Sample records for component-based modelling approach

  1. Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J. 2011. Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environmental Modelling & Software. 26(6): 804-816.

    Treesearch

    Satoshi Hirabayashi; Chuck Kroll; David Nowak

    2011-01-01

    The Urban Forest Effects-Deposition model (UFORE-D) was developed with a component-based modeling approach. Functions of the model were separated into components that are responsible for user interface, data input/output, and core model functions. Taking advantage of the component-based approach, three UFORE-D applications were developed: a base application to estimate...

  2. Feedback loops and temporal misalignment in component-based hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  3. Models and Frameworks: A Synergistic Association for Developing Component-Based Applications

    PubMed Central

    Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A.; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development. PMID:25147858

  4. Models and frameworks: a synergistic association for developing component-based applications.

    PubMed

    Alonso, Diego; Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development.

  5. Component Models for Semantic Web Languages

    NASA Astrophysics Data System (ADS)

    Henriksson, Jakob; Aßmann, Uwe

    Intelligent applications and agents on the Semantic Web typically need to be specified with, or interact with specifications written in, many different kinds of formal languages. Such languages include ontology languages, data and metadata query languages, as well as transformation languages. As learnt from years of experience in development of complex software systems, languages need to support some form of component-based development. Components enable higher software quality, better understanding and reusability of already developed artifacts. Any component approach contains an underlying component model, a description detailing what valid components are and how components can interact. With the multitude of languages developed for the Semantic Web, what are their underlying component models? Do we need to develop one for each language, or is a more general and reusable approach achievable? We present a language-driven component model specification approach. This means that a component model can be (automatically) generated from a given base language (actually, its specification, e.g. its grammar). As a consequence, we can provide components for different languages and simplify the development of software artifacts used on the Semantic Web.

  6. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  7. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases.

    PubMed

    Neal, Maxwell L; Carlson, Brian E; Thompson, Christopher T; James, Ryan C; Kim, Karam G; Tran, Kenneth; Crampin, Edmund J; Cook, Daniel L; Gennari, John H

    2015-01-01

    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen's semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the "Pandit-Hinch-Niederer" (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach.

  8. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases

    PubMed Central

    Neal, Maxwell L.; Carlson, Brian E.; Thompson, Christopher T.; James, Ryan C.; Kim, Karam G.; Tran, Kenneth; Crampin, Edmund J.; Cook, Daniel L.; Gennari, John H.

    2015-01-01

    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen’s semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the “Pandit-Hinch-Niederer” (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach. PMID:26716837

  9. A physics based method for combining multiple anatomy models with application to medical simulation.

    PubMed

    Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David

    2009-01-01

    We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.

  10. Modified multiblock partial least squares path modeling algorithm with backpropagation neural networks approach

    NASA Astrophysics Data System (ADS)

    Yuniarto, Budi; Kurniawan, Robert

    2017-03-01

    PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.

  11. Robustness of Flexible Systems With Component-Level Uncertainties

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.

    2000-01-01

    Robustness of flexible systems in the presence of model uncertainties at the component level is considered. Specifically, an approach for formulating robustness of flexible systems in the presence of frequency and damping uncertainties at the component level is presented. The synthesis of the components is based on a modifications of a controls-based algorithm for component mode synthesis. The formulation deals first with robustness of synthesized flexible systems. It is then extended to deal with global (non-synthesized ) dynamic models with component-level uncertainties by projecting uncertainties from component levels to system level. A numerical example involving a two-dimensional simulated docking problem is worked out to demonstrate the feasibility of the proposed approach.

  12. Feature-based component model for design of embedded systems

    NASA Astrophysics Data System (ADS)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  13. Automated Assume-Guarantee Reasoning by Abstraction Refinement

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Giannakopoulous, Dimitra; Glannakopoulou, Dimitra

    2008-01-01

    Current automated approaches for compositional model checking in the assume-guarantee style are based on learning of assumptions as deterministic automata. We propose an alternative approach based on abstraction refinement. Our new method computes the assumptions for the assume-guarantee rules as conservative and not necessarily deterministic abstractions of some of the components, and refines those abstractions using counter-examples obtained from model checking them together with the other components. Our approach also exploits the alphabets of the interfaces between components and performs iterative refinement of those alphabets as well as of the abstractions. We show experimentally that our preliminary implementation of the proposed alternative achieves similar or better performance than a previous learning-based implementation.

  14. A Component-Based Extension Framework for Large-Scale Parallel Simulations in NEURON

    PubMed Central

    King, James G.; Hines, Michael; Hill, Sean; Goodman, Philip H.; Markram, Henry; Schürmann, Felix

    2008-01-01

    As neuronal simulations approach larger scales with increasing levels of detail, the neurosimulator software represents only a part of a chain of tools ranging from setup, simulation, interaction with virtual environments to analysis and visualizations. Previously published approaches to abstracting simulator engines have not received wide-spread acceptance, which in part may be to the fact that they tried to address the challenge of solving the model specification problem. Here, we present an approach that uses a neurosimulator, in this case NEURON, to describe and instantiate the network model in the simulator's native model language but then replaces the main integration loop with its own. Existing parallel network models are easily adopted to run in the presented framework. The presented approach is thus an extension to NEURON but uses a component-based architecture to allow for replaceable spike exchange components and pluggable components for monitoring, analysis, or control that can run in this framework alongside with the simulation. PMID:19430597

  15. Distributed Damage Estimation for Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2011-01-01

    Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.

  16. A reduced order, test verified component mode synthesis approach for system modeling applications

    NASA Astrophysics Data System (ADS)

    Butland, Adam; Avitabile, Peter

    2010-05-01

    Component mode synthesis (CMS) is a very common approach used for the generation of large system models. In general, these modeling techniques can be separated into two categories: those utilizing a combination of constraint modes and fixed interface normal modes and those based on a combination of free interface normal modes and residual flexibility terms. The major limitation of the methods utilizing constraint modes and fixed interface normal modes is the inability to easily obtain the required information from testing; the result of this limitation is that constraint mode-based techniques are primarily used with numerical models. An alternate approach is proposed which utilizes frequency and shape information acquired from modal testing to update reduced order finite element models using exact analytical model improvement techniques. The connection degrees of freedom are then rigidly constrained in the test verified, reduced order model to provide the boundary conditions necessary for constraint modes and fixed interface normal modes. The CMS approach is then used with this test verified, reduced order model to generate the system model for further analysis. A laboratory structure is used to show the application of the technique with both numerical and simulated experimental components to describe the system and validate the proposed approach. Actual test data is then used in the approach proposed. Due to typical measurement data contaminants that are always included in any test, the measured data is further processed to remove contaminants and is then used in the proposed approach. The final case using improved data with the reduced order, test verified components is shown to produce very acceptable results from the Craig-Bampton component mode synthesis approach. Use of the technique with its strengths and weaknesses are discussed.

  17. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL service is provided for semantic-based querying of the ontology.

  18. A Model-Based Prognostics Approach Applied to Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Goebel, Kai

    2011-01-01

    Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.

  19. Evaluating models of healthcare delivery using the Model of Care Evaluation Tool (MCET).

    PubMed

    Hudspeth, Randall S; Vogt, Marjorie; Wysocki, Ken; Pittman, Oralea; Smith, Susan; Cooke, Cindy; Dello Stritto, Rita; Hoyt, Karen Sue; Merritt, T Jeanne

    2016-08-01

    Our aim was to provide the outcome of a structured Model of Care (MoC) Evaluation Tool (MCET), developed by an FAANP Best-practices Workgroup, that can be used to guide the evaluation of existing MoCs being considered for use in clinical practice. Multiple MoCs are available, but deciding which model of health care delivery to use can be confusing. This five-component tool provides a structured assessment approach to model selection and has universal application. A literature review using CINAHL, PubMed, Ovid, and EBSCO was conducted. The MCET evaluation process includes five sequential components with a feedback loop from component 5 back to component 3 for reevaluation of any refinements. The components are as follows: (1) Background, (2) Selection of an MoC, (3) Implementation, (4) Evaluation, and (5) Sustainability and Future Refinement. This practical resource considers an evidence-based approach to use in determining the best model to implement based on need, stakeholder considerations, and feasibility. ©2015 American Association of Nurse Practitioners.

  20. A model-based executive for commanding robot teams

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2005-01-01

    The paper presents a way to robustly command a system of systems as a single entity. Instead of modeling each component system in isolation and then manually crafting interaction protocols, this approach starts with a model of the collective population as a single system. By compiling the model into separate elements for each component system and utilizing a teamwork model for coordination, it circumvents the complexities of manually crafting robust interaction protocols. The resulting systems are both globally responsive by virtue of a team oriented interaction model and locally responsive by virtue of a distributed approach to model-based fault detection, isolation, and recovery.

  1. A cloud-based approach for interoperable electronic health records (EHRs).

    PubMed

    Bahga, Arshdeep; Madisetti, Vijay K

    2013-09-01

    We present a cloud-based approach for the design of interoperable electronic health record (EHR) systems. Cloud computing environments provide several benefits to all the stakeholders in the healthcare ecosystem (patients, providers, payers, etc.). Lack of data interoperability standards and solutions has been a major obstacle in the exchange of healthcare data between different stakeholders. We propose an EHR system - cloud health information systems technology architecture (CHISTAR) that achieves semantic interoperability through the use of a generic design methodology which uses a reference model that defines a general purpose set of data structures and an archetype model that defines the clinical data attributes. CHISTAR application components are designed using the cloud component model approach that comprises of loosely coupled components that communicate asynchronously. In this paper, we describe the high-level design of CHISTAR and the approaches for semantic interoperability, data integration, and security.

  2. Multiple Damage Progression Paths in Model-Based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai Frank

    2011-01-01

    Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active

  3. Space-time latent component modeling of geo-referenced health data.

    PubMed

    Lawson, Andrew B; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-08-30

    Latent structure models have been proposed in many applications. For space-time health data it is often important to be able to find the underlying trends in time, which are supported by subsets of small areas. Latent structure modeling is one such approach to this analysis. This paper presents a mixture-based approach that can be applied to component selection. The analysis of a Georgia ambulatory asthma county-level data set is presented and a simulation-based evaluation is made. Copyright (c) 2010 John Wiley & Sons, Ltd.

  4. Polyenergetic known-component CT reconstruction with unknown material compositions and unknown x-ray spectra

    NASA Astrophysics Data System (ADS)

    Xu, S.; Uneri, A.; Khanna, A. Jay; Siewerdsen, J. H.; Stayman, J. W.

    2017-04-01

    Metal artifacts can cause substantial image quality issues in computed tomography. This is particularly true in interventional imaging where surgical tools or metal implants are in the field-of-view. Moreover, the region-of-interest is often near such devices which is exactly where image quality degradations are largest. Previous work on known-component reconstruction (KCR) has shown the incorporation of a physical model (e.g. shape, material composition, etc) of the metal component into the reconstruction algorithm can significantly reduce artifacts even near the edge of a metal component. However, for such approaches to be effective, they must have an accurate model of the component that include energy-dependent properties of both the metal device and the CT scanner, placing a burden on system characterization and component material knowledge. In this work, we propose a modified KCR approach that adopts a mixed forward model with a polyenergetic model for the component and a monoenergetic model for the background anatomy. This new approach called Poly-KCR jointly estimates a spectral transfer function associated with known components in addition to the background attenuation values. Thus, this approach eliminates both the need to know component material composition a prior as well as the requirement for an energy-dependent characterization of the CT scanner. We demonstrate the efficacy of this novel approach and illustrate its improved performance over traditional and model-based iterative reconstruction methods in both simulation studies and in physical data including an implanted cadaver sample.

  5. Predictive Models for Semiconductor Device Design and Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1998-01-01

    The device feature size continues to be on a downward trend with a simultaneous upward trend in wafer size to 300 mm. Predictive models are needed more than ever before for this reason. At NASA Ames, a Device and Process Modeling effort has been initiated recently with a view to address these issues. Our activities cover sub-micron device physics, process and equipment modeling, computational chemistry and material science. This talk would outline these efforts and emphasize the interaction among various components. The device physics component is largely based on integrating quantum effects into device simulators. We have two parallel efforts, one based on a quantum mechanics approach and the second, a semiclassical hydrodynamics approach with quantum correction terms. Under the first approach, three different quantum simulators are being developed and compared: a nonequlibrium Green's function (NEGF) approach, Wigner function approach, and a density matrix approach. In this talk, results using various codes will be presented. Our process modeling work focuses primarily on epitaxy and etching using first-principles models coupling reactor level and wafer level features. For the latter, we are using a novel approach based on Level Set theory. Sample results from this effort will also be presented.

  6. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  7. A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run.

    PubMed

    Armeanu, Daniel; Andrei, Jean Vasile; Lache, Leonard; Panait, Mirela

    2017-01-01

    The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets.

  8. A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run

    PubMed Central

    Armeanu, Daniel; Lache, Leonard; Panait, Mirela

    2017-01-01

    The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets. PMID:28742100

  9. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    PubMed

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  10. Reliability Quantification of Advanced Stirling Convertor (ASC) Components

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Zampino, Edward

    2010-01-01

    The Advanced Stirling Convertor, is intended to provide power for an unmanned planetary spacecraft and has an operational life requirement of 17 years. Over this 17 year mission, the ASC must provide power with desired performance and efficiency and require no corrective maintenance. Reliability demonstration testing for the ASC was found to be very limited due to schedule and resource constraints. Reliability demonstration must involve the application of analysis, system and component level testing, and simulation models, taken collectively. Therefore, computer simulation with limited test data verification is a viable approach to assess the reliability of ASC components. This approach is based on physics-of-failure mechanisms and involves the relationship among the design variables based on physics, mechanics, material behavior models, interaction of different components and their respective disciplines such as structures, materials, fluid, thermal, mechanical, electrical, etc. In addition, these models are based on the available test data, which can be updated, and analysis refined as more data and information becomes available. The failure mechanisms and causes of failure are included in the analysis, especially in light of the new information, in order to develop guidelines to improve design reliability and better operating controls to reduce the probability of failure. Quantified reliability assessment based on fundamental physical behavior of components and their relationship with other components has demonstrated itself to be a superior technique to conventional reliability approaches based on utilizing failure rates derived from similar equipment or simply expert judgment.

  11. Designing simulator-based training: an approach integrating cognitive task analysis and four-component instructional design.

    PubMed

    Tjiam, Irene M; Schout, Barbara M A; Hendrikx, Ad J M; Scherpbier, Albert J J M; Witjes, J Alfred; van Merriënboer, Jeroen J G

    2012-01-01

    Most studies of simulator-based surgical skills training have focused on the acquisition of psychomotor skills, but surgical procedures are complex tasks requiring both psychomotor and cognitive skills. As skills training is modelled on expert performance consisting partly of unconscious automatic processes that experts are not always able to explicate, simulator developers should collaborate with educational experts and physicians in developing efficient and effective training programmes. This article presents an approach to designing simulator-based skill training comprising cognitive task analysis integrated with instructional design according to the four-component/instructional design model. This theory-driven approach is illustrated by a description of how it was used in the development of simulator-based training for the nephrostomy procedure.

  12. A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations

    PubMed Central

    Mak, Terrence S. T.; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang

    2008-01-01

    Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired. PMID:17190033

  13. An integrative top-down and bottom-up qualitative model construction framework for exploration of biochemical systems.

    PubMed

    Wu, Zujian; Pang, Wei; Coghill, George M

    Computational modelling of biochemical systems based on top-down and bottom-up approaches has been well studied over the last decade. In this research, after illustrating how to generate atomic components by a set of given reactants and two user pre-defined component patterns, we propose an integrative top-down and bottom-up modelling approach for stepwise qualitative exploration of interactions among reactants in biochemical systems. Evolution strategy is applied to the top-down modelling approach to compose models, and simulated annealing is employed in the bottom-up modelling approach to explore potential interactions based on models constructed from the top-down modelling process. Both the top-down and bottom-up approaches support stepwise modular addition or subtraction for the model evolution. Experimental results indicate that our modelling approach is feasible to learn the relationships among biochemical reactants qualitatively. In addition, hidden reactants of the target biochemical system can be obtained by generating complex reactants in corresponding composed models. Moreover, qualitatively learned models with inferred reactants and alternative topologies can be used for further web-lab experimental investigations by biologists of interest, which may result in a better understanding of the system.

  14. SLS Navigation Model-Based Design Approach

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and management of design requirements to the development of usable models, model requirements, and model verification and validation efforts. The models themselves are represented in C/C++ code and accompanying data files. Under the idealized process, potential ambiguity in specification is reduced because the model must be implementable versus a requirement which is not necessarily subject to this constraint. Further, the models are shown to emulate the hardware during validation. For models developed by the Navigation Team, a common interface/standalone environment was developed. The common environment allows for easy implementation in design and analysis tools. Mechanisms such as unit test cases ensure implementation as the developer intended. The model verification and validation process provides a very high level of component design insight. The origin and implementation of the SLS variant of Model-based Design is described from the perspective of the SLS Navigation Team. The format of the models and the requirements are described. The Model-based Design approach has many benefits but is not without potential complications. Key lessons learned associated with the implementation of the Model Based Design approach and process from infancy to verification and certification are discussed

  15. An ontology for component-based models of water resource systems

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  16. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE PAGES

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  17. Reusable Component Model Development Approach for Parallel and Distributed Simulation

    PubMed Central

    Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng

    2014-01-01

    Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751

  18. Supersonic propulsion simulation by incorporating component models in the large perturbation inlet (LAPIN) computer code

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Richard, Jacques C.

    1991-01-01

    An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.

  19. A Nonlinear Model for Gene-Based Gene-Environment Interaction.

    PubMed

    Sa, Jian; Liu, Xu; He, Tao; Liu, Guifen; Cui, Yuehua

    2016-06-04

    A vast amount of literature has confirmed the role of gene-environment (G×E) interaction in the etiology of complex human diseases. Traditional methods are predominantly focused on the analysis of interaction between a single nucleotide polymorphism (SNP) and an environmental variable. Given that genes are the functional units, it is crucial to understand how gene effects (rather than single SNP effects) are influenced by an environmental variable to affect disease risk. Motivated by the increasing awareness of the power of gene-based association analysis over single variant based approach, in this work, we proposed a sparse principle component regression (sPCR) model to understand the gene-based G×E interaction effect on complex disease. We first extracted the sparse principal components for SNPs in a gene, then the effect of each principal component was modeled by a varying-coefficient (VC) model. The model can jointly model variants in a gene in which their effects are nonlinearly influenced by an environmental variable. In addition, the varying-coefficient sPCR (VC-sPCR) model has nice interpretation property since the sparsity on the principal component loadings can tell the relative importance of the corresponding SNPs in each component. We applied our method to a human birth weight dataset in Thai population. We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using the Bonferroni correction method and one suggestive interaction. The model performance was further evaluated through simulation studies. Our model provides a system approach to evaluate gene-based G×E interaction.

  20. A Competence-Based Service for Supporting Self-Regulated Learning in Virtual Environments

    ERIC Educational Resources Information Center

    Nussbaumer, Alexander; Hillemann, Eva-Catherine; Gütl, Christian; Albert, Dietrich

    2015-01-01

    This paper presents a conceptual approach and a Web-based service that aim at supporting self-regulated learning in virtual environments. The conceptual approach consists of four components: 1) a self-regulated learning model for supporting a learner-centred learning process, 2) a psychological model for facilitating competence-based…

  1. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718

    DOE PAGES

    Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...

    2015-03-28

    Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less

  2. A Hybrid Coarse-graining Approach for Lipid Bilayers at Large Length and Time Scales

    PubMed Central

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    A hybrid analytic-systematic (HAS) coarse-grained (CG) lipid model is developed and employed in a large-scale simulation of a liposome. The methodology is termed hybrid analyticsystematic as one component of the interaction between CG sites is variationally determined from the multiscale coarse-graining (MS-CG) methodology, while the remaining component utilizes an analytic potential. The systematic component models the in-plane center of mass interaction of the lipids as determined from an atomistic-level MD simulation of a bilayer. The analytic component is based on the well known Gay-Berne ellipsoid of revolution liquid crystal model, and is designed to model the highly anisotropic interactions at a highly coarse-grained level. The HAS CG approach is the first step in an “aggressive” CG methodology designed to model multi-component biological membranes at very large length and timescales. PMID:19281167

  3. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  4. Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework

    NASA Astrophysics Data System (ADS)

    Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac

    2016-10-01

    Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.

  5. Systems engineering interfaces: A model based approach

    NASA Astrophysics Data System (ADS)

    Fosse, E.; Delp, C. L.

    The engineering of interfaces is a critical function of the discipline of Systems Engineering. Included in interface engineering are instances of interaction. Interfaces provide the specifications of the relevant properties of a system or component that can be connected to other systems or components while instances of interaction are identified in order to specify the actual integration to other systems or components. Current Systems Engineering practices rely on a variety of documents and diagrams to describe interface specifications and instances of interaction. The SysML[1] specification provides a precise model based representation for interfaces and interface instance integration. This paper will describe interface engineering as implemented by the Operations Revitalization Task using SysML, starting with a generic case and culminating with a focus on a Flight System to Ground Interaction. The reusability of the interface engineering approach presented as well as its extensibility to more complex interfaces and interactions will be shown. Model-derived tables will support the case studies shown and are examples of model-based documentation products.

  6. Equation-oriented specification of neural models for simulations

    PubMed Central

    Stimberg, Marcel; Goodman, Dan F. M.; Benichoux, Victor; Brette, Romain

    2013-01-01

    Simulating biological neuronal networks is a core method of research in computational neuroscience. A full specification of such a network model includes a description of the dynamics and state changes of neurons and synapses, as well as the synaptic connectivity patterns and the initial values of all parameters. A standard approach in neuronal modeling software is to build network models based on a library of pre-defined components and mechanisms; if a model component does not yet exist, it has to be defined in a special-purpose or general low-level language and potentially be compiled and linked with the simulator. Here we propose an alternative approach that allows flexible definition of models by writing textual descriptions based on mathematical notation. We demonstrate that this approach allows the definition of a wide range of models with minimal syntax. Furthermore, such explicit model descriptions allow the generation of executable code for various target languages and devices, since the description is not tied to an implementation. Finally, this approach also has advantages for readability and reproducibility, because the model description is fully explicit, and because it can be automatically parsed and transformed into formatted descriptions. The presented approach has been implemented in the Brian2 simulator. PMID:24550820

  7. A Model-Driven Approach to e-Course Management

    ERIC Educational Resources Information Center

    Savic, Goran; Segedinac, Milan; Milenkovic, Dušica; Hrin, Tamara; Segedinac, Mirjana

    2018-01-01

    This paper presents research on using a model-driven approach to the development and management of electronic courses. We propose a course management system which stores a course model represented as distinct machine-readable components containing domain knowledge of different course aspects. Based on this formally defined platform-independent…

  8. Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy.

    PubMed

    Jesse, Stephen; Kalinin, Sergei V

    2009-02-25

    An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.

  9. LEGEND, a LEO-to-GEO Environment Debris Model

    NASA Technical Reports Server (NTRS)

    Liou, Jer Chyi; Hall, Doyle T.

    2013-01-01

    LEGEND (LEO-to-GEO Environment Debris model) is a three-dimensional orbital debris evolutionary model that is capable of simulating the historical and future debris populations in the near-Earth environment. The historical component in LEGEND adopts a deterministic approach to mimic the known historical populations. Launched rocket bodies, spacecraft, and mission-related debris (rings, bolts, etc.) are added to the simulated environment. Known historical breakup events are reproduced, and fragments down to 1 mm in size are created. The LEGEND future projection component adopts a Monte Carlo approach and uses an innovative pair-wise collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations. This algorithm is based on a new "random sampling in time" approach that preserves characteristics of the traditional approach and captures the rapidly changing nature of the orbital debris environment. LEGEND is a Fortran 90-based numerical simulation program. It operates in a UNIX/Linux environment.

  10. Model-Drive Architecture for Agent-Based Systems

    NASA Technical Reports Server (NTRS)

    Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.

    2004-01-01

    The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.

  11. A Distributed Approach to System-Level Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, Indranil

    2012-01-01

    Prognostics, which deals with predicting remaining useful life of components, subsystems, and systems, is a key technology for systems health management that leads to improved safety and reliability with reduced costs. The prognostics problem is often approached from a component-centric view. However, in most cases, it is not specifically component lifetimes that are important, but, rather, the lifetimes of the systems in which these components reside. The system-level prognostics problem can be quite difficult due to the increased scale and scope of the prognostics problem and the relative Jack of scalability and efficiency of typical prognostics approaches. In order to address these is ues, we develop a distributed solution to the system-level prognostics problem, based on the concept of structural model decomposition. The system model is decomposed into independent submodels. Independent local prognostics subproblems are then formed based on these local submodels, resul ting in a scalable, efficient, and flexible distributed approach to the system-level prognostics problem. We provide a formulation of the system-level prognostics problem and demonstrate the approach on a four-wheeled rover simulation testbed. The results show that the system-level prognostics problem can be accurately and efficiently solved in a distributed fashion.

  12. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  13. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.

    PubMed

    Ng, S K; McLachlan, G J

    2003-04-15

    We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.

  14. Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures

    NASA Technical Reports Server (NTRS)

    Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea

    2015-01-01

    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.

  15. An approach to the mathematical modelling of a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Averner, M. M.

    1981-01-01

    An approach to the design of a computer based model of a closed ecological life-support system suitable for use in extraterrestrial habitats is presented. The model is based on elemental mass balance and contains representations of the metabolic activities of biological components. The model can be used as a tool in evaluating preliminary designs for closed regenerative life support systems and as a method for predicting the behavior of such systems.

  16. The Gravitational Process Path (GPP) model (v1.0) - a GIS-based simulation framework for gravitational processes

    NASA Astrophysics Data System (ADS)

    Wichmann, Volker

    2017-09-01

    The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each component several modeling approaches are provided, which makes the tool configurable for different processes such as rockfall, debris flows or snow avalanches. The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping but also contains components for scenario-based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their applicability in numerous studies, also including geomorphological research questions such as the delineation of sediment cascades or the study of process connectivity. This is the first open-source implementation, completely re-written, extended and improved in many ways. The tool has been committed to the main repository of the System for Automated Geoscientific Analyses (SAGA) and thus will be available with every SAGA release.

  17. Validation of a Parametric Approach for 3d Fortification Modelling: Application to Scale Models

    NASA Astrophysics Data System (ADS)

    Jacquot, K.; Chevrier, C.; Halin, G.

    2013-02-01

    Parametric modelling approach applied to cultural heritage virtual representation is a field of research explored for years since it can address many limitations of digitising tools. For example, essential historical sources for fortification virtual reconstructions like plans-reliefs have several shortcomings when they are scanned. To overcome those problems, knowledge based-modelling can be used: knowledge models based on the analysis of theoretical literature of a specific domain such as bastioned fortification treatises can be the cornerstone of the creation of a parametric library of fortification components. Implemented in Grasshopper, these components are manually adjusted on the data available (i.e. 3D surveys of plans-reliefs or scanned maps). Most of the fortification area is now modelled and the question of accuracy assessment is raised. A specific method is used to evaluate the accuracy of the parametric components. The results of the assessment process will allow us to validate the parametric approach. The automation of the adjustment process can finally be planned. The virtual model of fortification is part of a larger project aimed at valorising and diffusing a very unique cultural heritage item: the collection of plans-reliefs. As such, knowledge models are precious assets when automation and semantic enhancements will be considered.

  18. Computational model of precision grip in Parkinson's disease: a utility based approach

    PubMed Central

    Gupta, Ankur; Balasubramani, Pragathi P.; Chakravarthy, V. Srinivasa

    2013-01-01

    We propose a computational model of Precision Grip (PG) performance in normal subjects and Parkinson's Disease (PD) patients. Prior studies on grip force generation in PD patients show an increase in grip force during ON medication and an increase in the variability of the grip force during OFF medication (Ingvarsson et al., 1997; Fellows et al., 1998). Changes in grip force generation in dopamine-deficient PD conditions strongly suggest contribution of the Basal Ganglia, a deep brain system having a crucial role in translating dopamine signals to decision making. The present approach is to treat the problem of modeling grip force generation as a problem of action selection, which is one of the key functions of the Basal Ganglia. The model consists of two components: (1) the sensory-motor loop component, and (2) the Basal Ganglia component. The sensory-motor loop component converts a reference position and a reference grip force, into lift force and grip force profiles, respectively. These two forces cooperate in grip-lifting a load. The sensory-motor loop component also includes a plant model that represents the interaction between two fingers involved in PG, and the object to be lifted. The Basal Ganglia component is modeled using Reinforcement Learning with the significant difference that the action selection is performed using utility distribution instead of using purely Value-based distribution, thereby incorporating risk-based decision making. The proposed model is able to account for the PG results from normal and PD patients accurately (Ingvarsson et al., 1997; Fellows et al., 1998). To our knowledge the model is the first model of PG in PD conditions. PMID:24348373

  19. Developing a semantic web model for medical differential diagnosis recommendation.

    PubMed

    Mohammed, Osama; Benlamri, Rachid

    2014-10-01

    In this paper we describe a novel model for differential diagnosis designed to make recommendations by utilizing semantic web technologies. The model is a response to a number of requirements, ranging from incorporating essential clinical diagnostic semantics to the integration of data mining for the process of identifying candidate diseases that best explain a set of clinical features. We introduce two major components, which we find essential to the construction of an integral differential diagnosis recommendation model: the evidence-based recommender component and the proximity-based recommender component. Both approaches are driven by disease diagnosis ontologies designed specifically to enable the process of generating diagnostic recommendations. These ontologies are the disease symptom ontology and the patient ontology. The evidence-based diagnosis process develops dynamic rules based on standardized clinical pathways. The proximity-based component employs data mining to provide clinicians with diagnosis predictions, as well as generates new diagnosis rules from provided training datasets. This article describes the integration between these two components along with the developed diagnosis ontologies to form a novel medical differential diagnosis recommendation model. This article also provides test cases from the implementation of the overall model, which shows quite promising diagnostic recommendation results.

  20. Advanced and secure architectural EHR approaches.

    PubMed

    Blobel, Bernd

    2006-01-01

    Electronic Health Records (EHRs) provided as a lifelong patient record advance towards core applications of distributed and co-operating health information systems and health networks. For meeting the challenge of scalable, flexible, portable, secure EHR systems, the underlying EHR architecture must be based on the component paradigm and model driven, separating platform-independent and platform-specific models. Allowing manageable models, real systems must be decomposed and simplified. The resulting modelling approach has to follow the ISO Reference Model - Open Distributing Processing (RM-ODP). The ISO RM-ODP describes any system component from different perspectives. Platform-independent perspectives contain the enterprise view (business process, policies, scenarios, use cases), the information view (classes and associations) and the computational view (composition and decomposition), whereas platform-specific perspectives concern the engineering view (physical distribution and realisation) and the technology view (implementation details from protocols up to education and training) on system components. Those views have to be established for components reflecting aspects of all domains involved in healthcare environments including administrative, legal, medical, technical, etc. Thus, security-related component models reflecting all view mentioned have to be established for enabling both application and communication security services as integral part of the system's architecture. Beside decomposition and simplification of system regarding the different viewpoint on their components, different levels of systems' granularity can be defined hiding internals or focusing on properties of basic components to form a more complex structure. The resulting models describe both structure and behaviour of component-based systems. The described approach has been deployed in different projects defining EHR systems and their underlying architectural principles. In that context, the Australian GEHR project, the openEHR initiative, the revision of CEN ENV 13606 "Electronic Health Record communication", all based on Archetypes, but also the HL7 version 3 activities are discussed in some detail. The latter include the HL7 RIM, the HL7 Development Framework, the HL7's clinical document architecture (CDA) as well as the set of models from use cases, activity diagrams, sequence diagrams up to Domain Information Models (DMIMs) and their building blocks Common Message Element Types (CMET) Constraining Models to their underlying concepts. The future-proof EHR architecture as open, user-centric, user-friendly, flexible, scalable, portable core application in health information systems and health networks has to follow advanced architectural paradigms.

  1. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  2. Regularized Generalized Structured Component Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun

    2009-01-01

    Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…

  3. ACCLAIM: A Model for Leading the Community.

    ERIC Educational Resources Information Center

    Vaughan, George B.; Gillett-Karam, Rosemary

    1993-01-01

    Advocates an approach to community college leadership based on community-based programming. Describes North Carolina State University's Academy for Community College Leadership Advancement, Innovation, and Modeling (ACCLAIM) and its components (i.e., continuing education, fellows program, information development/dissemination, and university…

  4. Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems

    NASA Astrophysics Data System (ADS)

    Nalbantis, I.; Efstratiadis, A.; Rozos, E.; Kopsiafti, M.; Koutsoyiannis, D.

    2011-03-01

    The modelling of human-modified basins that are inadequately measured constitutes a challenge for hydrological science. Often, models for such systems are detailed and hydraulics-based for only one part of the system while for other parts oversimplified models or rough assumptions are used. This is typically a bottom-up approach, which seeks to exploit knowledge of hydrological processes at the micro-scale at some components of the system. Also, it is a monomeric approach in two ways: first, essential interactions among system components may be poorly represented or even omitted; second, differences in the level of detail of process representation can lead to uncontrolled errors. Additionally, the calibration procedure merely accounts for the reproduction of the observed responses using typical fitting criteria. The paper aims to raise some critical issues, regarding the entire modelling approach for such hydrosystems. For this, two alternative modelling strategies are examined that reflect two modelling approaches or philosophies: a dominant bottom-up approach, which is also monomeric and, very often, based on output information, and a top-down and holistic approach based on generalized information. Critical options are examined, which codify the differences between the two strategies: the representation of surface, groundwater and water management processes, the schematization and parameterization concepts and the parameter estimation methodology. The first strategy is based on stand-alone models for surface and groundwater processes and for water management, which are employed sequentially. For each model, a different (detailed or coarse) parameterization is used, which is dictated by the hydrosystem schematization. The second strategy involves model integration for all processes, parsimonious parameterization and hybrid manual-automatic parameter optimization based on multiple objectives. A test case is examined in a hydrosystem in Greece with high complexities, such as extended surface-groundwater interactions, ill-defined boundaries, sinks to the sea and anthropogenic intervention with unmeasured abstractions both from surface water and aquifers. Criteria for comparison are the physical consistency of parameters, the reproduction of runoff hydrographs at multiple sites within the studied basin, the likelihood of uncontrolled model outputs, the required amount of computational effort and the performance within a stochastic simulation setting. Our work allows for investigating the deterioration of model performance in cases where no balanced attention is paid to all components of human-modified hydrosystems and the related information. Also, sources of errors are identified and their combined effect are evaluated.

  5. Bayesian hierarchical functional data analysis via contaminated informative priors.

    PubMed

    Scarpa, Bruno; Dunson, David B

    2009-09-01

    A variety of flexible approaches have been proposed for functional data analysis, allowing both the mean curve and the distribution about the mean to be unknown. Such methods are most useful when there is limited prior information. Motivated by applications to modeling of temperature curves in the menstrual cycle, this article proposes a flexible approach for incorporating prior information in semiparametric Bayesian analyses of hierarchical functional data. The proposed approach is based on specifying the distribution of functions as a mixture of a parametric hierarchical model and a nonparametric contamination. The parametric component is chosen based on prior knowledge, while the contamination is characterized as a functional Dirichlet process. In the motivating application, the contamination component allows unanticipated curve shapes in unhealthy menstrual cycles. Methods are developed for posterior computation, and the approach is applied to data from a European fecundability study.

  6. Evaluating model accuracy for model-based reasoning

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Roden, Joseph

    1992-01-01

    Described here is an approach to automatically assessing the accuracy of various components of a model. In this approach, actual data from the operation of a target system is used to drive statistical measures to evaluate the prediction accuracy of various portions of the model. We describe how these statistical measures of model accuracy can be used in model-based reasoning for monitoring and design. We then describe the application of these techniques to the monitoring and design of the water recovery system of the Environmental Control and Life Support System (ECLSS) of Space Station Freedom.

  7. Frequency Response Function Expansion for Unmeasured Translation and Rotation Dofs for Impedance Modelling Applications

    NASA Astrophysics Data System (ADS)

    Avitabile, P.; O'Callahan, J.

    2003-07-01

    Inclusion of rotational effects is critical for the accuracy of the predicted system characteristics, in almost all system modelling studies. However, experimentally derived information for the description of one or more of the components for the system will generally not have any rotational effects included in the description of the component. The lack of rotational effects has long affected the results from any system model development whether using a modal-based approach or an impedance-based approach. Several new expansion processes are described herein for the development of FRFs needed for impedance-based system models. These techniques expand experimentally derived mode shapes, residual modes from the modal parameter estimation process and FRFs directly to allow for the inclusion of the necessary rotational dof. The FRFs involving translational to rotational dofs are developed as well as the rotational to rotational dof. Examples are provided to show the use of these techniques.

  8. Model-based approach to study the impact of biofuels on the sustainability of an ecological system

    EPA Science Inventory

    The importance and complexity of sustainability have been well recognized and a formal study of sustainability based on system theory approaches is imperative as many of the relationships between various components of the ecosystem could be nonlinear, intertwined and non-intuitiv...

  9. Model based approach to Study the Impact of Biofuels on the Sustainability of an Ecological System

    EPA Science Inventory

    The importance and complexity of sustainability has been well recognized and a formal study of sustainability based on system theory approaches is imperative as many of the relationships between various components of the ecosystem could be nonlinear, intertwined and non intuitive...

  10. Modelling Wind Turbine Failures based on Weather Conditions

    NASA Astrophysics Data System (ADS)

    Reder, Maik; Melero, Julio J.

    2017-11-01

    A large proportion of the overall costs of a wind farm is directly related to operation and maintenance (O&M) tasks. By applying predictive O&M strategies rather than corrective approaches these costs can be decreased significantly. Here, especially wind turbine (WT) failure models can help to understand the components’ degradation processes and enable the operators to anticipate upcoming failures. Usually, these models are based on the age of the systems or components. However, latest research shows that the on-site weather conditions also affect the turbine failure behaviour significantly. This study presents a novel approach to model WT failures based on the environmental conditions to which they are exposed to. The results focus on general WT failures, as well as on four main components: gearbox, generator, pitch and yaw system. A penalised likelihood estimation is used in order to avoid problems due to for example highly correlated input covariates. The relative importance of the model covariates is assessed in order to analyse the effect of each weather parameter on the model output.

  11. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  12. Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation

    NASA Astrophysics Data System (ADS)

    Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno

    2014-05-01

    A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides further validation of FSD, the next steps include an extension of the study to different catchments and other hydrological models with a similar structure.

  13. Measurement of EUV lithography pupil amplitude and phase variation via image-based methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Zachary; Verduijn, Erik; Wood, Obert R.

    2016-04-01

    Here, an approach to image-based EUV aberration metrology using binary mask targets and iterative model-based solutions to extract both the amplitude and phase components of the aberrated pupil function is presented. The approach is enabled through previously developed modeling, fitting, and extraction algorithms. We seek to examine the behavior of pupil amplitude variation in real-optical systems. Optimized target images were captured under several conditions to fit the resulting pupil responses. Both the amplitude and phase components of the pupil function were extracted from a zone-plate-based EUV mask microscope. The pupil amplitude variation was expanded in three different bases: Zernike polynomials,more » Legendre polynomials, and Hermite polynomials. It was found that the Zernike polynomials describe pupil amplitude variation most effectively of the three.« less

  14. Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.

    PubMed

    Saccenti, Edoardo; Timmerman, Marieke E

    2017-03-01

    Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.

  15. Emergence of a snake-like structure in mobile distributed agents: an exploratory agent-based modeling approach.

    PubMed

    Niazi, Muaz A

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems.

  16. Emergence of a Snake-Like Structure in Mobile Distributed Agents: An Exploratory Agent-Based Modeling Approach

    PubMed Central

    Niazi, Muaz A.

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems. PMID:24701135

  17. An investigation of modelling and design for software service applications.

    PubMed

    Anjum, Maria; Budgen, David

    2017-01-01

    Software services offer the opportunity to use a component-based approach for the design of applications. However, this needs a deeper understanding of how to develop service-based applications in a systematic manner, and of the set of properties that need to be included in the 'design model'. We have used a realistic application to explore systematically how service-based designs can be created and described. We first identified the key properties of an SOA (service oriented architecture) and then undertook a single-case case study to explore its use in the development of a design for a large-scale application in energy engineering, modelling this with existing notations wherever possible. We evaluated the resulting design model using two walkthroughs with both domain and application experts. We were able to successfully develop a design model around the ten properties identified, and to describe it by adapting existing design notations. A component-based approach to designing such systems does appear to be feasible. However, it needs the assistance of a more integrated set of notations for describing the resulting design model.

