Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.
Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang
2015-02-01
To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Zhao, K; Peng, J
2014-06-15
Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan
2015-02-15
Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlapmore » volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.« less
Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi
2017-10-01
A log file-based method cannot detect dosimetric changes due to linac component miscalibration because log files are insensitive to miscalibration. Herein, clinical impacts of dosimetric changes on a log file-based method were determined. Five head-and-neck and five prostate plans were applied. Miscalibration-simulated log files were generated by inducing a linac component miscalibration into the log file. Miscalibration magnitudes for leaf, gantry, and collimator at the general tolerance level were ±0.5mm, ±1°, and ±1°, respectively, and at a tighter tolerance level achievable on current linac were ±0.3mm, ±0.5°, and ±0.5°, respectively. Re-calculations were performed on patient anatomy using log file data. Changes in tumor control probability/normal tissue complication probability from treatment planning system dose to re-calculated dose at the general tolerance level was 1.8% on planning target volume (PTV) and 2.4% on organs at risk (OARs) in both plans. These changes at the tighter tolerance level were improved to 1.0% on PTV and to 1.5% on OARs, with a statistically significant difference. We determined the clinical impacts of dosimetric changes on a log file-based method using a general tolerance level and a tighter tolerance level for linac miscalibration and found that a tighter tolerance level significantly improved the accuracy of the log file-based method. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ammazzalorso, F.; Bednarz, T.; Jelen, U.
2014-03-01
We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.
TL-OSL correlation studies of LiMgPO4:Tb,B dosimetric phosphor
NASA Astrophysics Data System (ADS)
Singh, A. K.; Menon, S. N.; Dhabekar, Bhushan; Kadam, Sonal; Chougaonkar, M. P.; Mayya, Y. S.
2012-03-01
The recently synthesized LiMgPO4:Tb,B (LMP) is a highly sensitive Optically Stimulated Luminescence (OSL) phosphor for dosimetric applications. Studies were carried out to assess the correlation between thermoluminescence (TL) and OSL of this phosphor. Measurements like Residual TL (R-TL), Continuous Wave OSL (CW-OSL) and Linearly Modulated OSL (LM-OSL) of LMP were carried out and various curves thus obtained were de-convolved using Computerized Curve Deconvolution (CCD) program. The deconvolution of CW-OSL and LM-OSL curves showed five different first order components in LMP. It was observed that OSL signal of LMP has its origin from five traps having different photo-ionization cross-sections. Same traps were found to be responsible for both TL and OSL in this phosphor. Bleaching decay rates were calculated for each R-TL glow peaks and compared with the decay rates of individual OSL components. The value of decay rates of R-TL and OSL matches well. Experimental verification of presence of individual OSL components using tbleach-tmax method was carried out.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion
NASA Astrophysics Data System (ADS)
Söhn, M.; Sobotta, B.; Alber, M.
2012-06-01
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion.
Söhn, M; Sobotta, B; Alber, M
2012-06-21
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.
Likhtarov, I A; Kovgan, L M; Masiuk, S V; Ivanova, O M; Chepurny, M I; Boyko, Z N; Gerasymenko, V B
2015-12-01
The purpose of the review is to demonstrate the results of dosimetric passportization (performed in 1991-2014) for the settlements of Ukraine which suffered from radioactive contamination caused by the Chornobyl accident. The dosimetric passportization played a key role in the National program on the liquidation of aftermath of the Chornobyl accident directed on recovery through all stages of the current radiation situation control and decision support touching upon various types of interventions and social benefits to the population of radioactively contaminated areas. The works being performed under dosimetric passportization did not have analogues among the researches which took place after other large-scale industrial and municipal accidents as well their scales as the duration of both radio-ecological and dosimetric monitoring.The new methodological approaches to the assessment of so-called passport doses of a settlement as well as to the definition of the concept of annual dose being the dose used to make decisions for providing both direct and indirect emergency countermeasures for the settlements of Ukraine became pioneering ones. During all the post-accident period there were issued sixteen collections of general dosimetric passportization data which accumulate the results of hundreds of thousands spectrometric, radiochemical and radiation levels measurements and WBC measurements carried out in 1991-2014.The annual passport doses calculated on the basis of these measurements (including their components) are unique information that quantifies the level and time dynamics of the radiation situation for each of the 2161 settlements of 74 raions in 12 oblasts during all the post-accident period. Thanks to the works of dosimetric passportization of the settlements of Ukraine there were created databases to be unique in their structure and content with quantitative characteristics of the territorial and temporal distribution, the dynamics of changes of a number of important radiological parameters, namely over 500 thousands of measurements of concentration of 137Cs and 90Sr in the local foodstuff (milk and potatoes); there are more than 1.3 million of measurements of the cesium content in the body of residents of the settlements of Ukraine; there are 100 thousands of dose estimates (both internal and external ones were measured separately) of inhabitants living on the radioactively contaminated areas. The results of the dosimetric passportization served as one of the main exposure criteria for generalized aftermath of the Chornobyl accident represented in the National reports for the first 15, 20 and 25 years after the accident. I. A. Likhtarov, L. M. Kovgan, S. V. Masiuk, O. M. Ivanova, M. I. Chepurny.
Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.
Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank
2016-05-01
To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.
Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide
2013-01-01
Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345
First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF
NASA Technical Reports Server (NTRS)
Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.
1991-01-01
The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.
Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.
Xi, Mian; Lin, Steven H
2017-07-01
Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.
Prado-Junior, Jamir; de Oliveira-Neto, Norberto Emídio; Santana, Lucas Dezidério; do Vale, Vagner Santiago; Jacobson, Tamiel Baiocchi; de Oliveira, Paulo Eugênio Alves Macedo; Carvalho, Fabrício Alvim
2018-01-01
Understanding the relationships between Coffea arabica L. and the native tree community of secondary forests regrowing after the abandonment of coffee plantations is important because, as a non-native species in the Neotropics, coffee can outcompete native species, reducing diversity and forests ecosystem services. We aimed to answer three questions: 1) Does coffee regeneration in secondary forests differ between shaded and unshaded abandoned plantations?; 2) How is coffee basal area related to structural attributes, species diversity and composition of the native community?; and 3) Do the relationships between coffee and native community differ between tree and sapling components? We sampled the tree and sapling components in a seasonal tropical dry forest that were previously used as shaded and unshaded coffee plantations. Coffee was the most important species in the sapling component of shaded systems, but was almost absent in unshaded ones. Coffee basal area was negatively related with the native density and absolute species richness of the sapling component; and was negatively related with tree density, and positively related with the percentage of pioneer individuals of the native tree component. Our results indicate that coffee persists in secondary forest communities even after more than 70 years of shaded-coffee plantations were abandoned, potentially reducing density and diversity of native species. Despite limitations, which hinder more general conclusions on coffee invasiveness in Brazilian secondary tropical forests, our results indicate that coffee is a strong competitor in the studied secondary forests and provide important insights for future research on this topic. PMID:29538468
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.
2011-02-15
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.« less
DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.
2011-01-01
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments. PMID:21452716
DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M
2011-02-01
This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.
Construction of the TH-GEM detector components for metrology of low energy ionizing radiation
NASA Astrophysics Data System (ADS)
Silva, N. F.; Silva, T. F.; Castro, M. C.; Natal da Luz, H.; Caldas, L. V. E.
2018-03-01
The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high-energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas; Nissim, Ouzi; Delbrouck, Carine
2006-04-01
Purpose: To analyze the relationship between hearing preservation after gamma knife radiosurgery (GKR) for vestibular schwannoma (VS) and some volumetric and dosimetric parameters of the intracanalicular components of VS. Methods and Materials: This study included 82 patients with a VS treated by GKR; all patients had no NF2 disease, a Gardner-Robertson hearing class 1-4 before treatment, a marginal dose of 12 Gy, and a radiologic and audiologic follow-up {>=}1 year post-GKR. The volume of both the entire tumor and the intracanalicular part of the tumor and the mean and integrated dose of these two volumes were correlated to the auditorymore » outcomes of patients. Results: At last hearing follow-up, 52 patients had no hearing worsening, and 30 patients had an increase of {>=}1 class on Gardner-Robertson classification. We found that hearing preservation after GKR is significantly correlated with the intracanalicular tumor volume, as well as with the integrated dose delivered to the intracanalicular tumor volume. Conclusions: Some volumetric and dosimetric parameters of the intracanalicular part of the tumor influence hearing preservation after GKR of VS. Consequently, we advise the direct treatment of patients with preserved functional hearing and a VS including a small intracanalicular volume.« less
Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco
2014-12-01
In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin
Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3more » films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. Conclusions: The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.« less
Do invasive alien plants benefit more from global environmental change than native plants?
Liu, Yanjie; Oduor, Ayub M O; Zhang, Zhen; Manea, Anthony; Tooth, Ifeanna M; Leishman, Michelle R; Xu, Xingliang; van Kleunen, Mark
2017-08-01
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO 2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta-analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above-mentioned global environmental change components. We found that elevated temperature and CO 2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: P = 0.051; increased precipitation: P = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (P = 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO 2 enrichment, may further increase the spread of invasive plants in the future. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S
2015-06-15
Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on themore » x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.« less
Nebraska NativeGEM (Geospatial Extension Model)
NASA Technical Reports Server (NTRS)
Bowen, Brent
2004-01-01
This proposal, Nebraska NativeGEM (Geospatial Extension Model) features a unique diversity component stemming from the exceptional reputation NNSGC has built by delivering geospatial science experiences to Nebraska s Native Americans. For 7 years, NNSGC has partner4 with the 2 tribal colleges and 4 reservation school districts in Nebraska to form the Nebraska Native American Outreach Program (NNAOP), a partnership among tribal community leaders, academia, tribal schools, and industry reaching close to 1,OOO Native American youth, over 1,200 community members (Lehrer & Zendajas, 2001).NativeGEM addresses all three key components of Cooperative State Research, Education, and Extension Service (CSREES) goals for advancing decision support, education, and workforce development through the GES. The existing long term commitments that the NNSGC and the GES have in these areas allow for the pursuit of a broad range of activities. NativeGEM builds upon these existing successful programs and collaborations. Outcomes and metrics for each proposed project are detailed in the Approach section of this document.
Tamarisk coalition - native riparian plant materials program
Stacy Kolegas
2012-01-01
The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...
Photodynamic Nanomedicine in the Treatment of Solid Tumors: Perspectives and Challenges
Master, Alyssa; Livingston, Megan; Gupta, Anirban Sen
2013-01-01
Photodynamic therapy (PDT) is a promising treatment strategy where activation of photosensitizer drugs with specific wavelengths of light results in energy transfer cascades that ultimately yield cytotoxic reactive oxygen species which can render apoptotic and necrotic cell death. Without light the photosensitizer drugs are minimally toxic and the photoactivating light itself is non-ionizing. Therefore, harnessing this mechanism in tumors provides a safe and novel way to selectively eradicate tumor with reduced systemic toxicity and side effects on healthy tissues. For successful PDT of solid tumors, it is necessary to ensure tumor-selective delivery of the photosensitizers, as well as, the photoactivating light and to establish dosimetric correlation of light and drug parameters to PDT-induced tumor response. To this end, the nanomedicine approach provides a promising way towards enhanced control of photosensitizer biodistribution and tumor-selective delivery. In addition, refinement of nanoparticle designs can also allow incorporation of imaging agents, light delivery components and dosimetric components. This review aims at describing the current state-of-the-art regarding nanomedicine strategies in PDT, with a comprehensive narrative of the research that has been carried out in vitro and in vivo, with a discussion of the nanoformulation design aspects and a perspective on the promise and challenges of PDT regarding successful translation into clinical application. PMID:23474028
ERIC Educational Resources Information Center
Berkshire, Steven; Smith, Gary
The Rural Alaska Native Adult program of Alaska Pacific University is specifically designed for adult Native learners. Courses in business administration, human services, and teacher education are offered to rural Native adult students via an interactive Internet-based format after an initial 1-week residency. The Internet component is facilitated…
The Acquisition of English Focus Marking by Non-Native Speakers
NASA Astrophysics Data System (ADS)
Baker, Rachel Elizabeth
This dissertation examines Mandarin and Korean speakers' acquisition of English focus marking, which is realized by accenting particular words within a focused constituent. It is important for non-native speakers to learn how accent placement relates to focus in English because appropriate accent placement and realization makes a learner's English more native-like and easier to understand. Such knowledge may also improve their English comprehension skills. In this study, 20 native English speakers, 20 native Mandarin speakers, and 20 native Korean speakers participated in four experiments: (1) a production experiment, in which they were recorded reading the answers to questions, (2) a perception experiment, in which they were asked to determine which word in a recording was the last prominent word, (3) an understanding experiment, in which they were asked whether the answers in recorded question-answer pairs had context-appropriate prosody, and (4) an accent placement experiment, in which they were asked which word they would make prominent in a particular context. Finally, a new group of native English speakers listened to utterances produced in the production experiment, and determined whether the prosody of each utterance was appropriate for its context. The results of the five experiments support a novel predictive model for second language prosodic focus marking acquisition. This model holds that both transfer of linguistic features from a learner's native language (L1) and features of their second language (L2) affect learners' acquisition of prosodic focus marking. As a result, the model includes two complementary components: the Transfer Component and the L2 Challenge Component. The Transfer Component predicts that prosodic structures in the L2 will be more easily acquired by language learners that have similar structures in their L1 than those who do not, even if there are differences between the L1 and L2 in how the structures are realized. The L2 Challenge Component predicts that for difficult tasks, language learners will rely on widely-applied prosodic patterns, making them more successful at prosodically marking broad focus than narrow focus. However, for easy tasks, language learners will more successfully mark information structures that have a more direct relationship between focus and accent placement.
Duda, Jeffrey J.; Freeman, D. Carl; Emlen, John M.; Belnap, Jayne; Kitchen, Stanley G.; Zak, John C.; Sobek, Edward; Tracy, Mary; Montante, James
2003-01-01
Various biotic and abiotic components of soil ecology differed significantly across an area whereHalogeton glomeratus is invading a native winterfat, [ Krascheninnikovia (= Ceratoides) lanata] community. Nutrient levels were significantly different among the native, ecotone, and exotic-derived soils. NO3, P, K, and Na all increased as the cover of halogeton increased. Only Ca was highest in the winterfat area. A principal components analysis, conducted separately for water-soluble and exchangeable cations, revealed clear separation between halogeton- and winterfat-derived soils. The diversity of soil bacteria was highest in the exotic, intermediate in the ecotone, and lowest in the native community. Although further studies are necessary, our results offer evidence that invasion by halogeton alters soil chemistry and soil ecology, possibly creating conditions that favor halogeton over native plants.
A COTS-Based Replacement Strategy for Aging Avionics Computers
2001-12-01
Communication Control Unit. A COTS-Based Replacement Strategy for Aging Avionics Computers COTS Microprocessor Real Time Operating System New Native Code...Native Code Objec ts Native Code Thread Real - Time Operating System Legacy Function x Virtual Component Environment Context Switch Thunk Add-in Replace
Polymeris, George S; Kitis, George; Kiyak, Nafiye G; Sfamba, Ioanna; Subedi, Bhagawan; Pagonis, Vasilis
2011-09-01
In the present study we report dosimetric properties of iodized salt aiming at using it as an accidental luminescent dosimeter. It was found that the very good sensitivity of its main dosimetric peak is strongly affected by thermal treatments. This is also the case for OSL emission. The sensitivity loss due to heating implies that caution should be exercised while applying single aliquot protocols for dose evaluation. The sequence of dissolution and subsequent re-crystallization was established to be an extremely effective zeroing mechanism for the TL signal. The linearity in the dose response was also monitored in the case of dissolved and subsequently re-crystallized salt. In the case of naturally occurring salt, zeroing of the TL signal due to dissolution as well as the linearity of dose response up to doses as large as 100 Gy were found to be very promising features for dating applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Cuttino, Laurie W; Mukhopadhyay, Nitai D
2013-06-01
Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥ 95% of the prescribed dose (PD) covering ≥ 95% of the target volume (TV); maximum skin dose ≤ 125% of the PD; maximum rib dose ≤ 145% of the PD; and V150 ≤50 cc and V200 ≤ 10 cc. Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P ≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Douglas W., E-mail: darthur@mcvh-vcu.edu; Vicini, Frank A.; Todor, Dorin A.
2013-06-01
Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125%more » of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.« less
Why segmentation matters: experience-driven segmentation errors impair “morpheme” learning
Finn, Amy S.; Hudson Kam, Carla L.
2015-01-01
We ask whether an adult learner’s knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners’ ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner’s native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner’s native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners. PMID:25730305
Zachau, Swantje; Korpilahti, Pirjo; Hämäläinen, Jarmo A; Ervast, Leena; Heinänen, Kaisu; Suominen, Kalervo; Lehtihalmes, Matti; Leppänen, Paavo H T
2014-07-01
We explored semantic integration mechanisms in native and non-native hearing users of sign language and non-signing controls. Event-related brain potentials (ERPs) were recorded while participants performed a semantic decision task for priming lexeme pairs. Pairs were presented either within speech or across speech and sign language. Target-related ERP responses were subjected to principal component analyses (PCA), and neurocognitive basis of semantic integration processes were assessed by analyzing the N400 and the late positive complex (LPC) components in response to spoken (auditory) and signed (visual) antonymic and unrelated targets. Semantically-related effects triggered across modalities would indicate a similar tight interconnection between the signers׳ two languages like that described for spoken language bilinguals. Remarkable structural similarity of the N400 and LPC components with varying group differences between the spoken and signed targets were found. The LPC was the dominant response. The controls׳ LPC differed from the LPC of the two signing groups. It was reduced to the auditory unrelated targets and was less frontal for all the visual targets. The visual LPC was more broadly distributed in native than non-native signers and was left-lateralized for the unrelated targets in the native hearing signers only. Semantic priming effects were found for the auditory N400 in all groups, but only native hearing signers revealed a clear N400 effect to the visual targets. Surprisingly, the non-native signers revealed no semantically-related processing effect to the visual targets reflected in the N400 or the LPC; instead they appeared to rely more on visual post-lexical analyzing stages than native signers. We conclude that native and non-native signers employed different processing strategies to integrate signed and spoken semantic content. It appeared that the signers׳ semantic processing system was affected by group-specific factors like language background and/or usage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Native cool-season grasses in Missouri
Nadia Navarrete-Tindall
2010-01-01
Although they may be overlooked, underestimated, unknown or simply ignored, native cool-season grasses are significant components of many plant communities in Missouri, including prairies, savannas, and woodlands.
ERIC Educational Resources Information Center
Yunxia, Zhu
1997-01-01
Examines the different attitudes of native speakers in understanding a written genre of Modern Standard Chinese--sales letters. The study focuses on the use of formulaic components appearing in real Chinese sales letters and compares these components with the advice given in textbooks. Findings reveal a gap between business teaching and business…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, C; Janssens, G; Ainsley, C
Purpose: Proton dose distribution is sensitive to tumor regression and tissue and normal anatomy changes. Replanning is sometimes necessary during treatment to ensure continue tumor coverage or avoid overtreatment of organs at risk (OARs). We investigated action thresholds for replanning and identified both dosimetric and non-dosimetric metrics that would predict a need for replan. Methods: All consecutive lung cancer patients (n = 188) who received definitive proton radiotherapy and had more than two evaluation CT scans at the Roberts Proton Therapy Center (Philadelphia, USA) from 2011 to 2015 were included in this study. The cohort included a variety of tumormore » sizes, locations, histology, beam angles, as well as radiation-induced tumor and lung change. Dosimetric changes during therapy were characterized by changes in the dose volume distribution of PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs). Tumor and lung change were characterized by changes in sizes, and in the distribution of Hounsfield numbers and water equivalent thickness (WET) along the beam path. We applied machine learning tools to identify both dosimetric and non-dosimetric metrics that predicted a replan. Results: Preliminary data showed that clinical indicators (n = 54) were highly correlated; thus, a simple indicator may be derived to guide the action threshold for replanning. Additionally, tumor regression alone could not predict dosimetric changes in OARs; it required further information about beam angles and tumor locations. Conclusion: Both dosimetric and non-dosimetric factors are predictive of the need for replanning during proton treatment.« less
Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response
NASA Technical Reports Server (NTRS)
Scheick, Leif; Novak, Frank
2003-01-01
The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.
Addressing Cultural and Native Language Interference in Second Language Acquisition
ERIC Educational Resources Information Center
Allard, Daniele; Bourdeau, Jacqueline; Mizoguchi, Riichiro
2011-01-01
This paper addresses the problem of cultural and native language interference in second/foreign language acquisition. More specifically, it examines issues of interference that can be traced to a student's native language and that also have a cultural component. To this effect, an understanding of what actually comprises both interference and…
Reading component skills of learners in adult basic education.
MacArthur, Charles A; Konold, Timothy R; Glutting, Joseph J; Alamprese, Judith A
2010-01-01
The purposes of this study were to investigate the reliability and construct validity of measures of reading component skills with a sample of adult basic education (ABE) learners, including both native and nonnative English speakers, and to describe the performance of those learners on the measures. Investigation of measures of reading components is needed because available measures were neither developed for nor normed on ABE populations or with nonnative speakers of English. The study included 486 students, 334 born or educated in the United States (native) and 152 not born or educated in the United States (nonnative) but who spoke English well enough to participate in English reading classes. All students had scores on 11 measures covering five constructs: decoding, word recognition, spelling, fluency, and comprehension. Confirmatory factor analysis (CFA) was used to test three models: a two-factor model with print and meaning factors; a three-factor model that separated out a fluency factor; and a five-factor model based on the hypothesized constructs. The five-factor model fit best. In addition, the CFA model fit both native and nonnative populations equally well without modification, showing that the tests measure the same constructs with the same accuracy for both groups. Group comparisons found no difference between the native and nonnative samples on word recognition, but the native sample scored higher on fluency and comprehension and lower on decoding than did the nonnative sample. Students with self-reported learning disabilities scored lower on all reading components. Differences by age and gender were also analyzed.
Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruszyna, Marta
This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.
ERIC Educational Resources Information Center
Gone, Joseph P.
2009-01-01
Nineteen staff and clients in a Native American healing lodge were interviewed regarding the therapeutic approach used to address the legacy of Native American historical trauma. On the basis of thematic content analysis of interviews, 4 components of healing discourse emerged. First, clients were understood by their counselors to carry pain,…
Native Language Reading Approach Program, 1982-1983. O.E.E. Final Evaluation Report.
ERIC Educational Resources Information Center
Keyes, Jose Luis; And Others
The Native Language Reading Approach Program in New York City was designed as an exemplary approach to on-site training of classroom teachers and their assistants in how to help students transfer reading skills from their native language to English. Program components included support services, teacher training, material/curriculum development,…
Impact of native grasses and cheatgrass (Bromus tectorum) on Great Basin forb seedling growth
Hilary Parkinson; Cathy Zabinski; Nancy Shaw
2013-01-01
Re-establishing native communities that resist exotic weed invasion and provide diverse habitat for wildlife are high priorities for restoration in sagebrush ecosystems. Native forbs are an important component of healthy rangelands in this system, but they are rarely included in seedings. Understanding competitive interactions between forb and grass seedlings is...
Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, G.D.; Mei, G.T.
The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident.
Thermoluminescent dosimetry for LDEF experiment M0006
NASA Technical Reports Server (NTRS)
Chang, J. Y.; Giangano, D.; Kantorcik, T.; Stauber, M.; Snead, L.
