Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter G.; Wang, Lei; Anderson, John Christopher
2015-10-20
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs
Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen
2010-05-11
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs
Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA
2012-05-22
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs
Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen
2006-08-01
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs
Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA
2012-05-08
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs
Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA
2011-09-06
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs
Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA
2008-04-08
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Compositions of orthogonal glutamyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA; Santoro, Stephen [Cambridge, MA
2009-05-05
Compositions and methods of producing components of protein biosynthetic machinery that include glutamyl orthogonal tRNAs, glutamyl orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of glutamyl tRNAs/synthetases are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins using these orthogonal pairs.
Unnatural reactive amino acid genetic code additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.
2013-01-22
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA
2009-10-27
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G
2015-02-03
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA
2009-12-01
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA
2012-02-14
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA
2009-11-17
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.
2010-09-14
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Expanding the eukaryotic genetic code
Chin, Jason W [Cambridge, GB; Cropp, T Ashton [Bethesda, MD; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA
2012-05-08
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Unnatural reactive amino acid genetic code additions
Deiters, Alexander [La Jolla, CA; Cropp, T Ashton [San Diego, CA; Chin, Jason W [Cambridge, GB; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA
2011-02-15
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Unnatural reactive amino acid genetic code additions
Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.
2014-08-26
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Sub-wavelength efficient polarization filter (SWEP filter)
Simpson, Marcus L.; Simpson, John T.
2003-12-09
A polarization sensitive filter includes a first sub-wavelength resonant grating structure (SWS) for receiving incident light, and a second SWS. The SWS are disposed relative to one another such that incident light which is transmitted by the first SWS passes through the second SWS. The filter has a polarization sensitive resonance, the polarization sensitive resonance substantially reflecting a first polarization component of incident light while substantially transmitting a second polarization component of the incident light, the polarization components being orthogonal to one another. A method for forming polarization filters includes the steps of forming first and second SWS, the first and second SWS disposed relative to one another such that a portion of incident light applied to the first SWS passes through the second SWS. A method for separating polarizations of light, includes the steps of providing a filter formed from a first and second SWS, shining incident light having orthogonal polarization components on the first SWS, and substantially reflecting one of the orthogonal polarization components while substantially transmitting the other orthogonal polarization component. A high Q narrowband filter includes a first and second SWS, the first and second SWS are spaced apart a distance being at least one half an optical wavelength.
Site-specific incorporation of redox active amino acids into proteins
Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [Austin, TX
2011-08-30
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.
Site-specific incorporation of redox active amino acids into proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.
Site specific incorporation of keto amino acids into proteins
Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA
2011-03-22
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.
Site-specific incorporation of redox active amino acids into proteins
Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA
2012-02-14
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.
Site specific incorporation of keto amino acids into proteins
Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA
2008-10-07
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.
Site-specific incorporation of redox active amino acids into proteins
Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen
2010-10-12
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.
Site specific incorporation of keto amino acids into proteins
Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA
2011-12-06
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.
Site-specific incorporation of redox active amino acids into proteins
Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA
2009-02-24
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.
Site specific incorporation of keto amino acids into proteins
Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA
2012-02-14
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA
2009-12-29
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA
2011-10-04
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA
2009-08-18
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Unnatural reactive amino acid genetic code additions
Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G
2013-05-21
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
Unnatural reactive amino acid genetic code additions
Deiters, Alexander [La Jolla, CA; Cropp, T Ashton [Bethesda, MD; Chin, Jason W [Cambridge, GB; Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA
2011-08-09
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
A communication-avoiding, hybrid-parallel, rank-revealing orthogonalization method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoemmen, Mark
2010-11-01
Orthogonalization consumes much of the run time of many iterative methods for solving sparse linear systems and eigenvalue problems. Commonly used algorithms, such as variants of Gram-Schmidt or Householder QR, have performance dominated by communication. Here, 'communication' includes both data movement between the CPU and memory, and messages between processors in parallel. Our Tall Skinny QR (TSQR) family of algorithms requires asymptotically fewer messages between processors and data movement between CPU and memory than typical orthogonalization methods, yet achieves the same accuracy as Householder QR factorization. Furthermore, in block orthogonalizations, TSQR is faster and more accurate than existing approaches formore » orthogonalizing the vectors within each block ('normalization'). TSQR's rank-revealing capability also makes it useful for detecting deflation in block iterative methods, for which existing approaches sacrifice performance, accuracy, or both. We have implemented a version of TSQR that exploits both distributed-memory and shared-memory parallelism, and supports real and complex arithmetic. Our implementation is optimized for the case of orthogonalizing a small number (5-20) of very long vectors. The shared-memory parallel component uses Intel's Threading Building Blocks, though its modular design supports other shared-memory programming models as well, including computation on the GPU. Our implementation achieves speedups of 2 times or more over competing orthogonalizations. It is available now in the development branch of the Trilinos software package, and will be included in the 10.8 release.« less
Symbolic computer vector analysis
NASA Technical Reports Server (NTRS)
Stoutemyer, D. R.
1977-01-01
A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.
Velocity field calculation for non-orthogonal numerical grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
2015-03-01
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less
Method for Balancing Detector Output to a Desired Level of Balance at a Frequency
NASA Technical Reports Server (NTRS)
Sachse, Glenn W. (Inventor)
2003-01-01
A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.
NASA Technical Reports Server (NTRS)
Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)
1999-01-01
A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.
Bouhlel, Jihéne; Jouan-Rimbaud Bouveresse, Delphine; Abouelkaram, Said; Baéza, Elisabeth; Jondreville, Catherine; Travel, Angélique; Ratel, Jérémy; Engel, Erwan; Rutledge, Douglas N
2018-02-01
The aim of this work is to compare a novel exploratory chemometrics method, Common Components Analysis (CCA), with Principal Components Analysis (PCA) and Independent Components Analysis (ICA). CCA consists in adapting the multi-block statistical method known as Common Components and Specific Weights Analysis (CCSWA or ComDim) by applying it to a single data matrix, with one variable per block. As an application, the three methods were applied to SPME-GC-MS volatolomic signatures of livers in an attempt to reveal volatile organic compounds (VOCs) markers of chicken exposure to different types of micropollutants. An application of CCA to the initial SPME-GC-MS data revealed a drift in the sample Scores along CC2, as a function of injection order, probably resulting from time-related evolution in the instrument. This drift was eliminated by orthogonalization of the data set with respect to CC2, and the resulting data are used as the orthogonalized data input into each of the three methods. Since the first step in CCA is to norm-scale all the variables, preliminary data scaling has no effect on the results, so that CCA was applied only to orthogonalized SPME-GC-MS data, while, PCA and ICA were applied to the "orthogonalized", "orthogonalized and Pareto-scaled", and "orthogonalized and autoscaled" data. The comparison showed that PCA results were highly dependent on the scaling of variables, contrary to ICA where the data scaling did not have a strong influence. Nevertheless, for both PCA and ICA the clearest separations of exposed groups were obtained after autoscaling of variables. The main part of this work was to compare the CCA results using the orthogonalized data with those obtained with PCA and ICA applied to orthogonalized and autoscaled variables. The clearest separations of exposed chicken groups were obtained by CCA. CCA Loadings also clearly identified the variables contributing most to the Common Components giving separations. The PCA Loadings did not highlight the most influencing variables for each separation, whereas the ICA Loadings highlighted the same variables as did CCA. This study shows the potential of CCA for the extraction of pertinent information from a data matrix, using a procedure based on an original optimisation criterion, to produce results that are complementary, and in some cases may be superior, to those of PCA and ICA. Copyright © 2017 Elsevier B.V. All rights reserved.
Power system frequency estimation based on an orthogonal decomposition method
NASA Astrophysics Data System (ADS)
Lee, Chih-Hung; Tsai, Men-Shen
2018-06-01
In recent years, several frequency estimation techniques have been proposed by which to estimate the frequency variations in power systems. In order to properly identify power quality issues under asynchronously-sampled signals that are contaminated with noise, flicker, and harmonic and inter-harmonic components, a good frequency estimator that is able to estimate the frequency as well as the rate of frequency changes precisely is needed. However, accurately estimating the fundamental frequency becomes a very difficult task without a priori information about the sampling frequency. In this paper, a better frequency evaluation scheme for power systems is proposed. This method employs a reconstruction technique in combination with orthogonal filters, which may maintain the required frequency characteristics of the orthogonal filters and improve the overall efficiency of power system monitoring through two-stage sliding discrete Fourier transforms. The results showed that this method can accurately estimate the power system frequency under different conditions, including asynchronously sampled signals contaminated by noise, flicker, and harmonic and inter-harmonic components. The proposed approach also provides high computational efficiency.
A design of a high speed dual spectrometer by single line scan camera
NASA Astrophysics Data System (ADS)
Palawong, Kunakorn; Meemon, Panomsak
2018-03-01
A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.
Orthogonal decomposition of left ventricular remodeling in myocardial infarction
Zhang, Xingyu; Medrano-Gracia, Pau; Ambale-Venkatesh, Bharath; Bluemke, David A.; Cowan, Brett R; Finn, J. Paul; Kadish, Alan H.; Lee, Daniel C.; Lima, Joao A. C.; Young, Alistair A.; Suinesiaputra, Avan
2017-01-01
Abstract Left ventricular size and shape are important for quantifying cardiac remodeling in response to cardiovascular disease. Geometric remodeling indices have been shown to have prognostic value in predicting adverse events in the clinical literature, but these often describe interrelated shape changes. We developed a novel method for deriving orthogonal remodeling components directly from any (moderately independent) set of clinical remodeling indices. Results: Six clinical remodeling indices (end-diastolic volume index, sphericity, relative wall thickness, ejection fraction, apical conicity, and longitudinal shortening) were evaluated using cardiac magnetic resonance images of 300 patients with myocardial infarction, and 1991 asymptomatic subjects, obtained from the Cardiac Atlas Project. Partial least squares (PLS) regression of left ventricular shape models resulted in remodeling components that were optimally associated with each remodeling index. A Gram–Schmidt orthogonalization process, by which remodeling components were successively removed from the shape space in the order of shape variance explained, resulted in a set of orthonormal remodeling components. Remodeling scores could then be calculated that quantify the amount of each remodeling component present in each case. A one-factor PLS regression led to more decoupling between scores from the different remodeling components across the entire cohort, and zero correlation between clinical indices and subsequent scores. Conclusions: The PLS orthogonal remodeling components had similar power to describe differences between myocardial infarction patients and asymptomatic subjects as principal component analysis, but were better associated with well-understood clinical indices of cardiac remodeling. The data and analyses are available from www.cardiacatlas.org. PMID:28327972
Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1998-01-01
The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.
Orthogonal decomposition of left ventricular remodeling in myocardial infarction.
Zhang, Xingyu; Medrano-Gracia, Pau; Ambale-Venkatesh, Bharath; Bluemke, David A; Cowan, Brett R; Finn, J Paul; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Young, Alistair A; Suinesiaputra, Avan
2017-03-01
Left ventricular size and shape are important for quantifying cardiac remodeling in response to cardiovascular disease. Geometric remodeling indices have been shown to have prognostic value in predicting adverse events in the clinical literature, but these often describe interrelated shape changes. We developed a novel method for deriving orthogonal remodeling components directly from any (moderately independent) set of clinical remodeling indices. Six clinical remodeling indices (end-diastolic volume index, sphericity, relative wall thickness, ejection fraction, apical conicity, and longitudinal shortening) were evaluated using cardiac magnetic resonance images of 300 patients with myocardial infarction, and 1991 asymptomatic subjects, obtained from the Cardiac Atlas Project. Partial least squares (PLS) regression of left ventricular shape models resulted in remodeling components that were optimally associated with each remodeling index. A Gram-Schmidt orthogonalization process, by which remodeling components were successively removed from the shape space in the order of shape variance explained, resulted in a set of orthonormal remodeling components. Remodeling scores could then be calculated that quantify the amount of each remodeling component present in each case. A one-factor PLS regression led to more decoupling between scores from the different remodeling components across the entire cohort, and zero correlation between clinical indices and subsequent scores. The PLS orthogonal remodeling components had similar power to describe differences between myocardial infarction patients and asymptomatic subjects as principal component analysis, but were better associated with well-understood clinical indices of cardiac remodeling. The data and analyses are available from www.cardiacatlas.org. © The Author 2017. Published by Oxford University Press.
Compression strength of composite primary structural components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.
1993-01-01
Two projects are summarized. The first project is entitled 'Stiffener Crippling Inititated by Delaminations' and its objective is to develop a computational model of the stiffener specimens that includes the capability to predict the interlaminar stress response at the flange free edge in postbuckling. The second is entitled 'Pressure Pillowing of an Orthogonally Stiffened Cylindrical Shell'. A paper written on this project is included.
Pattern identification in time-course gene expression data with the CoGAPS matrix factorization.
Fertig, Elana J; Stein-O'Brien, Genevieve; Jaffe, Andrew; Colantuoni, Carlo
2014-01-01
Patterns in time-course gene expression data can represent the biological processes that are active over the measured time period. However, the orthogonality constraint in standard pattern-finding algorithms, including notably principal components analysis (PCA), confounds expression changes resulting from simultaneous, non-orthogonal biological processes. Previously, we have shown that Markov chain Monte Carlo nonnegative matrix factorization algorithms are particularly adept at distinguishing such concurrent patterns. One such matrix factorization is implemented in the software package CoGAPS. We describe the application of this software and several technical considerations for identification of age-related patterns in a public, prefrontal cortex gene expression dataset.
Pre-stack separation of PP and split PS waves in HTI media
NASA Astrophysics Data System (ADS)
Lu, Jun; Wang, Yun; Yang, Yuyong; Chen, Jingyi
2017-07-01
Separation of PP and split PS waves in transversely isotropic media with a horizontal axis of symmetry is crucial for imaging subsurface targets and for fracture prediction in a multicomponent seismic survey using P-wave sources. In conventional multicomponent processing, when a low velocity zone is present near the surface, it is often assumed that the vertical Z-component mainly records P modes and that the horizontal X- and Y-components record S modes, including split PS waves. However, this assumption does not hold when the ubiquitous presence of azimuthal anisotropy makes near surface velocity structures more complicated. Seismic wavefields recorded in each component therefore generally represent a complex waveform formed by PP and split PS waves, seriously distorting velocity analysis and seismic imaging. Most previous studies on wave separation have tended to separate P and S modes using pre-stack data and to separate split S modes using post-stack sections, under the assumption of orthogonal polarization. However, split S modes can hardly maintain their original orthogonal polarizations during propagation to the surface due to stratigraphic heterogeneity. Here, without assuming orthogonal polarization, we present a method for pre-stack separation of PP, PS1 and PS2 waves using all three components. The core of our method is the rotation of wave vectors from the Cartesian coordinate system established by Z-, R- and T-axes to a coordinate system established by the true PP-, PS1- and PS2-wave vector directions. Further, we propose a three-component superposition approach to obtain base wave vectors for the coordinate system transformation. Synthetic data testing results confirm that the performance of our wave separation method is stable under different noise levels. Application to field data from Southwest China reveals the potential of our proposed method.
Comment on the asymptotics of a distribution-free goodness of fit test statistic.
Browne, Michael W; Shapiro, Alexander
2015-03-01
In a recent article Jennrich and Satorra (Psychometrika 78: 545-552, 2013) showed that a proof by Browne (British Journal of Mathematical and Statistical Psychology 37: 62-83, 1984) of the asymptotic distribution of a goodness of fit test statistic is incomplete because it fails to prove that the orthogonal component function employed is continuous. Jennrich and Satorra (Psychometrika 78: 545-552, 2013) showed how Browne's proof can be completed satisfactorily but this required the development of an extensive and mathematically sophisticated framework for continuous orthogonal component functions. This short note provides a simple proof of the asymptotic distribution of Browne's (British Journal of Mathematical and Statistical Psychology 37: 62-83, 1984) test statistic by using an equivalent form of the statistic that does not involve orthogonal component functions and consequently avoids all complicating issues associated with them.
USDA-ARS?s Scientific Manuscript database
This work describes the medium optimization of '-Linolenic acid (GLA) production by Spirulina platensis using one-factor and orthogonal array design methods. In the one-factor experiments, NaHCO3 (9 mg L-1), NaNO3 (13.5 mg L-1) and MgSO4•7H2O (11.85 mg L-1) proved to be the best components for GLA p...
Li, Leyuan; Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Butcher, James; Chiang, Cheng-Kang; Mack, David; Stintzi, Alain; Figeys, Daniel
2018-01-05
In vitro culture based approaches are time- and cost-effective solutions for rapidly evaluating the effects of drugs or natural compounds against microbiomes. The nutritional composition of the culture medium is an important determinant for effectively maintaining the gut microbiome in vitro. This study combines orthogonal experimental design and a metaproteomics approach to obtaining functional insights into the effects of different medium components on the microbiome. Our results show that the metaproteomic profile respond differently to medium components, including inorganic salts, bile salts, mucin, and short-chain fatty acids. Multifactor analysis of variance further revealed significant main and interaction effects of inorganic salts, bile salts, and mucin on the different functional groups of gut microbial proteins. While a broad regulating effect was observed on basic metabolic pathways, different medium components also showed significant modulations on cell wall, membrane, and envelope biogenesis and cell motility related functions. In particular, flagellar assembly related proteins were significantly responsive to the presence of mucin. This study provides information on the functional influences of medium components on the in vitro growth of microbiome communities and gives insight on the key components that must be considered when selecting and optimizing media for culturing ex vivo microbiotas.
Dumarey, Melanie; Wikström, Håkan; Fransson, Magnus; Sparén, Anders; Tajarobi, Pirjo; Josefson, Mats; Trygg, Johan
2011-09-15
Roll compaction is gaining importance in pharmaceutical industry for the dry granulation of heat or moisture sensitive powder blends with poor flowing properties prior to tabletting. We studied the influence of microcrystalline cellulose (MCC) properties on the roll compaction process and the consecutive steps in tablet manufacturing. Four dissimilar MCC grades, selected by subjecting their physical characteristics to principal components analysis, and three speed ratios, i.e. the ratio of the feed screw speed and the roll speed of the roll compactor, were included in a full factorial design. Orthogonal projection to latent structures was then used to model the properties of the resulting roll compacted products (ribbons, granules and tablets) as a function of the physical MCC properties and the speed ratio. This modified version of partial least squares regression separates variation in the design correlated to the considered response from the variation orthogonal to that response. The contributions of the MCC properties and the speed ratio to the predictive and orthogonal components of the models were used to evaluate the effect of the design variation. The models indicated that several MCC properties, e.g. bulk density and compressibility, affected all granule and tablet properties, but only one studied ribbon property: porosity. After roll compaction, Ceolus KG 1000 resulted in tablets with obvious higher tensile strength and lower disintegration time compared to the other MCC grades. This study confirmed that the particle size increase caused by roll compaction is highly responsible for the tensile strength decrease of the tablets. Copyright © 2011 Elsevier B.V. All rights reserved.
Orthogonal translation components for the in vivo incorporation of unnatural amino acids
Schultz, Peter G.; Alfonta, Lital; Chittuluru, Johnathan R.; Deiters, Alexander; Groff, Dan; Summerer, Daniel; Tsao, Meng -Lin; Wang, Jiangyun; Wu, Ning; Xie, Jianming; Zeng, Huaqiang; Seyedsayamdost, Mohammad; Turner, James
2015-08-11
The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate unnatural amino acid into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.
Orthogonal translation components for the in vivo incorporation of unnatural amino acids
Schultz, Peter G.; Xie, Jianming; Zeng, Huaqiang
2012-07-10
The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate unnatural amino acids into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.
Improving KPCA Online Extraction by Orthonormalization in the Feature Space.
Souza Filho, Joao B O; Diniz, Paulo S R
2018-04-01
Recently, some online kernel principal component analysis (KPCA) techniques based on the generalized Hebbian algorithm (GHA) were proposed for use in large data sets, defining kernel components using concise dictionaries automatically extracted from data. This brief proposes two new online KPCA extraction algorithms, exploiting orthogonalized versions of the GHA rule. In both the cases, the orthogonalization of kernel components is achieved by the inclusion of some low complexity additional steps to the kernel Hebbian algorithm, thus not substantially affecting the computational cost of the algorithm. Results show improved convergence speed and accuracy of components extracted by the proposed methods, as compared with the state-of-the-art online KPCA extraction algorithms.
PCA-LBG-based algorithms for VQ codebook generation
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Yang, Po-Yuan
2015-04-01
Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.
Darrow, Chris; Seger, Tino
2003-09-30
A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.
Efficient and Robust Signal Approximations
2009-05-01
otherwise. Remark. Permutation matrices are both orthogonal and doubly- stochastic [62]. We will now show how to further simplify the Robust Coding...reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Keywords: signal processing, image compression, independent component analysis , sparse
Redesigning metabolism based on orthogonality principles
Pandit, Aditya Vikram; Srinivasan, Shyam; Mahadevan, Radhakrishnan
2017-01-01
Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering. PMID:28555623
Orthogonal Chirp-Based Ultrasonic Positioning
Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark
2017-01-01
This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively. PMID:28448454
Orthogonal Chirp-Based Ultrasonic Positioning.
Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark
2017-04-27
This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively.
NASA Astrophysics Data System (ADS)
Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav
2017-05-01
Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.
Nichols, Julia K; O'Reilly, Oliver M
2017-03-01
Biomechanics software programs, such as Visual3D, Nexus, Cortex, and OpenSim, have the capability of generating several distinct component representations for joint moments and forces from motion capture data. These representations include those for orthonormal proximal and distal coordinate systems and a non-orthogonal joint coordinate system. In this article, a method is presented to address the challenging problem of evaluating and verifying the equivalence of these representations. The method accommodates the difficulty that there are two possible sets of non-orthogonal basis vectors that can be used to express a vector in the joint coordinate system and is illuminated using motion capture data from a drop vertical jump task. Copyright © 2016 Elsevier B.V. All rights reserved.
A Unified Framework Integrating Parent-of-Origin Effects for Association Study
Xiao, Feifei; Ma, Jianzhong; Amos, Christopher I.
2013-01-01
Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting is related to several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we generalize the natural and orthogonal interactions (NOIA) framework to allow for estimation of both main allelic effects and POEs. We develop a statistical (Stat-POE) model that has the orthogonal estimates of parameters including the POEs. We conducted simulation studies for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits. PMID:23991061
Sung, C L; Cheng, H P; Lee, C Y; Cho, C Y; Liang, H C; Chen, Y F
2016-04-15
The simultaneous self-mode-locking of two orthogonally polarized states in a Nd:YAG laser is demonstrated by using a short linear cavity. A total output power of 3.8 W can be obtained at an incident pump power of 8.2 W. The beat frequency Δfc between two orthogonally polarized mode-locked components is observed and measured precisely. It is found that the beat frequency increases linearly with an increase in the absorbed pump power. The origin of the beat frequency can be utterly manifested by considering the thermally induced birefringence in the Nd:YAG crystal. The present result offers a promising approach to generate orthogonally polarized mode-locked lasers with tunable beat frequency.
Analysis of Brown camera distortion model
NASA Astrophysics Data System (ADS)
Nowakowski, Artur; Skarbek, Władysław
2013-10-01
Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.
Vector solitons with polarization instability and locked polarization in a fiber laser
NASA Astrophysics Data System (ADS)
Tang, Dingkang; Zhang, Jian-Guo; Liu, Yuanshan
2012-07-01
We investigate the characteristics of vector solitons with and without locked phase velocities of orthogonal polarization components in a specially-designed laser cavity which is formed by a bidirectional fiber loop together with a semiconductor saturable absorber mirror. The characteristics of the two states are compared in the temporal and spectrum domain, respectively. Both of the two states exhibit the characteristic of mode locking while the two orthogonal polarization components are not resolved. However, for the vector soliton with unlocked phase velocities, identical intensity varies after passing through a polarization beam splitter (PBS) outside the laser cavity. Contrary to the polarization rotation locked vector soliton, the intensity does not change periodically. For the polarization-locked vector soliton (PLVS), the identical pulse intensity is still obtained after passing through the PBS and can be observed on the oscilloscope screen after photodetection. A coupler instead of a circulator is integrated in the laser cavity and strong interaction on the polarization resolved spectra of the PLVS is observed. By comparing the two states, we conclude that interaction between the two orthogonal components contributes to the locked phase velocities.
Ozone data and mission sampling analysis
NASA Technical Reports Server (NTRS)
Robbins, J. L.
1980-01-01
A methodology was developed to analyze discrete data obtained from the global distribution of ozone. Statistical analysis techniques were applied to describe the distribution of data variance in terms of empirical orthogonal functions and components of spherical harmonic models. The effects of uneven data distribution and missing data were considered. Data fill based on the autocorrelation structure of the data is described. Computer coding of the analysis techniques is included.
Huang, Weilin; Wang, Runqiu; Li, Huijian; Chen, Yangkang
2017-09-20
Microseismic method is an essential technique for monitoring the dynamic status of hydraulic fracturing during the development of unconventional reservoirs. However, one of the challenges in microseismic monitoring is that those seismic signals generated from micro seismicity have extremely low amplitude. We develop a methodology to unveil the signals that are smeared in the strong ambient noise and thus facilitate a more accurate arrival-time picking that will ultimately improve the localization accuracy. In the proposed technique, we decompose the recorded data into several morphological multi-scale components. In order to unveil weak signal, we propose an orthogonalization operator which acts as a time-varying weighting in the morphological reconstruction. The orthogonalization operator is obtained using an inversion process. This orthogonalized morphological reconstruction can be interpreted as a projection of the higher-dimensional vector. We first test the proposed technique using a synthetic dataset. Then the proposed technique is applied to a field dataset recorded in a project in China, in which the signals induced from hydraulic fracturing are recorded by twelve three-component (3-C) geophones in a monitoring well. The result demonstrates that the orthogonalized morphological reconstruction can make the extremely weak microseismic signals detectable.
NASA Astrophysics Data System (ADS)
Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.
2018-03-01
We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.
Single-Pulse Multi-Point Multi-Component Interferometric Rayleigh Scattering Velocimeter
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.; Gaffney, Richard L., Jr.; Cutler, Andrew D.
2006-01-01
A simultaneous multi-point, multi-component velocimeter using interferometric detection of the Doppler shift of Rayleigh, Mie, and Rayleigh-Brillouin scattered light in supersonic flow is described. The system uses up to three sets of collection optics and one beam combiner for the reference laser light to form a single collimated beam. The planar Fabry-Perot interferometer used in the imaging mode for frequency detection preserves the spatial distribution of the signal reasonably well. Single-pulse multi-points measurements of up to two orthogonal and one non-orthogonal components of velocity in a Mach 2 free jet were performed to demonstrate the technique. The average velocity measurements show a close agreement with the CFD calculations using the VULCAN code.
Doppler Global Velocimeter Development for the Large Wind Tunnels at Ames Research Center
NASA Technical Reports Server (NTRS)
Reinath, Michael S.
1997-01-01
Development of an optical, laser-based flow-field measurement technique for large wind tunnels is described. The technique uses laser sheet illumination and charged coupled device detectors to rapidly measure flow-field velocity distributions over large planar regions of the flow. Sample measurements are presented that illustrate the capability of the technique. An analysis of measurement uncertainty, which focuses on the random component of uncertainty, shows that precision uncertainty is not dependent on the measured velocity magnitude. For a single-image measurement, the analysis predicts a precision uncertainty of +/-5 m/s. When multiple images are averaged, this uncertainty is shown to decrease. For an average of 100 images, for example, the analysis shows that a precision uncertainty of +/-0.5 m/s can be expected. Sample applications show that vectors aligned with an orthogonal coordinate system are difficult to measure directly. An algebraic transformation is presented which converts measured vectors to the desired orthogonal components. Uncertainty propagation is then used to show how the uncertainty propagates from the direct measurements to the orthogonal components. For a typical forward-scatter viewing geometry, the propagation analysis predicts precision uncertainties of +/-4, +/-7, and +/-6 m/s, respectively, for the U, V, and W components at 68% confidence.
Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.
Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene
2015-01-01
A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.
NASA Technical Reports Server (NTRS)
Cole, K. D.
1982-01-01
Using the unabridged Maxwell equations (including vectors D, E and H) new effects in collisionless plasmas are uncovered. In a steady state, it is found that spatially varying energy density of the electric field (E perpendicular) orthogonal to B produces electric current leading, under certain conditions, to the relationship P perpendicular+B(2)/8 pi-epsilon E perpendicular(2)/8 pi = constant, where epsilon is the dielectric constant of the plasma for fields orthogonal to B. In steady state quasi-two-dimensional flows in plasmas, a general relationship between the components of electric field parallel and perpendicular to B is found. These effects are significant in goephysical and astrophysical plasmas. The general conditions for a steady state in collisionless plasma are deduced. With time variations in a plasma, slow compared to ion-gyroperiod, there is a general current, (j*), which includes the well-known polarisation current, given by J*=d/dt (ExM)+(PxB)xB B(-2) where M and P are the magnetization and polarization vectors respectively.
Three Component Velocity and Acceleration Measurement Using FLEET
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.
2014-01-01
The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.
NASA Astrophysics Data System (ADS)
Minkovski, N.; Petrov, G. I.; Saltiel, S. M.; Albert, O.; Etchepare, J.
2004-09-01
Nonlinear polarization rotation and generation of a polarization component orthogonal to the input beam were observed along fourfold axes of YVO4 and BaF2 crystals. We demonstrate experimentally that in both crystals the angle of rotation is proportional, at low intensities, to the square of the product of the input intensity and the crystal length and is the result of simultaneous action of two third-order processes. This type of nonlinear polarization rotation is driven by the real part of the cubic susceptibility. The recorded energy exchange between the two orthogonal components can exceed 10%. It is to our knowledge the highest energy-conversion efficiency achieved in a single beam nonresonant χ(3) interaction. A simple theoretical model is elaborated to describe the dependence of nonlinear polarization rotation and orthogonal polarization generation on the intensity of the input beam at both low- and high-intensity levels. It reveals the potential contributions from the real and the imaginary parts of the susceptibility tensor. Moreover, this kind of measurement is designed to permit the determination of the magnitude and the sign of the anisotropy of the real part of third-order nonlinearity in crystals with cubic or tetragonal symmetry on the basis of polarization-rotation measurements. The χxxxx(3) component of the third-order susceptibility tensor and its anisotropy sign and amplitude value for BaF2 and YVO4 crystals are estimated and discussed.
Multicarrier orthogonal spread-spectrum (MOSS) data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-01-01
Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.
2007-10-01
1984. Complex principal component analysis : Theory and examples. Journal of Climate and Applied Meteorology 23: 1660-1673. Hotelling, H. 1933...Sediments 99. ASCE: 2,566-2,581. Von Storch, H., and A. Navarra. 1995. Analysis of climate variability. Applications of statistical techniques. Berlin...ERDC TN-SWWRP-07-9 October 2007 Regional Morphology Empirical Analysis Package (RMAP): Orthogonal Function Analysis , Background and Examples by
NASA Astrophysics Data System (ADS)
Toparli, M. Burak; Fitzpatrick, Michael E.; Gungor, Salih
2015-09-01
In this study, residual stress fields, including the near-surface residual stresses, were determined for an Al7050-T7451 sample after laser peening. The contour method was applied to measure one component of the residual stress, and the relaxed stresses on the cut surfaces were then measured by X-ray diffraction. This allowed calculation of the three orthogonal stress components using the superposition principle. The near-surface results were validated with results from incremental hole drilling and conventional X-ray diffraction. The results demonstrate that multiple residual stress components can be determined using a combination of the contour method and another technique. If the measured stress components are congruent with the principal stress axes in the sample, then this allows for determination of the complete stress tensor.
Study Of Flow About A Helicopter Rotor
NASA Technical Reports Server (NTRS)
Tauber, Michael E.; Owen, F. Kevin
1989-01-01
Noninvasive instrument verifies computer program predicting velocities. Laser velocimeter measurements confirm predictions of transonic flow field around tip of helicopter-rotor blade. Report discusses measurements, which yield high-resolution orthogonal velocity components of flow field at rotor-tip. Mach numbers from 0.85 to 0.95, and use of measurements in verifying ability of computer program ROT22 to predict transonic flow field, including occurrences, strengths, and locations of shock waves causing high drag and noise.
Face Hallucination with Linear Regression Model in Semi-Orthogonal Multilinear PCA Method
NASA Astrophysics Data System (ADS)
Asavaskulkiet, Krissada
2018-04-01
In this paper, we propose a new face hallucination technique, face images reconstruction in HSV color space with a semi-orthogonal multilinear principal component analysis method. This novel hallucination technique can perform directly from tensors via tensor-to-vector projection by imposing the orthogonality constraint in only one mode. In our experiments, we use facial images from FERET database to test our hallucination approach which is demonstrated by extensive experiments with high-quality hallucinated color faces. The experimental results assure clearly demonstrated that we can generate photorealistic color face images by using the SO-MPCA subspace with a linear regression model.
NASA Technical Reports Server (NTRS)
Dyal, P.; Gordon, D. I.
1973-01-01
Discussion of the properties of both the stationary and portable magnetometers used in the Apollo program to measure static and dynamic fields on the lunar surface. A stationary magnetometer is described in which the three orthogonal vector components of the magnetic field are measured by three fluxgate sensors which are located at the ends of three orthogonal booms and contain ferromagnetic cores driven to saturation by means of a periodic current. In the Apollo 16 magnetometer special high-stability ring-core sensors were used which provided an output voltage to the analog-to-digital converter which is proportional to the magnetic field. A portable magnetometer is described which consists of a set of three orthogonal fluxgate sensors mounted on top of a tripod connected to an electronics box by a ribbon cable. The above-mentioned stationary magnetometer simultaneously measured the time-varying components of the field which were later subtracted from the portable magnetometer measurements to give the desired resultant steady field values caused by the magnetized crustal material.
Munitions Detection Using Unmanned Underwater Vehicles Equipped with Advanced Sensors
2012-06-29
buried target. The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal magnetic-field vector components at 3...surveys. Figure 6 shows the RTG magnetic sensor in both an open (showing the fluxgate magnetometers ) and enclosed state (mode for integration onto...7.6 Real-time Tracking Gradiometer (RTG) System The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal
Protein-like Nanoparticles Based on Orthogonal Self-Assembly of Chimeric Peptides.
Jiang, Linhai; Xu, Dawei; Namitz, Kevin E; Cosgrove, Michael S; Lund, Reidar; Dong, He
2016-10-01
A novel two-component self-assembling chimeric peptide is designed where two orthogonal protein folding motifs are linked side by side with precisely defined position relative to one another. The self-assembly is driven by a combination of symmetry controlled molecular packing, intermolecular interactions, and geometric constraint to limit the assembly into compact dodecameric protein nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Orthogonality of embedded wave functions for different states in frozen-density embedding theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zech, Alexander; Wesolowski, Tomasz A.; Aquilante, Francesco
2015-10-28
Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematicalmore » structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.« less
Vieira, Vânia M. P.; Hay, Laura L.