  18. Physics-of-Failure Approach to Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.

    2017-01-01

    As more and more electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of the electrical components present in the system. In case of electric vehicles, computing remaining battery charge is safety-critical. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle. In this presentation our approach to develop a system level health monitoring safety indicator for different electronic components is presented which runs estimation and prediction algorithms to determine state-of-charge and estimate remaining useful life of respective components. Given models of the current and future system behavior, the general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.

  19. The May Center for Early Childhood Education: Description of a Continuum of Services Model for Children with Autism.

    ERIC Educational Resources Information Center

    Campbell, Susan; Cannon, Barbara; Ellis, James T.; Lifter, Karen; Luiselli, James K.; Navalta, Carryl P.; Taras, Marie

    1998-01-01

    Describes a comprehensive continuum of services model for children with autism developed by a human services agency in Massachusetts, which incorporates these and additional empirically based approaches. Service components, methodologies, and program objectives are described, including representative summary data. Best practice approaches toward…

  20. A UML-based ontology for describing hospital information system architectures.

    PubMed

    Winter, A; Brigl, B; Wendt, T

    2001-01-01

    To control the heterogeneity inherent to hospital information systems the information management needs appropriate hospital information systems modeling methods or techniques. This paper shows that, for several reasons, available modeling approaches are not able to answer relevant questions of information management. To overcome this major deficiency we offer an UML-based ontology for describing hospital information systems architectures. This ontology views at three layers: the domain layer, the logical tool layer, and the physical tool layer, and defines the relevant components. The relations between these components, especially between components of different layers make the answering of our information management questions possible.

  1. Use of Annotations for Component and Framework Interoperability

    NASA Astrophysics Data System (ADS)

    David, O.; Lloyd, W.; Carlson, J.; Leavesley, G. H.; Geter, F.

    2009-12-01

    The popular programming languages Java and C# provide annotations, a form of meta-data construct. Software frameworks for web integration, web services, database access, and unit testing now take advantage of annotations to reduce the complexity of APIs and the quantity of integration code between the application and framework infrastructure. Adopting annotation features in frameworks has been observed to lead to cleaner and leaner application code. The USDA Object Modeling System (OMS) version 3.0 fully embraces the annotation approach and additionally defines a meta-data standard for components and models. In version 3.0 framework/model integration previously accomplished using API calls is now achieved using descriptive annotations. This enables the framework to provide additional functionality non-invasively such as implicit multithreading, and auto-documenting capabilities while achieving a significant reduction in the size of the model source code. Using a non-invasive methodology leads to models and modeling components with only minimal dependencies on the modeling framework. Since models and modeling components are not directly bound to framework by the use of specific APIs and/or data types they can more easily be reused both within the framework as well as outside of it. To study the effectiveness of an annotation based framework approach with other modeling frameworks, a framework-invasiveness study was conducted to evaluate the effects of framework design on model code quality. A monthly water balance model was implemented across several modeling frameworks and several software metrics were collected. The metrics selected were measures of non-invasive design methods for modeling frameworks from a software engineering perspective. It appears that the use of annotations positively impacts several software quality measures. In a next step, the PRMS model was implemented in OMS 3.0 and is currently being implemented for water supply forecasting in the western United States at the USDA NRCS National Water and Climate Center. PRMS is a component based modular precipitation-runoff model developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow and general basin hydrology. The new OMS 3.0 PRMS model source code is more concise and flexible as a result of using the new framework’s annotation based approach. The fully annotated components are now providing information directly for (i) model assembly and building, (ii) dataflow analysis for implicit multithreading, (iii) automated and comprehensive model documentation of component dependencies, physical data properties, (iv) automated model and component testing, and (v) automated audit-traceability to account for all model resources leading to a particular simulation result. Experience to date has demonstrated the multi-purpose value of using annotations. Annotations are also a feasible and practical method to enable interoperability among models and modeling frameworks. As a prototype example, model code annotations were used to generate binding and mediation code to allow the use of OMS 3.0 model components within the OpenMI context.

  2. A model for the progressive failure of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Lo, D. C.

    1991-01-01

    Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.

  3. An efficient two-stage approach for image-based FSI analysis of atherosclerotic arteries

    PubMed Central

    Rayz, Vitaliy L.; Mofrad, Mohammad R. K.; Saloner, David

    2010-01-01

    Patient-specific biomechanical modeling of atherosclerotic arteries has the potential to aid clinicians in characterizing lesions and determining optimal treatment plans. To attain high levels of accuracy, recent models use medical imaging data to determine plaque component boundaries in three dimensions, and fluid–structure interaction is used to capture mechanical loading of the diseased vessel. As the plaque components and vessel wall are often highly complex in shape, constructing a suitable structured computational mesh is very challenging and can require a great deal of time. Models based on unstructured computational meshes require relatively less time to construct and are capable of accurately representing plaque components in three dimensions. These models unfortunately require additional computational resources and computing time for accurate and meaningful results. A two-stage modeling strategy based on unstructured computational meshes is proposed to achieve a reasonable balance between meshing difficulty and computational resource and time demand. In this method, a coarsegrained simulation of the full arterial domain is used to guide and constrain a fine-scale simulation of a smaller region of interest within the full domain. Results for a patient-specific carotid bifurcation model demonstrate that the two-stage approach can afford a large savings in both time for mesh generation and time and resources needed for computation. The effects of solid and fluid domain truncation were explored, and were shown to minimally affect accuracy of the stress fields predicted with the two-stage approach. PMID:19756798

  4. Hybrid 3D reconstruction and image-based rendering techniques for reality modeling

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.

    2000-12-01

    This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.

  5. Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Cost, Thomas L.; Hofmann, Martin O.

    1990-01-01

    A prototype of an expert system was developed which applies qualitative or model-based reasoning to the task of post-test analysis and diagnosis of data resulting from a rocket engine firing. A combined component-based and process theory approach is adopted as the basis for system modeling. Such an approach provides a framework for explaining both normal and deviant system behavior in terms of individual component functionality. The diagnosis function is applied to digitized sensor time-histories generated during engine firings. The generic system is applicable to any liquid rocket engine but was adapted specifically in this work to the Space Shuttle Main Engine (SSME). The system is applied to idealized data resulting from turbomachinery malfunction in the SSME.

  6. Modelling Creativity: Identifying Key Components through a Corpus-Based Approach.

    PubMed

    Jordanous, Anna; Keller, Bill

    2016-01-01

    Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research.

  7. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.

    PubMed

    Laomettachit, Teeraphan; Chen, Katherine C; Baumann, William T; Tyson, John J

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.

  8. HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Brownston, Lee

    2012-01-01

    Hybrid Diagnosis Engine (HyDE) is a general framework for stochastic and hybrid model-based diagnosis that offers flexibility to the diagnosis application designer. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. Several alternative algorithms are available for the various steps in diagnostic reasoning. This approach is extensible, with support for the addition of new modeling paradigms as well as diagnostic reasoning algorithms for existing or new modeling paradigms. HyDE is a general framework for stochastic hybrid model-based diagnosis of discrete faults; that is, spontaneous changes in operating modes of components. HyDE combines ideas from consistency-based and stochastic approaches to model- based diagnosis using discrete and continuous models to create a flexible and extensible architecture for stochastic and hybrid diagnosis. HyDE supports the use of multiple paradigms and is extensible to support new paradigms. HyDE generates candidate diagnoses and checks them for consistency with the observations. It uses hybrid models built by the users and sensor data from the system to deduce the state of the system over time, including changes in state indicative of faults. At each time step when observations are available, HyDE checks each existing candidate for continued consistency with the new observations. If the candidate is consistent, it continues to remain in the candidate set. If it is not consistent, then the information about the inconsistency is used to generate successor candidates while discarding the candidate that was inconsistent. The models used by HyDE are similar to simulation models. They describe the expected behavior of the system under nominal and fault conditions. The model can be constructed in modular and hierarchical fashion by building component/subsystem models (which may themselves contain component/ subsystem models) and linking them through shared variables/parameters. The component model is expressed as operating modes of the component and conditions for transitions between these various modes. Faults are modeled as transitions whose conditions for transitions are unknown (and have to be inferred through the reasoning process). Finally, the behavior of the components is expressed as a set of variables/ parameters and relations governing the interaction between the variables. The hybrid nature of the systems being modeled is captured by a combination of the above transitional model and behavioral model. Stochasticity is captured as probabilities associated with transitions (indicating the likelihood of that transition being taken), as well as noise on the sensed variables.

  9. Approaches to modelling uranium (VI) adsorption on natural mineral assemblages

    USGS Publications Warehouse

    Waite, T.D.; Davis, J.A.; Fenton, B.R.; Payne, T.E.

    2000-01-01

    Component additivity (CA) and generalised composite (GC) approaches to deriving a suitable surface complexation model for description of U(VI) adsorption to natural mineral assemblages are pursued in this paper with good success. A single, ferrihydrite-like component is found to reasonably describe uranyl uptake to a number of kaolinitic iron-rich natural substrates at pH > 4 in the CA approach with previously published information on nature of surface complexes, acid-base properties of surface sites and electrostatic effects used in the model. The GC approach, in which little pre-knowledge about generic surface sites is assumed, gives even better fits and would appear to be a method of particular strength for application in areas such as performance assessment provided the model is developed in a careful, stepwise manner with simplicity and goodness of fit as the major criteria for acceptance.

  10. Respiratory protective device design using control system techniques

    NASA Technical Reports Server (NTRS)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  11. The Livingstone Model of a Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Bajwa, Anupa; Sweet, Adam; Korsmeyer, David (Technical Monitor)

    2003-01-01

    Livingstone is a discrete, propositional logic-based inference engine that has been used for diagnosis of physical systems. We present a component-based model of a Main Propulsion System (MPS) and say how it is used with Livingstone (L2) in order to implement a diagnostic system for integrated vehicle health management (IVHM) for the Propulsion IVHM Technology Experiment (PITEX). We start by discussing the process of conceptualizing such a model. We describe graphical tools that facilitated the generation of the model. The model is composed of components (which map onto physical components), connections between components and constraints. A component is specified by variables, with a set of discrete, qualitative values for each variable in its local nominal and failure modes. For each mode, the model specifies the component's behavior and transitions. We describe the MPS components' nominal and fault modes and associated Livingstone variables and data structures. Given this model, and observed external commands and observations from the system, Livingstone tracks the state of the MPS over discrete time-steps by choosing trajectories that are consistent with observations. We briefly discuss how the compiled model fits into the overall PITEX architecture. Finally we summarize our modeling experience, discuss advantages and disadvantages of our approach, and suggest enhancements to the modeling process.

  12. An investigation of modelling and design for software service applications

    PubMed Central

    2017-01-01

    Software services offer the opportunity to use a component-based approach for the design of applications. However, this needs a deeper understanding of how to develop service-based applications in a systematic manner, and of the set of properties that need to be included in the ‘design model’. We have used a realistic application to explore systematically how service-based designs can be created and described. We first identified the key properties of an SOA (service oriented architecture) and then undertook a single-case case study to explore its use in the development of a design for a large-scale application in energy engineering, modelling this with existing notations wherever possible. We evaluated the resulting design model using two walkthroughs with both domain and application experts. We were able to successfully develop a design model around the ten properties identified, and to describe it by adapting existing design notations. A component-based approach to designing such systems does appear to be feasible. However, it needs the assistance of a more integrated set of notations for describing the resulting design model. PMID:28489905

  13. A Distributed Approach to System-Level Prognostics

    DTIC Science & Technology

    2012-09-01

    the end of (useful) life ( EOL ) and/or the remaining useful life (RUL) of components, subsystems, or systems. The prognostics problem itself can be...system state estimate, computes EOL and/or RUL. In this paper, we focus on a model-based prognostics approach (Orchard & Vachtse- vanos, 2009; Daigle...been focused on individual components, and determining their EOL and RUL, e.g., (Orchard & Vachtsevanos, 2009; Saha & Goebel, 2009; Daigle & Goebel

  14. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6

    PubMed Central

    Ke, A; Barter, Z; Rowland‐Yeo, K

    2016-01-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug‐drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0–1.7‐fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz. PMID:27435752

  15. A framework for conducting mechanistic based reliability assessments of components operating in complex systems

    NASA Astrophysics Data System (ADS)

    Wallace, Jon Michael

    2003-10-01

    Reliability prediction of components operating in complex systems has historically been conducted in a statistically isolated manner. Current physics-based, i.e. mechanistic, component reliability approaches focus more on component-specific attributes and mathematical algorithms and not enough on the influence of the system. The result is that significant error can be introduced into the component reliability assessment process. The objective of this study is the development of a framework that infuses the needs and influence of the system into the process of conducting mechanistic-based component reliability assessments. The formulated framework consists of six primary steps. The first three steps, identification, decomposition, and synthesis, are primarily qualitative in nature and employ system reliability and safety engineering principles to construct an appropriate starting point for the component reliability assessment. The following two steps are the most unique. They involve a step to efficiently characterize and quantify the system-driven local parameter space and a subsequent step using this information to guide the reduction of the component parameter space. The local statistical space quantification step is accomplished using two proposed multivariate probability models: Multi-Response First Order Second Moment and Taylor-Based Inverse Transformation. Where existing joint probability models require preliminary distribution and correlation information of the responses, these models combine statistical information of the input parameters with an efficient sampling of the response analyses to produce the multi-response joint probability distribution. Parameter space reduction is accomplished using Approximate Canonical Correlation Analysis (ACCA) employed as a multi-response screening technique. The novelty of this approach is that each individual local parameter and even subsets of parameters representing entire contributing analyses can now be rank ordered with respect to their contribution to not just one response, but the entire vector of component responses simultaneously. The final step of the framework is the actual probabilistic assessment of the component. Although the same multivariate probability tools employed in the characterization step can be used for the component probability assessment, variations of this final step are given to allow for the utilization of existing probabilistic methods such as response surface Monte Carlo and Fast Probability Integration. The overall framework developed in this study is implemented to assess the finite-element based reliability prediction of a gas turbine airfoil involving several failure responses. Results of this implementation are compared to results generated using the conventional 'isolated' approach as well as a validation approach conducted through large sample Monte Carlo simulations. The framework resulted in a considerable improvement to the accuracy of the part reliability assessment and an improved understanding of the component failure behavior. Considerable statistical complexity in the form of joint non-normal behavior was found and accounted for using the framework. Future applications of the framework elements are discussed.

  16. Emotions, Intelligence, and Performance. Symposium 45. [Concurrent Symposium Session at AHRD Annual Conference, 2000.

    ERIC Educational Resources Information Center

    Bryant, Doug

    This paper, titled "The Components of Emotional Intelligence and the Relationship to Sales Performance," presents two general approaches to studying emotional intelligence. The first is a broad model approach that considers abilities as well as a series of personality traits. The second is based on ability models. The possible correlation between…

  17. The Primary Care Behavioral Health (PCBH) Model: An Overview and Operational Definition.

    PubMed

    Reiter, Jeffrey T; Dobmeyer, Anne C; Hunter, Christopher L

    2018-06-01

    The Primary Care Behavioral Health (PCBH) model is a prominent approach to the integration of behavioral health services into primary care settings. Implementation of the PCBH model has grown over the past two decades, yet research and training efforts have been slowed by inconsistent terminology and lack of a concise, operationalized definition of the model and its key components. This article provides the first concise operationalized definition of the PCBH model, developed from examination of multiple published resources and consultation with nationally recognized PCBH model experts. The definition frames the model as a team-based approach to managing biopsychosocial issues that present in primary care, with the over-arching goal of improving primary care in general. The article provides a description of the key components and strategies used in the model, the rationale for those strategies, a brief comparison of this model to other integration approaches, a focused summary of PCBH model outcomes, and an overview of common challenges to implementing the model.

  18. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.

  19. Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches.

    PubMed

    Arazi, Arnon; Pendergraft, William F; Ribeiro, Ruy M; Perelson, Alan S; Hacohen, Nir

    2013-10-31

    Systems immunology is an emerging paradigm that aims at a more systematic and quantitative understanding of the immune system. Two major approaches have been utilized to date in this field: unbiased data-driven modeling to comprehensively identify molecular and cellular components of a system and their interactions; and hypothesis-based quantitative modeling to understand the operating principles of a system by extracting a minimal set of variables and rules underlying them. In this review, we describe applications of the two approaches to the study of viral infections and autoimmune diseases in humans, and discuss possible ways by which these two approaches can synergize when applied to human immunology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Model-based tomographic reconstruction of objects containing known components.

    PubMed

    Stayman, J Webster; Otake, Yoshito; Prince, Jerry L; Khanna, A Jay; Siewerdsen, Jeffrey H

    2012-10-01

    The likelihood of finding manufactured components (surgical tools, implants, etc.) within a tomographic field-of-view has been steadily increasing. One reason is the aging population and proliferation of prosthetic devices, such that more people undergoing diagnostic imaging have existing implants, particularly hip and knee implants. Another reason is that use of intraoperative imaging (e.g., cone-beam CT) for surgical guidance is increasing, wherein surgical tools and devices such as screws and plates are placed within or near to the target anatomy. When these components contain metal, the reconstructed volumes are likely to contain severe artifacts that adversely affect the image quality in tissues both near and far from the component. Because physical models of such components exist, there is a unique opportunity to integrate this knowledge into the reconstruction algorithm to reduce these artifacts. We present a model-based penalized-likelihood estimation approach that explicitly incorporates known information about component geometry and composition. The approach uses an alternating maximization method that jointly estimates the anatomy and the position and pose of each of the known components. We demonstrate that the proposed method can produce nearly artifact-free images even near the boundary of a metal implant in simulated vertebral pedicle screw reconstructions and even under conditions of substantial photon starvation. The simultaneous estimation of device pose also provides quantitative information on device placement that could be valuable to quality assurance and verification of treatment delivery.

  1. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial.

    PubMed

    Corkeron, Peter J

    2009-04-23

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish-fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.

  2. Cure modeling in real-time prediction: How much does it help?

    PubMed

    Ying, Gui-Shuang; Zhang, Qiang; Lan, Yu; Li, Yimei; Heitjan, Daniel F

    2017-08-01

    Various parametric and nonparametric modeling approaches exist for real-time prediction in time-to-event clinical trials. Recently, Chen (2016 BMC Biomedical Research Methodology 16) proposed a prediction method based on parametric cure-mixture modeling, intending to cover those situations where it appears that a non-negligible fraction of subjects is cured. In this article we apply a Weibull cure-mixture model to create predictions, demonstrating the approach in RTOG 0129, a randomized trial in head-and-neck cancer. We compare the ultimate realized data in RTOG 0129 to interim predictions from a Weibull cure-mixture model, a standard Weibull model without a cure component, and a nonparametric model based on the Bayesian bootstrap. The standard Weibull model predicted that events would occur earlier than the Weibull cure-mixture model, but the difference was unremarkable until late in the trial when evidence for a cure became clear. Nonparametric predictions often gave undefined predictions or infinite prediction intervals, particularly at early stages of the trial. Simulations suggest that cure modeling can yield better-calibrated prediction intervals when there is a cured component, or the appearance of a cured component, but at a substantial cost in the average width of the intervals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    NASA Astrophysics Data System (ADS)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  4. Positionalism of Relations and Its Consequences for Fact-Oriented Modelling

    NASA Astrophysics Data System (ADS)

    Keet, C. Maria

    Natural language-based conceptual modelling as well as the use of diagrams have been essential components of fact-oriented modelling from its inception. However, transforming natural language to its corresponding object-role modelling diagram, and vv., is not trivial. This is due to the more fundamental problem of the different underlying ontological commitments concerning positionalism of the fact types. The natural language-based approach adheres to the standard view whereas the diagram-based approach has a positionalist commitment, which is, from an ontological perspective, incompatible with the former. This hinders seamless transition between the two approaches and affects interoperability with other conceptual modelling languages. One can adopt either the limited standard view or the positionalist commitment with fact types that may not be easily verbalisable but which facilitates data integration and reusability of conceptual models with ontological foundations.

  5. Action Recognition Using Nonnegative Action Component Representation and Sparse Basis Selection.

    PubMed

    Wang, Haoran; Yuan, Chunfeng; Hu, Weiming; Ling, Haibin; Yang, Wankou; Sun, Changyin

    2014-02-01

    In this paper, we propose using high-level action units to represent human actions in videos and, based on such units, a novel sparse model is developed for human action recognition. There are three interconnected components in our approach. First, we propose a new context-aware spatial-temporal descriptor, named locally weighted word context, to improve the discriminability of the traditionally used local spatial-temporal descriptors. Second, from the statistics of the context-aware descriptors, we learn action units using the graph regularized nonnegative matrix factorization, which leads to a part-based representation and encodes the geometrical information. These units effectively bridge the semantic gap in action recognition. Third, we propose a sparse model based on a joint l2,1-norm to preserve the representative items and suppress noise in the action units. Intuitively, when learning the dictionary for action representation, the sparse model captures the fact that actions from the same class share similar units. The proposed approach is evaluated on several publicly available data sets. The experimental results and analysis clearly demonstrate the effectiveness of the proposed approach.

  6. SLS Model Based Design: A Navigation Perspective

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  7. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Taylor; Guo, Yi; Veers, Paul

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrummore » is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.« less

  8. EFICAz2: enzyme function inference by a combined approach enhanced by machine learning.

    PubMed

    Arakaki, Adrian K; Huang, Ying; Skolnick, Jeffrey

    2009-04-13

    We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified under the EC number of interest) or heterofunctional (annotated with another EC number or lacking enzymatic activity). Each of the two FDR-based components is associated to one of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAz's performance in this regime, we: i) increased the number of predictive components and ii) took advantage of consensual information from the different components to make the final EC number assignment. We have developed two new EFICAz components, analogs to the two FDR-based components, where the discrimination between homo and heterofunctional members is based on the evaluation, via Support Vector Machine models, of all the aligned positions between the query sequence and the multiple sequence alignments associated to the enzyme families. Benchmark results indicate that: i) the new SVM-based components outperform their FDR-based counterparts, and ii) both SVM-based and FDR-based components generate unique predictions. We developed classification tree models to optimally combine the results from the six EFICAz components into a final EC number prediction. The new implementation of our approach, EFICAz2, exhibits a highly improved prediction precision at MTTSI < 30% compared to the original EFICAz, with only a slight decrease in prediction recall. A comparative analysis of enzyme function annotation of the human proteome by EFICAz2 and KEGG shows that: i) when both sources make EC number assignments for the same protein sequence, the assignments tend to be consistent and ii) EFICAz2 generates considerably more unique assignments than KEGG. Performance benchmarks and the comparison with KEGG demonstrate that EFICAz2 is a powerful and precise tool for enzyme function annotation, with multiple applications in genome analysis and metabolic pathway reconstruction. The EFICAz2 web service is available at: http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html.

  9. Extraction of the aortic and pulmonary components of the second heart sound using a nonlinear transient chirp signal model.

    PubMed

    Xu, J; Durand, L G; Pibarot, P

    2001-03-01

    The objective of this paper is to adapt and validate a nonlinear transient chirp signal modeling approach for the analysis and synthesis of overlapping aortic (A2) and pulmonary (P2) components of the second heart sound (S2). The approach is based on the time-frequency representation of multicomponent signals for estimating and reconstructing the instantaneous phase and amplitude functions of each component. To evaluate the accuracy of the approach, a simulated S2 with A2 and P2 components having different overlapping intervals (5-30 ms) was synthesized. The simulation results show that the technique is very effective for extracting the two components, even in the presence of noise (-15 dB). The normalized root-mean-squared error between the original A2 and P2 components and their reconstructed versions varied between 1% and 6%, proportionally to the duration of the overlapping interval, and it increased by less than 2% in the presence of noise. The validated technique was then applied to S2 components recorded in pigs under normal or high pulmonary artery pressures. The results show that this approach can successfully isolate and extract overlapping A2 and P2 components from successive S2 recordings obtained from different heartbeats of the same animal as well from different animals.

  10. Computational models for the analysis/design of hypersonic scramjet components. I - Combustor and nozzle models

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Sinha, N.; Wolf, D. E.; York, B. J.

    1986-01-01

    An overview of computational models developed for the complete, design-oriented analysis of a scramjet propulsion system is provided. The modular approach taken involves the use of different PNS models to analyze the individual propulsion system components. The external compression and internal inlet flowfields are analyzed by the SCRAMP and SCRINT components discussed in Part II of this paper. The combustor is analyzed by the SCORCH code which is based upon SPLITP PNS pressure-split methodology formulated by Dash and Sinha. The nozzle is analyzed by the SCHNOZ code which is based upon SCIPVIS PNS shock-capturing methodology formulated by Dash and Wolf. The current status of these models, previous developments leading to this status, and, progress towards future hybrid and 3D versions are discussed in this paper.

  11. Prediction of the properties anhydrite construction mixtures based on neural network approach

    NASA Astrophysics Data System (ADS)

    Fedorchuk, Y. M.; Zamyatin, N. V.; Smirnov, G. V.; Rusina, O. N.; Sadenova, M. A.

    2017-08-01

    The article considered the question of applying the backstop modeling mechanism from the components of anhydride mixtures in the process of managing the technological processes of receiving construction products which based on fluoranhydrite.

  12. Simulation-based artifact correction (SBAC) for metrological computed tomography

    NASA Astrophysics Data System (ADS)

    Maier, Joscha; Leinweber, Carsten; Sawall, Stefan; Stoschus, Henning; Ballach, Frederic; Müller, Tobias; Hammer, Michael; Christoph, Ralf; Kachelrieß, Marc

    2017-06-01

    Computed tomography (CT) is a valuable tool for the metrolocical assessment of industrial components. However, the application of CT to the investigation of highly attenuating objects or multi-material components is often restricted by the presence of CT artifacts caused by beam hardening, x-ray scatter, off-focal radiation, partial volume effects or the cone-beam reconstruction itself. In order to overcome this limitation, this paper proposes an approach to calculate a correction term that compensates for the contribution of artifacts and thus enables an appropriate assessment of these components using CT. Therefore, we make use of computer simulations of the CT measurement process. Based on an appropriate model of the object, e.g. an initial reconstruction or a CAD model, two simulations are carried out. One simulation considers all physical effects that cause artifacts using dedicated analytic methods as well as Monte Carlo-based models. The other one represents an ideal CT measurement i.e. a measurement in parallel beam geometry with a monochromatic, point-like x-ray source and no x-ray scattering. Thus, the difference between these simulations is an estimate for the present artifacts and can be used to correct the acquired projection data or the corresponding CT reconstruction, respectively. The performance of the proposed approach is evaluated using simulated as well as measured data of single and multi-material components. Our approach yields CT reconstructions that are nearly free of artifacts and thereby clearly outperforms commonly used artifact reduction algorithms in terms of image quality. A comparison against tactile reference measurements demonstrates the ability of the proposed approach to increase the accuracy of the metrological assessment significantly.

  13. Commercial Demand Module - NEMS Documentation

    EIA Publications

    2017-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  14. Exploring component-based approaches in forest landscape modeling

    Treesearch

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  15. Principal Component Clustering Approach to Teaching Quality Discriminant Analysis

    ERIC Educational Resources Information Center

    Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan

    2016-01-01

    Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…

  16. Case-Based Modeling for Learning: Socially Constructed Skill Development

    ERIC Educational Resources Information Center

    Lyons, Paul; Bandura, Randall P.

    2018-01-01

    Purpose: Grounded on components of experiential learning theory (ELT) and self-regulation of learning (SRL) theory, augmented by elements of action theory and script development, the purpose of this paper is to demonstrate the case-based modeling (CBM) instructional approach that stimulates learning in groups or teams. CBM is related to individual…

  17. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.

    PubMed

    Yan, Yumeng; Wen, Zeyu; Wang, Xinxiang; Huang, Sheng-You

    2017-03-01

    Protein-protein docking is an important computational tool for predicting protein-protein interactions. With the rapid development of proteomics projects, more and more experimental binding information ranging from mutagenesis data to three-dimensional structures of protein complexes are becoming available. Therefore, how to appropriately incorporate the biological information into traditional ab initio docking has been an important issue and challenge in the field of protein-protein docking. To address these challenges, we have developed a Hybrid DOCKing protocol of template-based and template-free approaches, referred to as HDOCK. The basic procedure of HDOCK is to model the structures of individual components based on the template complex by a template-based method if a template is available; otherwise, the component structures will be modeled based on monomer proteins by regular homology modeling. Then, the complex structure of the component models is predicted by traditional protein-protein docking. With the HDOCK protocol, we have participated in the CPARI experiment for rounds 28-35. Out of the 25 CASP-CAPRI targets for oligomer modeling, our HDOCK protocol predicted correct models for 16 targets, ranking one of the top algorithms in this challenge. Our docking method also made correct predictions on other CAPRI challenges such as protein-peptide binding for 6 out of 8 targets and water predictions for 2 out of 2 targets. The advantage of our hybrid docking approach over pure template-based docking was further confirmed by a comparative evaluation on 20 CASP-CAPRI targets. Proteins 2017; 85:497-512. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Modelling Creativity: Identifying Key Components through a Corpus-Based Approach

    PubMed Central

    2016-01-01

    Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research. PMID:27706185

  19. ADAPTION OF NONSTANDARD PIPING COMPONENTS INTO PRESENT DAY SEISMIC CODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. T. Clark; M. J. Russell; R. E. Spears

    2009-07-01

    With spiraling energy demand and flat energy supply, there is a need to extend the life of older nuclear reactors. This sometimes requires that existing systems be evaluated to present day seismic codes. Older reactors built in the 1960s and early 1970s often used fabricated piping components that were code compliant during their initial construction time period, but are outside the standard parameters of present-day piping codes. There are several approaches available to the analyst in evaluating these non-standard components to modern codes. The simplest approach is to use the flexibility factors and stress indices for similar standard components withmore » the assumption that the non-standard component’s flexibility factors and stress indices will be very similar. This approach can require significant engineering judgment. A more rational approach available in Section III of the ASME Boiler and Pressure Vessel Code, which is the subject of this paper, involves calculation of flexibility factors using finite element analysis of the non-standard component. Such analysis allows modeling of geometric and material nonlinearities. Flexibility factors based on these analyses are sensitive to the load magnitudes used in their calculation, load magnitudes that need to be consistent with those produced by the linear system analyses where the flexibility factors are applied. This can lead to iteration, since the magnitude of the loads produced by the linear system analysis depend on the magnitude of the flexibility factors. After the loading applied to the nonstandard component finite element model has been matched to loads produced by the associated linear system model, the component finite element model can then be used to evaluate the performance of the component under the loads with the nonlinear analysis provisions of the Code, should the load levels lead to calculated stresses in excess of Allowable stresses. This paper details the application of component-level finite element modeling to account for geometric and material nonlinear component behavior in a linear elastic piping system model. Note that this technique can be applied to the analysis of B31 piping systems.« less

  20. Dynamics of Rotating Multi-component Turbomachinery Systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1993-01-01

    The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented.

  1. The Iterative Research Cycle: Process-Based Model Evaluation

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2014-12-01

    The ever increasing pace of computational power, along with continued advances in measurement technologies and improvements in process understanding has stimulated the development of increasingly complex physics based models that simulate a myriad of processes at different spatial and temporal scales. Reconciling these high-order system models with perpetually larger volumes of field data is becoming more and more difficult, particularly because classical likelihood-based fitting methods lack the power to detect and pinpoint deficiencies in the model structure. In this talk I will give an overview of our latest research on process-based model calibration and evaluation. This approach, rooted in Bayesian theory, uses summary metrics of the calibration data rather than the data itself to help detect which component(s) of the model is (are) malfunctioning and in need of improvement. A few case studies involving hydrologic and geophysical models will be used to demonstrate the proposed methodology.

  2. A conceptual model of the automated credibility assessment of the volunteered geographic information

    NASA Astrophysics Data System (ADS)

    Idris, N. H.; Jackson, M. J.; Ishak, M. H. I.

    2014-02-01

    The use of Volunteered Geographic Information (VGI) in collecting, sharing and disseminating geospatially referenced information on the Web is increasingly common. The potentials of this localized and collective information have been seen to complement the maintenance process of authoritative mapping data sources and in realizing the development of Digital Earth. The main barrier to the use of this data in supporting this bottom up approach is the credibility (trust), completeness, accuracy, and quality of both the data input and outputs generated. The only feasible approach to assess these data is by relying on an automated process. This paper describes a conceptual model of indicators (parameters) and practical approaches to automated assess the credibility of information contributed through the VGI including map mashups, Geo Web and crowd - sourced based applications. There are two main components proposed to be assessed in the conceptual model - metadata and data. The metadata component comprises the indicator of the hosting (websites) and the sources of data / information. The data component comprises the indicators to assess absolute and relative data positioning, attribute, thematic, temporal and geometric correctness and consistency. This paper suggests approaches to assess the components. To assess the metadata component, automated text categorization using supervised machine learning is proposed. To assess the correctness and consistency in the data component, we suggest a matching validation approach using the current emerging technologies from Linked Data infrastructures and using third party reviews validation. This study contributes to the research domain that focuses on the credibility, trust and quality issues of data contributed by web citizen providers.

  3. Stress, Burnout, and Culture Shock: An Experiential, Pre-Service Approach.

    ERIC Educational Resources Information Center

    Mungo, Samuel

    1983-01-01

    Explores aspects of stress and burnout, showing their relationship to culture shock. Describes an off-campus, field-based, 4-component model that adapts Outward Bound concepts of controlled stress and is used as a preventative approach at the preservice teacher education level. (SB)

  4. Phasor Domain Steady-State Modeling and Design of the DC–DC Modular Multilevel Converter

    DOE PAGES

    Yang, Heng; Qin, Jiangchao; Debnath, Suman; ...

    2016-01-06

    The DC-DC Modular Multilevel Converter (MMC), which originated from the AC-DC MMC, is an attractive converter topology for interconnection of medium-/high-voltage DC grids. This paper presents design considerations for the DC-DC MMC to achieve high efficiency and reduced component sizes. A steady-state mathematical model of the DC-DC MMC in the phasor-domain is developed. Based on the developed model, a design approach is proposed to size the components and to select the operating frequency of the converter to satisfy a set of design constraints while achieving high efficiency. The design approach includes sizing of the arm inductor, Sub-Module (SM) capacitor, andmore » phase filtering inductor along with the selection of AC operating frequency of the converter. The accuracy of the developed model and the effectiveness of the design approach are validated based on the simulation studies in the PSCAD/EMTDC software environment. The analysis and developments of this paper can be used as a guideline for design of the DC-DC MMC.« less

  5. An approach to solving large reliability models

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Veeraraghavan, Malathi; Dugan, Joanne Bechta; Trivedi, Kishor S.

    1988-01-01

    This paper describes a unified approach to the problem of solving large realistic reliability models. The methodology integrates behavioral decomposition, state trunction, and efficient sparse matrix-based numerical methods. The use of fault trees, together with ancillary information regarding dependencies to automatically generate the underlying Markov model state space is proposed. The effectiveness of this approach is illustrated by modeling a state-of-the-art flight control system and a multiprocessor system. Nonexponential distributions for times to failure of components are assumed in the latter example. The modeling tool used for most of this analysis is HARP (the Hybrid Automated Reliability Predictor).

  6. JAMS - a software platform for modular hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kralisch, Sven; Fischer, Christian

    2015-04-01

    Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.

  7. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics

    USGS Publications Warehouse

    Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.

    2005-01-01

    A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

  8. A systems approach to modeling Community-Based Environmental Monitoring: a case of participatory water quality monitoring in rural Mexico.

    PubMed

    Burgos, Ana; Páez, Rosaura; Carmona, Estela; Rivas, Hilda

    2013-12-01

    Community-Based Environmental Monitoring (CBM) is a social practice that makes a valuable contribution to environmental management and construction of active societies for sustainable future. However, its documentation and analysis show deficiencies that hinder contrast and comparison of processes and effects. Based on systems approach, this article presents a model of CBM to orient assessment of programs, with heuristic or practical goals. In a focal level, the model comprises three components, the social subject, the object of monitoring, and the means of action, and five processes, data management, social learning, assimilation/decision making, direct action, and linking. Emergent properties were also identified in the focal and suprafocal levels considering community self-organization, response capacity, and autonomy for environmental management. The model was applied to the assessment of a CBM program of water quality implemented in rural areas in Mexico. Attributes and variables (indicators) for components, processes, and emergent properties were selected to measure changes that emerged since the program implementation. The assessment of the first 3 years (2010-2012) detected changes that indicated movement towards the expected results, but it revealed also the need to adjust the intervention strategy and procedures. Components and processes of the model reflected relevant aspects of the CBM in real world. The component called means of action as a key element to transit "from the data to the action." The CBM model offered a conceptual framework with advantages to understand CBM as a socioecological event and to strengthen its implementation under different conditions and contexts.

  9. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  10. Modeling Creep Effects in Advanced SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James

    2006-01-01

    Because advanced SiC/SiC composites are projected to be used for aerospace components with large thermal gradients at high temperatures, efforts are on-going at NASA Glenn to develop approaches for modeling the anticipated creep behavior of these materials and its subsequent effects on such key composite properties as internal residual stress, proportional limit stress, ultimate tensile strength, and rupture life. Based primarily on in-plane creep data for 2D panels, this presentation describes initial modeling progress at applied composite stresses below matrix cracking for some high performance SiC/SiC composite systems recently developed at NASA. Studies are described to develop creep and rupture models using empirical, mechanical analog, and mechanistic approaches, and to implement them into finite element codes for improved component design and life modeling

  11. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  12. Gray-Box Approach for Thermal Modelling of Buildings for Applications in District Heating and Cooling Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saurav, Kumar; Chandan, Vikas

    District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increasemore » the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.« less

  13. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    NASA Astrophysics Data System (ADS)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  14. Nonlinear transient chirp signal modeling of the aortic and pulmonary components of the second heart sound.

    PubMed

    Xu, J; Durand, L G; Pibarot, P

    2000-10-01

    This paper describes a new approach based on the time-frequency representation of transient nonlinear chirp signals for modeling the aortic (A2) and the pulmonary (P2) components of the second heart sound (S2). It is demonstrated that each component is a narrow-band signal with decreasing instantaneous frequency defined by its instantaneous amplitude and its instantaneous phase. Each component is also a polynomial phase signal, the instantaneous phase of which can be accurately represented by a polynomial having an order of thirty. A dechirping approach is used to obtain the instantaneous amplitude of each component while reducing the effect of the background noise. The analysis-synthesis procedure is applied to 32 isolated A2 and 32 isolated P2 components recorded in four pigs with pulmonary hypertension. The mean +/- standard deviation of the normalized root-mean-squared error (NRMSE) and the correlation coefficient (rho) between the original and the synthesized signal components were: NRMSE = 2.1 +/- 0.3% and rho = 0.97 +/- 0.02 for A2 and NRMSE = 2.52 +/- 0.5% and rho = 0.96 +/- 0.02 for P2. These results confirm that each component can be modeled as mono-component nonlinear chirp signals of short duration with energy distributions concentrated along its decreasing instantaneous frequency.

  15. Directed Consultation, the SEALS Model, and Teachers' Classroom Management

    ERIC Educational Resources Information Center

    Motoca, Luci M.; Farmer, Thomas W.; Hamm, Jill V.; Byun, Soo-yong; Lee, David L.; Brooks, Debbie S.; Rucker, Nkecha; Moohr, Michele M.

    2014-01-01

    Directed consultation is presented as a professional development framework to guide and support teachers in the implementation of evidence-based interventions that involve contextual and process-oriented approaches designed to be incorporated into daily classroom management. This approach consists of four components: pre-intervention observations…

  16. A System-Science Approach towards Model Construction for Curriculum Development.

    ERIC Educational Resources Information Center

    Chang, Ren-Jung; Yang, Hui-Chin

    A new morphological model based on modern system science and engineering is constructed and proposed for curriculum research and development. A curriculum system is recognized as an engineering system that constitutes three components: clients, resources, and knowledge. Unlike the objective models that are purely rational and neatly sequential in…

  17. A Direct Latent Variable Modeling Based Method for Point and Interval Estimation of Coefficient Alpha

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…

  18. An eco-hydrological approach to predicting regional vegetation and groundwater response to ecological water convergence in dryland riparian ecosystems

    USDA-ARS?s Scientific Manuscript database

    To improve the management strategy of riparian restoration, better understanding of the dynamic of eco-hydrological system and its feedback between hydrological and ecological components are needed. The fully distributed eco-hydrological model coupled with a hydrology component was developed based o...

  19. Investigation of signal models and methods for evaluating structures of processing telecommunication information exchange systems under acoustic noise conditions

    NASA Astrophysics Data System (ADS)

    Kropotov, Y. A.; Belov, A. A.; Proskuryakov, A. Y.; Kolpakov, A. A.