1992-01-01
Experiment M0006 on the Long Duration Exposure Facility had as its objective the investigation of space radiation effects on various electronic and optical components, as well as on seed germination. The Grumman Corporate Research Center provided the radiation dosimetric measurements for M0006, comprising the preparation of thermoluminescent dosimeters (TLD) and the subsequent measurement and analysis of flight exposed and control samples. In addition, various laboratory exposures of TLD's with gamma rays and protons were performed to obtain a better understanding of the flight exposures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Douglas W., E-mail: darthur@mcvh-vcu.ed; Vicini, Frank A.; Todor, Dorin A.
2011-01-01
Purpose: Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Methods and Materials: Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) {>=}95% of the prescribed dose (PD) covering {>=}90% of the target volume, (2) a maximum skin dose {<=}125% of the PD, (3) maximum rib dose {<=}145% of the PD, and (4) the V150 {<=}50 cc and V200 {<=}10 cc. The ability to concurrently achieve these dosimetric goals usingmore » the Contura MLB was analyzed. Results: 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was {>=}5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. Conclusion: The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered.« less
Practical simplifications for radioimmunotherapy dosimetric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, S.; DeNardo, G.L.; O`Donnell, R.T.
1999-01-01
Radiation dosimetry is potentially useful for assessment and prediction of efficacy and toxicity for radionuclide therapy. The usefulness of these dose estimates relies on the establishment of a dose-response model using accurate pharmacokinetic data and a radiation dosimetric model. Due to the complexity in radiation dose estimation, many practical simplifications have been introduced in the dosimetric modeling for clinical trials of radioimmunotherapy. Although research efforts are generally needed to improve the simplifications used at each stage of model development, practical simplifications are often possible for specific applications without significant consequences to the dose-response model. In the development of dosimetric methodsmore » for radioimmunotherapy, practical simplifications in the dosimetric models were introduced. This study evaluated the magnitude of uncertainty associated with practical simplifications for: (1) organ mass of the MIRD phantom; (2) radiation contribution from target alone; (3) interpolation of S value; (4) macroscopic tumor uniformity; and (5) fit of tumor pharmacokinetic data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baly, L.; Otazo, M. R.; Molina, D.
2006-09-08
A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.
Feasibility of 3D printed air slab diode caps for small field dosimetry.
Perrett, Benjamin; Charles, Paul; Markwell, Tim; Kairn, Tanya; Crowe, Scott
2017-09-01
Commercial diode detectors used for small field dosimetry introduce a field-size-dependent over-response relative to an ideal, water-equivalent dosimeter due to high density components in the body of the detector. An air gap above the detector introduces a field-size-dependent under-response, and can be used to offset the field-size-dependent detector over-response. Other groups have reported experimental validation of caps containing air gaps for use with several types of diodes in small fields. This paper examines two designs for 3D printed diode air caps for the stereotactic field diode (SFD)-a cap containing a sealed air cavity, and a cap with an air cavity at the face of the SFD. Monte Carlo simulations of both designs were performed to determine dimensions for an air cavity to introduce the desired dosimetric correction. Various parameter changes were also simulated to estimate the dosimetric uncertainties introduced by 3D printing. Cap layer dimensions, cap density changes due to 3D printing, and unwanted air gaps were considered. For the sealed design the optimal air gap size for water-equivalent cap material was 0.6 mm, which increased to 1.0 mm when acrylonitrile butadiene styrene in the cap was simulated. The unsealed design had less variation, a 0.4 mm air gap is optimal in both situations. Unwanted air pockets in the bore of the cap and density changes introduced by the 3D printing process can potentially introduce significant dosimetric effects. These effects may be limited by using fine print resolutions and minimising the volume of cap material.
Fletcher, Rebecca A; Callaway, Ragan M; Atwater, Daniel Z
2016-06-01
Exotic invasive plants can exert strong selective pressure for increased competitive ability in native plants. There are two fundamental components of competitive ability: suppression and tolerance, and the current paradigm that these components have equal influences on a species' overall competitive ability has been recently questioned. If these components do not have equal influences on overall ability, then selection on competitive tolerance and suppression may be disproportionate. We used naturally invaded communities to study the effects of selection caused by an invasive forb, Centaurea stoebe, on a native grass, Pseudoroegneria spicata. P. spicata plants were harvested from within dense C. stoebe patches and from nearby uninvaded areas, divided clonally into replicates, then transplanted into a common garden where they grew alone or competed with C. stoebe. We found that P. spicata plants collected from within C. stoebe patches were significantly more tolerant of competition with C. stoebe than P. spicata plants collected from uninvaded areas, but plants from inside invaded patches were not superior at suppressing C. stoebe. These results are consistent with the hypothesis that strong competitors may select for tolerance to competition more than for the ability to suppress neighbors. This has important implications for how native plant communities may respond to invasion over time, and how invasive and native species may ultimately coexist.
Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment
NASA Astrophysics Data System (ADS)
Wen, Ning; Glide-Hurst, Carri; Nurushev, Teamour; Xing, Lei; Kim, Jinkoo; Zhong, Hualiang; Liu, Dezhi; Liu, Manju; Burmeister, Jay; Movsas, Benjamin; Chetty, Indrin J.
2012-09-01
The cone-beam computed tomography (CBCT) imaging modality is an integral component of image-guided adaptive radiation therapy (IGART), which uses patient-specific dynamic/temporal information for potential treatment plan modification. In this study, an offline process for the integral component IGART framework has been implemented that consists of deformable image registration (DIR) and its validation, dose reconstruction, dose accumulation and dose verification. This study compares the differences between planned and estimated delivered doses under an IGART framework of five patients undergoing prostate cancer radiation therapy. The dose calculation accuracy on CBCT was verified by measurements made in a Rando pelvic phantom. The accuracy of DIR on patient image sets was evaluated in three ways: landmark matching with fiducial markers, visual image evaluation and unbalanced energy (UE); UE has been previously demonstrated to be a feasible method for the validation of DIR accuracy at a voxel level. The dose calculated on each CBCT image set was reconstructed and accumulated over all fractions to reflect the ‘actual dose’ delivered to the patient. The deformably accumulated (delivered) plans were then compared to the original (static) plans to evaluate tumor and normal tissue dose discrepancies. The results support the utility of adaptive planning, which can be used to fully elucidate the dosimetric impact based on the simulated delivered dose to achieve the desired tumor control and normal tissue sparing, which may be of particular importance in the context of hypofractionated radiotherapy regimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafata, K; Ren, L; Wu, Q
Purpose: To develop a data-mining methodology based on quantum clustering and machine learning to predict expected dosimetric endpoints for lung SBRT applications based on patient-specific anatomic features. Methods: Ninety-three patients who received lung SBRT at our clinic from 2011–2013 were retrospectively identified. Planning information was acquired for each patient, from which various features were extracted using in-house semi-automatic software. Anatomic features included tumor-to-OAR distances, tumor location, total-lung-volume, GTV and ITV. Dosimetric endpoints were adopted from RTOG-0195 recommendations, and consisted of various OAR-specific partial-volume doses and maximum point-doses. First, PCA analysis and unsupervised quantum-clustering was used to explore the feature-space tomore » identify potentially strong classifiers. Secondly, a multi-class logistic regression algorithm was developed and trained to predict dose-volume endpoints based on patient-specific anatomic features. Classes were defined by discretizing the dose-volume data, and the feature-space was zero-mean normalized. Fitting parameters were determined by minimizing a regularized cost function, and optimization was performed via gradient descent. As a pilot study, the model was tested on two esophageal dosimetric planning endpoints (maximum point-dose, dose-to-5cc), and its generalizability was evaluated with leave-one-out cross-validation. Results: Quantum-Clustering demonstrated a strong separation of feature-space at 15Gy across the first-and-second Principle Components of the data when the dosimetric endpoints were retrospectively identified. Maximum point dose prediction to the esophagus demonstrated a cross-validation accuracy of 87%, and the maximum dose to 5cc demonstrated a respective value of 79%. The largest optimized weighting factor was placed on GTV-to-esophagus distance (a factor of 10 greater than the second largest weighting factor), indicating an intuitively strong correlation between this feature and both endpoints. Conclusion: This pilot study shows that it is feasible to predict dose-volume endpoints based on patient-specific anatomic features. The developed methodology can potentially help to identify patients at risk for higher OAR doses, thus improving the efficiency of treatment planning. R01-184173.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harry, Taylor; Department of Radiation Medicine, Oregon Health and Science University, Portland, OR; Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR
There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomicalmore » computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5 Gy (0.7 to 9.6 Gy) at FB, 1.2 Gy (0.6 to 3.8 Gy, p < 0.001) at 75% inspiration, 1.1 Gy (0.6 to 3.1 Gy, p = 0.004) at 90% inspiration, 1.0 Gy (0.6 to 3.0 Gy) at 100% inspiration or DIBH, and 1.0 Gy (0.6 to 2.8 Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9 Gy (2.4 to 46.4 Gy), 8.6 Gy (2.0 to 43.8 Gy, p < 0.001), 7.2 Gy (1.9 to 40.1 Gy, p = 0.035), 6.5 Gy (1.8 to 34.7 Gy), and 5.3 Gy (1.5 to 31.5 Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan.« less
Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura
2016-01-01
Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be satisfied when the TPS-QC tool generated re-optimized plans without sacrificing other dosimetric endpoints. In addition to its feasibility and accuracy, the proposed TPS-QC tool is also user-friendly and easy to operate, both of which are necessary characteristics for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, T; Zhou, L; Li, Y
Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specificmore » dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive results. Conclusion: We have successfully developed a fast and automatic multi-objective optimization for intensity modulated radiotherapy. This work is supported by the National Natural Science Foundation of China (No: 81571771)« less
Processing changes when listening to foreign-accented speech
Romero-Rivas, Carlos; Martin, Clara D.; Costa, Albert
2015-01-01
This study investigates the mechanisms responsible for fast changes in processing foreign-accented speech. Event Related brain Potentials (ERPs) were obtained while native speakers of Spanish listened to native and foreign-accented speakers of Spanish. We observed a less positive P200 component for foreign-accented speech relative to native speech comprehension. This suggests that the extraction of spectral information and other important acoustic features was hampered during foreign-accented speech comprehension. However, the amplitude of the N400 component for foreign-accented speech comprehension decreased across the experiment, suggesting the use of a higher level, lexical mechanism. Furthermore, during native speech comprehension, semantic violations in the critical words elicited an N400 effect followed by a late positivity. During foreign-accented speech comprehension, semantic violations only elicited an N400 effect. Overall, our results suggest that, despite a lack of improvement in phonetic discrimination, native listeners experience changes at lexical-semantic levels of processing after brief exposure to foreign-accented speech. Moreover, these results suggest that lexical access, semantic integration and linguistic re-analysis processes are permeable to external factors, such as the accent of the speaker. PMID:25859209
ERIC Educational Resources Information Center
Bermudez, Gonzalo M.; Battistón, Luisina V.; García Capocasa, María C.; De Longhi, Ana L.
2017-01-01
This study investigates the influence of school sector (private versus state schools) and student gender on knowledge of native fauna. Our main objectives were (a) to describe the knowledge of high school students from the province of Cordoba, Argentina with respect to native animal species, (b) to determine if any exotic species (introduced or…
Dosimetric audit in brachytherapy
Bradley, D A; Nisbet, A
2014-01-01
Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068
Revision of the dosimetric parameters of the CSM11 LDR Cs-137 source.
Otal, Antonio; Martínez-Fernández, Juan Manuel; Granero, Domingo
2011-03-01
The clinical use of brachytherapy sources requires the existence of dosimetric data with enough of quality for the proper application of treatments in clinical practice. It has been found that the published data for the low dose rate CSM11 Cs-137 source lacks of smoothness in some regions because the data are too noisy. The purpose of this study was to calculate the dosimetric data for this source in order to provide quality dosimetric improvement of the existing dosimetric data of Ballester et al . [1]. In order to obtain the dose rate distributions Monte Carlo simulations were done using the GEANT4 code. A spherical phantom 40 cm in radius with the Cs-137 source located at the centre of the phantom was used. The results from Monte Carlo simulations were applied to derive AAPM Task Group 43 dosimetric parameters: anisotropy function, radial dose function, air kerma strength and dose rate constant. The dose rate constant obtained was 1.094 ± 0.002 cGy h -1 U -1 . The new calculated data agrees within experimental uncertainties with the existing data of Ballester et al . but without the statistical noise of that study. The obtained data presently fulfills all the requirements of the TG-43U1 update and thus it can be used in clinical practice.
Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R
2011-01-01
Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) ≥95% of the prescribed dose (PD) covering ≥90% of the target volume, (2) a maximum skin dose ≤125% of the PD, (3) maximum rib dose ≤145% of the PD, and (4) the V150 ≤50 cc and V200 ≤10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was ≥5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered. Copyright © 2011 Elsevier Inc. All rights reserved.
TU-CD-BRB-01: Normal Lung CT Texture Features Improve Predictive Models for Radiation Pneumonitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, S; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Briere, T
2015-06-15
Purpose: Existing normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) traditionally rely on dosimetric and clinical data but are limited in terms of performance and generalizability. Extraction of pre-treatment image features provides a potential new category of data that can improve NTCP models for RP. We consider quantitative measures of total lung CT intensity and texture in a framework for prediction of RP. Methods: Available clinical and dosimetric data was collected for 198 NSCLC patients treated with definitive radiotherapy. Intensity- and texture-based image features were extracted from the T50 phase of the 4D-CT acquired for treatment planning. Amore » total of 3888 features (15 clinical, 175 dosimetric, and 3698 image features) were gathered and considered candidate predictors for modeling of RP grade≥3. A baseline logistic regression model with mean lung dose (MLD) was first considered. Additionally, a least absolute shrinkage and selection operator (LASSO) logistic regression was applied to the set of clinical and dosimetric features, and subsequently to the full set of clinical, dosimetric, and image features. Model performance was assessed by comparing area under the curve (AUC). Results: A simple logistic fit of MLD was an inadequate model of the data (AUC∼0.5). Including clinical and dosimetric parameters within the framework of the LASSO resulted in improved performance (AUC=0.648). Analysis of the full cohort of clinical, dosimetric, and image features provided further and significant improvement in model performance (AUC=0.727). Conclusions: To achieve significant gains in predictive modeling of RP, new categories of data should be considered in addition to clinical and dosimetric features. We have successfully incorporated CT image features into a framework for modeling RP and have demonstrated improved predictive performance. Validation and further investigation of CT image features in the context of RP NTCP modeling is warranted. This work was supported by the Rosalie B. Hite Fellowship in Cancer research awarded to SPK.« less
Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam
NASA Astrophysics Data System (ADS)
Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.
2013-06-01
The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.
Acceptance and commissioning of a treatment planning system based on Monte Carlo calculations.
Lopez-Tarjuelo, J; Garcia-Molla, R; Juan-Senabre, X J; Quiros-Higueras, J D; Santos-Serra, A; de Marco-Blancas, N; Calzada-Feliu, S
2014-04-01
The Monaco Treatment Planning System (TPS), based on a virtual energy fluence model of the photon beam head components of the linac and a dose computation engine made with Monte Carlo (MC) algorithm X-Ray Voxel MC (XVMC), has been tested before being put into clinical use. An Elekta Synergy with 6 MV was characterized using routine equipment. After the machine's model was installed, a set of functionality, geometric, dosimetric and data transfer tests were performed. The dosimetric tests included dose calculations in water, heterogeneous phantoms and Intensity Modulated Radiation Therapy (IMRT) verifications. Data transfer tests were run for every imaging device, TPS and the electronic medical record linked to Monaco. Functionality and geometric tests were run properly. Dose calculations in water were in accordance with measurements so that, in 95% of cases, differences were up to 1.9%. Dose calculation in heterogeneous media showed expected results found in the literature. IMRT verification results with an ionization chamber led to dose differences lower than 2.5% for points inside a standard gradient. When an 2-D array was used, all the fields passed the g (3%, 3 mm) test with a percentage of succeeding points between 90% and 95%, of which the majority of the mentioned fields had a percentage of succeeding points between 95% and 100%. Data transfer caused problems that had to be solved by means of changing our workflow. In general, tests led to satisfactory results. Monaco performance complied with published international recommendations and scored highly in the dosimetric ambit. However, the problems detected when the TPS was put to work together with our current equipment showed that this kind of product must be completely commissioned, without neglecting data workflow, before treating the first patient.
Dosimetric study of GZP6 60 Co high dose rate brachytherapy source.
Lei, Qin; Xu, Anjian; Gou, Chengjun; Wen, Yumei; He, Donglin; Wu, Junxiang; Hou, Qing; Wu, Zhangwen
2018-05-28
The purpose of this study was to obtain dosimetric parameters of GZP6 60 Co brachytherapy source number 3. The Geant4 MC code has been used to obtain the dose rate distribution following the American Association of Physicists in Medicine (AAPM) TG-43U1 dosimetric formalism. In the simulation, the source was centered in a 50 cm radius water phantom. The cylindrical ring voxels were 0.1 mm thick for r ≤ 1 cm, 0.5 mm for 1 cm < r ≤ 5 cm, and 1 mm for r > 5 cm. The kerma-dose approximation was performed for r > 0.75 cm to increase the simulation efficiency. Based on the numerical results, the dosimetric datasets were obtained. These results were compared with the available data of the similar 60 Co high dose rate sources and the detailed dosimetric characterization was discussed. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
1999-12-01
this population segment. But Native Americans are twice as likely to die in motor vehicle accidents. Teen births are common among Chapter 2...These include tuberculosis, disability, and teen pregnancy. Households: Married couples make up a smaller share of Native Ameri- can households... teens by elder Native Americans through the use of traditional Indian recreational activities (e.g., powwows) appears to be an essential component of
Valian, Virginia
2014-07-01
This paper lays out the components of a language acquisition model, the interconnections among the components, and the differing stances of nativism and empiricism about syntax. After demonstrating that parsimony cannot decide between the two stances, the paper analyzes nine examples of evidence that have been used to argue for or against nativism, concluding that most pieces of evidence are either irrelevant or suggest that language is special but need not invoke innate ideas. Two pieces of evidence - the development of home sign languages and the acquisition of Determiners - do show not just that language is special but that the child has innate syntactic content. The existential claim that nativism makes - there is at least one innate syntactic idea - is an easier claim to verify than the universal claim that empiricism makes - there are no innate syntactic ideas.
Classical biological control for the protection of native ecosystems
USDA-ARS?s Scientific Manuscript database
Native ecosystems and their component species are undergoing catastrophic and irreparable change globally as habitat is destroyed for human use and invaded by species from other biogeographical areas (Simberloff et al., 1997; Cox, 1999; Lockwood et al., 2006). Political solutions may be devised to s...
NASA Astrophysics Data System (ADS)
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B.
2017-05-01
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B
2017-05-07
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Ge, Y; Yuan, L
Purpose: To investigate the impact of outliers on knowledge modeling in radiation therapy, and develop a systematic workflow for identifying and analyzing geometric and dosimetric outliers using pelvic cases. Methods: Four groups (G1-G4) of pelvic plans were included: G1 (37 prostate cases), G2 (37 prostate plus lymph node cases), and G3 (37 prostate bed cases) are all clinical IMRT cases. G4 are 10 plans outside G1 re-planned with dynamic-arc to simulate dosimetric outliers. The workflow involves 2 steps: 1. identify geometric outliers, assess impact and clean up; 2. identify dosimetric outliers, assess impact and clean up.1. A baseline model wasmore » trained with all G1 cases. G2/G3 cases were then individually added to the baseline model as geometric outliers. The impact on the model was assessed by comparing leverage statistic of inliers (G1) and outliers (G2/G3). Receiver-operating-characteristics (ROC) analysis was performed to determine optimal threshold. 2. A separate baseline model was trained with 32 G1 cases. Each G4 case (dosimetric outliers) was then progressively added to perturb this model. DVH predictions were performed using these perturbed models for remaining 5 G1 cases. Normal tissue complication probability (NTCP) calculated from predicted DVH were used to evaluate dosimetric outliers’ impact. Results: The leverage of inliers and outliers was significantly different. The Area-Under-Curve (AUC) for differentiating G2 from G1 was 0.94 (threshold: 0.22) for bladder; and 0.80 (threshold: 0.10) for rectum. For differentiating G3 from G1, the AUC (threshold) was 0.68 (0.09) for bladder, 0.76 (0.08) for rectum. Significant increase in NTCP started from models with 4 dosimetric outliers for bladder (p<0.05), and with only 1 dosimetric outlier for rectum (p<0.05). Conclusion: We established a systematic workflow for identifying and analyzing geometric and dosimetric outliers, and investigated statistical metrics for detecting. Results validated the necessity for outlier detection and clean-up to enhance model quality in clinical practice. Research Grant: Varian master research grant.« less
USDA-ARS?s Scientific Manuscript database
1. Long-lived, drought-tolerant shrubs are dominant components of many arid ecosystems, and shrubs provide multiple ecosystem services (e.g., soil stabilization, herbaceous plant facilitation, carbon storage and wildlife habitat). On denuded sites, shrub restoration is hindered by abiotic (erosion ...
Nutrition Education for Native Americans: A Guide for Nutrition Educators.
ERIC Educational Resources Information Center
Food and Nutrition Service (USDA), Washington, DC.
Written for professionals working with food assistance and other programs with a nutrition component, this guide is intended to aid in understanding the cultural characteristics and basic health and diet-related problems of Native Americans and to promote more effective nutrition counseling and community nutrition education. The background section…
ERIC Educational Resources Information Center
Kaopua, Lana Sue
2008-01-01
This article presents findings from research to develop the promotional component of a breast cancer screening program for Native Hawaiian women associated with historically Hawaiian churches in medically underserved communities. The literature on adherence to health recommendations and health promotions marketing guided inquiry on screening…
La formacion de profesores de lengua materna (Native Language Teachers' Education).
ERIC Educational Resources Information Center
Martinez Chacon, Concepcion Elena
1980-01-01
Discusses the goals of native language instruction advocating a broadening of horizons, away from traditional grammar and literature teaching, and towards culturally based communication skills. Sociocultural awareness is stressed as the fundamental component of a teacher's background and the basis for mastering the relevant aspects of…
Composite Indigenous Genre: Cheyenne Ledger Art as Literature
ERIC Educational Resources Information Center
Low, Denise
2006-01-01
This author, a teacher of American Indian and Alaskan Native literature at an all-native school, contends that suppression of Indigenous literary texts is an aspect of colonization, and that reclamation of Indigenous American literature is a critical component of cultural sovereignty. In her classes, she emphasizes the hybrid nature of…
Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F
2009-01-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.
Dosimetric effects of patient rotational setup errors on prostate IMRT treatments
NASA Astrophysics Data System (ADS)
Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.
2006-10-01
The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.
NASA Astrophysics Data System (ADS)
Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong
2017-02-01
The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery-beam modes showed no differences. This study demonstrated that the dosimetric and the radiobiological parameters for the PTV and the rectum affected the dose-calculation algorithms for prostate SBRT using an endorectal balloon. However, the dosimetric and the radiobiological parameters in the AAA and the AXB plans for other OARs were similar. Furthermore, difference between the dosimetric and the radiobiological parameters for different delivery-beam modes were not found when the same algorithm was used to generate the treatment plan.
Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A
2017-06-01
Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.
Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen
2012-01-01
To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.
