementation during massive
2001-10-25
considered static or invariant because the spectral behavior of EMG data is dependent on the specific muscle , contraction level, and limb function. However...produced at the onset of the muscle contraction . Because the units with lower conduction velocity (lower frequency components) are recruited first, the
Spectral of electrocardiographic RR intervals to indicate atrial fibrillation
NASA Astrophysics Data System (ADS)
Nuryani, Nuryani; Satrio Nugroho, Anto
2017-11-01
Atrial fibrillation is a serious heart diseases, which is associated on the risk of death, and thus an early detection of atrial fibrillation is necessary. We have investigated spectral pattern of electrocardiogram in relation to atrial fibrillation. The utilized feature of electrocardiogram is RR interval. RR interval is the time interval between a two-consecutive R peaks. A series of RR intervals in a time segment is converted to a signal with a frequency domain. The frequency components are investigated to find the components which significantly associate to atrial fibrillation. A segment is defined as atrial fibrillation or normal segments by considering a defined number of atrial fibrillation RR in the segment. Using clinical data of 23 patients with atrial fibrillation, we find that the frequency components could be used to indicate atrial fibrillation.
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Estimation of Hurst Exponent for the Financial Time Series
NASA Astrophysics Data System (ADS)
Kumar, J.; Manchanda, P.
2009-07-01
Till recently statistical methods and Fourier analysis were employed to study fluctuations in stock markets in general and Indian stock market in particular. However current trend is to apply the concepts of wavelet methodology and Hurst exponent, see for example the work of Manchanda, J. Kumar and Siddiqi, Journal of the Frankline Institute 144 (2007), 613-636 and paper of Cajueiro and B. M. Tabak. Cajueiro and Tabak, Physica A, 2003, have checked the efficiency of emerging markets by computing Hurst component over a time window of 4 years of data. Our goal in the present paper is to understand the dynamics of the Indian stock market. We look for the persistency in the stock market through Hurst exponent and fractal dimension of time series data of BSE 100 and NIFTY 50.
NASA Astrophysics Data System (ADS)
Durato, M. V.; Albano, A. M.; Rapp, P. E.; Nawang, S. A.
2015-06-01
The validity of ERPs as indices of stable neurophysiological traits is partially dependent on their stability over time. Previous studies on ERP stability, however, have reported diverse stability estimates despite using the same component scoring methods. This present study explores a novel approach in investigating the longitudinal stability of average ERPs—that is, by treating the ERP waveform as a time series and then applying Euclidean Distance and Kolmogorov-Smirnov analyses to evaluate the similarity or dissimilarity between the ERP time series of different sessions or run pairs. Nonlinear dynamical analysis show that in the absence of a change in medical condition, the average ERPs of healthy human adults are highly longitudinally stable—as evaluated by both the Euclidean distance and the Kolmogorov-Smirnov test.
NASA Technical Reports Server (NTRS)
Cox, Christopher M.; Chao, Benjamin F.; Au, Andrew Y.
2004-01-01
The oblateness of the Earth's gravity field, J2, has long been observed to undergo a slight decrease due to post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again. Presently, the time series appears to be returning to the value that would nominally have been reached had the anomaly not occurred. This anomaly signifies a large interannual change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound over such timescales. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing.
The dynamic relation between activities in the Northern and Southern solar hemispheres
NASA Astrophysics Data System (ADS)
Volobuev, D. M.; Makarenko, N. G.
2016-12-01
The north-south (N/S) asymmetry of solar activity is the most pronounced phenomenon during 11-year cycle minimums. The goal of this work is to try to interpret the asymmetry as a result of the generalized synchronization of two dynamic systems. It is assumed that these systems are localized in two solar hemispheres. The evolution of these systems is considered in the topological embeddings of a sunspot area time series obtained with the use of the Takens algorithm. We determine the coupling measure and estimate it on the time series of daily sunspot areas. The measurement made it possible to interpret the asymmetry as an exchangeable dynamic equation, in which the roles of the driver-slave components change in time for two hemispheres.
Digital gate pulse generator for cycloconverter control
Klein, Frederick F.; Mutone, Gioacchino A.
1989-01-01
The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.
NASA Astrophysics Data System (ADS)
Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Park, Jang-Ho; Kim, Hyoun-Woo; Lee, Dong-Joo; Kim, Dong-Jin; Han, Cheongho
2018-05-01
We report the results of photometric observations for doubly eclipsing binaries OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159, both of which are composed of two pairs (designated A&B) of a detached eclipsing binary located in the Large Magellanic Cloud. The light curves were obtained by high-cadence time-series photometry using the Korea Microlensing Telescope Network 1.6 m telescopes located at three southern sites (CTIO, SAAO, and SSO) between 2016 September and 2017 January. The orbital periods were determined to be 1.433 and 1.387 days for components A and B of OGLE-LMC-ECL-15674, respectively, and 2.988 and 3.408 days for OGLE-LMC-ECL-22159A and B, respectively. Our light curve solutions indicate that the significant changes in the eclipse depths of OGLE-LMC-ECL-15674A and B were caused by variations in their inclination angles. The eclipse timing diagrams of the A and B components of OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159 were analyzed using 28, 44, 28, and 26 new times of minimum light, respectively. The apsidal motion period of OGLE-LMC-ECL-15674B was estimated by detailed analysis of eclipse timings for the first time. The detached eclipsing binary OGLE-LMC-ECL-15674B shows a fast apsidal period of 21.5 ± 0.1 years.
NASA Astrophysics Data System (ADS)
Erkyihun, Solomon Tassew; Rajagopalan, Balaji; Zagona, Edith; Lall, Upmanu; Nowak, Kenneth
2016-05-01
A model to generate stochastic streamflow projections conditioned on quasi-oscillatory climate indices such as Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) is presented. Recognizing that each climate index has underlying band-limited components that contribute most of the energy of the signals, we first pursue a wavelet decomposition of the signals to identify and reconstruct these features from annually resolved historical data and proxy based paleoreconstructions of each climate index covering the period from 1650 to 2012. A K-Nearest Neighbor block bootstrap approach is then developed to simulate the total signal of each of these climate index series while preserving its time-frequency structure and marginal distributions. Finally, given the simulated climate signal time series, a K-Nearest Neighbor bootstrap is used to simulate annual streamflow series conditional on the joint state space defined by the simulated climate index for each year. We demonstrate this method by applying it to simulation of streamflow at Lees Ferry gauge on the Colorado River using indices of two large scale climate forcings: Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO), which are known to modulate the Colorado River Basin (CRB) hydrology at multidecadal time scales. Skill in stochastic simulation of multidecadal projections of flow using this approach is demonstrated.
Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network
Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong; ...
2017-12-18
Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less
NASA Astrophysics Data System (ADS)
Manikumari, N.; Murugappan, A.; Vinodhini, G.
2017-07-01
Time series forecasting has gained remarkable interest of researchers in the last few decades. Neural networks based time series forecasting have been employed in various application areas. Reference Evapotranspiration (ETO) is one of the most important components of the hydrologic cycle and its precise assessment is vital in water balance and crop yield estimation, water resources system design and management. This work aimed at achieving accurate time series forecast of ETO using a combination of neural network approaches. This work was carried out using data collected in the command area of VEERANAM Tank during the period 2004 - 2014 in India. In this work, the Neural Network (NN) models were combined by ensemble learning in order to improve the accuracy for forecasting Daily ETO (for the year 2015). Bagged Neural Network (Bagged-NN) and Boosted Neural Network (Boosted-NN) ensemble learning were employed. It has been proved that Bagged-NN and Boosted-NN ensemble models are better than individual NN models in terms of accuracy. Among the ensemble models, Boosted-NN reduces the forecasting errors compared to Bagged-NN and individual NNs. Regression co-efficient, Mean Absolute Deviation, Mean Absolute Percentage error and Root Mean Square Error also ascertain that Boosted-NN lead to improved ETO forecasting performance.
Aggregate Measures of Watershed Health from Reconstructed ...
Risk-based indices such as reliability, resilience, and vulnerability (R-R-V), have the potential to serve as watershed health assessment tools. Recent research has demonstrated the applicability of such indices for water quality (WQ) constituents such as total suspended solids and nutrients on an individual basis. However, the calculations can become tedious when time-series data for several WQ constituents have to be evaluated individually. Also, comparisons between locations with different sets of constituent data can prove difficult. In this study, data reconstruction using relevance vector machine algorithm was combined with dimensionality reduction via variational Bayesian noisy principal component analysis to reconstruct and condense sparse multidimensional WQ data sets into a single time series. The methodology allows incorporation of uncertainty in both the reconstruction and dimensionality-reduction steps. The R-R-V values were calculated using the aggregate time series at multiple locations within two Indiana watersheds. Results showed that uncertainty present in the reconstructed WQ data set propagates to the aggregate time series and subsequently to the aggregate R-R-V values as well. serving as motivating examples. Locations with different WQ constituents and different standards for impairment were successfully combined to provide aggregate measures of R-R-V values. Comparisons with individual constituent R-R-V values showed that v
Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong
Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less
Anomalous volatility scaling in high frequency financial data
NASA Astrophysics Data System (ADS)
Nava, Noemi; Di Matteo, T.; Aste, Tomaso
2016-04-01
Volatility of intra-day stock market indices computed at various time horizons exhibits a scaling behaviour that differs from what would be expected from fractional Brownian motion (fBm). We investigate this anomalous scaling by using empirical mode decomposition (EMD), a method which separates time series into a set of cyclical components at different time-scales. By applying the EMD to fBm, we retrieve a scaling law that relates the variance of the components to a power law of the oscillating period. In contrast, when analysing 22 different stock market indices, we observe deviations from the fBm and Brownian motion scaling behaviour. We discuss and quantify these deviations, associating them to the characteristics of financial markets, with larger deviations corresponding to less developed markets.
The long-term changes in total ozone, as derived from Dobson measurements at Arosa (1948-2001)
NASA Astrophysics Data System (ADS)
Krzyscin, J. W.
2003-04-01
The longest possible total ozone time series (Arosa, Switzerland) is examined for a detection of trends. Two-step procedure is proposed to estimate the long-term (decadal) variations in the ozone time series. The first step consists of a standard least-squares multiple regression applied to the total ozone monthly means to parameterize "natural" (related to the oscillations in the atmospheric dynamics) variations in the analyzed time series. The standard proxies for the dynamical ozone variations are used including; the 11-year solar activity cycle, and indices of QBO, ENSO and NAO. We use the detrended time series of temperature at 100 hPa and 500 hPa over Arosa to parameterize short-term variations (with time periods<1 year) in total ozone related to local changes in the meteorological conditions over the station. The second step consists of a smooth-curve fitting to the total ozone residuals (original minus modeled "natural" time series), the time derivation applied to this curve to obtain local trends, and bootstrapping of the residual time series to estimate the standard error of local trends. Locally weighted regression and the wavelet analysis methodology are used to extract the smooth component out of the residual time series. The time integral over the local trend values provides the cumulative long-term change since the data beginning. Examining the pattern of the cumulative change we see the periods with total ozone loss (the end of 50s up to early 60s - probably the effect of the nuclear bomb tests), recovery (mid 60s up to beginning of 70s), apparent decrease (beginning of 70s lasting to mid 90s - probably the effect of the atmosphere contamination by anthropogenic substances containing chlorine), and with a kind of stabilization or recovery (starting in the mid of 90s - probably the effect of the Montreal protocol to eliminate substances reducing the ozone layer). We can also estimate that a full ozone recovery (return to the undisturbed total ozone level from the beginning of 70s) is expected around 2050. We propose to calculate both time series of local trends and the cumulative long-term change instead single trend value derived as a slope of straight line fit to the data.
Biomathematical modeling of pulsatile hormone secretion: a historical perspective.
Evans, William S; Farhy, Leon S; Johnson, Michael L
2009-01-01
Shortly after the recognition of the profound physiological significance of the pulsatile nature of hormone secretion, computer-based modeling techniques were introduced for the identification and characterization of such pulses. Whereas these earlier approaches defined perturbations in hormone concentration-time series, deconvolution procedures were subsequently employed to separate such pulses into their secretion event and clearance components. Stochastic differential equation modeling was also used to define basal and pulsatile hormone secretion. To assess the regulation of individual components within a hormone network, a method that quantitated approximate entropy within hormone concentration-times series was described. To define relationships within coupled hormone systems, methods including cross-correlation and cross-approximate entropy were utilized. To address some of the inherent limitations of these methods, modeling techniques with which to appraise the strength of feedback signaling between and among hormone-secreting components of a network have been developed. Techniques such as dynamic modeling have been utilized to reconstruct dose-response interactions between hormones within coupled systems. A logical extension of these advances will require the development of mathematical methods with which to approximate endocrine networks exhibiting multiple feedback interactions and subsequently reconstruct their parameters based on experimental data for the purpose of testing regulatory hypotheses and estimating alterations in hormone release control mechanisms.
Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger.
Shappee, B J; Simon, J D; Drout, M R; Piro, A L; Morrell, N; Prieto, J L; Kasen, D; Holoien, T W-S; Kollmeier, J A; Kelson, D D; Coulter, D A; Foley, R J; Kilpatrick, C D; Siebert, M R; Madore, B F; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Adams, C; Alatalo, K; Bañados, E; Baughman, J; Bernstein, R A; Bitsakis, T; Boutsia, K; Bravo, J R; Di Mille, F; Higgs, C R; Ji, A P; Maravelias, G; Marshall, J L; Placco, V M; Prieto, G; Wan, Z
2017-12-22
On 17 August 2017, Swope Supernova Survey 2017a (SSS17a) was discovered as the optical counterpart of the binary neutron star gravitational wave event GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until 8.5 days after the merger. Over the first hour of observations, the ejecta rapidly expanded and cooled. Applying blackbody fits to the spectra, we measured the photosphere cooling from [Formula: see text] to [Formula: see text] kelvin, and determined a photospheric velocity of roughly 30% of the speed of light. The spectra of SSS17a began displaying broad features after 1.46 days and evolved qualitatively over each subsequent day, with distinct blue (early-time) and red (late-time) components. The late-time component is consistent with theoretical models of r-process-enriched neutron star ejecta, whereas the blue component requires high-velocity, lanthanide-free material. Copyright © 2017, American Association for the Advancement of Science.
Focal mechanism of the seismic series prior to the 2011 El Hierro eruption
NASA Astrophysics Data System (ADS)
del Fresno, C.; Buforn, E.; Cesca, S.; Domínguez Cerdeña, I.
2015-12-01
The onset of the submarine eruption of El Hierro (10-Oct-2011) was preceded by three months of low-magnitude seismicity (Mw<4.0) characterized by a well documented hypocenter migration from the center to the south of the island. Seismic sources of this series have been studied in order to understand the physical process of magma migration. Different methodologies were used to obtain focal mechanisms of largest shocks. Firstly, we have estimated the joint fault plane solutions for 727 shocks using first motion P polarities to infer the stress pattern of the sequence and to determine the time evolution of principle axes orientation. Results show almost vertical T-axes during the first two months of the series and horizontal P-axes on N-S direction coinciding with the migration. Secondly, a point source MT inversion was performed with data of the largest 21 earthquakes of the series (M>3.5). Amplitude spectra was fitted at local distances (<20km). Reliability and stability of the results were evaluated with synthetic data. Results show a change in the focal mechanism pattern within the first days of October, varying from complex sources of higher non-double-couple components before that date to a simpler strike-slip mechanism with horizontal tension axes on E-W direction the week prior to the eruption onset. A detailed study was carried out for the 8 October 2011 earthquake (Mw=4.0). Focal mechanism was retrieved using a MT inversion at regional and local distances. Results indicate an important component of strike-slip fault and null isotropic component. The stress pattern obtained corresponds to horizontal compression in a NNW-SSE direction, parallel to the southern ridge of the island, and a quasi-horizontal extension in an EW direction. Finally, a simple source time function of 0.3s has been estimated for this shock using the Empirical Green function methodology.
Preparations for the IGS realization of ITRF2014
NASA Astrophysics Data System (ADS)
Rebischung, Paul; Schmid, Ralf
2016-04-01
The International GNSS Service (IGS) currently prepares its own realization, called IGS14, of the latest release of the International Terrestrial Reference Frame (ITRF2014). This preparation involves: - a selection of the most suitable reference frame (RF) stations from the complete set of GNSS stations in ITRF2014; - the design of a well-distributed core network of RF stations for the purpose of aligning global GNSS solutions; - a re-evaluation of the GPS and GLONASS satellite antenna phase center offsets (PCOs), based on the SINEX files provided by the IGS Analysis Centers (ACs) in the frame of the second IGS reprocessing campaign repro2. This presentation will first cover the criteria used for the selection of the IGS14 and IGS14 core RF stations as well as preliminary station selection results. We will then use the preliminary IGS14 RF to re-align the daily IGS combined repro2 SINEX solutions and study the impact of the RF change on GNSS-derived geodetic parameter time series. In a second part, we will focus on the re-evaluation of the GNSS satellite antenna PCOs. A re-evaluation of at least their radial (z) components is indeed required, despite the negligible scale difference between ITRF2008 and ITRF2014, because of modeling changes recently introduced within the IGS which affect the scale of GNSS terrestrial frames (Earth radiation pressure, antenna thrust). Moreover, the 13 GPS and GLONASS satellites launched since September 2012 are currently assigned preliminary block-specific mean PCO values which need to be updated. From the daily AC repro2 SINEX files, we will therefore derive time series of satellite z-PCO estimates and analyze the resulting time series. Since several ACs provided all three components of the satellite PCOs in their SINEX files, we will additionally derive similar x- and y-PCO time series and discuss the relevance of their potential re-evaluation.