    2018-05-01

    The paper considers models and methods for estimating signals during the transmission of information messages in telecommunication systems of audio exchange. One-dimensional probability distribution functions that can be used to isolate useful signals, and acoustic noise interference are presented. An approach to the estimation of the correlation and spectral functions of the parameters of acoustic signals is proposed, based on the parametric representation of acoustic signals and the components of the noise components. The paper suggests an approach to improving the efficiency of interference cancellation and highlighting the necessary information when processing signals from telecommunications systems. In this case, the suppression of acoustic noise is based on the methods of adaptive filtering and adaptive compensation. The work also describes the models of echo signals and the structure of subscriber devices in operational command telecommunications systems.

  20. A robust sparse-modeling framework for estimating schizophrenia biomarkers from fMRI.

    PubMed

    Dillon, Keith; Calhoun, Vince; Wang, Yu-Ping

    2017-01-30

    Our goal is to identify the brain regions most relevant to mental illness using neuroimaging. State of the art machine learning methods commonly suffer from repeatability difficulties in this application, particularly when using large and heterogeneous populations for samples. We revisit both dimensionality reduction and sparse modeling, and recast them in a common optimization-based framework. This allows us to combine the benefits of both types of methods in an approach which we call unambiguous components. We use this to estimate the image component with a constrained variability, which is best correlated with the unknown disease mechanism. We apply the method to the estimation of neuroimaging biomarkers for schizophrenia, using task fMRI data from a large multi-site study. The proposed approach yields an improvement in both robustness of the estimate and classification accuracy. We find that unambiguous components incorporate roughly two thirds of the same brain regions as sparsity-based methods LASSO and elastic net, while roughly one third of the selected regions differ. Further, unambiguous components achieve superior classification accuracy in differentiating cases from controls. Unambiguous components provide a robust way to estimate important regions of imaging data. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A discrete decentralized variable structure robotic controller

    NASA Technical Reports Server (NTRS)

    Tumeh, Zuheir S.

    1989-01-01

    A decentralized trajectory controller for robotic manipulators is designed and tested using a multiprocessor architecture and a PUMA 560 robot arm. The controller is made up of a nominal model-based component and a correction component based on a variable structure suction control approach. The second control component is designed using bounds on the difference between the used and actual values of the model parameters. Since the continuous manipulator system is digitally controlled along a trajectory, a discretized equivalent model of the manipulator is used to derive the controller. The motivation for decentralized control is that the derived algorithms can be executed in parallel using a distributed, relatively inexpensive, architecture where each joint is assigned a microprocessor. Nonlinear interaction and coupling between joints is treated as a disturbance torque that is estimated and compensated for.

  2. A Novel Haptic Interactive Approach to Simulation of Surgery Cutting Based on Mesh and Meshless Models

    PubMed Central

    Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni

    2018-01-01

    In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006

  3. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    NASA Astrophysics Data System (ADS)

    Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.

    2015-12-01

    Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.

  4. A loosely coupled framework for terminology controlled distributed EHR search for patient cohort identification in clinical research.

    PubMed

    Zhao, Lei; Lim Choi Keung, Sarah N; Taweel, Adel; Tyler, Edward; Ogunsina, Ire; Rossiter, James; Delaney, Brendan C; Peterson, Kevin A; Hobbs, F D Richard; Arvanitis, Theodoros N

    2012-01-01

    Heterogeneous data models and coding schemes for electronic health records present challenges for automated search across distributed data sources. This paper describes a loosely coupled software framework based on the terminology controlled approach to enable the interoperation between the search interface and heterogeneous data sources. Software components interoperate via common terminology service and abstract criteria model so as to promote component reuse and incremental system evolution.

  5. Diagnosing a Strong-Fault Model by Conflict and Consistency

    PubMed Central

    Zhou, Gan; Feng, Wenquan

    2018-01-01

    The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model’s prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed methods are significantly better than best first and conflict directly with A* search methods. PMID:29596302

  6. Sensor Based Engine Life Calculation: A Probabilistic Perspective

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Chen, Philip

    2003-01-01

    It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.

  7. Finite Element Model Calibration Approach for Area I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  8. Finite Element Model Calibration Approach for Ares I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  9. Formalism Challenges of the Cougaar Model Driven Architecture

    NASA Technical Reports Server (NTRS)

    Bohner, Shawn A.; George, Boby; Gracanin, Denis; Hinchey, Michael G.

    2004-01-01

    The Cognitive Agent Architecture (Cougaar) is one of the most sophisticated distributed agent architectures developed today. As part of its research and evolution, Cougaar is being studied for application to large, logistics-based applications for the Department of Defense (DoD). Anticipiting future complex applications of Cougaar, we are investigating the Model Driven Architecture (MDA) approach to understand how effective it would be for increasing productivity in Cougar-based development efforts. Recognizing the sophistication of the Cougaar development environment and the limitations of transformation technologies for agents, we have systematically developed an approach that combines component assembly in the large and transformation in the small. This paper describes some of the key elements that went into the Cougaar Model Driven Architecture approach and the characteristics that drove the approach.

  10. A drift line bias estimator: ARMA-based filter or calibration method, and its application in BDS/GPS-based attitude determination

    NASA Astrophysics Data System (ADS)

    Liang, Zhang; Yanqing, Hou; Jie, Wu

    2016-12-01

    The multi-antenna synchronized receiver (using a common clock) is widely applied in GNSS-based attitude determination (AD) or terrain deformations monitoring, and many other applications, since the high-accuracy single-differenced carrier phase can be used to improve the positioning or AD accuracy. Thus, the line bias (LB) parameter (fractional bias isolating) should be calibrated in the single-differenced phase equations. In the past decades, all researchers estimated the LB as a constant parameter in advance and compensated it in real time. However, the constant LB assumption is inappropriate in practical applications because of the physical length and permittivity changes of the cables, caused by the environmental temperature variation and the instability of receiver-self inner circuit transmitting delay. Considering the LB drift (or colored LB) in practical circumstances, this paper initiates a real-time estimator using auto regressive moving average-based (ARMA) prediction/whitening filter model or Moving average-based (MA) constant calibration model. In the ARMA-based filter model, four cases namely AR(1), ARMA(1, 1), AR(2) and ARMA(2, 1) are applied for the LB prediction. The real-time relative positioning model using the ARMA-based predicting LB is derived and it is theoretically proved that the positioning accuracy is better than the traditional double difference carrier phase (DDCP) model. The drifting LB is defined with a phase temperature changing rate integral function, which is a random walk process if the phase temperature changing rate is white noise, and is validated by the analysis of the AR model coefficient. The auto covariance function shows that the LB is indeed varying in time and estimating it as a constant is not safe, which is also demonstrated by the analysis on LB variation of each visible satellite during a zero and short baseline BDS/GPS experiment. Compared to the DDCP approach, in the zero-baseline experiment, the LB constant calibration (LBCC) and MA approaches improved the positioning accuracy of the vertical component, while slightly degrading the accuracy of the horizontal components. The ARMA(1, 0) model, however, improved the positioning accuracy of all three components, with 40 and 50 % improvement of the vertical component for BDS and GPS, respectively. In the short baseline experiment, compared to the DDCP approach, the LBCC approach yielded bad positioning solutions and degraded the AD accuracy; both MA and ARMA-based filter approaches improved the AD accuracy. Moreover, the ARMA(1, 0) and ARMA(1, 1) models have relatively better performance, improving to 55 % and 48 % the elevation angle in ARMA(1, 1) and MA model for GPS, respectively. Furthermore, the drifting LB variation is found to be continuous and slowly cumulative; the variation magnitudes in the unit of length are almost identical on different frequency carrier phases, so the LB variation does not show obvious correlation between different frequencies. Consequently, the wide-lane LB in the unit of cycle is very stable, while the narrow-lane LB varies largely in time. This reasoning probably also explains the phenomenon that the wide-lane LB originating in the satellites is stable, while the narrow-lane LB varies. The results of ARMA-based filters are better than the MA model, which probably implies that the modeling for drifting LB can further improve the precise point positioning accuracy.

  11. Paying for Early Interventions in Psychoses: A Three-Part Model.

    PubMed

    Frank, Richard G; Glied, Sherry A; McGuire, Thomas G

    2015-07-01

    Widespread dissemination of early interventions for psychosis, such as the intervention offered in the RAISE study (Recovery After an Initial Schizophrenia Episode), requires a funding mechanism that is both compatible with approaches already used by payers and generates incentives for providers that promote the desired behaviors. The authors propose a funding model with three components: a prospective per-case payment made conditional on patient engagement in treatment, a per-service component to cover the costs of clinical services, and an outcome-based component conditional on achieving measurable outcome milestones. The authors describe the components and how such a payment mechanism might be implemented.

  12. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  13. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael

    2014-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.

  14. Documenting Models for Interoperability and Reusability ...

    EPA Pesticide Factsheets

    Many modeling frameworks compartmentalize science via individual models that link sets of small components to create larger modeling workflows. Developing integrated watershed models increasingly requires coupling multidisciplinary, independent models, as well as collaboration between scientific communities, since component-based modeling can integrate models from different disciplines. Integrated Environmental Modeling (IEM) systems focus on transferring information between components by capturing a conceptual site model; establishing local metadata standards for input/output of models and databases; managing data flow between models and throughout the system; facilitating quality control of data exchanges (e.g., checking units, unit conversions, transfers between software languages); warning and error handling; and coordinating sensitivity/uncertainty analyses. Although many computational software systems facilitate communication between, and execution of, components, there are no common approaches, protocols, or standards for turn-key linkages between software systems and models, especially if modifying components is not the intent. Using a standard ontology, this paper reviews how models can be described for discovery, understanding, evaluation, access, and implementation to facilitate interoperability and reusability. In the proceedings of the International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Mod

  15. New methodologies for multi-scale time-variant reliability analysis of complex lifeline networks

    NASA Astrophysics Data System (ADS)

    Kurtz, Nolan Scot

    The cost of maintaining existing civil infrastructure is enormous. Since the livelihood of the public depends on such infrastructure, its state must be managed appropriately using quantitative approaches. Practitioners must consider not only which components are most fragile to hazard, e.g. seismicity, storm surge, hurricane winds, etc., but also how they participate on a network level using network analysis. Focusing on particularly damaged components does not necessarily increase network functionality, which is most important to the people that depend on such infrastructure. Several network analyses, e.g. S-RDA, LP-bounds, and crude-MCS, and performance metrics, e.g. disconnection bounds and component importance, are available for such purposes. Since these networks are existing, the time state is also important. If networks are close to chloride sources, deterioration may be a major issue. Information from field inspections may also have large impacts on quantitative models. To address such issues, hazard risk analysis methodologies for deteriorating networks subjected to seismicity, i.e. earthquakes, have been created from analytics. A bridge component model has been constructed for these methodologies. The bridge fragilities, which were constructed from data, required a deeper level of analysis as these were relevant for specific structures. Furthermore, chloride-induced deterioration network effects were investigated. Depending on how mathematical models incorporate new information, many approaches are available, such as Bayesian model updating. To make such procedures more flexible, an adaptive importance sampling scheme was created for structural reliability problems. Additionally, such a method handles many kinds of system and component problems with singular or multiple important regions of the limit state function. These and previously developed analysis methodologies were found to be strongly sensitive to the network size. Special network topologies may be more or less computationally difficult, while the resolution of the network also has large affects. To take advantage of some types of topologies, network hierarchical structures with super-link representation have been used in the literature to increase the computational efficiency by analyzing smaller, densely connected networks; however, such structures were based on user input and subjective at times. To address this, algorithms must be automated and reliable. These hierarchical structures may indicate the structure of the network itself. This risk analysis methodology has been expanded to larger networks using such automated hierarchical structures. Component importance is the most important objective from such network analysis; however, this may only provide the information of which bridges to inspect/repair earliest and little else. High correlations influence such component importance measures in a negative manner. Additionally, a regional approach is not appropriately modelled. To investigate a more regional view, group importance measures based on hierarchical structures have been created. Such structures may also be used to create regional inspection/repair approaches. Using these analytical, quantitative risk approaches, the next generation of decision makers may make both component and regional-based optimal decisions using information from both network function and further effects of infrastructure deterioration.

  16. SU-F-J-138: An Extension of PCA-Based Respiratory Deformation Modeling Via Multi-Linear Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Pitsianis, N

    Purpose: To address and lift the limited degree of freedom (DoF) of globally bilinear motion components such as those based on principal components analysis (PCA), for encoding and modeling volumetric deformation motion. Methods: We provide a systematic approach to obtaining a multi-linear decomposition (MLD) and associated motion model from deformation vector field (DVF) data. We had previously introduced MLD for capturing multi-way relationships between DVF variables, without being restricted by the bilinear component format of PCA-based models. PCA-based modeling is commonly used for encoding patient-specific deformation as per planning 4D-CT images, and aiding on-board motion estimation during radiotherapy. However, themore » bilinear space-time decomposition inherently limits the DoF of such models by the small number of respiratory phases. While this limit is not reached in model studies using analytical or digital phantoms with low-rank motion, it compromises modeling power in the presence of relative motion, asymmetries and hysteresis, etc, which are often observed in patient data. Specifically, a low-DoF model will spuriously couple incoherent motion components, compromising its adaptability to on-board deformation changes. By the multi-linear format of extracted motion components, MLD-based models can encode higher-DoF deformation structure. Results: We conduct mathematical and experimental comparisons between PCA- and MLD-based models. A set of temporally-sampled analytical trajectories provides a synthetic, high-rank DVF; trajectories correspond to respiratory and cardiac motion factors, including different relative frequencies and spatial variations. Additionally, a digital XCAT phantom is used to simulate a lung lesion deforming incoherently with respect to the body, which adheres to a simple respiratory trend. In both cases, coupling of incoherent motion components due to a low model DoF is clearly demonstrated. Conclusion: Multi-linear decomposition can enable decoupling of distinct motion factors in high-rank DVF measurements. This may improve motion model expressiveness and adaptability to on-board deformation, aiding model-based image reconstruction for target verification. NIH Grant No. R01-184173.« less

  17. Automatic discovery of the communication network topology for building a supercomputer model

    NASA Astrophysics Data System (ADS)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  18. Partners in Parenting: A Multi-Level Web-Based Approach to Support Parents in Prevention and Early Intervention for Adolescent Depression and Anxiety

    PubMed Central

    Lawrence, Katherine A; Rapee, Ronald M; Cardamone-Breen, Mairead C; Green, Jacqueline; Jorm, Anthony F

    2017-01-01

    Depression and anxiety disorders in young people are a global health concern. Various risk and protective factors for these disorders are potentially modifiable by parents, underscoring the important role parents play in reducing the risk and impact of these disorders in their adolescent children. However, cost-effective, evidence-based interventions for parents that can be widely disseminated are lacking. In this paper, we propose a multi-level public health approach involving a Web-based parenting intervention, Partners in Parenting (PIP). We describe the components of the Web-based intervention and how each component was developed. Development of the intervention was guided by principles of the persuasive systems design model to maximize parental engagement and adherence. A consumer-engagement approach was used, including consultation with parents and adolescents about the content and presentation of the intervention. The PIP intervention can be used at varying levels of intensity to tailor to the different needs of parents across the population. Challenges and opportunities for the use of the intervention are discussed. The PIP Web-based intervention was developed to address the dearth of evidence-based resources to support parents in their important role in their adolescents’ mental health. The proposed public health approach utilizes this intervention at varying levels of intensity based on parents’ needs. Evaluation of each separate level of the model is ongoing. Further evaluation of the whole approach is required to assess the utility of the intervention as a public health approach, as well as its broader effects on adolescent functioning and socioeconomic outcomes. PMID:29258974

  19. Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  20. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    PubMed

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.

  1. Prospective memory after moderate-to-severe traumatic brain injury: a multinomial modeling approach.

    PubMed

    Pavawalla, Shital P; Schmitter-Edgecombe, Maureen; Smith, Rebekah E

    2012-01-01

    Prospective memory (PM), which can be understood as the processes involved in realizing a delayed intention, is consistently found to be impaired after a traumatic brain injury (TBI). Although PM can be empirically dissociated from retrospective memory, it inherently involves both a prospective component (i.e., remembering that an action needs to be carried out) and retrospective components (i.e., remembering what action needs to be executed and when). This study utilized a multinomial processing tree model to disentangle the prospective (that) and retrospective recognition (when) components underlying PM after moderate-to-severe TBI. Seventeen participants with moderate to severe TBI and 17 age- and education-matched control participants completed an event-based PM task that was embedded within an ongoing computer-based color-matching task. The multinomial processing tree modeling approach revealed a significant group difference in the prospective component, indicating that the control participants allocated greater preparatory attentional resources to the PM task compared to the TBI participants. Participants in the TBI group were also found to be significantly more impaired than controls in the when aspect of the retrospective component. These findings indicated that the TBI participants had greater difficulty allocating the necessary preparatory attentional resources to the PM task and greater difficulty discriminating between PM targets and nontargets during task execution, despite demonstrating intact posttest recall and/or recognition of the PM tasks and targets.

  2. Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-09-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on (fast) Fourier transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship between the different components. A harmonic-frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes in amplitude and frequency. Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns reconstruct changes in accumulation rate, whereas amplitude modulation identifies eccentricity-modulated precession. The functioning of the time-variant sinusoidal model is illustrated and validated using a synthetic insolation signal. The new modeling approach is tested on two case studies: (1) a Pliocene-Pleistocene benthic δ18O record from Ocean Drilling Program (ODP) Site 846 and (2) a Danian magnetic susceptibility record from the Contessa Highway section, Gubbio, Italy.

  3. Development of dynamic Bayesian models for web application test management

    NASA Astrophysics Data System (ADS)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  4. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    NASA Astrophysics Data System (ADS)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  5. Semantic interoperability--HL7 Version 3 compared to advanced architecture standards.

    PubMed

    Blobel, B G M E; Engel, K; Pharow, P

    2006-01-01

    To meet the challenge for high quality and efficient care, highly specialized and distributed healthcare establishments have to communicate and co-operate in a semantically interoperable way. Information and communication technology must be open, flexible, scalable, knowledge-based and service-oriented as well as secure and safe. For enabling semantic interoperability, a unified process for defining and implementing the architecture, i.e. structure and functions of the cooperating systems' components, as well as the approach for knowledge representation, i.e. the used information and its interpretation, algorithms, etc. have to be defined in a harmonized way. Deploying the Generic Component Model, systems and their components, underlying concepts and applied constraints must be formally modeled, strictly separating platform-independent from platform-specific models. As HL7 Version 3 claims to represent the most successful standard for semantic interoperability, HL7 has been analyzed regarding the requirements for model-driven, service-oriented design of semantic interoperable information systems, thereby moving from a communication to an architecture paradigm. The approach is compared with advanced architectural approaches for information systems such as OMG's CORBA 3 or EHR systems such as GEHR/openEHR and CEN EN 13606 Electronic Health Record Communication. HL7 Version 3 is maturing towards an architectural approach for semantic interoperability. Despite current differences, there is a close collaboration between the teams involved guaranteeing a convergence between competing approaches.

  6. Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)

    NASA Astrophysics Data System (ADS)

    Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.

    2017-12-01

    We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.

  7. Remaining lifetime modeling using State-of-Health estimation

    NASA Astrophysics Data System (ADS)

    Beganovic, Nejra; Söffker, Dirk

    2017-08-01

    Technical systems and system's components undergo gradual degradation over time. Continuous degradation occurred in system is reflected in decreased system's reliability and unavoidably lead to a system failure. Therefore, continuous evaluation of State-of-Health (SoH) is inevitable to provide at least predefined lifetime of the system defined by manufacturer, or even better, to extend the lifetime given by manufacturer. However, precondition for lifetime extension is accurate estimation of SoH as well as the estimation and prediction of Remaining Useful Lifetime (RUL). For this purpose, lifetime models describing the relation between system/component degradation and consumed lifetime have to be established. In this contribution modeling and selection of suitable lifetime models from database based on current SoH conditions are discussed. Main contribution of this paper is the development of new modeling strategies capable to describe complex relations between measurable system variables, related system degradation, and RUL. Two approaches with accompanying advantages and disadvantages are introduced and compared. Both approaches are capable to model stochastic aging processes of a system by simultaneous adaption of RUL models to current SoH. The first approach requires a priori knowledge about aging processes in the system and accurate estimation of SoH. An estimation of SoH here is conditioned by tracking actual accumulated damage into the system, so that particular model parameters are defined according to a priori known assumptions about system's aging. Prediction accuracy in this case is highly dependent on accurate estimation of SoH but includes high number of degrees of freedom. The second approach in this contribution does not require a priori knowledge about system's aging as particular model parameters are defined in accordance to multi-objective optimization procedure. Prediction accuracy of this model does not highly depend on estimated SoH. This model has lower degrees of freedom. Both approaches rely on previously developed lifetime models each of them corresponding to predefined SoH. Concerning first approach, model selection is aided by state-machine-based algorithm. In the second approach, model selection conditioned by tracking an exceedance of predefined thresholds is concerned. The approach is applied to data generated from tribological systems. By calculating Root Squared Error (RSE), Mean Squared Error (MSE), and Absolute Error (ABE) the accuracy of proposed models/approaches is discussed along with related advantages and disadvantages. Verification of the approach is done using cross-fold validation, exchanging training and test data. It can be stated that the newly introduced approach based on data (denoted as data-based or data-driven) parametric models can be easily established providing detailed information about remaining useful/consumed lifetime valid for systems with constant load but stochastically occurred damage.

  8. GIS-based niche modeling for mapping species' habitats

    USGS Publications Warehouse

    Rotenberry, J.T.; Preston, K.L.; Knick, S.

    2006-01-01

    Ecological a??niche modelinga?? using presence-only locality data and large-scale environmental variables provides a powerful tool for identifying and mapping suitable habitat for species over large spatial extents. We describe a niche modeling approach that identifies a minimum (rather than an optimum) set of basic habitat requirements for a species, based on the assumption that constant environmental relationships in a species' distribution (i.e., variables that maintain a consistent value where the species occurs) are most likely to be associated with limiting factors. Environmental variables that take on a wide range of values where a species occurs are less informative because they do not limit a species' distribution, at least over the range of variation sampled. This approach is operationalized by partitioning Mahalanobis D2 (standardized difference between values of a set of environmental variables for any point and mean values for those same variables calculated from all points at which a species was detected) into independent components. The smallest of these components represents the linear combination of variables with minimum variance; increasingly larger components represent larger variances and are increasingly less limiting. We illustrate this approach using the California Gnatcatcher (Polioptila californica Brewster) and provide SAS code to implement it.

  9. Combined proportional and additive residual error models in population pharmacokinetic modelling.

    PubMed

    Proost, Johannes H

    2017-11-15

    In pharmacokinetic modelling, a combined proportional and additive residual error model is often preferred over a proportional or additive residual error model. Different approaches have been proposed, but a comparison between approaches is still lacking. The theoretical background of the methods is described. Method VAR assumes that the variance of the residual error is the sum of the statistically independent proportional and additive components; this method can be coded in three ways. Method SD assumes that the standard deviation of the residual error is the sum of the proportional and additive components. Using datasets from literature and simulations based on these datasets, the methods are compared using NONMEM. The different coding of methods VAR yield identical results. Using method SD, the values of the parameters describing residual error are lower than for method VAR, but the values of the structural parameters and their inter-individual variability are hardly affected by the choice of the method. Both methods are valid approaches in combined proportional and additive residual error modelling, and selection may be based on OFV. When the result of an analysis is used for simulation purposes, it is essential that the simulation tool uses the same method as used during analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Unified modeling language and design of a case-based retrieval system in medical imaging.

    PubMed Central

    LeBozec, C.; Jaulent, M. C.; Zapletal, E.; Degoulet, P.

    1998-01-01

    One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users. Images Figure 6 Figure 7 PMID:9929346

  11. Unified modeling language and design of a case-based retrieval system in medical imaging.

    PubMed

    LeBozec, C; Jaulent, M C; Zapletal, E; Degoulet, P

    1998-01-01

    One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users.

  12. A Logical Account of Diagnosis with Multiple Theories

    NASA Technical Reports Server (NTRS)

    Pandurang, P.; Lum, Henry Jr. (Technical Monitor)

    1994-01-01

    Model-based diagnosis is a powerful, first-principles approach to diagnosis. The primary drawback with model-based diagnosis is that it is based on a system model, and this model might be inappropriate. The inappropriateness of models usually stems from the fundamental tradeoff between completeness and efficiency. Recently, Struss has developed an elegant proposal for diagnosis with multiple models. Struss characterizes models as relations and develops a precise notion of abstraction. He defines relations between models and analyzes the effect of a model switch on the space of possible diagnoses. In this paper we extend Struss's proposal in three ways. First, our account of diagnosis with multiple models is based on representing models as more expressive first-order theories, rather than as relations. A key technical contribution is the use of a general notion of abstraction based on interpretations between theories. Second, Struss conflates component modes with models, requiring him to define models relations such as choices which result in non-relational models. We avoid this problem by differentiating component modes from models. Third, we present a more general account of simplifications that correctly handles situations where the simplification contradicts the base theory.

  13. A new expression of Ns versus Ef to an accurate control charge model for AlGaAs/GaAs

    NASA Astrophysics Data System (ADS)

    Bouneb, I.; Kerrour, F.

    2016-03-01

    Semi-conductor components become the privileged support of information and communication, particularly appreciation to the development of the internet. Today, MOS transistors on silicon dominate largely the semi-conductors market, however the diminution of transistors grid length is not enough to enhance the performances and respect Moore law. Particularly, for broadband telecommunications systems, where faster components are required. For this reason, alternative structures proposed like hetero structures IV-IV or III-V [1] have been.The most effective components in this area (High Electron Mobility Transistor: HEMT) on IIIV substrate. This work investigates an approach for contributing to the development of a numerical model based on physical and numerical modelling of the potential at heterostructure in AlGaAs/GaAs interface. We have developed calculation using projective methods allowed the Hamiltonian integration using Green functions in Schrodinger equation, for a rigorous resolution “self coherent” with Poisson equation. A simple analytical approach for charge-control in quantum well region of an AlGaAs/GaAs HEMT structure was presented. A charge-control equation, accounting for a variable average distance of the 2-DEG from the interface was introduced. Our approach which have aim to obtain ns-Vg characteristics is mainly based on: A new linear expression of Fermi-level variation with two-dimensional electron gas density in high electron mobility and also is mainly based on the notion of effective doping and a new expression of AEc

  14. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations.

    PubMed

    Madsen, Kristoffer H; Ewald, Lars; Siebner, Hartwig R; Thielscher, Axel

    2015-01-01

    Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector potential of the TMS coils. To develop an approach to reconstruct the magnetic vector potential based on automated measurements. We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel approach to determine the magnetic vector potential via volume integration of the measured field. The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well with that calculated using a model reconstructed from x-ray images. The setup can supply validated models for existing and newly appearing TMS coils. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita

    2008-01-01

    This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.

  16. The Kirkendall and Frenkel effects during 2D diffusion process

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2014-11-01

    The two-dimensional approach for inter-diffusion and voids generation is presented. The voids evolution and growth is discussed. This approach is based on the bi-velocity (Darken) method which combines the Darken and Brenner concepts that the volume velocity is essential in defining the local material velocity in multi-component mixture at non-equilibrium. The model is formulated for arbitrary multi-component two-dimensional systems. It is shown that the voids growth is due to the drift velocity and vacancy migration. The radius of the void can be easily estimated. The distributions of (1) components, (2) vacancy and (3) voids radius over the distance is presented.

  17. A time domain frequency-selective multivariate Granger causality approach.

    PubMed

    Leistritz, Lutz; Witte, Herbert

    2016-08-01

    The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.

  18. Simulation of finite-strain inelastic phenomena governed by creep and plasticity

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bloomfield, Max O.; Oberai, Assad A.

    2017-11-01

    Inelastic mechanical behavior plays an important role in many applications in science and engineering. Phenomenologically, this behavior is often modeled as plasticity or creep. Plasticity is used to represent the rate-independent component of inelastic deformation and creep is used to represent the rate-dependent component. In several applications, especially those at elevated temperatures and stresses, these processes occur simultaneously. In order to model these process, we develop a rate-objective, finite-deformation constitutive model for plasticity and creep. The plastic component of this model is based on rate-independent J_2 plasticity, and the creep component is based on a thermally activated Norton model. We describe the implementation of this model within a finite element formulation, and present a radial return mapping algorithm for it. This approach reduces the additional complexity of modeling plasticity and creep, over thermoelasticity, to just solving one nonlinear scalar equation at each quadrature point. We implement this algorithm within a multiphysics finite element code and evaluate the consistent tangent through automatic differentiation. We verify and validate the implementation, apply it to modeling the evolution of stresses in the flip chip manufacturing process, and test its parallel strong-scaling performance.

  19. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  20. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE PAGES

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...

    2017-12-05

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  1. Above-knee prosthesis design based on fatigue life using finite element method and design of experiment.

    PubMed

    Phanphet, Suwattanarwong; Dechjarern, Surangsee; Jomjanyong, Sermkiat

    2017-05-01

    The main objective of this work is to improve the standard of the existing design of knee prosthesis developed by Thailand's Prostheses Foundation of Her Royal Highness The Princess Mother. The experimental structural tests, based on the ISO 10328, of the existing design showed that a few components failed due to fatigue under normal cyclic loading below the required number of cycles. The finite element (FE) simulations of structural tests on the knee prosthesis were carried out. Fatigue life predictions of knee component materials were modeled based on the Morrow's approach. The fatigue life prediction based on the FE model result was validated with the corresponding structural test and the results agreed well. The new designs of the failed components were studied using the design of experimental approach and finite element analysis of the ISO 10328 structural test of knee prostheses under two separated loading cases. Under ultimate loading, knee prosthesis peak von Mises stress must be less than the yield strength of knee component's material and the total knee deflection must be lower than 2.5mm. The fatigue life prediction of all knee components must be higher than 3,000,000 cycles under normal cyclic loading. The design parameters are the thickness of joint bars, the diameter of lower connector and the thickness of absorber-stopper. The optimized knee prosthesis design meeting all the requirements was recommended. Experimental ISO 10328 structural test of the fabricated knee prosthesis based on the optimized design confirmed the finite element prediction. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom Elicson; Bentley Harwood; Jim Bouchard

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. Themore » fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: • Development of time-dependent fire heat release rate profiles (required as input to CFAST), • Calculation of fire severity factors based on CFAST detailed fire modeling, and • Calculation of fire non-suppression probabilities.« less

  3. Creep-fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1982-01-01

    The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.

  4. Managing Diversity within South African Technikons: A Strategic Management Approach.

    ERIC Educational Resources Information Center

    Norris, Brian

    1996-01-01

    Based on experiences with affirmative action and subsequent management of diversity at five research universities in the United States, a model for strategic management of diversity in South African technical institutes is outlined. The model has six components: organizational culture; organizational/environmental change; Total Quality Management…

  5. School Site Strategic Planning To Improve District Performance.

    ERIC Educational Resources Information Center

    Lytle, James H.

    This paper describes the evolution of a school-based planning model that accommodates independent approaches to School District of Philadelphia goals. The description centers on key strategic planning decisions made during a 6-year period and three components of the planning model: the organizational monitoring and feedback system; organizational…

  6. Target detection using the background model from the topological anomaly detection algorithm

    NASA Astrophysics Data System (ADS)

    Dorado Munoz, Leidy P.; Messinger, David W.; Ziemann, Amanda K.

    2013-05-01

    The Topological Anomaly Detection (TAD) algorithm has been used as an anomaly detector in hyperspectral and multispectral images. TAD is an algorithm based on graph theory that constructs a topological model of the background in a scene, and computes an anomalousness ranking for all of the pixels in the image with respect to the background in order to identify pixels with uncommon or strange spectral signatures. The pixels that are modeled as background are clustered into groups or connected components, which could be representative of spectral signatures of materials present in the background. Therefore, the idea of using the background components given by TAD in target detection is explored in this paper. In this way, these connected components are characterized in three different approaches, where the mean signature and endmembers for each component are calculated and used as background basis vectors in Orthogonal Subspace Projection (OSP) and Adaptive Subspace Detector (ASD). Likewise, the covariance matrix of those connected components is estimated and used in detectors: Constrained Energy Minimization (CEM) and Adaptive Coherence Estimator (ACE). The performance of these approaches and the different detectors is compared with a global approach, where the background characterization is derived directly from the image. Experiments and results using self-test data set provided as part of the RIT blind test target detection project are shown.

  7. Computational neuroanatomy: ontology-based representation of neural components and connectivity.

    PubMed

    Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron

    2009-02-05

    A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.

  8. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics

    PubMed Central

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model’s components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis-related components and tumor-suppressor genes, suggesting that this combinatorial perturbation may lead to a better target for decreasing cell proliferation and inducing apoptosis. Finally, our approach shows a potential to identify and prioritize therapeutic targets through systemic perturbation analysis of large-scale computational models of signal transduction. Although some components of the presented computational results have been validated against independent gene expression data sets, more laboratory experiments are warranted to more comprehensively validate the presented results. PMID:26904540

  9. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning (TSEB_PTT) under advective conditions

    USDA-ARS?s Scientific Manuscript database

    Operational application of the two source energy balance model (TSEB) which can estimate evaportranspiration (ET) and the components evaporation (E), transpiration (T) of the land surface in different climates is very useful for many applications in hydrology and agriculture. The TSEB model uses an ...

  10. The Robust Learning Model (RLM): A Comprehensive Approach to a New Online University

    ERIC Educational Resources Information Center

    Neumann, Yoram; Neumann, Edith F.

    2010-01-01

    This paper outlines the components of the Robust Learning Model (RLM) as a conceptual framework for creating a new online university offering numerous degree programs at all degree levels. The RLM is a multi-factorial model based on the basic belief that successful learning outcomes depend on multiple factors employed together in a holistic…

  11. Peridigm summary report : lessons learned in development with agile components.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinger, Andrew Gerhard; Mitchell, John Anthony; Littlewood, David John

    2011-09-01

    This report details efforts to deploy Agile Components for rapid development of a peridynamics code, Peridigm. The goal of Agile Components is to enable the efficient development of production-quality software by providing a well-defined, unifying interface to a powerful set of component-based software. Specifically, Agile Components facilitate interoperability among packages within the Trilinos Project, including data management, time integration, uncertainty quantification, and optimization. Development of the Peridigm code served as a testbed for Agile Components and resulted in a number of recommendations for future development. Agile Components successfully enabled rapid integration of Trilinos packages into Peridigm. A cost of thismore » approach, however, was a set of restrictions on Peridigm's architecture which impacted the ability to track history-dependent material data, dynamically modify the model discretization, and interject user-defined routines into the time integration algorithm. These restrictions resulted in modifications to the Agile Components approach, as implemented in Peridigm, and in a set of recommendations for future Agile Components development. Specific recommendations include improved handling of material states, a more flexible flow control model, and improved documentation. A demonstration mini-application, SimpleODE, was developed at the onset of this project and is offered as a potential supplement to Agile Components documentation.« less

  12. A systematic review and qualitative analysis to inform the development of a new emergency department-based geriatric case management model.

    PubMed

    Sinha, Samir K; Bessman, Edward S; Flomenbaum, Neal; Leff, Bruce

    2011-06-01

    We inform the future development of a new geriatric emergency management practice model. We perform a systematic review of the existing evidence for emergency department (ED)-based case management models designed to improve the health, social, and health service utilization outcomes for noninstitutionalized older patients within the context of an index ED visit. This was a systematic review of English-language articles indexed in MEDLINE and CINAHL (1966 to 2010), describing ED-based case management models for older adults. Bibliographies of the retrieved articles were reviewed to identify additional references. A systematic qualitative case study analytic approach was used to identify the core operational components and outcome measures of the described clinical interventions. The authors of the included studies were also invited to verify our interpretations of their work. The determined patterns of component adherence were then used to postulate the relative importance and effect of the presence or absence of a particular component in influencing the overall effectiveness of their respective interventions. Eighteen of 352 studies (reported in 20 articles) met study criteria. Qualitative analyses identified 28 outcome measures and 8 distinct model characteristic components that included having an evidence-based practice model, nursing clinical involvement or leadership, high-risk screening processes, focused geriatric assessments, the initiation of care and disposition planning in the ED, interprofessional and capacity-building work practices, post-ED discharge follow-up with patients, and evaluation and monitoring processes. Of the 15 positive study results, 6 had all 8 characteristic components and 9 were found to be lacking at least 1 component. Two studies with positive results lacked 2 characteristic components and none lacked more than 2 components. Of the 3 studies with negative results demonstrating no positive effects based on any outcome tested, one lacked 2, one lacked 3, and one lacked 4 of the 8 model components. Successful models of ED-based case management models for older adults share certain key characteristics. This study builds on the emerging literature in this area and leverages the differences in these models and their associated outcomes to support the development of an evidence-based normative and effective geriatric emergency management practice model designed to address the special care needs and thereby improve the health and health service utilization outcomes of older patients. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  13. Fluid dynamic mechanisms and interactions within separated flows and their effects on missile aerodynamics

    NASA Astrophysics Data System (ADS)

    Addy, A. L.; Chow, W. L.; Korst, H. H.; White, R. A.

    1983-05-01

    Significant data and detailed results of a joint research effort investigating the fluid dynamic mechanisms and interactions within separated flows are presented. The results were obtained through analytical, experimental, and computational investigations of base flow related configurations. The research objectives focus on understanding the component mechanisms and interactions which establish and maintain separated flow regions. Flow models and theoretical analyses were developed to describe the base flowfield. The research approach has been to conduct extensive small-scale experiments on base flow configurations and to analyze these flows by component models and finite-difference techniques. The modeling of base flows of missiles (both powered and unpowered) for transonic and supersonic freestreams has been successful by component models. Research on plume effects and plume modeling indicated the need to match initial plume slope and plume surface curvature for valid wind tunnel simulation of an actual rocket plume. The assembly and development of a state-of-the-art laser Doppler velocimeter (LDV) system for experiments with two-dimensional small-scale models has been completed and detailed velocity and turbulence measurements are underway. The LDV experiments include the entire range of base flowfield mechanisms - shear layer development, recompression/reattachment, shock-induced separation, and plume-induced separation.

  14. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    DOE PAGES

    Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.

    2015-09-26

    An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less

  15. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.

    An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less

  16. Modelling of the mercury loss in fluorescent lamps under the influence of metal oxide coatings

    NASA Astrophysics Data System (ADS)

    Santos Abreu, A.; Mayer, J.; Lenk, D.; Horn, S.; Konrad, A.; Tidecks, R.

    2016-11-01

    The mercury transport and loss mechanisms in the metal oxide coatings of mercury low pressure discharge fluorescent lamps have been investigated. An existing model based on a ballistic process is discussed in the context of experimental mercury loss data. Two different approaches to the modeling of the mercury loss have been developed. The first one is based on mercury transition rates between the plasma, the coating, and the glass without specifying the underlying physical processes. The second one is based on a transport process driven by diffusion and a binding process of mercury reacting to mercury oxide inside the layers. Moreover, we extended the diffusion based model to handle multi-component coatings. All approaches are applied to describe mercury loss experiments under the influence of an Al 2 O 3 coating.

  17. The construction of life prediction models for the design of Stirling engine heater components

    NASA Technical Reports Server (NTRS)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  18. Plant-based foods containing cell wall polysaccharides rich in specific active monosaccharides protect against myocardial injury in rat myocardial infarction models.

    PubMed

    Lim, Sun Ha; Kim, Yaesil; Yun, Ki Na; Kim, Jin Young; Jang, Jung-Hee; Han, Mee-Jung; Lee, Jongwon

    2016-12-08

    Many cohort studies have shown that consumption of diets containing a higher composition of foods derived from plants reduces mortality from coronary heart disease (CHD). Here, we examined the active components of a plant-based diet and the underlying mechanisms that reduce the risk of CHD using three rat models and a quantitative proteomics approach. In a short-term myocardial infarction (MI) model, intake of wheat extract (WE), the representative cardioprotectant identified by screening approximately 4,000 samples, reduced myocardial injury by inhibiting apoptosis, enhancing ATP production, and maintaining protein homeostasis. In long-term post-MI models, this myocardial protection resulted in ameliorating adverse left-ventricular remodelling, which is a predictor of heart failure. Among the wheat components, arabinose and xylose were identified as active components responsible for the observed efficacy of WE, which was administered via ingestion and tail-vein injections. Finally, the food components of plant-based diets that contained cell wall polysaccharides rich in arabinose, xylose, and possibly fucose were found to confer protection against myocardial injury. These results show for the first time that specific monosaccharides found in the cell wall polysaccharides in plant-based diets can act as active ingredients that reduce CHD by inhibiting postocclusion steps, including MI and heart failure.