2014-04-01
To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {submore » cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saminathan, S; Godson, H; Ponmalar, R
2016-06-15
Purpose: To evaluate the dosimetric characteristics of newly developed well type ionization chamber and to validate the results with the commercially available calibrated well chambers that are being used for the calibration of brachytherapy sources. Methods: The newly developed well type ionization chamber (BDS 1000) has been designed for the convenient use in brachytherapy which is open to atmospheric condition. The chamber has a volume of 240 cm3 and weight of 2.5 Kg. The calibration of the radioactive source with activities from 0.01 mCi to 20 Ci can be carried out using this chamber. The dosimetric parameters such as leakagemore » current, stability, scattering effect, ion collection efficiency, reference air kerma rate and nominal response with energy were carried out with the BDS 1000 well type ion chamber. The evaluated dosimetric characteristics of BDS1000 well chamber were validated with two other commercially available well chambers (HDR 1000 plus and BTC/3007). Results: The measured leakage current observed was negligible for the newly developed BDS 1000 well type ion chamber. The ion collection efficiency was close to 1 and the response of the chamber was found to be very stable. The determined sweet spot was at 42 mm from bottom of the chamber insert. The reference air kerma rate was found to be 4.634 × 105 Gym2hr-1A-1 for the BDS 1000 well chamber. The overall dosimetric characteristics of BDS 1000 well chamber was in good agreement with the dosimetric properties of other two well chambers. Conclusion: The dosimetric study shows that the newly developed BDS 1000 well type ionization chamber is high sensitive and reliable chamber for reference air kerma strength calibration. The results obtained confirm that this chamber can be used for the calibration of HDR and LDR brachytherapy sources.« less
Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura
2016-01-01
Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be satisfied when the TPS-QC tool generated re-optimized plans without sacrificing other dosimetric endpoints. In addition to its feasibility and accuracy, the proposed TPS-QC tool is also user-friendly and easy to operate, both of which are necessary characteristics for clinical use. PMID:26930204
Catarinucci, L; Tarricone, L
2009-12-01
With the next transposition of the 2004/40/EC Directive, employers will become responsible for the electromagnetic field level at the workplace. To make this task easier, the scientific community is compiling practical guidelines to be followed. This work aims at enriching such guidelines, especially for the dosimetric issues. More specifically, some critical aspects related to the application of numerical dosimetric techniques for the verification of the safety limit compliance have been highlighted. In particular, three different aspects have been considered: the dosimetric parameter dependence on the shape and the inner characterisation of the exposed subject as well as on the numerical algorithm used, and the correlation between reference limits and basic restriction. Results and discussions demonstrate how, even by using sophisticated numerical techniques, in some cases a complex interpretation of the result is mandatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gökçe, M., E-mail: mgokce@adu.edu.tr; Uslu, D. Koçyiğit; Ertunç, C.
The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3more » percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.« less
CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife
NASA Astrophysics Data System (ADS)
Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.
2017-07-01
The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.
CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife.
Kearney, Vasant; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D
2017-06-26
The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.
Determination of molecular weight distributions in native and pretreated wood.
Leskinen, Timo; Kelley, Stephen S; Argyropoulos, Dimitris S
2015-03-30
The analysis of native wood components by size-exclusion chromatography (SEC) is challenging. Isolation, derivatization and solubilization of wood polymers is required prior to the analysis. The present approach allowed the determination of molecular weight distributions of the carbohydrates and of lignin in native and processed woods, without preparative component isolation steps. For the first time a component selective SEC analysis of sawdust preparations was made possible by the combination of two selective derivatization methods, namely; ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. These were optimized for wood samples. The developed method was thus used to examine changes in softwood samples after degradative mechanical and/or chemical treatments, such as ball milling, steam explosion, green liquor pulping, and chemical oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The methodology can also be applied to examine changes in molecular weight and lignin-carbohydrate linkages that occur during wood-based biorefinery operations, such as pretreatments, and enzymatic saccharification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Remote sensing of native and invasive species in Hawaiian forests
Gregory P. Asner; Matthew O. Jones; Roberta E. Martin; David E. Knapp; R. Flint Hughes
2008-01-01
Detection and mapping of invasive species is an important component of conservation and management efforts in Hawai'i, but the spectral separability of native, introduced, and invasive species has not been established. We used high spatial resolution airborne imaging spectroscopy to analyze the canopy hyperspectral reflectance properties of 37 distinct species or...
Pitch Ability as an Aptitude for Tone Learning
ERIC Educational Resources Information Center
Bowles, Anita R.; Chang, Charles B.; Karuzis, Valerie P.
2016-01-01
Tone languages such as Mandarin use voice pitch to signal lexical contrasts, presenting a challenge for second/foreign language (L2) learners whose native languages do not use pitch in this manner. The present study examined components of an aptitude for mastering L2 lexical tone. Native English speakers with no previous tone language experience…
Desired future condition: Fish habitat in southwestern riparian-stream habitats
John N. Rinne
1996-01-01
Riparian ecosystems in the southwestern United States provide valuable habitats for many living organisms including native fishes. An analysis of habitat components important to native fishes was made based on the literature, case histories, and unpublished and observational data. Results suggest a natural, surface water hydrograph and lack of introduced species of...
Strategies for Seed Propagation of Native Forbs
Susan E. Meyer
2006-01-01
Native forbs are an increasingly important component of container production for many public and private nurseries. Propagators are often called upon to grow species with unknown requirements. A systematic approach is required to obtain plants from seeds of these species, beginning with determining what is a propagule and evaluating seed quality. Next, seed dormancy...
Why Segmentation Matters: Experience-Driven Segmentation Errors Impair "Morpheme" Learning
ERIC Educational Resources Information Center
Finn, Amy S.; Hudson Kam, Carla L.
2015-01-01
We ask whether an adult learner's knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners' ability to segment words into their component morphemes and learn phonologically…
Vocabulary learning in primary school children: working memory and long-term memory components.
Morra, Sergio; Camba, Roberta
2009-10-01
The goal of this study was to investigate which working memory and long-term memory components predict vocabulary learning. We used a nonword learning paradigm in which 8- to 10-year-olds learned picture-nonword pairs. The nonwords varied in length (two vs. four syllables) and phonology (native sounding vs. including one Russian phoneme). Short, phonologically native nonwords were learned best, whereas learning long nonwords leveled off after a few presentation cycles. Linear structural equation analyses showed an influence of three constructs-phonological sensitivity, vocabulary knowledge, and central attentional resources (M capacity)-on nonword learning, but the extent of their contributions depended on specific characteristics of the nonwords to be learned. Phonological sensitivity predicted learning of all nonword types except short native nonwords, vocabulary predicted learning of only short native nonwords, and M capacity predicted learning of short nonwords but not long nonwords. The discussion considers three learning processes-effortful activation of phonological representations, lexical mediation, and passive associative learning-that use different cognitive resources and could be involved in learning different nonword types.
Errors in radiation oncology: A study in pathways and dosimetric impact
Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff
2005-01-01
As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or wedge orientation. For parallel‐opposed 60° wedge fields, this error could be as high as 80% to a point off‐axis. Other examples of dosimetric impact included the following: SSD, ~2%/cm for photons or electrons; photon energy (6 MV vs. 18 MV), on average 16% depending on depth, electron energy, ~0.5cm of depth coverage per MeV (mega‐electron volt). Of these examples, incorrect distances were most likely but rapidly detected by in vivo dosimetry. Errors were categorized by occurrence rate, methods and timing of detection, longevity, and dosimetric impact. Solutions were devised according to these criteria. To date, no one has studied the dosimetric impact of global errors in radiation oncology. Although there is heightened awareness that with increased use of ancillary devices and automation, there must be a parallel increase in quality check systems and processes, errors do and will continue to occur. This study has helped us identify and prioritize potential errors in our clinic according to frequency and dosimetric impact. For example, to reduce the use of an incorrect wedge direction, our clinic employs off‐axis in vivo dosimetry. To avoid a treatment distance setup error, we use both vertical table settings and optical distance indicator (ODI) values to properly set up fields. As R&V systems become more automated, more accurate and efficient data transfer will occur. This will require further analysis. Finally, we have begun examining potential intensity‐modulated radiation therapy (IMRT) errors according to the same criteria. PACS numbers: 87.53.Xd, 87.53.St PMID:16143793
NASA Astrophysics Data System (ADS)
Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.
2017-11-01
The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.
NASA Technical Reports Server (NTRS)
Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.
2003-01-01
The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.
Miller, J; Fuller, M; Vinod, S; Suchowerska, N; Holloway, L
2009-06-01
A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at 10Gy (V10) and 20Gy (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedam, S.; Docef, A.; Fix, M.
2005-06-15
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less
Speech-Sound Duration Processing in a Second Language is Specific to Phonetic Categories
ERIC Educational Resources Information Center
Nenonen, Sari; Shestakova, Anna; Huotilainen, Minna; Naatanen, Risto
2005-01-01
The mismatch negativity (MMN) component of the auditory event-related potential was used to determine the effect of native language, Russian, on the processing of speech-sound duration in a second language, Finnish, that uses duration as a cue for phonological distinction. The native-language effect was compared with Finnish vowels that either can…
ERIC Educational Resources Information Center
Beckham, Sheila; Washburn, Anuenue; Ka'aha'aina, Darlene; Bradley, Stephen
2007-01-01
Background: Smoking is especially prevalent among Native Hawaiians. The 2002 Behavioral Risk Factor Surveillance System revealed that 33.8% of Hawaiians were current smokers. Native Hawaiians have the highest age-adjusted lung cancer incidence and mortality rates and the highest prevalence of asthma among all ethnicities. Purpose: This study…
Conceptual Representation of Actions in Sign Language
ERIC Educational Resources Information Center
Dobel, Christian; Enriquez-Geppert, Stefanie; Hummert, Marja; Zwitserlood, Pienie; Bolte, Jens
2011-01-01
The idea that knowledge of events entails a universal spatial component, that is conceiving agents left of patients, was put to test by investigating native users of German sign language and native users of spoken German. Participants heard or saw event descriptions and had to illustrate the meaning of these events by means of drawing or arranging…
He, Wei-Ming; Feng, Yulong; Ridenour, Wendy M; Thelen, Giles C; Pollock, Jarrod L; Diaconu, Alecu; Callaway, Ragan M
2009-04-01
Recent studies suggest that the invasive success of Centaurea maculosa may be related to its stronger allelopathic effects on native North American species than on related European species, one component of the "novel weapons" hypothesis. Other research indicates that C. maculosa plants from the invasive range in North America have evolved to be larger and better competitors than conspecifics from the native range in Europe, a component of the "evolution of increased competitive ability" hypothesis. These hypotheses are not mutually exclusive, but this evidence sets the stage for comparing the relative importance of evolved competitive ability to inherent competitive traits. In a competition experiment with a large number of C. maculosa populations, we found no difference in the competitive effects of C. maculosa plants from North America and Europe on other species. However, both North American and European C. maculosa were much better competitors against plants native to North America than congeners native to Romania, collected in areas where C. maculosa is also native. These results are consistent with the novel weapons hypothesis. But, in a second experiment using just one population from North America and Europe, and where North American and European species were collected from a broader range of sites, competitive interactions were weaker overall, and the competitive effects of C. maculosa were slightly stronger against European species than against North American species. Also consistent with the novel weapons hypothesis, (+/-)-catechin had stronger effects on native North American species than on native European species in two experiments. Our results suggest that the regional composition of the plant communities being invaded by C. maculosa may be more important for invasive success than the evolution of increased size and competitive ability.
Log file-based patient dose calculations of double-arc VMAT for head-and-neck radiotherapy.
Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Majima, Kazuhiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi
2018-04-01
The log file-based method cannot display dosimetric changes due to linac component miscalibration because of the insensitivity of log files to linac component miscalibration. The purpose of this study was to supply dosimetric changes in log file-based patient dose calculations for double-arc volumetric-modulated arc therapy (VMAT) in head-and-neck cases. Fifteen head-and-neck cases participated in this study. For each case, treatment planning system (TPS) doses were produced by double-arc and single-arc VMAT. Miscalibration-simulated log files were generated by inducing a leaf miscalibration of ±0.5 mm into the log files that were acquired during VMAT irradiation. Subsequently, patient doses were estimated using the miscalibration-simulated log files. For double-arc VMAT, regarding planning target volume (PTV), the change from TPS dose to miscalibration-simulated log file dose in D mean was 0.9 Gy and that for tumor control probability was 1.4%. As for organ-at-risks (OARs), the change in D mean was <0.7 Gy and normal tissue complication probability was <1.8%. A comparison between double-arc and single-arc VMAT for PTV showed statistically significant differences in the changes evaluated by D mean and radiobiological metrics (P < 0.01), even though the magnitude of these differences was small. Similarly, for OARs, the magnitude of these changes was found to be small. Using the log file-based method for PTV and OARs, the log file-based method estimate of patient dose using the double-arc VMAT has accuracy comparable to that obtained using the single-arc VMAT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
An improved Monte-Carlo model of the Varian EPID separating support arm and rear-housing backscatter
NASA Astrophysics Data System (ADS)
Monville, M. E.; Kuncic, Z.; Greer, P. B.
2014-03-01
Previous investigators of EPID dosimetric properties have ascribed the backscatter, that contaminates dosimetric EPID images, to its supporting arm. Accordingly, Monte-Carlo (MC) EPID models have approximated the backscatter signal from the layers under the detector and the robotic support arm using either uniform or non-uniform solid water slabs, or through convolutions with back-scatter kernels. The aim of this work is to improve the existent MC models by measuring and modelling the separate backscatter contributions of the robotic arm and the rear plastic housing of the EPID. The EPID plastic housing is non-uniform with a 11.9 cm wide indented section that runs across the cross-plane direction in the superior half of the EPID which is 1.75 cm closer to the EPID sensitive layer than the rest of the housing. The thickness of the plastic housing is 0.5 cm. Experiments were performed with and without the housing present by removing all components of the EPID from the housing. The robotic support arm was not present for these measurements. A MC model of the linear accelerator and the EPID was modified to include the rear-housing indentation and results compared to the measurement. The rear housing was found to contribute a maximum of 3% additional signal. The rear housing contribution to the image is non-uniform in the in-plane direction with 2% asymmetry across the central 20 cm of an image irradiating the entire detector. The MC model was able to reproduce this non-uniform contribution. The EPID rear housing contributes a non-uniform backscatter component to the EPID image, which has not been previously characterized. This has been incorporated into an improved MC model of the EPID.
Invasive non-native species' provision of refugia for endangered native species.
Chiba, Satoshi
2010-08-01
The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.
Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M
60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Tianyuan; Ishihara, Takeaki; Kono, Atsushi; Yoshida, Naoki; Akasaka, Hiroaki; Mukumoto, Naritoshi; Yada, Ryuichi; Ejima, Yasuo; Yoshida, Kenji; Miyawaki, Daisuke; Kakutani, Kenichiro; Nishida, Kotaro; Negi, Noriyuki; Minami, Toshiaki; Aoyama, Yuuichi; Takahashi, Satoru; Sasaki, Ryohei
2017-08-01
The objective of the present study was the determination of the potential dosimetric benefits of using metal-artefact-suppressed dual-energy computed tomography (DECT) images for cases involving pedicle screw implants in spinal sites. A heterogeneous spinal phantom was designed for the investigation of the dosimetric effect of the pedicle-screw-related artefacts. The dosimetric comparisons were first performed using a conventional two-directional opposed (AP-PA) plan, and then a volumetric modulated arc therapy (VMAT) plan, which are both used for the treatment of spinal metastases in our institution. The results of Acuros® XB dose-to-medium (Dm) and dose-to-water (Dw) calculations using different imaging options were compared with experimental measurements including the chamber and film dosimetries in the spinal phantom. A dual-energy composition image with a weight factor of -0.2 and a dual-energy monochromatic image (DEMI) with an energy level of 180 keV were found to have superior abilities for artefact suppression. The Dm calculations revealed greater dosimetric effects of the pedicle screw-related artefacts compared to the Dw calculations. The results of conventional single-energy computed tomography showed that, although the pedicle screws were made from low-Z titanium alloy, the metal artefacts still have dosimetric effects, namely, an average (maximum) Dm error of 4.4% (5.6%) inside the spinal cord for a complex VMAT treatment plan. Our findings indicate that metal-artefact suppression using the proposed DECT (DEMI) approach is promising for improving the dosimetric accuracy near the implants and inside the spinal cord (average (maximum) Dm error of 1.1% (2.0%)).
Dosimetric evaluation of Plastic Water Diagnostic-Therapy.
Ramaseshan, Ramani; Kohli, Kirpal; Cao, Fred; Heaton, Robert K
2008-04-29
High-precision radiotherapy planning and quality assurance require accurate dosimetric and geometric phantom measurements. Phantom design requires materials with mechanical strength and resilience, and dosimetric properties close to those of water over diagnostic and therapeutic ranges. Plastic Water Diagnostic Therapy (PWDT: CIRS, Norfolk, VA) is a phantom material designed for water equivalence in photon beams from 0.04 MeV to 100 MeV; the material has also good mechanical properties. The present article reports the results of computed tomography (CT) imaging and dosimetric studies of PWDT to evaluate the suitability of the material in CT and therapy energy ranges. We characterized the water equivalence of PWDT in a series of experiments in which the basic dosimetric properties of the material were determined for photon energies of 80 kVp, 100 kVp, 250 kVp, 4 MV, 6 MV, 10 MV, and 18 MV. Measured properties included the buildup and percentage depth dose curves for several field sizes, and relative dose factors as a function of field size. In addition, the PWDT phantom underwent CT imaging at beam qualities ranging from 80 kVp to 140 kVp to determine the water equivalence of the phantom in the diagnostic energy range. The dosimetric quantities measured with PWDT agreed within 1.5% of those determined in water and Solid Water (Gammex rmi, Middleton, WI). Computed tomography imaging of the phantom was found to generate Hounsfield numbers within 0.8% of those generated using water. The results suggest that PWDT material is suitable both for regular radiotherapy quality assurance measurements and for intensity-modulated radiation therapy (IMRT) verification work. Sample IMRT verification results are presented.
NASA Astrophysics Data System (ADS)
Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong
2013-10-01
We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.
A cross-case analysis of three Native Science Field Centers
NASA Astrophysics Data System (ADS)
Augare, Helen J.; Davíd-Chavez, Dominique M.; Groenke, Frederick I.; Little Plume-Weatherwax, Melissa; Lone Fight, Lisa; Meier, Gene; Quiver-Gaddie, Helene; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; St. Pierre, Nate; Valdez, Shelly; Wippert, Rachel
2017-06-01
Native Science Field Centers (NSFCs) were created to engage youth and adults in environmental science activities through the integration of traditional Native ways of knowing (understanding about the natural world based on centuries of observation including philosophy, worldview, cosmology, and belief systems of Indigenous peoples), Native languages, and Western science concepts. This paper focuses on the Blackfeet Native Science Field Center, the Lakota Native Science Field Center, and the Wind River Native Science Field Center. One of the long-term, overarching goals of these NSFCs was to stimulate the interest of Native American students in ways that encouraged them to pursue academic and career paths in science, technology, engineering, and mathematics (STEM) fields. A great deal can be learned from the experiences of the NSFCs in terms of effective educational strategies, as well as advantages and challenges in blending Native ways of knowing and Western scientific knowledge in an informal science education setting. Hopa Mountain—a Bozeman, Montana-based nonprofit—partnered with the Blackfeet Community College on the Blackfeet Reservation, Fremont County School District #21 on the Wind River Reservation, and Oglala Lakota College on the Pine Ridge Reservation to cooperatively establish the Native Science Field Centers. This paper presents a profile of each NSFC and highlights their program components and accomplishments.
Gamma dosimetric parameters in some skeletal muscle relaxants
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-09-01
We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.
NASA Astrophysics Data System (ADS)
Witwicki, Maciej; Jezierska, Julia
2012-06-01
Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.
An invasive herbivore structures plant competitive dynamics.
Wong, Lydia; Grainger, Tess Nahanni; Start, Denon; Gilbert, Benjamin
2017-11-01
Species interactions are central to our understanding of ecological communities, but may change rapidly with the introduction of invasive species. Invasive species can alter species interactions and community dynamics directly by having larger detrimental effects on some species than others, or indirectly by changing the ways in which native species compete among themselves. We tested the direct and indirect effects of an invasive aphid herbivore on a native aphid species and two host milkweed species. The invasive aphid caused a 10-fold decrease in native aphid populations, and a 30% increase in plant mortality (direct effects). The invasive aphid also increased the strength of interspecific competition between the two native plant hosts (indirect effects). By investigating the role that indirect effects play in shaping species interactions in native communities, our study highlights an understudied component of species invasions. © 2017 The Author(s).
SU-G-TeP3-11: Radiobiological-Cum-Dosimetric Quality Assurance of Complex Radiotherapy Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; Narayanasamy, G; Zhang, X
2016-06-15
Purpose: Dosimetric gamma-analysis used for QA of complex radiotherapy plans tests the dosimetric equivalence of a delivered plan with the treatment planning system (TPS) optimized plan. It does not examine whether a dosimetric difference results in any radiobiological difference. This study introduces a method to test the radiobiological and dosimetric equivalence between a delivered and the TPS optimized plan. Methods: Six head and neck and seven lung cancer VMAT or IMRT plans optimized for patient treatment were calculated and delivered to an ArcCheck phantom. ArcCheck measured dose distributions were compared with the TPS calculated dose distributions using a 2-D gamma-analysis.more » Dose volume histograms (DVHs) for various patient structures were obtained by using measured data in 3DVH software and compared against the TPS calculated DVHs using 3-D gamma analysis. DVH data were used in the Poisson model to calculate tumor control probability (TCP) for the treatment targets and in the sigmoid dose response model to calculate normal tissue complication probability (NTCP) for the normal structures. Results: Two-D and three-D gamma passing rates among six H&N patient plans differed by 0 to 2.7% and among seven lung plans by 0.1 to 4.5%. Average ± SD TCPs based on measurement and TPS were 0.665±0.018 and 0.674±0.044 for H&N, and 0.791±0.027 and 0.733±0.031 for lung plans, respectively. Differences in NTCPs were usually negligible. The differences in dosimetric results, TCPs and NTCPs were insignificant. Conclusion: The 2-D and 3-D gamma-analysis based agreement between measured and planned dose distributions may indicate their dosimetric equivalence. Small and insignificant differences in TCPs and NTCPs based on measured and planned dose distributions indicate the radiobiological equivalence between the measured and optimized plans. However, patient plans showing larger differences between 2-D and 3-D gamma-analysis can help us make a more definite conclusion through our ongoing research with a larger number of patients.« less
SU-F-T-460: Dosimetric Matching Between Trilogy Tx and TrueBeam STx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y; Kwak, J; Jeong, C
Purpose: To compare the commissioned beam data for one flattening filter photon mode (6 MV) and two flattening filter-free (FFF) photon modes (6 and 10 MV-FFF) between Trilogy Tx and TrueBeam STx and evaluate the possibility of dosimetric matching Methods: Dosimetric characteristics of the new Trilogy Tx including percent depth doses (PDDs), profiles, and output factors were measured for commissioning. Linear diode array detector and ion chambers were used to measure dosimetric data. The depth of dose maximum (dmax) and PDD at 10 cm (PDD10) were evaluated: 3×3 cm{sup 2}, 10×10 cm{sup 2}, and 40×40 cm{sup 2}. The beam profilesmore » were compared and then penumbras were evaluated. As a further test of the dosimetric matching, the same VMAT plans were delivered, measured with film, and compared with TPS calculation. Results: All the measured PDDs matched well across the two units. PDD10 showed less than 0.5% variation and dmax were within 1.5 mm at the field sizes evaluated. Within the central 80% of transverse axis, profile data were almost identical. TrueBeam data resulted in a slightly greater penumbra width (up to 1.9 mm). The greatest differences of output factors were found at 40 × 40 cm{sup 2}: 2.40%, 2.03%, and 2.22% for 6 MV, 6 MV-FFF, and 10 MV-FFF, respectively. For smaller field sizes, less than 1% differences were observed. The film measurements demonstrated over 97.3% pixels passing-gamma analysis (2%/2mm). The results showed excellent agreement between measurements of two machines. Conclusion: The differences between Trilogy Tx and TrueBeam STx found could possibly affect small field and also very large field sizes in dosimetric matching considerations. These differences encountered are mostly related with the changes in the head design of the TrueBeam. Although it cannot guarantee full interchangeability of two machines, dosimetric matching by field size of 25 × 25 cm{sup 2} might be clinically acceptable.« less
Shivega, W. Gaya
2017-01-01
Abstract While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. PMID:28122737
Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees
Burgess, Treena I.; Le Roux, Johannes J.; Richardson, David M.; Slippers, Bernard; Wingfield, Michael J.