2017-01-01
This paper reports self-assembled multi-component hybrid hydrogels including a range of nanoscale systems and characterizes the extent to which each component maintains its own unique functionality, demonstrating that multi-functionality can be achieved by simply mixing carefully-chosen constituents. Specifically, the individual components are: (i) pH-activated low-molecular-weight gelator (LMWG) 1,3;2,4-dibenzylidenesorbitol-4′,4′′-dicarboxylic acid (DBS–COOH), (ii) thermally-activated polymer gelator (PG) agarose, (iii) anionic biopolymer heparin, and (iv) cationic self-assembled multivalent (SAMul) micelles capable of binding heparin. The LMWG still self-assembles in the presence of PG agarose, is slightly modified on the nanoscale by heparin, but is totally disrupted by the micelles. However, if the SAMul micelles are bound to heparin, DBS–COOH self-assembly is largely unaffected. The LMWG endows hybrid materials with pH-responsive behavior, while the PG provides mechanical robustness. The rate of heparin release can be controlled through network density and composition, with the LMWG and PG behaving differently in this regard, while the presence of the heparin binder completely inhibits heparin release through complexation. This study demonstrates that a multi-component approach can yield exquisite control over self-assembled materials. We reason that controlling orthogonality in such systems will underpin further development of controlled release systems with biomedical applications. PMID:29147525
Pelle, Aline J; Kupper, Nina; Mols, Floortje; de Jonge, Peter
2013-08-01
Health status has evolved as a clinical outcome measure that is of great interest in medical care. However, there is still debate about the appropriateness of scoring algorithms for the often used short form questionnaires. Therefore, our aim was to evaluate the consequences of the traditional scoring procedure based on orthogonal factor rotation for clinical applications by (a) re-evaluating the results of randomized controlled trials (RCTs) on the effectiveness of antidepressants in improving health status in cardiac patients and (b) comparing empirical evidence on depression and health status using orthogonal and oblique factor rotation (alternative scoring method) in a community sample and a heart failure (HF) sample. This is a systematic literature review and cross-sectional analysis among 1,598 community sample participants and 282 HF patients. Orthogonal rotation artificially forces the mental component summary (MCS) and physical component summary (PCS) to be unrelated, which is illustrated in two of the three included RCTs. Two RCTs showed improvements in MCS, but no improvement in PCS over time. Cross-sectional analysis in the two datasets showed that employing the alternative scoring algorithm resulted in higher negative correlations of MCS and PCS with depression, and a gradual decline in MCS with each decile of decline in PCS. Our data showed that appropriate carefulness is needed when calculating and interpreting summary scores. The traditional scoring algorithm seems inappropriate to objectively evaluate the effects of interventions on both the MCS and the PCS. Awareness in the design and evaluation of interventions using these outcomes is warranted.
Darwish, Hany W; Bakheit, Ahmed H; Abdelhameed, Ali S
2016-03-01
Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.
Kozma, Eszter; Demeter, Orsolya; Kele, Péter
2017-03-16
Bio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks. At the end, we discuss challenges that need to be addressed for further developments in order to overcome recent limitations and to enable researchers to answer biomolecular questions in more detail. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Beam shaping with vectorial vortex beams under low numerical aperture illumination condition
NASA Astrophysics Data System (ADS)
Dai, Jianning; Zhan, Qiwen
2008-08-01
In this paper we propose and demonstrate a novel beam shaping method using vectorial vortex beam. A vectorial vortex beam is laser beam with polarization singularity in the beam cross section. This type of beams can be decomposed into two orthogonally polarized components. Each of the polarized components could have different vortex characteristics, and consequently, different intensity distribution when focused by lens. Beam shaping in the far field can be achieved by adjusting the relative weighing of these two components. As one example, we study the vectorial vortex that consists of a linearly polarized Gaussian component and a vortex component polarized orthogonally. When such a vectorial vortex beam is focus by low NA lens, the Gaussian component gives rise to a focal intensity distribution with a solid centre while the vortex component gives rise to a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Under appropriate conditions, flat top focusing can be obtained. We experimentally demonstrate the creation of such beams with a liquid crystal spatial light modulator. Flattop focus obtained by vectorial vortex beams with topological charge of +1 has been obtained.
Analysis and interpretation of satellite fragmentation data
NASA Technical Reports Server (NTRS)
Tan, Arjun
1987-01-01
The velocity perturbations of the fragments of a satellite can shed valuable information regarding the nature and intensity of the fragmentation. A feasibility study on calculating the velocity perturbations from existing equations was carried out by analyzing 23 major documented fragmentation events. It was found that whereas the calculated values of the radial components of the velocity change were often unusually high, those in the two other orthogonal directions were mostly reasonable. Since the uncertainties in the radial component necessarily translate into uncertainties in the total velocity change, it is suggested that alternative expressions for the radial component of velocity be sought for the purpose of determining the cause of the fragmentation from the total velocity change. The calculated variances in the velocity perturbations in the two directions orthogonal to the radial vector indicate that they have the smallest values for collision induced breakups and the largest values for low-intensity explosion induced breakups. The corresponding variances for high-intensity explosion induced breakups generally have values intermediate between those of the two extreme categories. A three-dimensional plot of the variances in the two orthogonal velocity perturbations and the plane change angle shows a clear separation between the three major types of breakups. This information is used to reclassify a number of satellite fragmentation events of unknown category.
NASA Astrophysics Data System (ADS)
Huang, T. L.; Y Cho, C.; Liang, H. C.; Huang, K. F.; Chen, Y. F.
2017-08-01
The self-mode-locked output for cryogenic Nd:YLF laser at the temperature range of 90 K to 290 K is thoroughly investigated. Linearly polarized self-mode-locked lasing at 1047 nm (1053 nm) with a repetition rate up to 1.59 GHz and a pulse width as short as 52 ps can be realized at temperatures above 155 K (below 135 K). Orthogonally polarized self-mode-locked operation can be observed at temperatures near 145 K. During dual-polarization operation, it is found that the polarized component with higher output power is the fundamental transverse mode, whereas the other component with lower output power becomes the high-order transverse mode. The dominant polarized component can be either π- or σ-polarization, depending on the fine adjustment of the cavity.
Multiple mechanisms in the perception of face gender: Effect of sex-irrelevant features.
Komori, Masashi; Kawamura, Satoru; Ishihara, Shigekazu
2011-06-01
Effects of sex-relevant and sex-irrelevant facial features on the evaluation of facial gender were investigated. Participants rated masculinity of 48 male facial photographs and femininity of 48 female facial photographs. Eighty feature points were measured on each of the facial photographs. Using a generalized Procrustes analysis, facial shapes were converted into multidimensional vectors, with the average face as a starting point. Each vector was decomposed into a sex-relevant subvector and a sex-irrelevant subvector which were, respectively, parallel and orthogonal to the main male-female axis. Principal components analysis (PCA) was performed on the sex-irrelevant subvectors. One principal component was negatively correlated with both perceived masculinity and femininity, and another was correlated only with femininity, though both components were orthogonal to the male-female dimension (and thus by definition sex-irrelevant). These results indicate that evaluation of facial gender depends on sex-irrelevant as well as sex-relevant facial features.
Comprehensive two-dimensional gas chromatography applied to illicit drug analysis.
Mitrevski, Blagoj; Wynne, Paul; Marriott, Philip J
2011-11-01
Multidimensional gas chromatography (MDGC), and especially its latest incarnation--comprehensive two-dimensional gas chromatography (GC × GC)--have proved advantageous over and above classic one-dimensional gas chromatography (1D GC) in many areas of analysis by offering improved peak capacity, often enhanced sensitivity and, especially in the case of GC × GC, the unique feature of 'structured' chromatograms. This article reviews recent advances in MDGC and GC × GC in drug analysis with special focus on ecstasy, heroin and cocaine profiling. Although 1D GC is still the method of choice for drug profiling in most laboratories because of its simplicity and instrument availability, GC × GC is a tempting proposition for this purpose because of its ability to generate a higher net information content. Effluent refocusing due to the modulation (compression) process, combined with the separation on two 'orthogonal' columns, results in more components being well resolved and therefore being analytically and statistically useful to the profile. The spread of the components in the two-dimensional plots is strongly dependent on the extent of retention 'orthogonality' (i.e. the extent to which the two phases possess different or independent retention mechanisms towards sample constituents) between the two columns. The benefits of 'information-driven' drug profiling, where more points of reference are usually required for sample differentiation, are discussed. In addition, several limitations in application of MDGC in drug profiling, including data acquisition rate, column temperature limit, column phase orthogonality and chiral separation, are considered and discussed. Although the review focuses on the articles published in the last decade, a brief chronological preview of the profiling methods used throughout the last three decades is given.
THREE-COMPONENT BOREHOLE MAGNETOMETER PROBE FOR MINERAL INVESTIGATIONS AND GEOLOGIC RESEARCH.
Scott, James H.; Olson, Gary G.
1985-01-01
A small-diameter three-component fluxgate magnetometer probe with gyroscopic and inclinometer orientation has been developed to meet U. S. Geological Survey design and performance specifications for measurement of the direction and intensity of the Earth's magnetic field in vertical and inclined boreholes. The orthogonal fluxgate magnetometer elements have a measurement resolution of 10 nanoteslas (nT) and a range of plus or minus 80,000 nT. The gyroscope has an effective resolution of one degree, and the orthogonal inclinometers, 0. 1 degree. The magnetometer probe has been field tested in several holes drilled through volcanic rocks in Nevada. Results indicate that reversals of polarization can be detected, and some rock units in this area appear to be characterized by unique magnetic signatures.
Polarization-balanced beamsplitter
Decker, D.E.
1998-02-17
A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.
Orthogonality and Burdens of Heterologous AND Gate Gene Circuits in E. coli
2017-01-01
Synthetic biology approaches commonly introduce heterologous gene networks into a host to predictably program cells, with the expectation of the synthetic network being orthogonal to the host background. However, introduced circuits may interfere with the host’s physiology, either indirectly by posing a metabolic burden and/or through unintended direct interactions between parts of the circuit with those of the host, affecting functionality. Here we used RNA-Seq transcriptome analysis to quantify the interactions between a representative heterologous AND gate circuit and the host Escherichia coli under various conditions including circuit designs and plasmid copy numbers. We show that the circuit plasmid copy number outweighs circuit composition for their effect on host gene expression with medium-copy number plasmid showing more prominent interference than its low-copy number counterpart. In contrast, the circuits have a stronger influence on the host growth with a metabolic load increasing with the copy number of the circuits. Notably, we show that variation of copy number, an increase from low to medium copy, caused different types of change observed in the behavior of components in the AND gate circuit leading to the unbalance of the two gate-inputs and thus counterintuitive output attenuation. The study demonstrates the circuit plasmid copy number is a key factor that can dramatically affect the orthogonality, burden and functionality of the heterologous circuits in the host chassis. The results provide important guidance for future efforts to design orthogonal and robust gene circuits with minimal unwanted interaction and burden to their host. PMID:29240998
Orthogonal fluxgate mechanism operated with dc biased excitation
NASA Astrophysics Data System (ADS)
Sasada, I.
2002-05-01
A mode of operation is presented for an orthogonal fluxgate built with a thin magnetic wire. By adding a proper dc bias to the wire excitation, the new mode is easily established. In this case, the fundamental component of the induced voltage at the sensing coil (secondary voltage) is made sensitive to the axial magnetic field, compared to the second harmonic in a conventional orthogonal fluxgate. The operating principle is explained using a magnetization rotation model. A method is proposed to cancel the offset that is inevitable when the magnetic anisotropy is present in a magnetic wire at an angle to its circumference. Experimental results are shown for a sensor head consisting of a 2-cm-long Co-based amorphous wire 120 μm in diameter with a 220-turn sensing coil. The sensitivity obtained is higher than that obtained using a conventional type of the orthogonal fluxgate built with the same sensor head. It is also demonstrated that the proposed method for canceling the offset works well.
NASA Astrophysics Data System (ADS)
Ledet, Lasse S.; Sorokin, Sergey V.
2018-03-01
The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-filled cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. The forced vibration problem is solved using tailored Green's matrices formulated in terms of eigenfunction expansions. The formulation of Green's matrix is based on special (bi-)orthogonality relations between the eigenfunctions, which are derived here for the fluid-filled shell. Further, the relations are generalised to any multi-modal symmetric waveguide. Using the orthogonality relations the transcendental equation system is converted into algebraic modal equations that can be solved analytically. Upon formulation of Green's matrices the solution space is studied in terms of completeness and convergence (uniformity and rate). Special features and findings exposed only through this modal decomposition method are elaborated and the physical interpretation of the bi-orthogonality relation is discussed in relation to the total energy flow which leads to derivation of simplified equations for the energy flow components.
NASA Astrophysics Data System (ADS)
Ketcham, Richard A.
2017-04-01
Anisotropy in three-dimensional quantities such as geometric shape and orientation is commonly quantified using principal components analysis, in which a second order tensor determines the orientations of orthogonal components and their relative magnitudes. This approach has many advantages, such as simplicity and ability to accommodate many forms of data, and resilience to data sparsity. However, when data are sufficiently plentiful and precise, they sometimes show that aspects of the principal components approach are oversimplifications that may affect how the data are interpreted or extrapolated for mathematical or physical modeling. High-resolution X-ray computed tomography (CT) can effectively extract thousands of measurements from a single sample, providing a data density sufficient to examine the ways in which anisotropy on the hand-sample scale and smaller can be quantified, and the extent to which the ways the data are simplified are faithful to the underlying distributions. Features within CT data can be considered as discrete objects or continuum fabrics; the latter can be characterized using a variety of metrics, such as the most commonly used mean intercept length, and also the more specialized star length and star volume distributions. Each method posits a different scaling among components that affects the measured degree of anisotropy. The star volume distribution is the most sensitive to anisotropy, and commonly distinguishes strong fabric components that are not orthogonal. Although these data are well-presented using a stereoplot, 3D rose diagrams are another visualization option that can often help identify these components. This talk presents examples from a number of cases, starting with trabecular bone and extending to geological features such as fractures and brittle and ductile fabrics, in which non-orthogonal principal components identified using CT provide some insight into the origin of the underlying structures, and how they should be interpreted and potentially up-scaled.
Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.
Beauducel, André
2018-02-01
The misallocation of treatment-variance on the wrong component has been discussed in the context of temporal principal component analysis of event-related potentials. There is, until now, no rotation-method that can perfectly recover Wood and McCarthy's prototypes without making use of additional information on treatment-effects. In order to close this gap, two new methods: for component rotation were proposed. After Varimax-prerotation, the first method identifies very small slopes of successive loadings. The corresponding loadings are set to zero in a target-matrix for event-related orthogonal partial Procrustes- (EPP-) rotation. The second method generates Gaussian normal distributions around the peaks of the Varimax-loadings and performs orthogonal Procrustes-rotation towards these Gaussian distributions. Oblique versions of this Gaussian event-related Procrustes- (GEP) rotation and of EPP-rotation are based on Promax-rotation. A simulation study revealed that the new orthogonal rotations recover Wood and McCarthy's prototypes and eliminate misallocation of treatment-variance. In an additional simulation study with a more pronounced overlap of the prototypes GEP Promax-rotation reduced the variance misallocation slightly more than EPP Promax-rotation. Comparison with Existing Method(s): Varimax- and conventional Promax-rotations resulted in substantial misallocations of variance in simulation studies when components had temporal overlap. A substantially reduced misallocation of variance occurred with the EPP-, EPP Promax-, GEP-, and GEP Promax-rotations. Misallocation of variance can be minimized by means of the new rotation methods: Making use of information on the temporal order of the loadings may allow for improvements of the rotation of temporal PCA components. Copyright © 2017 Elsevier B.V. All rights reserved.
Feature Extraction with GMDH-Type Neural Networks for EEG-Based Person Identification.
Schetinin, Vitaly; Jakaite, Livija; Nyah, Ndifreke; Novakovic, Dusica; Krzanowski, Wojtek
2018-08-01
The brain activity observed on EEG electrodes is influenced by volume conduction and functional connectivity of a person performing a task. When the task is a biometric test the EEG signals represent the unique "brain print", which is defined by the functional connectivity that is represented by the interactions between electrodes, whilst the conduction components cause trivial correlations. Orthogonalization using autoregressive modeling minimizes the conduction components, and then the residuals are related to features correlated with the functional connectivity. However, the orthogonalization can be unreliable for high-dimensional EEG data. We have found that the dimensionality can be significantly reduced if the baselines required for estimating the residuals can be modeled by using relevant electrodes. In our approach, the required models are learnt by a Group Method of Data Handling (GMDH) algorithm which we have made capable of discovering reliable models from multidimensional EEG data. In our experiments on the EEG-MMI benchmark data which include 109 participants, the proposed method has correctly identified all the subjects and provided a statistically significant ([Formula: see text]) improvement of the identification accuracy. The experiments have shown that the proposed GMDH method can learn new features from multi-electrode EEG data, which are capable to improve the accuracy of biometric identification.
NASA Technical Reports Server (NTRS)
He, Maosheng; Vogt, Joachim; Luehr, Hermann; Sorbalo, Eugen; Blagau, Adrian; Le, Guan; Lu, Gang
2012-01-01
Ten years of CHAMP magnetic field measurements are integrated into MFACE, a model of field-aligned currents (FACs) using empirical orthogonal functions (EOFs). EOF1 gives the basic Region-1/Region-2 pattern varying mainly with the interplanetary magnetic field Bz component. EOF2 captures separately the cusp current signature and By-related variability. Compared to existing models, MFACE yields significantly better spatial resolution, reproduces typically observed FAC thickness and intensity, improves on the magnetic local time (MLT) distribution, and gives the seasonal dependence of FAC latitudes and the NBZ current signature. MFACE further reveals systematic dependences on By, including 1) Region-1/Region-2 topology modifications around noon; 2) imbalance between upward and downward maximum current density; 3) MLT location of the Harang discontinuity. Furthermore, our procedure allows quantifying response times of FACs to solar wind driving at the bow shock nose: we obtain 20 minutes and 35-40 minutes lags for the FAC density and latitude, respectively.
Kappenman, Emily S; Luck, Steven J
2012-01-01
Event-related potentials (ERPs) are a powerful tool in understanding and evaluating cognitive, affective, motor, and sensory processing in both healthy and pathological samples. A typical ERP recording session takes considerable time but is designed to isolate only 1-2 components. Although this is appropriate for most basic science purposes, it is an inefficient approach for measuring the broad set of neurocognitive functions that may be disrupted in a neurological or psychiatric disease. The present study provides a framework for more efficiently evaluating multiple neural processes in a single experimental paradigm through the manipulation of functionally orthogonal dimensions. We describe the general MONSTER (Manipulation of Orthogonal Neural Systems Together in Electrophysiological Recordings) approach and explain how it can be adapted to investigate a variety of neurocognitive domains, ERP components, and neural processes of interest. We also demonstrate how this approach can be used to assess group differences by providing data from an implementation of the MONSTER approach in younger (18-30 y of age) and older (65-85 y of age) adult samples. This specific implementation of the MONSTER framework assesses 4 separate neural processes in the visual domain: (1) early sensory processing, using the C1 wave; (2) shifts of covert attention, with the N2pc component; (3) categorization, with the P3 component; and (4) self-monitoring, with the error-related negativity. Although the MONSTER approach is primarily described in the context of ERP experiments, it could also be adapted easily for use with functional magnetic resonance imaging.
Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots.
Yi, Hui; Long, Jing; Li, Hongquan; He, Xiaolong; Yang, Tian
2015-04-06
Recent years have witnessed fast progress in the development of spatially variant states of polarization under high numerical aperture focusing, and intensive exploration of their applications. We report a vectorial, broadband, high contrast and subwavelength resolution method for focal spot profiling. In this experiment, a 100 nm diameter gold nanosphere on a silica aerogel substrate is raster scanned across the focal spots, and the orthogonal polarization components can be obtained simultaneously by measuring the scattering far field in a confocal manner. The metallic-nanosphere-on-aerogel structure ensures negligible distortion to the focal spots, low crosstalk between orthogonal polarization components (1/39 in experiment), and a low level background noise (1/80 of peak intensity in experiment), while high contrast imaging is not limited by the resonance bandwidth.
Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation
NASA Astrophysics Data System (ADS)
Milovanovic, Gradimir V.
2001-01-01
Quadrature formulas with multiple nodes, power orthogonality, and some applications of such quadratures to moment-preserving approximation by defective splines are considered. An account on power orthogonality (s- and [sigma]-orthogonal polynomials) and generalized Gaussian quadratures with multiple nodes, including stable algorithms for numerical construction of the corresponding polynomials and Cotes numbers, are given. In particular, the important case of Chebyshev weight is analyzed. Finally, some applications in moment-preserving approximation of functions by defective splines are discussed.
Blind separation of positive sources by globally convergent gradient search.
Oja, Erkki; Plumbley, Mark
2004-09-01
The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.
Chauhan, Awadesh K; Survase, Shrikant A; Kishenkumar, Jyoti; Annapure, Uday S
2009-06-01
This paper deals with the optimization of culture conditions for the production of cholesterol oxidase (COD) by Streptomyces lavendulae NCIM 2499 using the one-factor-at-a-time method, orthogonal array method and response surface methodology (RSM) approaches. The one-factor-at-a-time method was adopted to investigate the effects of medium components (i.e. carbon and nitrogen) and environmental factors (i.e. initial pH) on biomass growth and COD production. Subsequently, an L12 orthogonal matrix was used to evaluate the significance of glycerol, soyabean meal, malt extract, K2HPO4, MgSO4 and NaCl. The effects of media components were ranked according to their effects on the production of COD as malt extract > soyabean meal > K2HPO4 > NaCl > MgSO4 > glycerol. The subsequent optimization of the four most significant factors viz. malt extract, soyabean meal, K2HPO4 and NaCl, was carried out by employing a central composite rotatable design (CCRD) of RSM. There was a 2.48-fold increase in productivity of COD as compared to the unoptimized media by using these statistical approaches.
NASA Astrophysics Data System (ADS)
Birman, Joseph L.; Kuklov, A. B.
2001-05-01
The concept of the orthogonality catastrophe (OC), which has been introduced previously for one component condensate ( A.B. Kuklov, J.L. Birman, PRA 63), 013609 (2001), is applied to the two-component condensate. The evolution of the global relative phase, which is created by the rf-pulse, is studied under the condition of no exchange of bosons between the components after the pulse. It is shown that the normal component does not induce the OC. Instead, it produces a reversible thermal dephasing, which competes with the quantum phase diffusion (QPD) effect (E.M.Wright, et al, PRL 77), 2158(1996). The thermal dephasing results from the thermal ensemble averaging, and the corresponding dephasing rate is controlled by the two-body interaction and temperature as well as by the closeness to the intrinsic su(2) symmetry, so that no dephasing exists in the case of the exact symmetry (A.B. Kuklov, J.L. Birman, PRL 85), 5488 (2000). The reversible nature of the thermal dephasing as well as of the QPD can be revealed in the atomic echo effect. The role of external noise in erasing the phase memory is discussed as well.
Feng, Xiao-Liang; He, Yun-biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria. PMID:24286016
Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.
Actuation method and apparatus, micropump, and PCR enhancement method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullakko, Kari; Mullner, Peter; Hampikian, Greg
An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicularmore » to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.« less
Model reconstruction using POD method for gray-box fault detection
NASA Technical Reports Server (NTRS)
Park, H. G.; Zak, M.
2003-01-01
This paper describes using Proper Orthogonal Decomposition (POD) method to create low-order dynamical models for the Model Filter component of Beacon-based Exception Analysis for Multi-missions (BEAM).
Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang
2018-06-01
This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee
2015-05-13
Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less
Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee; ...
2015-04-02
Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Lastly, multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less
ERIC Educational Resources Information Center
Caruso, John C.; Witkiewitz, Katie
2002-01-01
As an alternative to equally weighted difference scores, examined an orthogonal reliable component analysis (RCA) solution and an oblique principal components analysis (PCA) solution for the standardization sample of the Kaufman Assessment Battery for Children (KABC; A. Kaufman and N. Kaufman, 1983). Discusses the practical implications of the…
He, Qing; Hao, Yinping; Liu, Hui; Liu, Wenyi
2018-01-01
Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system.
He, Qing; Liu, Hui; Liu, Wenyi
2018-01-01
Super-critical carbon dioxide energy-storage (SC-CCES) technology is a new type of gas energy-storage technology. This paper used orthogonal method and variance analysis to make significant analysis on the factors which would affect the thermodynamics characteristics of the SC-CCES system and obtained the significant factors and interactions in the energy-storage process, the energy-release process and the whole energy-storage system. Results have shown that the interactions in the components have little influence on the energy-storage process, the energy-release process and the whole energy-storage process of the SC-CCES system, the significant factors are mainly on the characteristics of the system component itself, which will provide reference for the optimization of the thermal properties of the energy-storage system. PMID:29634742
Butler, Rebecca A.
2014-01-01
Stroke aphasia is a multidimensional disorder in which patient profiles reflect variation along multiple behavioural continua. We present a novel approach to separating the principal aspects of chronic aphasic performance and isolating their neural bases. Principal components analysis was used to extract core factors underlying performance of 31 participants with chronic stroke aphasia on a large, detailed battery of behavioural assessments. The rotated principle components analysis revealed three key factors, which we labelled as phonology, semantic and executive/cognition on the basis of the common elements in the tests that loaded most strongly on each component. The phonology factor explained the most variance, followed by the semantic factor and then the executive-cognition factor. The use of principle components analysis rendered participants’ scores on these three factors orthogonal and therefore ideal for use as simultaneous continuous predictors in a voxel-based correlational methodology analysis of high resolution structural scans. Phonological processing ability was uniquely related to left posterior perisylvian regions including Heschl’s gyrus, posterior middle and superior temporal gyri and superior temporal sulcus, as well as the white matter underlying the posterior superior temporal gyrus. The semantic factor was uniquely related to left anterior middle temporal gyrus and the underlying temporal stem. The executive-cognition factor was not correlated selectively with the structural integrity of any particular region, as might be expected in light of the widely-distributed and multi-functional nature of the regions that support executive functions. The identified phonological and semantic areas align well with those highlighted by other methodologies such as functional neuroimaging and neurostimulation. The use of principle components analysis allowed us to characterize the neural bases of participants’ behavioural performance more robustly and selectively than the use of raw assessment scores or diagnostic classifications because principle components analysis extracts statistically unique, orthogonal behavioural components of interest. As such, in addition to improving our understanding of lesion–symptom mapping in stroke aphasia, the same approach could be used to clarify brain–behaviour relationships in other neurological disorders. PMID:25348632
Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David
2009-06-01
A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.
Computer simulation of a multiple-aperture coherent laser radar
NASA Astrophysics Data System (ADS)
Gamble, Kevin J.; Weeks, Arthur R.
1996-06-01
This paper presents the construction of a 2D multiple aperture coherent laser radar simulation that is capable of including the effects of the time evolution of speckle on the laser radar output. Every portion of a laser radar system is modeled in software, including quarter and half wave plates, beamsplitters (polarizing and non-polarizing), the detector, the laser source, and all necessary lenses. Free space propagation is implemented using the Rayleigh- Sommerfeld integral for both orthogonal polarizations. Atmospheric turbulence is also included in the simulation and is modeled using time correlated Kolmogorov phase screens. The simulation itself can be configured to simulate both monostatic and bistatic systems. The simulation allows the user to specify component level parameters such as extinction ratios for polarizing beam splitters, detector sizes and shapes. orientation of the slow axis for quarter/half wave plates and other components used in the system. This is useful from a standpoint of being a tool in the design of a multiple aperture laser radar system.
Geometrical relationship for the Einstein and Ricci tensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sida, D.W.
1976-08-01
Components of the Ricci and Einstein tensors are expressed in terms of the Gaussian curvatures of elementary two-spaces formed by the orthogonal coordinate planes, and the results are applied to some standard metrics.
Xie, Jianming [San Diego, CA; Wang, Lei [San Diego, CA; Wu, Ning [Boston, MA; Schultz, Peter G [La Jolla, CA
2008-07-15
Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.
Polarization - A key to an airborne optical system for the detection of oil on water.
NASA Technical Reports Server (NTRS)
Millard, J. P.; Arvesen, J. C.
1973-01-01
Skylight polarization, which varies with the position of the sun in the sky, influences the contrast of oil on water. Good contrast is most consistently obtained by viewing in azimuth directions toward or away from the sun. Contrast is enhanced by imaging selected polarization components and by taking the difference between orthogonal polarization components.
Martin, James E.; Solis, Kyle Jameson
2015-08-07
We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1 : 2 : 3). For each method a symmetry theory has been developed that enables the predictionmore » of the direction and sign of vorticity as functions of the field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude of the torque density induced by the field. In this paper a functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 1 : 3 : 5, that do not have the symmetry required to analyze by symmetry theory. As a result, experimental data are given that show the degree to which this functional is successful in predicting observed trends.« less
Sarfehnia, Arman; Jabbari, Keyvan; Seuntjens, Jan; Podgorsak, Ervin B
2007-07-01
Since taken with megavoltage, forward-directed bremsstrahlung beams, the image quality of current portal images is inferior to that of diagnostic quality images produced by kilovoltage beams. In this paper, the beam quality of orthogonal bremsstrahlung beams defined as the 90 degrees component of the bremsstrahlung distribution produced from megavoltage electron pencil beams striking various targets is presented, and the suitability of their use for improved radiotherapy imaging is evaluated. A 10 MeV electron beam emerging through the research port of a Varian Clinac-18 linac was made to strike targets of carbon, aluminum, and copper. PDD and attenuation measurements of both the forward and orthogonal beams were carried out, and the results were also used to estimate the effective and mean energy of the beams. The mean energy of a spectrum produced by a carbon target dropped by 83% from 1296 keV in the forward direction to 217 keV in the orthogonal direction, while for an aluminum target it dropped by 77% to 412 keV, and for a copper target by 65% to 793 keV. An in-depth Monte Carlo study of photon yield and electron contamination was also performed. Photon yield and effective energy are lower for orthogonal beams than for forward beams, and the differences are more pronounced for targets of lower atomic number. Using their relatively low effective energy, orthogonal bremsstrahlung beams produced by megavoltage electrons striking low atomic number targets yield images with a higher contrast in comparison with forward bremsstrahlung beams.
Group-velocity-locked vector soliton molecules in fiber lasers.
Luo, Yiyang; Cheng, Jianwei; Liu, Bowen; Sun, Qizhen; Li, Lei; Fu, Songnian; Tang, Dingyuan; Zhao, Luming; Liu, Deming
2017-05-24
Physics phenomena of multi-soliton complexes have enriched the life of dissipative solitons in fiber lasers. By developing a birefringence-enhanced fiber laser, we report the first experimental observation of group-velocity-locked vector soliton (GVLVS) molecules. The birefringence-enhanced fiber laser facilitates the generation of GVLVSs, where the two orthogonally polarized components are coupled together to form a multi-soliton complex. Moreover, the interaction of repulsive and attractive forces between multiple pulses binds the particle-like GVLVSs together in time domain to further form compound multi-soliton complexes, namely GVLVS molecules. By adopting the polarization-resolved measurement, we show that the two orthogonally polarized components of the GVLVS molecules are both soliton molecules supported by the strongly modulated spectral fringes and the double-humped intensity profiles. Additionally, GVLVS molecules with various soliton separations are also observed by adjusting the pump power and the polarization controller.
Gap plasmon-based metasurfaces for total control of reflected light
Pors, Anders; Albrektsen, Ole; Radko, Ilya P.; Bozhevolnyi, Sergey I.
2013-01-01
In the quest to miniaturise photonics, it is of paramount importance to control light at the nanoscale. We reveal the main physical mechanism responsible for operation of gap plasmon-based gradient metasurfaces, comprising a periodic arrangement of metal nanobricks, and suggest that two degrees of freedom in the nanobrick geometry allow one to independently control the reflection phases of orthogonal light polarisations. We demonstrate, both theoretically and experimentally, how orthogonal linear polarisations of light at wavelengths close to 800 nm can be manipulated independently, efficiently and in a broad wavelength range by realising polarisation beam splitters and polarisation-independent beam steering, showing at the same time the robustness of metasurface designs towards fabrication tolerances. The presented approach establishes a new class of compact optical components, viz., plasmonic metasurfaces with controlled gradient birefringence, with no dielectric counterparts. It can straightforwardly be adapted to realise new optical components with hitherto inaccessible functionalities. PMID:23831621
A modal analysis of lamellar diffraction gratings in conical mountings
NASA Technical Reports Server (NTRS)
Li, Lifeng
1992-01-01
A rigorous modal analysis of lamellar grating, i.e., gratings having rectangular grooves, in conical mountings is presented. It is an extension of the analysis of Botten et al. which considered non-conical mountings. A key step in the extension is a decomposition of the electromagnetic field in the grating region into two orthogonal components. A computer program implementing this extended modal analysis is capable of dealing with plane wave diffraction by dielectric and metallic gratings with deep grooves, at arbitrary angles of incidence, and having arbitrary incident polarizations. Some numerical examples are included.
Microelectromechanical safing and arming apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, David R; Hoke, Darren A; Weichman, Louis S
2006-05-30
A two-stage acceleration sensing apparatus is disclosed which has applications for use in a fuze assembly for a projected munition. The apparatus, which can be formed by bulk micromachining or LIGA, can sense acceleration components along two orthogonal directions to enable movement of a shuttle from an "as-fabricated" position to a final position and locking of the shuttle in the final position. With the shuttle moved to the final position, the apparatus can perform one or more functions including completing an explosive train or an electrical switch closure, or allowing a light beam to be transmitted through the device.
Microelectromechanical safing and arming apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, David R; Hoke, Darren A; Weichman, Louis S
2008-06-10
A two-stage acceleration sensing apparatus is disclosed which has applications for use in a fuze assembly for a projected munition. The apparatus, which can be formed by bulk micromachining or LIGA, can sense acceleration components along two orthogonal directions to enable movement of a shuttle from an "as-fabricated" position to a final position and locking of the shuttle in the final position. With the shuttle moved to the final position, the apparatus can perform one or more functions including completing an explosive train or an electrical switch closure, or allowing a light beam to be transmitted through the device.
Dean, J C; Wilcox, C H; Daniels, A U; Goodwin, R R; Van Wagoner, E; Dunn, H K
1991-01-01
A new experimental technique for measuring generalized three-dimensional motion of vertebral bodies during cyclic loading in vitro is presented. The system consists of an orthogonal array of three lasers mounted rigidly to one vertebra, and a set of three mutually orthogonal charge-coupled devices mounted rigidly to an adjacent vertebra. Each laser strikes a corresponding charge-coupled device screen. The mathematical model of the system is reduced to a linear set of equations with consequent matrix algebra allowing fast real-time data reduction during cyclic movements of the spine. The range and accuracy of the system is well suited for studying thoracolumbar motion segments. Distinct advantages of the system include miniaturization of the components, the elimination of the need for mechanical linkages between the bodies, and a high degree of accuracy which is not dependent on viewing volume as found in photogrammetric systems. More generally, the spectrum of potential applications of systems of this type to the real-time measurement of the relative motion of two bodies is extremely broad.
Bayesian estimation of Karhunen–Loève expansions; A random subspace approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhary, Kenny; Najm, Habib N.
One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less
Bayesian estimation of Karhunen–Loève expansions; A random subspace approach
Chowdhary, Kenny; Najm, Habib N.
2016-04-13
One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less
NASA Technical Reports Server (NTRS)
Penskiy, Ivan (Inventor); Charalambides, Alexandros (Inventor); Bergbreiter, Sarah (Inventor)
2018-01-01
At least one tactile sensor includes an insulating layer and a conductive layer formed on the surface of the insulating layer. The conductive layer defines at least one group of flexible projections extending orthogonally from the surface of the insulating layer. The flexible projections include a major projection extending a distance orthogonally from the surface and at least one minor projection that is adjacent to and separate from the major projection wherein the major projection extends a distance orthogonally that is greater than the distance that the minor projection extends orthogonally. Upon a compressive force normal to, or a shear force parallel to, the surface, the major projection and the minor projection flex such that an electrical contact resistance is formed between the major projection and the minor projection. A capacitive tactile sensor is also disclosed that responds to the normal and shear forces.
NASA Astrophysics Data System (ADS)
Karnowski, Karol; Li, Qingyun; Villiger, Martin; Sampson, David D.
2017-02-01
Polarisation sensitive optical coherence tomography (PS-OCT) offers additional intrinsic contrast to probe differences between healthy tissue and cancer that are often barely visible due to limited scattering contrast in an OCT image. PS-OCT reconstructs tissue birefringence from phase-sensitive measurements of orthogonal polarisation components of backscattering. In material science, polarisation has been used to study stress distribution, including the birefringence induced by stress in an otherwise isotropic material. Similar effects in biological tissues have not been well studied yet; however, may have application to tissues subjected to stress, e.g., tendons, muscles, lens, cornea or airway smooth muscle (ASM). The objective of this work is to explore stress-induced birefringence in tissue. We employ an advanced swept source-based PS-OCT system capable of measurement of tissue local polarisation properties. The sample in both cases is illuminated with orthogonal, passively depth-encoded polarisation states. Light returning from the tissue is detected via a polarisation-diversity detection module and a Mueller formalism is used to reconstruct polarisation properties (including retardation, diattenuation, and depolarisation) of the tissue. In this study, we demonstrate the measurement of stress-induced birefringence in phantoms and in soft tissues with polarisation sensitive optical coherence tomography.