Guerra, Stefania; Boscari, Federico; Avogaro, Angelo; Di Camillo, Barbara; Sparacino, Giovanni; de Kreutzenberg, Saula Vigili
2011-08-01
The metabolic syndrome (MS), a predisposing condition for cardiovascular disease, presents disturbances in hemodynamics; impedance cardiography (ICG) can assess these alterations. In subjects with MS, the morphology of the pulses present in the ICG time series is more irregular/complex than in normal subjects. Therefore, the aim of the present study was to quantitatively assess the complexity of ICG times series in 53 patients, with or without MS, through a nonlinear analysis algorithm, the approximate entropy, a method employed in recent years for the study of several biological signals, which provides a scalar index, ApEn. We correlated ApEn computed from ICG times series data during fasting and postprandial phase with the presence of alterations in the parameters defining MS [Adult Treatment Panel (ATP) III (Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C; National Heart, Lung, and Blood Institute; American Heart Association. Circulation 109: 433-438, 2004) and the International Diabetes Federation (IDF) definition]. Results show that ApEn was significantly higher in subjects with MS compared with those without (1.81 ± 0.09 vs. 1.65 ± 0.13; means ± SD; P = 0.0013, with ATP III definition; 1.82 ± 0.09 vs. 1.67 ± 0.12; P = 0.00006, with the IDF definition). We also demonstrated that ApEn increase parallels the number of components of MS. ApEn was then correlated to each MS component: mean ApEn values of subjects belonging to the first and fourth quartiles of the distribution of MS parameters were statistically different for all parameters but HDL cholesterol. No difference was observed between ApEn values evaluated in fasting and postprandial states. In conclusion, we identified that MS is characterized by an increased complexity of ICG signals: this may have a prognostic relevance in subjects with this condition.
Sun, Peter; Chang, Joanne; Zhang, Jie; Kahler, Kristijan H
2012-01-01
This study examines the evolutionary impact of valsartan initiation on medical costs. A retrospective time series study design was used with a large, US national commercial claims database for the period of 2004-2008. Hypertensive patients who initiated valsartan between the ages of 18 and 63, and had continuous enrollment for 24-month pre-initiation period and 24-month post-initiation period were selected. Patients' monthly medical costs were calculated based on individual claims. A novel time series model was devised with monthly medical costs as its dependent variables, autoregressive integrated moving average (ARIMA) as its stochastic components, and four indicative variables as its decomposed interventional components. The number of post-initiation months before a cost-offset point was also assessed. Patients (n = 18,269) had mean age of 53 at the initiation date, and 53% of them were female. The most common co-morbid conditions were dyslipidemia (52%), diabetes (24%), and hypertensive complications (17%). The time series model suggests that medical costs were increasing by approximately $10 per month (p < 0.01) before the initiation, and decreasing by approximately $6 per month (p < 0.01) after the initiation. After the 4th post-initiation month, medical costs for patients with the initiation were statistically significantly lower (p < 0.01) than forecasted medical costs for the same patients without the initiation. The study has its limitations in data representativeness, ability to collect unrecorded clinical conditions, treatments, and costs, as well as its generalizability to patients with different characteristics. Commercially insured hypertensive patients experienced monthly medical cost increase before valsartan initiation. Based on our model, the evolutionary impact of the initiation on medical costs included a temporary cost surge, a gradual, consistent, and statistically significant cost decrease, and a cost-offset point around the 4th post-initiation month.
An a priori model for the reduction of nutation observations: KSV(1994.3) nutation series
NASA Technical Reports Server (NTRS)
Herring, T. A.
1995-01-01
We discuss the formulation of a new nutation series to be used in the reduction of modern space geodetic data. The motivation for developing such a series is to develop a nutation series that has smaller short period errors than the IAU 1980 nutation series and to provide a series that can be used with techniques such as the Global Positioning System (GPS) that have sensitivity to nutations but can directly separate the effects of nutations from errors in the dynamical force models that effect the satellite orbits. A modern nutation series should allow the errors in the force models for GPS to be better understood. The series is constructed by convolving the Kinoshita and Souchay rigid Earth nutation series with an Earth response function whose parameters are partly based on geophysical models of the Earth and partly estimated from a long series (1979-1993) of very long baseline interferometry (VLBI) estimates of nutation angles. Secular rates of change of the nutation angles to represent corrections to the precession constant and a secular change of the obliquity of the ecliptic are included in the theory. Time dependent amplitudes of the Free Core Nutation (FCN) that is most likely excited by variations in atmospheric pressure are included when the geophysical parameters are estimated. The complex components of the prograde annual nutation are estimated simultaneously with the geophysical parameters because of the large contribution to the nutation from the S(sub 1) atmospheric tide. The weighted root mean square (WRMS) scatter of the nutation angle estimates about this new model are 0.32 mas and the largest correction to the series when the amplitudes of the ten largest nutations are estimated is 0.18 +/- 0.03 mas for the in phase component of the prograde 18. 6 year nutation.
NASA Astrophysics Data System (ADS)
Barraza Bernadas, V.; Grings, F.; Roitberg, E.; Perna, P.; Karszenbaum, H.
2017-12-01
The Dry Chaco region (DCF) has the highest absolute deforestation rates of all Argentinian forests. The most recent report indicates a current deforestation rate of 200,000 Ha year-1. In order to better monitor this process, DCF was chosen to implement an early warning program for illegal deforestation. Although the area is intensively studied using medium resolution imagery (Landsat), the products obtained have a yearly pace and therefore unsuited for an early warning program. In this paper, we evaluated the performance of an online Bayesian change-point detection algorithm for MODIS Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST) datasets. The goal was to to monitor the abrupt changes in vegetation dynamics associated with deforestation events. We tested this model by simulating 16-day EVI and 8-day LST time series with varying amounts of seasonality, noise, length of the time series and by adding abrupt changes with different magnitudes. This model was then tested on real satellite time series available through the Google Earth Engine, over a pilot area in DCF, where deforestation was common in the 2004-2016 period. A comparison with yearly benchmark products based on Landsat images is also presented (REDAF dataset). The results shows the advantages of using an automatic model to detect a changepoint in the time series than using only visual inspection techniques. Simulating time series with varying amounts of seasonality and noise, and by adding abrupt changes at different times and magnitudes, revealed that this model is robust against noise, and is not influenced by changes in amplitude of the seasonal component. Furthermore, the results compared favorably with REDAF dataset (near 65% of agreement). These results show the potential to combine LST and EVI to identify deforestation events. This work is being developed within the frame of the national Forest Law for the protection and sustainable development of Native Forest in Argentina in agreement with international legislation (REDD+).
NASA Astrophysics Data System (ADS)
Yang, Peng; Xia, Jun; Zhan, Chesheng; Zhang, Yongyong; Hu, Sheng
2018-04-01
In this study, the temporal variations of the standard precipitation index (SPI) were analyzed at different scales in Northwest China (NWC). Discrete wavelet transform (DWT) was used in conjunction with the Mann-Kendall (MK) test in this study. This study also investigated the relationships between original precipitation and different periodic components of SPI series with datasets spanning 55 years (1960-2014). The results showed that with the exception of the annual and summer SPI in the Inner Mongolia Inland Rivers Basin (IMIRB), spring SPI in the Qinghai Lake Rivers Basin (QLRB), and spring SPI in the Central Asia Rivers Basin (CARB), it had an increasing trend in other regions for other time series. In the spring, summer, and autumn series, though the MK trends test in most areas was at the insignificant level, they showed an increasing trend in precipitation. Meanwhile, the SPI series in most subbasins of NWC displayed a turning point in 1980-1990, with the significant increasing levels after 2000. Additionally, there was a significant difference between the trend of the original SPI series and the largest approximations. The annual and seasonal SPI series were composed of the short periodicities, which were less than a decade. The MK value would increase by adding the multiple D components (and approximations), and the MK value of the combined series was in harmony with that of the original series. Additionally, the major trend of the annual SPI in NWC was based on the four kinds of climate indices (e.g., Atlantic Oscillation [AO], North Atlantic Oscillation [NAO], Pacific Decadal Oscillation [PDO], and El Nino-Southern Oscillation index [ENSO/NINO]), especially the ENSO.
Del Sorbo, Maria Rosaria; Balzano, Walter; Donato, Michele; Draghici, Sorin
2013-11-01
Differential expression of genes detected with the analysis of high throughput genomic experiments is a commonly used intermediate step for the identification of signaling pathways involved in the response to different biological conditions. The impact analysis was the first approach for the analysis of signaling pathways involved in a certain biological process that was able to take into account not only the magnitude of the expression change of the genes but also the topology of signaling pathways including the type of each interactions between the genes. In the impact analysis, signaling pathways are represented as weighted directed graphs with genes as nodes and the interactions between genes as edges. Edges weights are represented by a β factor, the regulatory efficiency, which is assumed to be equal to 1 in inductive interactions between genes and equal to -1 in repressive interactions. This study presents a similarity analysis between gene expression time series aimed to find correspondences with the regulatory efficiency, i.e. the β factor as found in a widely used pathway database. Here, we focused on correlations among genes directly connected in signaling pathways, assuming that the expression variations of upstream genes impact immediately downstream genes in a short time interval and without significant influences by the interactions with other genes. Time series were processed using three different similarity metrics. The first metric is based on the bit string matching; the second one is a specific application of the Dynamic Time Warping to detect similarities even in presence of stretching and delays; the third one is a quantitative comparative analysis resulting by an evaluation of frequency domain representation of time series: the similarity metric is the correlation between dominant spectral components. These three approaches are tested on real data and pathways, and a comparison is performed using Information Retrieval benchmark tools, indicating the frequency approach as the best similarity metric among the three, for its ability to detect the correlation based on the correspondence of the most significant frequency components. Copyright © 2013. Published by Elsevier Ireland Ltd.
Weizman, Lior; Sira, Liat Ben; Joskowicz, Leo; Rubin, Daniel L.; Yeom, Kristen W.; Constantini, Shlomi; Shofty, Ben; Bashat, Dafna Ben
2014-01-01
Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. Methods: The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. Results: Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. Conclusions: The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior. PMID:24784396
Correlated errors in geodetic time series: Implications for time-dependent deformation
Langbein, J.; Johnson, H.
1997-01-01
Analysis of frequent trilateration observations from the two-color electronic distance measuring networks in California demonstrate that the noise power spectra are dominated by white noise at higher frequencies and power law behavior at lower frequencies. In contrast, Earth scientists typically have assumed that only white noise is present in a geodetic time series, since a combination of infrequent measurements and low precision usually preclude identifying the time-correlated signature in such data. After removing a linear trend from the two-color data, it becomes evident that there are primarily two recognizable types of time-correlated noise present in the residuals. The first type is a seasonal variation in displacement which is probably a result of measuring to shallow surface monuments installed in clayey soil which responds to seasonally occurring rainfall; this noise is significant only for a small fraction of the sites analyzed. The second type of correlated noise becomes evident only after spectral analysis of line length changes and shows a functional relation at long periods between power and frequency of and where f is frequency and ?? ??? 2. With ?? = 2, this type of correlated noise is termed random-walk noise, and its source is mainly thought to be small random motions of geodetic monuments with respect to the Earth's crust, though other sources are possible. Because the line length changes in the two-color networks are measured at irregular intervals, power spectral techniques cannot reliably estimate the level of I//" noise. Rather, we also use here a maximum likelihood estimation technique which assumes that there are only two sources of noise in the residual time series (white noise and randomwalk noise) and estimates the amount of each. From this analysis we find that the random-walk noise level averages about 1.3 mm/Vyr and that our estimates of the white noise component confirm theoretical limitations of the measurement technique. In addition, the seasonal noise can be as large as 3 mm in amplitude but typically is less than 0.5 mm. Because of the presence of random-walk noise in these time series, modeling and interpretation of the geodetic data must account for this source of error. By way of example we show that estimating the time-varying strain tensor (a form of spatial averaging) from geodetic data having both random-walk and white noise error components results in seemingly significant variations in the rate of strain accumulation; spatial averaging does reduce the size of both noise components but not their relative influence on the resulting strain accumulation model. Copyright 1997 by the American Geophysical Union.
Multivariate singular spectrum analysis and the road to phase synchronization
NASA Astrophysics Data System (ADS)
Groth, Andreas; Ghil, Michael
2010-05-01
Singular spectrum analysis (SSA) and multivariate SSA (M-SSA) are based on the classical work of Kosambi (1943), Loeve (1945) and Karhunen (1946) and are closely related to principal component analysis. They have been introduced into information theory by Bertero, Pike and co-workers (1982, 1984) and into dynamical systems analysis by Broomhead and King (1986a,b). Ghil, Vautard and associates have applied SSA and M-SSA to the temporal and spatio-temporal analysis of short and noisy time series in climate dynamics and other fields in the geosciences since the late 1980s. M-SSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trends, oscillatory patterns and noise, and allow one to reconstruct a robust "skeleton" of the dynamical system's structure. For an overview we refer to Ghil et al. (Rev. Geophys., 2002). In this talk, we present M-SSA in the context of synchronization analysis and illustrate its ability to unveil information about the mechanisms behind the adjustment of rhythms in coupled dynamical systems. The focus of the talk is on the special case of phase synchronization between coupled chaotic oscillators (Rosenblum et al., PRL, 1996). Several ways of measuring phase synchronization are in use, and the robust definition of a reasonable phase for each oscillator is critical in each of them. We illustrate here the advantages of M-SSA in the automatic identification of oscillatory modes and in drawing conclusions about the transition to phase synchronization. Without using any a priori definition of a suitable phase, we show that M-SSA is able to detect phase synchronization in a chain of coupled chaotic oscillators (Osipov et al., PRE, 1996). Recently, Muller et al. (PRE, 2005) and Allefeld et al. (Intl. J. Bif. Chaos, 2007) have demonstrated the usefulness of principal component analysis in detecting phase synchronization from multivariate time series. The present talk provides a generalization of this idea and presents a robust implementation thereof via M-SSA.
NASA Astrophysics Data System (ADS)
Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier
2017-02-01
El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these events were made for long lead times of at least two and a half years. Hence, the present study demonstrates that the theoretical limit of ENSO prediction should be sought much longer than the commonly accepted "Spring Barrier". The high correspondence between the forecasts and observations indicates that the proposed model outperforms all current operational statistical models, and behaves comparably to the best dynamical models used for EN prediction. Thus, the novel way in which the modeling scheme has been structured could also be used for improving other statistical and dynamical modeling systems.
Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.
2005-01-01
A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.
NASA Astrophysics Data System (ADS)
Kovács, G.
2009-09-01
Current status of (the lack of) understanding Blazhko effect is reviewed. We focus mostly on the various components of the failure of the models and touch upon the observational issues only at a degree needed for the theoretical background. Attention is to be paid to models based on radial mode resonances, since they seem to be not fully explored yet, especially if we consider possible non-standard effects (e.g., heavy element enhancement). To aid further modeling efforts, we stress the need for accurate time-series spectral line analysis to reveal any possible non-radial component(s) and thereby let to include (or exclude) non-radial modes in explaining the Blazhko phenomenon.
Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach
NASA Astrophysics Data System (ADS)
Thomas, C.; Lark, R. M.
2013-12-01
Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second (spherical) model, it cuts off at a temporal range. Having fitted the model, multiple realisations were generated; the random effects were simulated by specifying a covariance matrix for the simulated values, with the estimated parameters. The Cholesky factorisation of the covariance matrix was computed and realizations of the random component of the model generated by pre-multiplying a vector of iid standard Gaussian variables by the lower triangular factor. The resulting random variate was added to the mean value computed from the fixed effects, and the result back-transformed to the original scale of the measurement. Realistic simulations result from approach described above. Background exploratory data analysis was undertaken on 20-day sets of 30-minute buoy data, selected from days 5-24 of months January, April, July, October, 2011, to elucidate daily to weekly variations, and to keep numerical analysis tractable computationally. Work remains to be undertaken to develop suitable models for synthetic directional data. We suggest that the general principles of the method will have applications in other geomorphological modelling endeavours requiring time series of stochastically variable environmental parameters.