2017-01-01
Abstract Non-native trees have become dominant components of many landscapes, including urban ecosystems, commercial forestry plantations, fruit orchards and as invasives in natural ecosystems. Often, these trees have been separated from their natural enemies (i.e. insects and pathogens) leading to ecological disequilibrium, that is, the immediate breakdown of historically co-evolved interactions once introduced into novel environments. Long-established, non-native tree plantations provide useful experiments to explore the dimensions of such ecological disequilibria. We quantify the status quo of non-native insect pests and pathogens catching up with their tree hosts (planted Acacia, Eucalyptus and Pinus species) in South Africa, and examine which native South African enemy species utilize these trees as hosts. Interestingly, pines, with no confamilial relatives in South Africa and the longest residence time (almost two centuries), have acquired only one highly polyphagous native pathogen. This is in contrast to acacias and eucalypts, both with many native and confamilial relatives in South Africa that have acquired more native pathogens. These patterns support the known role of phylogenetic relatedness of non-native and native floras in influencing the likelihood of pathogen shifts between them. This relationship, however, does not seem to hold for native insects. Native insects appear far more likely to expand their feeding habits onto non-native tree hosts than are native pathogens, although they are generally less damaging. The ecological disequilibrium conditions of non-native trees are deeply rooted in the eco-evolutionary experience of the host plant, co-evolved natural enemies and native organisms from the introduced range. We should expect considerable spatial and temporal variation in ecological disequilibrium conditions among non-native taxa, which can be significantly influenced by biosecurity and management practices. PMID:28013250
Muster, Christoph; Meyer, Marc; Sattler, Thomas
2014-01-01
Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community - as well as for the native and non-native assemblages in a single study - are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens). Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m) in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance) exceeded the environmental (10.6%) and shared (4%) components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers) at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species.
Muster, Christoph; Meyer, Marc; Sattler, Thomas
2014-01-01
Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community – as well as for the native and non-native assemblages in a single study – are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens). Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m) in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance) exceeded the environmental (10.6%) and shared (4%) components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers) at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species. PMID:24595309
Chou, Frank Huang-Chih; Chen, Pei-Chun; Liu, Renyi; Ho, Chi-Kung; Tsai, Kuan-Yi; Ho, Wen-Wei; Chao, Shin-Shin; Lin, Kung-Shih; Shen, Shih-Pei; Chen, Cheng-Chung
2010-09-01
Immigration to Taiwan is often connected with marriage, resulting in the presence of so-called married immigrants or foreign brides. To compare the quality of life (QOL) and prevalence of depression between female married immigrants and native married women. Trained assistants used the Medical Outcomes Study Short Form-36 (MOS SF-36) and the disaster-related psychological screening test (DRPST) to interview 1,602 married women who were 16-50 years of age. Half (801) of the participants were female immigrants, whilst the remainder comprised the age-matched control group that consisted of 801 native married women. Participants who scored C2 (probable major depressive episode) on the DRPST were assessed according to DSM-IV criteria by a senior psychiatrist. The MOS SF-36 measures QOL and has two dimensions: the physical component summary (PCS) and the mental component summary (MCS). Married immigrants had a lower prevalence (3.5%) of major depressive episodes than native women (8.9%) in Taiwan. Variables such as an increased severity of psychosocial impact were the best predictors of a lower PCS and MCS. Compared to Taiwanese native married women, fewer married immigrants had stressful life events or depression, and they reported higher QOL. After controlling for putative confounding factors, the married immigrants still had better mental QOL and a lower prevalence rate of depression
Spoilage of foods monitored by native fluorescence spectroscopy with selective excitation wavelength
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, Wubao; Alfano, Robert R.
2015-03-01
The modern food processing and storage environments require the real-time monitoring and rapid microbiological testing. Optical spectroscopy with selective excitation wavelengths can be the basis of a novel, rapid, reagent less, noncontact and non-destructive technique for monitoring the food spoilage. The native fluorescence spectra of muscle foods stored at 2-4°C (in refrigerator) and 20-24°C (in room temperature) were measured as a function of time with a selective excitation wavelength of 340nm. The contributions of the principal molecular components to the native fluorescence spectra of meat were measured spectra of each fluorophore: collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin. The responsible components were extracted using a method namely Multivariate Curve Resolution with Alternating Least-Squares (MCR-ALS). The native fluorescence combined with MCR-ALS can be used directly on the surface of meat to produce biochemically interpretable "fingerprints", which reflects the microbial spoilage of foods involved with the metabolic processes. The results show that with time elapse, the emission from NADH in meat stored at 24°C increases much faster than that at 4°C. This is because multiplying of microorganisms and catabolism are accompanied by the generation of NADH. This study presents changes of relative content of NADH may be used as criterion for detection of spoilage degree of meat using native fluorescence spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.
2008-08-11
Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence.
Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude.
Bernardi, L; Passino, C; Spadacini, G; Calciati, A; Robergs, R; Greene, R; Martignoni, E; Anand, I; Appenzeller, O
1998-11-01
1. To assess the effects of acute exposure to high altitude on baroreceptor function in man we evaluated the effects of baroreceptor activation on R-R interval and blood pressure control at high altitude. We measured the low-frequency (LF) and high-frequency (HF) components in R-R, non-invasive blood pressure and skin blood flow, and the effect of baroreceptor modulation by 0. 1-Hz sinusoidal neck suction. Ten healthy sea-level natives and three high-altitude native, long-term sea-level residents were evaluated at sea level, upon arrival at 4970 m and 1 week later.2. Compared with sea level, acute high altitude decreased R-R and increased blood pressure in all subjects [sea-level natives: R-R from 1002+/-45 to 775+/-57 ms, systolic blood pressure from 130+/-3 to 150+/-8 mmHg; high-altitude natives: R-R from 809+/-116 to 749+/-47 ms, systolic blood pressure from 110+/-12 to 125+/-11 mmHg (P<0.05 for all)]. One week later systolic blood pressure was similar to values at sea level in all subjects, whereas R-R remained elevated in sea-level natives. The low-frequency power in R-R and systolic blood pressure increased in sea-level natives [R-R-LF from 47+/-8 to 65+/-10% (P<0.05), systolic blood pressure-LF from 1.7+/-0. 3 to 2.6+/-0.4 ln-mmHg2 (P<0.05)], but not in high-altitude natives (R-R-LF from 32+/-13 to 38+/-19%, systolic blood pressure-LF from 1. 9+/-0.5 to 1.7+/-0.8 ln-mmHg2). The R-R-HF decreased in sea-level natives but not in high-altitude natives, and no changes occurred in systolic blood pressure-HF. These changes remained evident 1 week later. Skin blood flow variability and its spectral components decreased markedly at high altitude in sea-level natives but showed no changes in high-altitude natives. Neck suction significantly increased the R-R- and systolic blood pressure-LF in all subjects at both sea level and high altitude.3. High altitude induces sympathetic activation in sea-level natives which is partially counteracted by active baroreflex. Despite long-term acclimatization at sea level, high-altitude natives also maintain active baroreflex at high altitude but with lower sympathetic activation, indicating a persisting high-altitude adaptation which may be genetic or due to baroreflex activity not completely lost by at least 1 year's sea-level residence.
Population structure in Argentina.
Muzzio, Marina; Motti, Josefina M B; Paz Sepulveda, Paula B; Yee, Muh-Ching; Cooke, Thomas; Santos, María R; Ramallo, Virginia; Alfaro, Emma L; Dipierri, Jose E; Bailliet, Graciela; Bravi, Claudio M; Bustamante, Carlos D; Kenny, Eimear E
2018-01-01
We analyzed 391 samples from 12 Argentinian populations from the Center-West, East and North-West regions with the Illumina Human Exome Beadchip v1.0 (HumanExome-12v1-A). We did Principal Components analysis to infer patterns of populational divergence and migrations. We identified proportions and patterns of European, African and Native American ancestry and found a correlation between distance to Buenos Aires and proportion of Native American ancestry, where the highest proportion corresponds to the Northernmost populations, which is also the furthest from the Argentinian capital. Most of the European sources are from a South European origin, matching historical records, and we see two different Native American components, one that spreads all over Argentina and another specifically Andean. The highest percentages of African ancestry were in the Center West of Argentina, where the old trade routes took the slaves from Buenos Aires to Chile and Peru. Subcontinentaly, sources of this African component are represented by both West Africa and groups influenced by the Bantu expansion, the second slightly higher than the first, unlike North America and the Caribbean, where the main source is West Africa. This is reasonable, considering that a large proportion of the ships arriving at the Southern Hemisphere came from Mozambique, Loango and Angola.
ERIC Educational Resources Information Center
Kieffer, Michael J.; Vukovic, Rose K.
2012-01-01
Drawing on the cognitive and ecological domains within the componential model of reading, this longitudinal study explores heterogeneity in the sources of reading difficulties for language minority learners and native English speakers in urban schools. Students (N = 150) were followed from first through third grade and assessed annually on…
Effects of Verbal Components in 3D Talking-Head on Pronunciation Learning among Non-Native Speakers
ERIC Educational Resources Information Center
Ali, Ahmad Zamzuri Mohamad; Segaran, Kogilathah; Hoe, Tan Wee
2015-01-01
This study was designed to investigate the benefit of inclusion of various verbal elements in 3D talking-head on pronunciation learning among non-native speakers. In particular, the study examines the effects of three different multimedia presentation strategies in 3D talking-head Mobile-Assisted-Language-Learning (MALL) on the learning…
ERIC Educational Resources Information Center
Kamehameha Schools/Bernice Pauahi Bishop Estate, Honolulu, HI.
This study aimed to produce a significant improvement in the educational achievement of Hawaiian preschool children in 2 years, through implementation of a communication program in five preschool classes serving approximately 100 children. The six components of the program were: (1) an enhanced hearing loss and middle-ear disorder and speech…
Lounibos, L. Philip; Nishimura, Naoya; Greene, Krystle
2010-01-01
Native predators are postulated to have an important role in biotic resistance of communities to invasion and community resilience. Effects of predators can be complex, and mechanisms by which predators affect invasion success and impact are understood for only a few well-studied communities. We tested experimentally whether a native predator limits an invasive species' success and impact on a native competitor for a community of aquatic insect larvae in water-filled containers. The native mosquito Aedes triseriatus alone had no significant effect on abundance of the invasive mosquito Aedes albopictus. The native predatory midge Corethrella appendiculata, at low or high density, significantly reduced A. albopictus abundance. This effect was not caused by trait-mediated oviposition avoidance of containers with predators, but instead was a density-mediated effect caused by predator-induced mortality. The presence of this predator significantly reduced survivorship of the native species, but high predator density also significantly increased development rate of the native species when the invader was present, consistent with predator-mediated release from interspecific competition with the invader. Thus, a native predator can indirectly benefit its native prey when a superior competitor invades. This shows the importance of native predators as a component of biodiversity for both biotic resistance to invasion and resilience of a community perturbed by successful invasion. PMID:19841945
Grassland birds wintering at U.S. Navy facilities in southern Texas
Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.
2010-01-01
Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured during 2003–2008 in the same transects used for bird surveys and included five measures of ground cover, plus estimates of plant species richness, vegetation density (visual obstruction) at two different heights, and shrub numbers. These data, plus seasonal rainfall, were then used to evaluate components of variation in native and exotic grasslands. Relations between total bird numbers and bird species richness with environmental variation in native and exotic grasslands were compared. To compare diversity of arthropods in native and exotic grasslands, insects and arachnids were collected using three different methodologies (standardized sweep-net, random sweep-net, and pitfall traps) during four seasons, (2005–2006), at Naval Air Station–Corpus Christi, Naval Auxiliary Landing Field Waldron, and Naval Air Station–Kingsville. To compare seed abundance and diversity between native and exotic grasslands, seeds were collected for two winters (2004–2006) at Naval Air Station–Corpus Christi and Naval Air Station–Kingsville. To evaluate effects of management on grassland vertebrates, abundance and diversity of birds and small mammals were estimated and compared in exotic grasses subjected to mowing, burning, or no active management (control) for one full year (2008–2009).Observations were made of 1,044 birds of 30 species in grassland transects during five winters. The Savannah Sparrow (Passerculus sandwichensis) was the most common bird, which, with 644 detections, accounted for 63 percent of all individuals identified to species. Meadowlarks (Sturnella spp.) and Le Conte’s Sparrows (Ammodramus leconteii) were the second (10 percent) and third (7 percent) most abundant bird species, respectively. Six of the seven most abundant species detected in grasslands were grassland species, and their numbers accounted for 87 percent of all birds, but 20 of the 30 species (67 percent) that used grasslands were not grassland species. Seven species observed in grassland transects during the study were Species of Conservation Concern: Le Conte’s Sparrow, Sedge Wren (Cistothorus platensis), Grasshopper Sparrow (Ammodramus savannarum), Long-billed Curlew (Numenius americanus), Sprague’s Pipit (Anthus spragueii), Cassin’s Sparrow (Aimophila cassinii), and Loggerhead Shrike (Lanius ludovicianus). Native grasslands consistently supported greater bird species richness than exotic grasslands. In one winter, exotic grasslands supported more birds than native grasslands.Native grasslands were determined to have more forb cover, more bare ground, and greater plant species richness than exotic grasslands, whereas exotic grasslands were characterized by more grass cover and relatively greater vegetation density during dry years. Not only did these individual measures differ between native and exotic grasslands, but components of variation also differed. In native grasslands, grass density and cover contributed more to variation, whereas in exotic grasslands, non-grass vegetation was a greater component of variation. Total bird numbers and bird species richness in native grasslands were related to the principal component that contained a measure of litter cover. Total bird numbers and bird species richness in exotic grasslands indicated no significant relationships with any of the principal components of variation.The two most common insect orders in native grasslands were Hymenoptera and Coleoptera, which accounted for 42 percent of all insects. The two most common insect orders in exotic grasslands were Hemiptera and Homoptera, which accounted for about 80 percent of all insects. Insect family richness was greater in exotic grasslands than in native grasslands in two of four seasons. Proportions of arachnid families were similar in native and exotic grasslands, but arachnid family richness was greater in exotic grasslands than in native grasslands.Abundance of seeds was greater in exotic than in native grasslands. However, seed diversity was greater in native grasslands than in exotic grasslands.Among the three types of management (mowed, burned, and control) applied to exotic grasses, birds were most abundant in the mowed area. Sedge Wrens, however, were never encountered in mowed sites. Meadowlarks were similarly abundant in all treatments, but Le Conte’s Sparrows were detected only in the control (unmanaged) area. Hispid cotton rats (Sigmodon hispidus) accounted for 93 percent of all rodent captures, with the number of captures peaking December through February. Hispid cotton rat numbers and total rodent numbers were greatest in control and pre-burn areas, and lowest in the mowed area. Mammal diversity, however, was greatest in the mowed habitat.Native and exotic grasslands differed essentially in all categories (bird numbers and diversity, vegetation characteristics, components of variation, diversity of insects and arachnids, and seed abundance and diversity) used to measure and compare them. This indicates that fundamental ecosystem processes have been altered after native grasslands have undergone invasion and ultimate domination by exotic grass species. Future research in Texas grassland ecosystems is essential because: 1) Texas sustains more area in grasslands than any other state or province in the Central Flyway; 2) Texas serves as the winter destination or migration pathway for hundreds of species of birds, including winter residents and Neotropical migrants; 3) ecology, distribution, and numbers of grassland birds wintering in southern latitudes of the United States remains poorly understood; and 4) climate change threatens to further accelerate advances of invading grass species.
Yahya, Noorazrul; Chua, Xin-Jane; Manan, Hanani A; Ismail, Fuad
2018-05-17
This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies. Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates. A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity. A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.
Robustness of atomistic Gō models in predicting native-like folding intermediates
NASA Astrophysics Data System (ADS)
Estácio, S. G.; Fernandes, C. S.; Krobath, H.; Faísca, P. F. N.; Shakhnovich, E. I.
2012-08-01
Gō models are exceedingly popular tools in computer simulations of protein folding. These models are native-centric, i.e., they are directly constructed from the protein's native structure. Therefore, it is important to understand up to which extent the atomistic details of the native structure dictate the folding behavior exhibited by Gō models. Here we address this challenge by performing exhaustive discrete molecular dynamics simulations of a Gō potential combined with a full atomistic protein representation. In particular, we investigate the robustness of this particular type of Gō models in predicting the existence of intermediate states in protein folding. We focus on the N47G mutational form of the Spc-SH3 folding domain (x-ray structure) and compare its folding pathway with that of alternative native structures produced in silico. Our methodological strategy comprises equilibrium folding simulations, structural clustering, and principal component analysis.
Speech-sound duration processing in a second language is specific to phonetic categories.
Nenonen, Sari; Shestakova, Anna; Huotilainen, Minna; Näätänen, Risto
2005-01-01
The mismatch negativity (MMN) component of the auditory event-related potential was used to determine the effect of native language, Russian, on the processing of speech-sound duration in a second language, Finnish, that uses duration as a cue for phonological distinction. The native-language effect was compared with Finnish vowels that either can or cannot be categorized using the Russian phonological system. The results showed that the duration-change MMN for the Finnish sounds that could be categorized through Russian was reduced in comparison with that for the Finnish sounds having no Russian equivalent. In the Finnish sounds that can be mapped through the Russian phonological system, the facilitation of the duration processing may be inhibited by the native Russian language. However, for the sounds that have no Russian equivalent, new vowel categories independent of the native Russian language have apparently been established, enabling a native-like duration processing of Finnish.
Neutron spectrometry for radiation protection purposes
NASA Astrophysics Data System (ADS)
McDonald, J. C.; Siebert, B. R. L.; Alberts, W. G.
2002-01-01
Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.
Early Results of Mycorrhizal Inoculation of Pine in Puerto Rico
Charles B. Briscoe
1959-01-01
Despite the presence of more than 500 native tree species in Puerto Rico, many efforts have been made to introduce pine. These attempts have been made because, compared to the native species, pine has a much wider accepted market and has the longer fiber necessary as a component of kraft papers. In addition pine produces higher yields on poor sites, and its...
The Development of Videos in Culturally Grounded Drug Prevention for Rural Native Hawaiian Youth
ERIC Educational Resources Information Center
Okamoto, Scott K.; Helm, Susana; McClain, Latoya L.; Dinson, Ay-Laina
2012-01-01
The purpose of this study was to adapt and validate narrative scripts to be used for the video components of a culturally grounded drug prevention program for rural Native Hawaiian youth. Scripts to be used to film short video vignettes of drug-related problem situations were developed based on a foundation of pre-prevention research funded by the…
Semantically Grounded Briefings
2005-12-01
cascading interface, mirroring the class inheritance of the ontologies. Clicking on one of these tools, like PowerPoint’s native autoshape tools...connections are their graphic templates. This determines the appearance of an instance of that concept. Any of PowerPoint’s native autoshapes , formatted...which can be any PowerPoint autoshape , group shape, or image • Identification of a modulated component of C’s graphic template. If C’s graphic
Pressure activated interconnection of micro transfer printed components
NASA Astrophysics Data System (ADS)
Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.
2016-05-01
Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.
NASA Astrophysics Data System (ADS)
Bai, Hao; Zhang, Xi-wen
2017-06-01
While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.
Optical biopsy using fluorescence spectroscopy for prostate cancer diagnosis
NASA Astrophysics Data System (ADS)
Wu, Binlin; Gao, Xin; Smith, Jason; Bailin, Jacob
2017-02-01
Native fluorescence spectra are acquired from fresh normal and cancerous human prostate tissues. The fluorescence data are analyzed using a multivariate analysis algorithm such as non-negative matrix factorization. The nonnegative spectral components are retrieved and attributed to the native fluorophores such as collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) in tissue. The retrieved weights of the components, e.g. NADH and FAD are used to estimate the relative concentrations of the native fluorophores and the redox ratio. A machine learning algorithm such as support vector machine (SVM) is used for classification to distinguish normal and cancerous tissue samples based on either the relative concentrations of NADH and FAD or the redox ratio alone. The classification performance is shown based on statistical measures such as sensitivity, specificity, and accuracy, along with the area under receiver operating characteristic (ROC) curve. A cross validation method such as leave-one-out is used to evaluate the predictive performance of the SVM classifier to avoid bias due to overfitting.
What it takes to invade grassland ecosystems: traits, introduction history and filtering processes
Carboni, Marta; Münkemüller, Tamara; Lavergne, Sébastien; Choler, Philippe; Borgy, Benjamin; Violle, Cyrille; Essl, Franz; Roquet, Cristina; Munoz, François; Consortium, DivGrass; Thuiller, Wilfried
2016-01-01
Whether the success of alien species can be explained by their functional or phylogenetic characteristics remains unresolved because of data limitations, scale issues and weak quantifications of success. Using permanent grasslands across France (50,000 vegetation-plots, 2000 species, 130 aliens) and building on the Rabinowitz’ classification to quantify spread, we showed that phylogenetic and functional similarities to natives were the most important correlates of invasion success compared to intrinsic functional characteristics and introduction history. Results contrasted between spatial scales and components of invasion success. Widespread and common aliens were similar to co-occurring natives at coarse scales (indicating environmental filtering), but dissimilar at finer scales (indicating local competition). In contrast, regionally widespread but locally rare aliens showed patterns of competitive exclusion already at coarse scale. Quantifying trait differences between aliens and natives and distinguishing the components of invasion success improved our ability to understand and potentially predict alien spread at multiple scales. PMID:26689431
de Souza, Mirian S; Pepinelli, Mateus; de Almeida, Eduardo C; Ochoa-Quintero, Jose M; Roque, Fabio O
2016-01-01
Given the general expectation that forest loss can alter biodiversity patterns, we hypothesize that blow fly species abundances differ in a gradient of native vegetation cover. This study was conducted in 17 fragments across different landscapes in central Brazil. Different land cover type proportions were used to represent landscape structure. In total, 2334 specimens of nine species of Calliphoridae were collected. We used principal component analysis (PCA) to reduce dimensionality and multicollinearity of the landscape data. The first component explained 70%, and it represented a gradient of forest-pasture land uses. Alien species showed a wide distribution in different fragments with no clear relationship between the abundance values and the scores of PCA axes, whereas native species occurred only in areas with a predominance of forest cover. Our study revealed that certain native species may be sensitive to forest loss at the landscape scale, and they represent a bioindicator in forensic entomology. © 2015 American Academy of Forensic Sciences.
Effective atomic numbers and electron density of dosimetric material
Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.