A Method to Recognize Anatomical Site and Image Acquisition View in X-ray Images.
Chang, Xiao; Mazur, Thomas; Li, H Harold; Yang, Deshan
2017-12-01
A method was developed to recognize anatomical site and image acquisition view automatically in 2D X-ray images that are used in image-guided radiation therapy. The purpose is to enable site and view dependent automation and optimization in the image processing tasks including 2D-2D image registration, 2D image contrast enhancement, and independent treatment site confirmation. The X-ray images for 180 patients of six disease sites (the brain, head-neck, breast, lung, abdomen, and pelvis) were included in this study with 30 patients each site and two images of orthogonal views each patient. A hierarchical multiclass recognition model was developed to recognize general site first and then specific site. Each node of the hierarchical model recognized the images using a feature extraction step based on principal component analysis followed by a binary classification step based on support vector machine. Given two images in known orthogonal views, the site recognition model achieved a 99% average F1 score across the six sites. If the views were unknown in the images, the average F1 score was 97%. If only one image was taken either with or without view information, the average F1 score was 94%. The accuracy of the site-specific view recognition models was 100%.
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
Church, George M.; Esvelt, Kevin; Mali, Prashant
2017-03-07
Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.
Measurement of the temperature coefficient of ratio transformers
NASA Technical Reports Server (NTRS)
Briggs, Matthew E.; Gammon, Robert W.; Shaumeyer, J. N.
1993-01-01
We have measured the temperature coefficient of the output of several ratio transformers at ratios near 0.500,000 using an ac bridge and a dual-phase, lock-in amplifier. The two orthogonal output components were each resolved to +/- ppb of the bridge drive signal. The results for three commercial ratio transformers between 20 and 50 C range from 0.5 to 100 ppb/K for the signal component in phase with the bridge drive, and from 4 to 300 ppb/K for the quadrature component.
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Morelli, Eugene A.
2011-01-01
Multiple mutually orthogonal signals comprise excitation data sets for aeroservoelastic system identification. A multisine signal is a sum of harmonic sinusoid components. A set of these signals is made orthogonal by distribution of the frequency content such that each signal contains unique frequencies. This research extends the range of application of an excitation method developed for stability and control flight testing to aeroservoelastic modeling from wind tunnel testing. Wind tunnel data for the Joined Wing SensorCraft model validates this method, demonstrating that these signals applied simultaneously reproduce the frequency response estimates achieved from one-at-a-time excitation.
On implementation of the extended interior penalty function. [optimum structural design
NASA Technical Reports Server (NTRS)
Cassis, J. H.; Schmit, L. A., Jr.
1976-01-01
The extended interior penalty function formulation is implemented. A rational method for determining the transition between the interior and extended parts is set forth. The formulation includes a straightforward method for avoiding design points with some negative components, which are physically meaningless in structural analysis. The technique, when extended to problems involving parametric constraints, can facilitate closed form integration of the penalty terms over the most important parts of the parameter interval. The method lends itself well to the use of approximation concepts, such as design variable linking, constraint deletion and Taylor series expansions of response quantities in terms of design variables. Examples demonstrating the algorithm, in the context of planar orthogonal frames subjected to ground motion, are included.
Burgués, Javier; Marco, Santiago
2018-08-17
Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.
Multi-Component, Multi-Point Interferometric Rayleigh/Mie Doppler Velocimeter
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Lee, Joseph W.; Bivolaru, Daniel
2012-01-01
An interferometric Rayleigh scattering system was developed to enable the measurement of multiple, orthogonal velocity components at several points within very-high-speed or high-temperature flows. The velocity of a gaseous flow can be optically measured by sending laser light into the gas flow, and then measuring the scattered light signal that is returned from matter within the flow. Scattering can arise from either gas molecules within the flow itself, known as Rayleigh scattering, or from particles within the flow, known as Mie scattering. Measuring Mie scattering is the basis of all commercial laser Doppler and particle imaging velocimetry systems, but particle seeding is problematic when measuring high-speed and high-temperature flows. The velocimeter is designed to measure the Doppler shift from only Rayleigh scattering, and does not require, but can also measure, particles within the flow. The system combines a direct-view, large-optic interferometric setup that calculates the Doppler shift from fringe patterns collected with a digital camera, and a subsystem to capture and re-circulate scattered light to maximize signal density. By measuring two orthogonal components of the velocity at multiple positions in the flow volume, the accuracy and usefulness of the flow measurement increase significantly over single or nonorthogonal component approaches.
NASA Astrophysics Data System (ADS)
Talebpour, Zahra; Tavallaie, Roya; Ahmadi, Seyyed Hamid; Abdollahpour, Assem
2010-09-01
In this study, a new method for the simultaneous determination of penicillin G salts in pharmaceutical mixture via FT-IR spectroscopy combined with chemometrics was investigated. The mixture of penicillin G salts is a complex system due to similar analytical characteristics of components. Partial least squares (PLS) and radial basis function-partial least squares (RBF-PLS) were used to develop the linear and nonlinear relation between spectra and components, respectively. The orthogonal signal correction (OSC) preprocessing method was used to correct unexpected information, such as spectral overlapping and scattering effects. In order to compare the influence of OSC on PLS and RBF-PLS models, the optimal linear (PLS) and nonlinear (RBF-PLS) models based on conventional and OSC preprocessed spectra were established and compared. The obtained results demonstrated that OSC clearly enhanced the performance of both RBF-PLS and PLS calibration models. Also in the case of some nonlinear relation between spectra and component, OSC-RBF-PLS gave satisfactory results than OSC-PLS model which indicated that the OSC was helpful to remove extrinsic deviations from linearity without elimination of nonlinear information related to component. The chemometric models were tested on an external dataset and finally applied to the analysis commercialized injection product of penicillin G salts.
Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers.
Park, Yun Ji; Park, Soo-Yun; Valan Arasu, Mariadhas; Al-Dhabi, Naif Abdullah; Ahn, Hyung-Geun; Kim, Jae Kwang; Park, Sang Un
2017-02-18
Species of Tagetes , which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula . In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9- cis -β-carotene, and 13- cis -β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA) facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) results provided a clear discrimination between T. erecta and T. patula . Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.
Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Haag, Thomas W.
1999-01-01
Pulsed plasma thrusters are low thrust propulsive devices which have a high specific impulse at low power. A pulsed plasma thruster is currently scheduled to fly as an experiment on NASA's Earth Observing-1 satellite mission. The pulsed plasma thruster will be used to replace one of the reaction wheels. As part of the qualification testing of the thruster it is necessary to determine the nominal thrust as a function of charge energy. These data will be used to determine control algorithms. Testing was first completed on a breadboard pulsed plasma thruster to determine nominal or primary axis thrust and associated propellant mass consumption as a function of energy and then later to determine if any significant off-axis thrust component existed. On conclusion that there was a significant off-axis thrust component with the bread-board in the direction of the anode electrode, the test matrix was expanded on the flight hardware to include thrust measurements along all three orthogonal axes. Similar off-axis components were found with the flight unit.
Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger; Lenarduzzi, Roberto; Killough, Stephen M
Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detectmore » the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.« less
[Study on the optimal extraction process of chaihushugan powder].
Wang, Chun-yan; Zhang, Wan-ming; Zhang, Dan-shen; An, Fang; Tian, Jia-ming
2009-11-01
To study the optimal extraction process of chaihushugan powder by orthogonal design. RP-HPLC method was developed for the determination of saikosaponin a, ferulic acid, hesperidin and paeoniflorin in chaihushugan powder. The contents of the components and the extraction yield were selected as assessment indices. Four factors were study by L9 (3(4)), including the alcohol concentration, amount of alcohol, duration of extraction and times of extraction. The optimal extracting condition was 80% alcohol consumed as 10 times of crude herb amount, and extracting two times for 90 min each time. This study supplies theoretical base for the development of chaihushugan powder formulation.
Compression strength of composite primary structural components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.
1992-01-01
A status report of work performed during the period May 1, 1992 to October 31, 1992 is presented. Research was conducted in three areas: delamination initiation in postbuckled dropped-ply laminates; stiffener crippling initiated by delamination; and pressure pillowing of an orthogonally stiffened cylindrical shell. The geometrically nonlinear response and delamination initiation of compression-loaded dropped-ply laminates is analyzed. A computational model of the stiffener specimens that includes the capability to predict the interlaminar response at the flange free edge in postbuckling is developed. The distribution of the interacting loads between the stiffeners and the shell wall, particularly at the load transfer at the stiffener crossing point, is determined.
Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V
2016-02-01
A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural aspects of face recognition and the other-race effect.
O'Toole, A J; Deffenbacher, K A; Valentin, D; Abdi, H
1994-03-01
The other-race effect was examined in a series of experiments and simulations that looked at the relationships among observer ratings of typicality, familiarity, attractiveness, memorability, and the performance variables of d' and criterion. Experiment 1 replicated the other-race effect with our Caucasian and Japanese stimuli for both Caucasian and Asian observers. In Experiment 2, we collected ratings from Caucasian observers on the faces used in the recognition task. A Varimax-rotated principal components analysis on the rating and performance data for the Caucasian faces replicated Vokey and Read's (1992) finding that typicality is composed of two orthogonal components, dissociable via their independent relationships to: (1) attractiveness and familiarity ratings and (2) memorability ratings. For Japanese faces, however, we found that typicality was related only to memorability. Where performance measures were concerned, two additional principal components dominated by criterion and by d' emerged for Caucasian faces. For the Japanese faces, however, the performance measures of d' and criterion merged into a single component that represented a second component of typicality, one orthogonal to the memorability-dominated component. A measure of face representation quality extracted from an autoassociative neural network trained with a majority of Caucasian faces and a minority of Japanese faces was incorporated into the principal components analysis. For both Caucasian and Japanese faces, the neural network measure related both to memorability ratings and to human accuracy measures. Combined, the human data and simulation results indicate that the memorability component of typicality may be related to small, local, distinctive features, whereas the attractiveness/familiarity component may be more related to the global, shape-based properties of the face.
Ottaway, Josh; Farrell, Jeremy A; Kalivas, John H
2013-02-05
An essential part to calibration is establishing the analyte calibration reference samples. These samples must characterize the sample matrix and measurement conditions (chemical, physical, instrumental, and environmental) of any sample to be predicted. Calibration usually requires measuring spectra for numerous reference samples in addition to determining the corresponding analyte reference values. Both tasks are typically time-consuming and costly. This paper reports on a method named pure component Tikhonov regularization (PCTR) that does not require laboratory prepared or determined reference values. Instead, an analyte pure component spectrum is used in conjunction with nonanalyte spectra for calibration. Nonanalyte spectra can be from different sources including pure component interference samples, blanks, and constant analyte samples. The approach is also applicable to calibration maintenance when the analyte pure component spectrum is measured in one set of conditions and nonanalyte spectra are measured in new conditions. The PCTR method balances the trade-offs between calibration model shrinkage and the degree of orthogonality to the nonanalyte content (model direction) in order to obtain accurate predictions. Using visible and near-infrared (NIR) spectral data sets, the PCTR results are comparable to those obtained using ridge regression (RR) with reference calibration sets. The flexibility of PCTR also allows including reference samples if such samples are available.
Extraction of object skeletons in multispectral imagery by the orthogonal regression fitting
NASA Astrophysics Data System (ADS)
Palenichka, Roman M.; Zaremba, Marek B.
2003-03-01
Accurate and automatic extraction of skeletal shape of objects of interest from satellite images provides an efficient solution to such image analysis tasks as object detection, object identification, and shape description. The problem of skeletal shape extraction can be effectively solved in three basic steps: intensity clustering (i.e. segmentation) of objects, extraction of a structural graph of the object shape, and refinement of structural graph by the orthogonal regression fitting. The objects of interest are segmented from the background by a clustering transformation of primary features (spectral components) with respect to each pixel. The structural graph is composed of connected skeleton vertices and represents the topology of the skeleton. In the general case, it is a quite rough piecewise-linear representation of object skeletons. The positions of skeleton vertices on the image plane are adjusted by means of the orthogonal regression fitting. It consists of changing positions of existing vertices according to the minimum of the mean orthogonal distances and, eventually, adding new vertices in-between if a given accuracy if not yet satisfied. Vertices of initial piecewise-linear skeletons are extracted by using a multi-scale image relevance function. The relevance function is an image local operator that has local maximums at the centers of the objects of interest.
Compatibility of Motion Facilitates Visuomotor Synchronization
ERIC Educational Resources Information Center
Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.
2010-01-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…
WFIRST: Principal Components Analysis of H4RG-10 Near-IR Detector Data Cubes
NASA Astrophysics Data System (ADS)
Rauscher, Bernard
2018-01-01
The Wide Field Infrared Survey Telescope’s (WFIRST) Wide Field Instrument (WFI) incorporates an array of eighteen Teledyne H4RG-10 near-IR detector arrays. Because WFIRST’s science investigations require controlling systematic uncertainties to state-of-the-art levels, we conducted principal components analysis (PCA) of some H4RG-10 test data obtained in the NASA Goddard Space Flight Center Detector Characterization Laboratory (DCL). The PCA indicates that the Legendre polynomials provide a nearly orthogonal representation of up-the-ramp sampled illuminated data cubes, and suggests other representations that may provide an even more compact representation of the data in some circumstances. We hypothesize that by using orthogonal representations, such as those described here, it may be possible to control systematic errors better than has been achieved before for NASA missions. We believe that these findings are probably applicable to other H4RG, H2RG, and H1RG based systems.
Non-Orthogonality of Seafloor Spreading: A New Look at Fast Spreading Centers
NASA Astrophysics Data System (ADS)
Zhang, T.; Gordon, R. G.
2015-12-01
Most of Earth's surface is created by seafloor spreading. While most seafloor spreading is orthogonal, that is, the strike of mid-ocean ridge segments is perpendicular to nearby transform faults, examples of significant non-orthogonality have been noted since the 1970s, in particular in regions of slow seafloor spreading such as the western Gulf of Aden with non-orthogonality up to 45°. In contrast, here we focus on fast and ultra-fast seafloor spreading along the East Pacific Rise. To estimate non-orthogonality, we compare ridge-segment strikes with the direction of plate motion determined from the angular velocity that best fits all the data along the boundary of a single plate pair [DeMets et al., 2010]. The advantages of this approach include greater accuracy and the ability to estimate non-orthogonality where there are no nearby transform faults. Estimating the strikes of fast-spreading mid-ocean ridge segments present several challenges as non-transform offsets on various scales affect the estimate of the strike. While spreading is orthogonal or nearly orthogonal along much of the East Pacific Rise, some ridge segments along the Pacific-Nazca boundary near 30°S and near 16°S-22°S deviate from orthogonality by as much as 6°-12° even when we exclude the portions of mid-ocean ridge segments involved in overlapping spreading centers. Thus modest but significant non-orthogonality occurs where seafloor spreading is the fastest on the planet. If a plume lies near the ridge segment, we assume it contributes to magma overpressure along the ridge segment [Abelson & Agnon, 1997]. We further assume that the contribution to magma overpressure is proportional to the buoyancy flux of the plume [Sleep, 1990] and inversely proportional to the distance between the mid-ocean ridge segment and a given plume. We find that the non-orthogonal angle tends to decrease with increasing spreading rate and with increasing distance between ridge segment and plume.
Extreme-UV scanning wafer and reticle stages
Williams, Mark E.
2002-01-01
A stage for precise positioning of a chuck in three orthogonal linear axes and in three orthogonal rotation axes that includes first and second subassemblies. The a first subassembly includes (i) a monolithic mirror that supports the chuck wherein the monolithic mirror has at least two polished orthogonal faces for interferometric determination of the X, Y, and .THETA.z positions; (ii) a plurality of electromagnetic actuators that control fine positioning in all six axes and coarse positioning in one axis; (iii) a position sensor for measuring the vertical Z position of the monolithic mirror; and (iv) a Lorentz actuator, that includes magnet array, for effecting motion in the Y axis. The a second subassembly comprising a stepping axis beam over which the first subassembly is suspended, wherein the stepping axis beam includes a drive coil array for the Lorentz actuator. T the stage can also include a cable stage subassembly that is positioned a fixed distance away from the monolithic mirror and/or a mechanical zero reference for the first subassembly.
Polarization squeezing of light by single passage through an atomic vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreiro, S.; Valente, P.; Failache, H.
We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant {sup 87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications.
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi
2018-02-01
In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.
Peterson, Leif E
2002-01-01
CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816
Large Covariance Estimation by Thresholding Principal Orthogonal Complements
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088
Large Covariance Estimation by Thresholding Principal Orthogonal Complements.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2013-09-01
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.
NASA Astrophysics Data System (ADS)
Adi-Kusumo, Fajar; Gunardi, Utami, Herni; Nurjani, Emilya; Sopaheluwakan, Ardhasena; Aluicius, Irwan Endrayanto; Christiawan, Titus
2016-02-01
We consider the Empirical Orthogonal Function (EOF) to study the rainfall pattern in Daerah Istimewa Yogyakarta (DIY) Province, Indonesia. The EOF is one of the important methods to study the dominant pattern of the data using dimension reduction technique. EOF makes possible to reduce the huge dimension of observed data into a smaller one without losing its significant information in order to figures the whole data. The methods is also known as Principal Components Analysis (PCA) which is conducted to find the pattern of the data. DIY Province is one of the province in Indonesia which has special characteristics related to the rainfall pattern. This province has an active volcano, karst, highlands, and also some lower area including beach. This province is bounded by the Indonesian ocean which is one of the important factor to provide the rainfall. We use at least ten years rainfall monthly data of all stations in this area and study the rainfall characteristics based on the four regencies of the province. EOF analysis is conducted to analyze data in order to decide the station groups which have similar characters.
Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality
NASA Astrophysics Data System (ADS)
Ayala, Mario; Carinci, Gioia; Redig, Frank
2018-06-01
We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.
Dynamic trapping of a polarization rotation vector soliton in a fiber laser.
Liu, Meng; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng
2017-01-15
Ultrafast fiber laser, as a dissipative nonlinear optical system, plays an important role in investigating various nonlinear phenomena and soliton dynamics. Vector features of solitons, including polarization locked and polarization rotation vector solitons (PRVSs), are interesting nonlinear dynamics in ultrafast fiber lasers. Herein, we experimentally reveal the trapping characteristics of PRVSs for the first time, to the best of our best knowledge. We show that, for the conventional soliton trapping in the ultrafast fiber laser, the soliton central wavelengths of the two polarization components are constant at the laser output port. However, it is found that the dynamic trapping can be observed for the PRVS. That is, the peak frequencies along the two orthogonal polarization directions are dynamically alternating, depending on the relative intensities of the two polarization components. The obtained results would further unveil the physical mechanism of PRVSs.
Does the Coherent Lidar System Corroborate Non-Interaction of Waves (NIW)?
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2013-01-01
The NIW (non-interaction of waves) property has been proposed by one of the coauthors. The NIW property states that in the absence of any "obstructing" detectors, all the Huygens-Fresnel secondary wavelets will continue to propagate unhindered and without interacting (interfering) with each other. Since a coherent lidar system incorporates complex behaviors of optical components with different polarizations including circular polarization for the transmitted radiation, then the question arises whether the NIW principle accommodate elliptical polarization of light. Elliptical polarization presumes the summation of orthogonally polarized electric field vectors which contradicts the NIW principle. In this paper, we present working of a coherent lidar system using Jones matrix formulation. The Jones matrix elements represent the anisotropic dipolar properties of molecules of optical components. Accordingly, when we use the Jones matrix methodology to analyze the coherent lidar system, we find that the system behavior is congruent with the NIW property.
Inelastic Vector Soliton Collisions: A Lattice-Based Quantum Representation
2004-01-01
components in these orthogonal polarizations will travel at slightly different speeds. It can be shown (Lakshmanan & Kanna 2001) that the slowly varying...media. Phys. Rev. E 58, 6752-6758. Kivshar, Y. S. & Agrawal, G. P. 2003 Optical solitons. Academic. Lakshmanan, M. & Kanna , T. 2001 Shape changing
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun
2008-05-01
This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.
Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.
Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C
2013-03-01
This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers.
Stated Choice design comparison in a developing country: recall and attribute nonattendance
2014-01-01
Background Experimental designs constitute a vital component of all Stated Choice (aka discrete choice experiment) studies. However, there exists limited empirical evaluation of the statistical benefits of Stated Choice (SC) experimental designs that employ non-zero prior estimates in constructing non-orthogonal constrained designs. This paper statistically compares the performance of contrasting SC experimental designs. In so doing, the effect of respondent literacy on patterns of Attribute non-Attendance (ANA) across fractional factorial orthogonal and efficient designs is also evaluated. The study uses a ‘real’ SC design to model consumer choice of primary health care providers in rural north India. A total of 623 respondents were sampled across four villages in Uttar Pradesh, India. Methods Comparison of orthogonal and efficient SC experimental designs is based on several measures. Appropriate comparison of each design’s respective efficiency measure is made using D-error results. Standardised Akaike Information Criteria are compared between designs and across recall periods. Comparisons control for stated and inferred ANA. Coefficient and standard error estimates are also compared. Results The added complexity of the efficient SC design, theorised elsewhere, is reflected in higher estimated amounts of ANA among illiterate respondents. However, controlling for ANA using stated and inferred methods consistently shows that the efficient design performs statistically better. Modelling SC data from the orthogonal and efficient design shows that model-fit of the efficient design outperform the orthogonal design when using a 14-day recall period. The performance of the orthogonal design, with respect to standardised AIC model-fit, is better when longer recall periods of 30-days, 6-months and 12-months are used. Conclusions The effect of the efficient design’s cognitive demand is apparent among literate and illiterate respondents, although, more pronounced among illiterate respondents. This study empirically confirms that relaxing the orthogonality constraint of SC experimental designs increases the information collected in choice tasks, subject to the accuracy of the non-zero priors in the design and the correct specification of a ‘real’ SC recall period. PMID:25386388
Merritt, J S; Burvill, C R; Pandy, M G; Davies, H M S
2006-08-01
The mechanical environment of the distal limb is thought to be involved in the pathogenesis of many injuries, but has not yet been thoroughly described. To determine the forces and moments experienced by the metacarpus in vivo during walking and also to assess the effect of some simplifying assumptions used in analysis. Strains from 8 gauges adhered to the left metacarpus of one horse were recorded in vivo during walking. Two different models - one based upon the mechanical theory of beams and shafts and, the other, based upon a finite element analysis (FEA) - were used to determine the external loads applied at the ends of the bone. Five orthogonal force and moment components were resolved by the analysis. In addition, 2 orthogonal bending moments were calculated near mid-shaft. Axial force was found to be the major loading component and displayed a bi-modal pattern during the stance phase of the stride. The shaft model of the bone showed good agreement with the FEA model, despite making many simplifying assumptions. A 3-dimensional loading scenario was observed in the metacarpus, with axial force being the major component. These results provide an opportunity to validate mathematical (computer) models of the limb. The data may also assist in the formulation of hypotheses regarding the pathogenesis of injuries to the distal limb.
Systems for the expression of orthogonal translation components in eubacterial host cells
Ryu, Youngha; Schultz, Peter G.
2013-01-22
The invention related to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural acids at genetically-programmed positions.
Linearly polarized fiber amplifier
Kliner, Dahv A.; Koplow, Jeffery P.
2004-11-30
Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.
Systems for the expression of orthogonal translation components in eubacterial host cells
Ryu, Youngha [San Diego, CA; Schultz, Peter G [La Jolla, CA
2011-06-14
The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.
Systems for the expression of orthogonal translation components eubacterial host cells
Ryu, Youngha [San Diego, CA; Schultz, Peter G [La Jolla, CA
2012-06-12
The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.
Orthogonal Projection in Teaching Regression and Financial Mathematics
ERIC Educational Resources Information Center
Kachapova, Farida; Kachapov, Ilias
2010-01-01
Two improvements in teaching linear regression are suggested. The first is to include the population regression model at the beginning of the topic. The second is to use a geometric approach: to interpret the regression estimate as an orthogonal projection and the estimation error as the distance (which is minimized by the projection). Linear…
NASA Technical Reports Server (NTRS)
Beckman, Brian C. (Inventor)
1995-01-01
A virtual reality flight control system displays to the pilot the image of a scene surrounding a vehicle or pod having six degrees of freedom of acceleration or velocity control by the pilot and traveling through inertial space, the image itself including a superimposed figure providing the pilot an instant reference of orientation consisting of superimposed sets of geometric figures whose relative orientations provide the pilot an instantaneous feel or sense of orientation changes with respect to some fixed coordinate system. They include a first set of geometric figures whose orientations are fixed to the pilot's vehicle and a second set of geometric figures whose orientations are fixed with respect to a fixed or interstellar coordinate system. The first set of figures is a first set of orthogonal great circles about the three orthogonal axes of the flight vehicle or pod and centered at and surrounding the pilot's head, while the second set of figures is a second set of orthogonal great circles about the three orthogonal axes of a fixed or interstellar coordinate system, also centered at and surrounding the pilot's head.
Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights
NASA Astrophysics Data System (ADS)
Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.
2009-12-01
We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.
Research on polarization vector characteristics in a microfiber-based graphene fiber laser
NASA Astrophysics Data System (ADS)
Han, Mengmeng; Zhang, Shumin; Li, Xingliang; Han, Huiyun; Liu, Jingmin; Yan, Dan
2016-11-01
We experimentally investigated the polarization vector characteristics in an Er-doped fiber laser based on graphene that was deposited on microfiber. A variety of dynamic states, including polarization locked fundamental soliton, and polarization domain wall square pulses and their harmonic mode locked counterparts have all been observed with different pump powers and polarization states. These results indicated that the microfiber-based graphene not only could act as a saturable absorber but also could provide high nonlinearity, which is favorable for the cross coupling between the two orthogonal polarization components. It was worth to mention that it is the first time to obtain the polarization domain wall solitons in a mode locked fiber laser.
Zhu, S N; Wu, Z C; Fu, S N; Zhao, L M
2018-03-20
Details of various composites of the projections originated from a fundamental group-velocity-locked vector dissipative soliton (GVLVDS) are both experimentally and numerically explored. By combining the projections from the orthogonal polarization components of the GVLVDS, a high-order vector soliton structure with a double-humped pulse profile along one polarization and a single-humped pulse profile along the orthogonal polarization can be observed. Moreover, by de-chirping the composite double-humped pulse, the time separation between the two humps is reduced from 15.36 ps to 1.28 ps, indicating that the frequency chirp of the GVLVDS contributes significantly to the shaping of the double-humped pulse profile.
Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser.
Zhang, H; Tang, D Y; Zhao, L M; Tam, H Y
2008-10-15
We report on the experimental observation of induced solitons in a passively mode-locked fiber ring laser with a birefringence cavity. Owing to the cross coupling between the two orthogonal polarization components of the laser, it was found that if a soliton was formed along one cavity polarization axis, a weak soliton was also induced along the orthogonal polarization axis, and depending on the net cavity birefringence, the induced soliton could have either the same or different center wavelengths to that of the inducing soliton. Moreover, the induced soliton always had the same group velocity as that of the inducing soliton. They formed a vector soliton in the cavity. Numerical simulations confirmed the experimental observations.
NASA Astrophysics Data System (ADS)
Ali, Kashif; Akbar, Muhammad Zubair; Iqbal, Muhammad Farooq; Ashraf, Muhammad
2014-10-01
The paper deals with the study of heat and mass transfer in an unsteady viscous incompressible water-based nanofluid (containing Titanium dioxide nanoparticles) between two orthogonally moving porous coaxial disks with suction. A combination of iterative (successive over relaxation) and a direct method is employed for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar ODEs. It has been noticed that the rate of mass transfer at the disks decreases with the permeability Reynolds number whether the disks are approaching or receding. The findings of the present investigation may be beneficial for the electronic industry in maintaining the electronic components under effective and safe operational conditions.
Meng, Jiang; Dong, Xiao-ping; Zhou, Yi-sheng; Jiang, Zhi-hong; Leung, Kelvin Sze-Yin; Zhao, Zhong-zhen
2007-02-01
To optimize the extraction procedure of essential oil from H. cordata using the SFE-CO2 and analyze the chemical composition of the essential oil. The extraction procedure of essential oil from fresh H. cordata was optimized with the orthogonal experiment. Essential oil of fresh H. cordata was analysed by GC-MS. The optimize preparative procedure was as follow: essential oil of H. cordata was extracted at a temperature of 35 degrees C, pressure of 15,000 kPa for 20 min. 38 chemical components were identified and the relative contents were quantified. The optimum preparative procedure is reliable and can guarantee the quality of essential oil.
NASA Astrophysics Data System (ADS)
Avitabile, Daniele; Bridges, Thomas J.
2010-06-01
Numerical integration of complex linear systems of ODEs depending analytically on an eigenvalue parameter are considered. Complex orthogonalization, which is required to stabilize the numerical integration, results in non-analytic systems. It is shown that properties of eigenvalues are still efficiently recoverable by extracting information from a non-analytic characteristic function. The orthonormal systems are constructed using the geometry of Stiefel bundles. Different forms of continuous orthogonalization in the literature are shown to correspond to different choices of connection one-form on the Stiefel bundle. For the numerical integration, Gauss-Legendre Runge-Kutta algorithms are the principal choice for preserving orthogonality, and performance results are shown for a range of GLRK methods. The theory and methods are tested by application to example boundary value problems including the Orr-Sommerfeld equation in hydrodynamic stability.
Dual differential interferometer for measurements of broadband surface acoustic waves
NASA Technical Reports Server (NTRS)
Turner, T. M.; Claus, R. O.
1981-01-01
A simple duel interferometer which uses two pairs of orthogonally polarized optical beams to measure both the amplitude and direction of propagation of broadband ultrasonic surface waves is described. Each pair of focused laser probe beams is used in a separate wideband differential interferometer to independently detect the component of surface wave motion along one direction on the surface. By combining the two output signals corresponding to both components, the two dimensional surface profile and its variation as a function of time is determined.
Propagation optical quarks after an uniaxial crystal: the experiment
NASA Astrophysics Data System (ADS)
Egorov, Yu. A.; Konovalenko, V. L.; Zinovev, A. O.; Anischenko, P. M.; Glumova, M. V.
2013-12-01
There is a lots of different papers reporting about the propagation of the different types of an optical beams in a uniaxial crystals are known by that time. This beams are: Lager-Gaussian and Bessel- Gaussian beams. It is common for all this types of beams, that if propagation axis and crystal axis coincides, and accident beam had a circular polarization, are can get type spiral type degenerated umbilici, which corresponds to the charge 2 optical vortex in the orthogonal polarized beam component, generated by crystal [1] (Fig 1). This generation accurse due to total angular momentum conservation law symmetry axis of the crystal. One to the changing of the spin momentum which is associated with the beam polarization, this leads to the orbital momentum changes that associated with topological charge of formed orthogonal circular component. Double charged optical vortex could be easily perturbed by tilting beam axis with respect to the crystal axis. If the tilt angles are small (<0.1°) central umbilici splits on two lemons and the surrounding ring umbilici splits on two pairs of monster-star. The further increasing of the tilt angle leads to the topological charge of circular components becomes, equal, and additional orbital moment correspond to the beam mass center displacement.
ERIC Educational Resources Information Center
Chatman, Steve
2009-01-01
This technical report summarizes the third independent factor analysis of the SERU/UCUES questionnaire responses of students with majors. The 2009 solution employed the same quantitative analysis used in the prior solutions--varimax orthogonal rotation to determine principal components followed by promax oblique rotation to identify…
Locally Dependent Linear Logistic Test Model with Person Covariates
ERIC Educational Resources Information Center
Ip, Edward H.; Smits, Dirk J. M.; De Boeck, Paul
2009-01-01
The article proposes a family of item-response models that allow the separate and independent specification of three orthogonal components: item attribute, person covariate, and local item dependence. Special interest lies in extending the linear logistic test model, which is commonly used to measure item attributes, to tests with embedded item…
ERIC Educational Resources Information Center
Primi, Ricardo
2002-01-01
Created two geometric inductive reasoning matrix tests by manipulating four sources of complexity orthogonally. Results for 313 undergraduates show that fluid intelligence is most strongly associated with the part of the central executive component of working memory that is related to controlled attention processing and selective encoding. (SLD)
Folded-path optical analysis gas cell
Carangelo, R.M.; Wright, D.D.
1995-08-08
A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.
Asymmetry of bifurcated features in radio pulsar profiles
NASA Astrophysics Data System (ADS)
Dyks, J.; Rudak, B.
2012-03-01
High-quality integrated radio profiles of some pulsars contain bifurcated, highly symmetric emission components (BECs). They are observed when our line of sight traverses through a split-fan shaped emission beam. It is shown that for oblique cuts through such a beam, the features appear asymmetric at nearly all frequencies, except for a single 'frequency of symmetry'νsym, at which both peaks in the BEC have the same height. Around νsym, the ratio of flux in the two peaks of a BEC evolves in a way resembling the multifrequency behaviour of J1012+5307. Because of the inherent asymmetry resulting from the oblique traverse of the sightline, each minimum in double notches can be modelled independently. Such a composed model reproduces the double notches of B1929+10 if the fitted function is the microscopic beam of curvature radiation in the orthogonal polarization mode. These results confirm our view that some of the double components in radio pulsar profiles directly reveal the microscopic nature of the emitted radiation beam as the microbeam of the curvature radiation polarized orthogonally to the trajectory of electrons.
Blind column selection protocol for two-dimensional high performance liquid chromatography.
Burns, Niki K; Andrighetto, Luke M; Conlan, Xavier A; Purcell, Stuart D; Barnett, Neil W; Denning, Jacquie; Francis, Paul S; Stevenson, Paul G
2016-07-01
The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material. Copyright © 2016 Elsevier B.V. All rights reserved.
Self-Noise of the STS-2 and sensitivity of its computation to errors in alignment of sensors
NASA Astrophysics Data System (ADS)
Gerner, Andreas; Sleeman, Reinoud; Grasemann, Bernhard; Lenhardt, Wolfgang
2016-04-01
The assessment of a seismometer's self-noise is an important part of establishing its health, quality, and suitability. A spectral coherence technique proposed by Sleeman et al. (2006) using synchronously recorded data of triples of collocated and co-aligned seismometers has shown to be a very robust and reliable way to estimate the self-noise of modern broadband seismic sensors. It has been demonstrated in previous works that the resulting self-noise spectra, primarily in the frequency range of Earth's microseisms, are considerably affected by small errors in the alignment of sensors. Further, due to the sensitivity of the 3-channel correlation technique to misalignment, numerical rotation of the recorded traces prior to self-noise computation can be performed to find best possible alignment by searching for minimum self-noise values. In this study we focus on the sensitivity of the 3-channel correlation technique to misalignment, and investigate the possibility of complete removal of the microseism signal from self-noise estimates for the sensors' three components separately. Data from a long-term installation of four STS-2 sensors, specifically intended for self-noise studies, at the Conrad Observatory (Austria) in a collaboration between the KNMI (Netherlands) and the ZAMG (Austria) provides a reliable basis for an accurate sensitivity analysis and self-noise assessment. Our work resulted in undisturbed self-noise estimates for the vertical components, and our current focus is on improving alignment of horizontal axes, and verification of the manufacturer's specification regarding orthogonality of all three components. The tools and methods developed within this research can help to quickly establish consistent self-noise models, including estimates of orthogonality and alignment, which facilitates comparison of different models and provides us with a means to test quality and accuracy of a seismic sensor over its life span.
The Influence Function of Principal Component Analysis by Self-Organizing Rule.
Higuchi; Eguchi
1998-07-28
This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.
Coherent orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less
NASA Technical Reports Server (NTRS)
Gnoffo, P. A.