  19. VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS

    PubMed Central

    Huang, Jian; Horowitz, Joel L.; Wei, Fengrong

    2010-01-01

    We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is “small” relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method. PMID:21127739

  20. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions

    NASA Astrophysics Data System (ADS)

    Song, Lisheng; Kustas, William P.; Liu, Shaomin; Colaizzi, Paul D.; Nieto, Hector; Xu, Ziwei; Ma, Yanfei; Li, Mingsong; Xu, Tongren; Agam, Nurit; Tolk, Judy A.; Evett, Steven R.

    2016-09-01

    In this study ground measured soil and vegetation component temperatures and composite temperature from a high spatial resolution thermal camera and a network of thermal-IR sensors collected in an irrigated maize field and in an irrigated cotton field are used to assess and refine the component temperature partitioning approach in the Two-Source Energy Balance (TSEB) model. A refinement to TSEB using a non-iterative approach based on the application of the Priestley-Taylor formulation for surface temperature partitioning and estimating soil evaporation from soil moisture observations under advective conditions (TSEB-A) was developed. This modified TSEB formulation improved the agreement between observed and modeled soil and vegetation temperatures. In addition, the TSEB-A model output of evapotranspiration (ET) and the components evaporation (E), transpiration (T) when compared to ground observations using the stable isotopic method and eddy covariance (EC) technique from the HiWATER experiment and with microlysimeters and a large monolithic weighing lysimeter from the BEAREX08 experiment showed good agreement. Difference between the modeled and measured ET measurements were less than 10% and 20% on a daytime basis for HiWATER and BEAREX08 data sets, respectively. The TSEB-A model was found to accurately reproduce the temporal dynamics of E, T and ET over a full growing season under the advective conditions existing for these irrigated crops located in arid/semi-arid climates. With satellite data this TSEB-A modeling framework could potentially be used as a tool for improving water use efficiency and conservation practices in water limited regions. However, TSEB-A requires soil moisture information which is not currently available routinely from satellite at the field scale.

  1. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses of the Door Drive Mechanism (DDM). For a similar analysis, the traditional approach would be to construct a full finite element model of the mechanism. The purpose of this paper is to describe an alternative approach that models the flexibility of the DDM using a lumped parameter approximation to capture the compliance of individual parts within the drive linkage. This approach allows for rapid construction of a dynamic model in a time-critical setting, while still retaining the appropriate equivalent stiffness of each linkage component. As a validation of these equivalent stiffnesses, finite element analysis (FEA) was used to iteratively update the model towards convergence. Following this analysis, deflections recovered from the dynamic model can be used to calculate stress and classify each component s deformation as either elastic or plastic. Based on the modeling assumptions used in this analysis and the maximum input forcing condition, two components in the DDM show a factor of safety less than or equal to 0.5. However, to accurately evaluate the induced stresses, additional mechanism rigging information would be necessary to characterize the input forcing conditions. This information would also allow for the classification of stresses as either elastic or plastic.

  2. Two-dimensional statistical linear discriminant analysis for real-time robust vehicle-type recognition

    NASA Astrophysics Data System (ADS)

    Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.

    2007-02-01

    Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.

  3. User's guide to the Reliability Estimation System Testbed (REST)

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam

    1992-01-01

    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.

  4. Mixed model approaches for diallel analysis based on a bio-model.

    PubMed

    Zhu, J; Weir, B S

    1996-12-01

    A MINQUE(1) procedure, which is minimum norm quadratic unbiased estimation (MINQUE) method with 1 for all the prior values, is suggested for estimating variance and covariance components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were compared for MINQUE(1), restricted maximum likelihood (REML) and MINQUE theta which has parameter values for the prior values. MINQUE(1) is almost as efficient as MINQUE theta for unbiased estimation of genetic variance and covariance components. The bio-model is efficient and robust for estimating variance and covariance components for maternal and paternal effects as well as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects. Worked examples are given for estimation of variance and covariance components and for prediction of genetic merits.

  5. Posterior Predictive Bayesian Phylogenetic Model Selection

    PubMed Central

    Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-01-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892

  6. Built-In Data-Flow Integration Testing in Large-Scale Component-Based Systems

    NASA Astrophysics Data System (ADS)

    Piel, Éric; Gonzalez-Sanchez, Alberto; Gross, Hans-Gerhard

    Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from a previous one in the flow and sends output data to other components. This organisation expresses information flows adequately, and also favours decoupling between the components, leading to easier maintenance and quicker evolution of the system. Integration testing is a major means to ensure the quality of large systems. Their size and complexity, together with the fact that they are developed and maintained by several stake holders, make Built-In Testing (BIT) an attractive approach to manage their integration testing. However, so far no technique has been proposed that combines BIT and data-flow integration testing. We have introduced the notion of a virtual component in order to realize such a combination. It permits to define the behaviour of several components assembled to process a flow of data, using BIT. Test-cases are defined in a way that they are simple to write and flexible to adapt. We present two implementations of our proposed virtual component integration testing technique, and we extend our previous proposal to detect and handle errors in the definition by the user. The evaluation of the virtual component testing approach suggests that more issues can be detected in systems with data-flows than through other integration testing approaches.

  7. A Simulink Library of cryogenic components to automatically generate control schemes for large Cryorefrigerators

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel

    2015-12-01

    In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.

  8. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings

    PubMed Central

    Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun

    2017-01-01

    The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components. PMID:28524088

  9. Predicting fundamental and realized distributions based on thermal niche: A case study of a freshwater turtle

    NASA Astrophysics Data System (ADS)

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco; Ribeiro, Bruno R.

    2018-04-01

    Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.

  10. Item selection via Bayesian IRT models.

    PubMed

    Arima, Serena

    2015-02-10

    With reference to a questionnaire that aimed to assess the quality of life for dysarthric speakers, we investigate the usefulness of a model-based procedure for reducing the number of items. We propose a mixed cumulative logit model, which is known in the psychometrics literature as the graded response model: responses to different items are modelled as a function of individual latent traits and as a function of item characteristics, such as their difficulty and their discrimination power. We jointly model the discrimination and the difficulty parameters by using a k-component mixture of normal distributions. Mixture components correspond to disjoint groups of items. Items that belong to the same groups can be considered equivalent in terms of both difficulty and discrimination power. According to decision criteria, we select a subset of items such that the reduced questionnaire is able to provide the same information that the complete questionnaire provides. The model is estimated by using a Bayesian approach, and the choice of the number of mixture components is justified according to information criteria. We illustrate the proposed approach on the basis of data that are collected for 104 dysarthric patients by local health authorities in Lecce and in Milan. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Hierarchical multi-scale approach to validation and uncertainty quantification of hyper-spectral image modeling

    NASA Astrophysics Data System (ADS)

    Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.

    2016-05-01

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  12. RF control at SSCL — an object oriented design approach

    NASA Astrophysics Data System (ADS)

    Dohan, D. A.; Osberg, E.; Biggs, R.; Bossom, J.; Chillara, K.; Richter, R.; Wade, D.

    1994-12-01

    The Superconducting Super Collider (SSC) in Texas, the construction of which was stopped in 1994, would have represented a major challenge in accelerator research and development. This paper addresses the issues encountered in the parallel design and construction of the control systems for the RF equipment for the five accelerators comprising the SSC. An extensive analysis of the components of the RF control systems has been undertaken, based upon the Schlaer-Mellor object-oriented analysis and design (OOA/OOD) methodology. The RF subsystem components such as amplifiers, tubes, power supplies, PID loops, etc. were analyzed to produce OOA information, behavior and process models. Using these models, OOD was iteratively applied to develop a generic RF control system design. This paper describes the results of this analysis and the development of 'bridges' between the analysis objects, and the EPICS-based software and underlying VME-based hardware architectures. The application of this approach to several of the SSCL RF control systems is discussed.

  13. Enhancing the Effectiveness of Smoking Treatment Research: Conceptual Bases and Progress

    PubMed Central

    Baker, Timothy B.; Collins, Linda M.; Mermelstein, Robin; Piper, Megan E.; Schlam, Tanya R.; Cook, Jessica W.; Bolt, Daniel M.; Smith, Stevens S.; Jorenby, Douglas E.; Fraser, David; Loh, Wei-Yin; Theobald, Wendy E.; Fiore, Michael C.

    2015-01-01

    Background and aims A chronic care strategy could potentially enhance the reach and effectiveness of smoking treatment by providing effective interventions for all smokers, including those who are initially unwilling to quit. This paper describes the conceptual bases of a National Cancer Institute-funded research program designed to develop an optimized, comprehensive, chronic care smoking treatment. Methods This research is grounded in three methodological approaches: 1) the Phase-Based Model, which guides the selection of intervention components to be experimentally evaluated for the different phases of smoking treatment (motivation, preparation, cessation, and maintenance); 2) the Multiphase Optimization Strategy (MOST), which guides the screening of intervention components via efficient experimental designs and, ultimately, the assembly of promising components into an optimized treatment package; and 3) pragmatic research methods, such as electronic health record recruitment, that facilitate the efficient translation of research findings into clinical practice. Using this foundation and working in primary care clinics, we conducted three factorial experiments (reported in three accompanying articles) to screen 15 motivation, preparation, cessation, and maintenance phase intervention components for possible inclusion in a chronic care smoking treatment program. Results This research identified intervention components with relatively strong evidence of effectiveness at particular phases of smoking treatment and it demonstrated the efficiency of the MOST approach in terms both of the number of intervention components tested and of the richness of the information yielded. Conclusions A new, synthesized research approach efficiently evaluates multiple intervention components to identify promising components for every phase of smoking treatment. Many intervention components interact with one another, supporting the use of factorial experiments in smoking treatment development. PMID:26581974

  14. Judgmental Standard Setting Using a Cognitive Components Model.

    ERIC Educational Resources Information Center

    McGinty, Dixie; Neel, John H.

    A new standard setting approach is introduced, called the cognitive components approach. Like the Angoff method, the cognitive components method generates minimum pass levels (MPLs) for each item. In both approaches, the item MPLs are summed for each judge, then averaged across judges to yield the standard. In the cognitive components approach,…

  15. Time series modeling by a regression approach based on a latent process.

    PubMed

    Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice

    2009-01-01

    Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.

  16. Equilibrium Phase Behavior of the Square-Well Linear Microphase-Forming Model.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2016-07-07

    We have recently developed a simulation approach to calculate the equilibrium phase diagram of particle-based microphase formers. Here, this approach is used to calculate the phase behavior of the square-well linear model for different strengths and ranges of the linear long-range repulsive component. The results are compared with various theoretical predictions for microphase formation. The analysis further allows us to better understand the mechanism for microphase formation in colloidal suspensions.

  17. The development of a healing model of care for an Indigenous drug and alcohol residential rehabilitation service: a community-based participatory research approach.

    PubMed

    Munro, Alice; Shakeshaft, Anthony; Clifford, Anton

    2017-12-04

    Given the well-established evidence of disproportionately high rates of substance-related morbidity and mortality after release from incarceration for Indigenous Australians, access to comprehensive, effective and culturally safe residential rehabilitation treatment will likely assist in reducing recidivism to both prison and substance dependence for this population. In the absence of methodologically rigorous evidence, the delivery of Indigenous drug and alcohol residential rehabilitation services vary widely, and divergent views exist regarding the appropriateness and efficacy of different potential treatment components. One way to increase the methodological quality of evaluations of Indigenous residential rehabilitation services is to develop partnerships with researchers to better align models of care with the client's, and the community's, needs. An emerging research paradigm to guide the development of high quality evidence through a number of sequential steps that equitably involves services, stakeholders and researchers is community-based participatory research (CBPR). The purpose of this study is to articulate an Indigenous drug and alcohol residential rehabilitation service model of care, developed in collaboration between clients, service providers and researchers using a CBPR approach. This research adopted a mixed methods CBPR approach to triangulate collected data to inform the development of a model of care for a remote Indigenous drug and alcohol residential rehabilitation service. Four iterative CBPR steps of research activity were recorded during the 3-year research partnership. As a direct outcome of the CBPR framework, the service and researchers co-designed a Healing Model of Care that comprises six core treatment components, three core organisational components and is articulated in two program logics. The program logics were designed to specifically align each component and outcome with the mechanism of change for the client or organisation to improve data collection and program evaluation. The description of the CBPR process and the Healing Model of Care provides one possible solution about how to provide better care for the large and growing population of Indigenous people with substance.

  18. A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models

    NASA Astrophysics Data System (ADS)

    Brugnach, M.; Neilson, R.; Bolte, J.

    2001-12-01

    The use of process-based models as a tool for scientific inquiry is becoming increasingly relevant in ecosystem studies. Process-based models are artificial constructs that simulate the system by mechanistically mimicking the functioning of its component processes. Structurally, a process-based model can be characterized, in terms of its processes and the relationships established among them. Each process comprises a set of functional relationships among several model components (e.g., state variables, parameters and input data). While not encoded explicitly, the dynamics of the model emerge from this set of components and interactions organized in terms of processes. It is the task of the modeler to guarantee that the dynamics generated are appropriate and semantically equivalent to the phenomena being modeled. Despite the availability of techniques to characterize and understand model behavior, they do not suffice to completely and easily understand how a complex process-based model operates. For example, sensitivity analysis studies model behavior by determining the rate of change in model output as parameters or input data are varied. One of the problems with this approach is that it considers the model as a "black box", and it focuses on explaining model behavior by analyzing the relationship input-output. Since, these models have a high degree of non-linearity, understanding how the input affects an output can be an extremely difficult task. Operationally, the application of this technique may constitute a challenging task because complex process-based models are generally characterized by a large parameter space. In order to overcome some of these difficulties, we propose a method of sensitivity analysis to be applicable to complex process-based models. This method focuses sensitivity analysis at the process level, and it aims to determine how sensitive the model output is to variations in the processes. Once the processes that exert the major influence in the output are identified, the causes of its variability can be found. Some of the advantages of this approach are that it reduces the dimensionality of the search space, it facilitates the interpretation of the results and it provides information that allows exploration of uncertainty at the process level, and how it might affect model output. We present an example using the vegetation model BIOME-BGC.

  19. Active Learning through Modeling: Introduction to Software Development in the Business Curriculum

    ERIC Educational Resources Information Center

    Roussev, Boris; Rousseva, Yvonna

    2004-01-01

    Modern software practices call for the active involvement of business people in the software process. Therefore, programming has become an indispensable part of the information systems component of the core curriculum at business schools. In this paper, we present a model-based approach to teaching introduction to programming to general business…

  20. A likelihood-based time series modeling approach for application in dendrochronology to examine the growth-climate relations and forest disturbance history

    EPA Science Inventory

    A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...

  1. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  2. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  3. The software-cycle model for re-engineering and reuse

    NASA Technical Reports Server (NTRS)

    Bailey, John W.; Basili, Victor R.

    1992-01-01

    This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.

  4. Jointly modeling longitudinal proportional data and survival times with an application to the quality of life data in a breast cancer trial.

    PubMed

    Song, Hui; Peng, Yingwei; Tu, Dongsheng

    2017-04-01

    Motivated by the joint analysis of longitudinal quality of life data and recurrence free survival times from a cancer clinical trial, we present in this paper two approaches to jointly model the longitudinal proportional measurements, which are confined in a finite interval, and survival data. Both approaches assume a proportional hazards model for the survival times. For the longitudinal component, the first approach applies the classical linear mixed model to logit transformed responses, while the second approach directly models the responses using a simplex distribution. A semiparametric method based on a penalized joint likelihood generated by the Laplace approximation is derived to fit the joint model defined by the second approach. The proposed procedures are evaluated in a simulation study and applied to the analysis of breast cancer data motivated this research.

  5. Reliability prediction of ontology-based service compositions using Petri net and time series models.

    PubMed

    Li, Jia; Xia, Yunni; Luo, Xin

    2014-01-01

    OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.

  6. Framework for a clinical information system.

    PubMed

    Van De Velde, R; Lansiers, R; Antonissen, G

    2002-01-01

    The design and implementation of Clinical Information System architecture is presented. This architecture has been developed and implemented based on components following a strong underlying conceptual and technological model. Common Object Request Broker and n-tier technology featuring centralised and departmental clinical information systems as the back-end store for all clinical data are used. Servers located in the "middle" tier apply the clinical (business) model and application rules. The main characteristics are the focus on modelling and reuse of both data and business logic. Scalability as well as adaptability to constantly changing requirements via component driven computing are the main reasons for that approach.

  7. Method Engineering: A Service-Oriented Approach

    NASA Astrophysics Data System (ADS)

    Cauvet, Corine

    In the past, a large variety of methods have been published ranging from very generic frameworks to methods for specific information systems. Method Engineering has emerged as a research discipline for designing, constructing and adapting methods for Information Systems development. Several approaches have been proposed as paradigms in method engineering. The meta modeling approach provides means for building methods by instantiation, the component-based approach aims at supporting the development of methods by using modularization constructs such as method fragments, method chunks and method components. This chapter presents an approach (SO2M) for method engineering based on the service paradigm. We consider services as autonomous computational entities that are self-describing, self-configuring and self-adapting. They can be described, published, discovered and dynamically composed for processing a consumer's demand (a developer's requirement). The method service concept is proposed to capture a development process fragment for achieving a goal. Goal orientation in service specification and the principle of service dynamic composition support method construction and method adaptation to different development contexts.

  8. A Taxonomy-Based Approach to Shed Light on the Babel of Mathematical Models for Rice Simulation

    NASA Technical Reports Server (NTRS)

    Confalonieri, Roberto; Bregaglio, Simone; Adam, Myriam; Ruget, Francoise; Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Buis, Samuel; hide

    2016-01-01

    For most biophysical domains, differences in model structures are seldom quantified. Here, we used a taxonomy-based approach to characterise thirteen rice models. Classification keys and binary attributes for each key were identified, and models were categorised into five clusters using a binary similarity measure and the unweighted pair-group method with arithmetic mean. Principal component analysis was performed on model outputs at four sites. Results indicated that (i) differences in structure often resulted in similar predictions and (ii) similar structures can lead to large differences in model outputs. User subjectivity during calibration may have hidden expected relationships between model structure and behaviour. This explanation, if confirmed, highlights the need for shared protocols to reduce the degrees of freedom during calibration, and to limit, in turn, the risk that user subjectivity influences model performance.

  9. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

  10. Multi-physics modelling approach for oscillatory microengines: application for a microStirling generator design

    NASA Astrophysics Data System (ADS)

    Formosa, F.; Fréchette, L. G.

    2015-12-01

    An electrical circuit equivalent (ECE) approach has been set up allowing elementary oscillatory microengine components to be modelled. They cover gas channel/chamber thermodynamics, viscosity and thermal effects, mechanical structure and electromechanical transducers. The proposed tool has been validated on a centimeter scale Free Piston membrane Stirling engine [1]. We propose here new developments taking into account scaling effects to establish models suitable for any microengines. They are based on simplifications derived from the comparison of the hydraulic radius with respect to the viscous and thermal penetration depths respectively).

  11. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paret, Paul P; DeVoto, Douglas J; Narumanchi, Sreekant V

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. Amore » fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.« less

  12. The Scenario-Based Engineering Process (SEP): a user-centered approach for the development of health care systems.

    PubMed

    Harbison, K; Kelly, J; Burnell, L; Silva, J

    1995-01-01

    The Scenario-based Engineering Process (SEP) is a user-focused methodology for large and complex system design. This process supports new application development from requirements analysis with domain models to component selection, design and modification, implementation, integration, and archival placement. It is built upon object-oriented methodologies, domain modeling strategies, and scenario-based techniques to provide an analysis process for mapping application requirements to available components. We are using SEP in the health care applications that we are developing. The process has already achieved success in the manufacturing and military domains and is being adopted by many organizations. SEP should prove viable in any domain containing scenarios that can be decomposed into tasks.

  13. Imaging genetics approach to predict progression of Parkinson's diseases.

    PubMed

    Mansu Kim; Seong-Jin Son; Hyunjin Park

    2017-07-01

    Imaging genetics is a tool to extract genetic variants associated with both clinical phenotypes and imaging information. The approach can extract additional genetic variants compared to conventional approaches to better investigate various diseased conditions. Here, we applied imaging genetics to study Parkinson's disease (PD). We aimed to extract significant features derived from imaging genetics and neuroimaging. We built a regression model based on extracted significant features combining genetics and neuroimaging to better predict clinical scores of PD progression (i.e. MDS-UPDRS). Our model yielded high correlation (r = 0.697, p <; 0.001) and low root mean squared error (8.36) between predicted and actual MDS-UPDRS scores. Neuroimaging (from 123 I-Ioflupane SPECT) predictors of regression model were computed from independent component analysis approach. Genetic features were computed using image genetics approach based on identified neuroimaging features as intermediate phenotypes. Joint modeling of neuroimaging and genetics could provide complementary information and thus have the potential to provide further insight into the pathophysiology of PD. Our model included newly found neuroimaging features and genetic variants which need further investigation.

  14. Operational Soil Moisture Retrieval Techniques: Theoretical Comparisons in the Context of Improving the NASA Standard Approach

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Jackson, T. J.; Bindlish, R.; Njoku, E. G.; Chan, S.; Cosh, M. H.

    2012-12-01

    We are currently evaluating potential improvements to the standard NASA global soil moisture product derived using observations acquired from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). A major component of this effort is a thorough review of the theoretical basis of available passive-based soil moisture retrieval algorithms suitable for operational implementation. Several agencies provide routine soil moisture products. Our research focuses on five well-establish techniques that are capable of carrying out global retrieval using the same AMSR-E data set as the NASA approach (i.e. X-band brightness temperature data). In general, most passive-based algorithms include two major components: radiative transfer modeling, which provides the smooth surface reflectivity properties of the soil surface, and a complex dielectric constant model of the soil-water mixture. These two components are related through the Fresnel reflectivity equations. Furthermore, the land surface temperature, vegetation, roughness and soil properties need to be adequately accounted for in the radiative transfer and dielectric modeling. All of the available approaches we have examined follow the general data processing flow described above, however, the actual solutions as well as the final products can be very different. This is primarily a result of the assumptions, number of sensor variables utilized, the selected ancillary data sets and approaches used to account for the effect of the additional geophysical variables impacting the measured signal. The operational NASA AMSR-E-based retrievals have been shown to have a dampened temporal response and sensitivity range. Two possible approaches to addressing these issues are being evaluated: enhancing the theoretical basis of the existing algorithm, if feasible, or directly adjusting the dynamic range of the final soil moisture product. Both of these aspects are being actively investigated and will be discussed in our talk. Improving the quality and reliability of the global soil moisture product would result in greater acceptance and utilization in the related applications. USDA is an equal opportunity provider and employer.

  15. Video modeling for children with dual diagnosis of deafness or hard of hearing and autism spectrum disorder to promote peer interaction.

    PubMed

    Thrasher, Amy

    2014-11-01

    This article describes an intervention program offered at the University of Colorado Boulder that supports peer interaction among young children with autism spectrum disorders and their typical peers using a multicomponent approach, including video modeling. Characteristics of autism that may interfere with the development of peer interaction in young children will be discussed. Components of the approach will be described and the evidence base for the application of these components examined in regards to children with autism and for the potential application to children with the dual diagnosis of autism and deafness or hard of hearing. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara

    Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.

  17. An analysis of tree mortality using high resolution remotely-sensed data for mixed-conifer forests in San Diego county

    NASA Astrophysics Data System (ADS)

    Freeman, Mary Pyott

    ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.

  18. Starting from the bench--prevention and control of foodborne and zoonotic diseases.

    PubMed

    Vongkamjan, Kitiya; Wiedmann, Martin

    2015-02-01

    Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  20. Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.

    PubMed

    Gawthrop, Peter J

    2017-04-01

    Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.

  1. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    PubMed Central

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  2. Bias and robustness of uncertainty components estimates in transient climate projections

    NASA Astrophysics Data System (ADS)

    Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal

    2016-04-01

    A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate

  3. Introduction: Hazard mapping

    USGS Publications Warehouse

    Baum, Rex L.; Miyagi, Toyohiko; Lee, Saro; Trofymchuk, Oleksandr M

    2014-01-01

    Twenty papers were accepted into the session on landslide hazard mapping for oral presentation. The papers presented susceptibility and hazard analysis based on approaches ranging from field-based assessments to statistically based models to assessments that combined hydromechanical and probabilistic components. Many of the studies have taken advantage of increasing availability of remotely sensed data and nearly all relied on Geographic Information Systems to organize and analyze spatial data. The studies used a range of methods for assessing performance and validating hazard and susceptibility models. A few of the studies presented in this session also included some element of landslide risk assessment. This collection of papers clearly demonstrates that a wide range of approaches can lead to useful assessments of landslide susceptibility and hazard.

  4. Towards a constructionist approach to emotions: verification of the three-dimensional model of affect with EEG-independent component analysis.

    PubMed

    Wyczesany, Miroslaw; Ligeza, Tomasz S

    2015-03-01

    The locationist model of affect, which assumes separate brain structures devoted to particular discrete emotions, is currently being questioned as it has not received enough convincing experimental support. An alternative, constructionist approach suggests that our emotional states emerge from the interaction between brain functional networks, which are related to more general, continuous affective categories. In the study, we tested whether the three-dimensional model of affect based on valence, arousal, and dominance (VAD) can reflect brain activity in a more coherent way than the traditional locationist approach. Independent components of brain activity were derived from spontaneous EEG recordings and localized using the DIPFIT method. The correspondence between the spectral power of the revealed brain sources and a mood self-report quantified on the VAD space was analysed. Activation of four (out of nine) clusters of independent brain sources could be successfully explained by the specific combination of three VAD dimensions. The results support the constructionist theory of emotions.

  5. Matrix approaches to assess terrestrial nitrogen scheme in CLM4.5

    NASA Astrophysics Data System (ADS)

    Du, Z.

    2017-12-01

    Terrestrial carbon (C) and nitrogen (N) cycles have been commonly represented by a series of balance equations to track their influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C and N cycle processes well but makes it difficult to track model behaviors. To overcome these challenges, we developed a matrix approach, which reorganizes the series of terrestrial C and N balance equations in the CLM4.5 into two matrix equations based on original representation of C and N cycle processes and mechanisms. The matrix approach would consequently help improve the comparability of models and data, evaluate impacts of additional model components, facilitate benchmark analyses, model intercomparisons, and data-model fusion, and improve model predictive power.

  6. Virtual commissioning of automated micro-optical assembly

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian

    2015-02-01

    In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping

  7. Roadmap for Lean implementation in Indian automotive component manufacturing industry: comparative study of UNIDO Model and ISM Model

    NASA Astrophysics Data System (ADS)

    Jadhav, J. R.; Mantha, S. S.; Rane, S. B.

    2015-06-01

    The demands for automobiles increased drastically in last two and half decades in India. Many global automobile manufacturers and Tier-1 suppliers have already set up research, development and manufacturing facilities in India. The Indian automotive component industry started implementing Lean practices to fulfill the demand of these customers. United Nations Industrial Development Organization (UNIDO) has taken proactive approach in association with Automotive Component Manufacturers Association of India (ACMA) and the Government of India to assist Indian SMEs in various clusters since 1999 to make them globally competitive. The primary objectives of this research are to study the UNIDO-ACMA Model as well as ISM Model of Lean implementation and validate the ISM Model by comparing with UNIDO-ACMA Model. It also aims at presenting a roadmap for Lean implementation in Indian automotive component industry. This paper is based on secondary data which include the research articles, web articles, doctoral thesis, survey reports and books on automotive industry in the field of Lean, JIT and ISM. ISM Model for Lean practice bundles was developed by authors in consultation with Lean practitioners. The UNIDO-ACMA Model has six stages whereas ISM Model has eight phases for Lean implementation. The ISM-based Lean implementation model is validated through high degree of similarity with UNIDO-ACMA Model. The major contribution of this paper is the proposed ISM Model for sustainable Lean implementation. The ISM-based Lean implementation framework presents greater insight of implementation process at more microlevel as compared to UNIDO-ACMA Model.

  8. A semiparametric graphical modelling approach for large-scale equity selection.

    PubMed

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

  9. A meta-model based approach for rapid formability estimation of continuous fibre reinforced components

    NASA Astrophysics Data System (ADS)

    Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise

    2018-05-01

    Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects.

  10. Hierarchical Multi-Scale Approach To Validation and Uncertainty Quantification of Hyper-Spectral Image Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensormore » level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.« less

  11. Component-Based Approach in Learning Management System Development

    ERIC Educational Resources Information Center

    Zaitseva, Larisa; Bule, Jekaterina; Makarov, Sergey

    2013-01-01

    The paper describes component-based approach (CBA) for learning management system development. Learning object as components of e-learning courses and their metadata is considered. The architecture of learning management system based on CBA being developed in Riga Technical University, namely its architecture, elements and possibilities are…

  12. Computational neuroanatomy: ontology-based representation of neural components and connectivity

    PubMed Central

    Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron

    2009-01-01

    Background A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. Results We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Conclusion Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future. PMID:19208191

  13. Retrieve sea surface salinity using principal component regression model based on SMOS satellite data

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Li, Changjun; Li, Hongping; Lv, Kebo; Zhao, Qinghui

    2016-06-01

    The sea surface salinity (SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity (SMOS) satellite data. Based on the principal component regression (PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea (in the area of 4°-25°N, 105°-125°E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu (practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data.

  14. Principal component analysis acceleration of rovibrational coarse-grain models for internal energy excitation and dissociation

    NASA Astrophysics Data System (ADS)

    Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry

    2018-04-01

    The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.

  15. Localized Principal Component Analysis based Curve Evolution: A Divide and Conquer Approach

    PubMed Central

    Appia, Vikram; Ganapathy, Balaji; Yezzi, Anthony; Faber, Tracy

    2014-01-01

    We propose a novel localized principal component analysis (PCA) based curve evolution approach which evolves the segmenting curve semi-locally within various target regions (divisions) in an image and then combines these locally accurate segmentation curves to obtain a global segmentation. The training data for our approach consists of training shapes and associated auxiliary (target) masks. The masks indicate the various regions of the shape exhibiting highly correlated variations locally which may be rather independent of the variations in the distant parts of the global shape. Thus, in a sense, we are clustering the variations exhibited in the training data set. We then use a parametric model to implicitly represent each localized segmentation curve as a combination of the local shape priors obtained by representing the training shapes and the masks as a collection of signed distance functions. We also propose a parametric model to combine the locally evolved segmentation curves into a single hybrid (global) segmentation. Finally, we combine the evolution of these semilocal and global parameters to minimize an objective energy function. The resulting algorithm thus provides a globally accurate solution, which retains the local variations in shape. We present some results to illustrate how our approach performs better than the traditional approach with fully global PCA. PMID:25520901

  16. Pharmacophore modeling, docking, and principal component analysis based clustering: combined computer-assisted approaches to identify new inhibitors of the human rhinovirus coat protein.

    PubMed

    Steindl, Theodora M; Crump, Carolyn E; Hayden, Frederick G; Langer, Thierry

    2005-10-06

    The development and application of a sophisticated virtual screening and selection protocol to identify potential, novel inhibitors of the human rhinovirus coat protein employing various computer-assisted strategies are described. A large commercially available database of compounds was screened using a highly selective, structure-based pharmacophore model generated with the program Catalyst. A docking study and a principal component analysis were carried out within the software package Cerius and served to validate and further refine the obtained results. These combined efforts led to the selection of six candidate structures, for which in vitro anti-rhinoviral activity could be shown in a biological assay.

  17. Descriptive vs. mechanistic network models in plant development in the post-genomic era.

    PubMed

    Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R

    2015-01-01

    Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.

  18. A modeling approach to account for toxicokinetic interactions in the calculation of biological hazard index for chemical mixtures.

    PubMed

    Haddad, S; Tardif, R; Viau, C; Krishnan, K

    1999-09-05

    Biological hazard index (BHI) is defined as biological level tolerable for exposure to mixture, and is calculated by an equation similar to the conventional hazard index. The BHI calculation, at the present time, is advocated for use in situations where toxicokinetic interactions do not occur among mixture constituents. The objective of this study was to develop an approach for calculating interactions-based BHI for chemical mixtures. The approach consisted of simulating the concentration of exposure indicator in the biological matrix of choice (e.g. venous blood) for each component of the mixture to which workers are exposed and then comparing these to the established BEI values, for calculating the BHI. The simulation of biomarker concentrations was performed using a physiologically-based toxicokinetic (PBTK) model which accounted for the mechanism of interactions among all mixture components (e.g. competitive inhibition). The usefulness of the present approach is illustrated by calculating BHI for varying ambient concentrations of a mixture of three chemicals (toluene (5-40 ppm), m-xylene (10-50 ppm), and ethylbenzene (10-50 ppm)). The results show that the interactions-based BHI can be greater or smaller than that calculated on the basis of additivity principle, particularly at high exposure concentrations. At lower exposure concentrations (e.g. 20 ppm each of toluene, m-xylene and ethylbenzene), the BHI values obtained using the conventional methodology are similar to the interactions-based methodology, confirming that the consequences of competitive inhibition are negligible at lower concentrations. The advantage of the PBTK model-based methodology developed in this study relates to the fact that, the concentrations of individual chemicals in mixtures that will not result in a significant increase in the BHI (i.e. > 1) can be determined by iterative simulation.

  19. Integrated Spatio-Temporal Ecological Modeling System

    DTIC Science & Technology

    1998-07-01

    models that we hold in our conscious (and subconscious ) minds. Chapter 3 explores how this approach is being augmented with the more formal capture...This approach makes it possible to add new simulation model components to I- STEMS without having to reprogram existing components. The steps required

  20. On the transport of emulsions in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortis, Andrea; Ghezzehei, Teamrat A.

    2007-06-27

    Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approachmore » explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.« less

  1. Dragon pulse information management system (DPIMS): A unique model-based approach to implementing domain agnostic system of systems and behaviors

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2016-05-01

    The Global Information Network Architecture is an information technology based on Vector Relational Data Modeling, a unique computational paradigm, DoD network certified by USARMY as the Dragon Pulse Informa- tion Management System. This network available modeling environment for modeling models, where models are configured using domain relevant semantics and use network available systems, sensors, databases and services as loosely coupled component objects and are executable applications. Solutions are based on mission tactics, techniques, and procedures and subject matter input. Three recent ARMY use cases are discussed a) ISR SoS. b) Modeling and simulation behavior validation. c) Networked digital library with behaviors.

  2. Scalability of grid- and subbasin-based land surface modeling approaches for hydrologic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfa, Teklu K.; Ruby Leung, L.; Huang, Maoyi

    2014-03-27

    This paper investigates the relative merits of grid- and subbasin-based land surface modeling approaches for hydrologic simulations, with a focus on their scalability (i.e., abilities to perform consistently across a range of spatial resolutions) in simulating runoff generation. Simulations produced by the grid- and subbasin-based configurations of the Community Land Model (CLM) are compared at four spatial resolutions (0.125o, 0.25o, 0.5o and 1o) over the topographically diverse region of the U.S. Pacific Northwest. Using the 0.125o resolution simulation as the “reference”, statistical skill metrics are calculated and compared across simulations at 0.25o, 0.5o and 1o spatial resolutions of each modelingmore » approach at basin and topographic region levels. Results suggest significant scalability advantage for the subbasin-based approach compared to the grid-based approach for runoff generation. Basin level annual average relative errors of surface runoff at 0.25o, 0.5o, and 1o compared to 0.125o are 3%, 4%, and 6% for the subbasin-based configuration and 4%, 7%, and 11% for the grid-based configuration, respectively. The scalability advantages of the subbasin-based approach are more pronounced during winter/spring and over mountainous regions. The source of runoff scalability is found to be related to the scalability of major meteorological and land surface parameters of runoff generation. More specifically, the subbasin-based approach is more consistent across spatial scales than the grid-based approach in snowfall/rainfall partitioning, which is related to air temperature and surface elevation. Scalability of a topographic parameter used in the runoff parameterization also contributes to improved scalability of the rain driven saturated surface runoff component, particularly during winter. Hence this study demonstrates the importance of spatial structure for multi-scale modeling of hydrological processes, with implications to surface heat fluxes in coupled land-atmosphere modeling.« less

  3. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra

    NASA Astrophysics Data System (ADS)

    Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

  4. Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics

    NASA Technical Reports Server (NTRS)

    Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.

    2018-01-01

    Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.

  5. Toward the Modularization of Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Raskin, R. G.

    2009-12-01

    Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.

  6. Risk assessment for enterprise resource planning (ERP) system implementations: a fault tree analysis approach

    NASA Astrophysics Data System (ADS)

    Zeng, Yajun; Skibniewski, Miroslaw J.

    2013-08-01

    Enterprise resource planning (ERP) system implementations are often characterised with large capital outlay, long implementation duration, and high risk of failure. In order to avoid ERP implementation failure and realise the benefits of the system, sound risk management is the key. This paper proposes a probabilistic risk assessment approach for ERP system implementation projects based on fault tree analysis, which models the relationship between ERP system components and specific risk factors. Unlike traditional risk management approaches that have been mostly focused on meeting project budget and schedule objectives, the proposed approach intends to address the risks that may cause ERP system usage failure. The approach can be used to identify the root causes of ERP system implementation usage failure and quantify the impact of critical component failures or critical risk events in the implementation process.

  7. A Component-Based Study of the Effect of Diameter on Bond and Anchorage Characteristics of Blind-Bolted Connections

    PubMed Central

    Amin, Muhammad Nasir; Zaheer, Salman; Alazba, Abdulrahman Ali; Saleem, Muhammad Umair; Niazi, Muhammad Umar Khan; Khurram, Nauman; Amin, Muhammad Tahir

    2016-01-01

    Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the “Extended Hollo-Bolt” (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach. PMID:26901866

  8. A Component-Based Study of the Effect of Diameter on Bond and Anchorage Characteristics of Blind-Bolted Connections.

    PubMed

    Amin, Muhammad Nasir; Zaheer, Salman; Alazba, Abdulrahman Ali; Saleem, Muhammad Umair; Niazi, Muhammad Umar Khan; Khurram, Nauman; Amin, Muhammad Tahir

    2016-01-01

    Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the "Extended Hollo-Bolt" (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach.

  9. Modeling the Personal Health Ecosystem.

    PubMed

    Blobel, Bernd; Brochhausen, Mathias; Ruotsalainen, Pekka

    2018-01-01

    Complex ecosystems like the pHealth one combine different domains represented by a huge variety of different actors (human beings, organizations, devices, applications, components) belonging to different policy domains, coming from different disciplines, deploying different methodologies, terminologies, and ontologies, offering different levels of knowledge, skills, and experiences, acting in different scenarios and accommodating different business cases to meet the intended business objectives. For correctly modeling such systems, a system-oriented, architecture-centric, ontology-based, policy-driven approach is inevitable, thereby following established Good Modeling Best Practices. However, most of the existing standards, specifications and tools for describing, representing, implementing and managing health (information) systems reflect the advancement of information and communication technology (ICT) represented by different evolutionary levels of data modeling. The paper presents a methodology for integrating, adopting and advancing models, standards, specifications as well as implemented systems and components on the way towards the aforementioned ultimate approach, so meeting the challenge we face when transforming health systems towards ubiquitous, personalized, predictive, preventive, participative, and cognitive health and social care.

  10. Protein requirements for long term missions

    NASA Astrophysics Data System (ADS)

    Stein, T. P.

    1994-11-01

    A key component of the diet for a space mission is protein. This first part of this paper reviews the reasons for emphasizing protein nutrition and then discusses what the requirements are likely to be. The second part discusses potential advantages of modifying these requirements and describes potential approaches to effecting these modifications based on well established ground based models.

  11. Distance Learning Success--A Perspective from Socio-Technical Systems Theory

    ERIC Educational Resources Information Center

    Wang, Jianfeng; Solan, David; Ghods, Abe

    2010-01-01

    With widespread adoption of computer-based distance education as a mission-critical component of the institution's educational program, the need for evaluation has emerged. In this research, we aim to expand on the systems approach by offering a model for evaluation based on socio-technical systems theory addressing a stated need in the literature…

  12. Protein requirements for long term missions

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    1994-01-01

    A key component of the diet for a space mission is protein. This first part of this paper reviews the reasons for emphasizing protein nurtition and then discusses what the requirements are likely to be. The second part discusses potential advantages of modifying these requirements and describes potential potential approaches to effecting these modificatons based on well established ground based models.

  13. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  14. Radiology information system: a workflow-based approach.