2009-01-01
A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566
Dosimetric characteristics of Novalis Tx system with high definition multileaf collimator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Zheng; Wang Zhiheng; Wu, Q. Jackie
A new Novalis Tx system equipped with a high definition multileaf collimator (HDMLC) recently became available to perform both image-guided radiosurgery and conventional radiotherapy. It is capable of delivering a highly conformal radiation dose with three energy modes: 6 MV photon energy, 15 MV photon energy, and 6 MV photon energy in a stereotactic radiosurgery mode with 1000 MU/min dose rate. Dosimetric characteristics of the new Novalis Tx treatment unit with the HDMLC are systematically measured for commissioning. A high resolution diode detector and miniion-chamber detector are used to measure dosimetric data for a range of field sizes from 4x4more » mm to 400x400 mm. The commissioned Novalis Tx system has passed the RPC stereotactic radiosurgery head phantom irradiation test. The Novalis Tx system not only expands its capabilities with three energy modes, but also achieves better beam conformity and sharer beam penumbra with HDMLC. Since there is little beam data information available for the new Novalis Tx system, we present in this work the dosimetric data of the new modality for reference and comparison.« less
Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P
2002-07-01
A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry.
A case study of cultural educational opportunities for Native students: The scientific storyteller
NASA Astrophysics Data System (ADS)
Valdez, Shelly Ann
2002-09-01
This case study examines cultural educational opportunities for Native Alaskan students in Native Alaskan community schools. The study looks at three components of a larger initiative of systemic educational reform efforts for rural Alaskan communities: Native science fairs, summer science camps and involvement of elders. The study focuses on six Native Alaskan students from one Native Alaskan rural village in northern Alaska. The six students ranged from seventh, ninth and eleventh grades. Additionally twenty-one teachers, five Native Alaskan elders and four Alaskan Rural Systemic Initiative staff were interviewed as a part of this study. With interviews, observations, surveys, analysis of science and mathematics achievement scores, this case study will explore the effectiveness of including the science of Native Alaskan culture in the learning environment of rural Alaskan community schools. The outcomes of this study indicate that the self-esteem and attitudes of Native Alaskan students changed positively in relationship to pride in culture, honor of elders, interest in language maintenance and concern for inclusion of Native ways of knowing in school activities as a result of the cultural-rich experiences included in the learning environment. There were no significant results that indicated these types of cultural-rich experiences impacted positive gains in science and mathematics achievement scores of Native Alaskan students. At the end of the study several suggestions are made to improve and consider continued research in this area. It is hoped that this study will provide input to the continued dialogue on Indian Education.
Baghani, Hamid Reza; Lohrabian, Vahid; Aghamiri, Mahmoud Reza; Robatjazi, Mostafa
2016-03-01
(125)I is one of the important sources frequently used in brachytherapy. Up to now, several different commercial models of this source type have been introduced to the clinical radiation oncology applications. Recently, a new source model, IrSeed-125, has been added to this list. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43 (U1) protocol using Monte Carlo simulation. The dosimetric characteristics of Ir-125 including dose rate constant, radial dose function, 2D anisotropy function and 1D anisotropy function were determined inside liquid water using MCNPX code and compared to those of other commercially available iodine sources. The dose rate constant of this new source was found to be 0.983+0.015 cGyh-1U-1 that was in good agreement with the TLD measured data (0.965 cGyh-1U-1). The 1D anisotropy function at 3, 5, and 7 cm radial distances were obtained as 0.954, 0.953 and 0.959, respectively. The results of this study showed that the dosimetric characteristics of this new brachytherapy source are comparable with those of other commercially available sources. Furthermore, the simulated parameters were in accordance with the previously measured ones. Therefore, the Monte Carlo calculated dosimetric parameters could be employed to obtain the dose distribution around this new brachytherapy source based on TG-43 (U1) protocol.
NASA Astrophysics Data System (ADS)
McCurdy, B. M. C.
2013-06-01
An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.
Dosimetric and clinical predictors for radiation-induced esophageal injury.
Ahn, Sung-Ja; Kahn, Daniel; Zhou, Sumin; Yu, Xiaoli; Hollis, Donna; Shafman, Timothy D; Marks, Lawrence B
2005-02-01
To evaluate the clinical and three-dimensional dosimetric parameters associated with esophageal injury after radiotherapy (RT) for non-small-cell lung cancer. The records of 254 patients treated for non-small-cell lung cancer between 1992 and 2001 were reviewed. A variety of metrics describing the esophageal dose were extracted. The Radiation Therapy Oncology Group toxicity criteria for grading of esophageal injury were used. The median follow-up time for all patients was 43 months (range, 0.5-120 months). Logistic regression analysis, contingency table analyses, and Fisher's exact tests were used for statistical analysis. Acute toxicity occurred in 199 (78%) of 254 patients. For acute toxicity of Grade 2 or worse, twice-daily RT, age, nodal stage of N2 or worse, and most dosimetric parameters were predictive. Late toxicity occurred in 17 (7%) of 238 patients. The median and maximal time to the onset of late toxicity was 5 and 40 months after RT, respectively. Late toxicity occurred in 2%, 3%, 17%, 26%, and 100% of patients with acute Grade 0, 1, 2, 3, and 4 toxicity, respectively. For late toxicity, the severity of acute toxicity was most predictive. A variety of dosimetric parameters are predictive of acute and late esophageal injury. A strong correlation between the dosimetric parameters prevented a comparison between the predictive abilities of these metrics. The presence of acute injury was the most predictive factor for the development of late injury. Additional studies to define better the predictors of RT-induced esophageal injury are needed.
NASA Astrophysics Data System (ADS)
Yatchmeneff, Michele
The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to successfully complete advanced high school and college-level mathematics and science courses prior to high school graduation. This study was designed to examine the motivations of Alaska Native high school students who participated in the ANSEP Precollege components to take advanced mathematics and science courses in high school or before college. Participants were 30 high school or college students, 25 of whom were Alaska Native, who were currently attending or had attended Alaska Native Science & Engineering Program (ANSEP) Precollege components in high school. Self-determination theory was used as this study's theoretical framework to develop the semi-structured interview questions and also analyze the interviews. A thematic approach was used to analyze the interviews. The results of this study indicated that ANSEP helped the Alaska Native high school students gain a sense of autonomy, competence, and relatedness in order to be motivated to take advanced mathematics and science courses in high school or before college. In particular, Alaska Native high school students described that relatedness was an important element to them being motivated to take advanced mathematics and science courses. More specifically, participants reported that the Alaska Native community developed at the ANSEP Building and the relationships they developed with their Alaska Native high school peers and staff played an influential role in the motivation of these students. These findings are important because research suggests that autonomy and competence are more important elements than relatedness because they generate or maintain intrinsic motivation. Alaska Native high school students reported that ANSEP was more successful in helping them gain a sense of competence and relatedness than at helping them gain a sense of autonomy. More specifically, the reason the participants did not feel ANSEP developed their sense of autonomy was because ANSEP restricted their actions during the ANSEP Precollege study sessions. My study implies that Alaska Native students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. Educators and STEM program leaders should incorporate elements of belonging into the educational environments they develop for their Alaska Native students. Future research should be conducted to determine if other racial minority students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. My study also indicated that Alaska Native students were motivated to take advanced mathematics and science courses by knowing ANSEP would support them in future programming because of its longitudinal approach. Funding agencies of STEM programs should consider funding programs that provide a longitudinal approach to help Alaska Native students' sense of competence grow. Future research should include studying other STEM programs to determine if they are motivating their students to take and succeed in advanced mathematics and science courses.
Nesterko, Yuriy; Braehler, Elmar; Grande, Gesine; Glaesmer, Heide
2013-06-01
There is a lack of population-based studies on health-related quality of life (HRQoL) and satisfaction with life (SWL) of immigrants compared to the native populations. Findings of previous research are inconclusive. Our study compares HRQoL and SWL in immigrants and native-born Germans, investigating immigration-related factors as suspected determinants of HRQoL and SWL in immigrants. In the German Socio-economic panel from 2006, HRQoL (measured with the SF-12v2) and SWL as well as immigration-related factors were assessed in 21,079 subjects (including 2,971 immigrants). Analyses of variance were applied as statistical tests in our study. Native-born Germans report a higher amount of SWL and of HRQoL on the physical health component compared to the immigrants. With effect sizes ranging from E² = 0.001 to 0.111, these findings are of minimal practical relevance. In immigrants, the physical health component of HRQoL is significantly associated with younger age at migration and with country of origin. As the effect sizes are extremely low, these findings have limited practical relevance. There are small differences in SWL and HRQoL of immigrants and native-born Germans. Some immigration-related factors are related to HRQoL, but not to SWL. As immigrants are a quite heterogeneous group, it seems useful to focus on immigration-related factors, not simply comparing immigrants and the native-born. Our findings suggest that research on the association of immigration-related factors with quality of life in immigrants seems a promising approach to better identify subgroups of immigrants with lower levels of quality of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl
Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Signmore » intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver uniform doses to targets with good conformity. The spatial accuracy of the device to locate the radiation isocenter is determined to be less than 1 mm. Single shot profiles with 2.5 cm collimator are measured with radiochromic film and found to be in good agreement with respect to the Monte Carlo based calculations (congruence of FWHM less than 1 mm). Dosimetric verifications corresponding to all hypothetical treatment plans corresponding to three target scenarios for each of the seven patients demonstrated good agreement with gamma index pass rates of better than 97% (99.0%{+-} 0.7%). Conclusions: Dosimetric evaluation of the first GammaPod Trade-Mark-Sign stereotactic breast radiotherapy unit was performed and the dosimetric and spatial accuracy of this novel technology is found to be feasible with respect to clinical radiotherapy standards. The observed level of agreement between the treatment planning system calculations and dosimetric measurements has confirmed that the system can deliver highly complex treatment plans with remarkable geometric and dosimetric accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labby, Zacariah E., E-mail: zelabby@humonc.wisc.edu; Chaudhary, Neeraj; Gemmete, Joseph J.
2015-04-15
Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derivedmore » from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner’s HU calibration curve. Results: The ELAC was 0.0516 ± 0.0063 cm{sup −1} and 0.0580 ± 0.0091 cm{sup −1} for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm{sup −1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of −0.29% and −0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively; dosimetrically appropriate HU values were estimated to be 79 and 199 HU, respectively. Conclusions: The dosimetric properties of the embolization agents are very close to those of water for a 6 MV beam. Therefore, treating the entire intracranial space as uniform in composition will result in less than 1% dosimetric error for n-BCA emboli smaller than 3.4 cm without added tantalum and n-BCA emboli smaller than 1.1 cm with added tantalum. Furthermore, when effective embolization can be achieved by the neurointerventionalist using n-BCA without tantalum, the dosimetric impact of overriding material properties will be lessened. However, due to the high attenuation of embolization agents with and without added tantalum for diagnostic energies, artifacts may occur that necessitate additional imaging to accurately identify the spatial extent of the region to be treated.« less
Gaya Shivega, W; Aldrich-Wolfe, Laura
2017-01-24
While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. Published by Oxford University Press on behalf of the Annals of Botany Company.
Tripartite assembly of RND multidrug efflux pumps
NASA Astrophysics Data System (ADS)
Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier
2016-02-01
Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.
Introduced species: A significant component of human-caused global change
Vitousek, Peter M.; D'Antonio, Carla M.; Loope, Lloyd L.; Rejmanek, Marcel; Westbrooks, Randy G.
1997-01-01
Biological invasions are a widespread and significant component of human-caused global environmental change. The extent of invasions of oceanic islands, and their consequences for native biological diversity, have long been recognized. However, invasions of continental regions also are substantial. For example, more than 2,000 species of alien plants are established in the continental United States. These invasions represent a human-caused breakdown of the regional distinctiveness of Earth's flora and fauna—a substantial global change in and of itself. Moreover, there are well- documented examples of invading species that degrade human health and wealth, alter the structure and functioning of otherwise undisturbed ecosystems, and/or threaten native biological diversity. Invasions also interact synergistically with other components of global change. notably land use change. People and institutions working to understand, prevent, and control invasions are carrying out some of the most important—and potentially most effective—work on global environmental change.
Justin N. Rosemier; Andrew J. Storer
2011-01-01
Exotic tree diseases have direct impacts on their host and may have indirect effects on native fauna that rely on host tree species. For example, American beech (Fagus grandifolia [Ehrh.]) is a dominant overstory component throughout its range and, like all tree species, is vulnerable to a broad array of insects and pathogens. These pests include...
Population structure in Argentina
Motti, Josefina M. B.; Paz Sepulveda, Paula B.; Yee, Muh-ching; Cooke, Thomas; Santos, María R.; Ramallo, Virginia; Alfaro, Emma L.; Dipierri, Jose E.; Bailliet, Graciela; Bravi, Claudio M.; Bustamante, Carlos D.; Kenny, Eimear E.
2018-01-01
We analyzed 391 samples from 12 Argentinian populations from the Center-West, East and North-West regions with the Illumina Human Exome Beadchip v1.0 (HumanExome-12v1-A). We did Principal Components analysis to infer patterns of populational divergence and migrations. We identified proportions and patterns of European, African and Native American ancestry and found a correlation between distance to Buenos Aires and proportion of Native American ancestry, where the highest proportion corresponds to the Northernmost populations, which is also the furthest from the Argentinian capital. Most of the European sources are from a South European origin, matching historical records, and we see two different Native American components, one that spreads all over Argentina and another specifically Andean. The highest percentages of African ancestry were in the Center West of Argentina, where the old trade routes took the slaves from Buenos Aires to Chile and Peru. Subcontinentaly, sources of this African component are represented by both West Africa and groups influenced by the Bantu expansion, the second slightly higher than the first, unlike North America and the Caribbean, where the main source is West Africa. This is reasonable, considering that a large proportion of the ships arriving at the Southern Hemisphere came from Mozambique, Loango and Angola. PMID:29715266
Factor Structure Evaluation of the French Version of the Digital Natives Assessment Scale.
Wagner, Vincent; Acier, Didier
2017-03-01
"Digital natives" concept defines young adults particularly familiar with emerging technologies such as computers, smartphones, or Internet. This notion is still controversial and so far, the primary identifying criterion was to consider their date of birth. However, literature highlighted the need to describe specific characteristics. The purpose of this research was to evaluate the factor structure of a French version of the Digital Natives Assessment Scale (DNAS). The sample of this study includes 590 participants from a 6-week massive open online course and from Web sites, electronic forums, and social networks. The DNAS was translated in French and then back-translated to English. A principal component analysis with orthogonal rotation followed by a confirmatory factorial analysis showed that a 15-item four-correlated component model provided the best fit for the data of our sample. Factor structure of this French-translated version of the DNAS was rather similar than those found in earlier studies. This study provides evidence of the DNAS robustness through cross-cultural and cross-generational validation. The French version of the DNAS appears to be appropriate as a quick and effective questionnaire to assess digital natives. More studies are needed to better define further features of this particular group.
DOSIMETRIC CHARACTERISTICS OF GAMMA-TRON-2 (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krongauz, A.N.; Pavlova, T.G.; Frolova, A.V.
1963-01-01
Dosimetric characteristics of the Gammatron-2 during operation in a static regimen are presented. The air dose and the distribution of doses along the central ray of the beam and on the sides were determined. The protective properties of Gammatron-2 were studied. On the basis of the measurements, charts of isodoses were elaborated. (P.C.H.)
Forest Restoration and Parasitoid Wasp Communities in Montane Hawai’i
Gould, Rachelle K.; Pejchar, Liba; Bothwell, Sara G.; Brosi, Berry; Wolny, Stacie; Mendenhall, Chase D.; Daily, Gretchen
2013-01-01
Globally, most restoration efforts focus on re-creating the physical structure (flora or physical features) of a target ecosystem with the assumption that other ecosystem components will follow. Here we investigate that assumption by documenting biogeographical patterns in an important invertebrate taxon, the parasitoid wasp family Ichneumonidae, in a recently reforested Hawaiian landscape. Specifically, we test the influence of (1) planting configurations (corridors versus patches), (2) vegetation age, (3) distance from mature native forest, (4) surrounding tree cover, and (5) plant community composition on ichneumonid richness, abundance, and composition. We sampled over 7,000 wasps, 96.5% of which were not native to Hawai’i. We found greater relative richness and abundance of ichneumonids, and substantially different communities, in restored areas compared to mature forest and abandoned pasturelands. Non-native ichneumonids drive these differences; restored areas and native forest did not differ in native ichneumonid abundance. Among restored areas, ichneumonid communities did not differ by planting age or configuration. As tree cover increased within 120 m of a sampling point, ichneumonid community composition increasingly resembled that found in native forest. Similarly, native ichneumonid abundance increased with proximity to native forest. Our results suggest that restoration plantings, if situated near target forest ecosystems and in areas with higher local tree cover, can facilitate restoration of native fauna even in a highly invaded system. PMID:23527171
Forest restoration and parasitoid wasp communities in montane Hawai'i.
Gould, Rachelle K; Pejchar, Liba; Bothwell, Sara G; Brosi, Berry; Wolny, Stacie; Mendenhall, Chase D; Daily, Gretchen
2013-01-01
Globally, most restoration efforts focus on re-creating the physical structure (flora or physical features) of a target ecosystem with the assumption that other ecosystem components will follow. Here we investigate that assumption by documenting biogeographical patterns in an important invertebrate taxon, the parasitoid wasp family Ichneumonidae, in a recently reforested Hawaiian landscape. Specifically, we test the influence of (1) planting configurations (corridors versus patches), (2) vegetation age, (3) distance from mature native forest, (4) surrounding tree cover, and (5) plant community composition on ichneumonid richness, abundance, and composition. We sampled over 7,000 wasps, 96.5% of which were not native to Hawai'i. We found greater relative richness and abundance of ichneumonids, and substantially different communities, in restored areas compared to mature forest and abandoned pasturelands. Non-native ichneumonids drive these differences; restored areas and native forest did not differ in native ichneumonid abundance. Among restored areas, ichneumonid communities did not differ by planting age or configuration. As tree cover increased within 120 m of a sampling point, ichneumonid community composition increasingly resembled that found in native forest. Similarly, native ichneumonid abundance increased with proximity to native forest. Our results suggest that restoration plantings, if situated near target forest ecosystems and in areas with higher local tree cover, can facilitate restoration of native fauna even in a highly invaded system.
Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights
NASA Astrophysics Data System (ADS)
Drozdov, A.; Grigoriev, A.; Malyshkin, Y.
2013-02-01
High-energy radiation emitted from thunderclouds supposes generation of neutrons in photonuclear reactions of the gamma photons with air. This observation is supported by registration of neutrons during thunderstorm activity in a number of experiments, most of which established correlation with lightning. In this work we perform a modeling of the neutron generation and propagation processes at low atmospheric altitudes using current knowledge of the TGF source properties. On this basis we obtain dosimetric maps of thunderstorm neutron radiation and investigate possible radiation threat for aircraft flights. We estimate the maximal effective neutron dose that potentially can be received on board an aircraft in close proximity to the gamma source, to be of the order of 0.54 mSv over a time less than 0.1 s. This dose is considerably less than estimations obtained earlier for the associated electron and gamma radiation; nevertheless, this value is quite large by itself and under some circumstances the neutron component seems to be the most important for the dosimetric effect. Due to wide distribution in space, the thunderstorm neutrons are thought to also provide a convenient means for experimental investigation of gamma emissions from thunderclouds. To register neutrons from powerful gamma flashes that occur at the tops of thunderclouds, however, in the most favorable case one has to take a location above the 2 km level that is appropriate to mountains or aircraft facilities.
Usefulness of component resolved analysis of cat allergy in routine clinical practice.
Eder, Katharina; Becker, Sven; San Nicoló, Marion; Berghaus, Alexander; Gröger, Moritz
2016-01-01
Cat allergy is of great importance, and its prevalence is increasing worldwide. Cat allergens and house dust mite allergens represent the major indoor allergens; however, they are ubiquitous. Cat sensitization and allergy are known risk factors for rhinitis, bronchial hyperreactivity and asthma. Thus, the diagnosis of sensitization to cats is important for any allergist. 70 patients with positive skin prick tests for cats were retrospectively compared regarding their skin prick test results, as well as their specific immunoglobulin E antibody profiles with regard to their responses to the native cat extract, rFel d 1, nFel d 2 and rFel d 4. 35 patients were allergic to cats, as determined by positive anamnesis and/or nasal provocation with cat allergens, and 35 patients exhibited clinically non-relevant sensitization, as indicated by negative anamnesis and/or a negative nasal allergen challenge. Native cat extract serology testing detected 100% of patients who were allergic to cats but missed eight patients who showed sensitization in the skin prick test and did not have allergic symptoms. The median values of the skin prick test, as well as those of the specific immunoglobulin E antibodies against the native cat extract, were significantly higher for allergic patients than for patients with clinically non-relevant sensitization. Component based diagnostic testing to rFel d 1 was not as reliable. Sensitization to nFel d 2 and rFel d 4 was seen only in individual patients. Extract based diagnostic methods for identifying cat allergy and sensitization, such as the skin prick test and native cat extract serology, remain crucial in routine clinical practice. In our study, component based diagnostic testing could not replace these methods with regard to the detection of sensitization to cats and differentiation between allergy and sensitization without clinical relevance. However, component resolved allergy diagnostic tools have individual implications, and future studies may facilitate a better understanding of its use and subsequently may improve the clinical management of allergic patients.
Reconstructing the Population Genetic History of the Caribbean
Moreno-Estrada, Andrés; Gravel, Simon; Zakharia, Fouad; McCauley, Jacob L.; Byrnes, Jake K.; Gignoux, Christopher R.; Ortiz-Tello, Patricia A.; Martínez, Ricardo J.; Hedges, Dale J.; Morris, Richard W.; Eng, Celeste; Sandoval, Karla; Acevedo-Acevedo, Suehelay; Norman, Paul J.; Layrisse, Zulay; Parham, Peter; Martínez-Cruzado, Juan Carlos; Burchard, Esteban González; Cuccaro, Michael L.; Martin, Eden R.; Bustamante, Carlos D.
2013-01-01
The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived. PMID:24244192
Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J
2013-01-01
Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential for the obesity-induced changes in insulin expression/secretion observed in mice, suggesting that CORT is a key regulatory component of the pancreatic function.
Analysis of the SNPforID 52-plex markers in four Native American populations from Venezuela.
Ruiz, Y; Chiurillo, M A; Borjas, L; Phillips, C; Lareu, M V; Carracedo, Á
2012-09-01
The SNPforID 52-plex single nucleotide polymorphisms (SNPs) were analyzed in four native Venezuelan populations: Bari, Pemon, Panare and Warao. None of the population-locus combinations showed significant departure from Hardy-Weinberg equilibrium. Calculation of forensic and statistical parameters showed lower values of genetic diversity in comparison with African and European populations, as well as other, admixed populations of neighboring regions of Caribbean, Central and South America. Significant levels of divergence were observed between the four Native Venezuelan populations as well as with other previously studied populations. Analysis of the 52-plex SNP loci with Structure provided an optimum number of population clusters of three, corresponding to Africans, Europeans and Native Americans. Analysis of admixed populations indicated a range of membership proportions for ancestral populations consisting of Native American, African and European components. The genetic differences observed in the Native American groups suggested by the 52 SNPs typed in our study are in agreement with current knowledge of the demographic history of the Americas. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Reisner, Michael D.; Doescher, Paul S.; Pyke, David A.