1977-01-01
A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan
2018-01-01
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). PMID:29670021
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng
2018-04-18
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).
The simple procedure for the fluxgate magnetometers calibration
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2014-05-01
The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the Coil Calibration system reveals, that the achieved accuracy (<0.04 % for scale factors and 0.03 degrees of arc for angle errors) is sufficient for many applications, particularly for satisfying the INTERMAGNET requirements to 1-second instruments.
Initial data from a new High Spectral Resolution Lidar. Appendix A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eloranta, E.W.; Piironen, P.K.
1993-12-31
The University of Wisconsin High Spectral Resolution Lidar (HSRL) has been recently redesigned for operation in an electronics semitrailer van. The HSRL can now be deployed in support of field experiments. This paper presents initial observations with the new configuration along with an analysis of measurement accuracy. New measurement capabilities have been added. These include: observation of the signal variation with angular field of view, and observation of depolarization in all data channels. Depolarization measurements have been implemented by transmitting orthogonal linear polarizations on alternate laser pulses. Pulses are transmitted at 250 {micro}s intervals such that the lidar observes themore » same ensemble of particles for both polarizations. Orthogonal polarizations are measured with a single detector per channel. Since the optical components and detector gains are identical for the two polarizations the measured depolarization ratios are independent of these factors and the system delivers very precise depolarizations. A new data channel with a computer controlled aperture allows measurements of multiple scattering as a function of receiver field of view. Since the field of view variation is dependent on the size of the scattering particles it is expected that this will allow remote measurements of cloud particle size. Other technical improvements in the new system include active control of spectrometer temperatures, greatly increased mechanical stability, an increased receiver aperture, injection of calibration signals into the signal profiles to allow continuous monitoring of system calibration drifts, and extensive computer control of system operations.« less
Phase and birefringence aberration correction
Bowers, Mark; Hankla, Allen
1996-01-01
A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.
Phase and birefringence aberration correction
Bowers, M.; Hankla, A.
1996-07-09
A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.
CIG-P: Circular Interaction Graph for Proteomics.
Hobbs, Christopher K; Leung, Michelle; Tsang, Herbert H; Ebhardt, H Alexander
2014-10-31
A typical affinity purification coupled to mass spectrometry (AP-MS) experiment includes the purification of a target protein (bait) using an antibody and subsequent mass spectrometry analysis of all proteins co-purifying with the bait (aka prey proteins). Like any other systems biology approach, AP-MS experiments generate a lot of data and visualization has been challenging, especially when integrating AP-MS experiments with orthogonal datasets. We present Circular Interaction Graph for Proteomics (CIG-P), which generates circular diagrams for visually appealing final representation of AP-MS data. Through a Java based GUI, the user inputs experimental and reference data as file in csv format. The resulting circular representation can be manipulated live within the GUI before exporting the diagram as vector graphic in pdf format. The strength of CIG-P is the ability to integrate orthogonal datasets with each other, e.g. affinity purification data of kinase PRPF4B in relation to the functional components of the spliceosome. Further, various AP-MS experiments can be compared to each other. CIG-P aids to present AP-MS data to a wider audience and we envision that the tool finds other applications too, e.g. kinase - substrate relationships as a function of perturbation. CIG-P is available under: http://sourceforge.net/projects/cig-p/
Mean and Turbulent Flow Statistics in a Trellised Agricultural Canopy
NASA Astrophysics Data System (ADS)
Miller, Nathan E.; Stoll, Rob; Mahaffee, Walter F.; Pardyjak, Eric R.
2017-10-01
Flow physics is investigated in a two-dimensional trellised agricultural canopy to examine that architecture's unique signature on turbulent transport. Analysis of meteorological data from an Oregon vineyard demonstrates that the canopy strongly influences the flow by channelling the mean flow into the vine-row direction regardless of the above-canopy wind direction. Additionally, other flow statistics in the canopy sub-layer show a dependance on the difference between the above-canopy wind direction and the vine-row direction. This includes an increase in the canopy displacement height and a decrease in the canopy-top shear length scale as the above-canopy flow rotates from row-parallel towards row-orthogonal. Distinct wind-direction-based variations are also observed in the components of the stress tensor, turbulent kinetic energy budget, and the energy spectra. Although spectral results suggest that sonic anemometry is insufficient for resolving all of the important scales of motion within the canopy, the energy spectra peaks still exhibit dependencies on the canopy and the wind direction. These variations demonstrate that the trellised-canopy's effect on the flow during periods when the flow is row-aligned is similar to that seen by sparse canopies, and during periods when the flow is row-orthogonal, the effect is similar to that seen by dense canopies.
Compatibility of motion facilitates visuomotor synchronization.
Hove, Michael J; Spivey, Michael J; Krumhansl, Carol L
2010-12-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1, synchronization success rates increased dramatically for spatiotemporal sequences of both geometric and biological forms over flashing sequences. In Experiment 2, synchronization performance was best when target sequences and movements were directionally compatible (i.e., simultaneously down), followed by orthogonal stimuli, and was poorest for incompatible moving stimuli and flashing stimuli. In Experiment 3, synchronization performance was best with auditory sequences, followed by compatible moving stimuli, and was worst for flashing and fading stimuli. Results indicate that visuomotor synchronization improves dramatically with compatible spatial information. However, an auditory advantage in sensorimotor synchronization persists.
Epi-illumination optical design for fluorescence polarization measurements in flow systems.
Eisert, W G; Beisker, W
1980-01-01
An epi-illumination design for fluorescence polarization measurements is introduced in flow cytometry with the optical axis orthogonally aligned to the cell stream. Various optical components and designs are discussed with respect to their influence on polarization measurements. Using the epi-configuration, paired measurements with the direction of polarization of the exciting light changed orthogonally are proposed for the compensation of system anisotropies and electronic mismatch. Large aperture corrections are employed for the excitation as well as for the emission pathway. Additional parameters such as fluorescence at 90 degrees, multiangle light scattering, and high precision cell-sizing by internally calibrated time of the flight measurements, as described previously, remain available with the design proposed here. Fluorescent latex microspheres, stained intracellular DNA, and algae have been used to test performance. PMID:7023562
Hu, Li-Cui; Wu, Xun; Yang, Xue-Dong
2013-10-01
With the yields of ferulic acid, coniferylferulate, Z-ligustilide, senkyunolide A, butylidenephthalide, butylphthalide, senkyunolide I, senkyunolide H, riligustilide, levistolide A, and total pharmacologically active ingredient as evaluation indexes, the extraction of Ligusticum chuanxiong by supercritical fluid technology was investigated through an orthogonal experiment L9 (3(4)). Four factors, namely temperature, pressure, flow rate of carbon dioxide, co-solvent concentration of the supercritical fluid, were investigated and optimized. Under the optimized conditions, namely 65 degrees C of temperature, 35 MPa of pressure, 1 L x min(-1) of CO2 flow rate, 8% of co-solvent concetration, supercritical fluid extraction could achieve a better yield than the conventional reflux extraction using methanol. And the supercritical fluid extraction process was validated to be stable and reliable.
Nested Krylov methods and preserving the orthogonality
NASA Technical Reports Server (NTRS)
Desturler, Eric; Fokkema, Diederik R.
1993-01-01
Recently the GMRESR inner-outer iteraction scheme for the solution of linear systems of equations was proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and Vassilevski and Saad (FGMRES). The outer iteration is GCR, which minimizes the residual over a given set of direction vectors. The inner iteration is GMRES, which at each step computes a new direction vector by approximately solving the residual equation. However, the optimality of the approximation over the space of outer search directions is ignored in the inner GMRES iteration. This leads to suboptimal corrections to the solution in the outer iteration, as components of the outer iteration directions may reenter in the inner iteration process. Therefore we propose to preserve the orthogonality relations of GCR in the inner GMRES iteration. This gives optimal corrections; however, it involves working with a singular, non-symmetric operator. We will discuss some important properties, and we will show by experiments that, in terms of matrix vector products, this modification (almost) always leads to better convergence. However, because we do more orthogonalizations, it does not always give an improved performance in CPU-time. Furthermore, we will discuss efficient implementations as well as the truncation possibilities of the outer GCR process. The experimental results indicate that for such methods it is advantageous to preserve the orthogonality in the inner iteration. Of course we can also use iteration schemes other than GMRES as the inner method; methods with short recurrences like GICGSTAB are of interest.
A novel capacitive absolute positioning sensor based on time grating with nanometer resolution
NASA Astrophysics Data System (ADS)
Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng
2018-05-01
The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugas, Alexandre; Therasse, Eric; Kauffmann, Claude
2012-08-15
Purpose: To compare different methods measuring abdominal aortic aneurysm (AAA) maximal diameter (Dmax) and its progression on multidetector computed tomography (MDCT) scan. Materials and Methods: Forty AAA patients with two MDCT scans acquired at different times (baseline and follow-up) were included. Three observers measured AAA diameters by seven different methods: on axial images (anteroposterior, transverse, maximal, and short-axis views) and on multiplanar reformation (MPR) images (coronal, sagittal, and orthogonal views). Diameter measurement and progression were compared over time for the seven methods. Reproducibility of measurement methods was assessed by intraclass correlation coefficient (ICC) and Bland-Altman analysis. Results: Dmax, as measuredmore » on axial slices at baseline and follow-up (FU) MDCTs, was greater than that measured using the orthogonal method (p = 0.046 for baseline and 0.028 for FU), whereas Dmax measured with the orthogonal method was greater those using all other measurement methods (p-value range: <0.0001-0.03) but anteroposterior diameter (p = 0.18 baseline and 0.10 FU). The greatest interobserver ICCs were obtained for the orthogonal and transverse methods (0.972) at baseline and for the orthogonal and sagittal MPR images at FU (0.973 and 0.977). Interobserver ICC of the orthogonal method to document AAA progression was greater (ICC = 0.833) than measurements taken on axial images (ICC = 0.662-0.780) and single-plane MPR images (0.772-0.817). Conclusion: AAA Dmax measured on MDCT axial slices overestimates aneurysm size. Diameter as measured by the orthogonal method is more reproducible, especially to document AAA progression.« less
Yongqiang Liu
2003-01-01
The relations between monthly-seasonal soil moisture and precipitation variability are investigated by identifying the coupled patterns of the two hydrological fields using singular value decomposition (SVD). SVD is a technique of principal component analysis similar to empirical orthogonal knctions (EOF). However, it is applied to two variables simultaneously and is...
NASA Astrophysics Data System (ADS)
Gaytan, S. M.; Murr, L. E.; Martinez, E.; Martinez, J. L.; Machado, B. I.; Ramirez, D. A.; Medina, F.; Collins, S.; Wicker, R. B.
2010-12-01
The microstructures and mechanical behavior of simple, as-fabricated, solid geometries (with a density of 8.4 g/cm3), as-fabricated and fabricated and annealed femoral (knee) prototypes, and reticulated mesh components (with a density of 1.5 g/cm3) all produced by additive manufacturing (AM) using electron beam melting (EBM) of Co-26Cr-6Mo-0.2C powder are examined and compared in this study. Microstructures and microstructural issues are examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD), while mechanical properties included selective specimen tensile testing and Vickers microindentation hardness (HV) and Rockwell C-scale hardness (HRC) measurements. Orthogonal (X-Y) melt scanning of the electron beam during AM produced unique, orthogonal and related Cr23C6 carbide (precipitate) arrays (a controlled microstructural architecture) with dimensions of 2 μm in the build plane perpendicular to the build direction, while connected carbide columns were formed in the vertical plane, parallel to the build direction, with microindentation hardnesses ranging from 4.4 to 5.9 GPa, corresponding to a yield stress and ultimate tensile strength (UTS) of 0.51 and 1.45 GPa with elongations ranging from 1.9 to 5.3 pct. Annealing produced an equiaxed fcc grain structure with some grain boundary carbides, frequent annealing twins, and often a high density of intrinsic {111} stacking faults within the grains. The reticulated mesh strut microstructure consisted of dense carbide arrays producing an average microindentation hardness of 6.2 GPa or roughly 25 pct higher than the fully dense components.
Sensing Device with Whisker Elements
NASA Technical Reports Server (NTRS)
Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)
2013-01-01
A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.
Sensing device with whisker elements
NASA Technical Reports Server (NTRS)
Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)
2010-01-01
A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.
Detection and Prevention of Arrhythmias During Space Flight
NASA Technical Reports Server (NTRS)
Pillai, Dilip; Rosenbaum, David; Liszka, Kathy; York, David; Mackin, Michael; Lichter, Michael
2004-01-01
Objectives of this research include:determine if orthogonal lead sets can; determine if orthogonal lead sets can correct artifactual ECG changes caused by correct artifactual ECG changes caused by microgravity- induced alterations in cardiac position; determine if markers of susceptibility to SCD (TWA and QT restitution) can be reliably measured during space flight; determine the effects of continuous microgravity on markers of susceptibility to SCD.
APDS: Autonomous Pathogen Detection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langlois, R G; Brown, S; Burris, L
An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS,more » a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.« less
Characterizing the kinetics of suspended cylindrical particles by polarization measurements
NASA Astrophysics Data System (ADS)
Liao, Ran; Ou, Xueheng; Ma, Hui
2015-09-01
Polarization has promising potential to retrieve the information of the steady samples, such as tissues. However, for the fast changing sample such as the suspended algae in the water, the kinetics of the particles also influence the scattered polarization. The present paper will show our recent results to extract the information about the kinetics of the suspended cylindrical particles by polarization measurements. The sample is the aqueous suspension of the glass fibers stirred by a magnetic stirrer. We measure the scattered polarization of the fibers by use of a simultaneous polarization measurement system and obtain the time series of two orthogonal polarization components. By use of correlation analysis, we obtain the time parameters from the auto-correlation functions of the polarization components, and observe the changes with the stirring speeds. Results show that these time parameters indicate the immigration of the fibers. After discussion, we find that they may further characterize the kinetics, including the translation and rotation, of the glass fibers in the fluid field.
Vector 33: A reduce program for vector algebra and calculus in orthogonal curvilinear coordinates
NASA Astrophysics Data System (ADS)
Harper, David
1989-06-01
This paper describes a package with enables REDUCE 3.3 to perform algebra and calculus operations upon vectors. Basic algebraic operations between vectors and between scalars and vectors are provided, including scalar (dot) product and vector (cross) product. The vector differential operators curl, divergence, gradient and Laplacian are also defined, and are valid in any orthogonal curvilinear coordinate system. The package is written in RLISP to allow algebra and calculus to be performed using notation identical to that for operations. Scalars and vectors can be mixed quite freely in the same expression. The package will be of interest to mathematicians, engineers and scientists who need to perform vector calculations in orthogonal curvilinear coordinates.
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; DeLoach, Richard
2003-01-01
A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.
Principal shapes and squeezed limits in the effective field theory of large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov
2016-11-01
We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of themore » principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.« less
Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei
2016-01-12
In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment analysis suggests that because essential conformational events are mainly driven by the compensating fluctuations of essential solute-solvent and solute-solute interactions, commonly employed "predictive" sampling methods are unlikely to be effective on this seemingly "simple" system. The gOST development presented in this paper illustrates how to employ the OSS scheme for physics-based sampling method designs.
Biaxial thin-film coated-plate polarizing beam splitters.
Hodgkinson, Ian; Wu, Qi Hong; Arnold, Matthew; De Silva, Lakshman; Beydaghyan, Gisia; Kaminska, Kate; Robbie, Kevin
2006-03-01
We present a design for a biaxial thin-film coated-plate polarizing beam splitter that transmits the p-polarized component of a beam of light without change of direction and reflects the s-polarized component. The beam splitter has a periodic structure and is planned for fabrication by serial bideposition in mutually orthogonal planes. Recent experimental data for form-birefringent silicon is used to establish the feasibility of the design for a beam splitter to be used at 1310 nm and at an angle of 45 degrees in air.
SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T; Yue, N; Jabbour, S
2016-06-15
Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components thatmore » were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy guidance.« less
Understanding software faults and their role in software reliability modeling
NASA Technical Reports Server (NTRS)
Munson, John C.
1994-01-01
This study is a direct result of an on-going project to model the reliability of a large real-time control avionics system. In previous modeling efforts with this system, hardware reliability models were applied in modeling the reliability behavior of this system. In an attempt to enhance the performance of the adapted reliability models, certain software attributes were introduced in these models to control for differences between programs and also sequential executions of the same program. As the basic nature of the software attributes that affect software reliability become better understood in the modeling process, this information begins to have important implications on the software development process. A significant problem arises when raw attribute measures are to be used in statistical models as predictors, for example, of measures of software quality. This is because many of the metrics are highly correlated. Consider the two attributes: lines of code, LOC, and number of program statements, Stmts. In this case, it is quite obvious that a program with a high value of LOC probably will also have a relatively high value of Stmts. In the case of low level languages, such as assembly language programs, there might be a one-to-one relationship between the statement count and the lines of code. When there is a complete absence of linear relationship among the metrics, they are said to be orthogonal or uncorrelated. Usually the lack of orthogonality is not serious enough to affect a statistical analysis. However, for the purposes of some statistical analysis such as multiple regression, the software metrics are so strongly interrelated that the regression results may be ambiguous and possibly even misleading. Typically, it is difficult to estimate the unique effects of individual software metrics in the regression equation. The estimated values of the coefficients are very sensitive to slight changes in the data and to the addition or deletion of variables in the regression equation. Since most of the existing metrics have common elements and are linear combinations of these common elements, it seems reasonable to investigate the structure of the underlying common factors or components that make up the raw metrics. The technique we have chosen to use to explore this structure is a procedure called principal components analysis. Principal components analysis is a decomposition technique that may be used to detect and analyze collinearity in software metrics. When confronted with a large number of metrics measuring a single construct, it may be desirable to represent the set by some smaller number of variables that convey all, or most, of the information in the original set. Principal components are linear transformations of a set of random variables that summarize the information contained in the variables. The transformations are chosen so that the first component accounts for the maximal amount of variation of the measures of any possible linear transform; the second component accounts for the maximal amount of residual variation; and so on. The principal components are constructed so that they represent transformed scores on dimensions that are orthogonal. Through the use of principal components analysis, it is possible to have a set of highly related software attributes mapped into a small number of uncorrelated attribute domains. This definitively solves the problem of multi-collinearity in subsequent regression analysis. There are many software metrics in the literature, but principal component analysis reveals that there are few distinct sources of variation, i.e. dimensions, in this set of metrics. It would appear perfectly reasonable to characterize the measurable attributes of a program with a simple function of a small number of orthogonal metrics each of which represents a distinct software attribute domain.
Principal components analysis in clinical studies.
Zhang, Zhongheng; Castelló, Adela
2017-09-01
In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.
Simultaneous multi-beam planar array IR (pair) spectroscopy
Elmore, Douglas L.; Rabolt, John F.; Tsao, Mei-Wei
2005-09-13
An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.
[Polar and non polar notations of refraction].
Touzeau, O; Gaujoux, T; Costantini, E; Borderie, V; Laroche, L
2010-01-01
Refraction can be expressed by four polar notations which correspond to four different combinations of spherical or cylindrical lenses. Conventional expressions of refraction (plus and minus cylinder notation) are described by sphere, cylinder, and axis. In the plus cylinder notation, the axis visualizes the most powerful meridian. The axis usually corresponds to the bow tie axis in curvature maps. Plus cylinder notation is also valuable for all relaxing procedures (i.e., selective suture ablation, arcuate keratotomy, etc.). In the cross-cylinder notation, two orthogonal cylinders can describe (without the sphere component) the actual refraction of both the principal meridians. This notation must be made before performing the vertex calculation. Using an association of a Jackson cross-cylinder and a spherical equivalent, refraction can be broken down into two pure components: astigmatism and sphere. All polar notations of refraction may perfectly characterize a single refraction but are not suitable for statistical analysis, which requires nonpolar expression. After doubling the axis, a rectangular projection breaks down the Jackson cross-cylinder, which has a polar axis, into two Jackson cross-cylinders on the 0 degrees /90 degrees and 45 degrees /135 degrees axis. This procedure results in the loss of the directional nature of the data. Refraction can be written in a nonpolar notation by three rectangular coordinates (x,y,z), which can also represent the spherocylinder by one point in a dioptric space. These three independent (orthogonal) variables have a concrete optical significance: a spherical component, a direct/inverse (WTR/ATR) component, and an oblique component of the astigmatism. Finally, nonpolar notations are useful for statistical analysis and graphical representation of refraction. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Courtney, E. Wayne
This report was designed to present an example of a research study involving the use of coefficients of orthogonal comparisons in analysis of variance tests of significance. A sample research report and analysis was included so as to lead the reader through the design steps. The sample study was designed to determine the extent of attitudinal…
Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials
NASA Astrophysics Data System (ADS)
Volkmer, Hans
2008-04-01
Sequences of polynomials, orthogonal with respect to signed measures, are associated with a class of differential equations including the Mathieu, Lame and Whittaker-Hill equation. It is shown that the zeros of pn form sequences which converge to the eigenvalues of the corresponding differential equations. Moreover, interlacing properties of the zeros of pn are found. Applications to the numerical treatment of eigenvalue problems are given.
Parallel and orthogonal stimulus in ultradiluted neural networks
NASA Astrophysics Data System (ADS)
Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.
2006-10-01
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .
Lee, Sang Ki; Kim, Kap Jung; Park, Kyung Hoon; Choy, Won Sik
2014-10-01
With the continuing improvements in implants for distal humerus fractures, it is expected that newer types of plates, which are anatomically precontoured, thinner and less irritating to soft tissue, would have comparable outcomes when used in a clinical study. The purpose of this study was to compare the clinical and radiographic outcomes in patients with distal humerus fractures who were treated with orthogonal and parallel plating methods using precontoured distal humerus plates. Sixty-seven patients with a mean age of 55.4 years (range 22-90 years) were included in this prospective study. The subjects were randomly assigned to receive 1 of 2 treatments: orthogonal or parallel plating. The following results were assessed: operating time, time to fracture union, presence of a step or gap at the articular margin, varus-valgus angulation, functional recovery, and complications. No intergroup differences were observed based on radiological and clinical results between the groups. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes, mean operation time, union time, or complication rates. There were no cases of fracture nonunion in either group; heterotrophic ossification was found 3 patients in orthogonal plating group and 2 patients in parallel plating group. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes or complication rates. However, orthogonal plating method may be preferred in cases of coronal shear fractures, where posterior to anterior fixation may provide additional stability to the intraarticular fractures. Additionally, parallel plating method may be the preferred technique used for fractures that occur at the most distal end of the humerus.
Mimura, Natsuki; Isogai, Atsuko; Iwashita, Kazuhiro; Bamba, Takeshi; Fukusaki, Eiichiro
2014-10-01
Sake is a Japanese traditional alcoholic beverage, which is produced by simultaneous saccharification and alcohol fermentation of polished and steamed rice by Aspergillus oryzae and Saccharomyces cerevisiae. About 300 compounds have been identified in sake, and the contribution of individual components to the sake flavor has been examined at the same time. However, only a few compounds could explain the characteristics alone and most of the attributes still remain unclear. The purpose of this study was to examine the relationship between the component profile and the attributes of sake. Gas chromatography coupled with mass spectrometry (GC/MS)-based non-targeted analysis was employed to obtain the low molecular weight component profile of Japanese sake including both nonvolatile and volatile compounds. Sake attributes and overall quality were assessed by analytical descriptive sensory test and the prediction model of the sensory score from the component profile was constructed by means of orthogonal projections to latent structures (OPLS) regression analysis. Our results showed that 12 sake attributes [ginjo-ka (aroma of premium ginjo sake), grassy/aldehydic odor, sweet aroma/caramel/burnt odor, sulfury odor, sour taste, umami, bitter taste, body, amakara (dryness), aftertaste, pungent/smoothness and appearance] and overall quality were accurately explained by component profiles. In addition, we were able to select statistically significant components according to variable importance on projection (VIP). Our methodology clarified the correlation between sake attribute and 200 low molecular components and presented the importance of each component thus, providing new insights to the flavor study of sake. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Polytopic vector analysis in igneous petrology: Application to lunar petrogenesis
NASA Technical Reports Server (NTRS)
Shervais, John W.; Ehrlich, R.
1993-01-01
Lunar samples represent a heterogeneous assemblage of rocks with complex inter-relationships that are difficult to decipher using standard petrogenetic approaches. These inter-relationships reflect several distinct petrogenetic trends as well as thermomechanical mixing of distinct components. Additional complications arise from the unequal quality of chemical analyses and from the fact that many samples (e.g., breccia clasts) are too small to be representative of the system from which they derived. Polytopic vector analysis (PVA) is a multi-variate procedure used as a tool for exploratory data analysis. PVA allows the analyst to classify samples and clarifies relationships among heterogenous samples with complex petrogenetic histories. It differs from orthogonal factor analysis in that it uses non-orthogonal multivariate sample vectors to extract sample endmember compositions. The output from a Q-mode (sample based) factor analysis is the initial step in PVA. The Q-mode analysis, using criteria established by Miesch and Klovan and Miesch, is used to determine the number of endmembers in the data system. The second step involves determination of endmembers and mixing proportions with all output expressed in the same geochemical variable as the input. The composition of endmembers is derived by analysis of the variability of the data set. Endmembers need not be present in the data set, nor is it necessary for their composition to be known a priori. A set of any endmembers defines a 'polytope' or classification figure (triangle for a three component system, tetrahedron for a four component system, a 'five-tope' in four dimensions for five component system, et cetera).
2013-01-01
Background Siwu decoction categorized formulae (SWDCF) are widely used for treating gynecological diseases. This study aims to elucidate the differences of bioactive constituents in SWDCF by ultra-high performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC - QTOF - MS /MS) and HPLC-DAD. Methods An efficient method based on UPLC - QTOF - MS /MS was developed for identifying the chemical profiles of SWDCF. HPLC-DAD method was used for quantifying seven chemical markers in SWDCF. Results Eighty four components were identified or characterized, including ten organic acids, thirty glycosides (monoterpene or iridoid or phenylpropanoids glycosides), fourteen lactones, eighteen flavonoids, and eleven alkaloids in the complex system. The datasets of tR-m/z pairs, ion intensities and sample codes were processed with supervised orthogonal partial least squared discriminant analysis to compare these decoction samples. After a clear classification was established, OPLS-DA was performed and 16 common components with relative quantity in SWDCF samples were determined. Gallic acid, protocatechuic acid, vanillic acid, caffeic acid, paeoniflorin, ferulic acid, and senkyunolide I were selected as the chemical markers to identify SWDCF by HPLC-DAD. Conclusion The chemical profiles with 84 components in SWDCF, including monoterpene glycosides, acetophenones, galloyl glucoses, even some isomers in the complex system were characterized by UPLC–QTOF–MS/MS. PMID:23453004
Kilosanidze, Barbara
2010-06-01
Generalization of the Jones vector for partially polarized radiation carried out by Kakichashvili is given. Partially polarized light is presented as two noncoherent components of mutually orthogonal polarization. The formal operation of amplitude summation of mutually noncoherent components and the symbol of this operation are introduced. The rules of operating with this symbol are determined. The regularity of the Weigert effect is modified for partial polarization of the inducing light. On this basis the modification of the Jones matrix for partially polarized light is made. The rules for the formation of the resulting matrix from the Jones matrices corresponding to the noncoherent components of partially polarized light are determined.
Changes in the stability and biomechanics of P22 bacteriophage capsid during maturation.
Kant, Ravi; Llauró, Aida; Rayaprolu, Vamseedhar; Qazi, Shefah; de Pablo, Pedro J; Douglas, Trevor; Bothner, Brian
2018-03-15
The capsid of P22 bacteriophage undergoes a series of structural transitions during maturation that guide it from spherical to icosahedral morphology. The transitions include the release of scaffold proteins and capsid expansion. Although P22 maturation has been investigated for decades, a unified model that incorporates thermodynamic and biophysical analyses is not available. A general and specific model of icosahedral capsid maturation is of significant interest to theoreticians searching for fundamental principles as well as virologists and material scientists seeking to alter maturation to their advantage. To address this challenge, we have combined the results from orthogonal biophysical techniques including differential scanning fluorimetry, atomic force microscopy, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. By integrating these results from single particle and population measurements, an energy landscape of P22 maturation from procapsid through expanded shell to wiffle ball emerged, highlighting the role of metastable structures and the thermodynamics guiding maturation. The propagation of weak quaternary interactions across symmetric elements of the capsid is a key component for stability in P22. A surprising finding is that the progression to wiffle ball, which lacks pentamers, shows that chemical and thermal stability can be uncoupled from mechanical rigidity, elegantly demonstrating the complexity inherent in capsid protein interactions and the emergent properties that can arise from icosahedral symmetry. On a broader scale, this work demonstrates the power of applying orthogonal biophysical techniques to elucidate assembly mechanisms for supramolecular complexes and provides a framework within which other viral systems can be compared. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jos, Sujit; Kumar, Preetam; Chakrabarti, Saswat
Orthogonal and quasi-orthogonal codes are integral part of any DS-CDMA based cellular systems. Orthogonal codes are ideal for use in perfectly synchronous scenario like downlink cellular communication. Quasi-orthogonal codes are preferred over orthogonal codes in the uplink communication where perfect synchronization cannot be achieved. In this paper, we attempt to compare orthogonal and quasi-orthogonal codes in presence of timing synchronization error. This will give insight into the synchronization demands in DS-CDMA systems employing the two classes of sequences. The synchronization error considered is smaller than chip duration. Monte-Carlo simulations have been carried out to verify the analytical and numerical results.
Petersson, Richard; Mosén, Henrik; Steding-Ehrenborg, Katarina; Carlson, Jonas; Faxén, Lisa; Mohtadi, Alan; Platonov, Pyotr G; Holmqvist, Fredrik
2017-03-01
It has previously been demonstrated that orthogonal P-wave morphology in healthy athletes does not depend on atrial size, but the possible impact of left atrial orientation on P-wave morphology remains unknown. In this study, we investigated if left atrial transverse orientation affects P-wave morphology in different populations. Forty-seven patients with atrial fibrillation, 21 patients with arrhythmogenic right ventricular cardiomyopathy, 67 healthy athletes, and 56 healthy volunteers were included. All underwent cardiac magnetic resonance imaging or computed tomography and the orientation of the left atrium was determined. All had 12-lead electrocardiographic recordings, which were transformed into orthogonal leads and orthogonal P-wave morphology was obtained. The median left atrial transverse orientation was 87 (83, 91) degrees (lower and upper quartiles) in the total study population. There was no difference in left atrial transverse orientation between individuals with different orthogonal P-wave morphologies. The physiological variation in left atrial orientation was small within as well as between the different populations. There was no difference in left atrial transverse orientation between subjects with type 1 and type 2 P-wave morphology, implying that in this setting the P-wave morphology was more dependent on atrial conduction than orientation. © 2016 Wiley Periodicals, Inc.
Discordance between net analyte signal theory and practical multivariate calibration.
Brown, Christopher D
2004-08-01
Lorber's concept of net analyte signal is reviewed in the context of classical and inverse least-squares approaches to multivariate calibration. It is shown that, in the presence of device measurement error, the classical and inverse calibration procedures have radically different theoretical prediction objectives, and the assertion that the popular inverse least-squares procedures (including partial least squares, principal components regression) approximate Lorber's net analyte signal vector in the limit is disproved. Exact theoretical expressions for the prediction error bias, variance, and mean-squared error are given under general measurement error conditions, which reinforce the very discrepant behavior between these two predictive approaches, and Lorber's net analyte signal theory. Implications for multivariate figures of merit and numerous recently proposed preprocessing treatments involving orthogonal projections are also discussed.
Magnetic Barkhausen Noise Measurements Using Tetrapole Probe Designs
NASA Astrophysics Data System (ADS)
McNairnay, Paul
A magnetic Barkhausen noise (MBN) testing system was developed for Defence Research and Development Canada (DRDC) to perform MBN measurements on the Royal Canadian Navy's Victoria class submarine hulls that can be correlated with material properties, including residual stress. The DRDC system was based on the design of a MBN system developed by Steven White at Queen's University, which was capable of performing rapid angular dependent measurements through the implementation of a flux controlled tetrapole probe. In tetrapole probe designs, the magnetic excitation field is rotated in the surface plane of the sample under the assumption of linear superposition of two orthogonal magnetic fields. During the course of this work, however, the validity of flux superposition in ferromagnetic materials, for the purpose of measuring MBN, was brought into question. Consequently, a study of MBN anisotropy using tetrapole probes was performed. Results indicate that MBN anisotropy measured under flux superposition does not simulate MBN anisotropy data obtained through manual rotation of a single dipole excitation field. It is inferred that MBN anisotropy data obtained with tetrapole probes is the result of the magnetic domain structure's response to an orthogonal magnetization condition and not necessarily to any bulk superposition magnetization in the sample. A qualitative model for the domain configuration under two orthogonal magnetic fields is proposed to describe the results. An empirically derived fitting equation, that describes tetrapole MBN anisotropy data, is presented. The equation describes results in terms of two largely independent orthogonal fields, and includes interaction terms arising due to competing orthogonally magnetized domain structures and interactions with the sample's magnetic easy axis. The equation is used to fit results obtained from a number of samples and tetrapole orientations and in each case correctly identifies the samples' magnetic easy axis.
Calibration and Testing of Digital Zenith Camera System Components
NASA Astrophysics Data System (ADS)
Ulug, Rasit; Halicioglu, Kerem; Tevfik Ozludemir, M.; Albayrak, Muge; Basoglu, Burak; Deniz, Rasim
2017-04-01
Starting from the beginning of the new millennium, thanks to the Charged-Coupled Device (CCD) technology, fully or partly automatic zenith camera systems are designed and used in order to determine astro-geodetic deflections of the vertical components in several countries, including Germany, Switzerland, Serbia, Latvia, Poland, Austria, China and Turkey. The Digital Zenith Camera System (DZCS) of Turkey performed successful observations yet it needs to be improved in terms of automating the system and increasing observation accuracy. In order to optimize the observation time and improve the system, some modifications have been implemented. Through the modification process that started at the beginning of 2016, some DZCS components have been replaced with the new ones and some new additional components have been installed. In this presentation, the ongoing calibration and testing process of the DZCS are summarized in general. In particular, one of the tested system components is the High Resolution Tiltmeter (HRTM), which enable orthogonal orientation of DZCS to the direction of plump line, is discussed. For the calibration of these components, two tiltmeters with different accuracies (1 nrad and 0.001 mrad) were observed nearly 30 days. The data recorded under different environmental conditions were divided into hourly, daily, and weekly subsets. In addition to the effects of temperature and humidity, interoperability of two tiltmeters were also investigated. Results show that with the integration of HRTM and the other implementations, the modified DZCS provides higher accuracy for the determination of vertical deflections.
Observation of High-Order Polarization-Locked Vector Solitons in a Fiber Laser
NASA Astrophysics Data System (ADS)
Tang, D. Y.; Zhang, H.; Zhao, L. M.; Wu, X.
2008-10-01
We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.
Observation of high-order polarization-locked vector solitons in a fiber laser.
Tang, D Y; Zhang, H; Zhao, L M; Wu, X
2008-10-10
We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.
Out-of-Bounds Hydrodynamics in Anisotropic Dirac Fluids
NASA Astrophysics Data System (ADS)
Link, Julia M.; Narozhny, Boris N.; Kiselev, Egor I.; Schmalian, Jörg
2018-05-01
We study hydrodynamic transport in two-dimensional, interacting electronic systems with merging Dirac points at charge neutrality. The dispersion along one crystallographic direction is Dirac-like, while it is Newtonian-like in the orthogonal direction. As a result, the electrical conductivity is metallic in one and insulating in the other direction. The shear viscosity tensor contains six independent components, which can be probed by measuring an anisotropic thermal flow. One of the viscosity components vanishes at zero temperature leading to a generalization of the previously conjectured lower bound for the shear viscosity to entropy density ratio.
Device for magneto-optic signal detection with a small crystal prism.