    PubMed

    Zhang, Jinyan; Lu, Xudong; Nie, Hongchao; Huang, Zhengxing; van der Aalst, W M P

    2009-09-01

    Introducing workflow management technology in healthcare seems to be prospective in dealing with the problem that the current healthcare Information Systems cannot provide sufficient support for the process management, although several challenges still exist. The purpose of this paper is to study the method of developing workflow-based information system in radiology department as a use case. First, a workflow model of typical radiology process was established. Second, based on the model, the system could be designed and implemented as a group of loosely coupled components. Each component corresponded to one task in the process and could be assembled by the workflow management system. The legacy systems could be taken as special components, which also corresponded to the tasks and were integrated through transferring non-work- flow-aware interfaces to the standard ones. Finally, a workflow dashboard was designed and implemented to provide an integral view of radiology processes. The workflow-based Radiology Information System was deployed in the radiology department of Zhejiang Chinese Medicine Hospital in China. The results showed that it could be adjusted flexibly in response to the needs of changing process, and enhance the process management in the department. It can also provide a more workflow-aware integration method, comparing with other methods such as IHE-based ones. The workflow-based approach is a new method of developing radiology information system with more flexibility, more functionalities of process management and more workflow-aware integration. The work of this paper is an initial endeavor for introducing workflow management technology in healthcare.

  15. Improved estimation of random vibration loads in launch vehicles

    NASA Technical Reports Server (NTRS)

    Mehta, R.; Erwin, E.; Suryanarayan, S.; Krishna, Murali M. R.

    1993-01-01

    Random vibration induced load is an important component of the total design load environment for payload and launch vehicle components and their support structures. The current approach to random vibration load estimation is based, particularly at the preliminary design stage, on the use of Miles' equation which assumes a single degree-of-freedom (DOF) system and white noise excitation. This paper examines the implications of the use of multi-DOF system models and response calculation based on numerical integration using the actual excitation spectra for random vibration load estimation. The analytical study presented considers a two-DOF system and brings out the effects of modal mass, damping and frequency ratios on the random vibration load factor. The results indicate that load estimates based on the Miles' equation can be significantly different from the more accurate estimates based on multi-DOF models.

  16. Problem-Oriented Corporate Knowledge Base Models on the Case-Based Reasoning Approach Basis

    NASA Astrophysics Data System (ADS)

    Gluhih, I. N.; Akhmadulin, R. K.

    2017-07-01

    One of the urgent directions of efficiency enhancement of production processes and enterprises activities management is creation and use of corporate knowledge bases. The article suggests a concept of problem-oriented corporate knowledge bases (PO CKB), in which knowledge is arranged around possible problem situations and represents a tool for making and implementing decisions in such situations. For knowledge representation in PO CKB a case-based reasoning approach is encouraged to use. Under this approach, the content of a case as a knowledge base component has been defined; based on the situation tree a PO CKB knowledge model has been developed, in which the knowledge about typical situations as well as specific examples of situations and solutions have been represented. A generalized problem-oriented corporate knowledge base structural chart and possible modes of its operation have been suggested. The obtained models allow creating and using corporate knowledge bases for support of decision making and implementing, training, staff skill upgrading and analysis of the decisions taken. The universal interpretation of terms “situation” and “solution” adopted in the work allows using the suggested models to develop problem-oriented corporate knowledge bases in different subject domains. It has been suggested to use the developed models for making corporate knowledge bases of the enterprises that operate engineer systems and networks at large production facilities.

  17. Strategic approaches to planetary base development

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1992-01-01

    The evolutionary development of a planetary expansionary outpost is considered in the light of both technical and economic issues. The outline of a partnering taxonomy is set forth which encompasses both institutional and temporal issues related to establishing shared interests and investments. The purely technical issues are discussed in terms of the program components which include nonaerospace technologies such as construction engineering. Five models are proposed in which partnership and autonomy for participants are approached in different ways including: (1) the standard customer/provider relationship; (2) a service-provider scenario; (3) the joint venture; (4) a technology joint-development model; and (5) a redundancy model for reduced costs. Based on the assumed characteristics of planetary surface systems the cooperative private/public models are championed with coordinated design by NASA to facilitate outside cooperation.

  18. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  19. Simulating land surface energy fluxes using a microscopic root water uptake approach in a northern temperate forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Schneider, C.

    2012-12-01

    The predictive accuracy of current land surface models has been limited by uncertainties in modeling transpiration and its sensitivity to the plant-available water in the root zone. Models usually distribute vegetation transpiration demand as sink terms in one-dimensional soil-water accounting model, according to the vertical root density profile. During water-limited situations, the sink terms are constrained using a heuristic "Feddes-type" water stress function. This approach significantly simplifies the actual three-dimensional physical process of root water uptake and may predict an early onset of water-limited transpiration. Recently, a microscopic root water uptake approach was proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes along the root systems. During dry conditions, this approach permits the compensation of decreased root water uptake in water-stressed regions by increasing uptake density in moister regions. This effect cannot be captured by the Feddes heuristic function. This study "loosely" incorporates the microscopic root water uptake approach based on aRoot model into an ecohydrological model tRIBS+VEGGIE. The ecohydrological model provides boundary conditions for the microscopic root water uptake model (e.g., potential transpiration, soil evaporation, and precipitation influx), and the latter computes the actual transpiration and profiles of sink terms. Based on the departure of the actual latent heat flux from the potential value, the other energy budget components are adjusted. The study is conducted for a northern temperate mixed forest near the University of Michigan Biological Station. Observational evidence for this site suggests little-to-no control of transpiration by soil moisture yet the commonly used Feddes-type approach implies severe water limitation on transpiration during dry episodes. The study addresses two species: oak and aspen. The effects of differences in root architecture on actual transpiration are explored. The energy components simulated with the microscopic modeling approach are tested against observational data. Through the improved spatiotemporal representation of small-scale root water uptake process, the microscopic modeling framework leads to a better agreement with the observational data than the Feddes-type approach. During dry periods, relatively high transpiration is sustained, as water uptake regions shift from densely to sparsely rooted layers, or from drier to moister soil areas. Implications and approaches for incorporating microscopic modeling methodologies within large-scale land-surface parameterizations are discussed.

  20. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks

    PubMed Central

    Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804

  1. Developing the snow component of a distributed hydrological model: a step-wise approach based on multi-objective analysis

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Colohan, R. J. E.

    1999-09-01

    A snow component has been developed for the distributed hydrological model, DIY, using an approach that sequentially evaluates the behaviour of different functions as they are implemented in the model. The evaluation is performed using multi-objective functions to ensure that the internal structure of the model is correct. The development of the model, using a sub-catchment in the Cairngorm Mountains in Scotland, demonstrated that the degree-day model can be enhanced for hydroclimatic conditions typical of those found in Scotland, without increasing meteorological data requirements. An important element of the snow model is a function to account for wind re-distribution. This causes large accumulations of snow in small pockets, which are shown to be important in sustaining baseflows in the rivers during the late spring and early summer, long after the snowpack has melted from the bulk of the catchment. The importance of the wind function would not have been identified using a single objective function of total streamflow to evaluate the model behaviour.

  2. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2008-01-01

    The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.

  3. Body composition analysis: Cellular level modeling of body component ratios.

    PubMed

    Wang, Z; Heymsfield, S B; Pi-Sunyer, F X; Gallagher, D; Pierson, R N

    2008-01-01

    During the past two decades, a major outgrowth of efforts by our research group at St. Luke's-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growth and development and in response to disease and treatments. In-vivo measurements reveal that in healthy adults some component ratios show minimal variability and are relatively 'stable', for example total body water/fat-free mass and fat-free mass density. These ratios can be effectively applied for developing body composition methods. In contrast, other ratios, such as total body potassium/fat-free mass, are highly variable in vivo and therefore are less useful for developing body composition models. In order to understand the mechanisms governing the variability of these component ratios, we have developed eight cellular level ratio models and from them we derived simplified models that share as a major determining factor the ratio of extracellular to intracellular water ratio (E/I). The E/I value varies widely among adults. Model analysis reveals that the magnitude and variability of each body component ratio can be predicted by correlating the cellular level model with the E/I value. Our approach thus provides new insights into and improved understanding of body composition ratios in adults.

  4. Creation of system of computer-aided design for technological objects

    NASA Astrophysics Data System (ADS)

    Zubkova, T. M.; Tokareva, M. A.; Sultanov, N. Z.

    2018-05-01

    Due to the competition in the market of process equipment, its production should be flexible, retuning to various product configurations, raw materials and productivity, depending on the current market needs. This process is not possible without CAD (computer-aided design). The formation of CAD begins with planning. Synthesizing, analyzing, evaluating, converting operations, as well as visualization and decision-making operations, can be automated. Based on formal description of the design procedures, the design route in the form of an oriented graph is constructed. The decomposition of the design process, represented by the formalized description of the design procedures, makes it possible to make an informed choice of the CAD component for the solution of the task. The object-oriented approach allows us to consider the CAD as an independent system whose properties are inherited from the components. The first step determines the range of tasks to be performed by the system, and a set of components for their implementation. The second one is the configuration of the selected components. The interaction between the selected components is carried out using the CALS standards. The chosen CAD / CAE-oriented approach allows creating a single model, which is stored in the database of the subject area. Each of the integration stages is implemented as a separate functional block. The transformation of the CAD model into the model of the internal representation is realized by the block of searching for the geometric parameters of the technological machine, in which the XML-model of the construction is obtained on the basis of the feature method from the theory of image recognition. The configuration of integrated components is divided into three consecutive steps: configuring tasks, components, interfaces. The configuration of the components is realized using the theory of "soft computations" using the Mamdani fuzzy inference algorithm.

  5. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.

    PubMed

    Tang, Wan; Lu, Naiji; Chen, Tian; Wang, Wenjuan; Gunzler, Douglas David; Han, Yu; Tu, Xin M

    2015-10-30

    Zero-inflated Poisson (ZIP) and negative binomial (ZINB) models are widely used to model zero-inflated count responses. These models extend the Poisson and negative binomial (NB) to address excessive zeros in the count response. By adding a degenerate distribution centered at 0 and interpreting it as describing a non-risk group in the population, the ZIP (ZINB) models a two-component population mixture. As in applications of Poisson and NB, the key difference between ZIP and ZINB is the allowance for overdispersion by the ZINB in its NB component in modeling the count response for the at-risk group. Overdispersion arising in practice too often does not follow the NB, and applications of ZINB to such data yield invalid inference. If sources of overdispersion are known, other parametric models may be used to directly model the overdispersion. Such models too are subject to assumed distributions. Further, this approach may not be applicable if information about the sources of overdispersion is unavailable. In this paper, we propose a distribution-free alternative and compare its performance with these popular parametric models as well as a moment-based approach proposed by Yu et al. [Statistics in Medicine 2013; 32: 2390-2405]. Like the generalized estimating equations, the proposed approach requires no elaborate distribution assumptions. Compared with the approach of Yu et al., it is more robust to overdispersed zero-inflated responses. We illustrate our approach with both simulated and real study data. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution

    PubMed Central

    Lo, Kenneth

    2011-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375

  7. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution.

    PubMed

    Lo, Kenneth; Gottardo, Raphael

    2012-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.

  8. Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories

    NASA Astrophysics Data System (ADS)

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z.; Read, Jordan S.; Ibelings, Bas W.; Valesini, Fiona J.; Brookes, Justin D.

    2015-09-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  9. Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Duca, Stéphane; Leclerc, Bernard; Tchoreloff, Pierre

    2011-05-30

    In the pharmaceutical industry, tablets are obtained by the compaction of two or more components which have different physical properties and compaction behaviours. Therefore, it could be interesting to predict the physical properties of the mixture using the single-component results. In this paper, we have focused on the prediction of the compressibility of binary mixtures using the Kawakita model. Microcrystalline cellulose (MCC) and L-alanine were compacted alone and mixed at different weight fractions. The volume reduction, as a function of the compaction pressure, was acquired during the compaction process ("in-die") and after elastic recovery ("out-of-die"). For the pure components, the Kawakita model is well suited to the description of the volume reduction. For binary mixtures, an original approach for the prediction of the volume reduction without using the effective Kawakita parameters was proposed and tested. The good agreement between experimental and predicted data proved that this model was efficient to predict the volume reduction of MCC and L-alanine mixtures during compaction experiments. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Bringing Back the Social Affordances of the Paper Memo to Aerospace Systems Engineering Work

    NASA Technical Reports Server (NTRS)

    Davidoff, Scott; Holloway, Alexandra

    2014-01-01

    Model-based systems engineering (MBSE) is a relatively new field that brings together the interdisciplinary study of technological components of a project (systems engineering) with a model-based ontology to express the hierarchical and behavioral relationships between the components (computational modeling). Despite the compelling promises of the benefits of MBSE, such as improved communication and productivity due to an underlying language and data model, we observed hesitation to its adoption at the NASA Jet Propulsion Laboratory. To investigate, we conducted a six-month ethnographic field investigation and needs validation with 19 systems engineers. This paper contributes our observations of a generational shift in one of JPL's core technologies. We report on a cultural misunderstanding between communities of practice that bolsters the existing technology drag. Given the high cost of failure, we springboard our observations into a design hypothesis - an intervention that blends the social affordances of the narrative-based work flow with the rich technological advantages of explicit data references and relationships of the model-based approach. We provide a design rationale, and the results of our evaluation.

  11. Covariate analysis of bivariate survival data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methodsmore » have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.« less

  12. Ascribing soil erosion of hillslope components to river sediment yield.

    PubMed

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Geographical and Temporal Body Size Variation in a Reptile: Roles of Sex, Ecology, Phylogeny and Ecology Structured in Phylogeny

    PubMed Central

    Aragón, Pedro; Fitze, Patrick S.

    2014-01-01

    Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025

  14. A semiparametric graphical modelling approach for large-scale equity selection

    PubMed Central

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption. PMID:28316507

  15. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  16. Nonrelativistic approaches derived from point-coupling relativistic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lourenco, O.; Dutra, M.; Delfino, A.

    2010-03-15

    We construct nonrelativistic versions of relativistic nonlinear hadronic point-coupling models, based on new normalized spinor wave functions after small component reduction. These expansions give us energy density functionals that can be compared to their relativistic counterparts. We show that the agreement between the nonrelativistic limit approach and the Skyrme parametrizations becomes strongly dependent on the incompressibility of each model. We also show that the particular case A=B=0 (Walecka model) leads to the same energy density functional of the Skyrme parametrizations SV and ZR2, while the truncation scheme, up to order {rho}{sup 3}, leads to parametrizations for which {sigma}=1.

  17. Determination of community structure through deconvolution of PLFA-FAME signature of mixed population.

    PubMed

    Dey, Dipesh K; Guha, Saumyen

    2007-02-15

    Phospholipid fatty acids (PLFAs) as biomarkers are well established in the literature. A general method based on least square approximation (LSA) was developed for the estimation of community structure from the PLFA signature of a mixed population where biomarker PLFA signatures of the component species were known. Fatty acid methyl ester (FAME) standards were used as species analogs and mixture of the standards as representative of the mixed population. The PLFA/FAME signatures were analyzed by gas chromatographic separation, followed by detection in flame ionization detector (GC-FID). The PLFAs in the signature were quantified as relative weight percent of the total PLFA. The PLFA signatures were analyzed by the models to predict community structure of the mixture. The LSA model results were compared with the existing "functional group" approach. Both successfully predicted community structure of mixed population containing completely unrelated species with uncommon PLFAs. For slightest intersection in PLFA signatures of component species, the LSA model produced better results. This was mainly due to inability of the "functional group" approach to distinguish the relative amounts of the common PLFA coming from more than one species. The performance of the LSA model was influenced by errors in the chromatographic analyses. Suppression (or enhancement) of a component's PLFA signature in chromatographic analysis of the mixture, led to underestimation (or overestimation) of the component's proportion in the mixture by the model. In mixtures of closely related species with common PLFAs, the errors in the common components were adjusted across the species by the model.

  18. Polyenergetic known-component reconstruction without prior shape models

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Zbijewski, W.; Zhang, X.; Xu, S.; Stayman, J. W.

    2017-03-01

    Purpose: Previous work has demonstrated that structural models of surgical tools and implants can be integrated into model-based CT reconstruction to greatly reduce metal artifacts and improve image quality. This work extends a polyenergetic formulation of known-component reconstruction (Poly-KCR) by removing the requirement that a physical model (e.g. CAD drawing) be known a priori, permitting much more widespread application. Methods: We adopt a single-threshold segmentation technique with the help of morphological structuring elements to build a shape model of metal components in a patient scan based on initial filtered-backprojection (FBP) reconstruction. This shape model is used as an input to Poly-KCR, a formulation of known-component reconstruction that does not require a prior knowledge of beam quality or component material composition. An investigation of performance as a function of segmentation thresholds is performed in simulation studies, and qualitative comparisons to Poly-KCR with an a priori shape model are made using physical CBCT data of an implanted cadaver and in patient data from a prototype extremities scanner. Results: We find that model-free Poly-KCR (MF-Poly-KCR) provides much better image quality compared to conventional reconstruction techniques (e.g. FBP). Moreover, the performance closely approximates that of Poly- KCR with an a prior shape model. In simulation studies, we find that imaging performance generally follows segmentation accuracy with slight under- or over-estimation based on the shape of the implant. In both simulation and physical data studies we find that the proposed approach can remove most of the blooming and streak artifacts around the component permitting visualization of the surrounding soft-tissues. Conclusion: This work shows that it is possible to perform known-component reconstruction without prior knowledge of the known component. In conjunction with the Poly-KCR technique that does not require knowledge of beam quality or material composition, very little needs to be known about the metal implant and system beforehand. These generalizations will allow more widespread application of KCR techniques in real patient studies where the information of surgical tools and implants is limited or not available.

  19. Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    NASA Technical Reports Server (NTRS)

    Christhilf, David m.; Bacon, Barton J.

    2006-01-01

    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.

  20. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in porous media : application to gas migration in a nuclear waste repository, Comp.Geosciences. (2009), Volume 13, Number 1, 29-42.

  1. Reliability Prediction of Ontology-Based Service Compositions Using Petri Net and Time Series Models

    PubMed Central

    Li, Jia; Xia, Yunni; Luo, Xin

    2014-01-01

    OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy. PMID:24688429

  2. Measurement of the surface morphology of plasma facing components on the EAST tokamak by a laser speckle interferometry approach

    NASA Astrophysics Data System (ADS)

    Hongbei, WANG; Xiaoqian, CUI; Yuanbo, LI; Mengge, ZHAO; Shuhua, LI; Guangnan, LUO; Hongbin, DING

    2018-03-01

    The laser speckle interferometry approach provides the possibility of an in situ optical non-contacted measurement for the surface morphology of plasma facing components (PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.

  3. Reliability Assessment Approach for Stirling Convertors and Generators

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Schreiber, Jeffrey G.; Zampino, Edward; Best, Timothy

    2004-01-01

    Stirling power conversion is being considered for use in a Radioisotope Power System for deep-space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power. Quantifying the reliability of a Radioisotope Power System that utilizes Stirling power conversion technology is important in developing and demonstrating the capability for long-term success. A description of the Stirling power convertor is provided, along with a discussion about some of the key components. Ongoing efforts to understand component life, design variables at the component and system levels, related sources, and the nature of uncertainties is discussed. The requirement for reliability also is discussed, and some of the critical areas of concern are identified. A section on the objectives of the performance model development and a computation of reliability is included to highlight the goals of this effort. Also, a viable physics-based reliability plan to model the design-level variable uncertainties at the component and system levels is outlined, and potential benefits are elucidated. The plan involves the interaction of different disciplines, maintaining the physical and probabilistic correlations at all the levels, and a verification process based on rational short-term tests. In addition, both top-down and bottom-up coherency were maintained to follow the physics-based design process and mission requirements. The outlined reliability assessment approach provides guidelines to improve the design and identifies governing variables to achieve high reliability in the Stirling Radioisotope Generator design.

  4. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals

    NASA Astrophysics Data System (ADS)

    Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.

    2018-02-01

    Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.

  5. Shape optimization of three-dimensional stamped and solid automotive components

    NASA Technical Reports Server (NTRS)

    Botkin, M. E.; Yang, R.-J.; Bennett, J. A.

    1987-01-01

    The shape optimization of realistic, 3-D automotive components is discussed. The integration of the major parts of the total process: modeling, mesh generation, finite element and sensitivity analysis, and optimization are stressed. Stamped components and solid components are treated separately. For stamped parts a highly automated capability was developed. The problem description is based upon a parameterized boundary design element concept for the definition of the geometry. Automatic triangulation and adaptive mesh refinement are used to provide an automated analysis capability which requires only boundary data and takes into account sensitivity of the solution accuracy to boundary shape. For solid components a general extension of the 2-D boundary design element concept has not been achieved. In this case, the parameterized surface shape is provided using a generic modeling concept based upon isoparametric mapping patches which also serves as the mesh generator. Emphasis is placed upon the coupling of optimization with a commercially available finite element program. To do this it is necessary to modularize the program architecture and obtain shape design sensitivities using the material derivative approach so that only boundary solution data is needed.

  6. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems.

    PubMed

    Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A

    2013-06-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.

  7. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    PubMed

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  8. Predicting the resilience and recovery of aquatic systems: a framework for model evolution within environmental observatories

    USGS Publications Warehouse

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z; Read, Jordan S.; Ibelings, Bas W; Valensini, Fiona J; Brookes, Justin D

    2015-01-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchmentmanagement, however, degradation of water quality and aquatic habitat continues to challenge scientistsand policy-makers. To support management and restoration efforts aquatic system models are requiredthat are able to capture the often complex trajectories that these systems display in response to multiplestressors. This paper explores the abilities and limitations of current model approaches in meeting this chal-lenge, and outlines a strategy based on integration of flexible model libraries and data from observationnetworks, within a learning framework, as a means to improve the accuracy and scope of model predictions.The framework is comprised of a data assimilation component that utilizes diverse data streams from sensornetworks, and a second component whereby model structural evolution can occur once the model isassessed against theoretically relevant metrics of system function. Given the scale and transdisciplinarynature of the prediction challenge, network science initiatives are identified as a means to develop and inte-grate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to modelassessment that can guide model adaptation. We outline how such a framework can help us explore thetheory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry,and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  9. The KATE shell: An implementation of model-based control, monitor and diagnosis

    NASA Technical Reports Server (NTRS)

    Cornell, Matthew

    1987-01-01

    The conventional control and monitor software currently used by the Space Center for Space Shuttle processing has many limitations such as high maintenance costs, limited diagnostic capabilities and simulation support. These limitations have caused the development of a knowledge based (or model based) shell to generically control and monitor electro-mechanical systems. The knowledge base describes the system's structure and function and is used by a software shell to do real time constraints checking, low level control of components, diagnosis of detected faults, sensor validation, automatic generation of schematic diagrams and automatic recovery from failures. This approach is more versatile and more powerful than the conventional hard coded approach and offers many advantages over it, although, for systems which require high speed reaction times or aren't well understood, knowledge based control and monitor systems may not be appropriate.

  10. Comparing model-based and model-free analysis methods for QUASAR arterial spin labeling perfusion quantification.

    PubMed

    Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J

    2013-05-01

    Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Copyright © 2012 Wiley Periodicals, Inc.

  11. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm.

    PubMed

    Stropahl, Maren; Bauer, Anna-Katharina R; Debener, Stefan; Bleichner, Martin G

    2018-01-01

    Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.

  12. A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines.

    PubMed

    Sánchez Lasheras, Fernando; García Nieto, Paulino José; de Cos Juez, Francisco Javier; Mayo Bayón, Ricardo; González Suárez, Victor Manuel

    2015-03-23

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  13. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    PubMed Central

    Lasheras, Fernando Sánchez; Nieto, Paulino José García; de Cos Juez, Francisco Javier; Bayón, Ricardo Mayo; Suárez, Victor Manuel González

    2015-01-01

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines. PMID:25806876

  14. The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor

    NASA Astrophysics Data System (ADS)

    Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui

    2017-11-01

    Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.

  15. Modeling a terminology-based electronic nursing record system: an object-oriented approach.

    PubMed

    Park, Hyeoun-Ae; Cho, InSook; Byeun, NamSoo

    2007-10-01

    The aim of this study was to present our perspectives on healthcare information analysis at a conceptual level and the lessons learned from our experience with the development of a terminology-based enterprise electronic nursing record system - which was one of components in an EMR system at a tertiary teaching hospital in Korea - using an object-oriented system analysis and design concept. To ensure a systematic approach and effective collaboration, the department of nursing constituted a system modeling team comprising a project manager, systems analysts, user representatives, an object-oriented methodology expert, and healthcare informaticists (including the authors). A rational unified process (RUP) and the Unified Modeling Language were used as a development process and for modeling notation, respectively. From the scenario and RUP approach, user requirements were formulated into use case sets and the sequence of activities in the scenario was depicted in an activity diagram. The structure of the system was presented in a class diagram. This approach allowed us to identify clearly the structural and behavioral states and important factors of a terminology-based ENR system (e.g., business concerns and system design concerns) according to the viewpoints of both domain and technical experts.

  16. A Comparison of Filter-based Approaches for Model-based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Saha, Bhaskar; Goebel, Kai

    2012-01-01

    Model-based prognostics approaches use domain knowledge about a system and its failure modes through the use of physics-based models. Model-based prognosis is generally divided into two sequential problems: a joint state-parameter estimation problem, in which, using the model, the health of a system or component is determined based on the observations; and a prediction problem, in which, using the model, the stateparameter distribution is simulated forward in time to compute end of life and remaining useful life. The first problem is typically solved through the use of a state observer, or filter. The choice of filter depends on the assumptions that may be made about the system, and on the desired algorithm performance. In this paper, we review three separate filters for the solution to the first problem: the Daum filter, an exact nonlinear filter; the unscented Kalman filter, which approximates nonlinearities through the use of a deterministic sampling method known as the unscented transform; and the particle filter, which approximates the state distribution using a finite set of discrete, weighted samples, called particles. Using a centrifugal pump as a case study, we conduct a number of simulation-based experiments investigating the performance of the different algorithms as applied to prognostics.

  17. Dynamic simulation of a reverse Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Peng, N.; Lei, L. L.; Xiong, L. Y.; Tang, J. C.; Dong, B.; Liu, L. Q.

    2014-01-01

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

  18. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the modelmore » to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.« less

  19. Total Electron Content forecast model over Australia

    NASA Astrophysics Data System (ADS)

    Bouya, Zahra; Terkildsen, Michael; Francis, Matthew

    Ionospheric perturbations can cause serious propagation errors in modern radio systems such as Global Navigation Satellite Systems (GNSS). Forecasting ionospheric parameters is helpful to estimate potential degradation of the performance of these systems. Our purpose is to establish an Australian Regional Total Electron Content (TEC) forecast model at IPS. In this work we present an approach based on the combined use of the Principal Component Analysis (PCA) and Artificial Neural Network (ANN) to predict future TEC values. PCA is used to reduce the dimensionality of the original TEC data by mapping it into its eigen-space. In this process the top- 5 eigenvectors are chosen to reflect the directions of the maximum variability. An ANN approach was then used for the multicomponent prediction. We outline the design of the ANN model with its parameters. A number of activation functions along with different spectral ranges and different numbers of Principal Components (PCs) were tested to find the PCA-ANN models reaching the best results. Keywords: GNSS, Space Weather, Regional, Forecast, PCA, ANN.

  20. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.

  1. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  2. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    DOE PAGES

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...

    2015-02-05

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less

  3. Approaches to Capture Variance Differences in Rest fMRI Networks in the Spatial Geometric Features: Application to Schizophrenia.

    PubMed

    Gopal, Shruti; Miller, Robyn L; Baum, Stefi A; Calhoun, Vince D

    2016-01-01

    Identification of functionally connected regions while at rest has been at the forefront of research focusing on understanding interactions between different brain regions. Studies have utilized a variety of approaches including seed based as well as data-driven approaches to identifying such networks. Most such techniques involve differentiating groups based on group mean measures. There has been little work focused on differences in spatial characteristics of resting fMRI data. We present a method to identify between group differences in the variability in the cluster characteristics of network regions within components estimated via independent vector analysis (IVA). IVA is a blind source separation approach shown to perform well in capturing individual subject variability within a group model. We evaluate performance of the approach using simulations and then apply to a relatively large schizophrenia data set (82 schizophrenia patients and 89 healthy controls). We postulate, that group differences in the intra-network distributional characteristics of resting state network voxel intensities might indirectly capture important distinctions between the brain function of healthy and clinical populations. Results demonstrate that specific areas of the brain, superior, and middle temporal gyrus that are involved in language and recognition of emotions, show greater component level variance in amplitude weights for schizophrenia patients than healthy controls. Statistically significant correlation between component level spatial variance and component volume was observed in 19 of the 27 non-artifactual components implying an evident relationship between the two parameters. Additionally, the greater spread in the distance of the cluster peak of a component from the centroid in schizophrenia patients compared to healthy controls was observed for seven components. These results indicate that there is hidden potential in exploring variance and possibly higher-order measures in resting state networks to better understand diseases such as schizophrenia. It furthers comprehension of how spatial characteristics can highlight previously unexplored differences between populations such as schizophrenia patients and healthy controls.

  4. A Component-Centered Meta-Analysis of Family-Based Prevention Programs for Adolescent Substance Use

    PubMed Central

    Roseth, Cary J.; Fosco, Gregory M.; Lee, You-kyung; Chen, I-Chien

    2016-01-01

    Although research has documented the positive effects of family-based prevention programs, the field lacks specific information regarding why these programs are effective. The current study summarized the effects of family-based programs on adolescent substance use using a component-based approach to meta-analysis in which we decomposed programs into a set of key topics or components that were specifically addressed by program curricula (e.g., parental monitoring/behavior management, problem solving, positive family relations, etc.). Components were coded according to the amount of time spent on program services that targeted youth, parents, and the whole family; we also coded effect sizes across studies for each substance-related outcome. Given the nested nature of the data, we used hierarchical linear modeling to link program components (Level 2) with effect sizes (Level 1). The overall effect size across programs was .31, which did not differ by type of substance. Youth-focused components designed to encourage more positive family relationships and a positive orientation toward the future emerged as key factors predicting larger than average effect sizes. Our results suggest that, within the universe of family-based prevention, where components such as parental monitoring/behavior management are almost universal, adding or expanding certain youth-focused components may be able to enhance program efficacy. PMID:27064553

  5. Modularity, Working Memory and Language Acquisition

    ERIC Educational Resources Information Center

    Baddeley, Alan D.

    2017-01-01

    The concept of modularity is used to contrast the approach to working memory proposed by Truscott with the Baddeley and Hitch multicomponent model. This proposes four sub components comprising the "central executive," an executive control system of limited attentional capacity that utilises storage based on separate but interlinked…

  6. A Hierarchical Multivariate Bayesian Approach to Ensemble Model output Statistics in Atmospheric Prediction

    DTIC Science & Technology

    2017-09-01

    efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components

  7. A Partial Least Square Approach for Modeling Gene-gene and Gene-environment Interactions When Multiple Markers Are Genotyped

    PubMed Central

    Wang, Tao; Ho, Gloria; Ye, Kenny; Strickler, Howard; Elston, Robert C.

    2008-01-01

    Genetic association studies achieve an unprecedented level of resolution in mapping disease genes by genotyping dense SNPs in a gene region. Meanwhile, these studies require new powerful statistical tools that can optimally handle a large amount of information provided by genotype data. A question that arises is how to model interactions between two genes. Simply modeling all possible interactions between the SNPs in two gene regions is not desirable because a greatly increased number of degrees of freedom can be involved in the test statistic. We introduce an approach to reduce the genotype dimension in modeling interactions. The genotype compression of this approach is built upon the information on both the trait and the cross-locus gametic disequilibrium between SNPs in two interacting genes, in such a way as to parsimoniously model the interactions without loss of useful information in the process of dimension reduction. As a result, it improves power to detect association in the presence of gene-gene interactions. This approach can be similarly applied for modeling gene-environment interactions. We compare this method with other approaches: the corresponding test without modeling any interaction, that based on a saturated interaction model, that based on principal component analysis, and that based on Tukey’s 1-df model. Our simulations suggest that this new approach has superior power to that of the other methods. In an application to endometrial cancer case-control data from the Women’s Health Initiative (WHI), this approach detected AKT1 and AKT2 as being significantly associated with endometrial cancer susceptibility by taking into account their interactions with BMI. PMID:18615621

  8. A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped.

    PubMed

    Wang, Tao; Ho, Gloria; Ye, Kenny; Strickler, Howard; Elston, Robert C

    2009-01-01

    Genetic association studies achieve an unprecedented level of resolution in mapping disease genes by genotyping dense single nucleotype polymorphisms (SNPs) in a gene region. Meanwhile, these studies require new powerful statistical tools that can optimally handle a large amount of information provided by genotype data. A question that arises is how to model interactions between two genes. Simply modeling all possible interactions between the SNPs in two gene regions is not desirable because a greatly increased number of degrees of freedom can be involved in the test statistic. We introduce an approach to reduce the genotype dimension in modeling interactions. The genotype compression of this approach is built upon the information on both the trait and the cross-locus gametic disequilibrium between SNPs in two interacting genes, in such a way as to parsimoniously model the interactions without loss of useful information in the process of dimension reduction. As a result, it improves power to detect association in the presence of gene-gene interactions. This approach can be similarly applied for modeling gene-environment interactions. We compare this method with other approaches, the corresponding test without modeling any interaction, that based on a saturated interaction model, that based on principal component analysis, and that based on Tukey's one-degree-of-freedom model. Our simulations suggest that this new approach has superior power to that of the other methods. In an application to endometrial cancer case-control data from the Women's Health Initiative, this approach detected AKT1 and AKT2 as being significantly associated with endometrial cancer susceptibility by taking into account their interactions with body mass index.

  9. Profile-Based LC-MS Data Alignment—A Bayesian Approach

    PubMed Central

    Tsai, Tsung-Heng; Tadesse, Mahlet G.; Wang, Yue; Ressom, Habtom W.

    2014-01-01

    A Bayesian alignment model (BAM) is proposed for alignment of liquid chromatography-mass spectrometry (LC-MS) data. BAM belongs to the category of profile-based approaches, which are composed of two major components: a prototype function and a set of mapping functions. Appropriate estimation of these functions is crucial for good alignment results. BAM uses Markov chain Monte Carlo (MCMC) methods to draw inference on the model parameters and improves on existing MCMC-based alignment methods through 1) the implementation of an efficient MCMC sampler and 2) an adaptive selection of knots. A block Metropolis-Hastings algorithm that mitigates the problem of the MCMC sampler getting stuck at local modes of the posterior distribution is used for the update of the mapping function coefficients. In addition, a stochastic search variable selection (SSVS) methodology is used to determine the number and positions of knots. We applied BAM to a simulated data set, an LC-MS proteomic data set, and two LC-MS metabolomic data sets, and compared its performance with the Bayesian hierarchical curve registration (BHCR) model, the dynamic time-warping (DTW) model, and the continuous profile model (CPM). The advantage of applying appropriate profile-based retention time correction prior to performing a feature-based approach is also demonstrated through the metabolomic data sets. PMID:23929872

  10. Conditioning of FRF measurements for use with frequency based substructuring

    NASA Astrophysics Data System (ADS)

    Nicgorski, Dana; Avitabile, Peter

    2010-02-01

    Frequency based substructuring approaches have been used for the generation of system models from component data. While numerical models show successful results, there have been many difficulties with actual measurements in many instances. Previous work has identified some of these typical problems using simulated data to incorporate specific measurement difficulties commonly observed along with approaches to overcome some of these difficulties. This paper presents the results using actual measured data for a laboratory structure subjected to both analytical and experimental studies. Various commonly used approaches are shown to illustrate some of the difficulties with measured data. A new approach to better condition the measured functions and purge commonly found data measurement contaminants is utilized to provide dramatically improved results. Several cases are explored to show the difficulties commonly observed as well as the improved conditioning of the measured data to obtain acceptable results.

  11. Lyapunov-Based Sensor Failure Detection And Recovery For The Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Haralambous, Michael G.

    2001-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in terms of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  12. LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Haralambous, Michael G.

    2002-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  13. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  14. Modeling for (physical) biologists: an introduction to the rule-based approach

    PubMed Central

    Chylek, Lily A; Harris, Leonard A; Faeder, James R; Hlavacek, William S

    2015-01-01

    Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions. PMID:26178138

  15. Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming

    NASA Astrophysics Data System (ADS)

    Ilie, Iulia; Dittrich, Peter; Carvalhais, Nuno; Jung, Martin; Heinemeyer, Andreas; Migliavacca, Mirco; Morison, James I. L.; Sippel, Sebastian; Subke, Jens-Arne; Wilkinson, Matthew; Mahecha, Miguel D.

    2017-09-01

    Accurate model representation of land-atmosphere carbon fluxes is essential for climate projections. However, the exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments, complemented by a steadily evolving body of mechanistic theory, provides the main basis for developing such models. The strongly increasing availability of measurements may facilitate new ways of identifying suitable model structures using machine learning. Here, we explore the potential of gene expression programming (GEP) to derive relevant model formulations based solely on the signals present in data by automatically applying various mathematical transformations to potential predictors and repeatedly evolving the resulting model structures. In contrast to most other machine learning regression techniques, the GEP approach generates readable models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially generated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed functions, with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (random forests, support vector machines, artificial neural networks, and kernel ridge regressions). Based on real observations we explore the responses of the different components of terrestrial respiration at an oak forest in south-eastern England. We find that the GEP-retrieved models are often better in prediction than some established respiration models. Based on their structures, we find previously unconsidered exponential dependencies of respiration on seasonal ecosystem carbon assimilation and water dynamics. We noticed that the GEP models are only partly portable across respiration components, the identification of a general terrestrial respiration model possibly prevented by equifinality issues. Overall, GEP is a promising tool for uncovering new model structures for terrestrial ecology in the data-rich era, complementing more traditional modelling approaches.

  16. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis

    PubMed Central

    Gillies, Kendall; Krone, Stephen M.; Nagler, James J.; Schultz, Irvin R.

    2016-01-01

    Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. PMID:27096735

  17. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis.

    PubMed

    Gillies, Kendall; Krone, Stephen M; Nagler, James J; Schultz, Irvin R

    2016-04-01

    Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales.

  18. Collaborative development of predictive toxicology applications

    PubMed Central

    2010-01-01

    OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals. The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation. Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way. PMID:20807436

  19. Collaborative development of predictive toxicology applications.

    PubMed

    Hardy, Barry; Douglas, Nicki; Helma, Christoph; Rautenberg, Micha; Jeliazkova, Nina; Jeliazkov, Vedrin; Nikolova, Ivelina; Benigni, Romualdo; Tcheremenskaia, Olga; Kramer, Stefan; Girschick, Tobias; Buchwald, Fabian; Wicker, Joerg; Karwath, Andreas; Gütlein, Martin; Maunz, Andreas; Sarimveis, Haralambos; Melagraki, Georgia; Afantitis, Antreas; Sopasakis, Pantelis; Gallagher, David; Poroikov, Vladimir; Filimonov, Dmitry; Zakharov, Alexey; Lagunin, Alexey; Gloriozova, Tatyana; Novikov, Sergey; Skvortsova, Natalia; Druzhilovsky, Dmitry; Chawla, Sunil; Ghosh, Indira; Ray, Surajit; Patel, Hitesh; Escher, Sylvia

    2010-08-31

    OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals.The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation.Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.

  20. Integrating prediction, provenance, and optimization into high energy workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schram, M.; Bansal, V.; Friese, R. D.

    We propose a novel approach for efficient execution of workflows on distributed resources. The key components of this framework include: performance modeling to quantitatively predict workflow component behavior; optimization-based scheduling such as choosing an optimal subset of resources to meet demand and assignment of tasks to resources; distributed I/O optimizations such as prefetching; and provenance methods for collecting performance data. In preliminary results, these techniques improve throughput on a small Belle II workflow by 20%.

  1. Atmospherical simulations of the OMEGA/MEX observations

    NASA Astrophysics Data System (ADS)

    Melchiorri, R.; Drossart, P.; Combes, M.; Encrenaz, T.; Fouchet, T.; Forget, F.; Bibring, J. P.; Ignatiev, N.; Moroz, V.; OMEGA Team

    The modelization of the atmospheric contribution in the martian spectrum is an important step for the OMEGA data analysis.A full line by line radiative transfer calculation is made for the gas absorption; the dust opacity component, in a first approximation, is calculated as an optically thin additive component.Due to the large number of parameters needed in the calculations, the building of a huge data base to be interpolated is not envisageable, for each observed OMEGA spectrum with calculation for all the involved parameters (atmospheric pressure, water abundance, CO abundance, dust opacity and geometric angles of observation). The simulation of the observations allows us to fix all the orbital parameters and leave the unknown parameters as the only variables.Starting from the predictions of the current meteorological models of Mars we build a smaller data base corresponding on each observation. We present here a first order simulation, which consists in retrieving atmospheric contribution from the solar reflected component as a multiplicative (for gas absorption) and an additive component (for suspended dust contribution); although a fully consistent approach will require to include surface and atmosphere contributions together in synthetic calculations, this approach is sufficient for retrieving mineralogic information cleaned from atmospheric absorption at first order.First comparison to OMEGA spectra will be presented, with first order retrieval of CO2 pressure, CO and H2O abundance, and dust opacity.