2015-01-01
Results/Conclusions: Cattle herbivory, a novel disturbance and selective force, was a significant component of two overlapping stress gradients most strongly associated with observed shifts in interactions. Facilitation and competition were strongest and most frequent at the highest and lowest stress levels along both gradients, respectively. Contrasting ecological optima among native and non-native beneficiaries led to strikingly different patterns of interactions. The four native bunchgrasses with the strongest competitive response abilities exhibited the strongest facilitation at their upper limits of stress tolerance, while the two non-natives exhibited the strongest competition at the highest stress levels, which coincided with their maximum abundance. Artemisia facilitation enhanced stability at intermediate stress levels by providing a refuge for native bunchgrasses, which in turn reduced the magnitude of B. tectorum invasion. However, facilitation was a destabilizing force at the highest stress levels when native bunchgrasses became obligate beneficiaries dependent on facilitation for their persistence. B. tectorum dominated these communities, and the next fire may convert them to annual grasslands.
Mueller, Jutta L; Hirotani, Masako; Friederici, Angela D
2007-01-01
Background The present experiments were designed to test how the linguistic feature of case is processed in Japanese by native and non-native listeners. We used a miniature version of Japanese as a model to compare sentence comprehension mechanisms in native speakers and non-native learners who had received training until they had mastered the system. In the first experiment we auditorily presented native Japanese speakers with sentences containing incorrect double nominatives and incorrect double accusatives, and with correct sentences. In the second experiment we tested trained non-natives with the same material. Based on previous research in German we expected an N400-P600 biphasic ERP response with specific modulations depending on the violated case and whether the listeners were native or non-native. Results For native Japanese participants the general ERP response to the case violations was an N400-P600 pattern. Double accusatives led to an additional enhancement of the P600 amplitude. For the learners a native-like P600 was present for double accusatives and for double nominatives. The additional negativity, however, was present in learners only for double nominative violations, and it was characterized by a different topographical distribution. Conclusion The results indicate that native listeners use case markers for thematic as well as syntactic structure building during incremental sentence interpretation. The modulation of the P600 component for double accusatives possibly reflects case specific syntactic restrictions in Japanese. For adult language learners later processes, as reflected in the P600, seem to be more native-like compared to earlier processes. The anterior distribution of the negativity and its selective emergence for canonical sentences were taken to suggest that the non-native learners resorted to a rather formal processing strategy whereby they relied to a large degree on the phonologically salient nominative case marker. PMID:17331265
SU-F-T-165: Daily QA Analysis for Spot Scanning Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poenisch, F; Gillin, M; Sahoo, N
2016-06-15
Purpose: The dosimetric results of our daily quality assurance over the last 8 years for discrete pencil beam scanning proton therapy will be presented. Methods: To perform the dosimetric checks, a multi-ion chamber detector is used, which consists of an array of 5 single parallel plate ion chambers that are aligned as a cross separated by 10cm each. The Tracker is snapped into a jig, which is placed on the tabletop. Different amounts of Solid Water buildup are added to shift the dose distribution. The dosimetric checks consist of 3 parts: position check, range check and volume dose check. Results:more » The average deviation of all position-check data were 0.2±1.3%. For the range check, the average deviation was 0.1%±1.2%, which also corresponds to a range stability of better than 1 mm over all measurements. The volumetric dose output readings were all within ±1% with the exception of 2 occasions when the cable to the dose monitor was being repaired. Conclusion: Morning QA using the Tracker device gives very stable dosimetric readings but is also sensitive to mechanical and output changes in the proton therapy delivery system.« less
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-09-01
Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.
Dosimetric property of mineral extracted from calamari and exposed to gamma rays
NASA Astrophysics Data System (ADS)
Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Pérez; Furetta, C.; Chiaravalle, E.; Mangiacotti, M.; Marchesani, G.
2013-07-01
Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays (60Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 °C and 128-138 °C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.
Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg
2005-02-21
A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.
Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan
2013-01-01
Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069
Wagner, Monica; Shafer, Valerie L.; Martin, Brett; Steinschneider, Mitchell
2013-01-01
The effect of exposure to the contextual features of the /pt/ cluster was investigated in native-English and native-Polish listeners using behavioral and event-related potential (ERP) methodology. Both groups experience the /pt/ cluster in their languages, but only the Polish group experiences the cluster in the context of word onset examined in the current experiment. The /st/ cluster was used as an experimental control. ERPs were recorded while participants identified the number of syllables in the second word of nonsense word pairs. The results found that only Polish listeners accurately perceived the /pt/ cluster and perception was reflected within a late positive component of the ERP waveform. Furthermore, evidence of discrimination of /pt/ and /pǝt/ onsets in the neural signal was found even for non-native listeners who could not perceive the difference. These findings suggest that exposure to phoneme sequences in highly specific contexts may be necessary for accurate perception. PMID:22867752
Of Paleo-Genes and Perch: What if an “Alien” Is Actually a Native?
Stager, J. Curt; Sporn, Lee Ann; Johnson, Melanie; Regalado, Sean
2015-01-01
Documenting whether a biotic taxon is native or alien to an ecosystem has theoretical value for ecological and evolutionary studies, and has practical value because it can potentially identify a taxon as a desirable component of an ecosystem or target it for removal. In some cases, however, such background information is inadequate or unavailable. Here we use paleo-DNA to re-evaluate the historical status of yellow perch in the 6 million acre Adirondack State Park of northern New York. Yellow perch DNA in a 2200-year sediment record reveals a long-term native status for these supposedly alien fish and challenges assumptions that they necessarily exclude native trout from upland lakes. Similar approaches could be applied to other species with uncertain historical distributions and could help to identify unrecognized pockets of biodiversity. PMID:25751263
Aguirre, Erik; Iturri, Peio Lopez; Azpilicueta, Leire; de Miguel-Bilbao, Silvia; Ramos, Victoria; Gárate, Uxue; Falcone, Francisco
2015-03-01
A high number of wireless technologies can be found operating in vehicular environments with the aim of offering different services. The dosimetric evaluation of this kind of scenarios must be performed in order to assess their compatibility with current exposure limits. In this work, a dosimetric evaluation inside a conventional car is performed, with the aid of an in-house 3D Ray Launching computational code, which has been compared with measurement results of wireless sensor networks located inside the vehicle. These results can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields, taking into account the impact of the morphology and the topology of the vehicle for current as well as for future exposure limits.
Popoca, R; Ureña-Núñez, F
2009-06-01
This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.
Nectar minerals as regulators of flower visitation in stingless bees and nectar hoarding wasps.
Afik, Ohad; Delaplane, Keith S; Shafir, Sharoni; Moo-Valle, Humberto; Quezada-Euán, J Javier G
2014-05-01
Various nectar components have a repellent effect on flower visitors, and their adaptive advantages for the plant are not well understood. Persea americana (avocado) is an example of a plant that secretes nectar with repellent components. It was demonstrated that the mineral constituents of this nectar, mainly potassium and phosphate, are concentrated enough to repel honey bees, Apis mellifera, a pollinator often used for commercial avocado pollination. Honey bees, however, are not the natural pollinator of P. americana, a plant native to Central America. In order to understand the role of nectar minerals in plant-pollinator relationships, it is important to focus on the plant's interactions with its natural pollinators. Two species of stingless bees and one species of social wasp, all native to the Yucatan Peninsula, Mexico, part of the natural range of P. americana, were tested for their sensitivity to sugar solutions enriched with potassium and phosphate, and compared with the sensitivity of honey bees. In choice tests between control and mineral-enriched solutions, all three native species were indifferent for mineral concentrations lower than those naturally occurring in P. americana nectar. Repellence was expressed at concentrations near or exceeding natural concentrations. The threshold point at which native pollinators showed repellence to increasing levels of minerals was higher than that detected for honey bees. The results do not support the hypothesis that high mineral content is attractive for native Hymenopteran pollinators; nevertheless, nectar mineral composition may still have a role in regulating flower visitors through different levels of repellency.
Wang, Hansong; Haiman, Christopher A.; Kolonel, Laurence N.; Henderson, Brian E.; Wilkens, Lynne R.; Le Marchand, Loïc; Stram, Daniel O.
2011-01-01
It is well-known that population substructure may lead to confounding in case-control association studies. Here, we examined genetic structure in a large racially and ethnically diverse sample consisting of 5 ethnic groups of the Multiethnic Cohort study (African Americans, Japanese Americans, Latinos, European Americans and Native Hawaiians) using 2,509 SNPs distributed across the genome. Principal component analysis on 6,213 study participants, 18 Native Americans and 11 HapMap III populations revealed 4 important principal components (PCs): the first two separated Asians, Europeans and Africans, and the third and fourth corresponded to Native American and Native Hawaiian (Polynesian) ancestry, respectively. Individual ethnic composition derived from self-reported parental information matched well to genetic ancestry for Japanese and European Americans. STRUCTURE-estimated individual ancestral proportions for African Americans and Latinos are consistent with previous reports. We quantified the East Asian (mean 27%), European (mean 27%) and Polynesian (mean 46%) ancestral proportions for the first time, to our knowledge, for Native Hawaiians. Simulations based on realistic settings of case-control studies nested in the Multiethnic Cohort found that the effect of population stratification was modest and readily corrected by adjusting for race/ethnicity or by adjusting for top PCs derived from all SNPs or from ancestry informative markers; the power of these approaches was similar when averaged across causal variants simulated based on allele frequencies of the 2,509 genotyped markers. The bias may be large in case-only analysis of gene by gene interactions but it can be corrected by top PCs derived from all SNPs. PMID:20499252
Reading Component Skills of Learners in Adult Basic Education
ERIC Educational Resources Information Center
MacArthur, Charles A.; Konold, Timothy R.; Glutting, Joseph J.; Alamprese, Judith A.
2010-01-01
The purposes of this study were to investigate the reliability and construct validity of measures of reading component skills with a sample of adult basic education (ABE) learners, including both native and nonnative English speakers, and to describe the performance of those learners on the measures. Investigation of measures of reading components…
Code of Federal Regulations, 2010 CFR
2010-07-01
... program that is taught in English with an ESL component, and the student is enrolled in that program and the ESL component, the student must take either an ESL test approved under § 668.148(b), or a test in... enrolled in a program that is taught in English without an ESL component, or the student does not enroll in...
Jocelyn G Millar; Robert F Mitchell; Judith A Mongold-Diers; Yunfan Zou; Carlos E Bográn; Melissa K Fierke; Matthew D Ginzel; Crawford W Johnson; James R Meeker; Therese M Poland; Iral Ragenovich; Lawrence M Hanks
2017-01-01
The pheromone components of many cerambycid beetles appear to be broadly shared among related species, including species native to different regions of the world. This apparent conservation of pheromone structures within the family suggests that field trials of common pheromone components could be used as a means of attracting multiple species, which then could be...
2016-01-01
Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance. PMID:28058277
Reed, Matthew D; Wilder, Julie A; Mega, William M; Hutt, Julie A; Kuehl, Philip J; Valderas, Michelle W; Chew, Lawrence L; Liang, Bertrand C; Squires, Charles H
2015-01-01
Protective antigen (PA), one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax). Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively) supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse injection site reactions. Mutant derivatives of the protective antigen that will not form the anthrax toxins have been described. We have cloned and expressed both mutant (PA SNKE167-ΔFF-315-E308D) and native PA molecules recombinantly and purified them. In this study, both the mutant and native PA molecules, formulated with alum (Alhydrogel), elicited high titers of anthrax toxin neutralizing anti-PA antibodies in New Zealand White rabbits. Both mutant and native PA vaccine preparations protected rabbits from lethal, aerosolized, B. anthracis spore challenge subsequent to two immunizations at doses of less than 1 μg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, W.T.; Siebers, J.V.
Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanarmore » Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing significant variations in OAR doses including mean dose reductions >5 Gy. Clinical implementation will facilitate patient-specific decision making based on achievable dosimetry as opposed to accept/reject models based on population derived objectives.« less
Preliminary study for small animal preclinical hadrontherapy facility
NASA Astrophysics Data System (ADS)
Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.
2017-02-01
Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and gamma index test. This work represents the first step towards the realization of a preclinical hadrontherapy facility at INFN-LNS in Catania for the future in vivo studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chera, B; Price, A; Kostich, M
Purpose: To compare the correlations between different dosimetric indices derived from the pharyngeal constrictor muscles and proximal esophagus with patient-reported difficulty in swallowing 6 months post radiotherapy using a novel patient reported outcome version of CTCAE (PRO-CTCAE). Methods: Forty-three patients with oropharyngeal squamous cell carcinoma were treated on a prospective multi-institutional study. All patients received de-intensified 60 Gy intensity modulated radiotherapy. We investigated correlations of individual patient dosimetric data of the superior (SPC), middle (MPC), inferior (IPC) pharyngeal constrictor muscles, the superior esophagus (SES), and the inferior esophagus (IES) to their self-reported 6 month post-treatment swallowing difficulty responses. Mild (≥more » Grade 1) swallowing difficulty responses were used as the clinical endpoint indicating response. The predictive efficacy of Dmean and dose-volume (VD) points were assessed through the area under the Receiver Operating Characteristic curve (ROC) and Odds Ratio (OR). Results: The SES and SPC had more favorable area under the curves (AUC) for the Dmean (0.62 and 0.70) while the Dmean to the IPC, MPC, and IES produced suboptimal AUCs (0.42, 0.48, and 0.52). Additionally, over the range of VD, the V54 and V55 for the SES and SPC demonstrated the highest AUCs: AUC(SES) = 0.76–0.73 and AUC(SPC) = 0.72–0.69, respectively. The IES, IPC, and MPC had worse AUC results over the range of VD. An optimal OR can be found when V54 = 96% for the SPC, where OR = 3.96 (1.07–14.62). Conclusion: The V45 and V55 of the SES and SPC had the highest correlation to the clinical endpoint compared to the commonly used dosimetric index, Dmean for both the esophagus and constrictor muscles. The reported dosimetric data demonstrates that new dosimetric indices may need to be considered in the setting of dose de-escalation and self-reported outcomes.« less
Hirano, Yasuhiro; Onozawa, Masakatsu; Hojo, Hidehiro; Motegi, Atsushi; Zenda, Sadatomo; Hotta, Kenji; Moriya, Shunsuke; Tachibana, Hidenobu; Nakamura, Naoki; Kojima, Takashi; Akimoto, Tetsuo
2018-02-09
The purpose of this study was to perform a dosimetric comparison between proton beam therapy (PBT) and photon radiation therapy in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who were treated with PBT in our institution. In addition, we evaluated the correlation between toxicities and dosimetric parameters, especially the doses to normal lung or heart tissue, to clarify the clinical advantage of PBT over photon radiation therapy. A total of 37 consecutive patients with Stage III thoracic ESCC who had received PBT with or without concurrent chemotherapy between October 2012 and December 2015 were evaluated in this study. The dose distributions of PBT were compared with those of dummy 3-dimensional conformal radiation therapy (3DCRT) and Intensity Modulated Radiation Therapy (IMRT), focusing especially on the doses to organs at risk, such as normal lung and heart tissue. Of the 37 patients, the data from 27 patients were analyzed. Among these 27 patients, four patients (15%) developed grade 2 pericardial effusion as a late toxicity. None of the patients developed grade 3 or worse acute or late pulmonary and cardiac toxicities. When the dosimetric parameters between PBT and planned 3DCRT were compared, all the PBT domestic variables for the lung dose except for lung V10 GyE and V15 GyE were significantly lower than those for the dummy 3DCRT plans, and the PBT domestic variables for the heart dose were also significantly lower than those for the dummy 3DCRT plans. When the PBT and IMRT plans were compared, all the PBT domestic variables for the doses to the lung and heart were significantly lower than those for the dummy IMRT plans. Regarding the correlation between the grades of toxicities and the dosimetric parameters, no significant correlation was seen between the occurrence of grade 2 pericardial effusion and the dose to the heart. When the dosimetric parameters of the dose distributions for the treatment of patients with locally advanced stage III ESCC were compared between PBT and 3DCRT or IMRT, PBT enabled a significant reduction in the dose to the lung and heart, compared with 3DCRT or IMRT.
Placidi, Lorenzo; Azario, Luigi; Mattiucci, Gian Carlo; Greco, Francesca; Damiani, Andrea; Mantini, Giovanna; Frascino, Vincenzo; Piermattei, Angelo; Valentini, Vincenzo; Balducci, Mario
2015-01-01
The purpose of this study was to investigate the magnitude and dosimetric relevance of translational and rotational shifts on IGRT prostate volumetric‐modulated arc therapy (VMAT) using Protura six degrees of freedom (DOF) Robotic Patient Positioning System. Patients with cT3aN0M0 prostate cancer, treated with VMAT simultaneous integrated boost (VMAT‐SIB), were enrolled. PTV2 was obtained adding 0.7 cm margin to seminal vesicles base (CTV2), while PTV1 adding to prostate (CTV1) 0.7 cm margin in all directions, except 1.2 cm, as caudal margin. A daily CBCT was acquired before dose delivery. The translational and rotational displacements were corrected through Protura Robotic Couch, collected and applied to the simulation CT to obtain a translated CT (tCT) and a rototranslated CT (rtCT) on which we recalculated the initial treatment plan (TP). We analyzed the correlation between dosimetric coverage, organs at risk (OAR) sparing, and translational or rotational displacements. The dosimetric impact of a rototranslational correction was calculated. From October 2012 to September 2013, a total of 263 CBCT scans from 12 patients were collected. Translational shifts were <5mm in 81% of patients and the rotational shifts were <2∘ in 93% of patient scans. The dosimetric analysis was performed on 172 CBCT scans and calculating 344 VMAT‐TP. Two significant linear correlations were observed between yaw and the V20 femoral heads and between pitch rotation and V50 rectum (p<0.001); rototranslational correction seems to impact more on PTV2 than on PTV1, especially when margins are reduced. Rotational errors are of dosimetric significance in sparing OAR and in target coverage. This is relevant for femoral heads and rectum because of major distance from isocenter, and for seminal vesicles because of irregular shape. No correlation was observed between translational and rotational errors. A study considering the intrafractional error and the deformable registration is ongoing. PACS number: 87.55.de PMID:26699314
Kristensen, Gunn B B; Rustad, Pål; Berg, Jens P; Aakre, Kristin M
2016-09-01
We undertook this study to evaluate method differences for 5 components analyzed by immunoassays, to explore whether the use of method-dependent reference intervals may compensate for method differences, and to investigate commutability of external quality assessment (EQA) materials. Twenty fresh native single serum samples, a fresh native serum pool, Nordic Federation of Clinical Chemistry Reference Serum X (serum X) (serum pool), and 2 EQA materials were sent to 38 laboratories for measurement of cobalamin, folate, ferritin, free T4, and thyroid-stimulating hormone (TSH) by 5 different measurement procedures [Roche Cobas (n = 15), Roche Modular (n = 4), Abbott Architect (n = 8), Beckman Coulter Unicel (n = 2), and Siemens ADVIA Centaur (n = 9)]. The target value for each component was calculated based on the mean of method means or measured by a reference measurement procedure (free T4). Quality specifications were based on biological variation. Local reference intervals were reported from all laboratories. Method differences that exceeded acceptable bias were found for all components except folate. Free T4 differences from the uncommonly used reference measurement procedure were large. Reference intervals differed between measurement procedures but also within 1 measurement procedure. The serum X material was commutable for all components and measurement procedures, whereas the EQA materials were noncommutable in 13 of 50 occasions (5 components, 5 methods, 2 EQA materials). The bias between the measurement procedures was unacceptably large in 4/5 tested components. Traceability to reference materials as claimed by the manufacturers did not lead to acceptable harmonization. Adjustment of reference intervals in accordance with method differences and use of commutable EQA samples are not implemented commonly. © 2016 American Association for Clinical Chemistry.
NASA Astrophysics Data System (ADS)
Bermudez, Gonzalo M. A.; Battistón, Luisina V.; García Capocasa, María C.; De Longhi, Ana L.
2017-02-01
This study investigates the influence of school sector (private versus state schools) and student gender on knowledge of native fauna. Our main objectives were (a) to describe the knowledge of high school students from the province of Cordoba, Argentina with respect to native animal species, (b) to determine if any exotic species (introduced or domestic) are considered native, and (c) to analyze the effects of school sector and gender on the students' knowledge of the native fauna. In total, 321 students aged 15-18 from 14 urban schools (8 state and 6 private schools) were asked to write down ten animals native to Córdoba, Argentina, in a free-list questionnaire. Relative frequencies and Generalized Linear Mixed Models (GLMM) were used to analyze the categorized (animal names) and continuous answers (quantity of responses, number of native animals, etc.), with the 25 most frequently mentioned species showing a predominance of native ones, of which "Puma" ( Puma concolor) and "Andean condor" ( Vultur gryphus) were the most prominent. An overrepresentation of mammalian species compared to other classes of chordates was also found, with high school students mentioning native and domestic species higher on the free-list. Using GLMM, we found that school sector had a significant effect on the number of native animals mentioned at both national and local levels, and on domestic and mixed species. Finally, male students mentioned more species and more native animals than their female counterparts. These findings were interpreted and discussed in light of sociocultural and traditional ecological knowledge theories, from which several implications arose related to research and practice.
NASA Astrophysics Data System (ADS)
Giostra, A.; Richetta, E.; Pasquino, M.; Miranti, A.; Cutaia, C.; Brusasco, G.; Pellerito, R. E.; Stasi, M.