29 CFR 1926.1050 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... traffic for employees ascending or descending. Equivalent means alternative designs, materials, or methods... ladder component at any one time. Nosing means that portion of a tread projecting beyond the face of the... stairway means a series of steps attached to a vertical pole and progressing upward in a winding fashion...
29 CFR 1926.1050 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... traffic for employees ascending or descending. Equivalent means alternative designs, materials, or methods... ladder component at any one time. Nosing means that portion of a tread projecting beyond the face of the... stairway means a series of steps attached to a vertical pole and progressing upward in a winding fashion...
29 CFR 1926.1050 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... traffic for employees ascending or descending. Equivalent means alternative designs, materials, or methods... ladder component at any one time. Nosing means that portion of a tread projecting beyond the face of the... stairway means a series of steps attached to a vertical pole and progressing upward in a winding fashion...
29 CFR 1926.1050 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... traffic for employees ascending or descending. Equivalent means alternative designs, materials, or methods... ladder component at any one time. Nosing means that portion of a tread projecting beyond the face of the... stairway means a series of steps attached to a vertical pole and progressing upward in a winding fashion...
NASA Technical Reports Server (NTRS)
Byrne, F.
1981-01-01
Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.
Relationships between phytoplankton dynamics and physiology, and environmental conditions were studied in Santa Rosa Sound, Florida, USA, at near-weekly intervals during 2001. Santa Rosa Sound is a component of the Pensacola Bay estuary in the northern Gulf of Mexico. Parameters ...
Analysis of WindSat Data over Arctic Sea Ice
USDA-ARS?s Scientific Manuscript database
The radiation of the 3rd and 4th Stokes components emitted by Arctic sea ice and observed by the spaceborne fully polarimetric radiometer WindSat is investigated. Two types of analysis are carried out, spatial (maps of different quadrants of azimuth look angles) and temporal (time series of daily av...
A method for ensemble wildland fire simulation
Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain
2011-01-01
An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...
A CAD System for Hemorrhagic Stroke.
Nowinski, Wieslaw L; Qian, Guoyu; Hanley, Daniel F
2014-09-01
Computer-aided detection/diagnosis (CAD) is a key component of routine clinical practice, increasingly used for detection, interpretation, quantification and decision support. Despite a critical need, there is no clinically accepted CAD system for stroke yet. Here we introduce a CAD system for hemorrhagic stroke. This CAD system segments, quantifies, and displays hematoma in 2D/3D, and supports evacuation of hemorrhage by thrombolytic treatment monitoring progression and quantifying clot removal. It supports seven-step workflow: select patient, add a new study, process patient's scans, show segmentation results, plot hematoma volumes, show 3D synchronized time series hematomas, and generate report. The system architecture contains four components: library, tools, application with user interface, and hematoma segmentation algorithm. The tools include a contour editor, 3D surface modeler, 3D volume measure, histogramming, hematoma volume plot, and 3D synchronized time-series hematoma display. The CAD system has been designed and implemented in C++. It has also been employed in the CLEAR and MISTIE phase-III, multicenter clinical trials. This stroke CAD system is potentially useful in research and clinical applications, particularly for clinical trials.
A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain.
Barba, Lida; Rodríguez, Nibaldo
2017-01-01
Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT.
A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain
Rodríguez, Nibaldo
2017-01-01
Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT. PMID:28261267
NASA Astrophysics Data System (ADS)
Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris
2018-02-01
We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.
NASA Technical Reports Server (NTRS)
Sanders, Abram F. J.; Verstraeten, Willem W.; Kooreman, Maurits L.; van Leth, Thomas C.; Beringer, Jason; Joiner, Joanna
2016-01-01
A global, monthly averaged time series of Sun-induced Fluorescence (SiF), spanning January 2007 to June 2015, was derived from Metop-A Global Ozone Monitoring Experiment 2 (GOME-2) spectral measurements. Far-red SiF was retrieved using the filling-in of deep solar Fraunhofer lines and atmospheric absorption bands based on the general methodology described by Joiner et al, AMT, 2013. A Principal Component (PC) analysis of spectra over non-vegetated areas was performed to describe the effects of atmospheric absorption. Our implementation (SiF KNMI) is an independent algorithm and differs from the latest implementation of Joiner et al, AMT, 2013 (SiF NASA, v26), because we used desert reference areas for determining PCs (as opposed to cloudy ocean and some desert) and a wider fit window that covers water vapour and oxygen absorption bands (as opposed to only Fraunhofer lines). As a consequence, more PCs were needed (35 as opposed to 12). The two time series (SiF KNMI and SiF NASA, v26) correlate well (overall R of 0.78) except for tropical rain forests. Sensitivity experiments suggest the strong impact of the water vapour absorption band on retrieved SiF values. Furthermore, we evaluated the SiF time series with Gross Primary Productivity (GPP) derived from twelve flux towers in Australia. Correlations for individual towers range from 0.37 to 0.84. They are particularly high for managed biome types. In the de-seasonalized Australian SiF time series, the break of the Millennium Drought during local summer of 2010/2011 is clearly observed.
Evaluation of the significance of abrupt changes in precipitation and runoff process in China
NASA Astrophysics Data System (ADS)
Xie, Ping; Wu, Ziyi; Sang, Yan-Fang; Gu, Haiting; Zhao, Yuxi; Singh, Vijay P.
2018-05-01
Abrupt changes are an important manifestation of hydrological variability. How to accurately detect the abrupt changes in hydrological time series and evaluate their significance is an important issue, but methods for dealing with them effectively are lacking. In this study, we propose an approach to evaluate the significance of abrupt changes in time series at five levels: no, weak, moderate, strong, and dramatic. The approach was based on an index of correlation coefficient calculated for the original time series and its abrupt change component. A bigger value of correlation coefficient reflects a higher significance level of abrupt change. Results of Monte-Carlo experiments verified the reliability of the proposed approach, and also indicated the great influence of statistical characteristics of time series on the significance level of abrupt change. The approach was derived from the relationship between correlation coefficient index and abrupt change, and can estimate and grade the significance levels of abrupt changes in hydrological time series. Application of the proposed approach to ten major watersheds in China showed that abrupt changes mainly occurred in five watersheds in northern China, which have arid or semi-arid climate and severe shortages of water resources. Runoff processes in northern China were more sensitive to precipitation change than those in southern China. Although annual precipitation and surface water resources amount (SWRA) exhibited a harmonious relationship in most watersheds, abrupt changes in the latter were more significant. Compared with abrupt changes in annual precipitation, human activities contributed much more to the abrupt changes in the corresponding SWRA, except for the Northwest Inland River watershed.
Measuring and Modeling Shared Visual Attention
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Gontar, Patrick
2016-01-01
Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions. We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of "activities," each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates. We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar & Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.
Measuring and Modeling Shared Visual Attention
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2016-01-01
Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions.We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of activities, each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates.We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.
Modelling spatiotemporal change using multidimensional arrays Meng
NASA Astrophysics Data System (ADS)
Lu, Meng; Appel, Marius; Pebesma, Edzer
2017-04-01
The large variety of remote sensors, model simulations, and in-situ records provide great opportunities to model environmental change. The massive amount of high-dimensional data calls for methods to integrate data from various sources and to analyse spatiotemporal and thematic information jointly. An array is a collection of elements ordered and indexed in arbitrary dimensions, which naturally represent spatiotemporal phenomena that are identified by their geographic locations and recording time. In addition, array regridding (e.g., resampling, down-/up-scaling), dimension reduction, and spatiotemporal statistical algorithms are readily applicable to arrays. However, the role of arrays in big geoscientific data analysis has not been systematically studied: How can arrays discretise continuous spatiotemporal phenomena? How can arrays facilitate the extraction of multidimensional information? How can arrays provide a clean, scalable and reproducible change modelling process that is communicable between mathematicians, computer scientist, Earth system scientist and stakeholders? This study emphasises on detecting spatiotemporal change using satellite image time series. Current change detection methods using satellite image time series commonly analyse data in separate steps: 1) forming a vegetation index, 2) conducting time series analysis on each pixel, and 3) post-processing and mapping time series analysis results, which does not consider spatiotemporal correlations and ignores much of the spectral information. Multidimensional information can be better extracted by jointly considering spatial, spectral, and temporal information. To approach this goal, we use principal component analysis to extract multispectral information and spatial autoregressive models to account for spatial correlation in residual based time series structural change modelling. We also discuss the potential of multivariate non-parametric time series structural change methods, hierarchical modelling, and extreme event detection methods to model spatiotemporal change. We show how array operations can facilitate expressing these methods, and how the open-source array data management and analytics software SciDB and R can be used to scale the process and make it easily reproducible.
Scaling laws from geomagnetic time series
Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.
1998-01-01
The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.
Olsho, Lauren E W; Spector, William D; Williams, Christianna S; Rhodes, William; Fink, Rebecca V; Limcangco, Rhona; Hurd, Donna
2014-03-01
Pressure ulcers present serious health and economic consequences for nursing home residents. The Agency for Healthcare Research & Quality, in partnership with the New York State Department of Health, implemented the pressure ulcer module of On-Time Quality Improvement for Long Term Care (On-Time), a clinical decision support intervention to reduce pressure ulcer incidence rates. To evaluate the effectiveness of the On-Time program in reducing the rate of in-house-acquired pressure ulcers among nursing home residents. We employed an interrupted time-series design to identify impacts of 4 core On-Time program components on resident pressure ulcer incidence in 12 New York State nursing homes implementing the intervention (n=3463 residents). The sample was purposively selected to include nursing homes with high baseline prevalence and incidence of pressure ulcers and high motivation to reduce pressure ulcers. Differential timing and sequencing of 4 core On-Time components across intervention nursing homes and units enabled estimation of separate impacts for each component. Inclusion of a nonequivalent comparison group of 13 nursing homes not implementing On-Time (n=2698 residents) accounts for potential mean-reversion bias. Impacts were estimated via a random-effects Poisson model including resident-level and facility-level covariates. We find a large and statistically significant reduction in pressure ulcer incidence associated with the joint implementation of 4 core On-Time components (incidence rate ratio=0.409; P=0.035). Impacts vary with implementation of specific component combinations. On-Time implementation is associated with sizable reductions in pressure ulcer incidence.
A new method to monitor water vapor cycles in active volcanoes
NASA Astrophysics Data System (ADS)
Girona, T.; Costa Rodriguez, F.; Taisne, B.
2014-12-01
Simultaneous monitoring of different gas species of volcanic plumes is crucial to understand the mechanisms involved in persistent degassing, and to anticipate volcanic unrest episodes and magma ascent towards the surface. Progress in gas remote-sensing techniques during the last decades has led to the development of ultraviolet absorption spectrometers and UV cameras, which enable to monitor SO2 emission cycles in real time, at very high-frequency (~ 1Hz), and from several kilometers away from the volcanic plume. However, monitoring of the more abundant gases, i.e., H2O and CO2, is limited to volcanoes where infrared spectrometers and infrared lamps can be installed at both sides of the crater rims. In this study, we present a new and simple methodology to register H2O emission cycles from long distances (several kilometers), which is based on the light scattered by the micrometric water droplets of condensed plumes. The method only requires a commercial digital camera and a laptop for image processing, since, as we demonstrate, there is a linear correlation between the digital brightness of the plume and its volcanogenic water content. We have validated the method experimentally by generating controlled condensed plumes with an ultrasonic humidifier, and applied it to the plume of Erebus volcano using a 30 minutes-long movie [1]. The wavelet transforms of the plume brightness and SO2 time series (measured with DOAS [1]) show two common periodic components in the bands ~100-250 s and ~500-650 s. However, there is a third periodic component in the band ~300-450 s in the SO2 time series that is absent in the brightness time series. We propose that the common periodic components are induced by magmatic foams collapsing intermittently beneath shallow geometrical barriers composed by bubbles with high content of both H2O and SO2, whereas the third periodic component could be induced by foams collapsing beneath a deeper geometrical barrier composed by bubbles with high content of SO2 but low content of H2O. This is consistent with the fact that most of the water exsolves at very low pressures. Our new methodology should lead to new insights into magma degassing process and anticipation of volcanic eruptions, in particular when combined with other monitoring methods. [1] Boichu et al. (2010), J. Volcanol. Geotherm. Res. 195:325.
NASA Astrophysics Data System (ADS)
Shi, Y.; Gorban, A. N.; Y Yang, T.
2014-03-01
This case study tests the possibility of prediction for 'success' (or 'winner') components of four stock & shares market indices in a time period of three years from 02-Jul-2009 to 29-Jun-2012.We compare their performance ain two time frames: initial frame three months at the beginning (02/06/2009-30/09/2009) and the final three month frame (02/04/2012-29/06/2012).To label the components, average price ratio between two time frames in descending order is computed. The average price ratio is defined as the ratio between the mean prices of the beginning and final time period. The 'winner' components are referred to the top one third of total components in the same order as average price ratio it means the mean price of final time period is relatively higher than the beginning time period. The 'loser' components are referred to the last one third of total components in the same order as they have higher mean prices of beginning time period. We analyse, is there any information about the winner-looser separation in the initial fragments of the daily closing prices log-returns time series.The Leave-One-Out Cross-Validation with k-NN algorithm is applied on the daily log-return of components using a distance and proximity in the experiment. By looking at the error analysis, it shows that for HANGSENG and DAX index, there are clear signs of possibility to evaluate the probability of long-term success. The correlation distance matrix histograms and 2-D/3-D elastic maps generated from ViDaExpert show that the 'winner' components are closer to each other and 'winner'/'loser' components are separable on elastic maps for HANGSENG and DAX index while for the negative possibility indices, there is no sign of separation.
Analysis of Seasonal Signal in GPS Short-Baseline Time Series
NASA Astrophysics Data System (ADS)
Wang, Kaihua; Jiang, Weiping; Chen, Hua; An, Xiangdong; Zhou, Xiaohui; Yuan, Peng; Chen, Qusen
2018-04-01
Proper modeling of seasonal signals and their quantitative analysis are of interest in geoscience applications, which are based on position time series of permanent GPS stations. Seasonal signals in GPS short-baseline (< 2 km) time series, if they exist, are mainly related to site-specific effects, such as thermal expansion of the monument (TEM). However, only part of the seasonal signal can be explained by known factors due to the limited data span, the GPS processing strategy and/or the adoption of an imperfect TEM model. In this paper, to better understand the seasonal signal in GPS short-baseline time series, we adopted and processed six different short-baselines with data span that varies from 2 to 14 years and baseline length that varies from 6 to 1100 m. To avoid seasonal signals that are overwhelmed by noise, each of the station pairs is chosen with significant differences in their height (> 5 m) or type of the monument. For comparison, we also processed an approximately zero baseline with a distance of < 1 m and identical monuments. The daily solutions show that there are apparent annual signals with annual amplitude of 1 mm (maximum amplitude of 1.86 ± 0.17 mm) on almost all of the components, which are consistent with the results from previous studies. Semi-annual signal with a maximum amplitude of 0.97 ± 0.25 mm is also present. The analysis of time-correlated noise indicates that instead of flicker (FL) or random walk (RW) noise, band-pass-filtered (BP) noise is valid for approximately 40% of the baseline components, and another 20% of the components can be best modeled by a combination of the first-order Gauss-Markov (FOGM) process plus white noise (WN). The TEM displacements are then modeled by considering the monument height of the building structure beneath the GPS antenna. The median contributions of TEM to the annual amplitude in the vertical direction are 84% and 46% with and without additional parts of the monument, respectively. Obvious annual signals with amplitude > 0.4 mm in the horizontal direction are observed in five short-baselines, and the amplitudes exceed 1 mm in four of them. These horizontal seasonal signals are likely related to the propagation of daily/sub-daily TEM displacement or other signals related to the site environment. Mismodeling of the tropospheric delay may also introduce spurious seasonal signals with annual amplitudes of 5 and 2 mm, respectively, for two short-baselines with elevation differences greater than 100 m. The results suggest that the monument height of the additional part of a typical GPS station should be considered when estimating the TEM displacement and that the tropospheric delay should be modeled cautiously, especially with station pairs with apparent elevation differences. The scheme adopted in this paper is expected to explicate more seasonal signals in GPS coordinate time series, particularly in the vertical direction.
Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings.