Saito, K; Sato, S; Shino, K; Taniguchi, T
2000-03-10
A device made of a birefringent crystal for signal detection of magneto-optic (MO) disks is presented. The light beam from a MO disk is separated into two orthogonally polarized components at the surface of a birefringent prism. After these two components are reflected by the top and the bottom surfaces of the prism inside, at the detector they become sufficiently separated from each other for discrete detection, even though the prism is small. A method for calculating the light intensities and the positions of focused beams in a birefringent prism and the results of a fundamental experiment are presented.
Improvements in Block-Krylov Ritz Vectors and the Boundary Flexibility Method of Component Synthesis
NASA Technical Reports Server (NTRS)
Carney, Kelly Scott
1997-01-01
A method of dynamic substructuring is presented which utilizes a set of static Ritz vectors as a replacement for normal eigenvectors in component mode synthesis. This set of Ritz vectors is generated in a recurrence relationship, proposed by Wilson, which has the form of a block-Krylov subspace. The initial seed to the recurrence algorithm is based upon the boundary flexibility vectors of the component. Improvements have been made in the formulation of the initial seed to the Krylov sequence, through the use of block-filtering. A method to shift the Krylov sequence to create Ritz vectors that will represent the dynamic behavior of the component at target frequencies, the target frequency being determined by the applied forcing functions, has been developed. A method to terminate the Krylov sequence has also been developed. Various orthonormalization schemes have been developed and evaluated, including the Cholesky/QR method. Several auxiliary theorems and proofs which illustrate issues in component mode synthesis and loss of orthogonality in the Krylov sequence have also been presented. The resulting methodology is applicable to both fixed and free- interface boundary components, and results in a general component model appropriate for any type of dynamic analysis. The accuracy is found to be comparable to that of component synthesis based upon normal modes, using fewer generalized coordinates. In addition, the block-Krylov recurrence algorithm is a series of static solutions and so requires significantly less computation than solving the normal eigenspace problem. The requirement for less vectors to form the component, coupled with the lower computational expense of calculating these Ritz vectors, combine to create a method more efficient than traditional component mode synthesis.
NASA Technical Reports Server (NTRS)
Chang, T. S.
1974-01-01
A numerical scheme using the method of characteristics to calculate the flow properties and pressures behind decaying shock waves for materials under hypervelocity impact is developed. Time-consuming double interpolation subroutines are replaced by a technique based on orthogonal polynomial least square surface fits. Typical calculated results are given and compared with the double interpolation results. The complete computer program is included.
Parsimonious extreme learning machine using recursive orthogonal least squares.
Wang, Ning; Er, Meng Joo; Han, Min
2014-10-01
Novel constructive and destructive parsimonious extreme learning machines (CP- and DP-ELM) are proposed in this paper. By virtue of the proposed ELMs, parsimonious structure and excellent generalization of multiinput-multioutput single hidden-layer feedforward networks (SLFNs) are obtained. The proposed ELMs are developed by innovative decomposition of the recursive orthogonal least squares procedure into sequential partial orthogonalization (SPO). The salient features of the proposed approaches are as follows: 1) Initial hidden nodes are randomly generated by the ELM methodology and recursively orthogonalized into an upper triangular matrix with dramatic reduction in matrix size; 2) the constructive SPO in the CP-ELM focuses on the partial matrix with the subcolumn of the selected regressor including nonzeros as the first column while the destructive SPO in the DP-ELM operates on the partial matrix including elements determined by the removed regressor; 3) termination criteria for CP- and DP-ELM are simplified by the additional residual error reduction method; and 4) the output weights of the SLFN need not be solved in the model selection procedure and is derived from the final upper triangular equation by backward substitution. Both single- and multi-output real-world regression data sets are used to verify the effectiveness and superiority of the CP- and DP-ELM in terms of parsimonious architecture and generalization accuracy. Innovative applications to nonlinear time-series modeling demonstrate superior identification results.
Stilp, Christian E.; Kluender, Keith R.
2012-01-01
To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation. These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced perceptual dimensionality for speech perception and plausible neural substrates are discussed. PMID:22292057
NASA Astrophysics Data System (ADS)
Jin, Chengying; Li, Dahai; Kewei, E.; Li, Mengyang; Chen, Pengyu; Wang, Ruiyang; Xiong, Zhao
2018-06-01
In phase measuring deflectometry, two orthogonal sinusoidal fringe patterns are separately projected on the test surface and the distorted fringes reflected by the surface are recorded, each with a sequential phase shift. Then the two components of the local surface gradients are obtained by triangulation. It usually involves some complicated and time-consuming procedures (fringe projection in the orthogonal directions). In addition, the digital light devices (e.g. LCD screen and CCD camera) are not error free. There are quantization errors for each pixel of both LCD and CCD. Therefore, to avoid the complex process and improve the reliability of the phase distribution, a phase extraction algorithm with five-frame crossed fringes is presented in this paper. It is based on a least-squares iterative process. Using the proposed algorithm, phase distributions and phase shift amounts in two orthogonal directions can be simultaneously and successfully determined through an iterative procedure. Both a numerical simulation and a preliminary experiment are conducted to verify the validity and performance of this algorithm. Experimental results obtained by our method are shown, and comparisons between our experimental results and those obtained by the traditional 16-step phase-shifting algorithm and between our experimental results and those measured by the Fizeau interferometer are made.
Blind separation of incoherent and spatially disjoint sound sources
NASA Astrophysics Data System (ADS)
Dong, Bin; Antoni, Jérôme; Pereira, Antonio; Kellermann, Walter
2016-11-01
Blind separation of sound sources aims at reconstructing the individual sources which contribute to the overall radiation of an acoustical field. The challenge is to reach this goal using distant measurements when all sources are operating concurrently. The working assumption is usually that the sources of interest are incoherent - i.e. statistically orthogonal - so that their separation can be approached by decorrelating a set of simultaneous measurements, which amounts to diagonalizing the cross-spectral matrix. Principal Component Analysis (PCA) is traditionally used to this end. This paper reports two new findings in this context. First, a sufficient condition is established under which "virtual" sources returned by PCA coincide with true sources; it stipulates that the sources of interest should be not only incoherent but also spatially orthogonal. A particular case of this instance is met by spatially disjoint sources - i.e. with non-overlapping support sets. Second, based on this finding, a criterion that enforces both statistical and spatial orthogonality is proposed to blindly separate incoherent sound sources which radiate from disjoint domains. This criterion can be easily incorporated into acoustic imaging algorithms such as beamforming or acoustical holography to identify sound sources of different origins. The proposed methodology is validated on laboratory experiments. In particular, the separation of aeroacoustic sources is demonstrated in a wind tunnel.
Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis
2014-10-09
Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.
Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains
NASA Astrophysics Data System (ADS)
Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes
2018-03-01
We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.
Manufacture and performance of carbon/epoxy 3-D woven composites
NASA Technical Reports Server (NTRS)
Brandt, J.; Drechsler, K.; Mohamed, Mansour; Gu, PU
1992-01-01
This paper evaluates 3-D orthogonal woven carbon/epoxy composites. Preforms were manufactured on an automatic 3-D weaving machine developed at N.C. State University. Matrix infiltration was conducted at MBB Central Laboratories. Testing was carried out at both locations and the joint results will be reported. The properties investigated include: interlaminar shear strength, compression, compression after impact, bending, tensile and penetration resistance. The 3-D orthogonal woven composites were compared with laminated and other 3-D composites made with preforms having interlock structure. C-scans were used to examine the quality of infiltration and the damage area after impact. The performance of the composites made from the 3-D orthogonal preforms showed superior properties compared to the other composites. The penetration resistance test showed unexpectedly very good performance.
Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields.
Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca
2014-11-01
A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and -20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%. The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes.
Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields
Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca
2014-01-01
Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%. Conclusions: The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes. PMID:25370658
Global model of zenith tropospheric delay proposed based on EOF analysis
NASA Astrophysics Data System (ADS)
Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng
2017-07-01
Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.
Pin, F.G.; Killough, S.M.
1994-12-20
A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity. 6 figures.
Pin, Francois G.; Killough, Stephen M.
1994-01-01
A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity.
Correlation, Cost Risk, and Geometry
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1992-01-01
The geometric viewpoint identifies the choice of a correlation matrix for the simulation of cost risk with the pairwise choice of data vectors corresponding to the parameters used to obtain cost risk. The correlation coefficient is the cosine of the angle between the data vectors after translation to an origin at the mean and normalization for magnitude. Thus correlation is equivalent to expressing the data in terms of a non orthogonal basis. To understand the many resulting phenomena requires the use of the tensor concept of raising the index to transform the measured and observed covariant components into contravariant components before vector addition can be applied. The geometric viewpoint also demonstrates that correlation and covariance are geometric properties, as opposed to purely statistical properties, of the variates. Thus, variates from different distributions may be correlated, as desired, after selection from independent distributions. By determining the principal components of the correlation matrix, variates with the desired mean, magnitude, and correlation can be generated through linear transforms which include the eigenvalues and the eigenvectors of the correlation matrix. The conversion of the data to a non orthogonal basis uses a compound linear transformation which distorts or stretches the data space. Hence, the correlated data does not have the same properties as the uncorrelated data used to generate it. This phenomena is responsible for seemingly strange observations such as the fact that the marginal distributions of the correlated data can be quite different from the distributions used to generate the data. The joint effect of statistical distributions and correlation remains a fertile area for further research. In terms of application to cost estimating, the geometric approach demonstrates that the estimator must have data and must understand that data in order to properly choose the correlation matrix appropriate for a given estimate. There is a general feeling by employers and managers that the field of cost requires little technical or mathematical background. Contrary to that opinion, this paper demonstrates that a background in mathematics equivalent to that needed for typical engineering and scientific disciplines at the masters or doctorate level is appropriate within the field of cost risk.
Fully-Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change
Nourgaliev, R.; Luo, H.; Weston, B.; ...
2015-11-11
A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method’s capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method’s accuracy (in both space and time), as wellmore » as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.« less
The role of local stress perturbation on the simultaneous opening of orthogonal fractures
NASA Astrophysics Data System (ADS)
Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn
2016-04-01
Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension in between systematic fractures is reduced but does not remove the occurring stress flip. However, putting effective tension on the boundaries will give overestimates in the reduction of the local effective tensile stress perpendicular to the larger systematic fractures and therefore the magnitude of the stress flip. In conclusion, both model approaches indicate that orthogonal fractures can form while experiencing one regional stress regime. This also means that under these specific loading and locally perturbed stress conditions both sets of orthogonal fractures stay open and can provide a pathway for fluid circulation.
Molecular coordination of Staphylococcus aureus cell division
Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon
2018-01-01
The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397
Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot
Watson-Lamprey, J. A.; Boore, D.M.
2007-01-01
In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.
A principal components analysis of dynamic spatial memory biases.
Motes, Michael A; Hubbard, Timothy L; Courtney, Jon R; Rypma, Bart
2008-09-01
Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed targets that moved horizontally from left to right before disappearing or viewed briefly shown stationary targets. After a target disappeared, observers indicated the vanishing position of the target. Principal components analysis revealed that biases along the horizontal axis of motion loaded on separate components from biases along the vertical axis orthogonal to motion. The findings support the hypothesis that implied momentum and implied gravity biases have unique influences on spatial memory. (c) 2008 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Li, Lingqi; Gottschalk, Lars; Krasovskaia, Irina; Xiong, Lihua
2018-01-01
Reconstruction of missing runoff data is of important significance to solve contradictions between the common situation of gaps and the fundamental necessity of complete time series for reliable hydrological research. The conventional empirical orthogonal functions (EOF) approach has been documented to be useful for interpolating hydrological series based upon spatiotemporal decomposition of runoff variation patterns, without additional measurements (e.g., precipitation, land cover). This study develops a new EOF-based approach (abbreviated as CEOF) that conditions EOF expansion on the oscillations at outlet (or any other reference station) of a target basin and creates a set of residual series by removing the dependence on this reference series, in order to redefine the amplitude functions (components). This development allows a transparent hydrological interpretation of the dimensionless components and thereby strengthens their capacities to explain various runoff regimes in a basin. The two approaches are demonstrated on an application of discharge observations from the Ganjiang basin, China. Two alternatives for determining amplitude functions based on centred and standardised series, respectively, are tested. The convergence in the reconstruction of observations at different sites as a function of the number of components and its relation to the characteristics of the site are analysed. Results indicate that the CEOF approach offers an efficient way to restore runoff records with only one to four components; it shows more superiority in nested large basins than at headwater sites and often performs better than the EOF approach when using standardised series, especially in improving infilling accuracy for low flows. Comparisons against other interpolation methods (i.e., nearest neighbour, linear regression, inverse distance weighting) further confirm the advantage of the EOF-based approaches in avoiding spatial and temporal inconsistencies in estimated series.
Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun
2016-01-01
As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Wieseman, Carol D.
2012-01-01
Orthogonal harmonic multisine excitations were utilized in a wind tunnel test and in simulation of the SemiSpan Supersonic Transport model to assess aeroservoelastic characteristics. Fundamental issues associated with analyzing sinusoidal signals were examined, including spectral leakage, excitation truncation, and uncertainties on frequency response functions and mean-square coherence. Simulation allowed for evaluation of these issues relative to a truth model, while wind tunnel data introduced real-world implementation issues.
Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2013-01-01
A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.
McAuley, Sybil A; Dang, Tri T; Horsburgh, Jodie C; Bansal, Anubhuti; Ward, Glenn M; Aroyan, Sarkis; Jenkins, Alicia J; MacIsaac, Richard J; Shah, Rajiv V; O'Neal, David N
2016-05-01
Orthogonal redundancy for glucose sensing (multiple sensing elements utilizing distinct methodologies) may enhance performance compared to nonredundant sensors, and to sensors with multiple elements utilizing the same technology (simple redundancy). We compared the performance of a prototype orthogonal redundant sensor (ORS) combining optical fluorescence and redundant electrochemical sensing via a single insertion platform to an electrochemical simple redundant sensor (SRS). Twenty-one adults with type 1 diabetes wore an ORS and an SRS concurrently for 7 days. Following sensor insertion, and on Day 4 with a standardized meal, frequent venous samples were collected for reference glucose measurement (laboratory [YSI] and meter) over 3 and 4 hours, respectively. Between study visits reference capillary blood glucose testing was undertaken. Sensor data were processed prospectively. ORS mean absolute relative difference (MARD) was (mean ± SD) 10.5 ± 13.2% versus SRS 11.0 ± 10.4% (P = .34). ORS values in Clarke error grid zones A and A+B were 88.1% and 97.6%, respectively, versus SRS 86.4% and 97.8%, respectively (P = .23 and P = .84). ORS Day 1 MARD (10.7 ± 10.7%) was superior to SRS (16.5 ± 13.4%; P < .0001), and comparable to ORS MARD for the week. ORS sensor survival (time-averaged mean) was 92.1% versus SRS 74.4% (P = .10). ORS display time (96.0 ± 5.8%) was equivalent to SRS (95.6 ± 8.9%; P = .87). Combining simple and orthogonal sensor redundancy via a single insertion is feasible, with accuracy comparing favorably to current generation nonredundant sensors. Addition of an optical component potentially improves sensor reliability compared to electrochemical sensing alone. Further improvement in optical sensing performance is required prior to clinical application. © 2016 Diabetes Technology Society.
Llorach, Rafael; Medina, Sonia; García-Viguera, Cristina; Zafrilla, Pilar; Abellán, José; Jauregui, Olga; Tomás-Barberán, Francisco A; Gil-Izquierdo, Angel; Andrés-Lacueva, Cristina
2014-06-01
Metabolomics has emerged in the field of food and nutrition sciences as a powerful tool for doing profiling approaches. In this context, HPLC-q-TOF-based metabolomics approach was applied to unveil changes in the urinary metabolome in human subjects (n = 51, 23 men and 28 women) after regular aronia-citrus juice (AC-juice) intake (250 mL/day) during 16 weeks compared to individuals given a placebo beverage. Samples were analyzed by HPLC-q-TOF followed by multivariate data analysis (orthogonal signal filtering-partial least square discriminant analysis) that discriminated relevant mass features related to AC-juice intake. The results showed that biomarkers of AC-juice intake including metabolites coming from metabolism of food components as proline betaine, ferulic acid, and two unknown mercapturate derivatives were identified. Discovery of new biomarkers of food intake will help in the building up of the food metabolome and facilitate future insights into the mechanisms of action of dietary components in population health. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast orthogonal transforms and generation of Brownian paths
Leobacher, Gunther
2012-01-01
We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545
Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV
NASA Technical Reports Server (NTRS)
Malak, M. F.; Hamed, A.; Tabakoff, W.
1986-01-01
The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, David P.; Fishgrab, Kira L.; Greth, Karl Douglas
The present invention relates to a lateral via to provide an electrical connection to a buried conductor. In one instance, the buried conductor is a through via that extends along a first dimension, and the lateral via extends along a second dimension that is generally orthogonal to the first dimension. In another instance, the second dimension is oblique to the first dimension. Components having such lateral vias, as well as methods for creating such lateral vias are described herein.
Dynamically orthogonal field equations for stochastic flows and particle dynamics
2011-02-01
where uncertainty ‘lives’ as well as a system of Stochastic Di erential Equations that de nes how the uncertainty evolves in the time varying stochastic ... stochastic dynamical component that are both time and space dependent, we derive a system of field equations consisting of a Partial Differential Equation...a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new
ERIC Educational Resources Information Center
Elk, Seymour B.
1997-01-01
Suggests that the cross product of two vectors can be more easily and accurately explained by starting from the perspective of dyadics because then the concept of vector multiplication has a simple geometrical picture that encompasses both the dot and cross products in any number of dimensions in terms of orthogonal unit vector components. (AIM)
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Foufoula-Georgiou, Efi
1993-02-01
It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.
Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models
NASA Astrophysics Data System (ADS)
Makowski, Alexander J.; Pence, Isaac J.; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Huszagh, Meredith C.; Mahadevan-Jansen, Anita; Nyman, Jeffry S.
2014-11-01
Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In the selected mutant mice-activating transcription factor 4 (ATF4) or matrix metalloproteinase 9 (MMP9) knock-outs-toughness is reduced but differences in bone strength do not exist between knock-out and corresponding wild-type controls. To incorporate differences in the RS of bone occurring at peak shoulders, a multivariate approach was used. Full spectrum principal components analysis of two paired, orthogonal bone orientations (relative to laser polarization) improved genotype classification and correlation to bone toughness when compared to traditional peak ratios. When applied to femurs from wild-type mice at 8 and 20 weeks of age, the principal components of orthogonal bone orientations improved age classification but not the explanation of the maturation-related increase in strength. Overall, increasing polarization information by collecting spectra from two bone orientations improves the ability of multivariate RS to explain variance in bone toughness, likely due to polarization sensitivity to organizational changes in both mineral and collagen.
Empirical Orthogonal Function (EOF) Analysis of Storm-Time GPS Total Electron Content Variations
NASA Astrophysics Data System (ADS)
Thomas, E. G.; Coster, A. J.; Zhang, S.; McGranaghan, R. M.; Shepherd, S. G.; Baker, J. B.; Ruohoniemi, J. M.
2016-12-01
Large perturbations in ionospheric density are known to occur during geomagnetic storms triggered by dynamic structures in the solar wind. These ionospheric storm effects have long attracted interest due to their impact on the propagation characteristics of radio wave communications. Over the last two decades, maps of vertically-integrated total electron content (TEC) based on data collected by worldwide networks of Global Positioning System (GPS) receivers have dramatically improved our ability to monitor the spatiotemporal dynamics of prominent storm-time features such as polar cap patches and storm enhanced density (SED) plumes. In this study, we use an empirical orthogonal function (EOF) decomposition technique to identify the primary modes of spatial and temporal variability in the storm-time GPS TEC response at midlatitudes over North America during more than 100 moderate geomagnetic storms from 2001-2013. We next examine the resulting time-varying principal components and their correlation with various geophysical indices and parameters in order to derive an analytical representation. Finally, we use a truncated reconstruction of the EOF basis functions and parameterization of the principal components to produce an empirical representation of the geomagnetic storm-time response of GPS TEC for all magnetic local times local times and seasons at midlatitudes in the North American sector.
NASA Technical Reports Server (NTRS)
Kumar, Praveen; Foufoula-Georgiou, Efi
1993-01-01
It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.
Demonstration of a Safety Analysis on a Complex System
NASA Technical Reports Server (NTRS)
Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey;
1997-01-01
For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.
Ochi, H; Sakai, Y; Koishihara, H; Abe, F; Bamba, T; Fukusaki, E
2013-01-01
We proposed an application methodology that combines metabolic profiling with multiple appropriate multivariate analyses and verified it on the industrial scale of the ripening process of Cheddar cheese to make practical use of hydrophilic low-molecular-weight compound profiling using gas chromatography-mass spectrometry to design optimal conditions and quality monitoring of the cheese ripening process. Principal components analysis provided an overview of the effect of sodium chloride content and kind of lactic acid bacteria starter on the metabolic profile in the ripening process of Cheddar cheese and orthogonal partial least squares-discriminant analysis unveiled the difference in characteristic metabolites. When the sodium chloride contents were different (1.6 and 0.2%) but the same lactic acid bacteria starter was used, the 2 cheeses were classified by orthogonal partial least squares-discriminant analysis from their metabolic profiles, but were not given perfect discrimination. Not much difference existed in the metabolic profile between the 2 cheeses. Compounds including lactose, galactose, lactic acid, 4-aminobutyric acid, and phosphate were identified as contents that differed between the 2 cheeses. On the other hand, in the case of the same salt content of 1.6%, but different kinds of lactic acid bacteria starter, an excellent distinctive discrimination model was obtained, which showed that the difference of lactic acid bacteria starter caused an obvious difference in metabolic profiles. Compounds including lactic acid, lactose, urea, 4-aminobutyric acid, galactose, phosphate, proline, isoleucine, glycine, alanine, lysine, leucine, valine, and pyroglutamic acid were identified as contents that differed between the 2 cheeses. Then, a good sensory prediction model for "rich flavor," which was defined as "thick and rich, including umami taste and soy sauce-like flavor," was constructed based on the metabolic profile during ripening using partial least squares regression analysis. The amino acids proline, leucine, valine, isoleucine, pyroglutamic acid, alanine, glutamic acid, glycine, lysine, tyrosine, serine, phenylalanine, methionine, aspartic acid, and ornithine were extracted as ripening process markers. The present study is not limited to Cheddar cheese and can be applied to various maturation-type natural cheeses. This study provides the technical platform for designing optimal conditions and quality monitoring of the cheese ripening process. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comprehensive dynamic analysis of a bladed disk-turborotor-bearing system
NASA Astrophysics Data System (ADS)
Kaushal, Ashok
The dynamic behavior of a bladed disk-turborotor-bearing system is studied employing analytical, numerical, and experimental methods. The system consists of several subsystems such as turbine disk, blades, bearings, support pedestals etc. In order to completely understand the dynamic behavior of the turborotor system an appropriate model for each individual component of the system is first developed. The individual components are modeled to include various design parameters and the effect of these parameters on the vibrational behavior is studied. The vibration studies on the individual components are carried out using Rayleigh-Ritz method boundary characteristic orthogonal polynomials as assumed shape functions. The individual components are then assembled using the finite element technique. The turborotor system is studied from a system point of view and the natural frequencies and mode shapes are obtained for various rotational speeds. The results show that the natural frequencies of the system are different from those obtained by analyzing individual components, suggesting that a system approach must be adopted for proper design of a turborotor system. The amplitude of vibration and stresses due to harmonic and centrifugal loading on the blades and the disk are also obtained. The results indicate that for the turborotor speed of operation, the centrifugal loading is the major factor in determining the critical stresses in comparison to the gas forces on the blade modeled as harmonic loading. Experimental validation of the analytical model is carried out and suggestions for future work are given.
Translation and rotation positioning motor
Schmid, Andreas [Berkeley, CA; Schaff, Oliver [13355 Berlin, DE
2005-02-01
A positioning device provides the capability of moving an object in both a linear and a rotational direction. The positioning device includes a first piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device further includes a second piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device also includes a first bearing that is disposed against the first piezo stack. The positioning device further includes a second bearing that is disposed against the second piezo stack. The positioning device also includes a spring element and a fifth bearing that is disposed against the spring element. The first through fifth bearings are disposed around and against the object to be positioned, to provide for positioning of the object in at least one of a linear direction and a rotational direction.
Translation and rotation positioning motor
Schmid, Andreas [Berkeley, CA; Schaff, Oliver [Berlin, DE
2006-07-04
A positioning device provides the capability of moving an object in both a linear and a rotational direction. The positioning device includes a first piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device further includes a second piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device also includes a first bearing that is disposed against the first piezo stack. The positioning device further includes a second bearing that is disposed against the second piezo stack. The positioning device also includes a spring element and a fifth bearing that is disposed against the spring element. The first through fifth bearings are disposed around and against the object to be positioned, to provide for positioning of the object in at least one of a linear direction and a rotational direction.
Tucker, Murray G; Kavanagh, Justin J; Morrison, Steven; Barrett, Rod S
2009-10-01
Falls amongst older people have been linked to reduced postural stability and slowed movement responses. The objective of this study was to examine differences in postural stability and the speed of response between young adults, low fall-risk older adults, and high fall-risk older adults during voluntary postural sway movements. Twenty-five young adults (25+/-4 years), and 32 low fall-risk (74+/-5 years), and 16 high fall-risk (79+/-7 years) older adults performed voluntary sway and rapid orthogonal transitions of voluntary sway between the anterior-posterior and medial-lateral directions. Measures included reaction and movement time and the amplitudes of the centre of pressure, centre of mass, and the separation distance between the centre of pressure and centre of mass. Both fall-risk groups compared to the young had slower reaction and movement time, greater centre of pressure and/or centre of mass amplitude in the orthogonal (non-target) direction during voluntary sway, and reduced anterior-posterior and medial-lateral separation between the centre of pressure and centre of mass during voluntary sway and orthogonal transitions. High compared to low fall-risk individuals had slower reaction and movement time, increased non-target centre of mass amplitude during voluntary sway, and reduced medial-lateral centre of pressure and centre of mass separation during voluntary sway and orthogonal transitions. Age-related deterioration of postural control resulted in slower reactive responses and reduced control of the direction of body movement during voluntary sway and orthogonal transitions. Slower postural reaction and movement time and reduced medial-lateral control of the centre of mass during voluntary sway movements are associated with increased fall-risk in community-living older people.
Pihl, Michael Johannes; Jensen, Jørgen Arendt
2014-10-01
A method for 3-D velocity vector estimation using transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultaneously and from the same data. The validity of the method is investigated by conducting simulations emulating a 32 × 32 matrix transducer. The results are evaluated using two performance metrics related to precision and accuracy. The study includes several parameters including 49 flow directions, the SNR, steering angle, and apodization types. The 49 flow directions cover the positive octant of the unit sphere. In terms of accuracy, the median bias is -2%. The precision of v(x) and v(y) depends on the flow angle ß and ranges from 5% to 31% relative to the peak velocity magnitude of 1 m/s. For comparison, the range is 0.4 to 2% for v(z). The parameter study also reveals, that the velocity estimation breaks down with an SNR between -6 and -3 dB. In terms of computational load, the estimation of the three velocity components requires 0.75 billion floating point operations per second (0.75 Gflops) for a realistic setup. This is well within the capability of modern scanners.
A technique for thick polymer coating of inertial-confinement-fusion targets
NASA Technical Reports Server (NTRS)
Lee, M. C.; Feng, I.-A.; Wang, T. G.; Kim, H.-G.
1983-01-01
A technique to coat a stalk-mounted inertial-confinement fusion (ICF) target with a thick polymer layer has been successfully demonstrated. The polymer solution is first atomized, allowed to coalesce into a droplet, and positioned in a stable acoustic levitating field. The stalk-mounted ICF target is then moved into the acoustic field by manipulating a 3-D positioner to penetrate the surface membrane of the droplet, thus immersing the target in the levitated coating solution. The target inside the droplet is maintained at the center of the levitated liquid using the 3-D positional information provided by two orthogonally placed TV cameras until the drying process is completed. The basic components of the experimental apparatus, including an acoustic levitator, liquid sample deployment device, image acquisition instrumentation, and 3-D positioner, are briefly described.
Genomes, Proteomes and the Central Dogma
Franklin, Sarah; Vondriska, Thomas M.
2011-01-01
Systems biology, with its associated technologies of proteomics, genomics and metabolomics, is driving the evolution of our understanding of cardiovascular physiology. Rather than studying individual molecules or even single reactions, a systems approach allows integration of orthogonal datasets from distinct tiers of biological data, including gene, RNA, protein, metabolite and other component networks. Together these networks give rise to emergent properties of cellular function and it is their reprogramming that causes disease. We present five observations regarding how systems biology is guiding a revisiting of the central dogma: (i) de-emphasizing the unidirectional flow of information from genes to proteins; (ii) revealing the role of modules of molecules as opposed to individual proteins acting in isolation; (iii) enabling discovery of novel emergent properties; (iv) demonstrating the importance of networks in biology; and (v) adding new dimensionality to the study of biological systems. PMID:22010165
Synthetic biology through biomolecular design and engineering.
Channon, Kevin; Bromley, Elizabeth H C; Woolfson, Derek N
2008-08-01
Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.
Bi-orthogonal Symbol Mapping and Detection in Optical CDMA Communication System
NASA Astrophysics Data System (ADS)
Liu, Maw-Yang
2017-12-01
In this paper, the bi-orthogonal symbol mapping and detection scheme is investigated in time-spreading wavelength-hopping optical CDMA communication system. The carrier-hopping prime code is exploited as signature sequence, whose put-of-phase autocorrelation is zero. Based on the orthogonality of carrier-hopping prime code, the equal weight orthogonal signaling scheme can be constructed, and the proposed scheme using bi-orthogonal symbol mapping and detection can be developed. The transmitted binary data bits are mapped into corresponding bi-orthogonal symbols, where the orthogonal matrix code and its complement are utilized. In the receiver, the received bi-orthogonal data symbol is fed into the maximum likelihood decoder for detection. Under such symbol mapping and detection, the proposed scheme can greatly enlarge the Euclidean distance; hence, the system performance can be drastically improved.
Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet; Mazur, Pawel K; Martinez-Canarias, Susana; Zandueta, Carolina; Valencia, Karmele; Arricibita, Andrea; Gwinn, Dana; Sayles, Leanne C; Chuang, Chen-Hua; Guembe, Laura; Bailey, Peter; Chang, David K; Biankin, Andrew; Ponz-Sarvise, Mariano; Andersen, Jesper B; Khatri, Purvesh; Bozec, Aline; Sweet-Cordero, E Alejandro; Sage, Julien; Lecanda, Fernando; Vicent, Silve
2017-02-21
KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.
Cross Sections for Electron Impact Excitation of Astrophysically Abundant Atoms and Ions
NASA Technical Reports Server (NTRS)
Tayal, S. S.
2006-01-01
Electron collisional excitation rates and transition probabilities are important for computing electron temperatures and densities, ionization equilibria, and for deriving elemental abundances from emission lines formed in the collisional and photoionized astrophysical plasmas. Accurate representation of target wave functions that properly account for the important correlation and relaxation effects and inclusion of coupling effects including coupling to the continuum are essential components of a reliable collision calculation. Non-orthogonal orbitals technique in multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities. The effect of coupling to the continuum spectrum is included through the use of pseudostates which are chosen to account for most of the dipole polarizabilities of target states. The B-spline basis is used in the R-matrix approach to calculate electron excitation collision strengths and rates. Results for oscillator strengths and electron excitation collision strengths for transitions in N I, O I, O II, O IV, S X and Fe XIV have been produced
Jones, Michael D; Avula, Bharathi; Wang, Yan-Hong; Lu, Lu; Zhao, Jianping; Avonto, Cristina; Isaac, Giorgis; Meeker, Larry; Yu, Kate; Legido-Quigley, Cristina; Smith, Norman; Khan, Ikhlas A
2014-10-17
Roman and German chamomile are widely used throughout the world. Chamomiles contain a wide variety of active constituents including sesquiterpene lactones. Various extraction techniques were performed on these two types of chamomile. A packed-column supercritical fluid chromatography-mass spectrometry method was designed for the identification of sesquiterpenes and other constituents from chamomile extracts with no derivatization step prior to analysis. Mass spectrometry detection was achieved by using electrospray ionization. All of the compounds of interest were separated within 15 min. The chamomile extracts were analyzed and compared for similarities and distinct differences. Multivariate statistical analysis including principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to differentiate between the chamomile samples. German chamomile samples confirmed the presence of cis- and trans-tonghaosu, chrysosplenols, apigenin diglucoside whereas Roman chamomile samples confirmed the presence of apigenin, nobilin, 1,10-epioxynobilin, and hydroxyisonobilin. Copyright © 2014 Elsevier B.V. All rights reserved.
The Motivational Salience of Faces Is Related to Both Their Valence and Dominance.
Wang, Hongyi; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C
2016-01-01
Both behavioral and neural measures of the motivational salience of faces are positively correlated with their physical attractiveness. Whether physical characteristics other than attractiveness contribute to the motivational salience of faces is not known, however. Research with male macaques recently showed that more dominant macaques' faces hold greater motivational salience. Here we investigated whether dominance also contributes to the motivational salience of faces in human participants. Principal component analysis of third-party ratings of faces for multiple traits revealed two orthogonal components. The first component ("valence") was highly correlated with rated trustworthiness and attractiveness. The second component ("dominance") was highly correlated with rated dominance and aggressiveness. Importantly, both components were positively and independently related to the motivational salience of faces, as assessed from responses on a standard key-press task. These results show that at least two dissociable components underpin the motivational salience of faces in humans and present new evidence for similarities in how humans and non-human primates respond to facial cues of dominance.
Lio, Guillaume; Gomez, Alice; Sirigu, Angela
2017-01-01
Facial width to height ratio (fWHR) is a morphological cue that correlates with sexual dimorphism and social traits. Currently, it is unclear how vertical and horizontal components of fWHR, distinctly capture faces’ social information. Using a new methodology, we orthogonally manipulated the upper facial height and the bizygomatic width to test their selective effect in the formation of impressions. Subjects (n = 90) saw pair of faces and had to select the face expressing better different social traits (trustworthiness, aggressiveness and femininity). We further investigated how sex and fWHR components interact in the formation of these judgements. Across experiments, changes along the vertical component better predicted participants' ratings rather than the horizontal component. Faces with smaller height were perceived as less trustworthy, less feminine and more aggressive. By dissociating fWHR and testing the contribution of its components independently, we obtained a powerful and discriminative measure of how facial morphology guides social judgements. PMID:28235081
POD analysis of the instability mode of a low-speed streak in a laminar boundary layer
NASA Astrophysics Data System (ADS)
Deng, Si-Chao; Pan, Chong; Wang, Jin-Jun; Rinoshika, Akira
2017-12-01
The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry (PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition (POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy (TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content, suggesting an increasing competition of varicose instability against sinuous instability.
Nakata, Toshihiko; Ninomiya, Takanori
2006-10-10
A general solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging is presented. Phase-modulated heterodyne interference light generated by a linear region of periodic displacement is captured by a charge-coupled device image sensor, in which the interference light is sampled at a sampling rate lower than the Nyquist frequency. The frequencies of the components of the light, such as the sideband and carrier (which include photodisplacement and topography information, respectively), are downconverted and sampled simultaneously based on the integration and sampling effects of the sensor. A general solution of frequency and amplitude in this downconversion is derived by Fourier analysis of the sampling procedure. The optimal frequency condition for the heterodyne beat signal, modulation signal, and sensor gate pulse is derived such that undesirable components are eliminated and each information component is converted into an orthogonal function, allowing each to be discretely reproduced from the Fourier coefficients. The optimal frequency parameters that maximize the sideband-to-carrier amplitude ratio are determined, theoretically demonstrating its high selectivity over 80 dB. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a speed corresponding to an acquisition time of only 0.26 s per 256 x 256 pixel area.