2016-06-01
Treatment with radioiodine is a standard procedure for patients with well-differentiated thyroid cancer, but the main approach to the therapy is still empiric, consisting of the administration of fixed activities. A predictive individualized dosimetric study may represent an important tool for physicians to determine the best activity to prescribe. The aim of this work is to compare red marrow and blood absorbed dose values obtained in the pre-treatment (PT) dosimetry phase with those obtained in the in-treatment (IT) dosimetry phase in order to estimate the predictive power of PT trial doses and to determine if they can be used as a decision-making tool to safely administer higher 131I activity to potentially increase the efficacy of treatment. The PT and IT dosimetry for 50 patients has been evaluated using three different dosimetric approaches. In all three approaches blood and red marrow doses, are calculated as the sum of two components, the dose from 131I activity in the blood and the dose from 131I activity located in the remainder of the body (i.e. the blood and whole-body contributions to the total dose). PT and IT dose values to blood and red marrow appear to be well correlated irrespective of the dosimetric approach used. Linear regression analyses of PT and IT total doses, for blood and red marrow, and the whole-body contribution to these doses, showed consistent best fit slope and correlation coefficient values of approximately 0.9 and 0.6, respectively: analyses of the blood dose contribution to the total doses also yielded similar values for the best fit slope but with correlation coefficient values of approximately 0.4 reflecting the greater variance in these dose estimates. These findings suggest that pre-treatment red marrow dose assessments may represent an important tool to personalize metastatic thyroid cancer treatment, removing the constraints of a fixed activity approach and permitting potentially more effective higher 131I activities to be safely used in-treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ronald C.; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
2012-07-15
Purpose: Research on patient-reported outcomes (PROs) in rectal cancer is limited. We examined whether dose-volume parameters of the small bowel and large bowel were associated with patient-reported gastrointestinal (GI) symptoms during 5-fluorouracil (5-FU)-based chemoradiation treatment for rectal cancer. Methods and Materials: 66 patients treated at the Brigham and Women's Hospital or Massachusetts General Hospital between 2006 and 2008 were included. Weekly during treatment, patients completed a questionnaire assessing severity of diarrhea, urgency, pain, cramping, mucus, and tenesmus. The association between dosimetric parameters and changes in overall GI symptoms from baseline through treatment was examined by using Spearman's correlation. Potential associationsmore » between these parameters and individual GI symptoms were also explored. Results: The amount of small bowel receiving at least 15 Gy (V15) was significantly associated with acute symptoms (p = 0.01), and other dosimetric parameters ranging from V5 to V45 also trended toward association. For the large bowel, correlations between dosimetric parameters and overall GI symptoms at the higher dose levels from V25 to V45 did not reach statistical significance (p = 0.1), and a significant association was seen with rectal pain from V15 to V45 (p < 0.01). Other individual symptoms did not correlate with small bowel or large bowel dosimetric parameters. Conclusions: The results of this study using PROs are consistent with prior studies with physician-assessed acute toxicity, and they identify small bowel V15 as an important predictor of acute GI symptoms during 5-FU-based chemoradiation treatment. A better understanding of the relationship between radiation dosimetric parameters and PROs may allow physicians to improve radiation planning to optimize patient outcomes.« less
Dos Santos-Goncalvez, Ana Maria; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Gallez, Bernard
2013-01-01
In case of radiological accident, retrospective dosimetry is needed to reconstruct the absorbed dose of overexposed individuals not wearing personal dosimeters at the onset of the incident. In such a situation, emergency mass triage will be required. In this context, it has been shown that Electron Paramagnetic Resonance (EPR) spectroscopy would be a rapid and sensitive method, on the field deployable system, allowing dose evaluation of a great number of people in a short time period. This methodology uses tooth enamel as a natural dosimeter. Ionising radiations create stable free radicals in the enamel, in a dose dependent manner, which can be detected by EPR directly in the mouth with an appropriate resonator. Teeth are often subject to restorations, currently made of synthetic dimethacrylate-based photopolymerizable composites. It is known that some dental composites give an EPR signal which is likely to interfere with the dosimetric signal from the enamel. So far, no information was available about the occurrence of this signal in the various composites available on the market, the magnitude of the signal compared to the dosimetric signal, nor its evolution with time. In this study, we conducted a systematic characterization of the signal (intensity, kinetics, interference with dosimetric signal) on 19 most widely used composites for tooth restoration, and on 14 experimental resins made with the most characteristic monomers found in commercial composites. Although a strong EPR signal was observed in every material, a rapid decay of the signal was noted. Six months after the polymerization, the signal was negligible in most composites compared to a 3 Gy dosimetric signal in a tooth. In some cases, a stable atypical signal was observed, which was still interfering with the dosimetric signal. PMID:23704875
The use of megavoltage CT (MVCT) images for dose recomputations
NASA Astrophysics Data System (ADS)
Langen, K. M.; Meeks, S. L.; Poole, D. O.; Wagner, T. H.; Willoughby, T. R.; Kupelian, P. A.; Ruchala, K. J.; Haimerl, J.; Olivera, G. H.
2005-09-01
Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation.
Walston, Steve; Quick, Allison M; Kuhn, Karla; Rong, Yi
2017-02-01
To present our clinical workflow of incorporating AlignRT for left breast deep inspiration breath-hold treatments and the dosimetric considerations with the deep inspiration breath-hold protocol. Patients with stage I to III left-sided breast cancer who underwent lumpectomy or mastectomy were considered candidates for deep inspiration breath-hold technique for their external beam radiation therapy. Treatment plans were created on both free-breathing and deep inspiration breath-hold computed tomography for each patient to determine whether deep inspiration breath-hold was beneficial based on dosimetric comparison. The AlignRT system was used for patient setup and monitoring. Dosimetric measurements and their correlation with chest wall excursion and increase in left lung volume were studied for free-breathing and deep inspiration breath-hold plans. Deep inspiration breath-hold plans had significantly increased chest wall excursion when compared with free breathing. This change in geometry resulted in reduced mean and maximum heart dose but did not impact lung V 20 or mean dose. The correlation between chest wall excursion and absolute reduction in heart or lung dose was found to be nonsignificant, but correlation between left lung volume and heart dose showed a linear association. It was also identified that higher levels of chest wall excursion may paradoxically increase heart or lung dose. Reduction in heart dose can be achieved for many left-sided breast and chest wall patients using deep inspiration breath-hold. Chest wall excursion as well as left lung volume did not correlate with reduction in heart dose, and it remains to be determined what metric will provide the most optimal and reliable dosimetric advantage.
Frankenstein, Ziv; Sperling, Joseph; Sperling, Ruth; Eisenstein, Miriam
2012-01-01
Summary The spliceosome is a mega-Dalton ribonucleoprotein (RNP) assembly that processes primary RNA transcripts, producing functional mRNA. The electron microscopy structures of the native spliceosome and of several spliceosomal subcomplexes are available but the spatial arrangement of the latter within the native spliceosome is not known. We designed a new computational procedure to efficiently fit thousands of conformers into the spliceosome envelope. Despite the low resolution limitations, we obtained only one model that complies with the available biochemical data. Our model localizes the five small nuclear RNPs (snRNPs) mostly within the large subunit of the native spliceosome, requiring only minor conformation changes. The remaining free volume presumably accommodates additional spliceosomal components. The constituents of the active core of the spliceosome are juxtaposed, forming a continuous surface deep within the large spliceosomal cavity, which provides a sheltered environment for the splicing reaction. PMID:22578543
Anatomical Individualized ACL Reconstruction.
Rahnemai-Azar, Amir Ata; Sabzevari, Soheil; Irarrázaval, Sebastián; Chao, Tom; Fu, Freddie H
2016-10-01
The anterior cruciate ligament (ACL) is composed of two bundles, which work together to provide both antero-posterior and rotatory stability of the knee. Understanding the anatomy and function of the ACL plays a key role in management of patients with ACL injury. Anatomic ACL reconstruction aims to restore the function of the native ACL. Femoral and tibial tunnels should be placed in their anatomical location accounting for both the native ACL insertion site and bony landmarks. One main component of anatomical individualized ACL reconstruction is customizing the treatment according to each patient's individual characteristics, considering preoperative and intraoperative evaluation of the native ACL and knee bony anatomy. Anatomical individualized reconstruction surgery should also aim to restore the size of the native ACL insertion as well. Using this concept, while single bundle ACL reconstruction can restore the function of the ACL in some patients, double bundle reconstruction is indicated in others to achieve optimal outcome.
NASA Astrophysics Data System (ADS)
Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.
2016-12-01
Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but considering various climate change scenarios (including IPCC) suggested that many of these climate refugia may considerably decline even under more moderate climate change scenarios as they may become increasingly invaded by non-native plant species.
Subungual squamous cell carcinoma: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neill, Cory J., E-mail: coryjneill@gmail.com
The purpose of this case study is to describe a dosimetric delivery of radiation to a superficial disease process involving the skin and bone of the distal finger. A 76-year-old male patient presented with a subungual squamous cell carcinoma (SCC) of the left distal index finger with bony involvement. The patient refused conventional surgical treatment but agreed to external beam radiation therapy (EBRT). There is a gap in the current literature describing how to successfully immobilize fingers and which EBRT modality is dosimetrically advantageous in treating them. The construction of a simple immobilization method with the patient in a reproduciblemore » position is described. The use of photons and electrons were compared ultimately showing photons to be dosimetrically advantageous. Long-term efficacy of the treatment was not evaluated because of patient noncompliance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.
1981-08-01
The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less
Comparison of dose accuracy between 2D array detectors and Epid for IMRT of nasopharynx cancer
NASA Astrophysics Data System (ADS)
Altiparmak, Duygu; Coban, Yasin; Merih, Adil; Avci, Gulhan Guler; Yigitoglu, Ibrahim
2017-02-01
The aim of this study is to perform the dosimetric controls of nasopharynx cancer patient's intensity modulated radiation therapy (IMRT) treatment plans that generated by treatment planing system (TPS) with using two different equipments and also to make comparison in terms of their reliability and practicability. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINAC DHX linear accelerator which is operated in the range of 6 MV. Selected 10 nasopharynx patients planned in TPS (Eclipce V13.0) and approved for treatment by medical physicists and radiation oncologists. These plans recalculated on EPID and mapcheck which are 2D dosimetric equipments to obtain dose maps. To compare these two dosimetric equipments gamma analysis method has been preferred. Achieved data is presented and discussed.
ERIC Educational Resources Information Center
Al-Ali, Mohammed N.
2006-01-01
This study reports an investigation of the genre components and pragmatic strategies of letters of applications written by Jordanian Arabic--English bilinguals. Specifically it is set up to trace how far novice non-native speakers of English are able to utilise the generic components and politeness strategies of the target language that strongly…
USDA-ARS?s Scientific Manuscript database
In southern Bahia, cabruca is the agroforestry system in which cocoa is cultivated under the shade of sparse native forest trees. Aiming to characterize the tree component of this system and its management practices, we conducted an inventory of the non-cocoa trees in 16 ha of cabruca and do intervi...
L.M. Hanks; J.A. Mongold-Diers; T.H. Atkinson; M.K. Fierke; M.D. Ginzel; E.E. Graham; T.M. Poland; A.B. Richards; M.L. Richardson; J.G. Millar
2018-01-01
Pheromone components of cerambycid beetles are often conserved, with a given compound serving as a pheromone component for multiple related species, including species native to different continents. Consequently, a single synthesized compound may attract multiple species to a trap simultaneously. Furthermore, our previous research in east-central Illinois had...
Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy.
Kobayashi, Kazuma; Murakami, Naoya; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun
2015-12-01
We quantitatively estimated dosimetric variations due to interfraction organ deformation in multi-fractionated high-dose-rate brachytherapy (HDRBT) for cervical cancer using a novel surface-based non-rigid deformable registration. As the number of consecutive HDRBT fractions increased, simple addition of dose-volume histogram parameters significantly overestimated the dose, compared with distribution-based dose addition. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Dosimetric property of mineral extracted from calamari and exposed to gamma rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Perez
2013-07-03
Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays ({sup 60}Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 Degree-Sign C and 128-138more » Degree-Sign C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.« less
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-01-01
Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681
NASA Astrophysics Data System (ADS)
Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J. R.; Bardiès, M.
2006-02-01
Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.
Thrapsanioti, Zoi; Karanasiou, Irene; Platoni, Kalliopi; Efstathopoulos, Efstathios P.; Matsopoulos, George; Dilvoi, Maria; Patatoukas, George; Chaldeopoulos, Demetrios; Kelekis, Nikolaos; Kouloulias, Vassilis
2013-01-01
Purpose. The purpose of this study was to transform DVHs from physical to radiobiological ones as well as to evaluate their reliability by correlations of dosimetric and clinical parameters for 50 patients with prostate cancer and 50 patients with breast cancer, who were submitted to Hypofractionated Radiotherapy. Methods and Materials. To achieve this transformation, we used both the linear-quadratic model (LQ model) and the Niemierko model. The outcome of radiobiological DVHs was correlated with acute toxicity score according to EORTC/RTOG criteria. Results. Concerning the prostate radiotherapy, there was a significant correlation between RTOG acute rectal toxicity and D 50 (P < 0.001) and V 60 (P = 0.001) dosimetric parameters, calculated for α/β = 10 Gy. Moreover, concerning the breast radiotherapy there was a significant correlation between RTOG skin toxicity and V ≥60 dosimetric parameter, calculated for both α/β = 2.3 Gy (P < 0.001) and α/β = 10 Gy (P < 0.001). The new tool seems reliable and user-friendly. Conclusions. Our proposed model seems user-friendly. Its reliability in terms of agreement with the presented acute radiation induced toxicity was satisfactory. However, more patients are needed to extract safe conclusions. PMID:24348743
Radiation-induced complications in prostate cancer patients treated with radiotherapy
NASA Astrophysics Data System (ADS)
Azuddin, A. Yusof; Rahman, I. Abdul; Siah, N. J.; Mohamed, F.; Saadc, M.; Ismail, F.
2014-09-01
The purpose of the study is to determine the relationship between radiation-induced complications with dosimetric and radiobiological parameters for prostate cancer patients that underwent the conformal radiotherapy treatment. 17 prostate cancer patients that have been treated with conformal radiotherapy were retrospectively analysed. The dosimetric data was retrieved in the form of dose-volume histogram (DVH) from Radiotherapy Treatment Planning System. The DVH was utilised to derived Normal Tissue Complication Probability (NTCP) in radiobiological data. Follow-up data from medical records were used to grade the occurrence of acute gastrointestinal (GI) and genitourinary (GU) complications using Radiation Therapy Oncology Group (RTOG) scoring system. The chi-square test was used to determine the relationship between radiation-induced complication with dosimetric and radiobiological parameters. 8 (47%) and 7 (41%) patients were having acute GI and GU complications respectively. The acute GI complication can be associated with V60rectum, rectal mean dose and NTCPrectum with p-value of 0.016, 0.038 and 0.049 respectively. There are no significant relationships of acute GU complication with dosimetric and radiobiological variables. Further study can be done by increase the sample size and follow up duration for deeper understanding of the factors that effecting the GU and GI complication in prostate cancer radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Michael W.; W. W. Adams, Michael
2014-01-07
Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma ismore » to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at close to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and experimental protocols for PC and MP production in other prokaryotes of DOE interest. The research resulted in ten peer-reviewed publications including in Nature and Nature Methods.« less
Loss of regional accent after damage to the speech production network.
Berthier, Marcelo L; Dávila, Guadalupe; Moreno-Torres, Ignacio; Beltrán-Corbellini, Álvaro; Santana-Moreno, Daniel; Roé-Vellvé, Núria; Thurnhofer-Hemsi, Karl; Torres-Prioris, María José; Massone, María Ignacia; Ruiz-Cruces, Rafael
2015-01-01
Lesion-symptom mapping studies reveal that selective damage to one or more components of the speech production network can be associated with foreign accent syndrome, changes in regional accent (e.g., from Parisian accent to Alsatian accent), stronger regional accent, or re-emergence of a previously learned and dormant regional accent. Here, we report loss of regional accent after rapidly regressive Broca's aphasia in three Argentinean patients who had suffered unilateral or bilateral focal lesions in components of the speech production network. All patients were monolingual speakers with three different native Spanish accents (Cordobés or central, Guaranítico or northeast, and Bonaerense). Samples of speech production from the patient with native Córdoba accent were compared with previous recordings of his voice, whereas data from the patient with native Guaranítico accent were compared with speech samples from one healthy control matched for age, gender, and native accent. Speech samples from the patient with native Buenos Aires's accent were compared with data obtained from four healthy control subjects with the same accent. Analysis of speech production revealed discrete slowing in speech rate, inappropriate long pauses, and monotonous intonation. Phonemic production remained similar to those of healthy Spanish speakers, but phonetic variants peculiar to each accent (e.g., intervocalic aspiration of /s/ in Córdoba accent) were absent. While basic normal prosodic features of Spanish prosody were preserved, features intrinsic to melody of certain geographical areas (e.g., rising end F0 excursion in declarative sentences intoned with Córdoba accent) were absent. All patients were also unable to produce sentences with different emotional prosody. Brain imaging disclosed focal left hemisphere lesions involving the middle part of the motor cortex, the post-central cortex, the posterior inferior and/or middle frontal cortices, insula, anterior putamen and supplementary motor area. Our findings suggest that lesions affecting the middle part of the left motor cortex and other components of the speech production network disrupt neural processes involved in the production of regional accent features.
Loss of regional accent after damage to the speech production network
Berthier, Marcelo L.; Dávila, Guadalupe; Moreno-Torres, Ignacio; Beltrán-Corbellini, Álvaro; Santana-Moreno, Daniel; Roé-Vellvé, Núria; Thurnhofer-Hemsi, Karl; Torres-Prioris, María José; Massone, María Ignacia; Ruiz-Cruces, Rafael
2015-01-01
Lesion-symptom mapping studies reveal that selective damage to one or more components of the speech production network can be associated with foreign accent syndrome, changes in regional accent (e.g., from Parisian accent to Alsatian accent), stronger regional accent, or re-emergence of a previously learned and dormant regional accent. Here, we report loss of regional accent after rapidly regressive Broca’s aphasia in three Argentinean patients who had suffered unilateral or bilateral focal lesions in components of the speech production network. All patients were monolingual speakers with three different native Spanish accents (Cordobés or central, Guaranítico or northeast, and Bonaerense). Samples of speech production from the patient with native Córdoba accent were compared with previous recordings of his voice, whereas data from the patient with native Guaranítico accent were compared with speech samples from one healthy control matched for age, gender, and native accent. Speech samples from the patient with native Buenos Aires’s accent were compared with data obtained from four healthy control subjects with the same accent. Analysis of speech production revealed discrete slowing in speech rate, inappropriate long pauses, and monotonous intonation. Phonemic production remained similar to those of healthy Spanish speakers, but phonetic variants peculiar to each accent (e.g., intervocalic aspiration of /s/ in Córdoba accent) were absent. While basic normal prosodic features of Spanish prosody were preserved, features intrinsic to melody of certain geographical areas (e.g., rising end F0 excursion in declarative sentences intoned with Córdoba accent) were absent. All patients were also unable to produce sentences with different emotional prosody. Brain imaging disclosed focal left hemisphere lesions involving the middle part of the motor cortex, the post-central cortex, the posterior inferior and/or middle frontal cortices, insula, anterior putamen and supplementary motor area. Our findings suggest that lesions affecting the middle part of the left motor cortex and other components of the speech production network disrupt neural processes involved in the production of regional accent features. PMID:26594161
Milton, N.M.
1983-01-01
Analysis of in situ reflectance spectra of native vegetation was used to interpret airborne MSS data. Representative spectra from three plant species in the E Tintic Mountains, Utah, were used to interpret the color components on a color ratio composite image made from MSS data in the visible and near-infrared regions. A map of plant communities was made from the color ratio composite image and field checked. -from Author
Eslick, Enid M; Beilby, Mary J; Moon, Anthony R
2014-04-01
A substantial proportion of the architecture of the plant cell wall remains unknown with a few cell wall models being proposed. Moreover, even less is known about the green algal cell wall. Techniques that allow direct visualization of the cell wall in as near to its native state are of importance in unravelling the spatial arrangement of cell wall structures and hence in the development of cell wall models. Atomic force microscopy (AFM) was used to image the native cell wall of living cells of Ventricaria ventricosa (V. ventricosa) at high resolution under physiological conditions. The cell wall polymers were identified mainly qualitatively via their structural appearance. The cellulose microfibrils (CMFs) were easily recognizable and the imaging results indicate that the V. ventricosa cell wall has a cross-fibrillar structure throughout. We found the native wall to be abundant in matrix polysaccharides existing in different curing states. The soft phase matrix polysaccharides susceptible by the AFM scanning tip existed as a glutinous fibrillar meshwork, possibly incorporating both the pectic- and hemicellulosic-type substances. The hard phase matrix producing clearer images, revealed coiled fibrillar structures associated with CMFs, sometimes being resolved as globular structures by the AFM tip. The coiling fibrillar structures were also seen in the images of isolated cell wall fragments. The mucilaginous component of the wall was discernible from the gelatinous cell wall matrix as it formed microstructural domains over the surface. AFM has been successful in imaging the native cell wall and revealing novel findings such as the 'coiling fibrillar structures' and cell wall components which have previously not been seen, that is, the gelatinous matrix phase.
Genomic Insights into the Ancestry and Demographic History of South America
Homburger, Julian R.; Moreno-Estrada, Andrés; Gignoux, Christopher R.; Nelson, Dominic; Sanchez, Elena; Ortiz-Tello, Patricia; Pons-Estel, Bernardo A.; Acevedo-Vasquez, Eduardo; Miranda, Pedro; Langefeld, Carl D.; Gravel, Simon; Alarcón-Riquelme, Marta E.; Bustamante, Carlos D.
2015-01-01
South America has a complex demographic history shaped by multiple migration and admixture events in pre- and post-colonial times. Settled over 14,000 years ago by Native Americans, South America has experienced migrations of European and African individuals, similar to other regions in the Americas. However, the timing and magnitude of these events resulted in markedly different patterns of admixture throughout Latin America. We use genome-wide SNP data for 437 admixed individuals from 5 countries (Colombia, Ecuador, Peru, Chile, and Argentina) to explore the population structure and demographic history of South American Latinos. We combined these data with population reference panels from Africa, Asia, Europe and the Americas to perform global ancestry analysis and infer the subcontinental origin of the European and Native American ancestry components of the admixed individuals. By applying ancestry-specific PCA analyses we find that most of the European ancestry in South American Latinos is from the Iberian Peninsula; however, many individuals trace their ancestry back to Italy, especially within Argentina. We find a strong gradient in the Native American ancestry component of South American Latinos associated with country of origin and the geography of local indigenous populations. For example, Native American genomic segments in Peruvians show greater affinities with Andean indigenous peoples like Quechua and Aymara, whereas Native American haplotypes from Colombians tend to cluster with Amazonian and coastal tribes from northern South America. Using ancestry tract length analysis we modeled post-colonial South American migration history as the youngest in Latin America during European colonization (9–14 generations ago), with an additional strong pulse of European migration occurring between 3 and 9 generations ago. These genetic footprints can impact our understanding of population-level differences in biomedical traits and, thus, inform future medical genetic studies in the region. PMID:26636962
Genomic Insights into the Ancestry and Demographic History of South America.
Homburger, Julian R; Moreno-Estrada, Andrés; Gignoux, Christopher R; Nelson, Dominic; Sanchez, Elena; Ortiz-Tello, Patricia; Pons-Estel, Bernardo A; Acevedo-Vasquez, Eduardo; Miranda, Pedro; Langefeld, Carl D; Gravel, Simon; Alarcón-Riquelme, Marta E; Bustamante, Carlos D
2015-12-01
South America has a complex demographic history shaped by multiple migration and admixture events in pre- and post-colonial times. Settled over 14,000 years ago by Native Americans, South America has experienced migrations of European and African individuals, similar to other regions in the Americas. However, the timing and magnitude of these events resulted in markedly different patterns of admixture throughout Latin America. We use genome-wide SNP data for 437 admixed individuals from 5 countries (Colombia, Ecuador, Peru, Chile, and Argentina) to explore the population structure and demographic history of South American Latinos. We combined these data with population reference panels from Africa, Asia, Europe and the Americas to perform global ancestry analysis and infer the subcontinental origin of the European and Native American ancestry components of the admixed individuals. By applying ancestry-specific PCA analyses we find that most of the European ancestry in South American Latinos is from the Iberian Peninsula; however, many individuals trace their ancestry back to Italy, especially within Argentina. We find a strong gradient in the Native American ancestry component of South American Latinos associated with country of origin and the geography of local indigenous populations. For example, Native American genomic segments in Peruvians show greater affinities with Andean indigenous peoples like Quechua and Aymara, whereas Native American haplotypes from Colombians tend to cluster with Amazonian and coastal tribes from northern South America. Using ancestry tract length analysis we modeled post-colonial South American migration history as the youngest in Latin America during European colonization (9-14 generations ago), with an additional strong pulse of European migration occurring between 3 and 9 generations ago. These genetic footprints can impact our understanding of population-level differences in biomedical traits and, thus, inform future medical genetic studies in the region.