Liu, Zhongming; de Zwart, Jacco A; van Gelderen, Peter; Kuo, Li-Wei; Duyn, Jeff H
2012-02-01
We propose a set of algorithms for sequentially removing artifacts related to MRI gradient switching and cardiac pulsations from electroencephalography (EEG) data recorded during functional magnetic resonance imaging (fMRI). Special emphasis is directed upon the use of statistical metrics and methods for the extraction and selection of features that characterize gradient and pulse artifacts. To remove gradient artifacts, we use channel-wise filtering based on singular value decomposition (SVD). To remove pulse artifacts, we first decompose data into temporally independent components and then select a compact cluster of components that possess sustained high mutual information with the electrocardiogram (ECG). After the removal of these components, the time courses of remaining components are filtered by SVD to remove the temporal patterns phase-locked to the cardiac timing markers derived from the ECG. The filtered component time courses are then inversely transformed into multi-channel EEG time series free of pulse artifacts. Evaluation based on a large set of simultaneous EEG-fMRI data obtained during a variety of behavioral tasks, sensory stimulations and resting conditions showed excellent data quality and robust performance attainable with the proposed methods. These algorithms have been implemented as a Matlab-based toolbox made freely available for public access and research use. Published by Elsevier Inc.
Method and system for gathering a library of response patterns for sensor arrays
Zaromb, Solomon
1992-01-01
A method of gathering a library of response patterns for one or more sensor arrays used in the detection and identification of chemical components in a fluid includes the steps of feeding samples of fluid with time-spaced separation of known components to the sensor arrays arranged in parallel or series configurations. Modifying elements such as heating filaments of differing materials operated at differing temperatures are included in the configurations to duplicate operational modes designed into the portable detection systems with which the calibrated sensor arrays are to be used. The response patterns from the known components are collected into a library held in the memory of a microprocessor for comparison with the response patterns of unknown components.
Applications of Neutron Radiography for the Nuclear Power Industry
NASA Astrophysics Data System (ADS)
Craft, Aaron E.; Barton, John P.
The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are under construction and plans have been announced to increase the nuclear capacity by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in the WCNR and ITMNR conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, applications of neutron radiography techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques, in general, can be of value in development of the present and future generations of nuclear power plants world-wide.
Principal component analysis of MSBAS DInSAR time series from Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Tiampo, Kristy F.; González, Pablo J.; Samsonov, Sergey; Fernández, Jose; Camacho, Antonio
2017-09-01
Because of its proximity to the city of Naples and with a population of nearly 1 million people within its caldera, Campi Flegrei is one of the highest risk volcanic areas in the world. Since the last major eruption in 1538, the caldera has undergone frequent episodes of ground subsidence and uplift accompanied by seismic activity that has been interpreted as the result of a stationary, deeper source below the caldera that feeds shallower eruptions. However, the location and depth of the deeper source is not well-characterized and its relationship to current activity is poorly understood. Recently, a significant increase in the uplift rate has occurred, resulting in almost 13 cm of uplift by 2013 (De Martino et al., 2014; Samsonov et al., 2014b; Di Vito et al., 2016). Here we apply a principal component decomposition to high resolution time series from the region produced by the advanced Multidimensional SBAS DInSAR technique in order to better delineate both the deeper source and the recent shallow activity. We analyzed both a period of substantial subsidence (1993-1999) and a second of significant uplift (2007-2013) and inverted the associated vertical surface displacement for the most likely source models. Results suggest that the underlying dynamics of the caldera changed in the late 1990s, from one in which the primary signal arises from a shallow deflating source above a deeper, expanding source to one dominated by a shallow inflating source. In general, the shallow source lies between 2700 and 3400 m below the caldera while the deeper source lies at 7600 m or more in depth. The combination of principal component analysis with high resolution MSBAS time series data allows for these new insights and confirms the applicability of both to areas at risk from dynamic natural hazards.
A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall
NASA Astrophysics Data System (ADS)
Lombardo, F.; Volpi, E.; Koutsoyiannis, D.; Serinaldi, F.
2017-06-01
Generating fine-scale time series of intermittent rainfall that are fully consistent with any given coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary disaggregation method that simulates rainfall time series with given dependence structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components, respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a procedure that does not affect the stochastic structure implied by the original model. To assess model performance, we study rainfall process as intermittent with both independent and dependent occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry. In either case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real world is shown as a proof of concept.
Blind source separation problem in GPS time series
NASA Astrophysics Data System (ADS)
Gualandi, A.; Serpelloni, E.; Belardinelli, M. E.
2016-04-01
A critical point in the analysis of ground displacement time series, as those recorded by space geodetic techniques, is the development of data-driven methods that allow the different sources of deformation to be discerned and characterized in the space and time domains. Multivariate statistic includes several approaches that can be considered as a part of data-driven methods. A widely used technique is the principal component analysis (PCA), which allows us to reduce the dimensionality of the data space while maintaining most of the variance of the dataset explained. However, PCA does not perform well in finding the solution to the so-called blind source separation (BSS) problem, i.e., in recovering and separating the original sources that generate the observed data. This is mainly due to the fact that PCA minimizes the misfit calculated using an L2 norm (χ 2), looking for a new Euclidean space where the projected data are uncorrelated. The independent component analysis (ICA) is a popular technique adopted to approach the BSS problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we test the use of a modified variational Bayesian ICA (vbICA) method to recover the multiple sources of ground deformation even in the presence of missing data. The vbICA method models the probability density function (pdf) of each source signal using a mix of Gaussian distributions, allowing for more flexibility in the description of the pdf of the sources with respect to standard ICA, and giving a more reliable estimate of them. Here we present its application to synthetic global positioning system (GPS) position time series, generated by simulating deformation near an active fault, including inter-seismic, co-seismic, and post-seismic signals, plus seasonal signals and noise, and an additional time-dependent volcanic source. We evaluate the ability of the PCA and ICA decomposition techniques in explaining the data and in recovering the original (known) sources. Using the same number of components, we find that the vbICA method fits the data almost as well as a PCA method, since the χ 2 increase is less than 10 % the value calculated using a PCA decomposition. Unlike PCA, the vbICA algorithm is found to correctly separate the sources if the correlation of the dataset is low (<0.67) and the geodetic network is sufficiently dense (ten continuous GPS stations within a box of side equal to two times the locking depth of a fault where an earthquake of Mw >6 occurred). We also provide a cookbook for the use of the vbICA algorithm in analyses of position time series for tectonic and non-tectonic applications.
NASA Astrophysics Data System (ADS)
Sánchez-Alzola, A.; Martí, J.; García-Yeguas, A.; Gil, A. J.
2016-11-01
In this paper we present the current crustal deformation model of Tenerife Island derived from daily CGPS time series processing (2008-2015). Our results include the position time series, a global velocity estimation and the current crustal deformation on the island in terms of strain tensors. We detect a measurable subsidence of 1.5-2 mm/yr. in the proximities of the Cañadas-Teide-Pico Viejo (CTPV) complex. These values are higher in the central part of the complex and could be explained by a lateral spreading of the elastic lithosphere combined with the effect of the drastic descent of the water table in the island experienced during recent decades. The results show that the Anaga massif is stable in both its horizontal and vertical components. The strain tensor analysis shows a 70 nstrain/yr. E-W compression in the central complex, perpendicular to the 2004 sismo-volcanic area, and 50 nstrain/yr. SW-NE extension towards the Northeast ridge. The residual velocity and strain patterns coincide with a decline in volcanic activity since the 2004 unrest.
Carrión, Alicia; Miralles, Ramón; Lara, Guillermo
2014-09-01
In this paper, we present a novel and completely different approach to the problem of scattering material characterization: measuring the degree of predictability of the time series. Measuring predictability can provide information of the signal strength of the deterministic component of the time series in relation to the whole time series acquired. This relationship can provide information about coherent reflections in material grains with respect to the rest of incoherent noises that typically appear in non-destructive testing using ultrasonics. This is a non-parametric technique commonly used in chaos theory that does not require making any kind of assumptions about attenuation profiles. In highly scattering media (low SNR), it has been shown theoretically that the degree of predictability allows material characterization. The experimental results obtained in this work with 32 cement probes of 4 different porosities demonstrate the ability of this technique to do classification. It has also been shown that, in this particular application, the measurement of predictability can be used as an indicator of the percentages of porosity of the test samples with great accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
Xiong, Wenfang; Qi, Chaorong; Cheng, Ruixiang; Zhang, Hao; Wang, Lu; Yan, Donghao; Jiang, Huanfeng
2018-04-27
A novel four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes has been developed for the first time, providing an efficient method for the synthesis of a series of functionalized carbamate derivatives in moderate to high yields. The process proceeds under mild, transition metal-free and fluoride-free conditions, leading to the formation of two new C-O bonds, one new C-N bond and one C-H bond in a single step.
NASA Astrophysics Data System (ADS)
Nicolas, J.; Nocquet, J.; van Camp, M.; Coulot, D.
2003-12-01
Time-dependent displacements of stations usually have magnitude close to the accuracy of each individual technique, and it still remains difficult to separate the true geophysical motion from possible artifacts inherent to each space geodetic technique. The Observatoire de la C“te d'Azur (OCA), located at Grasse, France benefits from the collocation of several geodetic instruments and techniques (3 laser ranging stations, and a permanent GPS) what allows us to do a direct comparison of the time series. Moreover, absolute gravimetry measurement campaigns have also been regularly performed since 1997, first by the "Ecole et Observatoire des Sciences de la Terre (EOST) of Strasbourg, France, and more recently by the Royal Observatory of Belgium. This study presents a comparison between the positioning time series of the vertical component derived from the SLR and GPS analysis with the gravimetric results from 1997 to 2003. The laser station coordinates are based on a LAGEOS -1 and -2 combined solution using reference 10-day arc orbits, the ITRF2000 reference frame, and the IERS96 conventions. Different GPS weekly global solutions provided from several IGS are combined and compared to the SLR results. The absolute gravimetry measurements are converted into vertical displacements with a classical gradient. The laser time series indicate a strong annual signal at the level of about 3-4 cm peak to peak amplitude on the vertical component. Absolute gravimetry data agrees with the SLR results. GPS positioning solutions also indicate a significant annual term, but with a magnitude of only 50% of the one shown by the SLR solution and by the gravimetry measurements. Similar annual terms are also observed on other SLR sites we processed, but usually with! lower and various amplitudes. These annual signals are also compared to vertical positioning variations corresponding to an atmospheric loading model. We present the level of agreement between the different techniques and we discuss possible explanations for the discrepancy noted between the signals. At last, we expose explanations for the large annual term at Grasse: These annual variations could be partly due to an hydrological loading effect on the karstic massif on which the observatory is located.
NASA Astrophysics Data System (ADS)
Becker, Matthias; Leinen, Stefan; Läufer, Gwendolyn; Lehné, Rouwen
2013-04-01
Six years of GPS data have been reprocessed in ITRF2008 for a regional SAPOS CORS network in the federal state of Hesse with 25 stations and some anchor sites of IGS and EPN to derive accurate and consistent coordinate time series. Based on daily network solutions coordinate time series parameters like velocities, offsets in case of antenna changes and annual periodic variation have been estimated. The estimation process includes the fitting of a sophisticated stochastic model for the time series which accounts for inherent time correlation. The results are blended with geological data to verify information from geology on potential recent deformations by the geodetic analyses. Besides of some information on the reprocessing of the GNSS the results the stochastics of the derived velocity field will be discussed in detail. Special emphasis will be on the intra-plate deformation: for the horizontal component the residual velocity field after removal of a plate rotation model is presented, while for the vertical velocities the datum-induced systematic effect is removed in order to analyze the remaining vertical motion. The residual velocity field is then matched with the geology for Hesse. Correlation of both vertical and horizontal movements with major geological structures reveals good accordance. SAPOS stations with documented significant subsidence are mainly located in tertiary Graben structures such as the Lower Hessian Basin (station Kassel), the Wetterau (station Kloppenheim) or the Upper Rhine Graben (Station Darmstadt). From the geological point of view these structures are supposed to be subsiding ones. Other major geological features, i.e. the Rhenish Shield as well as the East Hessian Bunter massif are supposed to be affected by recent uplift. SAPOS stations located in these regions match the assumed movement (e.g. Weilburg, Wiesbaden, Bingen, Fulda). Furthermore SAPOS-derived horizontal movements seem to trace tectonic movements in the region, i.e. extension along the tertiary Graben structures, including a sinistral strike slip component. However, a more detailed analysis is needed to confirm the link between detected movement and geodynamic processes.
NASA Astrophysics Data System (ADS)
Murray, K. D.; Murray, M. H.; Sheehan, A. F.; Nerem, R. S.
2014-12-01
Low velocity (<1 mm/yr) extensional environments, such as the Rio Grande rift (RGR) in Colorado and New Mexico, are complex but can provide insights into continental dynamics, tectonic processes, and seismic hazards. We use eight years of measurements from 26 continuous GPS stations across the RGR installed as part of a collaborative EarthScope experiment. We combine this data with regional Plate Boundary Observatory (PBO) and National Geodetic Survey (NGS) CORS GPS stations, and survey-mode data collected on NGS benchmarks to investigate how deformation is distributed across a broad area from the Great Plains to the Colorado Plateau. The data from over 150 stations are processed using GAMIT/GLOBK, and time series, velocities, strain rates are estimated with respect to realizations of a stable North America reference frame, such as NA12. This study extends our previous analysis, based on 4 years of data, which found an approximately uniform 1.2 nanostrain/yr east-west extensional strain rate across the entire region that was not concentrated on the narrow surface expression of the rift. We expand on this previous work by using a denser network of GPS stations and analyzing longer time series, which reduce horizontal velocity uncertainties to approximately 0.15 mm/yr. We also improve the accuracy of the estimated velocity uncertainties by robustly characterizing time-correlated noise. The noise models indicate that both power-law and flicker noise are present in the time series along with white noise. On average, power law noise constitutes about 90% of the total noise in the vertical component and 60% in the horizontal components for the RGR sites. We use the time series, and velocity and strain-rate estimates to constrain spatial and temporal variations in the deformation field in order to locate possible regions of strain localization and detect transient deformation signals, and to address some of the kinematic and dynamic issues raised by the observation that a broad, low seismic velocity zone underlies the narrow geologic surface expression of the RGR defined by normal fault bounded basins.
Phase correction and error estimation in InSAR time series analysis
NASA Astrophysics Data System (ADS)
Zhang, Y.; Fattahi, H.; Amelung, F.
2017-12-01
During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same area, with a maximum of -3 +/- 0.9 cm (fig. 1c). Time-series displacement map (fig. 2) shows a highly non-linear deformation behavior, indicating the complicated magma propagation process during this eruption cycle.
A data-driven approach for denoising GNSS position time series
NASA Astrophysics Data System (ADS)
Li, Yanyan; Xu, Caijun; Yi, Lei; Fang, Rongxin
2017-12-01
Global navigation satellite system (GNSS) datasets suffer from common mode error (CME) and other unmodeled errors. To decrease the noise level in GNSS positioning, we propose a new data-driven adaptive multiscale denoising method in this paper. Both synthetic and real-world long-term GNSS datasets were employed to assess the performance of the proposed method, and its results were compared with those of stacking filtering, principal component analysis (PCA) and the recently developed multiscale multiway PCA. It is found that the proposed method can significantly eliminate the high-frequency white noise and remove the low-frequency CME. Furthermore, the proposed method is more precise for denoising GNSS signals than the other denoising methods. For example, in the real-world example, our method reduces the mean standard deviation of the north, east and vertical components from 1.54 to 0.26, 1.64 to 0.21 and 4.80 to 0.72 mm, respectively. Noise analysis indicates that for the original signals, a combination of power-law plus white noise model can be identified as the best noise model. For the filtered time series using our method, the generalized Gauss-Markov model is the best noise model with the spectral indices close to - 3, indicating that flicker walk noise can be identified. Moreover, the common mode error in the unfiltered time series is significantly reduced by the proposed method. After filtering with our method, a combination of power-law plus white noise model is the best noise model for the CMEs in the study region.
Modeling sports highlights using a time-series clustering framework and model interpretation
NASA Astrophysics Data System (ADS)
Radhakrishnan, Regunathan; Otsuka, Isao; Xiong, Ziyou; Divakaran, Ajay
2005-01-01
In our past work on sports highlights extraction, we have shown the utility of detecting audience reaction using an audio classification framework. The audio classes in the framework were chosen based on intuition. In this paper, we present a systematic way of identifying the key audio classes for sports highlights extraction using a time series clustering framework. We treat the low-level audio features as a time series and model the highlight segments as "unusual" events in a background of an "usual" process. The set of audio classes to characterize the sports domain is then identified by analyzing the consistent patterns in each of the clusters output from the time series clustering framework. The distribution of features from the training data so obtained for each of the key audio classes, is parameterized by a Minimum Description Length Gaussian Mixture Model (MDL-GMM). We also interpret the meaning of each of the mixture components of the MDL-GMM for the key audio class (the "highlight" class) that is correlated with highlight moments. Our results show that the "highlight" class is a mixture of audience cheering and commentator's excited speech. Furthermore, we show that the precision-recall performance for highlights extraction based on this "highlight" class is better than that of our previous approach which uses only audience cheering as the key highlight class.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.