Improved Dual-Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Huang, John
1993-01-01
Dual-polarized microstrip antenna features microstrip transmission-line feeds arranged in such configuration that cross-polarized components of radiation relatively low and degree of isolation between feed ports relatively high. V and H feed ports offset from midpoints of feed lines to obtain required opposite phases at feed-point connections to microstrip patches. Two independent beams of same frequency with electric fields polarized orthogonally to each other transmitted or received via antenna. Improved design saves space.
The dependence of sea surface slope on atmospheric stability and swell conditions
NASA Technical Reports Server (NTRS)
Hwang, Paul A.; Shemdin, Omar H.
1988-01-01
A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.
Functional Connectivity Measures After Psilocybin Inform a Novel Hypothesis of Early Psychosis
Carhart-Harris, Robin L.
2013-01-01
Psilocybin is a classic psychedelic and a candidate drug model of psychosis. This study measured the effects of psilocybin on resting-state network and thalamocortical functional connectivity (FC) using functional magnetic resonance imaging (fMRI). Fifteen healthy volunteers received intravenous infusions of psilocybin and placebo in 2 task-free resting-state scans. Primary analyses focused on changes in FC between the default-mode- (DMN) and task-positive network (TPN). Spontaneous activity in the DMN is orthogonal to spontaneous activity in the TPN, and it is well known that these networks support very different functions (ie, the DMN supports introspection, whereas the TPN supports externally focused attention). Here, independent components and seed-based FC analyses revealed increased DMN-TPN FC and so decreased DMN-TPN orthogonality after psilocybin. Increased DMN-TPN FC has been found in psychosis and meditatory states, which share some phenomenological similarities with the psychedelic state. Increased DMN-TPN FC has also been observed in sedation, as has decreased thalamocortical FC, but here we found preserved thalamocortical FC after psilocybin. Thus, we propose that thalamocortical FC may be related to arousal, whereas DMN-TPN FC is related to the separateness of internally and externally focused states. We suggest that this orthogonality is compromised in early psychosis, explaining similarities between its phenomenology and that of the psychedelic state and supporting the utility of psilocybin as a model of early psychosis. PMID:23044373
Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis.
Carhart-Harris, Robin L; Leech, Robert; Erritzoe, David; Williams, Tim M; Stone, James M; Evans, John; Sharp, David J; Feilding, Amanda; Wise, Richard G; Nutt, David J
2013-11-01
Psilocybin is a classic psychedelic and a candidate drug model of psychosis. This study measured the effects of psilocybin on resting-state network and thalamocortical functional connectivity (FC) using functional magnetic resonance imaging (fMRI). Fifteen healthy volunteers received intravenous infusions of psilocybin and placebo in 2 task-free resting-state scans. Primary analyses focused on changes in FC between the default-mode- (DMN) and task-positive network (TPN). Spontaneous activity in the DMN is orthogonal to spontaneous activity in the TPN, and it is well known that these networks support very different functions (ie, the DMN supports introspection, whereas the TPN supports externally focused attention). Here, independent components and seed-based FC analyses revealed increased DMN-TPN FC and so decreased DMN-TPN orthogonality after psilocybin. Increased DMN-TPN FC has been found in psychosis and meditatory states, which share some phenomenological similarities with the psychedelic state. Increased DMN-TPN FC has also been observed in sedation, as has decreased thalamocortical FC, but here we found preserved thalamocortical FC after psilocybin. Thus, we propose that thalamocortical FC may be related to arousal, whereas DMN-TPN FC is related to the separateness of internally and externally focused states. We suggest that this orthogonality is compromised in early psychosis, explaining similarities between its phenomenology and that of the psychedelic state and supporting the utility of psilocybin as a model of early psychosis.
NASA Astrophysics Data System (ADS)
Madajewski, Marek; Nowakowski, Zbigniew
2017-01-01
This paper presents analysis of flank wear influence on forces in orthogonal turning of 42CrMo4 steel and evaluates capacity of finite element model to provide such force values. Data about magnitude of feed and cutting force were obtained from measurements with force tensiometer in experimental test as well as from finite element analysis of chip formation process in ABAQUS/Explicit software. For studies an insert with complex rake face was selected and flank wear was simulated by grinding operation on its flank face. The aim of grinding inset surface was to obtain even flat wear along cutting edge, which after the measurement could be modeled with CAD program and applied in FE analysis for selected range of wear width. By comparing both sets of force values as function of flank wear in given cutting conditions FEA model was validated and it was established that it can be applied to analyze other physical aspects of machining. Force analysis found that progression of wear causes increase in cutting force magnitude and steep boost to feed force magnitude. Analysis of Fc/Ff force ratio revealed that flank wear has significant impact on resultant force in orthogonal cutting and magnitude of this force components in cutting and feed direction. Surge in force values can result in transfer of substantial loads to machine-tool interface.
Dhont, J K; Wagner, N J
2001-02-01
The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have been described, which do not capture the shear induced microstructural deformation, which is responsible for the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a fundamental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow. We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point. These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy of the microstructure under shear flow conditions is essential. In accordance with experimental observations we find pronounced negative values for response functions in case of parallel superposition for an intermediate range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component. For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for systems where the stationary shear flow induces a considerable amount of new microstructure.
Characterization and recycling of cadmium from waste nickel-cadmium batteries.
Huang, Kui; Li, Jia; Xu, Zhenming
2010-11-01
A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel-cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel-cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L(16) (4(4)) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition. Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Quantification of frequency-components contributions to the discharge of a karst spring
NASA Astrophysics Data System (ADS)
Taver, V.; Johannet, A.; Vinches, M.; Borrell, V.; Pistre, S.; Bertin, D.
2013-12-01
Karst aquifers represent important underground resources for water supplies, providing it to 25% of the population. Nevertheless such systems are currently underexploited because of their heterogeneity and complexity, which make work fields and physical measurements expensive, and frequently not representative of the whole aquifer. The systemic paradigm appears thus at a complementary approach to study and model karst aquifers in the framework of non-linear system analysis. Its input and output signals, namely rainfalls and discharge contain information about the function performed by the physical process. Therefore, improvement of knowledge about the karst system can be provided using time series analysis, for example Fourier analysis or orthogonal decomposition [1]. Another level of analysis consists in building non-linear models to identify rainfall/discharge relation, component by component [2]. In this context, this communication proposes to use neural networks to first model the rainfall-runoff relation using frequency components, and second to analyze the models, using the KnoX method [3], in order to quantify the importance of each component. Two different neural models were designed: (i) the recurrent model which implements a non-linear recurrent model fed by rainfalls, ETP and previous estimated discharge, (ii) the feed-forward model which implements a non-linear static model fed by rainfalls, ETP and previous observed discharges. The first model is known to better represent the rainfall-runoff relation; the second one to better predict the discharge based on previous discharge observations. KnoX method is based on a variable selection method, which simply considers values of parameters after the training without taking into account the non-linear behavior of the model during functioning. An amelioration of the KnoX method, is thus proposed in order to overcome this inadequacy. The proposed method, leads thus to both a hierarchization and a quantification of the input variables, here the frequency components, over output signal. Applied to the Lez karst aquifer, the combination of frequency decomposition and knowledge extraction improves knowledge on hydrological behavior. Both models and both extraction methods were applied and assessed using a fictitious reference model. Discussion is proposed in order to analyze efficiency of the methods compared to in situ measurements and tracing. [1] D. Labat et al. 'Rainfall-runoff relations for karst springs. Part II: continuous wavelet and discrete orthogonal multiresolution' In J of Hydrology, Vol. 238, 2000, pp. 149-178. [2] A. Johannet et al. 'Prediction of Lez Spring Discharge (Southern France) by Neural Networks using Orthogonal Wavelet Decomposition'.IJCNN Proceedings Brisbane 2012. [3] L. Kong A Siou et al. 'Modélisation hydrodynamique des karsts par réseaux de neurones : Comment dépasser la boîte noire. (Karst hydrodynamic modelling using artificial neural networks: how to surpass the black box ?)'. Proceedings of the 9th conference on limestone hydrogeology,2011 Besançon, France.
Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C
2017-05-01
The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Investigation of low-speed turbulent separated flow around airfoils
NASA Technical Reports Server (NTRS)
Wadcock, Alan J.
1987-01-01
Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.
An efficient classification method based on principal component and sparse representation.
Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang
2016-01-01
As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.
Crossover ensembles of random matrices and skew-orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Santosh, E-mail: skumar.physics@gmail.com; Pandey, Akhilesh, E-mail: ap0700@mail.jnu.ac.in
2011-08-15
Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we givemore » details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.« less
NASA Astrophysics Data System (ADS)
Ayuni, N. W. D.; Sari, I. G. A. M. K. K.
2018-01-01
The high rate of unemployment results the economic growth to be hampered. To solve this situation, the government try to change the students’ mindset from becoming a job seeker to become a job creator or entrepreneur. One real action that usually been held in Bali State Polytechnic is Student Entrepreneurial Program. The purpose of this research is to identify and analyze the factors that influence the interest of Bali State Polytechnic’s Students in entrepreneurship, especially in the Entrepreneurial Student Program. Method used in this research is Factor Analysis including Bartlett Test, Kaiser-Mayer Olkin (KMO), Measure of Sampling Adequacy (MSA), factor extraction using Principal Component Analysis (PCA), factor selection using eigen value and scree plot, and factor rotation using orthogonal rotation varimax. Result shows that there are four factors that influencing the interest of Bali State Polytechnic’s Students in Entrepreneurship which are Contextual Factor (including Entrepreneurship Training, Academic Support, Perceived Confidence, and Economic Challenge), Self Efficacy Factor (including Leadership, Mental Maturity, Relation with Entrepreneur, and Authority), Subjective Norm Factor (including Support of Important Relative, Support of Friends, and Family Role), and Attitude Factor (including Self Realization).
1981-09-01
organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square
Fazal, Irfan M; Ahmed, Nisar; Wang, Jian; Yang, Jeng-Yuan; Yan, Yan; Shamee, Bishara; Huang, Hao; Yue, Yang; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2012-11-15
We demonstrate a 2 Tbit/s free-space data link using two orthogonal orbital angular momentum beams each carrying 25 different wavelength-division-multiplexing channels. We measure the performance for different modulation formats, including directly detected 40 Gbit/s nonreturn-to-zero (NRZ) differential phase-shift keying, 40 Gbit/s NRZ on-off keying, and coherently-detected 10 Gbaud NRZ quadrature phase-shift keying, and achieve low bit error rates with penalties less than 5 dB.
NASA Astrophysics Data System (ADS)
Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin
2012-10-01
A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.
Accurate Calculation of Oscillator Strengths for CI II Lines Using Non-orthogonal Wavefunctions
NASA Technical Reports Server (NTRS)
Tayal, S. S.
2004-01-01
Non-orthogonal orbitals technique in the multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities for allowed and intercombination lines in Cl II. The relativistic corrections are included through the Breit-Pauli Hamiltonian. The Cl II wave functions show strong term dependence. The non-orthogonal orbitals are used to describe the term dependence of radial functions. Large sets of spectroscopic and correlation functions are chosen to describe adequately strong interactions in the 3s(sup 2)3p(sup 3)nl (sup 3)Po, (sup 1)Po and (sup 3)Do Rydberg series and to properly account for the important correlation and relaxation effects. The length and velocity forms of oscillator strength show good agreement for most transitions. The calculated radiative lifetime for the 3s3p(sup 5) (sup 3)Po state is in good agreement with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Devin A., E-mail: dmatthews@utexas.edu; Stanton, John F.
2015-02-14
The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating anmore » efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))« less
Orthogonally referenced integrated ensemble for navigation and timing
Smith, Stephen Fulton; Moore, James Anthony
2013-02-26
An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.
Hagen, E.C.; Hudson, C.L.
1995-07-25
A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.
Orthogonally referenced integrated ensemble for navigation and timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen Fulton; Moore, James Anthony
2014-04-01
An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clockmore » oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.« less
Equivalences of the multi-indexed orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odake, Satoru
2014-01-15
Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable shape-invariant quantum mechanical systems in one dimension obtained by the method of virtual states deletion. Multi-indexed orthogonal polynomials are labeled by a set of degrees of polynomial parts of virtual state wavefunctions. For multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson, and Askey-Wilson types, two different index sets may give equivalent multi-indexed orthogonal polynomials. We clarify these equivalences. Multi-indexed orthogonal polynomials with both type I and II indices are proportional to those of type I indices only (or type II indices only) with shifted parameters.
A Compact, High-Flux Cold Atom Beam Source
NASA Technical Reports Server (NTRS)
Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis
2012-01-01
The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.
Landmine detection using two-tapped joint orthogonal matching pursuits
NASA Astrophysics Data System (ADS)
Goldberg, Sean; Glenn, Taylor; Wilson, Joseph N.; Gader, Paul D.
2012-06-01
Joint Orthogonal Matching Pursuits (JOMP) is used here in the context of landmine detection using data obtained from an electromagnetic induction (EMI) sensor. The response from an object containing metal can be decomposed into a discrete spectrum of relaxation frequencies (DSRF) from which we construct a dictionary. A greedy iterative algorithm is proposed for computing successive residuals of a signal by subtracting away the highest matching dictionary element at each step. The nal condence of a particular signal is a combination of the reciprocal of this residual and the mean of the complex component. A two-tap approach comparing signals on opposite sides of the geometric location of the sensor is examined and found to produce better classication. It is found that using only a single pursuit does a comparable job, reducing complexity and allowing for real-time implementation in automated target recognition systems. JOMP is particularly highlighted in comparison with a previous EMI detection algorithm known as String Match.
Asymmetric color image encryption based on singular value decomposition
NASA Astrophysics Data System (ADS)
Yao, Lili; Yuan, Caojin; Qiang, Junjie; Feng, Shaotong; Nie, Shouping
2017-02-01
A novel asymmetric color image encryption approach by using singular value decomposition (SVD) is proposed. The original color image is encrypted into a ciphertext shown as an indexed image by using the proposed method. The red, green and blue components of the color image are subsequently encoded into a complex function which is then separated into U, S and V parts by SVD. The data matrix of the ciphertext is obtained by multiplying orthogonal matrices U and V while implementing phase-truncation. Diagonal entries of the three diagonal matrices of the SVD results are abstracted and scrambling combined to construct the colormap of the ciphertext. Thus, the encrypted indexed image covers less space than the original image. For decryption, the original color image cannot be recovered without private keys which are obtained from phase-truncation and the orthogonality of V. Computer simulations are presented to evaluate the performance of the proposed algorithm. We also analyze the security of the proposed system.
NASA Astrophysics Data System (ADS)
Raghupathy, Arun; Ghia, Karman; Ghia, Urmila
2008-11-01
Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.
Korany, Mohamed A; Abdine, Heba H; Ragab, Marwa A A; Aboras, Sara I
2015-05-15
This paper discusses a general method for the use of orthogonal polynomials for unequal intervals (OPUI) to eliminate interferences in two-component spectrophotometric analysis. In this paper, a new approach was developed by using first derivative D1 curve instead of absorbance curve to be convoluted using OPUI method for the determination of metronidazole (MTR) and nystatin (NYS) in their mixture. After applying derivative treatment of the absorption data many maxima and minima points appeared giving characteristic shape for each drug allowing the selection of different number of points for the OPUI method for each drug. This allows the specific and selective determination of each drug in presence of the other and in presence of any matrix interference. The method is particularly useful when the two absorption spectra have considerable overlap. The results obtained are encouraging and suggest that the method can be widely applied to similar problems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Marinelli, Dimitri; Marzuoli, Annalisa
2013-05-01
The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second-order difference equation which, by a complex phase change, we turn into a discrete Schrödinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical 6j symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary ‘quantum of space’, and a transparent asymptotic picture of the semiclassical and classical regimes emerges. The definition of coordinates adapted to the Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.
Multilayer neural networks for reduced-rank approximation.
Diamantaras, K I; Kung, S Y
1994-01-01
This paper is developed in two parts. First, the authors formulate the solution to the general reduced-rank linear approximation problem relaxing the invertibility assumption of the input autocorrelation matrix used by previous authors. The authors' treatment unifies linear regression, Wiener filtering, full rank approximation, auto-association networks, SVD and principal component analysis (PCA) as special cases. The authors' analysis also shows that two-layer linear neural networks with reduced number of hidden units, trained with the least-squares error criterion, produce weights that correspond to the generalized singular value decomposition of the input-teacher cross-correlation matrix and the input data matrix. As a corollary the linear two-layer backpropagation model with reduced hidden layer extracts an arbitrary linear combination of the generalized singular vector components. Second, the authors investigate artificial neural network models for the solution of the related generalized eigenvalue problem. By introducing and utilizing the extended concept of deflation (originally proposed for the standard eigenvalue problem) the authors are able to find that a sequential version of linear BP can extract the exact generalized eigenvector components. The advantage of this approach is that it's easier to update the model structure by adding one more unit or pruning one or more units when the application requires it. An alternative approach for extracting the exact components is to use a set of lateral connections among the hidden units trained in such a way as to enforce orthogonality among the upper- and lower-layer weights. The authors call this the lateral orthogonalization network (LON) and show via theoretical analysis-and verify via simulation-that the network extracts the desired components. The advantage of the LON-based model is that it can be applied in a parallel fashion so that the components are extracted concurrently. Finally, the authors show the application of their results to the solution of the identification problem of systems whose excitation has a non-invertible autocorrelation matrix. Previous identification methods usually rely on the invertibility assumption of the input autocorrelation, therefore they can not be applied to this case.
MRI of penile fracture: what should be a tailored protocol in emergency?
Esposito, Andrea Alessandro; Giannitto, Caterina; Muzzupappa, Claudia; Maccagnoni, Sara; Gadda, Franco; Albo, Giancarlo; Biondetti, Pietro Raimondo
2016-09-01
To conduct a review of literature to summarize the existing MRI protocols for penile trauma, suggesting a tailored protocol to reduce costs and time of examination. A systematic search was performed in Medline, Embase, Cochrane Library, and Cinahl databases from 1995 to 2015 to identify studies evaluating penis trauma with MRI examination. Studies were included if there was the description of MRI protocol with at least sequences and orthogonal planes used. We chose a systematic approach for data extraction and descriptive synthesis. 12 articles were included in our study. Among the list of 12 articles: 2 were case reports, 3 were clinical series, and 7 were reviews. Clinical trials were not found. There is no unanimous consensus among the authors. Summarizing the data, the most used protocol is characterized by T2 sequences in three orthogonal planes plus T1 sequences in one plane (either axial or sagittal) without contrast medium injection. There is a lack of a standard protocol. A tailored protocol to answer the diagnostic question, reducing costs and time of examination, is characterized by T2 sequences in three orthogonal planes plus at least a T1 sequence (either axial or sagittal plane).
Discrete Vector Solitons in Kerr Nonlinear Waveguide Arrays
NASA Astrophysics Data System (ADS)
Meier, Joachim; Hudock, Jared; Christodoulides, Demetrios; Stegeman, George; Silberberg, Y.; Morandotti, R.; Aitchison, J. S.
2003-10-01
We report the first experimental observation of discrete vector solitons in AlGaAs nonlinear waveguide arrays. These self-trapped states are possible through the coexistence of two orthogonally polarized fields and are stable in spite of the presence of four-wave mixing effects. We demonstrate that at sufficiently high power levels the two polarizations lock into a highly localized vector discrete soliton that would have been otherwise impossible in the absence of either one of these two components.
Performance and analysis of a three-dimensional nonorthogonal laser Doppler anemometer
NASA Technical Reports Server (NTRS)
Snyder, P. K.; Orloff, K. L.; Aoyagi, K.
1981-01-01
A three dimensional laser Doppler anemometer with a nonorthogonal third axis coupled by 14 deg was designed and tested. A highly three dimensional flow field of a jet in a crossflow was surveyed to test the three dimensional capability of the instrument. Sample data are presented demonstrating the ability of the 3D LDA to resolve three orthogonal velocity components. Modifications to the optics, signal processing electronics, and data reduction methods are suggested.
Is Fourier analysis performed by the visual system or by the visual investigator.
Ochs, A L
1979-01-01
A numerical Fourier transform was made of the pincushion grid illusion and the spectral components orthogonal to the illusory lines were isolated. Their inverse transform creates a picture of the illusion. The spatial-frequency response of cortical, simple receptive field neurons similarly filters the grid. A complete set of these neurons thus approximates a two-dimensional Fourier analyzer. One cannot conclude, however, that the brain actually uses frequency-domain information to interpret visual images.
Zhuo, Limeng; Peng, Jingjing; Zhao, Yunli; Li, Dongxiang; Xie, Xiuman; Tong, Ling; Yu, Zhiguo
2017-10-01
Traditional Chinese medicine consists of complex phytochemical constituents. Selecting appropriate analytical markers of traditional Chinese medicine is a critical step in quality control. Currently, the combination of fingerprinting and efficacy evaluation is considered as a useful method for screening active ingredients in complex mixtures. This study was designed to develop an orthogonal partial least squares model for screening bioactive quality control markers of QishenYiqi dripping pills based on the fingerprint-efficacy relationship. First, the chemical fingerprints of 49 batches of QishenYiqi dripping pill samples were established by ultra-high performance liquid chromatography coupled with a photodiode array detector. Second, ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was exploited to systematically investigate the 36 copossessing fingerprint components in QishenYiqi dripping pills. The vascular protective activity of QishenYiqi dripping pills was determined by using a cell counting kit-8 assay. Finally, fingerprint-efficacy relationship was established by orthogonal partial least squares model. The results indicated that ten components exhibited strong correlation with vascular protective activity, and these were preliminarily screened as quality control markers. The present study provided a novel idea for the study of the pharmacodynamic material basis and quality evaluation of QishenYiqi dripping pills. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sea level reconstructions from altimetry and tide gauges using independent component analysis
NASA Astrophysics Data System (ADS)
Brunnabend, Sandra-Esther; Kusche, Jürgen; Forootan, Ehsan
2017-04-01
Many reconstructions of global and regional sea level rise derived from tide gauges and satellite altimetry used the method of empirical orthogonal functions (EOF) to reduce noise, improving the spatial resolution of the reconstructed outputs and investigate the different signals in climate time series. However, the second order EOF method has some limitations, e.g. in the separation of individual physical signals into different modes of sea level variations and in the capability to physically interpret the different modes as they are assumed to be orthogonal. Therefore, we investigate the use of the more advanced statistical signal decomposition technique called independent component analysis (ICA) to reconstruct global and regional sea level change from satellite altimetry and tide gauge records. Our results indicate that the used method has almost no influence on the reconstruction of global mean sea level change (1.6 mm/yr from 1960-2010 and 2.9 mm/yr from 1993-2013). Only different numbers of modes are needed for the reconstruction. Using the ICA method is advantageous for separating independent climate variability signals from regional sea level variations as the mixing problem of the EOF method is strongly reduced. As an example, the modes most dominated by the El Niño-Southern Oscillation (ENSO) signal are compared. Regional sea level changes near Tianjin, China, Los Angeles, USA, and Majuro, Marshall Islands are reconstructed and the contributions from ENSO are identified.
Statistical process control of cocrystallization processes: A comparison between OPLS and PLS.
Silva, Ana F T; Sarraguça, Mafalda Cruz; Ribeiro, Paulo R; Santos, Adenilson O; De Beer, Thomas; Lopes, João Almeida
2017-03-30
Orthogonal partial least squares regression (OPLS) is being increasingly adopted as an alternative to partial least squares (PLS) regression due to the better generalization that can be achieved. Particularly in multivariate batch statistical process control (BSPC), the use of OPLS for estimating nominal trajectories is advantageous. In OPLS, the nominal process trajectories are expected to be captured in a single predictive principal component while uncorrelated variations are filtered out to orthogonal principal components. In theory, OPLS will yield a better estimation of the Hotelling's T 2 statistic and corresponding control limits thus lowering the number of false positives and false negatives when assessing the process disturbances. Although OPLS advantages have been demonstrated in the context of regression, its use on BSPC was seldom reported. This study proposes an OPLS-based approach for BSPC of a cocrystallization process between hydrochlorothiazide and p-aminobenzoic acid monitored on-line with near infrared spectroscopy and compares the fault detection performance with the same approach based on PLS. A series of cocrystallization batches with imposed disturbances were used to test the ability to detect abnormal situations by OPLS and PLS-based BSPC methods. Results demonstrated that OPLS was generally superior in terms of sensibility and specificity in most situations. In some abnormal batches, it was found that the imposed disturbances were only detected with OPLS. Copyright © 2017 Elsevier B.V. All rights reserved.
Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A
2016-01-12
Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.
Magnetic elliptical polarization of Schumann resonances
NASA Technical Reports Server (NTRS)
Sentman, D. D.
1987-01-01
Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.
Data-driven Analysis and Prediction of Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Kondrashov, D. A.; Chekroun, M.; Ghil, M.; Yuan, X.; Ting, M.
2015-12-01
We present results of data-driven predictive analyses of sea ice over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to prognostic models of sea ice concentration (SIC) anomalies on seasonal time scales.This approach is applied to monthly time series of leading principal components from the multivariate Empirical Orthogonal Function decomposition of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" forup to 6-months ahead. It will be shown in particular that the memory effects included in our non-Markovian linear MSM models improve predictions of large-amplitude SIC anomalies in certain Arctic regions. Furtherimprovements allowed by the MSM framework will adopt a nonlinear formulation, as well as alternative data-adaptive decompositions.
NASA Technical Reports Server (NTRS)
Socolovsky, Eduardo A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The cosine or correlation measures of similarity used to cluster high dimensional data are interpreted as projections, and the orthogonal components are used to define a complementary dissimilarity measure to form a similarity-dissimilarity measure pair. Using a geometrical approach, a number of properties of this pair is established. This approach is also extended to general inner-product spaces of any dimension. These properties include the triangle inequality for the defined dissimilarity measure, error estimates for the triangle inequality and bounds on both measures that can be obtained with a few floating-point operations from previously computed values of the measures. The bounds and error estimates for the similarity and dissimilarity measures can be used to reduce the computational complexity of clustering algorithms and enhance their scalability, and the triangle inequality allows the design of clustering algorithms for high dimensional distributed data.
Finite element analysis when orthogonal cutting of hybrid composite CFRP/Ti
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2015-07-01
Hybrid composite, especially CFRP/Ti stack, is usually considered as an innovative structural configuration for manufacturing the key load-bearing components in modern aerospace industry. This paper originally proposed an FE model to simulate the total chip formation process dominated the hybrid cutting operation. The hybrid composite model was established based on three physical constituents, i.e., Ti constituent, interface and CFRP constituent. Different constitutive models and damage criteria were introduced to replicate the interrelated cutting behaviour of the stack material. The CFRP/Ti interface was modelled as a third phase through the concept of cohesive zone (CZ). Particular attention was made on the comparative studies of the influence of different cutting-sequence strategies on the machining responses induced in hybrid stack cutting. The numerical results emphasized the pivotal role of cutting-sequence strategy on the various machining induced responses including cutting-force generation, machined surface quality and induced interface damage.
Dong, Yu; He, Ying; Yu, Zhongming; Zhang, Yang; Wang, Nani; Shou, Dan; Li, Changyu
2016-01-01
The medicinal willow bracket mushroom, Phellinus igniarius, is a species that has been reported to possess antibacterial, antioxidative, antitumor, antidiabetic, and antihyperlipidemia activities. The aim of this study was to elucidate the changes in endogenous metabolites after oral administration of a decoction of Ph. Igniarius. Ultraperformance liquid chromatography (UPLC)/electrospray ionization synapt high-definition mass spectrometry (ESI-HDMS) combined with pattern recognition approaches, including principal component analysis and orthogonal partial least squares discriminant analysis, were integrated to discover differentiating metabolites. The current metabolomics approach identified 16 ions (5 in the negative mode, 11 in the positive mode) as "differentiating metabolites". The results illustrated that Ph. Igniarius is likely to increase the biosynthesis and secretion of bile acids that provide hypolipidemic activity and showed that robust UPLC/ESI-HDMS techniques are promising for profiling analysis of medicinal mushroom metabolites.
Construction of a Chassis for a Tripartite Protein-Based Molecular Motor.
Small, Lara S R; Bruning, Marc; Thomson, Andrew R; Boyle, Aimee L; Davies, Roberta B; Curmi, Paul M G; Forde, Nancy R; Linke, Heiner; Woolfson, Derek N; Bromley, Elizabeth H C
2017-06-16
Improving our understanding of biological motors, both to fully comprehend their activities in vital processes, and to exploit their impressive abilities for use in bionanotechnology, is highly desirable. One means of understanding these systems is through the production of synthetic molecular motors. We demonstrate the use of orthogonal coiled-coil dimers (including both parallel and antiparallel coiled coils) as a hub for linking other components of a previously described synthetic molecular motor, the Tumbleweed. We use circular dichroism, analytical ultracentrifugation, dynamic light scattering, and disulfide rearrangement studies to demonstrate the ability of this six-peptide set to form the structure designed for the Tumbleweed motor. The successful formation of a suitable hub structure is both a test of the transferability of design rules for protein folding as well as an important step in the production of a synthetic protein-based molecular motor.
Orthogonal fast spherical Bessel transform on uniform grid
NASA Astrophysics Data System (ADS)
Serov, Vladislav V.
2017-07-01
We propose an algorithm for the orthogonal fast discrete spherical Bessel transform on a uniform grid. Our approach is based upon the spherical Bessel transform factorization into the two subsequent orthogonal transforms, namely the fast Fourier transform and the orthogonal transform founded on the derivatives of the discrete Legendre orthogonal polynomials. The method utility is illustrated by its implementation for the problem of a two-atomic molecule in a time-dependent external field simulating the one utilized in the attosecond streaking technique.
Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization
NASA Astrophysics Data System (ADS)
Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.
Direct calculation of modal parameters from matrix orthogonal polynomials
NASA Astrophysics Data System (ADS)
El-Kafafy, Mahmoud; Guillaume, Patrick
2011-10-01
The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.
Beam shaping with vortex beam generated by liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Gao, Yue; Liu, Ke; Sun, Zeng-yu; Guo, Lei; Gan, Yu
2015-02-01
An optical vortex is a beam of light with phase varying in a corkscrew-like manner along its direction of propagation and so has a helical wavefront. When such a vectorial vortex beam and the Gaussian beam with orthogonal polarization are focused by low NA lens, the Gaussian component causes a focal intensity distribution with a solid center and the vortex component causes a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Flat top focusing can be obtained under appropriate conditions. It is demonstrated through experiments with a liquid crystal spatial light modulator in such a beam, that flattop focus can be obtained by vectorial vortex beams with topological charge of +1 to achieve beam shaping vortex.
IC 5181: An S0 Galaxy with Ionized Gas on Polar Orbits
NASA Astrophysics Data System (ADS)
Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontá, E.; Cesetti, M.
2014-05-01
The nearby S0 galaxy IC 5181 is studied to address the origin of the ionized gas component that orbits the galaxy on polar orbit. We perform detailed photometric and spectroscopic observations measuring the surface brightness distribution of the stars (I band), ionized gas of IC 5181 (Hα narrow band), the ionized-gas and stellar kinematics along both the major and minor axis, and the corresponding line strengths of the Lick indices. We conclude that the galaxy hosts a geometrically and kinematically decoupled component of ionized gas. It is elongated along the galaxy minor axis and in orthogonal rotation with respect to the galaxy disk. The result is suggesting that the gas component is not related to the stars having an external origin. The gas was accreted by IC 5181 on polar orbits from the surrounding environment.
Detecting Multi-scale Structures in Chandra Images of Centaurus A
NASA Astrophysics Data System (ADS)
Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.
1999-12-01
Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.
The Sedimentation of Particles under Orthogonal Shear in Viscoelastic Fluids
NASA Astrophysics Data System (ADS)
Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.
2016-11-01
Many engineering applications, including oil and gas recovery, require the suspension of particles in viscoelastic fluids during fluid transport and processing. A topic of specific importance involves such particle suspensions experiencing an applied shear flow in a direction perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that particle sedimentation coupled with an orthogonal shear flow can reduce the particle settling rate in elastic fluids. The underlying mechanism of this enhanced coupling drag is not fully understood, particularly at finite Weissenberg numbers. This talk examines the role of fluid elasticity on a single, non-Brownian, rigid sphere settling in orthogonal shear using experiments and numerical simulations. New experiments were performed in a Taylor-Couette flow cell using Boger fluids to study the coupling drag as a function of the shear and sedimentation Weissenberg numbers as well as particle confinement. The elastic effect was also studied with fully 3D simulations of flow past a rigid sphere, using the FENE-P constitutive model to describe the polymeric fluid rheology. These simulations show good agreement with the experiments and allow for further insight into the mechanism of elasticity-enhanced drag. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.
Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling
2014-01-01
Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738
Observations on the Proper Orthogonal Decomposition
NASA Technical Reports Server (NTRS)
Berkooz, Gal
1992-01-01
The Proper Orthogonal Decomposition (P.O.D.), also known as the Karhunen-Loeve expansion, is a procedure for decomposing a stochastic field in an L(2) optimal sense. It is used in diverse disciplines from image processing to turbulence. Recently the P.O.D. is receiving much attention as a tool for studying dynamics of systems in infinite dimensional space. This paper reviews the mathematical fundamentals of this theory. Also included are results on the span of the eigenfunction basis, a geometric corollary due to Chebyshev's inequality and a relation between the P.O.D. symmetry and ergodicity.
Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo
2016-01-01
We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443
Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons
NASA Technical Reports Server (NTRS)
Dickman, J. D.
1996-01-01
Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the bony canal structure to produce a resultant sensitivity vector that was positioned between the canal planes. Calculated angles between the average canal afferent sensitivity vectors revealed that direction orthogonality is preserved at the afferent signal level, even though deviations from canal plane orthogonality exist.
Orthogonality preserving infinite dimensional quadratic stochastic operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akın, Hasan; Mukhamedov, Farrukh
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
Legendre modified moments for Euler's constant
NASA Astrophysics Data System (ADS)
Prévost, Marc
2008-10-01
Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4
Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.
Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A
2018-02-01
A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.
Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A
2012-11-01
Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.
Population gratings in saturable optical fibers with randomly oriented rare-earth ions
NASA Astrophysics Data System (ADS)
Stepanov, S.; Martinez, L. M.; Hernandez, E. H.; Agruzov, P.; Shamray, A.
2015-07-01
Formation of the dynamic population gratings in optical fibers with randomly oriented rare-earth ions is analyzed with a special interest to the grating component for readout with the orthogonal light polarization. It is shown that as compared with a simple model case of the collinearly oriented dipole-like centers their random orientation leads to approximately 2-times growth of the effective saturation power P sat when it is estimated from the incident power dependence of the fiber absorption or from that of the fluorescence intensity. An optimal incident power, for which the maximum of the dynamic population grating amplitude for collinear light polarization is observed, also follows this change in P sat, while formation of the grating for orthogonal polarization needs essentially higher light power. The reduced anisotropy of the active centers, which is in charge of the experimentally observed weakening of the polarization hole burning (PHB) and of the fluorescence polarization, compensates in some way the effect of random ion orientation. The ratio between the maximum conventional (i.e. for the interacting waves collinear polarizations) two-wave mixing (TWM) amplitude and the initial not saturable fiber optical density proves to be, however, nearly the same as in the model case of collinearly oriented dipoles. The ratio between the PHB effect and the amplitude of the anisotropic grating, which is responsible for TWM of the orthogonally polarized waves, is also not influenced significantly by the reduced anisotropy of ions.
Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George
2013-05-31
Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted.
Response of Seismometer with Symmetric Triaxial Sensor Configuration to Complex Ground Motion
NASA Astrophysics Data System (ADS)
Graizer, V.