  2. 3D-FE Modeling of 316 SS under Strain-Controlled Fatigue Loading and CFD Simulation of PWR Surge Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Listwan, Joseph

    In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models withmore » implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can cost millions of dollars and require years of effort to conduct. Toward our goal of demonstration of fully mechanistic fatigue evaluation of reactor components, we also started work on developing a component-level computer model of reactor components, such as 316 SS surge line pipe. This requires developing a thermal-mechanical stress analysis model of the reactor surge line, which, in turn, requires time-dependent temperature and stratification information along the boundary of the pipe. Toward that goal, CFD models of surge lines are being developed. In this report, we also present some preliminary results showing the temperature conditions along the surge line wall under reactor heat-up, cool-down, and steady-state power operation.« less

  3. A structured approach to the study of metabolic control principles in intact and impaired mitochondria.

    PubMed

    Huber, Heinrich J; Connolly, Niamh M C; Dussmann, Heiko; Prehn, Jochen H M

    2012-03-01

    We devised an approach to extract control principles of cellular bioenergetics for intact and impaired mitochondria from ODE-based models and applied it to a recently established bioenergetic model of cancer cells. The approach used two methods for varying ODE model parameters to determine those model components that, either alone or in combination with other components, most decisively regulated bioenergetic state variables. We found that, while polarisation of the mitochondrial membrane potential (ΔΨ(m)) and, therefore, the protomotive force were critically determined by respiratory complex I activity in healthy mitochondria, complex III activity was dominant for ΔΨ(m) during conditions of cytochrome-c deficiency. As a further important result, cellular bioenergetics in healthy, ATP-producing mitochondria was regulated by three parameter clusters that describe (1) mitochondrial respiration, (2) ATP production and consumption and (3) coupling of ATP-production and respiration. These parameter clusters resembled metabolic blocks and their intermediaries from top-down control analyses. However, parameter clusters changed significantly when cells changed from low to high ATP levels or when mitochondria were considered to be impaired by loss of cytochrome-c. This change suggests that the assumption of static metabolic blocks by conventional top-down control analyses is not valid under these conditions. Our approach is complementary to both ODE and top-down control analysis approaches and allows a better insight into cellular bioenergetics and its pathological alterations.

  4. A Methodology for Modeling Nuclear Power Plant Passive Component Aging in Probabilistic Risk Assessment under the Impact of Operating Conditions, Surveillance and Maintenance Activities

    NASA Astrophysics Data System (ADS)

    Guler Yigitoglu, Askin

    In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.

  5. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  6. Integrated Software Health Management for Aircraft GN and C

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mengshoel, Ole

    2011-01-01

    Modern aircraft rely heavily on dependable operation of many safety-critical software components. Despite careful design, verification and validation (V&V), on-board software can fail with disastrous consequences if it encounters problematic software/hardware interaction or must operate in an unexpected environment. We are using a Bayesian approach to monitor the software and its behavior during operation and provide up-to-date information about the health of the software and its components. The powerful reasoning mechanism provided by our model-based Bayesian approach makes reliable diagnosis of the root causes possible and minimizes the number of false alarms. Compilation of the Bayesian model into compact arithmetic circuits makes SWHM feasible even on platforms with limited CPU power. We show initial results of SWHM on a small simulator of an embedded aircraft software system, where software and sensor faults can be injected.

  7. Big data to smart data in Alzheimer's disease: Real-world examples of advanced modeling and simulation.

    PubMed

    Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo

    2016-09-01

    Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Northern Russian chironomid-based modern summer temperature data set and inference models

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Self, Angela E.; Brooks, Stephen J.; van Hardenbroek, Maarten; Herzschuh, Ulrike; Diekmann, Bernhard

    2015-11-01

    West and East Siberian data sets and 55 new sites were merged based on the high taxonomic similarity, and the strong relationship between mean July air temperature and the distribution of chironomid taxa in both data sets compared with other environmental parameters. Multivariate statistical analysis of chironomid and environmental data from the combined data set consisting of 268 lakes, located in northern Russia, suggests that mean July air temperature explains the greatest amount of variance in chironomid distribution compared with other measured variables (latitude, longitude, altitude, water depth, lake surface area, pH, conductivity, mean January air temperature, mean July air temperature, and continentality). We established two robust inference models to reconstruct mean summer air temperatures from subfossil chironomids based on ecological and geographical approaches. The North Russian 2-component WA-PLS model (RMSEPJack = 1.35 °C, rJack2 = 0.87) can be recommended for application in palaeoclimatic studies in northern Russia. Based on distinctive chironomid fauna and climatic regimes of Kamchatka the Far East 2-component WAPLS model (RMSEPJack = 1.3 °C, rJack2 = 0.81) has potentially better applicability in Kamchatka.

  9. Computational design and multiscale modeling of a nanoactuator using DNA actuation.

    PubMed

    Hamdi, Mustapha

    2009-12-02

    Developments in the field of nanobiodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.

  10. A review on prognostics approaches for remaining useful life of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Su, C.; Chen, H. J.

    2017-11-01

    Lithium-ion (Li-ion) battery is a core component for various industrial systems, including satellite, spacecraft and electric vehicle, etc. The mechanism of performance degradation and remaining useful life (RUL) estimation correlate closely to the operating state and reliability of the aforementioned systems. Furthermore, RUL prediction of Li-ion battery is crucial for the operation scheduling, spare parts management and maintenance decision for such kinds of systems. In recent years, performance degradation prognostics and RUL estimation approaches have become a focus of the research concerning with Li-ion battery. This paper summarizes the approaches used in Li-ion battery RUL estimation. Three categories are classified accordingly, i.e. model-based approach, data-based approach and hybrid approach. The key issues and future trends for battery RUL estimation are also discussed.

  11. Systems analysis techniques for annual cycle thermal energy storage solar systems

    NASA Astrophysics Data System (ADS)

    Baylin, F.

    1980-07-01

    Community-scale annual cycle thermal energy storage solar systems are options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently used to examine the economic trade-off between collector field area and storage capacity. Programs directed toward developing other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.

  12. Pieces of the Puzzle: Tracking the Chemical Component of the ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the risk assessment conducted at the U.S. EPA, as well as some research examples related to the exposome concept. This presentation also provides the recommendation of using two organizational and predictive frameworks for tracking chemical components in the exposome. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  13. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.

    2010-01-01

    Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

  14. Measuring and modeling carbon stock change estimates for US forests and uncertainties from apparent inter-annual variability

    Treesearch

    James E. Smith; Linda S. Heath

    2015-01-01

    Our approach is based on a collection of models that convert or augment the USDA Forest Inventory and Analysis program survey data to estimate all forest carbon component stocks, including live and standing dead tree aboveground and belowground biomass, forest floor (litter), down deadwood, and soil organic carbon, for each inventory plot. The data, which include...

  15. To Control False Positives in Gene-Gene Interaction Analysis: Two Novel Conditional Entropy-Based Approaches

    PubMed Central

    Lin, Meihua; Li, Haoli; Zhao, Xiaolei; Qin, Jiheng

    2013-01-01

    Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic components that can not be detected by using current single-point association analysis. Recently, several model-free methods (e.g. the commonly used information based metrics and several logistic regression-based metrics) were developed for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error, in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models. Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects. PMID:24339984

  16. Compatible estimators of the components of change for a rotating panel forest inventory design

    Treesearch

    Francis A. Roesch

    2007-01-01

    This article presents two approaches for estimating the components of forest change utilizing data from a rotating panel sample design. One approach uses a variant of the exponentially weighted moving average estimator and the other approach uses mixed estimation. Three general transition models were each combined with a single compatibility model for the mixed...

  17. Feature-based data assimilation in geophysics

    NASA Astrophysics Data System (ADS)

    Morzfeld, Matthias; Adams, Jesse; Lunderman, Spencer; Orozco, Rafael

    2018-05-01

    Many applications in science require that computational models and data be combined. In a Bayesian framework, this is usually done by defining likelihoods based on the mismatch of model outputs and data. However, matching model outputs and data in this way can be unnecessary or impossible. For example, using large amounts of steady state data is unnecessary because these data are redundant. It is numerically difficult to assimilate data in chaotic systems. It is often impossible to assimilate data of a complex system into a low-dimensional model. As a specific example, consider a low-dimensional stochastic model for the dipole of the Earth's magnetic field, while other field components are ignored in the model. The above issues can be addressed by selecting features of the data, and defining likelihoods based on the features, rather than by the usual mismatch of model output and data. Our goal is to contribute to a fundamental understanding of such a feature-based approach that allows us to assimilate selected aspects of data into models. We also explain how the feature-based approach can be interpreted as a method for reducing an effective dimension and derive new noise models, based on perturbed observations, that lead to computationally efficient solutions. Numerical implementations of our ideas are illustrated in four examples.

  18. A Two-Step Approach to Analyze Satisfaction Data

    ERIC Educational Resources Information Center

    Ferrari, Pier Alda; Pagani, Laura; Fiorio, Carlo V.

    2011-01-01

    In this paper a two-step procedure based on Nonlinear Principal Component Analysis (NLPCA) and Multilevel models (MLM) for the analysis of satisfaction data is proposed. The basic hypothesis is that observed ordinal variables describe different aspects of a latent continuous variable, which depends on covariates connected with individual and…

  19. An Efficient Model-Based Image Understanding Method for an Autonomous Vehicle.

    DTIC Science & Technology

    1997-09-01

    The problem discussed in this dissertation is the development of an efficient method for visual navigation of autonomous vehicles . The approach is to... autonomous vehicles . Thus the new method is implemented as a component of the image-understanding system in the autonomous mobile robot Yamabico-11 at

  20. Using the DPSIR Framework to Develop a Conceptual Model: Technical Support Document

    EPA Science Inventory

    Modern problems (e.g., pollution, urban sprawl, environmental equity) are complex and often transcend spatial and temporal scales. Systems thinking is an approach to problem solving that is based on the belief that the component parts of a system are best understood in the contex...

  1. Exploring the sustainability of industrial production and energy generation with a model system

    EPA Science Inventory

    The importance and complexity of sustainability has been well recognized and a formal study of sustainability based on system theory approaches is imperative as many of the relationships between the various components of the system could be non-linear, intertwined, and non-intuit...

  2. Functional reasoning in diagnostic problem solving

    NASA Technical Reports Server (NTRS)

    Sticklen, Jon; Bond, W. E.; Stclair, D. C.

    1988-01-01

    This work is one facet of an integrated approach to diagnostic problem solving for aircraft and space systems currently under development. The authors are applying a method of modeling and reasoning about deep knowledge based on a functional viewpoint. The approach recognizes a level of device understanding which is intermediate between a compiled level of typical Expert Systems, and a deep level at which large-scale device behavior is derived from known properties of device structure and component behavior. At this intermediate functional level, a device is modeled in three steps. First, a component decomposition of the device is defined. Second, the functionality of each device/subdevice is abstractly identified. Third, the state sequences which implement each function are specified. Given a functional representation and a set of initial conditions, the functional reasoner acts as a consequence finder. The output of the consequence finder can be utilized in diagnostic problem solving. The paper also discussed ways in which this functional approach may find application in the aerospace field.

  3. Improving Multi-Sensor Drought Monitoring, Prediction and Recovery Assessment Using Gravimetry Information

    NASA Astrophysics Data System (ADS)

    Aghakouchak, Amir; Tourian, Mohammad J.

    2015-04-01

    Development of reliable drought monitoring, prediction and recovery assessment tools are fundamental to water resources management. This presentation focuses on how gravimetry information can improve drought assessment. First, we provide an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using remote sensing observations and model simulations. Then, we present a framework for integration of satellite gravimetry information for improving drought prediction and recovery assessment. The input data include satellite-based and model-based precipitation, soil moisture estimates and equivalent water height. Previous studies show that drought assessment based on one single indicator may not be sufficient. For this reason, GIDMaPS provides drought information based on multiple drought indicators including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. MSDI incorporates the meteorological and agricultural drought conditions and provides composite multi-index drought information for overall characterization of droughts. GIDMaPS includes a seasonal prediction component based on a statistical persistence-based approach. The prediction component of GIDMaPS provides the empirical probability of drought for different severity levels. In this presentation we present a new component in which the drought prediction information based on SPI, SSI and MSDI are conditioned on equivalent water height obtained from the Gravity Recovery and Climate Experiment (GRACE). Using a Bayesian approach, GRACE information is used to evaluate persistence of drought. Finally, the deficit equivalent water height based on GRACE is used for assessing drought recovery. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from 2014 California Drought will be presented. Further Reading: Hao Z., AghaKouchak A., Nakhjiri N., Farahmand A., 2014, Global Integrated Drought Monitoring and Prediction System, Scientific Data, 1:140001, 1-10, doi: 10.1038/sdata.2014.1.

  4. Modeling and Prediction of Krueger Device Noise

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.

  5. EwE-F 1.0: an implementation of Ecopath with Ecosim in Fortran 95/2003 for coupling and integration with other models

    NASA Astrophysics Data System (ADS)

    Akoglu, E.; Libralato, S.; Salihoglu, B.; Oguz, T.; Solidoro, C.

    2015-08-01

    Societal and scientific challenges foster the implementation of the ecosystem approach to marine ecosystem analysis and management, which is a comprehensive means of integrating the direct and indirect effects of multiple stressors on the different components of ecosystems, from physical to chemical and biological and from viruses to fishes and marine mammals. Ecopath with Ecosim (EwE) is a widely used software package, which offers capability for a dynamic description of the multiple interactions occurring within a food web, and, potentially, a crucial component of an integrated platform supporting the ecosystem approach. However, being written for the Microsoft .NET framework, seamless integration of this code with Fortran-based physical and/or biogeochemical oceanographic models is technically not straightforward. In this work we release a re-coding of EwE in Fortran (EwE-F). We believe that the availability of a Fortran version of EwE is an important step towards setting up coupled/integrated modelling schemes utilising this widely adopted software because it (i) increases portability of the EwE models and (ii) provides additional flexibility towards integrating EwE with Fortran-based modelling schemes. Furthermore, EwE-F might help modellers using the Fortran programming language to get close to the EwE approach. In the present work, first fundamentals of EwE-F are introduced, followed by validation of EwE-F against standard EwE utilising sample models. Afterwards, an end-to-end (E2E) ecological representation of the Gulf of Trieste (northern Adriatic Sea) ecosystem is presented as an example of online two-way coupling between an EwE-F food web model and a biogeochemical model. Finally, the possibilities that having EwE-F opens up are discussed.

  6. Constrained Null Space Component Analysis for Semiblind Source Separation Problem.

    PubMed

    Hwang, Wen-Liang; Lu, Keng-Shih; Ho, Jinn

    2018-02-01

    The blind source separation (BSS) problem extracts unknown sources from observations of their unknown mixtures. A current trend in BSS is the semiblind approach, which incorporates prior information on sources or how the sources are mixed. The constrained independent component analysis (ICA) approach has been studied to impose constraints on the famous ICA framework. We introduced an alternative approach based on the null space component (NCA) framework and referred to the approach as the c-NCA approach. We also presented the c-NCA algorithm that uses signal-dependent semidefinite operators, which is a bilinear mapping, as signatures for operator design in the c-NCA approach. Theoretically, we showed that the source estimation of the c-NCA algorithm converges with a convergence rate dependent on the decay of the sequence, obtained by applying the estimated operators on corresponding sources. The c-NCA can be formulated as a deterministic constrained optimization method, and thus, it can take advantage of solvers developed in optimization society for solving the BSS problem. As examples, we demonstrated electroencephalogram interference rejection problems can be solved by the c-NCA with proximal splitting algorithms by incorporating a sparsity-enforcing separation model and considering the case when reference signals are available.

  7. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    NASA Astrophysics Data System (ADS)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  8. Model based approach to UXO imaging using the time domain electromagnetic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavely, E.M.

    1999-04-01

    Time domain electromagnetic (TDEM) sensors have emerged as a field-worthy technology for UXO detection in a variety of geological and environmental settings. This success has been achieved with commercial equipment that was not optimized for UXO detection and discrimination. The TDEM response displays a rich spatial and temporal behavior which is not currently utilized. Therefore, in this paper the author describes a research program for enhancing the effectiveness of the TDEM method for UXO detection and imaging. Fundamental research is required in at least three major areas: (a) model based imaging capability i.e. the forward and inverse problem, (b) detectormore » modeling and instrument design, and (c) target recognition and discrimination algorithms. These research problems are coupled and demand a unified treatment. For example: (1) the inverse solution depends on solution of the forward problem and knowledge of the instrument response; (2) instrument design with improved diagnostic power requires forward and inverse modeling capability; and (3) improved target recognition algorithms (such as neural nets) must be trained with data collected from the new instrument and with synthetic data computed using the forward model. Further, the design of the appropriate input and output layers of the net will be informed by the results of the forward and inverse modeling. A more fully developed model of the TDEM response would enable the joint inversion of data collected from multiple sensors (e.g., TDEM sensors and magnetometers). Finally, the author suggests that a complementary approach to joint inversions is the statistical recombination of data using principal component analysis. The decomposition into principal components is useful since the first principal component contains those features that are most strongly correlated from image to image.« less

  9. Model and Interoperability using Meta Data Annotations

    NASA Astrophysics Data System (ADS)

    David, O.

    2011-12-01

    Software frameworks and architectures are in need for meta data to efficiently support model integration. Modelers have to know the context of a model, often stepping into modeling semantics and auxiliary information usually not provided in a concise structure and universal format, consumable by a range of (modeling) tools. XML often seems the obvious solution for capturing meta data, but its wide adoption to facilitate model interoperability is limited by XML schema fragmentation, complexity, and verbosity outside of a data-automation process. Ontologies seem to overcome those shortcomings, however the practical significance of their use remains to be demonstrated. OMS version 3 took a different approach for meta data representation. The fundamental building block of a modular model in OMS is a software component representing a single physical process, calibration method, or data access approach. Here, programing language features known as Annotations or Attributes were adopted. Within other (non-modeling) frameworks it has been observed that annotations lead to cleaner and leaner application code. Framework-supported model integration, traditionally accomplished using Application Programming Interfaces (API) calls is now achieved using descriptive code annotations. Fully annotated components for various hydrological and Ag-system models now provide information directly for (i) model assembly and building, (ii) data flow analysis for implicit multi-threading or visualization, (iii) automated and comprehensive model documentation of component dependencies, physical data properties, (iv) automated model and component testing, calibration, and optimization, and (v) automated audit-traceability to account for all model resources leading to a particular simulation result. Such a non-invasive methodology leads to models and modeling components with only minimal dependencies on the modeling framework but a strong reference to its originating code. Since models and modeling components are not directly bound to framework by the use of specific APIs and/or data types they can more easily be reused both within the framework as well as outside. While providing all those capabilities, a significant reduction in the size of the model source code was achieved. To support the benefit of annotations for a modeler, studies were conducted to evaluate the effectiveness of an annotation based framework approach with other modeling frameworks and libraries, a framework-invasiveness study was conducted to evaluate the effects of framework design on model code quality. A typical hydrological model was implemented across several modeling frameworks and several software metrics were collected. The metrics selected were measures of non-invasive design methods for modeling frameworks from a software engineering perspective. It appears that the use of annotations positively impacts several software quality measures. Experience to date has demonstrated the multi-purpose value of using annotations. Annotations are also a feasible and practical method to enable interoperability among models and modeling frameworks.

  10. Unified constitutive models for high-temperature structural applications

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.

    1988-01-01

    Unified constitutive models are characterized by the use of a single inelastic strain rate term for treating all aspects of inelastic deformation, including plasticity, creep, and stress relaxation under monotonic or cyclic loading. The structure of this class of constitutive theory pertinent for high temperature structural applications is first outlined and discussed. The effectiveness of the unified approach for representing high temperature deformation of Ni-base alloys is then evaluated by extensive comparison of experimental data and predictions of the Bodner-Partom and the Walker models. The use of the unified approach for hot section structural component analyses is demonstrated by applying the Walker model in finite element analyses of a benchmark notch problem and a turbine blade problem.

  11. Improved Modeling in a Matlab-Based Navigation System

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  12. Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach.

    PubMed

    Dennison, James E; Andersen, Melvin E; Yang, Raymond S H

    2003-09-01

    Gasoline consists of a few toxicologically significant components and a large number of other hydrocarbons in a complex mixture. By using an integrated, physiologically based pharmacokinetic (PBPK) modeling and lumping approach, we have developed a method for characterizing the pharmacokinetics (PKs) of gasoline in rats. The PBPK model tracks selected target components (benzene, toluene, ethylbenzene, o-xylene [BTEX], and n-hexane) and a lumped chemical group representing all nontarget components, with competitive metabolic inhibition between all target compounds and the lumped chemical. PK data was acquired by performing gas uptake PK studies with male F344 rats in a closed chamber. Chamber air samples were analyzed every 10-20 min by gas chromatography/flame ionization detection and all nontarget chemicals were co-integrated. A four-compartment PBPK model with metabolic interactions was constructed using the BTEX, n-hexane, and lumped chemical data. Target chemical kinetic parameters were refined by studies with either the single chemical alone or with all five chemicals together. o-Xylene, at high concentrations, decreased alveolar ventilation, consistent with respiratory irritation. A six-chemical interaction model with the lumped chemical group was used to estimate lumped chemical partitioning and metabolic parameters for a winter blend of gasoline with methyl t-butyl ether and a summer blend without any oxygenate. Computer simulation results from this model matched well with experimental data from single chemical, five-chemical mixture, and the two blends of gasoline. The PBPK model analysis indicated that metabolism of individual components was inhibited up to 27% during the 6-h gas uptake experiments of gasoline exposures.

  13. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra.

    PubMed

    Luce, Robert; Hildebrandt, Peter; Kuhlmann, Uwe; Liesen, Jörg

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed. © The Author(s) 2016.

  14. An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow–force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx

    PubMed Central

    Le Deunff, Erwan; Malagoli, Philippe

    2014-01-01

    Background and Aims In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. Methods A cross-combination of a Flow–Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to ‘Enzyme–Substrate’ interpretations, a Flow–Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. Key Results and Conclusions Use of a Flow–Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure–function mechanistic model of N uptake. PMID:24638820

  15. Implementing reusable software components for SNOMED CT diagram and expression concept representations.

    PubMed

    Bánfai, Balázs; Porció, Roland; Kovács, Tibor

    2014-01-01

    SNOMED CT is a vital component in the future of semantic interoperability in healthcare as it provides the meaning to EHRs via its semantically rich, controlled terminology. Communicating the concepts of this terminology to both humans and machines is crucial therefore formal guidelines for diagram and expression representations have been developed by the curators of SNOMED CT. This paper presents a novel, model-based approach to implementing these guidelines that allows simultaneous editing of a concept via both diagram and expression editors. The implemented extensible software component can be embedded both both desktop and web applications.

  16. Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging

    PubMed Central

    Ravishankar, Saiprasad; Moore, Brian E.; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery from undersampled measurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamic magnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method. PMID:28092528

  17. Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.

    PubMed

    Ravishankar, Saiprasad; Moore, Brian E; Nadakuditi, Raj Rao; Fessler, Jeffrey A

    2017-05-01

    Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery fromundersampledmeasurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamicmagnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.

  18. Architectural approaches for HL7-based health information systems implementation.

    PubMed

    López, D M; Blobel, B

    2010-01-01

    Information systems integration is hard, especially when semantic and business process interoperability requirements need to be met. To succeed, a unified methodology, approaching different aspects of systems architecture such as business, information, computational, engineering and technology viewpoints, has to be considered. The paper contributes with an analysis and demonstration on how the HL7 standard set can support health information systems integration. Based on the Health Information Systems Development Framework (HIS-DF), common architectural models for HIS integration are analyzed. The framework is a standard-based, consistent, comprehensive, customizable, scalable methodology that supports the design of semantically interoperable health information systems and components. Three main architectural models for system integration are analyzed: the point to point interface, the messages server and the mediator models. Point to point interface and messages server models are completely supported by traditional HL7 version 2 and version 3 messaging. The HL7 v3 standard specification, combined with service-oriented, model-driven approaches provided by HIS-DF, makes the mediator model possible. The different integration scenarios are illustrated by describing a proof-of-concept implementation of an integrated public health surveillance system based on Enterprise Java Beans technology. Selecting the appropriate integration architecture is a fundamental issue of any software development project. HIS-DF provides a unique methodological approach guiding the development of healthcare integration projects. The mediator model - offered by the HIS-DF and supported in HL7 v3 artifacts - is the more promising one promoting the development of open, reusable, flexible, semantically interoperable, platform-independent, service-oriented and standard-based health information systems.

  19. Optimum Tolerance Design Using Component-Amount and Mixture-Amount Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Ozler, Cenk; Sehirlioglu, Ali Kemal

    2013-08-01

    One type of tolerance design problem involves optimizing component and assembly tolerances to minimize the total cost (sum of manufacturing cost and quality loss). Previous literature recommended using traditional response surface (RS) designs and models to solve this type of tolerance design problem. In this article, component-amount (CA) and mixture-amount (MA) approaches are proposed as more appropriate for solving this type of tolerance design problem. The advantages of the CA and MA approaches over the RS approach are discussed. Reasons for choosing between the CA and MA approaches are also discussed. The CA and MA approaches (experimental design, response modeling,more » and optimization) are illustrated using real examples.« less

  20. Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: The mesoscopic Eulerian formalism and the two-point probability density function method

    NASA Astrophysics Data System (ADS)

    Simonin, Olivier; Zaichik, Leonid I.; Alipchenkov, Vladimir M.; Février, Pierre

    2006-12-01

    The objective of the paper is to elucidate a connection between two approaches that have been separately proposed for modelling the statistical spatial properties of inertial particles in turbulent fluid flows. One of the approaches proposed recently by Février, Simonin, and Squires [J. Fluid Mech. 533, 1 (2005)] is based on the partitioning of particle turbulent velocity field into spatially correlated (mesoscopic Eulerian) and random-uncorrelated (quasi-Brownian) components. The other approach stems from a kinetic equation for the two-point probability density function of the velocity distributions of two particles [Zaichik and Alipchenkov, Phys. Fluids 15, 1776 (2003)]. Comparisons between these approaches are performed for isotropic homogeneous turbulence and demonstrate encouraging agreement.

  1. A semi-supervised classification algorithm using the TAD-derived background as training data

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Ambeau, Brittany; Messinger, David W.

    2013-05-01

    In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.

  2. Technical Manual for the SAM Physical Trough Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field,more » power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.« less

  3. Pricing index-based catastrophe bonds: Part 1: Formulation and discretization issues using a numerical PDE approach

    NASA Astrophysics Data System (ADS)

    Unger, André J. A.

    2010-02-01

    This work is the first installment in a two-part series, and focuses on the development of a numerical PDE approach to price components of a Bermudan-style callable catastrophe (CAT) bond. The bond is based on two underlying stochastic variables; the PCS index which posts quarterly estimates of industry-wide hurricane losses as well as a single-factor CIR interest rate model for the three-month LIBOR. The aggregate PCS index is analogous to losses claimed under traditional reinsurance in that it is used to specify a reinsurance layer. The proposed CAT bond model contains a Bermudan-style call feature designed to allow the reinsurer to minimize their interest rate risk exposure on making substantial fixed coupon payments using capital from the reinsurance premium. Numerical PDE methods are the fundamental strategy for pricing early-exercise constraints, such as the Bermudan-style call feature, into contingent claim models. Therefore, the objective and unique contribution of this first installment in the two-part series is to develop a formulation and discretization strategy for the proposed CAT bond model utilizing a numerical PDE approach. Object-oriented code design is fundamental to the numerical methods used to aggregate the PCS index, and implement the call feature. Therefore, object-oriented design issues that relate specifically to the development of a numerical PDE approach for the component of the proposed CAT bond model that depends on the PCS index and LIBOR are described here. Formulation, numerical methods and code design issues that relate to aggregating the PCS index and introducing the call option are the subject of the companion paper.

  4. Decision Support Systems and the Conflict Model of Decision Making: A Stimulus for New Computer-Assisted Careers Guidance Systems.

    ERIC Educational Resources Information Center

    Ballantine, R. Malcolm

    Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…

  5. Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling.

    PubMed

    Zheng, Liying; Li, Kang; Shetye, Snehal; Zhang, Xudong

    2014-09-22

    This manuscript presents a new subject-specific musculoskeletal dynamic modeling approach that integrates high-accuracy dynamic stereo-radiography (DSX) joint kinematics and surface-based full-body motion data. We illustrate this approach by building a model in OpenSim for a patient who participated in a meniscus transplantation efficacy study, incorporating DSX data of the tibiofemoral joint kinematics. We compared this DSX-incorporated (DSXI) model to a default OpenSim model built using surface-measured data alone. The architectures and parameters of the two models were identical, while the differences in (time-averaged) tibiofemoral kinematics were of the order of magnitude of 10° in rotation and 10mm in translation. Model-predicted tibiofemoral compressive forces and knee muscle activations were compared against literature data acquired from instrumented total knee replacement components (Fregly et al., 2012) and the patient's EMG recording. The comparison demonstrated that the incorporation of DSX data improves the veracity of musculoskeletal dynamic modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling

    PubMed Central

    Zheng, Liying; Li, Kang; Shetye, Snehal; Zhang, Xudong

    2014-01-01

    This paper presents a new subject-specific musculoskeletal dynamic modeling approach that integrates high-accuracy dynamic stereo-radiography (DSX) joint kinematics and surface-based full-body motion data. We illustrate this approach by building a model in OpenSim for a patient who participated in a meniscus transplantation efficacy study, incorporating DSX data of the tibiofemoral joint kinematics. We compared this DSX-incorporated (DSXI) model to a default OpenSim model built using surface-measured data alone. The architectures and parameters of the two models were identical, while the differences in (time-averaged) tibiofemoral kinematics were of the order of magnitude of 10° in rotation and 10 mm in translation. Model-predicted tibiofemoral compressive forces and knee muscle activations were compared against literature data acquired from instrumented total knee replacement components (Fregly et al., 2012) and the patient's EMG recording. The comparison demonstrated that the incorporation of DSX data improves the veracity of musculoskeletal dynamic modeling. PMID:25169658

  7. An Integrated Model of Co-ordinated Community-Based Care.

    PubMed

    Scharlach, Andrew E; Graham, Carrie L; Berridge, Clara

    2015-08-01

    Co-ordinated approaches to community-based care are a central component of current and proposed efforts to help vulnerable older adults obtain needed services and supports and reduce unnecessary use of health care resources. This study examines ElderHelp Concierge Club, an integrated community-based care model that includes comprehensive personal and environmental assessment, multilevel care co-ordination, a mix of professional and volunteer service providers, and a capitated, income-adjusted fee model. Evaluation includes a retrospective study (n = 96) of service use and perceived program impact, and a prospective study (n = 21) of changes in participant physical and social well-being and health services utilization. Over the period of this study, participants showed greater mobility, greater ability to meet household needs, greater access to health care, reduced social isolation, reduced home hazards, fewer falls, and greater perceived ability to obtain assistance needed to age in place. This study provides preliminary evidence that an integrated multilevel care co-ordination approach may be an effective and efficient model for serving vulnerable community-based elders, especially low and moderate-income elders who otherwise could not afford the cost of care. The findings suggest the need for multisite controlled studies to more rigorously evaluate program impacts and the optimal mix of various program components. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. An industrial information integration approach to in-orbit spacecraft

    NASA Astrophysics Data System (ADS)

    Du, Xiaoning; Wang, Hong; Du, Yuhao; Xu, Li Da; Chaudhry, Sohail; Bi, Zhuming; Guo, Rong; Huang, Yongxuan; Li, Jisheng

    2017-01-01

    To operate an in-orbit spacecraft, the spacecraft status has to be monitored autonomously by collecting and analysing real-time data, and then detecting abnormities and malfunctions of system components. To develop an information system for spacecraft state detection, we investigate the feasibility of using ontology-based artificial intelligence in the system development. We propose a new modelling technique based on the semantic web, agent, scenarios and ontologies model. In modelling, the subjects of astronautics fields are classified, corresponding agents and scenarios are defined, and they are connected by the semantic web to analyse data and detect failures. We introduce the modelling methodologies and the resulted framework of the status detection information system in this paper. We discuss system components as well as their interactions in details. The system has been prototyped and tested to illustrate its feasibility and effectiveness. The proposed modelling technique is generic which can be extended and applied to the system development of other large-scale and complex information systems.

  9. An effectiveness analysis of healthcare systems using a systems theoretic approach.

    PubMed

    Chuang, Sheuwen; Inder, Kerry

    2009-10-24

    The use of accreditation and quality measurement and reporting to improve healthcare quality and patient safety has been widespread across many countries. A review of the literature reveals no association between the accreditation system and the quality measurement and reporting systems, even when hospital compliance with these systems is satisfactory. Improvement of health care outcomes needs to be based on an appreciation of the whole system that contributes to those outcomes. The research literature currently lacks an appropriate analysis and is fragmented among activities. This paper aims to propose an integrated research model of these two systems and to demonstrate the usefulness of the resulting model for strategic research planning. To achieve these aims, a systematic integration of the healthcare accreditation and quality measurement/reporting systems is structured hierarchically. A holistic systems relationship model of the administration segment is developed to act as an investigation framework. A literature-based empirical study is used to validate the proposed relationships derived from the model. Australian experiences are used as evidence for the system effectiveness analysis and design base for an adaptive-control study proposal to show the usefulness of the system model for guiding strategic research. Three basic relationships were revealed and validated from the research literature. The systemic weaknesses of the accreditation system and quality measurement/reporting system from a system flow perspective were examined. The approach provides a system thinking structure to assist the design of quality improvement strategies. The proposed model discovers a fourth implicit relationship, a feedback between quality performance reporting components and choice of accreditation components that is likely to play an important role in health care outcomes. An example involving accreditation surveyors is developed that provides a systematic search for improving the impact of accreditation on quality of care and hence on the accreditation/performance correlation. There is clear value in developing a theoretical systems approach to achieving quality in health care. The introduction of the systematic surveyor-based search for improvements creates an adaptive-control system to optimize health care quality. It is hoped that these outcomes will stimulate further research in the development of strategic planning using systems theoretic approach for the improvement of quality in health care.

  10. EwE-F 1.0: an implementation of Ecopath with Ecosim in Fortran 95/2003 for coupling

    NASA Astrophysics Data System (ADS)

    Akoglu, E.; Libralato, S.; Salihoglu, B.; Oguz, T.; Solidoro, C.

    2015-02-01

    Societal and scientific challenges foster the implementation of the ecosystem approach to marine ecosystem analysis and management, which is a comprehensive means of integrating the direct and indirect effects of multiple stressors on the different components of ecosystems, from physical to chemical and biological and from viruses to fishes and marine mammals. Ecopath with Ecosim (EwE) is a widely used software package, which offers great capability for a dynamic description of the multiple interactions occurring within a food web, and potentially, a crucial component of an integrated platform supporting the ecosystem approach. However, being written for the Microsoft .NET framework, seamless integration of this code with Fortran-based physical oceanographic and/or biogeochemical models is technically not straightforward. In this work we release a re-coding of EwE in Fortran (EwE-F). We believe that the availability of a Fortran version of EwE is an important step towards setting-up integrated end-to-end (E2E) modelling schemes utilising this widely adopted software because it (i) increases portability of the EwE models, (ii) provides greater flexibility towards integrating EwE with Fortran-based modelling schemes. Furthermore, EwE-F might help modellers using Fortran programming language to get close to the EwE approach. In the present work, first the fundamentals of EwE-F are introduced, followed by validation of EwE-F against standard EwE utilising sample models. Afterwards, an E2E ecological representation of the Trieste Gulf (Northern Adriatic Sea) ecosystem is presented as an example of online two-way coupling between an EwE-F food web model and a biogeochemical model. Finally, the possibilities that having EwE-F opens up for are discussed.

  11. Validation of Shared and Specific Independent Component Analysis (SSICA) for Between-Group Comparisons in fMRI

    PubMed Central

    Maneshi, Mona; Vahdat, Shahabeddin; Gotman, Jean; Grova, Christophe

    2016-01-01

    Independent component analysis (ICA) has been widely used to study functional magnetic resonance imaging (fMRI) connectivity. However, the application of ICA in multi-group designs is not straightforward. We have recently developed a new method named “shared and specific independent component analysis” (SSICA) to perform between-group comparisons in the ICA framework. SSICA is sensitive to extract those components which represent a significant difference in functional connectivity between groups or conditions, i.e., components that could be considered “specific” for a group or condition. Here, we investigated the performance of SSICA on realistic simulations, and task fMRI data and compared the results with one of the state-of-the-art group ICA approaches to infer between-group differences. We examined SSICA robustness with respect to the number of allowable extracted specific components and between-group orthogonality assumptions. Furthermore, we proposed a modified formulation of the back-reconstruction method to generate group-level t-statistics maps based on SSICA results. We also evaluated the consistency and specificity of the extracted specific components by SSICA. The results on realistic simulated and real fMRI data showed that SSICA outperforms the regular group ICA approach in terms of reconstruction and classification performance. We demonstrated that SSICA is a powerful data-driven approach to detect patterns of differences in functional connectivity across groups/conditions, particularly in model-free designs such as resting-state fMRI. Our findings in task fMRI show that SSICA confirms results of the general linear model (GLM) analysis and when combined with clustering analysis, it complements GLM findings by providing additional information regarding the reliability and specificity of networks. PMID:27729843

  12. From Models to Measurements: Comparing Downed Dead Wood Carbon Stock Estimates in the U.S. Forest Inventory

    PubMed Central

    Domke, Grant M.; Woodall, Christopher W.; Walters, Brian F.; Smith, James E.

    2013-01-01

    The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.’s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events. PMID:23544112

  13. From models to measurements: comparing downed dead wood carbon stock estimates in the U.S. forest inventory.

    PubMed

    Domke, Grant M; Woodall, Christopher W; Walters, Brian F; Smith, James E

    2013-01-01

    The inventory and monitoring of coarse woody debris (CWD) carbon (C) stocks is an essential component of any comprehensive National Greenhouse Gas Inventory (NGHGI). Due to the expense and difficulty associated with conducting field inventories of CWD pools, CWD C stocks are often modeled as a function of more commonly measured stand attributes such as live tree C density. In order to assess potential benefits of adopting a field-based inventory of CWD C stocks in lieu of the current model-based approach, a national inventory of downed dead wood C across the U.S. was compared to estimates calculated from models associated with the U.S.'s NGHGI and used in the USDA Forest Service, Forest Inventory and Analysis program. The model-based population estimate of C stocks for CWD (i.e., pieces and slash piles) in the conterminous U.S. was 9 percent (145.1 Tg) greater than the field-based estimate. The relatively small absolute difference was driven by contrasting results for each CWD component. The model-based population estimate of C stocks from CWD pieces was 17 percent (230.3 Tg) greater than the field-based estimate, while the model-based estimate of C stocks from CWD slash piles was 27 percent (85.2 Tg) smaller than the field-based estimate. In general, models overestimated the C density per-unit-area from slash piles early in stand development and underestimated the C density from CWD pieces in young stands. This resulted in significant differences in CWD C stocks by region and ownership. The disparity in estimates across spatial scales illustrates the complexity in estimating CWD C in a NGHGI. Based on the results of this study, it is suggested that the U.S. adopt field-based estimates of CWD C stocks as a component of its NGHGI to both reduce the uncertainty within the inventory and improve the sensitivity to potential management and climate change events.

  14. A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials.

    PubMed

    Azevedo, S L; Holz, T; Rodrigues, J; Monteiro, T; Costa, F M; Soares, A M V M; Loureiro, S

    2017-02-01

    Nanotechnology is a rising field and nanomaterials can now be found in a vast variety of products with different chemical compositions, sizes and shapes. New nanostructures combining different nanomaterials are being developed due to their enhancing characteristics when compared to nanomaterials alone. In the present study, the toxicity of a nanostructure composed by a ZnO nanomaterial with Ag nanomaterials on its surface (designated as ZnO/Ag nanostructure) was assessed using the model-organism Daphnia magna and its toxicity predicted based on the toxicity of the single components (Zn and Ag). For that ZnO and Ag nanomaterials as single components, along with its mixture prepared in the laboratory, were compared in terms of toxicity to ZnO/Ag nanostructures. Toxicity was assessed by immobilization and reproduction tests. A mixture toxicity approach was carried out using as starting point the conceptual model of Concentration Addition. The laboratory mixture of both nanomaterials showed that toxicity was dependent on the doses of ZnO and Ag used (immobilization) or presented a synergistic pattern (reproduction). The ZnO/Ag nanostructure toxicity prediction, based on the percentage of individual components, showed an increase in toxicity when compared to the expected (immobilization) and dependent on the concentration used (reproduction). This study demonstrates that the toxicity of the prepared mixture of ZnO and Ag and of the ZnO/Ag nanostructure cannot be predicted based on the toxicity of their components, highlighting the importance of taking into account the interaction between nanomaterials when assessing hazard and risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Continuous data assimilation for downscaling large-footprint soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.