2016-12-01
This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.
Optical path switching based differential absorption radiometry for substance detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2005-01-01
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Optical path switching based differential absorption radiometry for substance detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2003-01-01
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
NASA Astrophysics Data System (ADS)
Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.
2016-09-01
The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.
The Trial of Adolf Eichmann, 1961: Educator's Guide. Live from the Past Series.
ERIC Educational Resources Information Center
Sesso, Gloria
This guide provides information on the life and trial of Nazi Gestapo chief Adolf Eichmann. The guide includes suggested activities, discussion questions, suggested readings, a list of key players of the era, a vocabulary list, and a list of components and key events tied to "The New York Times" of the era. (EH)
40 CFR 63.11511 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... device is designed with multiple pads in series that are woven with layers of material with varying fiber... of time, during which none of the parts are removed from the tank and no other parts are added to the..., but is not limited to, the following components as applicable to a given capture system design: duct...
ERIC Educational Resources Information Center
Fernquist, Robert M.
2001-01-01
Political integration theory (Durkheim) argues that when political crises occur, individuals band together to solve the problem at hand, which yields lower suicide rates. This analysis examines a different component of political integration-attitudes. Cross-sectional time series analysis reveals that attitudes individuals hold toward such an event…
Development of a Prototype System for Accessing Linked NCES Data. Working Paper Series.
ERIC Educational Resources Information Center
Salvucci, Sameena; Wenck, Stephen; Tyson, James
A project has been developed to advance the capabilities of the National Center for Education Statistics (NCES) to support the dissemination of linked data from multiple surveys, multiple components within a survey, and multiple time points. An essential element of this study is the development of a software prototype system to facilitate NCES…
Development of web tools to disseminate space geodesy data-related products
NASA Astrophysics Data System (ADS)
Soudarin, Laurent; Ferrage, Pascale; Mezerette, Adrien
2015-04-01
In order to promote the products of the DORIS system, the French Space Agency CNES has developed and implemented on the web site of the International DORIS Service (IDS) a set of plot tools to interactively build and display time series of site positions, orbit residuals and terrestrial parameters (scale, geocenter). An interactive global map is also available to select sites, and to get access to their information. Besides the products provided by the CNES Orbitography Team and the IDS components, these tools allow comparing time evolutions of coordinates for collocated DORIS and GNSS stations, thanks to the collaboration with the Terrestrial Frame Combination Center of the International GNSS Service (IGS). A database was created to improve robustness and efficiency of the tools, with the objective to propose a complete web service to foster data exchange with the other geodetic services of the International Association of Geodesy (IAG). The possibility to visualize and compare position time series of the four main space geodetic techniques DORIS, GNSS, SLR and VLBI is already under way at the French level. A dedicated version of these web tools has been developed for the French Space Geodesy Research Group (GRGS). It will give access to position time series provided by the GRGS Analysis Centers involved in DORIS, GNSS, SLR and VLBI data processing for the realization of the International Terrestrial Reference Frame. In this presentation, we will describe the functionalities of these tools, and we will address some aspects of the time series (content, format).
Evaluating the efficacy of fully automated approaches for the selection of eye blink ICA components
Pontifex, Matthew B.; Miskovic, Vladimir; Laszlo, Sarah
2017-01-01
Independent component analysis (ICA) offers a powerful approach for the isolation and removal of eye blink artifacts from EEG signals. Manual identification of the eye blink ICA component by inspection of scalp map projections, however, is prone to error, particularly when non-artifactual components exhibit topographic distributions similar to the blink. The aim of the present investigation was to determine the extent to which automated approaches for selecting eye blink related ICA components could be utilized to replace manual selection. We evaluated popular blink selection methods relying on spatial features [EyeCatch()], combined stereotypical spatial and temporal features [ADJUST()], and a novel method relying on time-series features alone [icablinkmetrics()] using both simulated and real EEG data. The results of this investigation suggest that all three methods of automatic component selection are able to accurately identify eye blink related ICA components at or above the level of trained human observers. However, icablinkmetrics(), in particular, appears to provide an effective means of automating ICA artifact rejection while at the same time eliminating human errors inevitable during manual component selection and false positive component identifications common in other automated approaches. Based upon these findings, best practices for 1) identifying artifactual components via automated means and 2) reducing the accidental removal of signal-related ICA components are discussed. PMID:28191627
Meyerhofer, David D.; Schmid, Ansgar W.; Chuang, Yung-ho
1992-01-01
Ultra short (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required.
Meyerhofer, D.D.; Schmid, A.W.; Chuang, Y.
1992-03-10
Ultrashort (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required. 4 figs.
Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity
Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut
2015-01-01
Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235
A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application
Huang, Y.-N.; Whittaker, A.S.; Luco, N.
2011-01-01
This paper presents the procedures and results of intensity- and time-based seismic risk assessments of a sample nuclear power plant (NPP) to demonstrate the risk-assessment methodology proposed in its companion paper. The intensity-based assessments include three sets of sensitivity studies to identify the impact of the following factors on the seismic vulnerability of the sample NPP, namely: (1) the description of fragility curves for primary and secondary components of NPPs, (2) the number of simulations of NPP response required for risk assessment, and (3) the correlation in responses between NPP components. The time-based assessment is performed as a series of intensity-based assessments. The studies illustrate the utility of the response-based fragility curves and the inclusion of the correlation in the responses of NPP components directly in the risk computation. ?? 2011 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ozawa, T.; Miyagi, Y.
2017-12-01
Shinmoe-dake located to SW Japan erupted in January 2011 and lava accumulated in the crater (e.g., Ozawa and Kozono, EPS, 2013). Last Vulcanian eruption occurred in September 2011, and after that, no eruption has occurred until now. Miyagi et al. (GRL, 2014) analyzed TerraSAR-X and Radarsat-2 SAR data acquired after the last eruption and found continuous inflation in the crater. Its inflation decayed with time, but had not terminated in May 2013. Since the time-series of inflation volume change rate fitted well to the exponential function with the constant term, we suggested that lava extrusion had continued in long-term due to deflation of shallow magma source and to magma supply from deeper source. To investigate its deformation after that, we applied InSAR to Sentinel-1 and ALOS-2 SAR data. Inflation decayed further, and almost terminated in the end of 2016. It means that this deformation has continued more than five years from the last eruption. We have found that the time series of inflation volume change rate fits better to the double-exponential function than single-exponential function with the constant term. The exponential component with the short time constant has almost settled in one year from the last eruption. Although InSAR result from TerraSAR-X data of November 2011 and May 2013 indicated deflation of shallow source under the crater, such deformation has not been obtained from recent SAR data. It suggests that this component has been due to deflation of shallow magma source with excess pressure. In this study, we found the possibility that long-term component also decayed exponentially. Then this factor may be deflation of deep source or delayed vesiculation.
NASA Astrophysics Data System (ADS)
Mélice, J. L.; Roucou, P.
The spectral characteristics of the δ18O isotopic ratio time series of the Quelccaya ice cap summit core are investigated with the multi taper method (MTM), the singular spectrum analysis (SSA) and the wavelet transform (WT) techniques for the 500 y long 1485-1984 period. The most significant (at the 99.8% level) cycle according to the MTM F-test has a period centered at 14.4 y while the largest variance explaining oscillation according to the SSA technique has a period centered at 12.9 y. The stability over time of these periods is investigated by performing evolutive MTM and SSA on the 500 y long δ18O series with a 100 y wide moving window. It is shown that the cycles with largest amplitude and that the oscillations with largest extracting variance have corresponding periods aggregated around 13.5 y that are very stable over the period between 1485 and 1984. The WT of the same isotopic time series reveals the existence of a main oscillation around 12 y which are also very stable in time. The relation between the isotopic data at Quelccaya and the annual sea surface temperature (SST) field anomalies is then evaluated for the overlapping 1919-1984 period. Significant global correlation and significant coherency at 12.1 y are found between the isotopic series and the annual global sea surface temperature (GSST) series. Moreover, the correlation between the low (over 8 y) frequency component of the isotopic time series and the annual SST field point out significant values in the tropical North Atlantic. This region is characterized by a main SST variability at 12.8 y. The Quelccaya δ18O isotopic ratio series may therefore be considered as a good recorder of the tropical North Atlantic SSTs. This may be explained by the following mechanism: the water vapor amount evaporated by the tropical North Atlantic is function of the SST. So is the water vapor δ18O isotopic ratio. This water vapor is advected during the rainy season by northeast winds and precipitates at the Quelccaya summit with its tropical North Atlantic isotopic signature. It is also suggested from this described stability of the decadal time scale variability observed in the Quelccaya isotopic series, that the decadal time scale GSST variability was also stable during the last five centuries.
NASA Astrophysics Data System (ADS)
Ren, Xusheng; Qian, Longsheng; Zhang, Guiyan
2005-12-01
According to Generic Reliability Assurance Requirements for Passive Optical Components GR-1221-CORE (Issue 2, January 1999), reliability determination test of different kinds of passive optical components which using in uncontrolled environments is taken. The test condition of High Temperature Storage Test (Dry Test) and Damp Test is in below sheet. Except for humidity condition, all is same. In order to save test time and cost, after a sires of contrast tests, the replacement of Dry Heat is discussed. Controlling the Failure mechanism of dry heat and damp heat of passive optical components, the contrast test of dry heat and damp heat for passive optical components (include DWDM, CWDM, Coupler, Isolator, mini Isolator) is taken. The test result of isolator is listed. Telcordia test not only test the reliability of the passive optical components, but also test the patience of the experimenter. The cost of Telcordia test in money, manpower and material resources, especially in time is heavy burden for the company. After a series of tests, we can find that Damp heat could factually test the reliability of passive optical components, and equipment manufacturer in accord with component manufacture could omit the dry heat test if damp heat test is taken first and passed.
Investigation of a long time series of CO2 from a tall tower using WRF-SPA
NASA Astrophysics Data System (ADS)
Smallman, Luke; Williams, Mathew; Moncrieff, John B.
2013-04-01
Atmospheric observations from tall towers are an important source of information about CO2 exchange at the regional scale. Here, we have used a forward running model, WRF-SPA, to generate a time series of CO2 at a tall tower for comparison with observations from Scotland over multiple years (2006-2008). We use this comparison to infer strength and distribution of sources and sinks of carbon and ecosystem process information at the seasonal scale. The specific aim of this research is to combine a high resolution (6 km) forward running meteorological model (WRF) with a modified version of a mechanistic ecosystem model (SPA). SPA provides surface fluxes calculated from coupled energy, hydrological and carbon cycles. This closely coupled representation of the biosphere provides realistic surface exchanges to drive mixing within the planetary boundary layer. The combined model is used to investigate the sources and sinks of CO2 and to explore which land surfaces contribute to a time series of hourly observations of atmospheric CO2 at a tall tower, Angus, Scotland. In addition to comparing the modelled CO2 time series to observations, modelled ecosystem specific (i.e. forest, cropland, grassland) CO2 tracers (e.g., assimilation and respiration) have been compared to the modelled land surface assimilation to investigate how representative tall tower observations are of land surface processes. WRF-SPA modelled CO2 time series compares well to observations (R2 = 0.67, rmse = 3.4 ppm, bias = 0.58 ppm). Through comparison of model-observation residuals, we have found evidence that non-cropped components of agricultural land (e.g., hedgerows and forest patches) likely contribute a significant and observable impact on regional carbon balance.
NASA Astrophysics Data System (ADS)
Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher
2015-07-01
Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.
An Analytical Time–Domain Expression for the Net Ripple Produced by Parallel Interleaved Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B.; Krein, Philip T.
We apply modular arithmetic and Fourier series to analyze the superposition of N interleaved triangular waveforms with identical amplitudes and duty-ratios. Here, interleaving refers to the condition when a collection of periodic waveforms with identical periods are each uniformly phase-shifted across one period. The main result is a time-domain expression which provides an exact representation of the summed and interleaved triangular waveforms, where the peak amplitude and parameters of the time-periodic component are all specified in closed-form. Analysis is general and can be used to study various applications in multi-converter systems. This model is unique not only in that itmore » reveals a simple and intuitive expression for the net ripple, but its derivation via modular arithmetic and Fourier series is distinct from prior approaches. The analytical framework is experimentally validated with a system of three parallel converters under time-varying operating conditions.« less
Long-term persistence of solar activity
NASA Technical Reports Server (NTRS)
Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul
1994-01-01
We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.
Swarzenski, Peter; Reich, Chris; Rudnick, David
2009-01-01
Estimates of submarine ground-water discharge (SGD) into Florida Bay remain one of the least understood components of a regional water balance. To quantify the magnitude and seasonality of SGD into upper Florida Bay, research activities included the use of the natural geochemical tracer, 222Rn, to examine potential SGD hotspots (222Rn surveys) and to quantify the total (saline + fresh water component) SGD rates at select sites (222Rn time-series). To obtain a synoptic map of the 222Rn distribution within our study site in Florida Bay, we set up a flow-through system on a small boat that consisted of a Differential Global Positioning System, a calibrated YSI, Inc CTD sensor with a sampling rate of 0.5 min, and a submersible pump (z = 0.5 m) that continuously fed water into an air/water exchanger that was plumbed simultaneously into four RAD7 222Rn air monitors. To obtain local advective ground-water flux estimates, 222Rn time-series experiments were deployed at strategic positions across hydrologic and geologic gradients within our study site. These time-series stations consisted of a submersible pump, a Solinist DIVER (to record continuous CTD parameters) and two RAD7 222Rn air monitors plumbed into an air/water exchanger. Repeat time-series 222Rn measurements were conducted for 3-4 days across several tidal excursions. Radon was also measured in the air during each sampling campaign by a dedicated RAD7. We obtained ground-water discharge information by calculating a 222Rn mass balance that accounted for lateral and horizontal exchange, as well as an appropriate ground-water 222Rn end member activity. Another research component utilized marine continuous resistivity profiling (CRP) surveys to examine the subsurface salinity structure within Florida Bay sediments. This system consisted of an AGI SuperSting 8 channel receiver attached to a streamer cable that had two current (A,B) electrodes and nine potential electrodes that were spaced 10 m apart. A separate DGPS continuously sent position information to the SuperSting. Results indicate that the 222Rn maps provide a useful gauge of relative ground-water discharge into upper Florida Bay. The 222Rn time-series measurements provide a reasonable estimate of site- specific total (saline and fresh) ground-water discharge (mean = 12.5+-11.8 cm d-1), while the saline nature of the shallow ground-water at our study site, as evidenced by CPR results, indicates that most of this discharge must be recycled sea water. The CRP data show some interesting trends that appear to be consistent with subsurface geologic and hydrologic characterization. For example, some of the highest resistivity (electrical conductivity-1) values were recorded where one would expect a slight subsurface freshening (for example bayside Key Largo, or below the C111 canal).
Sea level budget in the Arctic during the satellite altimetry era
NASA Astrophysics Data System (ADS)
Carret, Alice; Cazenave, Anny; Meyssignac, Benoît; Prandi, Pierre; Ablain, Michael; Andersen, Ole; Blazquez, Alejandro
2016-04-01
Studying sea level variations in the Arctic region is challenging because of data scarcity. Here we present results of the sea level budget in the Arctic (up to 82°N) during the altimetry era. We first investigate closure of the sea level budget since 2002 using altimetry data from Envisat and Cryosat for estimating sea level, temperature and salinity data from the ORAP5 reanalysis and GRACE space gravimetry to estimate the steric and mass components. Two altimetry sea level data sets are considered (from DTU and CLS), based on Envisat waveforms retracking. Regional sea level trends seen in the altimetric map, in particular over the Beaufort Gyre and along the eastern coast of Greenland are of steric origin. However, in terms of regional average, the steric component contributes very little to the observed sea level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree very well with the altimetry-based sea level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus we estimated the mass contribution over the whole altimetry era from the difference between altimetry-based sea level and the ORAP5 steric component. Finally we compared altimetry-based coastal sea level with tide gauge records available along Norwegian, Greenland and Siberian coastlines and investigated whether the Arctic Oscillation that was the main driver of coastal sea level in the Arctic during the past decades still plays a dominant role or if other factors (e.g., of anthropogenic origin) become detectable.
Reliability enhancement through optimal burn-in
NASA Astrophysics Data System (ADS)
Kuo, W.
1984-06-01
A numerical reliability and cost model is defined for production line burn-in tests of electronic components. The necessity of burn-in is governed by upper and lower bounds: burn-in is mandatory for operation-critical or nonreparable component; no burn-in is needed when failure effects are insignificant or easily repairable. The model considers electronic systems in terms of a series of components connected by a single black box. The infant mortality rate is described with a Weibull distribution. Performance reaches a steady state after burn-in, and the cost of burn-in is a linear function for each component. A minimum cost is calculated among the costs and total time of burn-in, shop repair, and field repair, with attention given to possible losses in future sales from inadequate burn-in testing.
Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.
Ouyang, Yicun; Yin, Hujun
2018-05-01
Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.
Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI.
Koush, Yury; Zvyagintsev, Mikhail; Dyck, Miriam; Mathiak, Krystyna A; Mathiak, Klaus
2012-01-02
Real-time fMRI allows analysis and visualization of the brain activity online, i.e. within one repetition time. It can be used in neurofeedback applications where subjects attempt to control an activation level in a specified region of interest (ROI) of their brain. The signal derived from the ROI is contaminated with noise and artifacts, namely with physiological noise from breathing and heart beat, scanner drift, motion-related artifacts and measurement noise. We developed a Bayesian approach to reduce noise and to remove artifacts in real-time using a modified Kalman filter. The system performs several signal processing operations: subtraction of constant and low-frequency signal components, spike removal and signal smoothing. Quantitative feedback signal quality analysis was used to estimate the quality of the neurofeedback time series and performance of the applied signal processing on different ROIs. The signal-to-noise ratio (SNR) across the entire time series and the group event-related SNR (eSNR) were significantly higher for the processed time series in comparison to the raw data. Applied signal processing improved the t-statistic increasing the significance of blood oxygen level-dependent (BOLD) signal changes. Accordingly, the contrast-to-noise ratio (CNR) of the feedback time series was improved as well. In addition, the data revealed increase of localized self-control across feedback sessions. The new signal processing approach provided reliable neurofeedback, performed precise artifacts removal, reduced noise, and required minimal manual adjustments of parameters. Advanced and fast online signal processing algorithms considerably increased the quality as well as the information content of the control signal which in turn resulted in higher contingency in the neurofeedback loop. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Constantin, Nechita; Francisca, Chiriloaei; Maria, Radoane; Ionel, Popa; Nicoae, Radoane
2016-04-01
This study is focused on analysis the frequency components of the signal detected in living and sub-fossil tree ring series from different time periods. The investigation is oriented to analyze signal frequency components (low and high) of the two categories of trees. The interpretation technique of tree ring width is the instrument most often used to elaborate past climatic reconstructions. The annual resolution, but also, the high capacity of trees to accumulate climatic information are attributes which confer to palaeo-environmental reconstructions the biggest credibility. The main objective of the study refers to the evaluation of climatic signal characteristics, both present day climate and palaeo-climate (last 7000 years BP). Modern dendrochronological methods were applied on 350 samples of sub-fossil trees and 400 living trees. The subfossil trunks were sampled from different fluvial environments (Siret, Suceava, Moldova). Their age was determined using radiocarbon, varying from under 100 years to almost 7000 years BP. The subfossil tree species investigated were Quercus, Alnus, Ulmus. Considering living trees, these were identified on eastern part of Romania, in different actual physico-geographical conditions. The studied living tree species consisted in Quercus species (robur and petraea). Each site was investigated regarding stress factors of the sampled tree. The working methods were applied to the total wood series, both late and early, to detect intra-annual level climate information. Each series has been tested to separate individual trees with climatic signal of other trees with different signals (noises determined by competition between individuals or site stress, or anthropic impact). Comparing dendrochronological series (sub-fossil and living trees) we want to identify what significant causes determined the difference in the signal frequencies. Especially, the human interventions registered in the last 2 centuries will be evaluated by these different types of signal in the tree rings. In order to evaluate this aspect we used time series which were standardized to avoid the non-climatic signal. This type of investigation is the first of its kind to Eastern Europe, an area so large (over 50 000 km2) and a high number of sites and individuals studied (about 1000). The obtained results will help us to understand the palaeo-environment evolution in the last Holocene and when human intervention has been really significant.
Scaling in non-stationary time series. (II). Teen birth phenomenon
NASA Astrophysics Data System (ADS)
Ignaccolo, M.; Allegrini, P.; Grigolini, P.; Hamilton, P.; West, B. J.
2004-05-01
This paper is devoted to the problem of statistical mechanics raised by the analysis of an issue of sociological interest: the teen birth phenomenon. It is expected that these data are characterized by correlated fluctuations, reflecting the cooperative properties of the process. However, the assessment of the anomalous scaling generated by these correlations is made difficult, and ambiguous as well, by the non-stationary nature of the data that shows a clear dependence on seasonal periodicity (periodic component) and an average changing slowly in time (slow component) as well. We use the detrending techniques described in the companion paper [The earlier companion paper], to safely remove all the biases and to derive the genuine scaling of the teen birth phenomenon.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi
2018-01-01
Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity components.
Long-Term Stability Assessment of Sonoran Desert for Vicarious Calibration of GOES-R
NASA Astrophysics Data System (ADS)
Kim, W.; Liang, S.; Cao, C.
2012-12-01
Vicarious calibration refers to calibration techniques that do not depend on onboard calibration devices. Although sensors and onboard calibration devices undergo rigorous validation processes before launch, performance of sensors often degrades after the launch due to exposure to the harsh space environment and the aging of devices. Such in-flight changes of devices can be identified and adjusted through vicarious calibration activities where the sensor degradation is measured in reference to exterior calibration sources such as the Sun, the Moon, and the Earth surface. Sonoran desert is one of the best calibration sites located in the North America that are available for vicarious calibration of GOES-R satellite. To accurately calibrate sensors onboard GOES-R satellite (e.g. advanced baseline imager (ABI)), the temporal stability of Sonoran desert needs to be assessed precisely. However, short-/mid-term variations in top-of-atmosphere (TOA) reflectance caused by meteorological variables such as water vapor amount and aerosol loading are often difficult to retrieve, making the use of TOA reflectance time series for the stability assessment of the site. In this paper, we address this issue of normalization of TOA reflectance time series using a time series analysis algorithm - seasonal trend decomposition procedure based on LOESS (STL) (Cleveland et al, 1990). The algorithm is basically a collection of smoothing filters which leads to decomposition of a time series into three additive components; seasonal, trend, and remainder. Since this non-linear technique is capable of extracting seasonal patterns in the presence of trend changes, the seasonal variation can be effectively identified in the time series of remote sensing data subject to various environmental changes. The experiment results performed with Landsat 5 TM data show that the decomposition results acquired for the Sonoran Desert area produce normalized series that have much less uncertainty than those of traditional BRDF models, which leads to more accurate stability assessment.
Statistical Feature Extraction for Artifact Removal from Concurrent fMRI-EEG Recordings
Liu, Zhongming; de Zwart, Jacco A.; van Gelderen, Peter; Kuo, Li-Wei; Duyn, Jeff H.
2011-01-01
We propose a set of algorithms for sequentially removing artifacts related to MRI gradient switching and cardiac pulsations from electroencephalography (EEG) data recorded during functional magnetic resonance imaging (fMRI). Special emphases are directed upon the use of statistical metrics and methods for the extraction and selection of features that characterize gradient and pulse artifacts. To remove gradient artifacts, we use a channel-wise filtering based on singular value decomposition (SVD). To remove pulse artifacts, we first decompose data into temporally independent components and then select a compact cluster of components that possess sustained high mutual information with the electrocardiogram (ECG). After the removal of these components, the time courses of remaining components are filtered by SVD to remove the temporal patterns phase-locked to the cardiac markers derived from the ECG. The filtered component time courses are then inversely transformed into multi-channel EEG time series free of pulse artifacts. Evaluation based on a large set of simultaneous EEG-fMRI data obtained during a variety of behavioral tasks, sensory stimulations and resting conditions showed excellent data quality and robust performance attainable by the proposed methods. These algorithms have been implemented as a Matlab-based toolbox made freely available for public access and research use. PMID:22036675
Applications of neutron radiography for the nuclear power industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, Aaron E.; Barton, John P.
The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in thismore » conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.« less
A stochastic model for correlated protein motions
NASA Astrophysics Data System (ADS)
Karain, Wael I.; Qaraeen, Nael I.; Ajarmah, Basem
2006-06-01
A one-dimensional Langevin-type stochastic difference equation is used to find the deterministic and Gaussian contributions of time series representing the projections of a Bovine Pancreatic Trypsin Inhibitor (BPTI) protein molecular dynamics simulation along different eigenvector directions determined using principal component analysis. The deterministic part shows a distinct nonlinear behavior only for eigenvectors contributing significantly to the collective protein motion.
Predicting future forestland area: a comparison of econometric approaches.
SoEun Ahn; Andrew J. Plantinga; Ralph J. Alig
2000-01-01
Predictions of future forestland area are an important component of forest policy analyses. In this article, we test the ability of econometric land use models to accurately forecast forest area. We construct a panel data set for Alabama consisting of county and time-series observation for the period 1964 to 1992. We estimate models using restricted data sets-namely,...
ERIC Educational Resources Information Center
Texas State Commission on Fire Protection, Austin.
This booklet comprises the first grade component of a series of curriculum guides on fire and burn prevention. Designed to meet the age-specific needs of first grade students, its objectives include acquiring basic knowledge of fire and burn hazards, developing a basic understanding of simple injury reduction, and encouraging parent involvement.…
2012-12-13
The J-2X powerpack assembly was fired up one last time on Dec. 13 at NASA's John C. Stennis Space Center in Mississippi, finishing a year of testing on an important component of America's next heavy-lift rocket. The powerpack assembly burned millions of pounds of propellants during a series of 13 tests during 2012 totaling more than an hour and a half.
ERIC Educational Resources Information Center
Lonsdale, Helen C.; McWilliams, Alfred E., Jr.
The Program Component of the Satellite Technology Demonstration (STD) developed the programing for a television series on career planning for junior high school students. A program called "Time Out" was designed, developed, and implemented to be broadcast throughout the Rocky Mountain States. A staff of educators and communicators…
NASA Astrophysics Data System (ADS)
Nasertdinova, A. D.; Bochkarev, V. V.
2017-11-01
Deep neural networks with a large number of parameters are a powerful tool for solving problems of pattern recognition, prediction and classification. Nevertheless, overfitting remains a serious problem in the use of such networks. A method of solving the problem of overfitting is proposed in this article. This method is based on reducing the number of independent parameters of a neural network model using the principal component analysis, and can be implemented using existing libraries of neural computing. The algorithm was tested on the problem of recognition of handwritten symbols from the MNIST database, as well as on the task of predicting time series (rows of the average monthly number of sunspots and series of the Lorentz system were used). It is shown that the application of the principal component analysis enables reducing the number of parameters of the neural network model when the results are good. The average error rate for the recognition of handwritten figures from the MNIST database was 1.12% (which is comparable to the results obtained using the "Deep training" methods), while the number of parameters of the neural network can be reduced to 130 times.
Functional Covariance Networks: Obtaining Resting-State Networks from Intersubject Variability
Gohel, Suril; Di, Xin; Walter, Martin; Biswal, Bharat B.
2012-01-01
Abstract In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-state parameters (not the time series) across subjects that are shown to be related to known, standard RSNs. As part of the analysis, nonresting state parameters are also investigated, such as mean of the blood oxygen level-dependent time series and gray matter volume from anatomical scans. We hypothesize that meaningful RSNs will primarily be elucidated by analysis of the resting-state functional connectivity (RSFC) parameters and not by non-RSFC parameters. First, this shows the presence of a common influence underlying individual RSFC networks revealed through low-frequency fluctation (LFF) parameter properties. Second, this suggests that the LFFs and RSFC networks have neurophysiological origins. Several of the components determined from resting-state parameters in this manner correlate strongly with known resting-state functional maps, and we term these “functional covariance networks”. PMID:22765879
Karimzadeh, Sadra; Matsuoka, Masashi; Ogushi, Fumitaka
2018-04-03
We present deformation patterns in the Lake Urmia Causeway (LUC) in NW Iran based on data collected from four SAR sensors in the form of interferometric synthetic aperture radar (InSAR) time series. Sixty-eight images from Envisat (2004-2008), ALOS-1 (2006-2010), TerraSAR-X (2012-2013) and Sentinel-1 (2015-2017) were acquired, and 227 filtered interferograms were generated using the small baseline subset (SBAS) technique. The rate of line-of-sight (LOS) subsidence of the LUC peaked at 90 mm/year between 2012 and 2013, mainly due to the loss of most of the water in Lake Urmia. Principal component analysis (PCA) was conducted on 200 randomly selected time series of the LUC, and the results are presented in the form of the three major components. The InSAR scores obtained from the PCA were used in a hydro-thermal model to investigate the dynamics of consolidation settlement along the LUC based on detrended water level and temperature data. The results can be used to establish a geodetic network around the LUC to identify more detailed deformation patterns and to help plan future efforts to reduce the possible costs of damage.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Xu, Minqiang; Wang, Rixin; Huang, Wenhu
2016-01-01
This paper presents a new rolling bearing fault diagnosis method based on local mean decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and improved support vector machine based binary tree (ISVM-BT). When the fault occurs in rolling bearings, the measured vibration signal is a multi-component amplitude-modulated and frequency-modulated (AM-FM) signal. LMD, a new self-adaptive time-frequency analysis method can decompose any complicated signal into a series of product functions (PFs), each of which is exactly a mono-component AM-FM signal. Hence, LMD is introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS approach is introduced to refine the fault features by sorting the scale factors. Subsequently, the obtained features are fed into the multi-fault classifier ISVM-BT to automatically fulfill the fault pattern identifications. The experimental results validate the effectiveness of the methodology and demonstrate that proposed algorithm can be applied to recognize the different categories and severities of rolling bearings.
Inferring the interplay between network structure and market effects in Bitcoin
NASA Astrophysics Data System (ADS)
Kondor, Dániel; Csabai, István; Szüle, János; Pósfai, Márton; Vattay, Gábor
2014-12-01
A main focus in economics research is understanding the time series of prices of goods and assets. While statistical models using only the properties of the time series itself have been successful in many aspects, we expect to gain a better understanding of the phenomena involved if we can model the underlying system of interacting agents. In this article, we consider the history of Bitcoin, a novel digital currency system, for which the complete list of transactions is available for analysis. Using this dataset, we reconstruct the transaction network between users and analyze changes in the structure of the subgraph induced by the most active users. Our approach is based on the unsupervised identification of important features of the time variation of the network. Applying the widely used method of Principal Component Analysis to the matrix constructed from snapshots of the network at different times, we are able to show how structural changes in the network accompany significant changes in the exchange price of bitcoins.
1984-10-26
test for independence; ons i ser, -, of the poduct life estimator; dependent risks; 119 ASRACT Coniinue on ’wme-se f nereiary-~and iaen r~f> by Worst...the failure times associated with different failure - modes when we really should use a bivariate (or multivariate) distribution, then what is the...dependencies may be present, then what is the magnitude of the estimation error? S The third specific aim will attempt to obtain bounds on the
Using in-situ Glider Data to Improve the Interpretation of Time-Series Data in the San Pedro Channel
NASA Astrophysics Data System (ADS)
Teel, E.; Liu, X.; Seegers, B. N.; Ragan, M. A.; Jones, B. H.; Levine, N. M.
2016-02-01
Oceanic time-series have provided insight into biological, physical, and chemical processes and how these processes change over time. However, time-series data collected near coastal zones have not been used as broadly because of regional features that may prevent extrapolation of local results. Though these sites are inherently more affected by local processes, broadening the application of coastal data is crucial for improved modeling of processes such as total carbon drawdown and the development of oxygen minimum zones. Slocum gliders were deployed off the coast of Los Angeles from February to July of 2013 and 2014 providing high temporal and spatial resolution data of the San Pedro Channel (SPC), which includes the San Pedro Ocean Time Series (SPOT). The data were collapsed onto a standardized grid and primary and secondary characteristics of glider profiles were analyzed by principal component analysis to determine the processes impacting SPC and SPOT. The data fell into four categories: active upwelling, offshore intrusion, subsurface bloom, and surface bloom. Waters across the SPC were most similar to offshore water masses, even during the upwelling season when near-shore blooms are commonly observed. The SPOT site was found to be representative of the SPC 86% of the time, suggesting that the findings from SPOT are applicable for the entire SPC. Subsurface blooms were common in both years with co-located chlorophyll and particle maxima, and results suggested that these subsurface blooms contribute significantly to the local primary production. Satellite estimation of integrated chlorophyll was poor, possibly due to the prevalence of subsurface blooms and shallow optical depths during surface blooms. These results indicate that high resolution in-situ glider deployments can be used to determine the spatial domain of coastal time-series data, allowing for broader application of these datasets and greater integration into modeling efforts.
Impeller leakage flow modeling for mechanical vibration control
NASA Technical Reports Server (NTRS)
Palazzolo, Alan B.
1996-01-01
HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.
On the measurement of stability in over-time data.