2007-12-01
Most instruments used in seismological practice to record ground motion in all directions use three sensors oriented toward North, East and upward. In this standard configuration horizontal and vertical sensors differ in their construction because of gravity acceleration always applied to a vertical sensor. An alternative way of symmetric sensor configuration was first introduced by Galperin (1955) for petroleum exploration. In this arrangement three identical sensors are also positioned orthogonally to each other but are tilted at the same angle of 54.7 degrees to the vertical axis (triaxial system of coordinate balanced on its corner). Records obtained using symmetric configuration must be rotated into an earth referenced X, Y, Z coordinate system. A number of recent seismological instruments (e.g., broadband seismometers Streckeisen STS-2, Trillium of Nanometrics and Cronos of Kinemetrics) are using symmetric sensor configuration. In most of seismological studies it is assumed that rotational (rocking and torsion) components of earthquake ground motion are small enough to be neglected. However, recently examples were shown when rotational components are significant relative to translational components of motions. Response of pendulums installed in standard configuration (vertical and two horizontals) to complex input motion that includes rotations has been studied in a number of publications. We consider the response of pendulums in a symmetric sensor configuration to complex input motions including rotations, and the resultant triaxial system response. Possible implications of using symmetric sensor configuration in strong motion studies are discussed. Considering benefits of equal design of all three sensors in symmetric configuration, and as a result potentially lower cost of the three-component accelerograph, it may be useful for strong motion measurements not requiring high resolution post signal processing. The disadvantage of this configuration is that if one of the sensors is not working properly or there is a misalignment of sensors, it results in degradation of all three components. Symmetric sensor configuration requires identical processing of each channel putting a number of limitations on further processing of strong motion records.
Current progress in multiple-image blind demixing algorithms
NASA Astrophysics Data System (ADS)
Szu, Harold H.
2000-06-01
Imagery edges occur naturally in human visual systems as a consequence of redundancy reduction towards `sparse and orthogonality feature maps,' which have been recently derived from the maximum entropy information-theoretical first principle of artificial neural networks. After a brief match review of such an Independent Component Analysis or Blind Source Separation of edge maps, we explore the de- mixing condition for more than two imagery objects recognizable by an intelligent pair of cameras with memory in a time-multiplex fashion.
Multispectral histogram normalization contrast enhancement
NASA Technical Reports Server (NTRS)
Soha, J. M.; Schwartz, A. A.
1979-01-01
A multispectral histogram normalization or decorrelation enhancement which achieves effective color composites by removing interband correlation is described. The enhancement procedure employs either linear or nonlinear transformations to equalize principal component variances. An additional rotation to any set of orthogonal coordinates is thus possible, while full histogram utilization is maintained by avoiding the reintroduction of correlation. For the three-dimensional case, the enhancement procedure may be implemented with a lookup table. An application of the enhancement to Landsat multispectral scanning imagery is presented.
1981-01-01
Channel and study permutation codes as a special case. ,uch a code is generated by an initial vector x, a group G of orthogonal n by n matrices, and a...random-access components, is introduced and studied . Under this scheme, the network stations are divided into groups , each of which is assigned a...IEEE INFORMATION THEORY GROUP CO-SPONSORED BY: UNION RADIO SCIENTIFIQUE INTERNATIONALE IEEE Catalog Number 81 CH 1609-7 IT . 81 ~20 04Q SECURITY
NASA Technical Reports Server (NTRS)
Freilich, M. H.; Pawka, S. S.
1987-01-01
The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.
Lightning Tests on the WC-130 Research Aircraft.
1982-12-01
in the WC-136 tests at various times.) E- Feild Fiber Optic Test Article Sensor Transmitter (Typ)WiePr Indtuced Voltag Sensor"" *Fiber I"=Current optic...well-characterized. 5.1 Skin Current Measurements Skin current vectors were measured at five fuselage locations on the left side of the WC-130 at a...MGL-S7) which were mounted so that they sampled two orthogonal components of the skin current vector . The measured responses were then inte- grated
2009-12-01
with 32 chip baseband waveforms such as Walsh functions. Performance with both coherent and noncoherent detection is analyzed. For noncoherent ...detection, only one five bit symbol is transmitted on the I and Q components of the carrier per symbol duration, so the data throughput for noncoherent ...for coherent and noncoherent demodulation, respectively, when 510bP . Likewise, in an AWGN only environment with a diversity of two, the proposed
Dynamical characteristics of an electromagnetic field under conditions of total reflection
NASA Astrophysics Data System (ADS)
Bekshaev, Aleksandr Ya
2018-04-01
The dynamical characteristics of electromagnetic fields include energy, momentum, angular momentum (spin) and helicity. We analyze their spatial distributions near the planar interface between two transparent and non-dispersive media, when the incident monochromatic plane wave with arbitrary polarization is totally reflected, and an evanescent wave is formed in the medium with lower optical density. Based on the recent arguments in favor of the Minkowski definition of the electromagnetic momentum in a material medium (Philbin 2011 Phys. Rev. A 83 013823; Philbin and Allanson 2012 86 055802; Bliokh et al 2017 Phys. Rev. Lett. 119 073901), we derive the explicit expressions for the dynamical characteristics in both media, with special attention to their behavior at the interface. In particular, the ‘extraordinary’ spin and momentum components orthogonal to the plane of incidence are described, and a canonical (spin-orbital) momentum decomposition is performed that contains no singular terms. The field energy, helicity, the spin momentum and orbital momentum components are everywhere regular but experience discontinuities at the interface; the spin components parallel to the interface appear to be continuous, which testifies to the consistency of the adopted Minkowski picture. The results supply a meaningful example of the electromagnetic momentum decomposition, with separation of spatial and polarization degrees of freedom, in inhomogeneous media, and can be used in engineering the structured fields designed for optical sorting, dispatching and micromanipulation.
Cup Cylindrical Waveguide Antenna
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
[Orthogonal Vector Projection Algorithm for Spectral Unmixing].
Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li
2015-12-01
Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, John D.; Narayan, Akil; Zhou, Tao
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS
Einstein, Daniel R.; Dyedov, Vladimir
2010-01-01
Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546
Satomura, Hironori; Adachi, Kohei
2013-07-01
To facilitate the interpretation of canonical correlation analysis (CCA) solutions, procedures have been proposed in which CCA solutions are orthogonally rotated to a simple structure. In this paper, we consider oblique rotation for CCA to provide solutions that are much easier to interpret, though only orthogonal rotation is allowed in the existing formulations of CCA. Our task is thus to reformulate CCA so that its solutions have the freedom of oblique rotation. Such a task can be achieved using Yanai's (Jpn. J. Behaviormetrics 1:46-54, 1974; J. Jpn. Stat. Soc. 11:43-53, 1981) generalized coefficient of determination for the objective function to be maximized in CCA. The resulting solutions are proved to include the existing orthogonal ones as special cases and to be rotated obliquely without affecting the objective function value, where ten Berge's (Psychometrika 48:519-523, 1983) theorems on suborthonormal matrices are used. A real data example demonstrates that the proposed oblique rotation can provide simple, easily interpreted CCA solutions.
New solar cell and clean unit system platform (CUSP) for earth and environmental science
NASA Astrophysics Data System (ADS)
Ishibashi, A.; Matsuoka, T.; Enomoto, R.; Yasutake, M.
2017-11-01
We have investigated InGaN-based multi-striped orthogonal photon-photocarrier propagation solar cell (MOP3SC) in which sunlight propagates in a direction being orthogonal to that of photocarriers generated by the sunlight. Thanks to the orthogonality, in MOP3SC, absorption of the sunlight and collection of the photocarriers can be simultaneously and independently optimized with no trade-off. Furthermore, by exploiting the degree of freedom along the photon propagation and using multi-semiconductor stripes in which the incoming photons first encounter the widest gap semiconductor, and the narrowest at last, we can convert the whole solar spectrum into electricity resulting in the high conversion efficiency. For processing MOP3SC, we have developed Clean Unit System Platform (CUSP), which turns out to be able to serve as clean versatile environment having low power-consumption and high cost-performance. CUSP is suitable not only for processing devices, but also for cross-disciplinary fields, including medical/hygienic applications.
Self-hybridization within non-Hermitian localized plasmonic systems
NASA Astrophysics Data System (ADS)
Lourenço-Martins, Hugo; Das, Pabitra; Tizei, Luiz H. G.; Weil, Raphaël; Kociak, Mathieu
2018-04-01
The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1-4. The need to compensate for energy losses made the few successful attempts5-8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.
Electromechanical battery design suitable for back-up power applications
Post, Richard F.
2002-01-01
The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, John D.; Narayan, Akil; Zhou, Tao
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
Jakeman, John D.; Narayan, Akil; Zhou, Tao
2017-06-22
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
John M. Frank; William J. Massman; Brent E. Ewers
2013-01-01
Sonic thermometry and anemometry are fundamental to all eddy-covariance studies of surface energy balance. Recent studies have suggested that sonic anemometers with non-orthogonal transducers can underestimate vertical wind velocity (w) and sensible heat flux (H) when compared to orthogonal designs. In this study we tested whether a non-orthogonal sonic anemometer (...
Improvement of a 2D numerical model of lava flows
NASA Astrophysics Data System (ADS)
Ishimine, Y.
2013-12-01
I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.
Application of neural networks with orthogonal activation functions in control of dynamical systems
NASA Astrophysics Data System (ADS)
Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.
2016-04-01
In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.
Hagen, Edward C.; Hudson, Charles L.
1995-01-01
A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).
Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.
O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N
2017-05-24
The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types. Moreover the transfection is efficient with high cell viability and does not require a postsorting step to separate transfected from nontransfected cells in the cell population. We also show for the first time a precision transfection strategy where a single cell type in a coculture is target transfected via bio-orthogonal click chemistry.
Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)
Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2007-01-30
Techniques and instrumentation are described for analyses of substances, including complex samples/mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that "locks" the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as .about.3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.
Spacecraft attitude and velocity control system
NASA Technical Reports Server (NTRS)
Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)
1992-01-01
A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.
Bieler, Noah S; Hünenberger, Philippe H
2015-08-15
In a recent article (Bieler et al., J. Chem. Theory Comput. 2014, 10, 3006), we introduced a combination of λ-dynamics and local-elevation umbrella-sampling termed λ-LEUS to calculate free-energy changes associated with alchemical processes using molecular dynamics simulations. This method was suggested to be more efficient than thermodynamic integration (TI), because the dynamical variation of the alchemical variable λ opens up pathways to circumvent barriers in the orthogonal space (defined by the N - 1 degrees of freedom that are not subjected to the sampling enhancement), a feature λ-LEUS shares with Hamiltonian replica-exchange (HR) approaches. However, the mutation considered, hydroquinone to benzene in water, was no real challenge in terms of orthogonal-space properties, which were restricted to solvent-relaxation processes. In the present article, we revisit the comparison between TI and λ-LEUS considering non-trivial mutations of the central residue X of a KXK tripeptide in water (with X = G, E, K, S, F, or Y). Side-chain interactions that may include salt bridges, hydrogen bonds or steric clashes lead to slow relaxation in the orthogonal space, mainly in the two-dimensional subspace spanned by the central φ and ψ dihedral angles of the peptide. The efficiency enhancement afforded by λ-LEUS is confirmed in this more complex test system and can be attributed explicitly to the improved sampling of the orthogonal space. The sensitivity of the results to the nontrivial choices of a mass parameter and of a thermostat coupling time for the alchemical variable is also investigated, resulting in recommended ranges of 50 to 100 u nm(2) and 0.2 to 0.5 ps, respectively. © 2015 Wiley Periodicals, Inc.
Boiret, Mathieu; de Juan, Anna; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel
2015-09-10
Raman chemical imaging provides chemical and spatial information about pharmaceutical drug product. By using resolution methods on acquired spectra, the objective is to calculate pure spectra and distribution maps of image compounds. With multivariate curve resolution-alternating least squares, constraints are used to improve the performance of the resolution and to decrease the ambiguity linked to the final solution. Non negativity and spatial local rank constraints have been identified as the most powerful constraints to be used. In this work, an alternative method to set local rank constraints is proposed. The method is based on orthogonal projections pretreatment. For each drug product compound, raw Raman spectra are orthogonally projected to a basis including all the variability from the formulation compounds other than the product of interest. Presence or absence of the compound of interest is obtained by observing the correlations between the orthogonal projected spectra and a pure spectrum orthogonally projected to the same basis. By selecting an appropriate threshold, maps of presence/absence of compounds can be set up for all the product compounds. This method appears as a powerful approach to identify a low dose compound within a pharmaceutical drug product. The maps of presence/absence of compounds can be used as local rank constraints in resolution methods, such as multivariate curve resolution-alternating least squares process in order to improve the resolution of the system. The method proposed is particularly suited for pharmaceutical systems, where the identity of all compounds in the formulations is known and, therefore, the space of interferences can be well defined. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.
Observations of the magnetic field and plasma flow in Jupiter's magnetosheath
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Burlaga, L. F.; Klein, L. W.; Jessen, J. M.; Goodrich, G. C.
1980-01-01
Large scale (many minutes to 10 hours) magnetic field structures consisting predominantly of nearly north-south field direction were discovered in Jupiter's magnetosheath from the data of Voyagers 1 and 2 and Pioneer 10 during their outbound encounter trajectories. The Voyager 2 data, and that of Voyager 1 to a lesser extent, show evidence of a quasi-period of 10 hours (and occasionally 5 hours) for these structures. The north-south components of the field and plasma velocity were strongly correlated in the outbound magnetosheath as observed by Voyagers 1 and 2, and the components orthogonal to the north-south direction showed weak correlations. For both Voyager encounters the sense (positive and negative) of the north-south correlations were directly related to the direction of the ecliptic plane component of the interplanetary magnetic field using the field and plasma measurements of the non-encountering spacecraft.
Vantomme, Ghislaine; Jiang, Shimei; Lehn, Jean-Marie
2014-07-02
Constitutional dynamic libraries of hydrazones (a)A(b)B and acylhydrazones (a)A(c)C undergo reorganization and adaptation in response to a chemical effector (metal cations) or a physical stimulus (light). The set of hydrazones [(1)A(1)B, (1)A(2)B, (2)A(1)B, (2)A(2)B] undergoes metalloselection on addition of zinc cations which drive the amplification of Zn((1)A(2)B)2 by selection of the fittest component (1)A(2)B. The set of acylhydrazones [E-(1)A(1)C, (1)A(2)C, (2)A(1)C, (2)A(2)C] undergoes photoselection by irradiation of the system, which causes photoisomerization of E-(1)A(1)C into Z-(1)A(1)C with amplification of the latter. The set of acyl hydrazones [E-(1)A(1)C, (1)A(3)C, (2)A(1)C, (2)A(3)C] undergoes a dual adaptation via component exchange and selection in response to two orthogonal external agents: a chemical effector, metal cations, and a physical stimulus, light irradiation. Metalloselection takes place on addition of zinc cations which drive the amplification of Zn((1)A(3)C)2 by selection of the fittest constituent (1)A(3)C. Photoselection is obtained on irradiation of the acylhydrazones that leads to photoisomerization from E-(1)A(1)C to Z-(1)A(1)C configuration with amplification of the latter. These changes may be represented by square constitutional dynamic networks that display up-regulation of the pairs of agonists ((1)A(2)B, (2)A(1)B), (Z-(1)A(1)C, (2)A(2)C), ((1)A(3)C, (2)A(1)C), (Z-(1)A(1)C, (2)A(3)C) and the simultaneous down-regulation of the pairs of antagonists ((1)A(1)B, (2)A(2)B), ((1)A(2)C, (2)A(1)C), (E-(1)A(1)C, (2)A(3)C), ((1)A(3)C, (2)A(1)C). The orthogonal dual adaptation undergone by the set of acylhydrazones amounts to a network switching process.
Design of almost symmetric orthogonal wavelet filter bank via direct optimization.
Murugesan, Selvaraaju; Tay, David B H
2012-05-01
It is a well-known fact that (compact-support) dyadic wavelets [based on the two channel filter banks (FBs)] cannot be simultaneously orthogonal and symmetric. Although orthogonal wavelets have the energy preservation property, biorthogonal wavelets are preferred in image processing applications because of their symmetric property. In this paper, a novel method is presented for the design of almost symmetric orthogonal wavelet FB. Orthogonality is structurally imposed by using the unnormalized lattice structure, and this leads to an objective function, which is relatively simple to optimize. The designed filters have good frequency response, flat group delay, almost symmetric filter coefficients, and symmetric wavelet function.
Interframe transform coding of picture data
NASA Technical Reports Server (NTRS)
Ahmed, N.; Natarajan, T. R.
1976-01-01
This semi-tutorial paper describes the process of using orthogonal transforms for the purposes of encoding TV picture data. Results pertaining to a 6:1 data compression experiment using the Walsh-Hadamard transform are included.
Airborne Polarized Lidar Detection of Scattering Layers in the Ocean
NASA Astrophysics Data System (ADS)
Vasilkov, Alexander P.; Goldin, Yury A.; Gureev, Boris A.; Hoge, Frank E.; Swift, Robert N.; Wright, C. Wayne
2001-08-01
A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the timedepth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the timedepth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the timedepth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 2025 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.; Jelínek, M.; Kubeček, V.
2017-07-01
Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.
Baron, Szymon; Ahearne, Eamonn
2017-04-01
An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.
Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.
Mohiaddin, R H; Yang, G Z; Kilner, P J
1994-01-01
We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.
Evaluating the morphological completeness of a training image.
Gao, Mingliang; Teng, Qizhi; He, Xiaohai; Feng, Junxi; Han, Xue
2017-05-01
Understanding the three-dimensional (3D) stochastic structure of a porous medium is helpful for studying its physical properties. A 3D stochastic structure can be reconstructed from a two-dimensional (2D) training image (TI) using mathematical modeling. In order to predict what specific morphology belonging to a TI can be reconstructed at the 3D orthogonal slices by the method of 3D reconstruction, this paper begins by introducing the concept of orthogonal chords. After analyzing the relationship among TI morphology, orthogonal chords, and the 3D morphology of orthogonal slices, a theory for evaluating the morphological completeness of a TI is proposed for the cases of three orthogonal slices and of two orthogonal slices. The proposed theory is evaluated using four TIs of porous media that represent typical but distinct morphological types. The significance of this theoretical evaluation lies in two aspects: It allows special morphologies, for which the attributes of a TI can be reconstructed at a special orthogonal slice of a 3D structure, to be located and quantified, and it can guide the selection of an appropriate reconstruction method for a special TI.
Kim, Il Kwang; Lee, Soo Il
2016-05-01
The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.
Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields
NASA Astrophysics Data System (ADS)
Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-04-01
Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.
NASA Astrophysics Data System (ADS)
Reber, J. E.; Schmalholz, S. M.; Lechmann, S. M.
2009-04-01
We present field data and numerical modeling results which show the evolution of stress and strain patterns during 3D folding resulting in an orthogonal fracture system. The field area is located near Almograve, SW Portugal. The area is part of the Mira Formation which itself is part of the South Portuguese Zone (SPZ). The structural development of the SPZ is characterized by southwest vergent folding and thrust displacement. The metamorphism in the SPZ increases from diagenetic conditions in the southwest to greenschist-facies conditions to the northeast. The Mira Formation is composed of turbiditic layers of Carboniferous age with low sandstone to shale ratio. The data was gathered at three outcrops which show structures similar to chocolate tablet structures in the folded sandstone layers. Chocolate tablet structures are generated under simultaneous extension in two directions and show two fracture systems of the same age which are perpendicular to each other. However, the Mira Formation is located in a convergent area. Also, the outcrops near Almograve show two fracture systems of different age. The fractures orthogonal to the fold axis and the bedding are crosscut by fractures parallel to the fold axis and orthogonal to the bedding. Our hypothesis for the evolution of the observed fracture systems is as follows; the older fractures which are now orthogonal to the fold axis and to the bedding plane were generated during compression while the layers were still approximately horizontal. They are parallel to σ1(i.e. mode 1 fractures). The second and younger fracture family was generated in a phase where there is local extension in the fold limbs. These fractures are orthogonal to the far-field σ1, parallel to the fold axis and perpendicular to the bedding. The shortening direction is constant during the entire folding process. We test our hypothesis with numerical modeling. We use 2D and 3D finite element codes with a mixed formulation for incompressible flow and a viscous rheology. The stress and strain tensor components are calculated at each numerical nodal point. The stress and strain fields are visualized through ellipses and ellipsoids which are calculated using the eigenvalues of the respective tensors. The shortest main axis represents the direction of the smallest stress σ3 and the longest main axis represents the direction of the largest stress σ1. To generate two orthogonal fracture systems in the fold limbs we expect a relatively rapid change of the stress field in the fold limbs during folding. With a relatively slow change of the stress field we would expect to see more than two fracture systems with a wide range of fracture orientation which we did not observe in the field. The preliminary 2D results show, as expected, a sudden flip of the main axes of the stress ellipse which corresponds to a change from limb-parallel compression to extension. For the 3D model we expect similar results and we will investigate the impact of different deformation boundary conditions on the evolution of the 3D stress and strain fields.
NASA Astrophysics Data System (ADS)
Gromov, E. M.; Malomed, B. A.; Tyutin, V. V.
2018-01-01
The dynamics of two-component solitons is studied, analytically and numerically, in the framework of a system of coupled extended nonlinear Schrödinger equations, which incorporate the cross-phase modulation, pseudo-stimulated-Raman-scattering (pseudo-SRS), cross-pseudo-SRS, and spatially inhomogeneous second-order dispersion (SOD). The system models co-propagation of electromagnetic waves with orthogonal polarizations in plasmas. It is shown that the soliton's wavenumber downshift, caused by pseudo-SRS, may be compensated by an upshift, induced by the inhomogeneous SOD, to produce stable stationary two-component solitons. The corresponding approximate analytical solutions for stable solitons are found. Analytical results are well confirmed by their numerical counterparts. Further, the evolution of inputs composed of spatially even and odd components is investigated by means of systematic simulations, which reveal three different outcomes: formation of a breather which keeps opposite parities of the components; splitting into a pair of separating vector solitons; and spreading of the weak odd component into a small-amplitude pedestal with an embedded dark soliton.
A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA
NASA Astrophysics Data System (ADS)
Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan
2016-11-01
The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.
NASA Technical Reports Server (NTRS)
Gennery, D. B.
1998-01-01
A method is described for calibrating cameras including radial lens distortion, by using known points such as those measured from a calibration fixture. The distortion terms are relative to the optical axis, which is included in the model so that it does not have to be orthogonal to the image sensor plane.
Nishimura, Akio; Yokosawa, Kazuhiko
2006-06-01
The above-right/below-left mapping advantage with vertical stimuli and horizontal responses is known as the orthogonal stimulus-response compatibility (SRC) effect. We investigated whether the orthogonal SRC effect emerges with irrelevant stimulus dimensions. In Experiment 1, participants responded with a right or left key press to the colour of the stimulus presented above or below the fixation. We observed an above-right/below-left advantage (orthogonal Simon effect). In Experiment 2, we manipulated the polarity in the response dimension by varying the horizontal location of the response set. The orthogonal Simon effect decreased and even reversed as the left response code became more positive. This result provides evidence for the automatic activation of the positive and negative response codes by the corresponding positive and negative stimulus codes. These findings extended the orthogonal SRC effect based on coding asymmetry to an irrelevant stimulus dimension.
Non-Orthogonal Corneal Astigmatism among Normal and Keratoconic Brazilian and Chinese populations.
Abass, Ahmed; Clamp, John; Bao, FangJun; Ambrósio, Renato; Elsheikh, Ahmed
2018-06-01
To investigate the prevalence of non-orthogonal astigmatism among normal and keratoconic Brazilian and Chinese populations. Topography data were obtained using the Pentacam High Resolution (HR) system ® from 458 Brazilian (aged 35.6 ± 15.8 years) and 505 Chinese (aged 31.6 ± 10.8 years) eyes with no history of keratoconus or refractive surgery, and 314 Brazilian (aged 24.2 ± 5.7 years) and 74 Chinese (aged 22.0 ± 5.5 years) keratoconic eyes. Orthogonal values of optical flat and steep powers were determined by finding the angular positions of two perpendicular meridians that gave the maximum difference in power. Additionally, the angular positions of the meridians with the minimum and maximum optical powers were located while being unrestricted by the usual orthogonality assumption. Eyes were determined to have non-orthogonal astigmatism if the angle between the two meridians with maximum and minimum optical power deviated by more than 5° from 90°. Evidence of non-orthogonal astigmatism was found in 39% of the Brazilian keratoconic eyes, 26% of the Chinese keratoconic eyes, 29% of the Brazilian normal eyes and 20% of the Chinese normal eyes. The large percentage of participants with non-orthogonal astigmatism in both normal and keratoconic eyes illustrates the need for the common orthogonality assumption to be reviewed when correcting for astigmatism. The prevalence of non-orthogonality should be considered by expanding the prescription system to consider the two power meridians and their independent positions.
Orthogonal transform feasibility study
NASA Technical Reports Server (NTRS)
Robinson, G. S.
1971-01-01
The application of various orthogonal transformations to communication was investigated, with particular emphasis placed on speech and visual signal processing. The fundamentals of the one- and two-dimensional orthogonal transforms and their application to speech and visual signals are treated in detail.
Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T
2013-12-11
The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.
Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George
2013-01-01
Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted. PMID:23729767
2017-06-01
AN ADVANCED MULTI-JUNCTION SOLAR -CELL DESIGN FOR SPACE ENVIRONMENTS (AM0) USING NEARLY ORTHOGONAL LATIN HYPERCUBES by Silvio Pueschel June...ADVANCED MULTI-JUNCTION SOLAR -CELL DESIGN FOR SPACE ENVIRONMENTS (AM0) USING NEARLY ORTHOGONAL LATIN HYPERCUBES 5. FUNDING NUMBERS 6. AUTHOR(S) Silvio...multi-junction solar cells with Silvaco Atlas simulation software. It introduces the nearly orthogonal Latin hypercube (NOLH) design of experiments (DoE
Status of the Direct Data Distribution (D(exp 3)) Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence
2001-01-01
NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.
Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.
Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang
2017-01-01
Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
Wang, Zhi-Guo; Chen, Zeng-Ping; Gong, Fan; Wu, Hai-Long; Yu, Ru-Qin
2002-05-01
The chromatographic peak located inside another peak in the time direction is called an embedded or inner peak in contradistinction with the embedding peak, which is called an outer peak. The chemical components corresponding to inner and outer peaks are called inner and outer components, respectively. This special case of co-eluting chromatograms was investigated using chemometric approaches taking GC-MS as an example. A novel method, named inner chromatogram projection (ICP), for resolution of GC-MS data with embedded chromatographic peaks is derived. Orthogonal projection resolution is first utilized to obtain the chromatographic profile of the inner component. Projection of the two-way data matrix columnwise-normalized along the time direction to the normalized profile of the inner component found is subsequently performed to find the selective m/z points, if they exist, which represent the chromatogram of the outer component by itself. With the profiles obtained, the mass spectra can easily be found by means of a least-squares procedure. The results for both simulated data and real samples demonstrate that the proposed method is capable of achieving satisfactory resolution performance not affected by the shapes of chromatograms and the relative positions of the components involved.
On Certain Wronskians of Multiple Orthogonal Polynomials
NASA Astrophysics Data System (ADS)
Zhang, Lun; Filipuk, Galina
2014-11-01
We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for m! ultiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.
Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.
Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2013-11-18
We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.
NASA Technical Reports Server (NTRS)
Barranger, John P.
1990-01-01
A novel optical method of measuring 2-D surface strain is proposed. Two linear strains along orthogonal axes and the shear strain between those axes is determined by a variation of Yamaguchi's laser-speckle strain gage technique. It offers the advantages of shorter data acquisition times, less stringent alignment requirements, and reduced decorrelation effects when compared to a previously implemented optical strain rosette technique. The method automatically cancels the translational and rotational components of rigid body motion while simplifying the optical system and improving the speed of response.
Ultrasonic measurement of stress in 2219-T87 aluminum plate
NASA Technical Reports Server (NTRS)
Clotfelter, W. N.; Risch, E. R.
1976-01-01
The basic relationship of ultrasonic signal velocity to directional subsurface stress is reviewed. Inappropriateness of dependency on a single correlative value of constant for a three dimensional stress field in metallic materials is discussed. Implementation of conventional ultrasonic nondestructive testing capabilities integrated to provide a composite technique for the measurement of orthogonal stress components is described, and the procedures for performing the preparatory calibration and subsequent stress field measurements are presented. In conclusion, the prime effect of stress on ultrasonic signal velocity occurs only in the direction of material excitation or particle motion.
A unified development of several techniques for the representation of random vectors and data sets
NASA Technical Reports Server (NTRS)
Bundick, W. T.
1973-01-01
Linear vector space theory is used to develop a general representation of a set of data vectors or random vectors by linear combinations of orthonormal vectors such that the mean squared error of the representation is minimized. The orthonormal vectors are shown to be the eigenvectors of an operator. The general representation is applied to several specific problems involving the use of the Karhunen-Loeve expansion, principal component analysis, and empirical orthogonal functions; and the common properties of these representations are developed.
All-optical phase discrimination using SOA.
Power, Mark J; Webb, Roderick P; Manning, Robert J
2013-11-04
We describe the first experimental demonstration of a novel all-optical phase discrimination technique, which can separate the two orthogonal phase components of a signal onto different frequencies. This method exploits nonlinear mixing in a semiconductor optical amplifier (SOA) to separate a 10.65 Gbaud QPSK signal into two 10.65 Gb/s BPSK signals which are then demodulated using a delay interferometer (DI). Eye diagrams and spectral measurements verify correct operation and a conversion efficiency greater than 9 dB is observed on both output BPSK channels when compared with the input QPSK signal.
Kaye, Stephen B
2009-04-01
To provide a scalar measure of refractive error, based on geometric lens power through principal, orthogonal and oblique meridians, that is not limited to the paraxial and sag height approximations. A function is derived to model sections through the principal meridian of a lens, followed by rotation of the section through orthogonal and oblique meridians. Average focal length is determined using the definition for the average of a function. Average univariate power in the principal meridian (including spherical aberration), can be computed from the average of a function over the angle of incidence as determined by the parameters of the given lens, or adequately computed from an integrated series function. Average power through orthogonal and oblique meridians, can be similarly determined using the derived formulae. The widely used computation for measuring refractive error, the spherical equivalent, introduces non-constant approximations, leading to a systematic bias. The equations proposed provide a good univariate representation of average lens power and are not subject to a systematic bias. They are particularly useful for the analysis of aggregate data, correlating with biological treatment variables and for developing analyses, which require a scalar equivalent representation of refractive power.
Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Choon-Lin, E-mail: hcl@mail.tku.edu.tw
2011-04-15
Research Highlights: > Physical examples involving exceptional orthogonal polynomials. > Exceptional polynomials as deformations of classical orthogonal polynomials. > Exceptional polynomials from Darboux-Crum transformation. - Abstract: An interesting discovery in the last two years in the field of mathematical physics has been the exceptional X{sub l} Laguerre and Jacobi polynomials. Unlike the well-known classical orthogonal polynomials which start with constant terms, these new polynomials have lowest degree l = 1, 2, and ..., and yet they form complete set with respect to some positive-definite measure. While the mathematical properties of these new X{sub l} polynomials deserve further analysis, it ismore » also of interest to see if they play any role in physical systems. In this paper we indicate some physical models in which these new polynomials appear as the main part of the eigenfunctions. The systems we consider include the Dirac equations coupled minimally and non-minimally with some external fields, and the Fokker-Planck equations. The systems presented here have enlarged the number of exactly solvable physical systems known so far.« less
Polarization holographic optical recording of a new photochromic diarylethene
NASA Astrophysics Data System (ADS)
Pu, Shouzhi; Miao, Wenjuan; Chen, Anyin; Cui, Shiqiang
2008-12-01
A new symmetrical photochromic diarylethene, 1,2-bis[2-methyl-5-(3-methoxylphenyl)-3-thienyl]perfluorocyclopentene (1a), was synthesized, and its photochromic properties were investigated. The compound exhibited good photochromism both in solution and in PMMA film with alternating irradiation by UV/VIS light, and the maxima absorption of its closed-ring isomer 1b are 582 and 599 nm, respectively. Using diarylethene 1b/PMMA film as recording medium and a He-Ne laser (633 nm) for recording and readout, four types of polarization and angular multiplexing holographic optical recording were performed perfectly. For different types of polarization recording including parallel linear polarization recording, parallel circular polarization recording, orthogonal linear polarization recording and orthogonal circular polarization recording,have been accomplished successfully. The results demonstrated that the orthogonal circular polarization recording is the best method for polarization holographic optical recording when this compound was used as recording material. With angular multiplexing recording technology, two high contrast holograms were recorded in the same place on the film with the dimension of 0.78 μm2.
A Synthetic Coiled-Coil Interactome Provides Heterospecific Modules for Molecular Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinke, Aaron W.; Grant, Robert A.; Keating, Amy E.
2010-06-21
The versatile coiled-coil protein motif is widely used to induce and control macromolecular interactions in biology and materials science. Yet the types of interaction patterns that can be constructed using known coiled coils are limited. Here we greatly expand the coiled-coil toolkit by measuring the complete pairwise interactions of 48 synthetic coiled coils and 7 human bZIP coiled coils using peptide microarrays. The resulting 55-member protein 'interactome' includes 27 pairs of interacting peptides that preferentially heteroassociate. The 27 pairs can be used in combinations to assemble sets of 3 to 6 proteins that compose networks of varying topologies. Of specialmore » interest are heterospecific peptide pairs that participate in mutually orthogonal interactions. Such pairs provide the opportunity to dimerize two separate molecular systems without undesired crosstalk. Solution and structural characterization of two such sets of orthogonal heterodimers provide details of their interaction geometries. The orthogonal pair, along with the many other network motifs discovered in our screen, provide new capabilities for synthetic biology and other applications.« less
Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao
2016-07-25
A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.
a Numerical Model for Flue Gas Desulfurization System.
NASA Astrophysics Data System (ADS)
Kim, Sung Joon
The purpose of this work is to develop a reliable numerical model for spray dryer desulfurization systems. The shape of the spray dryer requires that a body fitted orthogonal coordinate system be used for the numerical model. The governing equations are developed in the general orthogonal coordinates and discretized to yield a system of algebraic equations. A turbulence model is also included in the numerical program. A new second order numerical scheme is developed and included in the numerical model. The trajectory approach is used to simulate the flow of the dispersed phase. Two-way coupling phenomena is modeled by this scheme. The absorption of sulfur dioxide into lime slurry droplets is simulated by a model based on gas -phase mass transfer. The program is applied to a typical spray dryer desulfurization system. The results show the capability of the program to predict the sensitivity of system performance to changes in operational parameters.
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
Compact orthogonal NMR field sensor
Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL
2009-02-03
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
Gaussian quadrature for multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Coussement, Jonathan; van Assche, Walter
2005-06-01
We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.
Distance-constrained orthogonal Latin squares for brain-computer interface.
Luo, Gang; Min, Wanli
2012-02-01
The P300 brain-computer interface (BCI) using electroencephalogram (EEG) signals can allow amyotrophic lateral sclerosis (ALS) patients to instruct computers to perform tasks. To strengthen the P300 response and increase classification accuracy, we proposed an experimental design where characters are intensified according to orthogonal Latin square pairs. These orthogonal Latin square pairs satisfy certain distance constraint so that neighboring characters are not intensified simultaneously. However, it is unknown whether such distance-constrained, orthogonal Latin square pairs actually exist. In this paper, we show that for every matrix size commonly used in P300 BCI, thousands to millions of such distance-constrained, orthogonal Latin square pairs can be systematically and efficiently constructed and are sufficient for the purpose of being used in P300 BCI.
Multi-Directional Environmental Sensors
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)
2016-01-01
Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.
Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell
NASA Technical Reports Server (NTRS)
Rastogi, Naveen; Johnson, Eric R.
1994-01-01
Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.
State Transition Matrix for Perturbed Orbital Motion Using Modified Chebyshev Picard Iteration
NASA Astrophysics Data System (ADS)
Read, Julie L.; Younes, Ahmad Bani; Macomber, Brent; Turner, James; Junkins, John L.