    2016-10-01

    Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.

  16. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  17. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  18. Oil spill model coupled to an ultra-high-resolution circulation model: implementation for the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Korotenko, K.

    2003-04-01

    An ultra-high-resolution version of DieCAST was adjusted for the Adriatic Sea and coupled with an oil spill model. Hydrodynamic module was developed on base of th low dissipative, four-order-accuracy version DieCAST with the resolution of ~2km. The oil spill model was developed on base of particle tracking technique The effect of evaporation is modeled with an original method developed on the base of the pseudo-component approach. A special dialog interface of this hybrid system allowing direct coupling to meteorlogical data collection systems or/and meteorological models. Experiments with hypothetic oil spill are analyzed for the Northern Adriatic Sea. Results (animations) of mesoscale circulation and oil slick modeling are presented at wabsite http://thayer.dartmouth.edu/~cushman/adriatic/movies/

  19. An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture.

    PubMed

    Zhang, Xiaopu; Lin, Jun; Chen, Zubin; Sun, Feng; Zhu, Xi; Fang, Gengfa

    2018-06-05

    Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR). The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN) and long short-term memory (LSTM) is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96%) with less transmitted data (about 90%) was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.

  20. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.

    PubMed

    Da, Yang

    2015-12-18

    The amount of functional genomic information has been growing rapidly but remains largely unused in genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements such as all genes of the genome can be an approach to integrate functional and structural genomic information for genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and estimation. A multi-allelic haplotype model treating each haplotype as an 'allele' was developed for genomic prediction and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each additive value is expressed as a function of h - 1 additive effects, where h = number of alleles or haplotypes, and each dominance value is expressed as a function of h(h - 1)/2 dominance effects. For a sample of q individuals, the limit number of effects is 2q - 1 for additive effects and is the number of heterozygous genotypes for dominance effects. Additive values are factorized as a product between the additive model matrix and the h - 1 additive effects, and dominance values are factorized as a product between the dominance model matrix and the h(h - 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for genomic prediction and variance component estimation that jointly use haplotypes and single markers is established, including two computing strategies for genomic prediction and variance component estimation with identical results. The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general formulations for partitioning multi-allelic genotypic values and provides a haplotype method based on the quantitative genetics model towards the utilization of functional and structural genomic information for genomic prediction and estimation.

  1. A Risk-Based Approach for Aerothermal/TPS Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Grinstead, Jay H.; Bose, Deepak

    2007-01-01

    The current status of aerothermal and thermal protection system modeling for civilian entry missions is reviewed. For most such missions, the accuracy of our simulations is limited not by the tools and processes currently employed, but rather by reducible deficiencies in the underlying physical models. Improving the accuracy of and reducing the uncertainties in these models will enable a greater understanding of the system level impacts of a particular thermal protection system and of the system operation and risk over the operational life of the system. A strategic plan will be laid out by which key modeling deficiencies can be identified via mission-specific gap analysis. Once these gaps have been identified, the driving component uncertainties are determined via sensitivity analyses. A Monte-Carlo based methodology is presented for physics-based probabilistic uncertainty analysis of aerothermodynamics and thermal protection system material response modeling. These data are then used to advocate for and plan focused testing aimed at reducing key uncertainties. The results of these tests are used to validate or modify existing physical models. Concurrently, a testing methodology is outlined for thermal protection materials. The proposed approach is based on using the results of uncertainty/sensitivity analyses discussed above to tailor ground testing so as to best identify and quantify system performance and risk drivers. A key component of this testing is understanding the relationship between the test and flight environments. No existing ground test facility can simultaneously replicate all aspects of the flight environment, and therefore good models for traceability to flight are critical to ensure a low risk, high reliability thermal protection system design. Finally, the role of flight testing in the overall thermal protection system development strategy is discussed.

  2. Collagen-based proteinaceous binder-pigment interaction study under UV ageing conditions by MALDI-TOF-MS and principal component analysis.

    PubMed

    Romero-Pastor, Julia; Navas, Natalia; Kuckova, Stepanka; Rodríguez-Navarro, Alejandro; Cardell, Carolina

    2012-03-01

    This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI-TOF-MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty: STRUCTURAL UNCERTAINTY DIAGNOSTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moges, Edom; Demissie, Yonas; Li, Hong-Yi

    2016-04-01

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integratemore » expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.« less

  4. Weighting of NMME temperature and precipitation forecasts across Europe

    NASA Astrophysics Data System (ADS)

    Slater, Louise J.; Villarini, Gabriele; Bradley, A. Allen

    2017-09-01

    Multi-model ensemble forecasts are obtained by weighting multiple General Circulation Model (GCM) outputs to heighten forecast skill and reduce uncertainties. The North American Multi-Model Ensemble (NMME) project facilitates the development of such multi-model forecasting schemes by providing publicly-available hindcasts and forecasts online. Here, temperature and precipitation forecasts are enhanced by leveraging the strengths of eight NMME GCMs (CCSM3, CCSM4, CanCM3, CanCM4, CFSv2, GEOS5, GFDL2.1, and FLORb01) across all forecast months and lead times, for four broad climatic European regions: Temperate, Mediterranean, Humid-Continental and Subarctic-Polar. We compare five different approaches to multi-model weighting based on the equally weighted eight single-model ensembles (EW-8), Bayesian updating (BU) of the eight single-model ensembles (BU-8), BU of the 94 model members (BU-94), BU of the principal components of the eight single-model ensembles (BU-PCA-8) and BU of the principal components of the 94 model members (BU-PCA-94). We assess the forecasting skill of these five multi-models and evaluate their ability to predict some of the costliest historical droughts and floods in recent decades. Results indicate that the simplest approach based on EW-8 preserves model skill, but has considerable biases. The BU and BU-PCA approaches reduce the unconditional biases and negative skill in the forecasts considerably, but they can also sometimes diminish the positive skill in the original forecasts. The BU-PCA models tend to produce lower conditional biases than the BU models and have more homogeneous skill than the other multi-models, but with some loss of skill. The use of 94 NMME model members does not present significant benefits over the use of the 8 single model ensembles. These findings may provide valuable insights for the development of skillful, operational multi-model forecasting systems.

  5. Correlation between Relatives given Complete Genotypes: from Identity by Descent to Identity by Function

    PubMed Central

    Sverdlov, Serge; Thompson, Elizabeth A.

    2013-01-01

    In classical quantitative genetics, the correlation between the phenotypes of individuals with unknown genotypes and a known pedigree relationship is expressed in terms of probabilities of IBD states. In existing approaches to the inverse problem where genotypes are observed but pedigree relationships are not, dependence between phenotypes is either modeled as Bayesian uncertainty or mapped to an IBD model via inferred relatedness parameters. Neither approach yields a relationship between genotypic similarity and phenotypic similarity with a probabilistic interpretation corresponding to a generative model. We introduce a generative model for diploid allele effect based on the classic infinite allele mutation process. This approach motivates the concept of IBF (Identity by Function). The phenotypic covariance between two individuals given their diploid genotypes is expressed in terms of functional identity states. The IBF parameters define a genetic architecture for a trait without reference to specific alleles or population. Given full genome sequences, we treat a gene-scale functional region, rather than a SNP, as a QTL, modeling patterns of dominance for multiple alleles. Applications demonstrated by simulation include phenotype and effect prediction and association, and estimation of heritability and classical variance components. A simulation case study of the Missing Heritability problem illustrates a decomposition of heritability under the IBF framework into Explained and Unexplained components. PMID:23851163

  6. High Fidelity System Simulation of Multiple Components in Support of the UEET Program

    NASA Technical Reports Server (NTRS)

    Plybon, Ronald C.; VanDeWall, Allan; Sampath, Rajiv; Balasubramaniam, Mahadevan; Mallina, Ramakrishna; Irani, Rohinton

    2006-01-01

    The High Fidelity System Simulation effort has addressed various important objectives to enable additional capability within the NPSS framework. The scope emphasized High Pressure Turbine and High Pressure Compressor components. Initial effort was directed at developing and validating intermediate fidelity NPSS model using PD geometry and extended to high-fidelity NPSS model by overlaying detailed geometry to validate CFD against rig data. Both "feedforward" and feedback" approaches of analysis zooming was employed to enable system simulation capability in NPSS. These approaches have certain benefits and applicability in terms of specific applications "feedback" zooming allows the flow-up of information from high-fidelity analysis to be used to update the NPSS model results by forcing the NPSS solver to converge to high-fidelity analysis predictions. This apporach is effective in improving the accuracy of the NPSS model; however, it can only be used in circumstances where there is a clear physics-based strategy to flow up the high-fidelity analysis results to update the NPSS system model. "Feed-forward" zooming approach is more broadly useful in terms of enabling detailed analysis at early stages of design for a specified set of critical operating points and using these analysis results to drive design decisions early in the development process.

  7. Model-based confirmation of alternative substrates of mitochondrial electron transport chain.

    PubMed

    Kleessen, Sabrina; Araújo, Wagner L; Fernie, Alisdair R; Nikoloski, Zoran

    2012-03-30

    Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data.

  8. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    NASA Astrophysics Data System (ADS)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust models, since this step is the bottle-neck of this technique. In the first approach, a plot-scale model was used to predict the temperature reached in samples collected in other plots from the same site. In a plot-scale model, all the heated aliquots come from a unique plot-scale sample. As expected, the results obtained with this approach were deceptive, because this approach was assuming that a plot-scale model would be enough to represent the whole variability of the site. The accuracy (measured as the root mean square error of prediction, thereinafter RMSEP) was 86ºC, and the bias was also high (>30ºC). In the second approach, the temperatures predicted through several plot-scale models were averaged. The accuracy was improved (RMSEP=65ºC) respect the first approach, because the variability from several plots was considered and biased predictions were partially counterbalanced. However, this approach implies more efforts, since several plot-scale models are needed. In the third approach, the predictions were obtained with site-scale models. These models were constructed with aliquots from several plots. In this case, the results were accurate, since the RMSEP was around 40ºC, the bias was very small (<1ºC) and the R2 was 0.92. As expected, this approach clearly outperformed the second approach, in spite of the fact that the same efforts were needed. In a plot-scale model, only one interaction between temperature and soil components was modelled. However, several different interactions between temperature and soil components were present in the calibration matrix of a site-scale model. Consequently, the site-scale models were able to model the temperature reached excluding the influence of the differences in soil composition, resulting in more robust models respect that variation. Summarizing, the results were highlighting the importance of an adequate strategy to develop robust and accurate models with moderate efforts, and how a wrong strategy can result in deceptive predictions.

  9. Preventive intervention in diabetes: a new model for continuing medical education.

    PubMed

    Beaser, Richard S; Brown, Julie A

    2013-04-01

    Competence and skills in overcoming clinical inertia for diabetes treatment, and actually supporting and assisting the patient through adherence and compliance (as opposed to just reiterating what they "should" be doing and then assigning them the blame if they fail) is a key component to success in addressing diabetes, and to date it is a component that has received little formal attention. To improve and systematize diabetes care, it is critical to move beyond the "traditional" continuing medical education (CME) model of imparting knowledge as the entirety of the educational effort, and move toward a focus on Performance Improvement CME. This new approach does not just teach new information but also provides support for improvements where needed most within practice systems based on targeted data-based on self-assessments for the entire system of care. Joslin data conclude that this new approach will benefit support, clinical, and office teams as well as the specialist. In short, the Performance Improvement CME structure reflects the needed components of the successful practice today, particularly for chronic conditions such as diabetes, including the focus on interdisciplinary team care and on quality improvement, which is becoming more and more aligned with reimbursement schemes, public and private, in the U.S. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Demystifying the cytokine network: Mathematical models point the way.

    PubMed

    Morel, Penelope A; Lee, Robin E C; Faeder, James R

    2017-10-01

    Cytokines provide the means by which immune cells communicate with each other and with parenchymal cells. There are over one hundred cytokines and many exist in families that share receptor components and signal transduction pathways, creating complex networks. Reductionist approaches to understanding the role of specific cytokines, through the use of gene-targeted mice, have revealed further complexity in the form of redundancy and pleiotropy in cytokine function. Creating an understanding of the complex interactions between cytokines and their target cells is challenging experimentally. Mathematical and computational modeling provides a robust set of tools by which complex interactions between cytokines can be studied and analyzed, in the process creating novel insights that can be further tested experimentally. This review will discuss and provide examples of the different modeling approaches that have been used to increase our understanding of cytokine networks. This includes discussion of knowledge-based and data-driven modeling approaches and the recent advance in single-cell analysis. The use of modeling to optimize cytokine-based therapies will also be discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An Object Model for a Rocket Engine Numerical Simulator

    NASA Technical Reports Server (NTRS)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  12. The GPRIME approach to finite element modeling

    NASA Technical Reports Server (NTRS)

    Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.

    1983-01-01

    GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.

  13. Analytical Modeling and Performance Prediction of Remanufactured Gearbox Components

    NASA Astrophysics Data System (ADS)

    Pulikollu, Raja V.; Bolander, Nathan; Vijayakar, Sandeep; Spies, Matthew D.

    Gearbox components operate in extreme environments, often leading to premature removal or overhaul. Though worn or damaged, these components still have the ability to function given the appropriate remanufacturing processes are deployed. Doing so reduces a significant amount of resources (time, materials, energy, manpower) otherwise required to produce a replacement part. Unfortunately, current design and analysis approaches require extensive testing and evaluation to validate the effectiveness and safety of a component that has been used in the field then processed outside of original OEM specification. To test all possible combination of component coupled with various levels of potential damage repaired through various options of processing would be an expensive and time consuming feat, thus prohibiting a broad deployment of remanufacturing processes across industry. However, such evaluation and validation can occur through Integrated Computational Materials Engineering (ICME) modeling and simulation. Sentient developed a microstructure-based component life prediction (CLP) tool to quantify and assist gearbox components remanufacturing process. This was achieved by modeling the design-manufacturing-microstructure-property relationship. The CLP tool assists in remanufacturing of high value, high demand rotorcraft, automotive and wind turbine gears and bearings. This paper summarizes the CLP models development, and validation efforts by comparing the simulation results with rotorcraft spiral bevel gear physical test data. CLP analyzes gear components and systems for safety, longevity, reliability and cost by predicting (1) New gearbox component performance, and optimal time-to-remanufacture (2) Qualification of used gearbox components for remanufacturing process (3) Predicting the remanufactured component performance.

  14. Urban pavement surface temperature. Comparison of numerical and statistical approach

    NASA Astrophysics Data System (ADS)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  15. A Model-Driven Development Method for Management Information Systems

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  16. Corrected confidence bands for functional data using principal components.

    PubMed

    Goldsmith, J; Greven, S; Crainiceanu, C

    2013-03-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.

  17. Corrected Confidence Bands for Functional Data Using Principal Components

    PubMed Central

    Goldsmith, J.; Greven, S.; Crainiceanu, C.

    2014-01-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003

  18. SHELFS: A Proactive Method for Managing Safety Issues

    DTIC Science & Technology

    2001-01-01

    grounded theory of human cognition: the cultural -historical theory , of Vygotsky , Luria and Leontev (for a review see Cole, 1996). Recently, several authors...with the other process components. We elaborated the model on the base of the cultural - historical approach (Cole, 1996) and their recent version known...as distributed cognition theory (Norman, 1993) and used the SHEL model as a conceptual framework for developing the method and the tools, Paper

  19. Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling.

    PubMed

    Chavali, Arvind K; Gianchandani, Erwin P; Tung, Kenneth S; Lawrence, Michael B; Peirce, Shayn M; Papin, Jason A

    2008-12-01

    The immune system is comprised of numerous components that interact with one another to give rise to phenotypic behaviors that are sometimes unexpected. Agent-based modeling (ABM) and cellular automata (CA) belong to a class of discrete mathematical approaches in which autonomous entities detect local information and act over time according to logical rules. The power of this approach lies in the emergence of behavior that arises from interactions between agents, which would otherwise be impossible to know a priori. Recent work exploring the immune system with ABM and CA has revealed novel insights into immunological processes. Here, we summarize these applications to immunology and, particularly, how ABM can help formulate hypotheses that might drive further experimental investigations of disease mechanisms.

  20. Treating adult survivors of childhood emotional abuse and neglect: A new framework.

    PubMed

    Grossman, Frances K; Spinazzola, Joseph; Zucker, Marla; Hopper, Elizabeth

    2017-01-01

    This article provides the outline of a new framework for treating adult survivors of childhood emotional abuse and neglect. Component-based psychotherapy (CBP) is an evidence-informed model that bridges, synthesizes, and expands upon several existing schools, or theories, of treatment for adult survivors of traumatic stress. These include approaches to therapy that stem from more classic traditions in psychology, such as psychoanalysis, to more modern approaches including those informed by feminist thought. Moreover, CBP places particular emphasis on integration of key concepts from evidence-based treatment models developed in the past few decades predicated upon thinking and research on the effects of traumatic stress and processes of recovery for survivors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Methodology to develop crash modification functions for road safety treatments with fully specified and hierarchical models.

    PubMed

    Chen, Yongsheng; Persaud, Bhagwant

    2014-09-01

    Crash modification factors (CMFs) for road safety treatments are developed as multiplicative factors that are used to reflect the expected changes in safety performance associated with changes in highway design and/or the traffic control features. However, current CMFs have methodological drawbacks. For example, variability with application circumstance is not well understood, and, as important, correlation is not addressed when several CMFs are applied multiplicatively. These issues can be addressed by developing safety performance functions (SPFs) with components of crash modification functions (CM-Functions), an approach that includes all CMF related variables, along with others, while capturing quantitative and other effects of factors and accounting for cross-factor correlations. CM-Functions can capture the safety impact of factors through a continuous and quantitative approach, avoiding the problematic categorical analysis that is often used to capture CMF variability. There are two formulations to develop such SPFs with CM-Function components - fully specified models and hierarchical models. Based on sample datasets from two Canadian cities, both approaches are investigated in this paper. While both model formulations yielded promising results and reasonable CM-Functions, the hierarchical model was found to be more suitable in retaining homogeneity of first-level SPFs, while addressing CM-Functions in sub-level modeling. In addition, hierarchical models better capture the correlations between different impact factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A Raster Based Approach To Solar Pressure Modeling

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    The impact of photons upon a spacecraft introduces small forces and moments. The magnitude and direction of the forces depend on the material properties of the spacecraft components being illuminated. Which components are being lit depends on the orientation of the craft with respect to the Sun as well as the gimbal angles for any significant moving external parts (solar arrays, typically). Some components may shield others from the Sun.To determine solar pressure in the presence overlapping components, a 3D model can be used to determine which components are illuminated. A view (image) of the model as seen from the Sun shows the only contributors to solar pressure. This image can be decomposed into pixels, each of which can be treated as a non-overlapping flat plate as far as solar pressure calculations are concerned. The sums of the pressures and moments on these plates approximate the solar pressure and moments on the entire vehicle.The image rasterization technique can also be used to compute other spacecraft attributes that are dependent on attitude and geometry, including solar array power generation capability and free molecular flow drag.

  3. Multi-Component Molecular-Level Body Composition Reference Methods: Evolving Concepts and Future Directions

    PubMed Central

    Heymsfield, Steven B.; Ebbeling, Cara B.; Zheng, Jolene; Pietrobelli, Angelo; Strauss, Boyd J.; Silva, Analiza M.; Ludwig, David S.

    2015-01-01

    Excess adiposity is the main phenotypic feature that defines human obesity and that plays a pathophysiological role in most chronic diseases. Measuring the amount of fat mass present is thus a central aspect of studying obesity at the individual and population levels. Nevertheless, a consensus is lacking among investigators on a single accepted “reference” approach for quantifying fat mass in vivo. While the research community generally relies on the multicomponent body-volume class of “reference” models for quantifying fat mass, no definable guide discerns among different applied equations for partitioning the four (fat, water, protein, and mineral mass) or more quantified components, standardizes “adjustment” or measurement system approaches for model-required labeled water dilution volumes and bone mineral mass estimates, or firmly establishes the body temperature at which model physical properties are assumed. The resulting differing reference strategies for quantifying body composition in vivo leads to small but under some circumstances important differences in the amount of measured body fat. Recent technological advances highlight opportunities to expand model applications to new subject groups and measured components such as total body protein. The current report reviews the historical evolution of multicomponent body volume-based methods in the context of prevailing uncertainties and future potential. PMID:25645009

  4. System principles, mathematical models and methods to ensure high reliability of safety systems

    NASA Astrophysics Data System (ADS)

    Zaslavskyi, V.

    2017-04-01

    Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.

  5. A systems approach to the physiology of weightlessness

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Leonard, Joel I.; Rummel, John A.; Leach, Carolyn S.

    1991-01-01

    A general systems approach to conducting and analyzing research on the human adaptation to weightlessness is presented. The research is aimed at clarifying the role that each of the major components of the human system plays following the transition to and from space. The approach utilizes a variety of mathematical models in order to pose and test alternative hypotheses concerned with the adaptation process. Certain aspects of the problem of fluid and electrolyte shifts in weightlessnes are considered, and an integrated hypothesis based on numerical simulation studies and experimental data is presented.

  6. A component-centered meta-analysis of family-based prevention programs for adolescent substance use.

    PubMed

    Van Ryzin, Mark J; Roseth, Cary J; Fosco, Gregory M; Lee, You-Kyung; Chen, I-Chien

    2016-04-01

    Although research has documented the positive effects of family-based prevention programs, the field lacks specific information regarding why these programs are effective. The current study summarized the effects of family-based programs on adolescent substance use using a component-based approach to meta-analysis in which we decomposed programs into a set of key topics or components that were specifically addressed by program curricula (e.g., parental monitoring/behavior management,problem solving, positive family relations, etc.). Components were coded according to the amount of time spent on program services that targeted youth, parents, and the whole family; we also coded effect sizes across studies for each substance-related outcome. Given the nested nature of the data, we used hierarchical linear modeling to link program components (Level 2) with effect sizes (Level 1). The overall effect size across programs was .31, which did not differ by type of substance. Youth-focused components designed to encourage more positive family relationships and a positive orientation toward the future emerged as key factors predicting larger than average effect sizes. Our results suggest that, within the universe of family-based prevention, where components such as parental monitoring/behavior management are almost universal, adding or expanding certain youth-focused components may be able to enhance program efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  8. An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 2-Hazard Modeling.

    PubMed

    Blanton, Brian; Dresback, Kendra; Colle, Brian; Kolar, Randy; Vergara, Humberto; Hong, Yang; Leonardo, Nicholas; Davidson, Rachel; Nozick, Linda; Wachtendorf, Tricia

    2018-04-25

    Hurricane track and intensity can change rapidly in unexpected ways, thus making predictions of hurricanes and related hazards uncertain. This inherent uncertainty often translates into suboptimal decision-making outcomes, such as unnecessary evacuation. Representing this uncertainty is thus critical in evacuation planning and related activities. We describe a physics-based hazard modeling approach that (1) dynamically accounts for the physical interactions among hazard components and (2) captures hurricane evolution uncertainty using an ensemble method. This loosely coupled model system provides a framework for probabilistic water inundation and wind speed levels for a new, risk-based approach to evacuation modeling, described in a companion article in this issue. It combines the Weather Research and Forecasting (WRF) meteorological model, the Coupled Routing and Excess STorage (CREST) hydrologic model, and the ADvanced CIRCulation (ADCIRC) storm surge, tide, and wind-wave model to compute inundation levels and wind speeds for an ensemble of hurricane predictions. Perturbations to WRF's initial and boundary conditions and different model physics/parameterizations generate an ensemble of storm solutions, which are then used to drive the coupled hydrologic + hydrodynamic models. Hurricane Isabel (2003) is used as a case study to illustrate the ensemble-based approach. The inundation, river runoff, and wind hazard results are strongly dependent on the accuracy of the mesoscale meteorological simulations, which improves with decreasing lead time to hurricane landfall. The ensemble envelope brackets the observed behavior while providing "best-case" and "worst-case" scenarios for the subsequent risk-based evacuation model. © 2018 Society for Risk Analysis.

  9. Alignment-Based Prediction of Sites of Metabolism.

    PubMed

    de Bruyn Kops, Christina; Friedrich, Nils-Ole; Kirchmair, Johannes

    2017-06-26

    Prediction of metabolically labile atom positions in a molecule (sites of metabolism) is a key component of the simulation of xenobiotic metabolism as a whole, providing crucial information for the development of safe and effective drugs. In 2008, an exploratory study was published in which sites of metabolism were derived based on molecular shape- and chemical feature-based alignment to a molecule whose site of metabolism (SoM) had been determined by experiments. We present a detailed analysis of the breadth of applicability of alignment-based SoM prediction, including transfer of the approach from a structure- to ligand-based method and extension of the applicability of the models from cytochrome P450 2C9 to all cytochrome P450 isozymes involved in drug metabolism. We evaluate the effect of molecular similarity of the query and reference molecules on the ability of this approach to accurately predict SoMs. In addition, we combine the alignment-based method with a leading chemical reactivity model to take reactivity into account. The combined model yielded superior performance in comparison to the alignment-based approach and the reactivity models with an average area under the receiver operating characteristic curve of 0.85 in cross-validation experiments. In particular, early enrichment was improved, as evidenced by higher BEDROC scores (mean BEDROC = 0.59 for α = 20.0, mean BEDROC = 0.73 for α = 80.5).

  10. Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error

    PubMed Central

    Hwang, Heungsun; Takane, Yoshio; Jung, Kwanghee

    2017-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling (SEM), where latent variables are approximated by weighted composites of indicators. It has no formal mechanism to incorporate errors in indicators, which in turn renders components prone to the errors as well. We propose to extend GSCA to account for errors in indicators explicitly. This extension, called GSCAM, considers both common and unique parts of indicators, as postulated in common factor analysis, and estimates a weighted composite of indicators with their unique parts removed. Adding such unique parts or uniqueness terms serves to account for measurement errors in indicators in a manner similar to common factor analysis. Simulation studies are conducted to compare parameter recovery of GSCAM and existing methods. These methods are also applied to fit a substantively well-established model to real data. PMID:29270146

  11. In silico model-based inference: a contemporary approach for hypothesis testing in network biology

    PubMed Central

    Klinke, David J.

    2014-01-01

    Inductive inference plays a central role in the study of biological systems where one aims to increase their understanding of the system by reasoning backwards from uncertain observations to identify causal relationships among components of the system. These causal relationships are postulated from prior knowledge as a hypothesis or simply a model. Experiments are designed to test the model. Inferential statistics are used to establish a level of confidence in how well our postulated model explains the acquired data. This iterative process, commonly referred to as the scientific method, either improves our confidence in a model or suggests that we revisit our prior knowledge to develop a new model. Advances in technology impact how we use prior knowledge and data to formulate models of biological networks and how we observe cellular behavior. However, the approach for model-based inference has remained largely unchanged since Fisher, Neyman and Pearson developed the ideas in the early 1900’s that gave rise to what is now known as classical statistical hypothesis (model) testing. Here, I will summarize conventional methods for model-based inference and suggest a contemporary approach to aid in our quest to discover how cells dynamically interpret and transmit information for therapeutic aims that integrates ideas drawn from high performance computing, Bayesian statistics, and chemical kinetics. PMID:25139179

  12. In silico model-based inference: a contemporary approach for hypothesis testing in network biology.

    PubMed

    Klinke, David J

    2014-01-01

    Inductive inference plays a central role in the study of biological systems where one aims to increase their understanding of the system by reasoning backwards from uncertain observations to identify causal relationships among components of the system. These causal relationships are postulated from prior knowledge as a hypothesis or simply a model. Experiments are designed to test the model. Inferential statistics are used to establish a level of confidence in how well our postulated model explains the acquired data. This iterative process, commonly referred to as the scientific method, either improves our confidence in a model or suggests that we revisit our prior knowledge to develop a new model. Advances in technology impact how we use prior knowledge and data to formulate models of biological networks and how we observe cellular behavior. However, the approach for model-based inference has remained largely unchanged since Fisher, Neyman and Pearson developed the ideas in the early 1900s that gave rise to what is now known as classical statistical hypothesis (model) testing. Here, I will summarize conventional methods for model-based inference and suggest a contemporary approach to aid in our quest to discover how cells dynamically interpret and transmit information for therapeutic aims that integrates ideas drawn from high performance computing, Bayesian statistics, and chemical kinetics. © 2014 American Institute of Chemical Engineers.

  13. Mental energy: Assessing the motivation dimension.

    PubMed

    Barbuto, John E

    2006-07-01

    Content-based theories of motivation may best uti lize the meta-theory of work motivation. Process-based theories may benefit most from adopting Locke and Latham's goal-setting approaches and measures. Decision-making theories should utilize the measurement approach operationalized by Ilgen et al. Sustained effort theories should utilize similar approaches to those used in numerous studies of intrinsic motivation, but the measurement of which is typically observational or attitudinal. This paper explored the implications of the four approaches to studying motivation on the newly estab ished model of mental energy. The approach taken for examining motivation informs the measurement of mental energy. Specific recommendations for each approach were developed and provided. As a result of these efforts, it will now be possible to diagnose, measure, and experimentally test for changes in human motivation, which is one of the three major components of mental energy.

  14. Harvesting implementation for the GI-cat distributed catalog

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico; Papeschi, Fabrizio; Bigagli, Lorenzo; Mazzetti, Paolo

    2010-05-01

    GI-cat framework implements a distributed catalog service supporting different international standards and interoperability arrangements in use by the geoscientific community. The distribution functionality in conjunction with the mediation functionality allows to seamlessly query remote heterogeneous data sources, including OGC Web Services - e.e. OGC CSW, WCS, WFS and WMS, community standards such as UNIDATA THREDDS/OPeNDAP, SeaDataNet CDI (Common Data Index), GBIF (Global Biodiversity Information Facility) services and OpenSearch engines. In the GI-cat modular architecture a distributor component carry out the distribution functionality by query delegation to the mediator components (one for each different data source). Each of these mediator components is able to query a specific data source and convert back the results by mapping of the foreign data model to the GI-cat internal one, based on ISO 19139. In order to cope with deployment scenarios in which local data is expected, an harvesting approach has been experimented. The new strategy comes in addition to the consolidated distributed approach, allowing the user to switch between a remote and a local search at will for each federated resource; this extends GI-cat configuration possibilities. The harvesting strategy is designed in GI-cat by the use at the core of a local cache component, implemented as a native XML database and based on eXist. The different heterogeneous sources are queried for the bulk of available data; this data is then injected into the cache component after being converted to the GI-cat data model. The query and conversion steps are performed by the mediator components that were are part of the GI-cat framework. Afterward each new query can be exercised against local data that have been stored in the cache component. Considering both advantages and shortcomings that affect harvesting and query distribution approaches, it comes out that a user driven tuning is required to take the best of them. This is often related to the specific user scenarios to be implemented. GI-cat proved to be a flexible framework to address user need. The GI-cat configurator tool was updated to make such a tuning possible: each data source can be configured to enable either harvesting or query distribution approaches; in the former case an appropriate harvesting interval can be set.

  15. Linking definitions, mechanisms, and modeling of drought-induced tree death.

    PubMed

    Anderegg, William R L; Berry, Joseph A; Field, Christopher B

    2012-12-01

    Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Methodological challenges to multivariate syndromic surveillance: a case study using Swiss animal health data.

    PubMed

    Vial, Flavie; Wei, Wei; Held, Leonhard

    2016-12-20

    In an era of ubiquitous electronic collection of animal health data, multivariate surveillance systems (which concurrently monitor several data streams) should have a greater probability of detecting disease events than univariate systems. However, despite their limitations, univariate aberration detection algorithms are used in most active syndromic surveillance (SyS) systems because of their ease of application and interpretation. On the other hand, a stochastic modelling-based approach to multivariate surveillance offers more flexibility, allowing for the retention of historical outbreaks, for overdispersion and for non-stationarity. While such methods are not new, they are yet to be applied to animal health surveillance data. We applied an example of such stochastic model, Held and colleagues' two-component model, to two multivariate animal health datasets from Switzerland. In our first application, multivariate time series of the number of laboratories test requests were derived from Swiss animal diagnostic laboratories. We compare the performance of the two-component model to parallel monitoring using an improved Farrington algorithm and found both methods yield a satisfactorily low false alarm rate. However, the calibration test of the two-component model on the one-step ahead predictions proved satisfactory, making such an approach suitable for outbreak prediction. In our second application, the two-component model was applied to the multivariate time series of the number of cattle abortions and the number of test requests for bovine viral diarrhea (a disease that often results in abortions). We found that there is a two days lagged effect from the number of abortions to the number of test requests. We further compared the joint modelling and univariate modelling of the number of laboratory test requests time series. The joint modelling approach showed evidence of superiority in terms of forecasting abilities. Stochastic modelling approaches offer the potential to address more realistic surveillance scenarios through, for example, the inclusion of times series specific parameters, or of covariates known to have an impact on syndrome counts. Nevertheless, many methodological challenges to multivariate surveillance of animal SyS data still remain. Deciding on the amount of corroboration among data streams that is required to escalate into an alert is not a trivial task given the sparse data on the events under consideration (e.g. disease outbreaks).

  17. Conceptual design and analysis of a dynamic scale model of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.

    1994-01-01

    This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.

  18. Protein subcellular location pattern classification in cellular images using latent discriminative models.

    PubMed

    Li, Jieyue; Xiong, Liang; Schneider, Jeff; Murphy, Robert F

    2012-06-15

    Knowledge of the subcellular location of a protein is crucial for understanding its functions. The subcellular pattern of a protein is typically represented as the set of cellular components in which it is located, and an important task is to determine this set from microscope images. In this article, we address this classification problem using confocal immunofluorescence images from the Human Protein Atlas (HPA) project. The HPA contains images of cells stained for many proteins; each is also stained for three reference components, but there are many other components that are invisible. Given one such cell, the task is to classify the pattern type of the stained protein. We first randomly select local image regions within the cells, and then extract various carefully designed features from these regions. This region-based approach enables us to explicitly study the relationship between proteins and different cell components, as well as the interactions between these components. To achieve these two goals, we propose two discriminative models that extend logistic regression with structured latent variables. The first model allows the same protein pattern class to be expressed differently according to the underlying components in different regions. The second model further captures the spatial dependencies between the components within the same cell so that we can better infer these components. To learn these models, we propose a fast approximate algorithm for inference, and then use gradient-based methods to maximize the data likelihood. In the experiments, we show that the proposed models help improve the classification accuracies on synthetic data and real cellular images. The best overall accuracy we report in this article for classifying 942 proteins into 13 classes of patterns is about 84.6%, which to our knowledge is the best so far. In addition, the dependencies learned are consistent with prior knowledge of cell organization. http://murphylab.web.cmu.edu/software/.

  19. A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves

    PubMed Central

    Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian

    2016-01-01

    Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system—for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave. PMID:27527183

  20. Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens

    DTIC Science & Technology

    2013-10-01

    gradient components in the axial ( F22 ) and radial (F11) directions. One can observe the very large deformation (approaching 800%) and 5 Figure 5...and (bottom left) show deformation gradient in axial ( F22 ) and radial (F11) directions. (bottom right) normalized force versus displacement curve for

  1. Leadership, Partnerships, and Organizational Development: Exploring Components of Effectiveness in Three Full-Service Community Schools

    ERIC Educational Resources Information Center

    Sanders, Mavis

    2016-01-01

    Full-service community schools are viewed as an approach to improve educational opportunities and outcomes for underserved student populations. The realization of these goals, however, is not guaranteed. According to Richardson's (2009) research-based model of highly effective community schools (HECS), the effectiveness of full-service community…

  2. Integration of Component Knowledge in Penalized-Likelihood Reconstruction with Morphological and Spectral Uncertainties.

    PubMed

    Stayman, J Webster; Tilley, Steven; Siewerdsen, Jeffrey H

    2014-01-01

    Previous investigations [1-3] have demonstrated that integrating specific knowledge of the structure and composition of components like surgical implants, devices, and tools into a model-based reconstruction framework can improve image quality and allow for potential exposure reductions in CT. Using device knowledge in practice is complicated by uncertainties in the exact shape of components and their particular material composition. Such unknowns in the morphology and attenuation properties lead to errors in the forward model that limit the utility of component integration. In this work, a methodology is presented to accommodate both uncertainties in shape as well as unknown energy-dependent attenuation properties of the surgical devices. This work leverages the so-called known-component reconstruction (KCR) framework [1] with a generalized deformable registration operator and modifications to accommodate a spectral transfer function in the component model. Moreover, since this framework decomposes the object into separate background anatomy and "known" component factors, a mixed fidelity forward model can be adopted so that measurements associated with projections through the surgical devices can be modeled with much greater accuracy. A deformable KCR (dKCR) approach using the mixed fidelity model is introduced and applied to a flexible wire component with unknown structure and composition. Image quality advantages of dKCR over traditional reconstruction methods are illustrated in cone-beam CT (CBCT) data acquired on a testbench emulating a 3D-guided needle biopsy procedure - i.e., a deformable component (needle) with strong energy-dependent attenuation characteristics (steel) within a complex soft-tissue background.

  3. Systematic Interpolation Method Predicts Antibody Monomer-Dimer Separation by Gradient Elution Chromatography at High Protein Loads.

    PubMed

    Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio

    2018-05-29

    A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.

  4. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  5. Psychotherapy-based supervision models in an emerging competency-based era: a commentary.

    PubMed

    Falender, Carol A; Shafranske, Edward P

    2010-03-01

    As psychology engages in a cultural shift to competency-based education and training supervision practice is being transformed to the use of competency frames and the application of benchmark competencies. In this issue, psychotherapy-based models of supervision are conceptualized in a competency framework. This paper reflects on the translation of key components of each psychotherapy-based supervision approach in terms of foundational and functional competencies articulated in the Competencies Benchmarks (Fouad et al., 2009). The commentary concludes with a discussion of implications for supervision practice and identifies directions for future articulation and development, including evidence-based psychotherapy supervision. PsycINFO Database Record (c) 2010 APA, all rights reserved

  6. Foreign Object Damage Identification in Turbine Engines

    NASA Technical Reports Server (NTRS)

    Strack, William; Zhang, Desheng; Turso, James; Pavlik, William; Lopez, Isaac

    2005-01-01

    This report summarizes the collective work of a five-person team from different organizations examining the problem of detecting foreign object damage (FOD) events in turbofan engines from gas path thermodynamic and bearing accelerometer sensors, and determining the severity of damage to each component (diagnosis). Several detection and diagnostic approaches were investigated and a software tool (FODID) was developed to assist researchers detect/diagnose FOD events. These approaches include (1) fan efficiency deviation computed from upstream and downstream temperature/ pressure measurements, (2) gas path weighted least squares estimation of component health parameter deficiencies, (3) Kalman filter estimation of component health parameters, and (4) use of structural vibration signal processing to detect both large and small FOD events. The last three of these approaches require a significant amount of computation in conjunction with a physics-based analytic model of the underlying phenomenon the NPSS thermodynamic cycle code for approaches 1 to 3 and the DyRoBeS reduced-order rotor dynamics code for approach 4. A potential application of the FODID software tool, in addition to its detection/diagnosis role, is using its sensitivity results to help identify the best types of sensors and their optimum locations within the gas path, and similarly for bearing accelerometers.

  7. Combination of microscopic model and VoF-multiphase approach for numerical simulation of nodular cast iron solidification

    NASA Astrophysics Data System (ADS)

    Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.

    2015-06-01

    The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.