Kenny, D A; Campbell, D T
1989-06-01
In this article, autoregressive models and growth curve models are compared. Autoregressive models are useful because they allow for random change, permit scores to increase or decrease, and do not require strong assumptions about the level of measurement. Three previously presented designs for estimating stability are described: (a) time-series, (b) simplex, and (c) two-wave, one-factor methods. A two-wave, multiple-factor model also is presented, in which the variables are assumed to be caused by a set of latent variables. The factor structure does not change over time and so the synchronous relationships are temporally invariant. The factors do not cause each other and have the same stability. The parameters of the model are the factor loading structure, each variable's reliability, and the stability of the factors. We apply the model to two data sets. For eight cognitive skill variables measured at four times, the 2-year stability is estimated to be .92 and the 6-year stability is .83. For nine personality variables, the 3-year stability is .68. We speculate that for many variables there are two components: one component that changes very slowly (the trait component) and another that changes very rapidly (the state component); thus each variable is a mixture of trait and state. Circumstantial evidence supporting this view is presented.
NASA Technical Reports Server (NTRS)
Price, Jennifer; Harris, Philip; Hochstetler, Bruce; Guerra, Mark; Mendez, Israel; Healy, Matthew; Khan, Ahmed
2013-01-01
International Space Station Live! (ISSLive!) is a Web application that uses a proprietary commercial technology called Lightstreamer to push data across the Internet using the standard http port (port 80). ISSLive! uses the push technology to display real-time telemetry and mission timeline data from the space station in any common Web browser or Internet- enabled mobile device. ISSLive! is designed to fill a unique niche in the education and outreach areas by providing access to real-time space station data without a physical presence in the mission control center. The technology conforms to Internet standards, supports the throughput needed for real-time space station data, and is flexible enough to work on a large number of Internet-enabled devices. ISSLive! consists of two custom components: (1) a series of data adapters that resides server-side in the mission control center at Johnson Space Center, and (2) a set of public html that renders the data pushed from the data adapters. A third component, the Lightstreamer server, is commercially available from a third party and acts as an intermediary between custom components (1) and (2). Lightstreamer also provides proprietary software libraries that are required to use the custom components. At the time of this reporting, this is the first usage of Web-based, push streaming technology in the aerospace industry.
Advances in membrane technology for the NASA redox energy storage system
NASA Technical Reports Server (NTRS)
Ling, J. S.; Charleston, J.
1980-01-01
Anion exchange membranes used in the system serve as a charge transferring medium as well as a reactant separator and are the key enabling component in this storage technology. Each membrane formulation undergoes a series of screening tests for area-resistivity, static (non-flow) diffusion rate determination, and performance in Redox systems. The CDIL series of membranes has, by virtue of its chemical stability and high ion exchange capacity, demonstrated superior properties in the redox environment. Additional resistivity results at several acid and iron solution concentrations, iron diffusion rates, and time dependent iron fouling of the various membrane formulations are presented in comparison to past standard formulations.
Desova, A A; Dorofeyuk, A A; Anokhin, A M
2017-01-01
We performed a comparative analysis of the types of spectral density typical of various parameters of pulse signal. The experimental material was obtained during the examination of school age children with various psychosomatic disorders. We also performed a typological analysis of the spectral density functions corresponding to the time series of different parameters of a single oscillation of pulse signals; the results of their comparative analysis are presented. We determined the most significant spectral components for two disordersin children: arterial hypertension and mitral valve prolapse.
NASA Astrophysics Data System (ADS)
Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H. Eugene
2011-04-01
We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes “bad news” for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.
Wang, Duan; Podobnik, Boris; Horvatić, Davor; Stanley, H Eugene
2011-04-01
We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes "bad news" for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.
A longitudinal model for functional connectivity networks using resting-state fMRI.
Hart, Brian; Cribben, Ivor; Fiecas, Mark
2018-06-04
Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex. Copyright © 2018 Elsevier Inc. All rights reserved.
The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.
Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H
2016-10-01
In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.
Influence of stretch-shortening cycle on mechanical behaviour of triceps surae during hopping.
Belli, A; Bosco, C
1992-04-01
Six subjects performed a first series of vertical plantar flexions and a second series of vertical rebounds, both involving muscle triceps surae exclusively. Vertical displacements, vertical forces and ankle angles were recorded during the entire work period of 60 seconds per series. In addition, expired gases were collected during the test and recovery for determination of the energy expenditure. Triceps surae was mechanically modelled with a contractile component and with an elastic component. Mechanical behaviour and work of the different muscle components were determined in both series. The net muscular efficiency calculated from the work performed by the centre of gravity was 17.5 +/- 3.0% (mean +/- SD) in plantar flexions and 29.9 +/- 4.8% in vertical rebounds. The net muscle efficiency calculated from the work performed by the contractile component was 17.4 +/- 2.9% in plantar flexions and 16.1 +/- 1.4% in vertical rebounds. These results suggest that the muscular efficiency differences do not reflect muscle contractile component efficiency but essentially the storage and recoil of elastic energy. This is supported by the relationship (P less than 0.01) found in vertical rebounds between the extra work and the elastic component work. A detailed observation of the mechanical behaviour of muscle mechanical components showed that the strategy to maximize the elastic work depends also on the force-velocity characteristics of the movement and that the eccentric-concentric work of the contractile component does not always correspond respectively to the ankle extension-flexion.
Project Physics Programmed Instruction, Vectors 3.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
This is the third of a series of three programmed instruction booklets on vectors developed by Harvard Project Physics. Separating vectors into components and obtaining a vector from its components are the topics covered. For other booklets in this series, see SE 015 549 and SE 015 550. (DT)
Glacier Volume Change Estimation Using Time Series of Improved Aster Dems
NASA Astrophysics Data System (ADS)
Girod, Luc; Nuth, Christopher; Kääb, Andreas
2016-06-01
Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be easily modeled analytically from the first one. We thus remove the remaining along-track jitter effects in the DEMs statistically through temporal DEM stacks to finally compute the glacier volume changes over time. Our method yields cleaner and spatially more complete elevation data, which also proved to be more in accordance to reference DEMs, compared to NASA's AST14DMO DEM standard products. The quality of the demonstrated measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will help to better understand the response of glaciers to climate change and their influence on runoff and sea level.
NASA Astrophysics Data System (ADS)
Rossi, Giuliana; Fabris, Paolo; Zuliani, David
2013-04-01
The northern tip of the Adria micro-plate (NE-Italy) is continuously monitored by the Friuli Regional Deformation Network (FReDNet) of OGS (Istituto Nazionale di Oceanografia e Geofisica Sperimentale), consisting of 15 GNSS permanent sites, the first eight of which were installed between 2002 and 2004. Additional information on the strain field in the region comes from the 10 GNSS permanent sites of the Marussi network of the Friuli-Venezia Giulia regional council, some of which record continuously since 1999. Having at disposal time-series of a certain length (around ten-years), it is possible to evaluate with reliability not only the plate motion direction and velocity, represented by the linear trend of the horizontal components of the records, but also the possible plate acceleration, due to the superposition of other terms of the strain field time-space variations, with different frequency. With the aim of investigating such terms, we first processed the GPS data of the longest time series from both networks, starting from 2002, using GAMIT/GLOBK, eliminated the outliers, and filled the eventual short gaps in the data through linear interpolation. A low-band pass filter allowed obtaining the time-series cleaned from the components with frequencies higher than 1.5 years, so to eliminate the annual and quasi-annual terms, and the highest frequencies. The so-obtained time-series for the two horizontal components result dominated by a linear trend, as expected, to which clear oscillations of some years of duration are superimposed. From the analysis of the linear trend, the resulting velocity field suggest crustal shortening, with values ranging between 0.6 and 2.8 mm/year, decreasing from South to North and, more slightly, from East to West. This is in agreement with preceding observations and with the geodynamic character of the region, located in the area of convergence between Adria microplate and Eurasia. As regards as the deviations from the linear trend, the present work focuses on a sort of transient, of "period" between 1.5 and 2.0 years, involving 11 of the 13 stations considered, distributed over the whole area, and causing a bending along the main tectonic directions. In order to state, whether the transient is due to hydrologic or tectonic phenomena, data from rainfalls from the meteorological stations of the regional council networks nearest to each of the GNSS stations have been similarly analysed and compared. In particular, the cumulative de-trended curves have been considered and cross-correlated with the deformation data. The correlation, however, is generally poor. The next step will be the comparison with the seismic activity in the region, from the catalogue of the Friuli-Venezia Giulia seismological network, managed and ruled by OGS.
Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin
2017-03-01
The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.
NASA Astrophysics Data System (ADS)
Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei
2017-07-01
Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.
Schubert, Thomas W; Zickfeld, Janis H; Seibt, Beate; Fiske, Alan Page
2018-02-01
Feeling moved or touched can be accompanied by tears, goosebumps, and sensations of warmth in the centre of the chest. The experience has been described frequently, but psychological science knows little about it. We propose that labelling one's feeling as being moved or touched is a component of a social-relational emotion that we term kama muta (its Sanskrit label). We hypothesise that it is caused by appraising an intensification of communal sharing relations. Here, we test this by investigating people's moment-to-moment reports of feeling moved and touched while watching six short videos. We compare these to six other sets of participants' moment-to-moment responses watching the same videos: respectively, judgements of closeness (indexing communal sharing), reports of weeping, goosebumps, warmth in the centre of the chest, happiness, and sadness. Our eighth time series is expert ratings of communal sharing. Time series analyses show strong and consistent cross-correlations of feeling moved and touched and closeness with each other and with each of the three physiological variables and expert-rated communal sharing - but distinctiveness from happiness and sadness. These results support our model.
Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Zhong, Ning; Li, Kuncheng
2014-08-01
Neural correlate of human inductive reasoning process is still unclear. Number series and letter series completion are two typical inductive reasoning tasks, and with a common core component of rule induction. Previous studies have demonstrated that different strategies are adopted in number series and letter series completion tasks; even the underlying rules are identical. In the present study, we examined cortical activation as a function of two different reasoning strategies for solving series completion tasks. The retrieval strategy, used in number series completion tasks, involves direct retrieving of arithmetic knowledge to get the relations between items. The procedural strategy, used in letter series completion tasks, requires counting a certain number of times to detect the relations linking two items. The two strategies require essentially the equivalent cognitive processes, but have different working memory demands (the procedural strategy incurs greater demands). The procedural strategy produced significant greater activity in areas involved in memory retrieval (dorsolateral prefrontal cortex, DLPFC) and mental representation/maintenance (posterior parietal cortex, PPC). An ACT-R model of the tasks successfully predicted behavioral performance and BOLD responses. The present findings support a general-purpose dual-process theory of inductive reasoning regarding the cognitive architecture. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotlin, J.J.; Dunteman, N.R.; Scott, D.I.
1983-01-01
The current Electro-Motive Division 645 Series turbocharged engines are the Model FB and EC. The FB engine combines the highest thermal efficiency with the highest specific output of any EMD engine to date. The FB Series incorporates 16:1 compression ratio with a fire ring piston and an improved turbocharger design. Engine components included in the FB engine provide very high output levels with exceptional reliability. This paper also describes the performance of the lower rated Model EC engine series which feature high thermal efficiency and utilize many engine components well proven in service and basic to the Model FB Series.
A robust interrupted time series model for analyzing complex health care intervention data.
Cruz, Maricela; Bender, Miriam; Ombao, Hernando
2017-12-20
Current health policy calls for greater use of evidence-based care delivery services to improve patient quality and safety outcomes. Care delivery is complex, with interacting and interdependent components that challenge traditional statistical analytic techniques, in particular, when modeling a time series of outcomes data that might be "interrupted" by a change in a particular method of health care delivery. Interrupted time series (ITS) is a robust quasi-experimental design with the ability to infer the effectiveness of an intervention that accounts for data dependency. Current standardized methods for analyzing ITS data do not model changes in variation and correlation following the intervention. This is a key limitation since it is plausible for data variability and dependency to change because of the intervention. Moreover, present methodology either assumes a prespecified interruption time point with an instantaneous effect or removes data for which the effect of intervention is not fully realized. In this paper, we describe and develop a novel robust interrupted time series (robust-ITS) model that overcomes these omissions and limitations. The robust-ITS model formally performs inference on (1) identifying the change point; (2) differences in preintervention and postintervention correlation; (3) differences in the outcome variance preintervention and postintervention; and (4) differences in the mean preintervention and postintervention. We illustrate the proposed method by analyzing patient satisfaction data from a hospital that implemented and evaluated a new nursing care delivery model as the intervention of interest. The robust-ITS model is implemented in an R Shiny toolbox, which is freely available to the community. Copyright © 2017 John Wiley & Sons, Ltd.
Development of web tools to disseminate space geodesy data-related products
NASA Astrophysics Data System (ADS)
Soudarin, L.; Ferrage, P.; Mezerette, A.
2014-12-01
In order to promote the products of the DORIS system, the French Space Agency CNES has developed and implemented on the web site of the International DORIS Service (IDS) a set of plot tools to interactively build and display time series of site positions, orbit residuals and terrestrial parameters (scale, geocenter). An interactive global map is also available to select sites, and to get access to their information. Besides the products provided by the CNES Orbitography Team and the IDS components, these tools allow comparing time evolutions of coordinates for collocated DORIS and GNSS stations, thanks to the collaboration with the Terrestrial Frame Combination Center of the International GNSS Service (IGS). The next step currently in progress is the creation of a database to improve robustness and efficiency of the tools, with the objective to propose a complete web service to foster data exchange with the other geodetic services of the International Association of Geodesy (IAG). The possibility to visualize and compare position time series of the four main space geodetic techniques DORIS, GNSS, SLR and VLBI is already under way at the French level. A dedicated version of these web tools has been developed for the French Space Geodesy Research Group (GRGS). It will give access to position time series provided by the GRGS Analysis Centers involved in DORIS, GNSS, SLR and VLBI data processing for the realization of the International Terrestrial Reference Frame. In this presentation, we will describe the functionalities of these tools, and we will address some aspects of the time series (content, format).
NASA Astrophysics Data System (ADS)
Neely, W.; Borsa, A. A.; Silverii, F.
2017-12-01
Recent droughts have increased reliance on groundwater for agricultural production in California's Central Valley. Using Interferometric Synthetic Aperture Radar (InSAR), we observe upwards of 25 cm/yr of subsidence from November 2014 to February 2017 due to intense pumping. However, these observations are contaminated by atmospheric noise and orbital errors. We present a novel method for correcting long wavelength errors in InSAR deformation estimates using time series from continuous Global Positioning System (cGPS) stations within the SAR footprint, which we apply to C-band data from the Sentinel mission. We test our method using 49 SAR acquisitions from the Sentinel 1 satellites and 107 cGPS times series from the Geodesy Advancing Geoscience and EarthScope (GAGE) network in southern Central Valley. We correct each interferogram separately, implementing an intermittent Small Baseline Subset (ISBAS) technique to produce a time series of line-of-sight surface motion from 276 InSAR pairs. To estimate the vertical component of this motion, we remove horizontal tectonic displacements predicted by the Southern California Earthquake Center's (SCEC) Community Geodetic Model. We validate our method by comparing the corrected InSAR results with independent cGPS data and find a marked improvement in agreement between the two data sets, particularly in the deformation rates. Using this technique, we characterize the time evolution of surface vertical deformation in the southern Central Valley related to human exploitation of local groundwater resources. This methodology is applicable to data from other SAR satellites, including ALOS-2 and the upcoming US-India NISAR mission.
Besic, Nikola; Vasile, Gabriel; Anghel, Andrei; Petrut, Teodor-Ion; Ioana, Cornel; Stankovic, Srdjan; Girard, Alexandre; d'Urso, Guy
2014-11-01
In this paper, we propose a novel ultrasonic tomography method for pipeline flow field imaging, based on the Zernike polynomial series. Having intrusive multipath time-offlight ultrasonic measurements (difference in flight time and speed of ultrasound) at the input, we provide at the output tomograms of the fluid velocity components (axial, radial, and orthoradial velocity). Principally, by representing these velocities as Zernike polynomial series, we reduce the tomography problem to an ill-posed problem of finding the coefficients of the series, relying on the acquired ultrasonic measurements. Thereupon, this problem is treated by applying and comparing Tikhonov regularization and quadratically constrained ℓ1 minimization. To enhance the comparative analysis, we additionally introduce sparsity, by employing SVD-based filtering in selecting Zernike polynomials which are to be included in the series. The first approach-Tikhonov regularization without filtering, is used because it is the most suitable method. The performances are quantitatively tested by considering a residual norm and by estimating the flow using the axial velocity tomogram. Finally, the obtained results show the relative residual norm and the error in flow estimation, respectively, ~0.3% and ~1.6% for the less turbulent flow and ~0.5% and ~1.8% for the turbulent flow. Additionally, a qualitative validation is performed by proximate matching of the derived tomograms with a flow physical model.
Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis
NASA Astrophysics Data System (ADS)
Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A.; Ghosh, Sujit K.; Montet, Benjamin T.; Newton, Elisabeth R.