2015-06-01
The Modified Chebyshev Picard Iteration (MCPI) method has recently proven to be highly efficient for a given accuracy compared to several commonly adopted numerical integration methods, as a means to solve for perturbed orbital motion. This method utilizes Picard iteration, which generates a sequence of path approximations, and Chebyshev Polynomials, which are orthogonal and also enable both efficient and accurate function approximation. The nodes consistent with discrete Chebyshev orthogonality are generated using cosine sampling; this strategy also reduces the Runge effect and as a consequence of orthogonality, there is no matrix inversion required to find the basis function coefficients. The MCPI algorithms considered herein are parallel-structured so that they are immediately well-suited for massively parallel implementation with additional speedup. MCPI has a wide range of applications beyond ephemeris propagation, including the propagation of the State Transition Matrix (STM) for perturbed two-body motion. A solution is achieved for a spherical harmonic series representation of earth gravity (EGM2008), although the methodology is suitable for application to any gravity model. Included in this representation the normalized, Associated Legendre Functions are given and verified numerically. Modifications of the classical algorithm techniques, such as rewriting the STM equations in a second-order cascade formulation, gives rise to additional speedup. Timing results for the baseline formulation and this second-order formulation are given.
NASA Technical Reports Server (NTRS)
Engwirda, Darren
2017-01-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
NASA Astrophysics Data System (ADS)
Engwirda, Darren
2017-06-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi-Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
Annual Cycle of Surface Longwave Radiation
NASA Technical Reports Server (NTRS)
Mlynczak, Pamela E.; Smith, G. Louis; Wilber, Anne C.; Stackhouse, Paul W.
2011-01-01
The annual cycles of upward and downward longwave fluxes at the Earth s surface are investigated by use of the NASA/GEWEX Surface Radiation Budget Data Set. Because of the immense difference between the heat capacity of land and ocean, the surface of Earth is partitioned into these two categories. Principal component analysis is used to quantify the annual cycles. Over land, the first principal component describes over 95% of the variance of the annual cycle of the upward and downward longwave fluxes. Over ocean the first term describes more than 87% of these annual cycles. Empirical orthogonal functions show the corresponding geographical distributions of these cycles. Phase plane diagrams of the annual cycles of upward longwave fluxes as a function of net shortwave flux show the thermal inertia of land and ocean.
Frequency-selective quantitation of short-echo time 1H magnetic resonance spectra
NASA Astrophysics Data System (ADS)
Poullet, Jean-Baptiste; Sima, Diana M.; Van Huffel, Sabine; Van Hecke, Paul
2007-06-01
Accurate and efficient filtering techniques are required to suppress large nuisance components present in short-echo time magnetic resonance (MR) spectra. This paper discusses two powerful filtering techniques used in long-echo time MR spectral quantitation, the maximum-phase FIR filter (MP-FIR) and the Hankel-Lanczos Singular Value Decomposition with Partial ReOrthogonalization (HLSVD-PRO), and shows that they can be applied to their more complex short-echo time spectral counterparts. Both filters are validated and compared through extensive simulations. Their properties are discussed. In particular, the capability of MP-FIR for dealing with macromolecular components is emphasized. Although this property does not make a large difference for long-echo time MR spectra, it can be important when quantifying short-echo time spectra.
Nakamura, S; Shimojo, S
2000-01-01
We investigated interactions between foreground and background stimuli during visually induced perception of self-motion (vection) by using a stimulus composed of orthogonally moving random-dot patterns. The results indicated that, when the foreground moves with a slower speed, a self-motion sensation with a component in the same direction as the foreground is induced. We named this novel component of self-motion perception 'inverted vection'. The robustness of inverted vection was confirmed using various measures of self-motion sensation and under different stimulus conditions. The mechanism underlying inverted vection is discussed with regard to potentially relevant factors, such as relative motion between the foreground and background, and the interaction between the mis-registration of eye-movement information and self-motion perception.
Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing
2014-10-01
Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.
Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve
NASA Astrophysics Data System (ADS)
Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di
2017-12-01
In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.
Hartwright, Charlotte E; Apperly, Ian A; Hansen, Peter C
2012-07-16
Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Yu-Qiang; Tian, Bo; Liu, Lei; Sun, Yan
2017-11-01
Under investigation in this paper is the coupled nonlinear Schrödinger equations with the four-wave mixing term, which describe the optical solitons in a birefringent fiber. Via the Kadomtsev-Petviashvili hierarchy reduction, we obtain the N-bright-dark soliton solutions in terms of the Gram determinant. Propagation and interaction of the solitons corresponding to the electric fields in the two orthogonal polarizations are discussed and presented graphically. We find that the one bright-dark soliton possesses the periodic oscillation and exhibits the breather-like profile, which is different from that in the previous literature. Besides, for the one soliton, we observe that the larger velocity leads to the fiercer oscillation. Elastic interactions including the head-on and overtaking interactions between the two bright-dark solitons are demonstrated. Particularly, we find the oblique inelastic interaction between the two bright-dark solitons, which possess the V-shape profile in the zero background component and the Y-shape profile in the nonzero background component. Besides, we present two cases of the bound-state solitons. For the one case, the two solitons interact with each other all the time along a direction and for the other case, the resonance phenomenon is raised.
Electro-optic voltage sensor head
Crawford, T.M.; Davidson, J.R.; Woods, G.K.
1999-08-17
The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.
Electro-optic voltage sensor head
Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.
1999-01-01
The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.
Factor Structure Evaluation of the French Version of the Digital Natives Assessment Scale.
Wagner, Vincent; Acier, Didier
2017-03-01
"Digital natives" concept defines young adults particularly familiar with emerging technologies such as computers, smartphones, or Internet. This notion is still controversial and so far, the primary identifying criterion was to consider their date of birth. However, literature highlighted the need to describe specific characteristics. The purpose of this research was to evaluate the factor structure of a French version of the Digital Natives Assessment Scale (DNAS). The sample of this study includes 590 participants from a 6-week massive open online course and from Web sites, electronic forums, and social networks. The DNAS was translated in French and then back-translated to English. A principal component analysis with orthogonal rotation followed by a confirmatory factorial analysis showed that a 15-item four-correlated component model provided the best fit for the data of our sample. Factor structure of this French-translated version of the DNAS was rather similar than those found in earlier studies. This study provides evidence of the DNAS robustness through cross-cultural and cross-generational validation. The French version of the DNAS appears to be appropriate as a quick and effective questionnaire to assess digital natives. More studies are needed to better define further features of this particular group.
Propagating and Non-propagating Annular Modes and Principal Oscillation Patterns
NASA Astrophysics Data System (ADS)
Plumb, R. A.; Sheshadri, A.
2016-12-01
The leading "annular mode" in each hemisphere — usually defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability — appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. (AM2 explains a significant amount of variance, though less than AM1.) Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing (or weakening and broadening) of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the poleward propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. The leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes poleward propagating anomalies. This mode then shows up as AM1 and AM2 in EOF analyses. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. In the propagating regime, these facts have implications for the use of autocorrelations and cross-correlations to quantify eddy feedback and the susceptibility of the mode to external perturbations, including the response to stratospheric anomalies.
Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S
2014-03-01
The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Podust, Larissa M.; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R.
2009-01-01
Mycobacterium tuberculosis responds to the changes in environmental conditions through a two-component signaling system that detects reduced O2 tension and NO and CO exposures via the heme-binding GAF domains of two sensory histidine kinases, DosT and DevS, and the transcriptional regulator DosR. We report the first x-ray structure of the DosT heme-bound GAF domain (GAFDosT) in both oxy and deoxy forms determined to a resolution of 2.3 Å. In GAFDosT, heme binds in an orientation orthogonal to that in the PAS domains via a highly conserved motif including invariant H147 as a proximal heme axial ligand. On the distal side, invariant Y169 is in stacking interactions with the heme with its long axis parallel and the plane of the ring orthogonal to the heme plane. In one of the two protein monomers in an asymmetric unit, O2 binds as a second axial ligand to the heme iron, and is stabilized via an H-bond to the OH-group of Y169. The structure reveals two small tunnel-connected cavities and a pore on the protein surface that suggest a potential route for O2 access to the sensing pocket. The limited conformational differences observed between differently heme iron-ligated GAFDosT monomers in the asymmetric unit may result from crystal lattice limitations since atmospheric oxygen binding likely occurs in the crystal as a result of x-ray induced Fe3+ photoreduction during diffraction data collection. Determination of the GAFDosT structure sets up a framework in which to address ligand-recognition, discrimination, and signal propagation schemes in the heme-based GAF domains of biological sensors. PMID:18980385
Modular and Orthogonal Synthesis of Hybrid Polymers and Networks
Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao
2015-01-01
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255
Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus.
Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying
2014-04-01
This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.
Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus *
Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying
2014-01-01
This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage. PMID:24711354
Raman, Srivatsan; Taylor, Noah; Genuth, Naomi; Fields, Stanley; Church, George M
2014-12-01
Allosteric proteins have great potential in synthetic biology, but our limited understanding of the molecular underpinnings of allostery has hindered the development of designer molecules, including transcription factors with new DNA-binding or ligand-binding specificities that respond appropriately to inducers. Such allosteric proteins could function as novel switches in complex circuits, metabolite sensors, or as orthogonal regulators for independent, inducible control of multiple genes. Advances in DNA synthesis and next-generation sequencing technologies have enabled the assessment of millions of mutants in a single experiment, providing new opportunities to study allostery. Using the classic LacI protein as an example, we describe a genetic selection system using a bidirectional reporter to capture mutants in both allosteric states, allowing the positions most crucial for allostery to be identified. This approach is not limited to bacterial transcription factors, and could reveal new mechanistic insights and facilitate engineering of other major classes of allosteric proteins such as nuclear receptors, two-component systems, G protein-coupled receptors, and protein kinases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Raman, Srivatsan; Taylor, Noah; Genuth, Naomi; ...
2014-10-08
Allosteric proteins have great potential in synthetic biology, but our limited understanding of the molecular underpinnings of allostery has hindered the development of designer molecules, including transcription factors with new DNA-binding or ligand-binding specificities that respond appropriately to inducers. Such allosteric proteins could function as novel switches in complex circuits, metabolite sensors, or as orthogonal regulators for independent, inducible control of multiple genes. Advances in DNA synthesis and next-generation sequencing technologies have enabled the assessment of millions of mutants in a single experiment, providing new opportunities to study allostery. Using the classic LacI protein as an example, in this papermore » we describe a genetic selection system using a bidirectional reporter to capture mutants in both allosteric states, allowing the positions most crucial for allostery to be identified. Finally, this approach is not limited to bacterial transcription factors, and could reveal new mechanistic insights and facilitate engineering of other major classes of allosteric proteins such as nuclear receptors, two-component systems, G protein-coupled receptors, and protein kinases.« less
Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein
Tuttle, Marcus D.; Comellas, Gemma; Nieuwkoop, Andrew J.; Covell, Dustin J.; Berthold, Deborah A.; Kloepper, Kathryn D.; Courtney, Joseph M.; Kim, Jae K.; Barclay, Alexander M.; Kendall, Amy; Wan, William; Stubbs, Gerald; Schwieters, Charles D.; Lee, Virginia M. Y.; George, Julia M.; Rienstra, Chad M.
2016-01-01
Misfolded α-synuclein amyloid fibrils are the principal components of Lewy bodies and neurites, hallmarks of Parkinson’s disease (PD). Here we present a high-resolution structure of an α-synuclein fibril, in a form that induces robust pathology in primary neuronal culture, determined by solid-state NMR spectroscopy and validated by electron microscopy and X-ray fiber diffraction. Over 200 unique long-range distance restraints define a consensus structure with common amyloid features including parallel in-register β-sheets and hydrophobic core residues, but also substantial complexity, arising from diverse structural features: an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a novel, orthogonal Greek-key topology. These characteristics contribute to the robust propagation of this fibril form, as evidenced by structural similarity of early-onset PD mutants. The structure provides a framework for understanding the interactions of α-synuclein with other proteins and small molecules to diagnose and treat PD. PMID:27018801
Remote control of molecular motors using light-activated gearshifting
NASA Astrophysics Data System (ADS)
Bryant, Zev
2013-03-01
Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.
Welcome, Daniel E; Dong, Ren G; Xu, Xueyan S; Warren, Christopher; McDowell, Thomas W; Wu, John Z
2015-02-01
The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions ( X, Y , and Z ). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16-30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30-40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed. Prolonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal dimensions performed in this study can help understand the syndrome and help develop improved frequency weightings for assessing the risk of the exposure for developing various components of the syndrome.
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.
2015-01-01
The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16–30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30–40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal dimensions performed in this study can help understand the syndrome and help develop improved frequency weightings for assessing the risk of the exposure for developing various components of the syndrome. PMID:26635424
The Gibbs Phenomenon for Series of Orthogonal Polynomials
ERIC Educational Resources Information Center
Fay, T. H.; Kloppers, P. Hendrik
2006-01-01
This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…
Determinants with orthogonal polynomial entries
NASA Astrophysics Data System (ADS)
Ismail, Mourad E. H.
2005-06-01
We use moment representations of orthogonal polynomials to evaluate the corresponding Hankel determinants formed by the orthogonal polynomials. We also study the Hankel determinants which start with pn on the top left-hand corner. As examples we evaluate the Hankel determinants whose entries are q-ultraspherical or Al-Salam-Chihara polynomials.
2017-10-01
AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate
Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Burken, John; Ishihara, Abraham
2011-01-01
This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.
The Coordinate Orthogonality Check (corthog)
NASA Astrophysics Data System (ADS)
Avitabile, P.; Pechinsky, F.
1998-05-01
A new technique referred to as the coordinate orthogonality check (CORTHOG) helps to identify how each physical degree of freedom contributes to the overall orthogonality relationship between analytical and experimental modal vectors on a mass-weighted basis. Using the CORTHOG technique together with the pseudo-orthogonality check (POC) clarifies where potential discrepancies exist between the analytical and experimental modal vectors. CORTHOG improves the understanding of the correlation (or lack of correlation) that exists between modal vectors. The CORTHOG theory is presented along with the evaluation of several cases to show the use of the technique.
On orthogonality preserving quadratic stochastic operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-05-15
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Majorana fermions and orthogonal complex structures
NASA Astrophysics Data System (ADS)
Calderón-García, J. S.; Reyes-Lega, A. F.
2018-05-01
Ground states of quadratic Hamiltonians for fermionic systems can be characterized in terms of orthogonal complex structures. The standard way in which such Hamiltonians are diagonalized makes use of a certain “doubling” of the Hilbert space. In this work, we show that this redundancy in the Hilbert space can be completely lifted if the relevant orthogonal structure is taken into account. Such an approach allows for a treatment of Majorana fermions which is both physically and mathematically transparent. Furthermore, an explicit connection between orthogonal complex structures and the topological ℤ2-invariant is given.
NASA Astrophysics Data System (ADS)
Braun, Walter; Eglin, Peter; Abello, Ricard
1993-02-01
Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.
Extracting factors for interest rate scenarios
NASA Astrophysics Data System (ADS)
Molgedey, L.; Galic, E.
2001-04-01
Factor based interest rate models are widely used for risk managing purposes, for option pricing and for identifying and capturing yield curve anomalies. The movements of a term structure of interest rates are commonly assumed to be driven by a small number of orthogonal factors such as SHIFT, TWIST and BUTTERFLY (BOW). These factors are usually obtained by a Principal Component Analysis (PCA) of historical bond prices (interest rates). Although PCA diagonalizes the covariance matrix of either the interest rates or the interest rate changes, it does not use both covariance matrices simultaneously. Furthermore higher linear and nonlinear correlations are neglected. These correlations as well as the mean reverting properties of the interest rates become crucial, if one is interested in a longer time horizon (infrequent hedging or trading). We will show that Independent Component Analysis (ICA) is a more appropriate tool than PCA, since ICA uses the covariance matrix of the interest rates as well as the covariance matrix of the interest rate changes simultaneously. Additionally higher linear and nonlinear correlations may be easily incorporated. The resulting factors are uncorrelated for various time delays, approximately independent but nonorthogonal. This is in contrast to the factors obtained from the PCA, which are orthogonal and uncorrelated for identical times only. Although factors from the ICA are nonorthogonal, it is sufficient to consider only a few factors in order to explain most of the variation in the original data. Finally we will present examples that ICA based hedges outperforms PCA based hedges specifically if the portfolio is sensitive to structural changes of the yield curve.
NASA Astrophysics Data System (ADS)
Paganelli, Chiara; Lee, Danny; Greer, Peter B.; Baroni, Guido; Riboldi, Marco; Keall, Paul
2015-09-01
The quantification of tumor motion in sites affected by respiratory motion is of primary importance to improve treatment accuracy. To account for motion, different studies analyzed the translational component only, without focusing on the rotational component, which was quantified in a few studies on the prostate with implanted markers. The aim of our study was to propose a tool able to quantify lung tumor rotation without the use of internal markers, thus providing accurate motion detection close to critical structures such as the heart or liver. Specifically, we propose the use of an automatic feature extraction method in combination with the acquisition of fast orthogonal cine MRI images of nine lung patients. As a preliminary test, we evaluated the performance of the feature extraction method by applying it on regions of interest around (i) the diaphragm and (ii) the tumor and comparing the estimated motion with that obtained by (i) the extraction of the diaphragm profile and (ii) the segmentation of the tumor, respectively. The results confirmed the capability of the proposed method in quantifying tumor motion. Then, a point-based rigid registration was applied to the extracted tumor features between all frames to account for rotation. The median lung rotation values were -0.6 ± 2.3° and -1.5 ± 2.7° in the sagittal and coronal planes respectively, confirming the need to account for tumor rotation along with translation to improve radiotherapy treatment.
Generation of optical vortices with controllable topological charges and polarization patterns
NASA Astrophysics Data System (ADS)
Yang, Ching-Han; Fuh, Andy Ying-Guey
2017-02-01
We present a simple and flexible method of generating various vectorial vortex beams (VVBs) based on the scheme of double modulations from a single liquid crystal spatial light modulator (SLM). In this configuration, a half-wave plate (HWP) placed in front of the SLM is first used to control the weights of linear polarization components of incident light. Then, we respectively encode two orbital angular momentum (OAM) eigenstates displayed on each half of the SLM onto each of the linear components of light. This yields the generation of VVB fields spanned by a pair of linearly polarized OAM eigenstates. In order to convert polarization bases from the linear pair into another orthogonal pair, a quarter-wave plate (QWP) placed behind the SLM is used. This enables us to generate VVBs spanned by any pair of orthogonally polarized OAM eigenstates. Generally, the light states of polarization (SOP) can be presented as a geodesic path located on the plane perpendicular to the axis connecting the pair of bases used on the Poincaré sphere. The light property is adjustable depending on both slow axes of HWP and QWP, as well as via computer generated holograms. To validate generated beams, two measurement procedures are subsequently applied. First, Stokes polarimetry is used to measure the light SOP over the transverse plane. Next, a Shack-Hartmann wavefront sensor is used to measure the OAM charge. Both the simulated and experimental results are shown to be in a good qualitative agreement. In addition, both polarization patterns and OAM charges can be controlled independently using the proposed method.
Reciprocity relationships in vector acoustics and their application to vector field calculations.
Deal, Thomas J; Smith, Kevin B
2017-08-01
The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.
Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu
2017-06-08
A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .
Multivariate Analysis of Solar Spectral Irradiance Measurements
NASA Technical Reports Server (NTRS)
Pilewskie, P.; Rabbette, M.
2001-01-01
Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.
A note on the zeros of Freud-Sobolev orthogonal polynomials
NASA Astrophysics Data System (ADS)
Moreno-Balcazar, Juan J.
2007-10-01
We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.
Encrypted holographic data storage based on orthogonal-phase-code multiplexing.
Heanue, J F; Bashaw, M C; Hesselink, L
1995-09-10
We describe an encrypted holographic data-storage system that combines orthogonal-phase-code multiplexing with a random-phase key. The system offers the security advantages of random-phase coding but retains the low cross-talk performance and the minimum code storage requirements typical in an orthogonal-phase-code-multiplexing system.
Orthogonal Regression: A Teaching Perspective
ERIC Educational Resources Information Center
Carr, James R.
2012-01-01
A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less
Cheng, Jianhua; Dong, Jinlu; Landry, Rene; Chen, Daidai
2014-07-29
In order to improve the accuracy and reliability of micro-electro mechanical systems (MEMS) navigation systems, an orthogonal rotation method-based nine-gyro redundant MEMS configuration is presented. By analyzing the accuracy and reliability characteristics of an inertial navigation system (INS), criteria for redundant configuration design are introduced. Then the orthogonal rotation configuration is formed through a two-rotation of a set of orthogonal inertial sensors around a space vector. A feasible installation method is given for the real engineering realization of this proposed configuration. The performances of the novel configuration and another six configurations are comprehensively compared and analyzed. Simulation and experimentation are also conducted, and the results show that the orthogonal rotation configuration has the best reliability, accuracy and fault detection and isolation (FDI) performance when the number of gyros is nine.
Compression Strength of Composite Primary Structural Components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.
1998-01-01
Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.
Multiple Component Event-Related Potential (mcERP) Estimation
NASA Technical Reports Server (NTRS)
Knuth, K. H.; Clanton, S. T.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Trejo, L. J.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)
2002-01-01
We show how model-based estimation of the neural sources responsible for transient neuroelectric signals can be improved by the analysis of single trial data. Previously, we showed that a multiple component event-related potential (mcERP) algorithm can extract the responses of individual sources from recordings of a mixture of multiple, possibly interacting, neural ensembles. McERP also estimated single-trial amplitudes and onset latencies, thus allowing more accurate estimation of ongoing neural activity during an experimental trial. The mcERP algorithm is related to informax independent component analysis (ICA); however, the underlying signal model is more physiologically realistic in that a component is modeled as a stereotypic waveshape varying both in amplitude and onset latency from trial to trial. The result is a model that reflects quantities of interest to the neuroscientist. Here we demonstrate that the mcERP algorithm provides more accurate results than more traditional methods such as factor analysis and the more recent ICA. Whereas factor analysis assumes the sources are orthogonal and ICA assumes the sources are statistically independent, the mcERP algorithm makes no such assumptions thus allowing investigators to examine interactions among components by estimating the properties of single-trial responses.
Isaac, Marney E.; Martin, Adam R.; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel
2017-01-01
Hypotheses on the existence of a universal “Root Economics Spectrum” (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world’s most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another. PMID:28747919
Isaac, Marney E; Martin, Adam R; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel
2017-01-01
Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.
Iterative weighting of multiblock data in the orthogonal partial least squares framework.
Boccard, Julien; Rutledge, Douglas N
2014-02-27
The integration of multiple data sources has emerged as a pivotal aspect to assess complex systems comprehensively. This new paradigm requires the ability to separate common and redundant from specific and complementary information during the joint analysis of several data blocks. However, inherent problems encountered when analysing single tables are amplified with the generation of multiblock datasets. Finding the relationships between data layers of increasing complexity constitutes therefore a challenging task. In the present work, an algorithm is proposed for the supervised analysis of multiblock data structures. It associates the advantages of interpretability from the orthogonal partial least squares (OPLS) framework and the ability of common component and specific weights analysis (CCSWA) to weight each data table individually in order to grasp its specificities and handle efficiently the different sources of Y-orthogonal variation. Three applications are proposed for illustration purposes. A first example refers to a quantitative structure-activity relationship study aiming to predict the binding affinity of flavonoids toward the P-glycoprotein based on physicochemical properties. A second application concerns the integration of several groups of sensory attributes for overall quality assessment of a series of red wines. A third case study highlights the ability of the method to combine very large heterogeneous data blocks from Omics experiments in systems biology. Results were compared to the reference multiblock partial least squares (MBPLS) method to assess the performance of the proposed algorithm in terms of predictive ability and model interpretability. In all cases, ComDim-OPLS was demonstrated as a relevant data mining strategy for the simultaneous analysis of multiblock structures by accounting for specific variation sources in each dataset and providing a balance between predictive and descriptive purpose. Copyright © 2014 Elsevier B.V. All rights reserved.
Feng, Chunliang; Wang, Lili; Liu, Chao; Zhu, Xiangru; Dai, Ruina; Mai, Xiaoqin; Luo, Yue-Jia
2012-01-01
In the current study, we investigated the time course of the implicit processing of affective pictures with an orthogonal design of valence (negative vs. positive) by arousal (low vs. high). Previous studies with explicit tasks suggested that valence mainly modulates early event-related potential (ERP) components, whereas arousal mainly modulates late components. However, in this study with an implicit task, we observed significant interactions between valence and arousal at both early and late stages over both parietal and frontal sites, which were reflected by three different ERP components: P2a (100–200 ms), N2 (200–300 ms), and P3 (300–400 ms). Furthermore, there was also a significant main effect of arousal on P2b (200–300 ms) over parieto-occipital sites. Our results suggest that valence and arousal effects on implicit affective processing are more complicated than previous ERP studies with explicit tasks have revealed. PMID:22295062
Simple techniques for improving deep neural network outcomes on commodity hardware
NASA Astrophysics Data System (ADS)
Colina, Nicholas Christopher A.; Perez, Carlos E.; Paraan, Francis N. C.
2017-08-01
We benchmark improvements in the performance of deep neural networks (DNN) on the MNIST data test upon imple-menting two simple modifications to the algorithm that have little overhead computational cost. First is GPU parallelization on a commodity graphics card, and second is initializing the DNN with random orthogonal weight matrices prior to optimization. Eigenspectra analysis of the weight matrices reveal that the initially orthogonal matrices remain nearly orthogonal after training. The probability distributions from which these orthogonal matrices are drawn are also shown to significantly affect the performance of these deep neural networks.
Finite Element Modeling of Multilayer Orthogonal Auxetic Composites under Low-Velocity Impact
Jiang, Lili; Hu, Hong
2017-01-01
The multilayer orthogonal auxetic composites have been previously developed and tested to prove that they own excellent energy absorption and impact protection characteristics in a specific strain range under low-velocity impact. In this study, a three dimensional finite element (FE) model in ANSYS LS-DYNA was established to simulate the mechanical behavior of auxetic composites under low-velocity drop-weight impact. The simulation results including the Poisson’s ratio versus compressive strain curves and the contact stress versus compressive strain curves were compared with those in the experiments. The clear deformation pictures of the FE models have provided a simple and effective way for investigating the damage mechanism and optimizing the material, as well as structure design. PMID:28783054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Changjuan; Huang Zhengxu; Gao Wei
2008-01-15
We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with thismore » instrument.« less
NASA Technical Reports Server (NTRS)
Eslinger, David L.; O'Brien, James J.; Iverson, Richard L.
1989-01-01
Empirical-orthogonal-function (EOF) analyses were carried out on 36 images of the Mid-Atlantic Bight and the Gulf of Maine, obtained by the CZCS aboard Nimbus 7 for the time period from February 28 through July 9, 1979, with the purpose of determining pigment concentrations in coastal waters. The EOF procedure was modified so as to include images with significant portions of data missing due to cloud obstruction, making it possible to estimate pigment values in areas beneath clouds. The results of image analyses explained observed variances in pigment concentrations and showed a south-to-north pattern corresponding to an April Mid-Atlantic Bight bloom and a June bloom over Nantucket Shoals and Platts Bank.
Torres-Lapasió, J R; Pous-Torres, S; Ortiz-Bolsico, C; García-Alvarez-Coque, M C
2015-01-16
The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are sensitive to situations where the components that coelute in a mixture show some spectral differences. Therefore, they are useful to find out experimental conditions where the spectrochromatograms can be recovered by deconvolution. Two-way multivariate selectivity yielded the best performance and was applied to the separation using diode-array detection of a mixture of 25 phenolic compounds, which remained unresolved in the chromatographic order using linear and multi-linear gradients of acetonitrile-water. Peak deconvolution was carried out using the combination of orthogonal projection approach and alternating least squares. Copyright © 2014 Elsevier B.V. All rights reserved.
During air cool process aerosol absorption detection with photothermal interferometry
NASA Astrophysics Data System (ADS)
Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang
2014-11-01
This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru
To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximummore » position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.« less
A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Cooper, Donald L.
1995-01-01
A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability.
Shape optimization techniques for musical instrument design
NASA Astrophysics Data System (ADS)
Henrique, Luis; Antunes, Jose; Carvalho, Joao S.
2002-11-01
The design of musical instruments is still mostly based on empirical knowledge and costly experimentation. One interesting improvement is the shape optimization of resonating components, given a number of constraints (allowed parameter ranges, shape smoothness, etc.), so that vibrations occur at specified modal frequencies. Each admissible geometrical configuration generates an error between computed eigenfrequencies and the target set. Typically, error surfaces present many local minima, corresponding to suboptimal designs. This difficulty can be overcome using global optimization techniques, such as simulated annealing. However these methods are greedy, concerning the number of function evaluations required. Thus, the computational effort can be unacceptable if complex problems, such as bell optimization, are tackled. Those issues are addressed in this paper, and a method for improving optimization procedures is proposed. Instead of using the local geometric parameters as searched variables, the system geometry is modeled in terms of truncated series of orthogonal space-funcitons, and optimization is performed on their amplitude coefficients. Fourier series and orthogonal polynomials are typical such functions. This technique reduces considerably the number of searched variables, and has a potential for significant computational savings in complex problems. It is illustrated by optimizing the shapes of both current and uncommon marimba bars.
Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu
2017-01-01
The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.
Sharif, K M; Rahman, M M; Azmir, J; Khatib, A; Sabina, E; Shamsudin, S H; Zaidul, I S M
2015-12-01
Multivariate analysis of thin-layer chromatography (TLC) images was modeled to predict antioxidant activity of Pereskia bleo leaves and to identify the contributing compounds of the activity. TLC was developed in optimized mobile phase using the 'PRISMA' optimization method and the image was then converted to wavelet signals and imported for multivariate analysis. An orthogonal partial least square (OPLS) model was developed consisting of a wavelet-converted TLC image and 2,2-diphynyl-picrylhydrazyl free radical scavenging activity of 24 different preparations of P. bleo as the x- and y-variables, respectively. The quality of the constructed OPLS model (1 + 1 + 0) with one predictive and one orthogonal component was evaluated by internal and external validity tests. The validated model was then used to identify the contributing spot from the TLC plate that was then analyzed by GC-MS after trimethylsilyl derivatization. Glycerol and amine compounds were mainly found to contribute to the antioxidant activity of the sample. An alternative method to predict the antioxidant activity of a new sample of P. bleo leaves has been developed. Copyright © 2015 John Wiley & Sons, Ltd.
The functional basis of face evaluation
Oosterhof, Nikolaas N.; Todorov, Alexander
2008-01-01
People automatically evaluate faces on multiple trait dimensions, and these evaluations predict important social outcomes, ranging from electoral success to sentencing decisions. Based on behavioral studies and computer modeling, we develop a 2D model of face evaluation. First, using a principal components analysis of trait judgments of emotionally neutral faces, we identify two orthogonal dimensions, valence and dominance, that are sufficient to describe face evaluation and show that these dimensions can be approximated by judgments of trustworthiness and dominance. Second, using a data-driven statistical model for face representation, we build and validate models for representing face trustworthiness and face dominance. Third, using these models, we show that, whereas valence evaluation is more sensitive to features resembling expressions signaling whether the person should be avoided or approached, dominance evaluation is more sensitive to features signaling physical strength/weakness. Fourth, we show that important social judgments, such as threat, can be reproduced as a function of the two orthogonal dimensions of valence and dominance. The findings suggest that face evaluation involves an overgeneralization of adaptive mechanisms for inferring harmful intentions and the ability to cause harm and can account for rapid, yet not necessarily accurate, judgments from faces. PMID:18685089
A new implementation of the CMRH method for solving dense linear systems
NASA Astrophysics Data System (ADS)
Heyouni, M.; Sadok, H.
2008-04-01
The CMRH method [H. Sadok, Methodes de projections pour les systemes lineaires et non lineaires, Habilitation thesis, University of Lille1, Lille, France, 1994; H. Sadok, CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms 20 (1999) 303-321] is an algorithm for solving nonsymmetric linear systems in which the Arnoldi component of GMRES is replaced by the Hessenberg process, which generates Krylov basis vectors which are orthogonal to standard unit basis vectors rather than mutually orthogonal. The iterate is formed from these vectors by solving a small least squares problem involving a Hessenberg matrix. Like GMRES, this method requires one matrix-vector product per iteration. However, it can be implemented to require half as much arithmetic work and less storage. Moreover, numerical experiments show that this method performs accurately and reduces the residual about as fast as GMRES. With this new implementation, we show that the CMRH method is the only method with long-term recurrence which requires not storing at the same time the entire Krylov vectors basis and the original matrix as in the GMRES algorithmE A comparison with Gaussian elimination is provided.
Simultaneous orthogonal plane imaging.
Mickevicius, Nikolai J; Paulson, Eric S
2017-11-01
Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Functional Implications of Ubiquitous Semicircular Canal Non-Orthogonality in Mammals
Berlin, Jeri C.; Kirk, E. Christopher; Rowe, Timothy B.
2013-01-01
The ‘canonical model’ of semicircular canal orientation in mammals assumes that 1) the three ipsilateral canals of an inner ear exist in orthogonal planes (i.e., orthogonality), 2) corresponding left and right canal pairs have equivalent angles (i.e., angle symmetry), and 3) contralateral synergistic canals occupy parallel planes (i.e., coplanarity). However, descriptions of vestibular anatomy that quantify semicircular canal orientation in single species often diverge substantially from this model. Data for primates further suggest that semicircular canal orthogonality varies predictably with the angular head velocities encountered in locomotion. These observations raise the possibility that orthogonality, symmetry, and coplanarity are misleading descriptors of semicircular canal orientation in mammals, and that deviations from these norms could have significant functional consequences. Here we critically assess the canonical model of semicircular canal orientation using high-resolution X-ray computed tomography scans of 39 mammal species. We find that substantial deviations from orthogonality, angle symmetry, and coplanarity are the rule for the mammals in our comparative sample. Furthermore, the degree to which the semicircular canals of a given species deviate from orthogonality is negatively correlated with estimated vestibular sensitivity. We conclude that the available comparative morphometric data do not support the canonical model and that its overemphasis as a heuristic generalization obscures a large amount of functionally relevant variation in semicircular canal orientation between species. PMID:24260256
Han, Dongxue; Han, Jianlei; Huo, Shengwei; Qu, Zuoming; Jiao, Tifeng; Liu, Minghua; Duan, Pengfei
2018-05-29
The orthogonal- or co-assembly of achiral perylene bisimide (PBI) with chiral gelators can be regulated by solvents. While the coassembly leads to the formation of chiroptical nanofibers through chirality transfer, the orthogonal assemblies could not. Moreover, protonation on the coassembled nanofibers could light up the circularly polarized luminescence (CPL).
The use of complete sets of orthogonal operators in spectroscopic studies
NASA Astrophysics Data System (ADS)
Raassen, A. J. J.; Uylings, P. H. M.
1996-01-01
Complete sets of orthogonal operators are used to calculate eigenvalues and eigenvector compositions in complex spectra. The latter are used to transform the LS-transition matrix into realistic intermediate coupling transition probabilities. Calculated transition probabilities for some close lying levels in Ni V and Fe III illustrate the power of the complete orthogonal operator approach.
ERIC Educational Resources Information Center
Hofmann, Richard J.
A very general model for the computation of independent cluster solutions in factor analysis is presented. The model is discussed as being either orthogonal or oblique. Furthermore, it is demonstrated that for every orthogonal independent cluster solution there is an oblique analog. Using three illustrative examples, certain generalities are made…
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification
Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-01-01
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference. PMID:29186075
An Adaptive S-Method to Analyze Micro-Doppler Signals for Human Activity Classification.
Li, Fangmin; Yang, Chao; Xia, Yuqing; Ma, Xiaolin; Zhang, Tao; Zhou, Zhou
2017-11-29
In this paper, we propose the multiwindow Adaptive S-method (AS-method) distribution approach used in the time-frequency analysis for radar signals. Based on the results of orthogonal Hermite functions that have good time-frequency resolution, we vary the length of window to suppress the oscillating component caused by cross-terms. This method can bring a better compromise in the auto-terms concentration and cross-terms suppressing, which contributes to the multi-component signal separation. Finally, the effective micro signal is extracted by threshold segmentation and envelope extraction. To verify the proposed method, six states of motion are separated by a classifier of a support vector machine (SVM) trained to the extracted features. The trained SVM can detect a human subject with an accuracy of 95.4% for two cases without interference.