  8. Life Extending Control. [mechanical fatigue in reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed. Based on cyclic life prediction, an approach to life extending control, called the Life Management Approach, is proposed. A second approach, also based on cyclic life prediction, called the implicit approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  9. Life extending control: A concept paper

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed.Base on cyclic life prediction an approach to Life Extending Control, called the Life Management Approach is proposed. A second approach, also based on cyclic life prediction, called the Implicit Approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  10. The Development of Health for Hearts United: A Longitudinal Church-based Intervention to Reduce Cardiovascular Risk in Mid-life and Older African Americans

    PubMed Central

    Ralston, Penny A.; Young-Clark, Iris; Coccia, Catherine

    2017-01-01

    This article describes Health for Hearts United, a longitudinal church-based intervention to reduce cardiovascular disease (CVD) risk in mid-life and older African Americans. Using community-based participatory research (CBPR) approaches and undergirded by both the Socio-ecological Theory and the Transtheoretical Model of Behavior Change, the 18-month intervention was developed in six north Florida churches, randomly assigned as treatment or comparison. The intervention was framed around three conceptual components: awareness building (individual knowledge development); clinical learning (individual and small group educational sessions); and efficacy development (recognition and sustainability). We identified three lessons learned: providing consistency in programming even during participant absences; providing structured activities to assist health ministries in sustainability; and addressing changes at the church level. Recommendations include church-based approaches that reflect multi-level CBPR and the collaborative faith model. PMID:28115818

  11. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange

    USGS Publications Warehouse

    Harvey, Judson W.; Wagner, Brian J.; Bencala, Kenneth E.

    1996-01-01

    Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reachscale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream tracer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL s−1 m−1), determined by hydrometric methods, was largest when stream base flow was low (10 L s−1); hyporheic exchange persisted when base flow was 10-fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward characterizing only a fast component of hyporheic exchange. Stream tracer models with multiple rate constants to consider both fast exchange with streambed gravel and slower exchange with deeper alluvium appear to be warranted.

  12. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2015-03-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  13. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2014-11-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  14. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: object-oriented and acausal approach.

    PubMed

    Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek

    2014-11-01

    This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Design of a component-based integrated environmental modeling framework

    EPA Science Inventory

    Integrated environmental modeling (IEM) includes interdependent science-based components (e.g., models, databases, viewers, assessment protocols) that comprise an appropriate software modeling system. The science-based components are responsible for consuming and producing inform...

  16. Orbital component extraction by time-variant sinusoidal modeling.

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-04-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on the (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic makes it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. Here, we circumvent this drawback by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach has been proven useful to characterize audio signals (music and speech), which are non-stationary in nature (Zivanovic and Schoukens, 2010, 2012). Paleoclimate proxy signals and audio signals have in nature similar dynamics; the only difference is the frequency relationship between the different components. A harmonic frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, the latter difference is irrelevant for the problem at hand. Using a sliding window approach, the model captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretation, whereas the latter are estimated by means of linear least-squares. As an output, the model provides the orbital component waveform, either in the depth or time domain. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns can be used to reconstruct changes in accumulation rate, whereas amplitude modulation can be used to reconstruct e.g. eccentricity-modulated precession. The time-variant sinusoidal model is applied to well-established Pleistocene benthic isotope records to evaluate its performance. Zivanovic M. and Schoukens J. (2010) On The Polynomial Approximation for Time-Variant Harmonic Signal Modeling. IEEE Transactions On Audio, Speech, and Language Processing vol. 19, no. 3, pp. 458-467. Doi: 10.1109/TASL.2010.2049673. Zivanovic M. and Schoukens J. (2012) Single and Piecewise Polynomials for Modeling of Pitched Sounds. IEEE Transactions On Audio, Speech, and Language Processing vol. 20, no. 4, pp. 1270-1281. Doi: 10.1109/TASL.2011.2174228.

  17. Experimental issues related to frequency response function measurements for frequency-based substructuring

    NASA Astrophysics Data System (ADS)

    Nicgorski, Dana; Avitabile, Peter

    2010-07-01

    Frequency-based substructuring is a very popular approach for the generation of system models from component measured data. Analytically the approach has been shown to produce accurate results. However, implementation with actual test data can cause difficulties and cause problems with the system response prediction. In order to produce good results, extreme care is needed in the measurement of the drive point and transfer impedances of the structure as well as observe all the conditions for a linear time invariant system. Several studies have been conducted to show the sensitivity of the technique to small variations that often occur during typical testing of structures. These variations have been observed in actual tested configurations and have been substantiated with analytical models to replicate the problems typically encountered. The use of analytically simulated issues helps to clearly see the effects of typical measurement difficulties often observed in test data. This paper presents some of these common problems observed and provides guidance and recommendations for data to be used for this modeling approach.

  18. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    PubMed

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  19. Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension.

    PubMed

    Li, Chen; Nagasaki, Masao; Ueno, Kazuko; Miyano, Satoru

    2009-04-27

    Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC) fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe) as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules - Rule I and Rule II - to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in 1986. Our simulation results suggest that: Rule I that cannot be applied with qualitative based model checking, is more reasonable than Rule II owing to the high coverage of predicted fate patterns (except for the genotype of lin-15ko; lin-12ko double mutants). More insights are also suggested. The quantitative simulation-based model checking approach is a useful means to provide us valuable biological insights and better understandings of biological systems and observation data that may be hard to capture with the qualitative one.

  20. Full waveform inversion using a decomposed single frequency component from a spectrogram

    NASA Astrophysics Data System (ADS)

    Ha, Jiho; Kim, Seongpil; Koo, Namhyung; Kim, Young-Ju; Woo, Nam-Sub; Han, Sang-Mok; Chung, Wookeen; Shin, Sungryul; Shin, Changsoo; Lee, Jaejoon

    2018-06-01

    Although many full waveform inversion methods have been developed to construct velocity models of subsurface, various approaches have been presented to obtain an inversion result with long-wavelength features even though seismic data lacking low-frequency components were used. In this study, a new full waveform inversion algorithm was proposed to recover a long-wavelength velocity model that reflects the inherent characteristics of each frequency component of seismic data using a single-frequency component decomposed from the spectrogram. We utilized the wavelet transform method to obtain the spectrogram, and the decomposed signal from the spectrogram was used as transformed data. The Gauss-Newton method with the diagonal elements of an approximate Hessian matrix was used to update the model parameters at each iteration. Based on the results of time-frequency analysis in the spectrogram, numerical tests with some decomposed frequency components were performed using a modified SEG/EAGE salt dome (A-A‧) line to demonstrate the feasibility of the proposed inversion algorithm. This demonstrated that a reasonable inverted velocity model with long-wavelength structures can be obtained using a single frequency component. It was also confirmed that when strong noise occurs in part of the frequency band, it is feasible to obtain a long-wavelength velocity model from the noise data with a frequency component that is less affected by the noise. Finally, it was confirmed that the results obtained from the spectrogram inversion can be used as an initial velocity model in conventional inversion methods.

  1. Predicting the Magnetic Properties of ICMEs: A Pragmatic View

    NASA Astrophysics Data System (ADS)

    Riley, P.; Linker, J.; Ben-Nun, M.; Torok, T.; Ulrich, R. K.; Russell, C. T.; Lai, H.; de Koning, C. A.; Pizzo, V. J.; Liu, Y.; Hoeksema, J. T.

    2017-12-01

    The southward component of the interplanetary magnetic field plays a crucial role in being able to successfully predict space weather phenomena. Yet, thus far, it has proven extremely difficult to forecast with any degree of accuracy. In this presentation, we describe an empirically-based modeling framework for estimating Bz values during the passage of interplanetary coronal mass ejections (ICMEs). The model includes: (1) an empirically-based estimate of the magnetic properties of the flux rope in the low corona (including helicity and field strength); (2) an empirically-based estimate of the dynamic properties of the flux rope in the high corona (including direction, speed, and mass); and (3) a physics-based estimate of the evolution of the flux rope during its passage to 1 AU driven by the output from (1) and (2). We compare model output with observations for a selection of events to estimate the accuracy of this approach. Importantly, we pay specific attention to the uncertainties introduced by the components within the framework, separating intrinsic limitations from those that can be improved upon, either by better observations or more sophisticated modeling. Our analysis suggests that current observations/modeling are insufficient for this empirically-based framework to provide reliable and actionable prediction of the magnetic properties of ICMEs. We suggest several paths that may lead to better forecasts.

  2. A stochastic bioenergetics model based approach to translating large river flow and temperature in to fish population responses: The pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Dey, Rima; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.

    2015-01-01

    In managing fish populations, especially at-risk species, realistic mathematical models are needed to help predict population response to potential management actions in the context of environmental conditions and changing climate while effectively incorporating the stochastic nature of real world conditions. We provide a key component of such a model for the endangered pallid sturgeon (Scaphirhynchus albus) in the form of an individual-based bioenergetics model influenced not only by temperature but also by flow. This component is based on modification of a known individual-based bioenergetics model through incorporation of: the observed ontogenetic shift in pallid sturgeon diet from marcroinvertebrates to fish; the energetic costs of swimming under flowing-water conditions; and stochasticity. We provide an assessment of how differences in environmental conditions could potentially alter pallid sturgeon growth estimates, using observed temperature and velocity from channelized portions of the Lower Missouri River mainstem. We do this using separate relationships between the proportion of maximum consumption and fork length and swimming cost standard error estimates for fish captured above and below the Kansas River in the Lower Missouri River. Critical to our matching observed growth in the field with predicted growth based on observed environmental conditions was a two-step shift in diet from macroinvertebrates to fish.

  3. Multi-timescale data assimilation for atmosphere–ocean state estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiger, Nathan; Hakim, Gregory

    2016-06-24

    Paleoclimate proxy data span seasonal to millennial timescales, and Earth's climate system has both high- and low-frequency components. Yet it is currently unclear how best to incorporate multiple timescales of proxy data into a single reconstruction framework and to also capture both high- and low-frequency components of reconstructed variables. Here we present a data assimilation approach that can explicitly incorporate proxy data at arbitrary timescales. The principal advantage of using such an approach is that it allows much more proxy data to inform a climate reconstruction, though there can be additional benefits. Through a series of offline data-assimilation-based pseudoproxy experiments,more » we find that atmosphere–ocean states are most skillfully reconstructed by incorporating proxies across multiple timescales compared to using proxies at short (annual) or long (~ decadal) timescales alone. Additionally, reconstructions that incorporate long-timescale pseudoproxies improve the low-frequency components of the reconstructions relative to using only high-resolution pseudoproxies. We argue that this is because time averaging high-resolution observations improves their covariance relationship with the slowly varying components of the coupled-climate system, which the data assimilation algorithm can exploit. These results are consistent across the climate models considered, despite the model variables having very different spectral characteristics. Furthermore, our results also suggest that it may be possible to reconstruct features of the oceanic meridional overturning circulation based on atmospheric surface temperature proxies, though here we find such reconstructions lack spectral power over a broad range of frequencies.« less

  4. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  5. System cost/performance analysis (study 2.3). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Kazangey, T.

    1973-01-01

    The relationships between performance, safety, cost, and schedule parameters were identified and quantified in support of an overall effort to generate program models and methodology that provide insight into a total space vehicle program. A specific space vehicle system, the attitude control system (ACS), was used, and a modeling methodology was selected that develops a consistent set of quantitative relationships among performance, safety, cost, and schedule, based on the characteristics of the components utilized in candidate mechanisms. These descriptive equations were developed for a three-axis, earth-pointing, mass expulsion ACS. A data base describing typical candidate ACS components was implemented, along with a computer program to perform sample calculations. This approach, implemented on a computer, is capable of determining the effect of a change in functional requirements to the ACS mechanization and the resulting cost and schedule. By a simple extension of this modeling methodology to the other systems in a space vehicle, a complete space vehicle model can be developed. Study results and recommendations are presented.

  6. Framework for a clinical information system.

    PubMed

    Van de Velde, R

    2000-01-01

    The current status of our work towards the design and implementation of a reference architecture for a Clinical Information System is presented. This architecture has been developed and implemented based on components following a strong underlying conceptual and technological model. Common Object Request Broker and n-tier technology featuring centralised and departmental clinical information systems as the back-end store for all clinical data are used. Servers located in the 'middle' tier apply the clinical (business) model and application rules to communicate with so-called 'thin client' workstations. The main characteristics are the focus on modelling and reuse of both data and business logic as there is a shift away from data and functional modelling towards object modelling. Scalability as well as adaptability to constantly changing requirements via component driven computing are the main reasons for that approach.

  7. Mathematical modeling of fluxgate magnetic gradiometers

    NASA Astrophysics Data System (ADS)

    Milovzorov, D. G.; Yasoveev, V. Kh.

    2017-07-01

    Issues of designing fluxgate magnetic gradiometers are considered. The areas of application of fluxgate magnetic gradiometers are determined. The structure and layout of a two-component fluxgate magnetic gradiometer are presented. It is assumed that the fluxgates are strictly coaxial in the gradiometer body. Elements of the classical approach to the mathematical modeling of the spatial arrangement of solids are considered. The bases of the gradiometer body and their transformations during spatial displacement of the gradiometer are given. The problems of mathematical modeling of gradiometers are formulated, basic mathematical models of a two-component fluxgate gradiometer are developed, and the mathematical models are analyzed. A computer experiment was performed. Difference signals from the gradiometer fluxgates for the vertical and horizontal position of the gradiometer body are shown graphically as functions of the magnitude and direction of the geomagnetic field strength vector.

  8. A new approach to modelling schistosomiasis transmission based on stratified worm burden.

    PubMed

    Gurarie, D; King, C H; Wang, X

    2010-11-01

    Multiple factors affect schistosomiasis transmission in distributed meta-population systems including age, behaviour, and environment. The traditional approach to modelling macroparasite transmission often exploits the 'mean worm burden' (MWB) formulation for human hosts. However, typical worm distribution in humans is overdispersed, and classic models either ignore this characteristic or make ad hoc assumptions about its pattern (e.g., by assuming a negative binomial distribution). Such oversimplifications can give wrong predictions for the impact of control interventions. We propose a new modelling approach to macro-parasite transmission by stratifying human populations according to worm burden, and replacing MWB dynamics with that of 'population strata'. We developed proper calibration procedures for such multi-component systems, based on typical epidemiological and demographic field data, and implemented them using Wolfram Mathematica. Model programming and calibration proved to be straightforward. Our calibrated system provided good agreement with the individual level field data from the Msambweni region of eastern Kenya. The Stratified Worm Burden (SWB) approach offers many advantages, in that it accounts naturally for overdispersion and accommodates other important factors and measures of human infection and demographics. Future work will apply this model and methodology to evaluate innovative control intervention strategies, including expanded drug treatment programmes proposed by the World Health Organization and its partners.

  9. Reducing Spread in Climate Model Projections of a September Ice-Free Arctic

    NASA Technical Reports Server (NTRS)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2013-01-01

    This paper addresses the specter of a September ice-free Arctic in the 21st century using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that large spread in the projected timing of the September ice-free Arctic in 30 CMIP5 models is associated at least as much with different atmospheric model components as with initial conditions. Here we reduce the spread in the timing of an ice-free state using two different approaches for the 30 CMIP5 models: (i) model selection based on the ability to reproduce the observed sea ice climatology and variability since 1979 and (ii) constrained estimation based on the strong and persistent relationship between present and future sea ice conditions. Results from the two approaches show good agreement. Under a high-emission scenario both approaches project that September ice extent will drop to approx. 1.7 million sq km in the mid 2040s and reach the ice-free state (defined as 1 million sq km) in 2054-2058. Under a medium-mitigation scenario, both approaches project a decrease to approx.1.7 million sq km in the early 2060s, followed by a leveling off in the ice extent.

  10. On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid

    NASA Astrophysics Data System (ADS)

    Velarde, P.; Valverde, L.; Maestre, J. M.; Ocampo-Martinez, C.; Bordons, C.

    2017-03-01

    In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.

  11. A Framework for Integrated Component and System Analyses of Instabilities

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Erwin, James; Arunajatesan, Srinivasan; Cattafesta, Lou; Liu, Fei

    2010-01-01

    Instabilities associated with fluid handling and operation in liquid rocket propulsion systems and test facilities usually manifest themselves as structural vibrations or some form of structural damage. While the source of the instability is directly related to the performance of a component such as a turbopump, valve or a flow control element, the associated pressure fluctuations as they propagate through the system have the potential to amplify and resonate with natural modes of the structural elements and components of the system. In this paper, the authors have developed an innovative multi-level approach that involves analysis at the component and systems level. The primary source of the unsteadiness is modeled with a high-fidelity hybrid RANS/LES based CFD methodology that has been previously used to study instabilities in feed systems. This high fidelity approach is used to quantify the instability and understand the physics associated with the instability. System response to the driving instability is determined through a transfer matrix approach wherein the incoming and outgoing pressure and velocity fluctuations are related through a transfer (or transmission) matrix. The coefficients of the transfer matrix for each component (i.e. valve, pipe, orifice etc.) are individually derived from the flow physics associated with the component. A demonstration case representing a test loop/test facility comprised of a network of elements is constructed with the transfer matrix approach and the amplification of modes analyzed as the instability propagates through the test loop.

  12. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification.

    PubMed

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V; Robles, Montserrat; Aparici, F; Martí-Bonmatí, L; García-Gómez, Juan M

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation.

  13. Concept and set-up of an IR-gas sensor construction kit

    NASA Astrophysics Data System (ADS)

    Sieber, Ingo; Perner, Gernot; Gengenbach, Ulrich

    2015-10-01

    The paper presents an approach to a cost-efficient modularly built non-dispersive optical IR-gas sensor (NDIR) based on a construction kit. The modularity of the approach offers several advantages: First of all it allows for an adaptation of the performance of the gas sensor to individual specifications by choosing the suitable modular components. The sensitivity of the sensor e.g. can be altered by selecting a source which emits a favorable wavelength spectrum with respect to the absorption spectrum of the gas to be measured or by tuning the measuring distance (ray path inside the medium to be measured). Furthermore the developed approach is very well suited to be used in teaching. Together with students a construction kit on basis of an optical free space system was developed and partly implemented to be further used as a teaching and training aid for bachelor and master students at our institute. The components of the construction kit are interchangeable and freely fixable on a base plate. The components are classified into five groups: sources, reflectors, detectors, gas feed, and analysis cell. Source, detector, and the positions of the components are fundamental to experiment and test different configurations and beam paths. The reflectors are implemented by an aluminum coated adhesive foil, mounted onto a support structure fabricated by additive manufacturing. This approach allows derivation of the reflecting surface geometry from the optical design tool and generating the 3D-printing files by applying related design rules. The rapid fabrication process and the adjustment of the modules on the base plate allow rapid, almost LEGO®-like, experimental assessment of design ideas. Subject of this paper is modeling, design, and optimization of the reflective optical components, as well as of the optical subsystem. The realization of a sample set-up used as a teaching aid and the optical measurement of the beam path in comparison to the simulation results are shown as well.

  14. Conceptual model for assessing criteria air pollutants in a multipollutant context: A modified adverse outcome pathway approach.

    PubMed

    Buckley, Barbara; Farraj, Aimen

    2015-09-01

    Air pollution consists of a complex mixture of particulate and gaseous components. Individual criteria and other hazardous air pollutants have been linked to adverse respiratory and cardiovascular health outcomes. However, assessing risk of air pollutant mixtures is difficult since components are present in different combinations and concentrations in ambient air. Recent mechanistic studies have limited utility because of the inability to link measured changes to adverse outcomes that are relevant to risk assessment. New approaches are needed to address this challenge. The purpose of this manuscript is to describe a conceptual model, based on the adverse outcome pathway approach, which connects initiating events at the cellular and molecular level to population-wide impacts. This may facilitate hazard assessment of air pollution mixtures. In the case reports presented here, airway hyperresponsiveness and endothelial dysfunction are measurable endpoints that serve to integrate the effects of individual criteria air pollutants found in inhaled mixtures. This approach incorporates information from experimental and observational studies into a sequential series of higher order effects. The proposed model has the potential to facilitate multipollutant risk assessment by providing a framework that can be used to converge the effects of air pollutants in light of common underlying mechanisms. This approach may provide a ready-to-use tool to facilitate evaluation of health effects resulting from exposure to air pollution mixtures. Published by Elsevier Ireland Ltd.

  15. Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation

    PubMed Central

    Wang, Yong

    2015-01-01

    A novel radar imaging approach for non-uniformly rotating targets is proposed in this study. It is assumed that the maneuverability of the non-cooperative target is severe, and the received signal in a range cell can be modeled as multi-component amplitude-modulated and frequency-modulated (AM-FM) signals after motion compensation. Then, the modified version of Chirplet decomposition (MCD) based on the integrated high order ambiguity function (IHAF) is presented for the parameter estimation of AM-FM signals, and the corresponding high quality instantaneous ISAR images can be obtained from the estimated parameters. Compared with the MCD algorithm based on the generalized cubic phase function (GCPF) in the authors’ previous paper, the novel algorithm presented in this paper is more accurate and efficient, and the results with simulated and real data demonstrate the superiority of the proposed method. PMID:25806870

  16. Dynamic linear models using the Kalman filter for early detection and early warning of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Liu, Y.; DeVos, M.; Wimberly, M. C.

    2015-12-01

    Malaria early detection and early warning systems are important tools for public health decision makers in regions where malaria transmission is seasonal and varies from year to year with fluctuations in rainfall and temperature. Here we present a new data-driven dynamic linear model based on the Kalman filter with time-varying coefficients that are used to identify malaria outbreaks as they occur (early detection) and predict the location and timing of future outbreaks (early warning). We fit linear models of malaria incidence with trend and Fourier form seasonal components using three years of weekly malaria case data from 30 districts in the Amhara Region of Ethiopia. We identified past outbreaks by comparing the modeled prediction envelopes with observed case data. Preliminary results demonstrated the potential for improved accuracy and timeliness over commonly-used methods in which thresholds are based on simpler summary statistics of historical data. Other benefits of the dynamic linear modeling approach include robustness to missing data and the ability to fit models with relatively few years of training data. To predict future outbreaks, we started with the early detection model for each district and added a regression component based on satellite-derived environmental predictor variables including precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and land surface temperature (LST) and spectral indices from the Moderate Resolution Imaging Spectroradiometer (MODIS). We included lagged environmental predictors in the regression component of the model, with lags chosen based on cross-correlation of the one-step-ahead forecast errors from the first model. Our results suggest that predictions of future malaria outbreaks can be improved by incorporating lagged environmental predictors.

  17. Semi-blind Bayesian inference of CMB map and power spectrum

    NASA Astrophysics Data System (ADS)

    Vansyngel, Flavien; Wandelt, Benjamin D.; Cardoso, Jean-François; Benabed, Karim

    2016-04-01

    We present a new blind formulation of the cosmic microwave background (CMB) inference problem. The approach relies on a phenomenological model of the multifrequency microwave sky without the need for physical models of the individual components. For all-sky and high resolution data, it unifies parts of the analysis that had previously been treated separately such as component separation and power spectrum inference. We describe an efficient sampling scheme that fully explores the component separation uncertainties on the inferred CMB products such as maps and/or power spectra. External information about individual components can be incorporated as a prior giving a flexible way to progressively and continuously introduce physical component separation from a maximally blind approach. We connect our Bayesian formalism to existing approaches such as Commander, spectral mismatch independent component analysis (SMICA), and internal linear combination (ILC), and discuss possible future extensions.

  18. Development and implementation of a food store-based intervention to improve diet in the Republic of the Marshall Islands.

    PubMed

    Gittelsohn, Joel; Dyckman, William; Tan, May Lynn; Boggs, Malia K; Frick, Kevin D; Alfred, Julie; Winch, Peter J; Haberle, Heather; Palafox, Neal A

    2006-10-01

    Effective approaches for the prevention and reduction of obesity and obesity-related chronic diseases are urgently needed. Food store-centered programs represent one approach that may be both effective and sustainable. The authors developed a food store-based intervention in the Marshall Islands using qualitative and quantitative formative research methods, including a store usage survey (n = 184) and in-depth interviews with large-store managers (n = 13), small-store managers (n = 7), customers (n = 10), and community leaders (n = 4). This process was followed up by development and piloting of specific intervention components and workshops to finalize materials. The final intervention combined mass media (newspaper articles, video, radio announcements) and in-store components (shelf labels, cooking demonstrations, posters, recipe cards) and had high store-owner support and participation. High levels of exposure to the intervention were achieved during the 10-week period of implementation. This model for developing food store-based interventions is applicable to other settings.

  19. ASP-based method for the enumeration of attractors in non-deterministic synchronous and asynchronous multi-valued networks.

    PubMed

    Ben Abdallah, Emna; Folschette, Maxime; Roux, Olivier; Magnin, Morgan

    2017-01-01

    This paper addresses the problem of finding attractors in biological regulatory networks. We focus here on non-deterministic synchronous and asynchronous multi-valued networks, modeled using automata networks (AN). AN is a general and well-suited formalism to study complex interactions between different components (genes, proteins,...). An attractor is a minimal trap domain, that is, a part of the state-transition graph that cannot be escaped. Such structures are terminal components of the dynamics and take the form of steady states (singleton) or complex compositions of cycles (non-singleton). Studying the effect of a disease or a mutation on an organism requires finding the attractors in the model to understand the long-term behaviors. We present a computational logical method based on answer set programming (ASP) to identify all attractors. Performed without any network reduction, the method can be applied on any dynamical semantics. In this paper, we present the two most widespread non-deterministic semantics: the asynchronous and the synchronous updating modes. The logical approach goes through a complete enumeration of the states of the network in order to find the attractors without the necessity to construct the whole state-transition graph. We realize extensive computational experiments which show good performance and fit the expected theoretical results in the literature. The originality of our approach lies on the exhaustive enumeration of all possible (sets of) states verifying the properties of an attractor thanks to the use of ASP. Our method is applied to non-deterministic semantics in two different schemes (asynchronous and synchronous). The merits of our methods are illustrated by applying them to biological examples of various sizes and comparing the results with some existing approaches. It turns out that our approach succeeds to exhaustively enumerate on a desktop computer, in a large model (100 components), all existing attractors up to a given size (20 states). This size is only limited by memory and computation time.

  20. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less

  1. A development framework for semantically interoperable health information systems.

    PubMed

    Lopez, Diego M; Blobel, Bernd G M E

    2009-02-01

    Semantic interoperability is a basic challenge to be met for new generations of distributed, communicating and co-operating health information systems (HIS) enabling shared care and e-Health. Analysis, design, implementation and maintenance of such systems and intrinsic architectures have to follow a unified development methodology. The Generic Component Model (GCM) is used as a framework for modeling any system to evaluate and harmonize state of the art architecture development approaches and standards for health information systems as well as to derive a coherent architecture development framework for sustainable, semantically interoperable HIS and their components. The proposed methodology is based on the Rational Unified Process (RUP), taking advantage of its flexibility to be configured for integrating other architectural approaches such as Service-Oriented Architecture (SOA), Model-Driven Architecture (MDA), ISO 10746, and HL7 Development Framework (HDF). Existing architectural approaches have been analyzed, compared and finally harmonized towards an architecture development framework for advanced health information systems. Starting with the requirements for semantic interoperability derived from paradigm changes for health information systems, and supported in formal software process engineering methods, an appropriate development framework for semantically interoperable HIS has been provided. The usability of the framework has been exemplified in a public health scenario.

  2. Stirling engine - Approach for long-term durability assessment

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Bartolotta, Paul A.; Halford, Gary R.; Freed, Alan D.

    1992-01-01

    The approach employed by NASA Lewis for the long-term durability assessment of the Stirling engine hot-section components is summarized. The approach consists of: preliminary structural assessment; development of a viscoplastic constitutive model to accurately determine material behavior under high-temperature thermomechanical loads; an experimental program to characterize material constants for the viscoplastic constitutive model; finite-element thermal analysis and structural analysis using a viscoplastic constitutive model to obtain stress/strain/temperature at the critical location of the hot-section components for life assessment; and development of a life prediction model applicable for long-term durability assessment at high temperatures. The approach should aid in the provision of long-term structural durability and reliability of Stirling engines.

  3. A statistical investigation of the single-point pdf of velocity and vorticity based on direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Mortazavi, M.; Kollmann, W.; Squires, K.

    1987-01-01

    Vorticity plays a fundamental role in turbulent flows. The dynamics of vorticity in turbulent flows and the effect on single-point closure models were investigated. The approach was to use direct numerical simulations of turbulent flows to investigate the pdf of velocity and vorticity. The preliminary study of homogeneous shear flow has shown that the expectation of the fluctuating pressure gradient, conditioned with a velocity component, is linear in the velocity component, and that the coefficient is independent of velocity and vorticity. In addition, the work shows that the expectation of the pressure gradient, conditioned with a vorticity component, is essentially zero.

  4. Object-oriented approach for gas turbine engine simulation

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  5. Developing Historic Building Information Modelling Guidelines and Procedures for Architectural Heritage in Ireland

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Corns, A.; Cahill, J.; Eliashvili, K.; Chenau, A.; Pybus, C.; Shaw, R.; Devlin, G.; Deevy, A.; Truong-Hong, L.

    2017-08-01

    Cultural heritage researchers have recently begun applying Building Information Modelling (BIM) to historic buildings. The model is comprised of intelligent objects with semantic attributes which represent the elements of a building structure and are organised within a 3D virtual environment. Case studies in Ireland are used to test and develop the suitable systems for (a) data capture/digital surveying/processing (b) developing library of architectural components and (c) mapping these architectural components onto the laser scan or digital survey to relate the intelligent virtual representation of a historic structure (HBIM). While BIM platforms have the potential to create a virtual and intelligent representation of a building, its full exploitation and use is restricted to narrow set of expert users with access to costly hardware, software and skills. The testing of open BIM approaches in particular IFCs and the use of game engine platforms is a fundamental component for developing much wider dissemination. The semantically enriched model can be transferred into a WEB based game engine platform.

  6. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  7. Medical Image Retrieval: A Multimodal Approach

    PubMed Central

    Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning

    2014-01-01

    Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389

  8. Cellular neural network-based hybrid approach toward automatic image registration

    NASA Astrophysics Data System (ADS)

    Arun, Pattathal VijayaKumar; Katiyar, Sunil Kumar

    2013-01-01

    Image registration is a key component of various image processing operations that involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however, inability to properly model object shape as well as contextual information has limited the attainable accuracy. A framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as vector machines, cellular neural network (CNN), scale invariant feature transform (SIFT), coreset, and cellular automata is proposed. CNN has been found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using coreset optimization. The salient features of this work are cellular neural network approach-based SIFT feature point optimization, adaptive resampling, and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. This system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. This methodology is also illustrated to be effective in providing intelligent interpretation and adaptive resampling.

  9. SkyFACT: high-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Weniger, Christoph; Calore, Francesca

    2017-08-01

    We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (gtrsim 105) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that are motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |l|<90o and |b|<20o, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.

  10. Open access support groups for people experiencing personality disorders: do group members' experiences reflect the theoretical foundations of the SUN project?

    PubMed

    Gillard, Steve; White, Rachel; Miller, Steve; Turner, Kati

    2015-03-01

    The SUN Project is an innovative, open access support group, based in the community, for people experiencing personality disorders, developed in response to UK Department of Health policy advocating improvements in personality disorders services. The aim of this article is to critically explore where and how the theoretically informed model underpinning the SUN Project is reflected in the view and experiences of people attending the project. This article reports an in-depth, qualitative interview-based study employing a critical realist approach. As part of a larger study about self-care and mental health, in-depth qualitative interviews were held with 38 people new to the SUN Project, and again 9 months later. Data were extracted that were relevant to core components of the project model and were subjected to thematic analysis. The critical realist approach was used to move back and forth between empirical data and theory underpinning the SUN project, providing critical insight into the model. Participant accounts were broadly concordant with core components of the SUN Project's underlying model: Open access and self-referral; group therapeutic processes; community-based support; service users as staff. There were some tensions between interviewee accounts and theoretical aspects of the model, notably around the challenges that group processes presented for some individuals. The model underlying the SUN Project is useful in informing good practice in therapeutic, community-based peer support groups for people experiencing personality disorders. Careful consideration should be given to a limited multi-modal approach, providing focused one-to-one support for vulnerable individuals who find it hard to engage in group processes. Facilitated peer support groups based in the community may act as a powerful therapeutic resource for people experiencing personality disorders. Promoting open access and self-referral to support groups may increase feelings of empowerment and engagement for people experiencing personality disorders. Some individuals experiencing personality disorders who could potentially benefit from therapeutic groups may need focused one-to-one support to do so. © 2014 The British Psychological Society.

  11. A hybrid formulation for the numerical simulation of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2016-07-01

    In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.

  12. Characterization of shrubland ecosystem components as continuous fields in the northwest United States

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Rigge, Matthew B.; Shi, Hua; Meyer, Debbie

    2015-01-01

    Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystem conditions in arid and semiarid lands. An innovative approach was developed by integrating multiple sources of information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of several procedures including field sample collections, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, medium resolution estimates of shrubland components following different climate zones using Landsat 8 phenological mosaics and regression tree models, and product validation. Fractional covers of nine shrubland components were estimated: annual herbaceous, bare ground, big sagebrush, herbaceous, litter, sagebrush, shrub, sagebrush height, and shrub height. Our study area included the footprint of six Landsat 8 scenes in the northwestern United States. Results show that most components have relatively significant correlations with validation data, have small normalized root mean square errors, and correspond well with expected ecological gradients. While some uncertainties remain with height estimates, the model formulated in this study provides a cross-validated, unbiased, and cost effective approach to quantify shrubland components at a regional scale and advances knowledge of horizontal and vertical variability of these components.

  13. Synthesizing long-term sea level rise projections - the MAGICC sea level model v2.0

    NASA Astrophysics Data System (ADS)

    Nauels, Alexander; Meinshausen, Malte; Mengel, Matthias; Lorbacher, Katja; Wigley, Tom M. L.

    2017-06-01

    Sea level rise (SLR) is one of the major impacts of global warming; it will threaten coastal populations, infrastructure, and ecosystems around the globe in coming centuries. Well-constrained sea level projections are needed to estimate future losses from SLR and benefits of climate protection and adaptation. Process-based models that are designed to resolve the underlying physics of individual sea level drivers form the basis for state-of-the-art sea level projections. However, associated computational costs allow for only a small number of simulations based on selected scenarios that often vary for different sea level components. This approach does not sufficiently support sea level impact science and climate policy analysis, which require a sea level projection methodology that is flexible with regard to the climate scenario yet comprehensive and bound by the physical constraints provided by process-based models. To fill this gap, we present a sea level model that emulates global-mean long-term process-based model projections for all major sea level components. Thermal expansion estimates are calculated with the hemispheric upwelling-diffusion ocean component of the simple carbon-cycle climate model MAGICC, which has been updated and calibrated against CMIP5 ocean temperature profiles and thermal expansion data. Global glacier contributions are estimated based on a parameterization constrained by transient and equilibrium process-based projections. Sea level contribution estimates for Greenland and Antarctic ice sheets are derived from surface mass balance and solid ice discharge parameterizations reproducing current output from ice-sheet models. The land water storage component replicates recent hydrological modeling results. For 2100, we project 0.35 to 0.56 m (66 % range) total SLR based on the RCP2.6 scenario, 0.45 to 0.67 m for RCP4.5, 0.46 to 0.71 m for RCP6.0, and 0.65 to 0.97 m for RCP8.5. These projections lie within the range of the latest IPCC SLR estimates. SLR projections for 2300 yield median responses of 1.02 m for RCP2.6, 1.76 m for RCP4.5, 2.38 m for RCP6.0, and 4.73 m for RCP8.5. The MAGICC sea level model provides a flexible and efficient platform for the analysis of major scenario, model, and climate uncertainties underlying long-term SLR projections. It can be used as a tool to directly investigate the SLR implications of different mitigation pathways and may also serve as input for regional SLR assessments via component-wise sea level pattern scaling.

  14. Clinical errors that can occur in the treatment decision-making process in psychotherapy.

    PubMed

    Park, Jake; Goode, Jonathan; Tompkins, Kelley A; Swift, Joshua K

    2016-09-01

    Clinical errors occur in the psychotherapy decision-making process whenever a less-than-optimal treatment or approach is chosen when working with clients. A less-than-optimal approach may be one that a client is unwilling to try or fully invest in based on his/her expectations and preferences, or one that may have little chance of success based on contraindications and/or limited research support. The doctor knows best and the independent choice models are two decision-making models that are frequently used within psychology, but both are associated with an increased likelihood of errors in the treatment decision-making process. In particular, these models fail to integrate all three components of the definition of evidence-based practice in psychology (American Psychological Association, 2006). In this article we describe both models and provide examples of clinical errors that can occur in each. We then introduce the shared decision-making model as an alternative that is less prone to clinical errors. PsycINFO Database Record (c) 2016 APA, all rights reserved

  15. Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows

    NASA Astrophysics Data System (ADS)

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2015-11-01

    Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.

  16. Nuclear physics: quantitative single-cell approaches to nuclear organization and gene expression.

    PubMed

    Lionnet, T; Wu, B; Grünwald, D; Singer, R H; Larson, D R

    2010-01-01

    The internal workings of the nucleus remain a mystery. A list of component parts exists, and in many cases their functional roles are known for events such as transcription, RNA processing, or nuclear export. Some of these components exhibit structural features in the nucleus, regions of concentration or bodies that have given rise to the concept of functional compartmentalization--that there are underlying organizational principles to be described. In contrast, a picture is emerging in which transcription appears to drive the assembly of the functional components required for gene expression, drawing from pools of excess factors. Unifying this seemingly dual nature requires a more rigorous approach, one in which components are tracked in time and space and correlated with onset of specific nuclear functions. In this chapter, we anticipate tools that will address these questions and provide the missing kinetics of nuclear function. These tools are based on analyzing the fluctuations inherent in the weak signals of endogenous nuclear processes and determining values for them. In this way, it will be possible eventually to provide a computational model describing the functional relationships of essential components.

  17. Improved predictive model for n-decane kinetics across species, as a component of hydrocarbon mixtures.

    PubMed

    Merrill, E A; Gearhart, J M; Sterner, T R; Robinson, P J

    2008-07-01

    n-Decane is considered a major component of various fuels and industrial solvents. These hydrocarbon products are complex mixtures of hundreds of components, including straight-chain alkanes, branched chain alkanes, cycloalkanes, diaromatics, and naphthalenes. Human exposures to the jet fuel, JP-8, or to industrial solvents in vapor, aerosol, and liquid forms all have the potential to produce health effects, including immune suppression and/or neurological deficits. A physiologically based pharmacokinetic (PBPK) model has previously been developed for n-decane, in which partition coefficients (PC), fitted to 4-h exposure kinetic data, were used in preference to measured values. The greatest discrepancy between fitted and measured values was for fat, where PC values were changed from 250-328 (measured) to 25 (fitted). Such a large change in a critical parameter, without any physiological basis, greatly impedes the model's extrapolative abilities, as well as its applicability for assessing the interactions of n-decane or similar alkanes with other compounds in a mixture model. Due to these limitations, the model was revised. Our approach emphasized the use of experimentally determined PCs because many tissues had not approached steady-state concentrations by the end of the 4-h exposures. Diffusion limitation was used to describe n-decane kinetics for the brain, perirenal fat, skin, and liver. Flow limitation was used to describe the remaining rapidly and slowly perfused tissues. As expected from the high lipophilicity of this semivolatile compound (log K(ow) = 5.25), sensitivity analyses showed that parameters describing fat uptake were next to blood:air partitioning and pulmonary ventilation as critical in determining overall systemic circulation and uptake in other tissues. In our revised model, partitioning into fat took multiple days to reach steady state, which differed considerably from the previous model that assumed steady-state conditions in fat at 4 h post dosing with 1200 ppm. Due to these improvements, and particularly the reconciliation between measured and fitted partition coefficients, especially fat, we have greater confidence in using the proposed model for dose, species, and route of exposure extrapolations and as a harmonized model approach for other hydrocarbon components of mixtures.

  18. A Progressive Damage Model for unidirectional Fibre Reinforced Composites with Application to Impact and Penetration Simulation

    NASA Astrophysics Data System (ADS)

    Kerschbaum, M.; Hopmann, C.

    2016-06-01

    The computationally efficient simulation of the progressive damage behaviour of continuous fibre reinforced plastics is still a challenging task with currently available computer aided engineering methods. This paper presents an original approach for an energy based continuum damage model which accounts for stress-/strain nonlinearities, transverse and shear stress interaction phenomena, quasi-plastic shear strain components, strain rate effects, regularised damage evolution and consideration of load reversal effects. The physically based modelling approach enables experimental determination of all parameters on ply level to avoid expensive inverse analysis procedures. The modelling strategy, implementation and verification of this model using commercially available explicit finite element software are detailed. The model is then applied to simulate the impact and penetration of carbon fibre reinforced cross-ply specimens with variation of the impact speed. The simulation results show that the presented approach enables a good representation of the force-/displacement curves and especially well agreement with the experimentally observed fracture patterns. In addition, the mesh dependency of the results were assessed for one impact case showing only very little change of the simulation results which emphasises the general applicability of the presented method.

  19. The Software Architecture of Global Climate Models

    NASA Astrophysics Data System (ADS)

    Alexander, K. A.; Easterbrook, S. M.

    2011-12-01

    It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.

  20. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee

    2015-08-01

    This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.

Top