2017-05-01
Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.
Nonlinear multi-analysis of agent-based financial market dynamics by epidemic system
NASA Astrophysics Data System (ADS)
Lu, Yunfan; Wang, Jun; Niu, Hongli
2015-10-01
Based on the epidemic dynamical system, we construct a new agent-based financial time series model. In order to check and testify its rationality, we compare the statistical properties of the time series model with the real stock market indices, Shanghai Stock Exchange Composite Index and Shenzhen Stock Exchange Component Index. For analyzing the statistical properties, we combine the multi-parameter analysis with the tail distribution analysis, the modified rescaled range analysis, and the multifractal detrended fluctuation analysis. For a better perspective, the three-dimensional diagrams are used to present the analysis results. The empirical research in this paper indicates that the long-range dependence property and the multifractal phenomenon exist in the real returns and the proposed model. Therefore, the new agent-based financial model can recurrence some important features of real stock markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y. S.; Cai, F.; Xu, W. M.
2011-09-28
The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums ofmore » cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.« less
Hardening measures for bipolar transistors against microwave-induced damage
NASA Astrophysics Data System (ADS)
Chai, Chang-Chun; Ma, Zhen-Yang; Ren, Xing-Rong; Yang, Yin-Tang; Zhao, Ying-Bo; Yu, Xin-Hai
2013-06-01
In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findings show that the device becomes less vulnerable to damage with an increase in bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter, Re, can obviously prolong the burnout time of the device. However, Re will aid damage to the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.
Discovery and identification of a series of alkyl decalin isomers in petroleum geological samples.
Wang, Huitong; Zhang, Shuichang; Weng, Na; Zhang, Bin; Zhu, Guangyou; Liu, Lingyan
2015-07-07
The comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) has been used to characterize a crude oil and a source rock extract sample. During the process, a series of pairwise components between monocyclic alkanes and mono-aromatics have been discovered. After tentative assignments of decahydronaphthalene isomers, a series of alkyl decalin isomers have been synthesized and used for identification and validation of these petroleum compounds. From both the MS and chromatography information, these pairwise compounds were identified as 2-alkyl-decahydronaphthalenes and 1-alkyl-decahydronaphthalenes. The polarity of 1-alkyl-decahydronaphthalenes was stronger. Their long chain alkyl substituent groups may be due to bacterial transformation or different oil cracking events. This systematic profiling of alkyl-decahydronaphthalene isomers provides further understanding and recognition of these potential petroleum biomarkers.
Complex demodulation in VLBI estimation of high frequency Earth rotation components
NASA Astrophysics Data System (ADS)
Böhm, S.; Brzeziński, A.; Schuh, H.
2012-12-01
The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of high frequency Earth rotation components and thus represents a qualified tool for future studies of irregular geophysical signals in ERP measured by space geodetic techniques.
Luce, Robert; Hildebrandt, Peter; Kuhlmann, Uwe; Liesen, Jörg
2016-09-01
The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed. © The Author(s) 2016.
An experimental study of an adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Celik, Zeki; Roberts, Leonard
1988-01-01
A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurich, R.; Lustig, S., E-mail: ralf.aurich@uni-ulm.de, E-mail: sven.lustig@uni-ulm.de
Early-matter-like dark energy is defined as a dark energy component whose equation of state approaches that of cold dark matter (CDM) at early times. Such a component is an ingredient of unified dark matter (UDM) models, which unify the cold dark matter and the cosmological constant of the ΛCDM concordance model into a single dark fluid. Power series expansions in conformal time of the perturbations of the various components for a model with early-matter-like dark energy are provided. They allow the calculation of the cosmic microwave background (CMB) anisotropy from the primordial initial values of the perturbations. For a phenomenologicalmore » UDM model, which agrees with the observations of the local Universe, the CMB anisotropy is computed and compared with the CMB data. It is found that a match to the CMB observations is possible if the so-called effective velocity of sound c{sub eff} of the early-matter-like dark energy component is very close to zero. The modifications on the CMB temperature and polarization power spectra caused by varying the effective velocity of sound are studied.« less
NASA Astrophysics Data System (ADS)
Berezina-Greene, Maria A.; Guinan, John J.
2015-12-01
To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.
Scaling symmetry, renormalization, and time series modeling: the case of financial assets dynamics.
Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L
2013-12-01
We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments' stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.
NASA Astrophysics Data System (ADS)
Xu, B.
2017-12-01
Interferometric Synthetic Aperture Radar (InSAR) has the advantages of high spatial resolution which enable measure line of sight (LOS) surface displacements with nearly complete spatial continuity and a satellite's perspective that permits large areas view of Earth's surface quickly and efficiently. However, using InSAR to observe long wavelength and small magnitude deformation signals is still significantly limited by various unmodeled errors sources i.e. atmospheric delays, orbit induced errors, Digital Elevation Model (DEM) errors. Independent component analysis (ICA) is a probabilistic method for separating linear mixed signals generated by different underlying physical processes.The signal sources which form the interferograms are statistically independent both in space and in time, thus, they can be separated by ICA approach.The seismic behavior in the Los Angeles Basin is active and the basin has experienced numerous moderate to large earthquakes since the early Pliocene. Hence, understanding the seismotectonic deformation in the Los Angeles Basin is important for analyzing seismic behavior. Compare with the tectonic deformations, nontectonic deformations due to groundwater and oil extraction may be mainly responsible for the surface deformation in the Los Angeles basin. Using the small baseline subset (SBAS) InSAR method, we extracted the surface deformation time series in the Los Angeles basin with a time span of 7 years (September 27, 2003-September 25,2010). Then, we successfully separate the atmospheric noise from InSAR time series and detect different processes caused by different mechanisms.
Scaling symmetry, renormalization, and time series modeling: The case of financial assets dynamics
NASA Astrophysics Data System (ADS)
Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L.
2013-12-01
We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments’ stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.
1985-11-26
etc.).., Major decisions involving reliability ptudies, based on competing risk methodology , have been made in the past and will continue to be made...censoring mechanism. In such instances, the methodology for estimating relevant reliabili- ty probabilities has received considerable attention (cf. David...proposal for a discussion of the general methodology . .,4..% . - ’ -. - ’ . ’ , . * I - " . . - - - - . . ,_ . . . . . . . . .4
W. Cohen; H. Andersen; S. Healey; G. Moisen; T. Schroeder; C. Woodall; G. Domke; Z. Yang; S. Stehman; R. Kennedy; C. Woodcock; Z. Zhu; J. Vogelmann; D. Steinwand; C. Huang
2014-01-01
The authors are developing a REDD+ MRV system that tests different biomass estimation frameworks and components. Design-based inference from a costly fi eld plot network was compared to sampling with LiDAR strips and a smaller set of plots in combination with Landsat for disturbance monitoring. Biomass estimation uncertainties associated with these different data sets...
The Importance of Practice in the Development of Statistics.
1983-01-01
RESOLUTION TEST CHART NATIONAL BUREAU OIF STANDARDS 1963 -A NRC Technical Summary Report #2471 C THE IMORTANCE OF PRACTICE IN to THE DEVELOPMENT OF STATISTICS...component analysis, bioassay, limits for a ratio, quality control, sampling inspection, non-parametric tests , transformation theory, ARIMA time series...models, sequential tests , cumulative sum charts, data analysis plotting techniques, and a resolution of the Bayes - frequentist controversy. It appears
Land use change and precipitation feedbacks across the Tropics
NASA Astrophysics Data System (ADS)
McCurley, K.; Jawitz, J. W.
2017-12-01
We investigated the relationship between agricultural land expansion, resulting in deforestation in the Tropics (South America, Africa, and Southeast Asia), and the local/regional hydroclimatic cycle. We hypothesized that changes in physical catchment properties in recent decades have resulted in measurable impacts on elements of the water budget, specifically evapotranspiration and precipitation. Using high resolution, gridded global precipitation and potential evapotranspiration data, as well as discharge time series (1960-2007) from the Global Runoff Data Center, we computed the components of the water budget on a catchment scale from 81 tropical basins that have experienced land use change. We estimated the landscape-driven component of evapotranspiration for two time periods, 1960-1983 and 1984-2007, and compared it to the relative change in forest cover across time. The findings show a negative relationship between the landscape-driven component of evapotranspiration and deforestation, suggesting that a decrease in forest cover causes a decrease in evapotranspiration. We further illustrate how this dynamic implicates basin-scale water availability due to land use change stimulated by agricultural production, including potential negative feedback of agricultural area expansion onto precipitation recycling.
Assessing the catchment's filtering effect on the propagation of meteorological anomalies
NASA Astrophysics Data System (ADS)
di Domenico, Antonella; Laguardia, Giovanni; Margiotta, Maria Rosaria
2010-05-01
The characteristics of drought propagation within a catchment are evaluated by means of the analysis of time series of water fluxes and storages' states. The study area is the Agri basin, Southern Italy, closed at the Tarangelo gauging station (507 km2). Once calibrated the IRP weather generator (Veneziano and Iacobellis, 2002) on observed data, a 100 years time series of precipitation has been produced. The drought statistics obtained from the synthetic data have been compared to the ones obtained from the limited observations available. The DREAM hydrological model has been calibrated based on observed precipitation and discharge. From the model run on the synthetic precipitation we have obtained the time series of variables relevant for assessing the status of the catchment, namely total runoff and its components, actual evapotranspiration, and soil moisture. The Standardized Precipitation Index (SPI; McKee et al., 1993) has been calculated for different averaging periods. The modelled data have been processed for the calculation of drought indices. In particular, we have chosen to use their transformation into standardized variables. We have performed autocorrelation analysis for assessing the characteristic time scales of the variables. Moreover, we have investigated through cross correlation their relationships, assessing also the SPI averaging period for which the maximum correlation is reached. The variables' drought statistics, namely number of events, duration, and deficit volumes, have been assessed. As a result of the filtering effect exerted by the different catchment storages, the characteristic time scale and the maximum correlation SPI averaging periods for the different time series tend to increase. Thus, the number of drought events tends to decrease and their duration to increase under increasing storage.
GPS coordinate time series measurements in Ontario and Quebec, Canada
NASA Astrophysics Data System (ADS)
Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.
2017-06-01
New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the pattern of horizontal deformation is not well explained in the north, along Hudson Bay, suggesting that revisions to the ice thickness history are needed to improve the fit to observations.
NASA Astrophysics Data System (ADS)
Goncalves Neto, A.; Johnson, R. J.; Bates, N. R.
2016-02-01
Rising sea level is one of the main concerns for human life in a scenario with global atmosphere and ocean warming, which is of particular concern for oceanic islands. Bermuda, located in the center of the Sargasso Sea, provides an ideal location to investigate sea level rise since it has a long term tide gauge (1933-present) and is in close proximity to deep ocean time-series sites, namely, Hydrostation `S' (1954-present) and the Bermuda Atlantic Time-Series Study site (1988-present). In this study, we use the monthly CTD deep casts at BATS to compute the contribution of steric height (SH) to the local sea surface height (SSH) for the past 24 years. To determine the relative contribution from the various water masses we first define 8 layers (Surface Layer, Upper Thermocline, Subtropical Mode-Water, Lower Thermocline, Antarctic Intermediate Water, Labrador Sea Water, Iceland-Scotland Overflow Water, Denmark Strait Overflow Water) based on neutral density criteria for which SH is computed. Additionally, we calculate the thermosteric and halosteric components for each of the defined neutral density layers. Surprisingly, the results show that, despite a 3.3mm/yr sea level rise observed at the Bermuda tide gauge, the steric contribution to the SSH at BATS has decreased at a rate of -1.1mm/yr during the same period. The thermal component is found to account for the negative trend in the steric height (-4.4mm/yr), whereas the halosteric component (3.3mm/yr) partially compensates the thermal signal and can be explained by an overall cooling and freshening at the BATS site. Although the surface layer and the upper thermocline waters are warming, all the subtropical and polar water masses, which represent most of the local water column, are cooling and therefore drive the overall SH contribution to the local SSH. Hence, it suggests that the mass contribution to the local SSH plays an important role in the sea level rise, for which we investigate with GRACE data.
Regionalization of precipitation characteristics in Iran's Lake Urmia basin
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn
2018-04-01
Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.
How does spatial extent of fMRI datasets affect independent component analysis decomposition?
Aragri, Adriana; Scarabino, Tommaso; Seifritz, Erich; Comani, Silvia; Cirillo, Sossio; Tedeschi, Gioacchino; Esposito, Fabrizio; Di Salle, Francesco
2006-09-01
Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity. (c) 2006 Wiley-Liss, Inc.
Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo
2015-08-01
Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaus, J.; McDonnell, J. J.; Jackson, C. R.
The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ 2H = 7.15 · δ 18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less
Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach
Klaus, J.; McDonnell, J. J.; Jackson, C. R.; ...
2015-01-08
The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ 2H = 7.15 · δ 18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less
NASA Astrophysics Data System (ADS)
Dabbakuti, J. R. K. Kumar; Venkata Ratnam, D.
2017-10-01
Precise modeling of the ionospheric Total Electron Content (TEC) is a critical aspect of Positioning, Navigation, and Timing (PNT) services intended for the Global Navigation Satellite Systems (GNSS) applications as well as Earth Observation System (EOS), satellite communication, and space weather forecasting applications. In this paper, linear time series modeling has been carried out on ionospheric TEC at two different locations at Koneru Lakshmaiah University (KLU), Guntur (geographic 16.44° N, 80.62° E; geomagnetic 7.55° N) and Bangalore (geographic 12.97° N, 77.59° E; geomagnetic 4.53° N) at the northern low-latitude region, for the year 2013 in the 24th solar cycle. The impact of the solar and geomagnetic activity on periodic oscillations of TEC has been investigated. Results confirm that the correlation coefficient of the estimated TEC from the linear model TEC and the observed GPS-TEC is around 93%. Solar activity is the key component that influences ionospheric daily averaged TEC while periodic component reveals the seasonal dependency of TEC. Furthermore, it is observed that the influence of geomagnetic activity component on TEC is different at both the latitudes. The accuracy of the model has been assessed by comparing the International Reference Ionosphere (IRI) 2012 model TEC and TEC measurements. Moreover, the absence of winter anomaly is remarkable, as determined by the Root Mean Square Error (RMSE) between the linear model TEC and GPS-TEC. On the contrary, the IRI2012 model TEC evidently failed to predict the absence of winter anomaly in the Equatorial Ionization Anomaly (EIA) crest region. The outcome of this work will be useful for improving the ionospheric now-casting models under various geophysical conditions.
NASA Astrophysics Data System (ADS)
Doin, Marie-Pierre; Lodge, Felicity; Guillaso, Stephane; Jolivet, Romain; Lasserre, Cecile; Ducret, Gabriel; Grandin, Raphael; Pathier, Erwan; Pinel, Virginie
2012-01-01
We assemble a processing chain that handles InSAR computation from raw data to time series analysis. A large part of the chain (from raw data to geocoded unwrapped interferograms) is based on ROI PAC modules (Rosen et al., 2004), with original routines rearranged and combined with new routines to process in series and in a common radar geometry all SAR images and interferograms. A new feature of the software is the range-dependent spectral filtering to improve coherence in interferograms with long spatial baselines. Additional components include a module to estimate and remove digital elevation model errors before unwrapping, a module to mitigate the effects of the atmospheric phase delay and remove residual orbit errors, and a module to construct the phase change time series from small baseline interferograms (Berardino et al. 2002). This paper describes the main elements of the processing chain and presents an example of application of the software using a data set from the ENVISAT mission covering the Etna volcano.
Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.
Major, G
1993-07-01
Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.
Urban Land: Study of Surface Run-off Composition and Its Dynamics
NASA Astrophysics Data System (ADS)
Palagin, E. D.; Gridneva, M. A.; Bykova, P. G.
2017-11-01
The qualitative composition of urban land surface run-off is liable to significant variations. To study surface run-off dynamics, to examine its behaviour and to discover reasons of these variations, it is relevant to use the mathematical apparatus technique of time series analysis. A seasonal decomposition procedure was applied to a temporary series of monthly dynamics with the annual frequency of seasonal variations in connection with a multiplicative model. The results of the quantitative chemical analysis of surface wastewater of the 22nd Partsjezd outlet in Samara for the period of 2004-2016 were used as basic data. As a result of the analysis, a seasonal pattern of variations in the composition of surface run-off in Samara was identified. Seasonal indices upon 15 waste-water quality indicators were defined. BOD (full), suspended materials, mineralization, chlorides, sulphates, ammonium-ion, nitrite-anion, nitrate-anion, phosphates (phosphorus), iron general, copper, zinc, aluminium, petroleum products, synthetic surfactants (anion-active). Based on the seasonal decomposition of the time series data, the contribution of trends, seasonal and accidental components of the variability of the surface run-off indicators was estimated.