Marionneau, Céline; Townsend, R Reid; Nerbonne, Jeanne M
2011-04-01
Voltage-gated K(+) (Kv) channels are key determinants of membrane excitability in the nervous and cardiovascular systems, functioning to control resting membrane potentials, shape action potential waveforms and influence the responses to neurotransmitters and neurohormones. Consistent with this functional diversity, multiple types of Kv currents, with distinct biophysical properties and cellular/subcellular distributions, have been identified. Rapidly activating and inactivating Kv currents, typically referred to as I(A) (A-type) in neurons, for example, regulate repetitive firing rates, action potential back-propagation (into dendrites) and modulate synaptic responses. Currents with similar properties, referred to as I(to,f) (fast transient outward), expressed in cardiomyocytes, control the early phase of myocardial action potential repolarization. A number of studies have demonstrated critical roles for pore-forming (α) subunits of the Kv4 subfamily in the generation of native neuronal I(A) and cardiac I(to,f) channels. Studies in heterologous cells have also suggested important roles for a number of Kv channel accessory and regulatory proteins in the generation of functional I(A) and I(to,f) channels. Quantitative mass spectrometry-based proteomic analysis is increasingly recognized as a rapid and, importantly, unbiased, approach to identify the components of native macromolecular protein complexes. The recent application of proteomic approaches to identify the components of native neuronal (and cardiac) Kv4 channel complexes has revealed even greater complexity than anticipated. The continued emphasis on development of improved biochemical and analytical proteomic methods seems certain to accelerate progress and to provide important new insights into the molecular determinants of native ion channel protein complexes. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beavis, Andrew W.; Ward, James W.
2014-03-01
Purpose: In recent years there has been interest in using Computer Simulation within Medical training. The VERT (Virtual Environment for Radiotherapy Training) system is a Flight Simulator for Radiation Oncology professionals, wherein fundamental concepts, techniques and problematic scenarios can be safely investigated. Methods: The system provides detailed simulations of several Linacs and the ability to display DICOM treatment plans. Patients can be mis-positioned with 'set-up errors' which can be explored visually, dosimetrically and using IGRT. Similarly, a variety of Linac calibration and configuration parameters can be altered manually or randomly via controlled errors in the simulated 3D Linac and its component parts. The implication of these can be investigated by following through a treatment scenario or using QC devices available within a Physics software module. Results: One resultant exercise is a systematic mis-calibration of 'lateral laser height' by 2mm. The offset in patient alignment is easily identified using IGRT and once corrected by reference to the 'in-room monitor'. The dosimetric implication is demonstrated to be 0.4% by setting a dosimetry phantom by the lasers (and ignoring TSD information). Finally, the need for recalibration can be shown by the Laser Alignment Phantom or by reference to the front pointer. Conclusions: The VERT system provides a realistic environment for training and enhancing understanding of radiotherapy concepts and techniques. Linac error conditions can be explored in this context and valuable experience gained in a controlled manner in a compressed period of time.
NASA Astrophysics Data System (ADS)
Chen, Luzhen; Yan, Ting; Xiong, Yiyi; Zhang, Yihui; Lin, Guanghui
2017-03-01
The macrozoobenthos is an important link of the food web in coastal wetlands. Diet-habitat relationships may significantly depend on qualitative differences and seasonal availability of food sources. Increasing interest has been shown in food web structure altered by non-native plants. In particular, however, a non-native mangrove species from Bangladesh, Sonneratia apetala, has been widely planted in China, but little is known about its possible impact on food sources of macrozoobenthos living in these non-native mangrove forests. Therefore, in this study, we used fatty acid analysis to compare the food sources of one littorinid snail and two grapsid crab species between two native mangrove forests and one non-native S. apetala plantation in the Zhanjiang Mangrove National Nature Reserve of China. We found that the sediment of all three forests had high diatom and bacteria signals, but low mangrove leaf signals, while the opposite patterns were detected in the three macrozoobenthos. Specifically, the gastropod Littoraria melanostoma relied mainly on mangrove leaves and brown algae as food sources, with significant differences among the three mangrove forests, and showed significant seasonal variation in its diet. The grapsidae species (Perisesarma bidens and Parasesarma plicatum) mainly grazed on mangrove litter, brown and green algae, and occasionally consumed diatoms and bacteria, also showing significant seasonal variation in their diet. Overall, Principle Components Analysis (PCA) of the fatty acid profiles showed a significant overlapping in food sources among the macrozoobenthos living in the non-native and native mangrove forests, but significant seasonal variations in their food sources. This suggests that the planting of non-native S. apetala near original mangrove forests has had little effect on the feeding behavior of macrozoobenthos some 10 years after planting.
Novins, Douglas K; Boyd, Misty L; Brotherton, Devan T; Fickenscher, Alexandra; Moore, Laurie; Spicer, Paul
2012-01-01
High rates of substance use and related problems have been long recognized as critical health issues for Native American adolescents. Unfortunately, no manualized interventions address the specific needs of Native American adolescents in a culturally appropriate manner. In 2006, the Cherokee Nation partnered with the University of Colorado to employ a community-based participatory research process to develop an intervention for Native American adolescents with substance use problems. The resulting intervention, Walking On, is an explicit blend of traditional Cherokee healing and spirituality with science-based practices such as cognitive behavioral therapy and contingency management and is designed to address the specific needs and worldviews of Native American adolescents with substance use problems and their families. Each individual and family session includes a brief assessment, a skill-building component, and a ceremony. A Weekly Circle (multifamily group) promotes sobriety and builds a community of healing. Early pilot study results suggest that Walking On is feasible for use in tribal substance abuse treatment programs. While Walking On shows early promise, the intervention will require further study to examine its efficacy.
Kim, Sangsung; Kang, Changjoong; Shin, Chan Young; Hwang, Sun Wook; Yang, Young Duk; Shim, Won Sik; Park, Min-Young; Kim, Eunhee; Kim, Misook; Kim, Byung-Moon; Cho, Hawon; Shin, Youngki; Oh, Uhtaek
2006-03-01
TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1. Here, we identify Fas-associated factor 1 (FAF1) as a regulatory factor, which is coexpressed with and binds to TRPV1 in sensory neurons. When expressed heterologously, FAF1 reduces the responses of TRPV1 to capsaicin, acid, and heat, to the pharmacological level of native capsaicin receptor in sensory neurons. Furthermore, silencing FAF1 by RNA interference augments capsaicin-sensitive current in native sensory neurons. We therefore conclude that FAF1 forms an integral component of the vanilloid receptor complex and that it constitutively modulates the sensitivity of TRPV1 to various noxious stimuli in sensory neurons.
Neutron dose estimation in a zero power nuclear reactor
NASA Astrophysics Data System (ADS)
Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.
2016-10-01
This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.
X-Ray Attenuation and Absorption for Materials of Dosimetric Interest
National Institute of Standards and Technology Data Gateway
SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access) Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.
NASA Astrophysics Data System (ADS)
Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.
2013-06-01
Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckerman, K.F.
Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novelmore » computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.« less
2D dose distribution images of a hybrid low field MRI-γ detector
NASA Astrophysics Data System (ADS)
Abril, A.; Agulles-Pedrós, L.
2016-07-01
The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.
Kieselmann, Jennifer Petra; Kamerling, Cornelis Philippus; Burgos, Ninon; Menten, Martin J; Fuller, Clifton David; Nill, Simeon; Cardoso, M Jorge; Oelfke, Uwe
2018-06-08
Owing to its excellent soft-tissue contrast, magnetic resonance (MR) imaging has found an increased application in radiation therapy (RT). Harnessing these properties for treatment planning, automated segmentation methods can alleviate the manual workload burden to the clinical workflow. We investigated atlas-based segmentation methods of organs at risk (OARs) in the head and neck (H&N) region: one approach selecting the most similar atlas from a library of segmented images and two multi-atlas approaches. The latter were based on weighted majority voting and an iterative atlas-fusion approach called STEPS. We built the atlas library from pre-treatment T1-weighted MR images of 12 patients with manual contours of the parotids, spinal cord and mandible, delineated by a clinician. Following a leave-one-out cross-validation strategy, we measured geometric accuracy calculating Dice similarity coefficients (DSC), standard and 95% Hausdorff distances (HD and HD95), as well as the mean surface distance (MSD), whereby the manual contours served as the gold standard. To benchmark the algorithm, we determined the inter-expert variability (IEV) between three experts. To investigate the dosimetric effect of segmentation inaccuracies, we implemented an auto-planning strategy within the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). For each set of auto-segmented volumes of interest (VOIs), we generated a plan for a 9-beam step and shoot intensity modulated RT treatment, designed according to our institution's clinical H\\&N protocol. Superimposing the dose distributions on the gold standard VOIs, we calculated dose differences to OARs caused by contouring differences between auto-segmented and gold standard VOIs. We investigated the correlation between geometric and dosimetric differences. The mean DSC was larger than 0.8 and the mean MSD smaller than 2mm for the multi-atlas approaches, resulting in a geometric accuracy comparable to previously published results and within the range of the IEV. While dosimetric differences could be as large as 23% of the clinical goal, treatment plans fulfilled all imposed clinical goals for the gold standard OARs. Correlations between geometric and dosimetric measures were low with R<sup>2</sup><0.5. The geometric accuracy and ability to achieve clinically acceptable treatment plans indicate the suitability of using atlas-based contours for RT treatment planning purposes. The low correlations between geometric and dosimetric measures indicate that geometric measures alone are not sufficient to predict the dosimetric impact of segmentation inaccuracies on treatment planning for the data utilised in this study. Creative Commons Attribution license.
Word order processing in a second language: from VO to OV.
Erdocia, Kepa; Zawiszewski, Adam; Laka, Itziar
2014-12-01
Event-related potential studies on second language processing reveal that L1/L2 differences are due either to proficiency, age of acquisition or grammatical differences between L1 and L2 (Kotz in Brain Lang 109(2-3):68-74, 2009). However, the relative impact of these and other factors in second language processing is still not well understood. Here we present evidence from behavioral and ERP experiments on Basque sentence word order processing by L1Spanish-L2Basque early bilinguals (Age of Aquisition [Formula: see text] 3 years) with very high proficiency in their L2. Results reveal that these L2 speakers have a preference towards canonical Subject-Object-Verb word order, which they processed faster and with greater ease than non-canonical Object-Subject-Verb. This result converges with the processing preferences shown by natives and reported in Erdocia et al. (Brain Lang 109(1):1-17, 2009). However, electrophysiological measures associated to canonical (SOV) and non-canonical (OSV) sentences revealed a different pattern in the non-natives, as compared to that reported previously for natives. The non-native group elicited a P600 component that native group did not show when comparing S and O at sentence's second position. This pattern of results suggests that, despite high proficiency, non-native language processing recruits neural resources that are different from those employed in native languages.
Does oversizing an uncemented cup increase post-operative pain in primary total hip arthroplasty?
Barrow, Jonathan A; Divecha, Hiren M; Panchani, Sunil; Boden, Richard; Porter, Martyn L; Board, Tim N
2018-05-31
It has been suggested that one of the factors related to persistent post-operative pain following total hip arthroplasty (THA) is to over sizing of the acetabular component. In order to investigate this potential issue, we retrospectively analysed a series of consecutive uncemented THA. We assessed the incidence of persistent post-operative pain and the size difference between the implanted acetabular component and the native femoral head. A total of 265 consecutive THAs were retrospectively identified. Standardised pre-operative radiographs were analysed using validated techniques to determine the native femoral head diameter. Post-operative standardised radiographs were reviewed and the acetabular orientation determined. Patients were sent postal questionnaires regarding their outcome and level of pain. Questionnaires were returned by 169 patients (189 hips, 71% response rate). A total of 17 were excluded due to inadequate radiographs., leaving 172 THA in the study group. The mean native femoral head (NFH) size was 47 mm. The most common implanted acetabular component size was 52 mm. The mean difference in cup to NFH diameter (delta) was 5.7 mm (range - 6.1 to 15.4 mm; 95% CI 5.3-6.2 mm). A delta of > 6 mm was found to be significant for predicting persistent post-operative pain (RR = 1.81; 95% CI 1.1-3.1; P = 0.027). Our study confirms that a delta of > 6 mm is associated with an increased risk of persistent post-operative pain following THA. We recommend pre-operative templating in all uncemented THA to ensure the planned acetabular component is no more than 6 mm larger than the NFH diameter.
Vocabulary Learning in Primary School Children: Working Memory and Long-Term Memory Components
ERIC Educational Resources Information Center
Morra, Sergio; Camba, Roberta
2009-01-01
The goal of this study was to investigate which working memory and long-term memory components predict vocabulary learning. We used a nonword learning paradigm in which 8- to 10-year-olds learned picture-nonword pairs. The nonwords varied in length (two vs. four syllables) and phonology (native sounding vs. including one Russian phoneme). Short,…
In vitro physical stimulation of tissue-engineered and native cartilage.
Li, Kelvin W; Klein, Travis J; Chawla, Kanika; Nugent, Gayle E; Bae, Won C; Sah, Robert L
2004-01-01
Because of the limited availability of donor cartilage for resurfacing defects in articular surfaces, there is tremendous interest in the in vitro bioengineering of cartilage replacements for clinical applications. However, attaining mechanical properties in engineered cartilaginous constructs that approach those of native cartilage has not been previously achieved when constructs are cultured under free-swelling conditions. One approach toward stimulating the development of constructs that are mechanically more robust is to expose them to physical environments that are similar, in certain ways, to those encountered by native cartilage. This is a strategy motivated by observations in numerous short-term experiments that certain mechanical signals are potent stimulators of cartilage metabolism. On the other hand, excess mechanical loading can have a deleterious effect on cartilage. Culture conditions that include a physical stimulation component are made possible by the use of specialized bioreactors. This chapter addresses some of the issues involved in using bioreactors as integral components of cartilage tissue engineering and in studying the physical regulation of cartilage. We first consider the generation of cartilaginous constructs in vitro. Next we describe the rationale and design of bioreactors that can impart either mechanical deformation or fluid-induced mechanical signals.
NASA Astrophysics Data System (ADS)
Liu, Hongcheng; Dong, Peng; Xing, Lei
2017-08-01
Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution—the fractional volumes receiving a dose above 20 Gy for the spinal cord are reduced by more than 40% when compared to the alternative schemes, while maintaining the same PTV coverage. With physically more meaningful modeling of the inter-structural tradeoff, the reported technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters. The new formalism also opens new opportunities for incorporating prior knowledge to facilitate the treatment planning process.
Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas
2012-01-01
Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henegar, Alex J.; Gougousi, Theodosia, E-mail: gougousi@umbc.edu
Atomic layer deposition (ALD) was used to deposit Ta{sub 2}O{sub 5} on etched and native oxide-covered InAs(100) using pentakis dimethyl amino tantalum and H{sub 2}O at 200–300 °C. The transport and removal of the native oxides during the ALD process was investigated using x-ray photoelectron spectroscopy (XPS). Depositions above 200 °C on etched surfaces protected the interface from reoxidation. On native oxide-covered surfaces, depositions resulted in enhanced native oxide removal at higher temperatures. The arsenic oxides were completely removed above 250 °C after 3 nm of film growth, but some of the As{sub 2}O{sub 3} remained in the film at lower temperatures. Angle-resolved andmore » sputter depth profiling XPS confirmed indium and arsenic oxide migration into the Ta{sub 2}O{sub 5} film at deposition temperatures as low as 200 °C. Continuous removal of both arsenic and indium oxides was confirmed even after the deposition of several monolayers of a coalesced Ta{sub 2}O{sub 5} film, and it was demonstrated that native oxide transport is a prevalent component of the interface “clean-up” mechanism.« less
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.
Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam
2016-06-01
The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources
Ghorbani, Mahdi; Davenport, David
2016-01-01
Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558
Lee, Jung Ae; Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum
2014-01-01
To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4 DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4 DCT-based 30-70% maximal intensity projection (MIP) plan. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V(5 Gy), V(10 Gy), V(20 Gy), V(30 Gy), V(40 Gy), and V(50 Gy) of normal liver or lung in 4 DCT MIP plan were superior over free breathing CT plan. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT.
Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array
Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen
2015-01-01
The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552
Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.
Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun
2015-11-07
In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.
NASA Astrophysics Data System (ADS)
Oh, Dongryul; Hong, Chae-Seon; Ju, Sang Gyu; Kim, Minkyu; Koo, Bum Yong; Choi, Sungback; Park, Hee Chul; Choi, Doo Ho; Pyo, Hongryull
2017-01-01
A new technique for manufacturing a patient-specific dosimetric phantom using three-dimensional printing (PSDP_3DP) was developed, and its geometrical and dosimetric accuracy was analyzed. External body contours and structures of the spine and metallic fixation screws (MFS) were delineated from CT images of a patient with MFS who underwent stereotactic body radiation therapy for spine metastasis. Contours were converted into a STereoLithography file format using in-house program. A hollow, four-section PSDP was designed and manufactured using three types of 3DP to allow filling with a muscle-equivalent liquid and insertion of dosimeters. To evaluate the geometrical accuracy of PSDP_3DP, CT images were obtained and compared with patient CT data for volume, mean density, and Dice similarity coefficient for contours. The dose distribution in the PSDP_3DP was calculated by applying the same beam parameters as for the patient, and the dosimetric characteristics of the PSDP_3DP were compared with the patient plan. The registered CT of the PSDP_3DP was well matched with that of the real patient CT in the axial, coronal, and sagittal planes. The physical accuracy and dosimetric characteristics of PSDP_3DP were comparable to those of a real patient. The ability to manufacture a PSDP representing an extreme patient condition was demonstrated.
Lee, Rae Hyeong; Jeong, Hae Won; Lee, Jin Kyu; Choi, Choong Hyeok
2017-01-01
In total knee arthroplasty (TKA), the position of the patellar component can affect patellar tracking. However, the patellar component cannot always replicate the original high point of the patella because of anatomical variance. This study investigated whether altering the highest point of the patella can affect outcomes of primary TKA, especially in patients having a patella with a far-medialized median ridge. A retrospective review was performed for 177 knees (143 patients) treated with primary TKA between July 2011 and March 2014. Group 1 (34 knees) had the patellar component displaced over three millimeters from the median ridge, while Group 2 (143 knees) had the patellar component placed on the original median ridge position. The one-year follow-up outcomes were reviewed, including: patellar tilt angle, Knee Society Score, Feller Patellar Score, and modified Kujala Anterior Knee Pain Score. Mean (±standard deviation) displacement of the patellar component in Group 1 was 3.97±0.97mm lateral to the original position of the median ridge, with a significant decrease in lateral patellar tilt angle (P<0.001). Lateral patellar tilt showed a positive correlation with the medialization of the patellar component (P<0.001, r=0.401). Ability to rise from a chair was better in Group 1 (P=0.025). There were no other between-group differences in other clinical outcomes. There should be no need for the patellar component to replicate the original highest point of the native patella in primary TKA. Copyright © 2016 Elsevier B.V. All rights reserved.
Exploring the Y Chromosomal Ancestry of Modern Panamanians.
Grugni, Viola; Battaglia, Vincenza; Perego, Ugo Alessandro; Raveane, Alessandro; Lancioni, Hovirag; Olivieri, Anna; Ferretti, Luca; Woodward, Scott R; Pascale, Juan Miguel; Cooke, Richard; Myres, Natalie; Motta, Jorge; Torroni, Antonio; Achilli, Alessandro; Semino, Ornella
2015-01-01
Geologically, Panama belongs to the Central American land-bridge between North and South America crossed by Homo sapiens >14 ka ago. Archaeologically, it belongs to a wider Isthmo-Colombian Area. Today, seven indigenous ethnic groups account for 12.3% of Panama's population. Five speak Chibchan languages and are characterized by low genetic diversity and a high level of differentiation. In addition, no evidence of differential structuring between maternally and paternally inherited genes has been reported in isthmian Chibchan cultural groups. Recent data have shown that 83% of the Panamanian general population harbour mitochondrial DNAs (mtDNAs) of Native American ancestry. Considering differential male/female mortality at European contact and multiple degrees of geographical and genetic isolation over the subsequent five centuries, the Y-chromosome Native American component is expected to vary across different geographic regions and communities in Panama. To address this issue, we investigated Y-chromosome variation in 408 modern males from the nine provinces of Panama and one indigenous territory (the comarca of Kuna Yala). In contrast to mtDNA data, the Y-chromosome Native American component (haplogroup Q) exceeds 50% only in three populations facing the Caribbean Sea: the comarca of Kuna Yala and Bocas del Toro province where Chibchan languages are spoken by the majority, and the province of Colón where many Kuna and people of mixed indigenous-African-and-European descent live. Elsewhere the Old World component is dominant and mostly represented by western Eurasian haplogroups, which signal the strong male genetic impact of invaders. Sub-Saharan African input accounts for 5.9% of male haplotypes. This reflects the consequences of the colonial Atlantic slave trade and more recent influxes of West Indians of African heritage. Overall, our findings reveal a local evolution of the male Native American ancestral gene pool, and a strong but geographically differentiated unidirectional sex bias in the formation of local modern Panamanian populations.
Exploring the Y Chromosomal Ancestry of Modern Panamanians
Grugni, Viola; Battaglia, Vincenza; Perego, Ugo Alessandro; Raveane, Alessandro; Lancioni, Hovirag; Olivieri, Anna; Ferretti, Luca; Woodward, Scott R.; Pascale, Juan Miguel; Cooke, Richard; Myres, Natalie; Motta, Jorge; Torroni, Antonio; Achilli, Alessandro; Semino, Ornella
2015-01-01
Geologically, Panama belongs to the Central American land-bridge between North and South America crossed by Homo sapiens >14 ka ago. Archaeologically, it belongs to a wider Isthmo-Colombian Area. Today, seven indigenous ethnic groups account for 12.3% of Panama’s population. Five speak Chibchan languages and are characterized by low genetic diversity and a high level of differentiation. In addition, no evidence of differential structuring between maternally and paternally inherited genes has been reported in isthmian Chibchan cultural groups. Recent data have shown that 83% of the Panamanian general population harbour mitochondrial DNAs (mtDNAs) of Native American ancestry. Considering differential male/female mortality at European contact and multiple degrees of geographical and genetic isolation over the subsequent five centuries, the Y-chromosome Native American component is expected to vary across different geographic regions and communities in Panama. To address this issue, we investigated Y-chromosome variation in 408 modern males from the nine provinces of Panama and one indigenous territory (the comarca of Kuna Yala). In contrast to mtDNA data, the Y-chromosome Native American component (haplogroup Q) exceeds 50% only in three populations facing the Caribbean Sea: the comarca of Kuna Yala and Bocas del Toro province where Chibchan languages are spoken by the majority, and the province of Colón where many Kuna and people of mixed indigenous-African-and-European descent live. Elsewhere the Old World component is dominant and mostly represented by western Eurasian haplogroups, which signal the strong male genetic impact of invaders. Sub-Saharan African input accounts for 5.9% of male haplotypes. This reflects the consequences of the colonial Atlantic slave trade and more recent influxes of West Indians of African heritage. Overall, our findings reveal a local evolution of the male Native American ancestral gene pool, and a strong but geographically differentiated unidirectional sex bias in the formation of local modern Panamanian populations. PMID:26636572
Termites and Forest Management in Australia
Don McG Ewart
1991-01-01
Termites have long been regarded as major pests of Australian forests. Drawing together research on termite ecology and mammal conservation, this paper argues that this perception is wrong; termites are a vital component of native forests.
Structural basis for the slow digestion property of native cereal starches.
Zhang, Genyi; Venkatachalam, Mahesh; Hamaker, Bruce R
2006-11-01
Native cereal starches are ideal slowly digestible starches (SDS), and the structural basis for their slow digestion property was investigated. The shape, size, surface pores and channels, and degree of crystallinity of starch granules were not related to the proportion of SDS, while semicrystalline structure was critical to the slow digestion property as evidenced by loss of SDS after cooking. The high proportion of SDS in cereal starches, as compared to potato starch, was related to their A-type crystalline structure with a lower degree of perfection as indicated by a higher amount of shortest A chains with a degree of polymerization (DP) of 5-10. The A-type amorphous lamellae, an important component of crystalline regions of native cereal starches, also affect the amount of SDS as shown by a reduction of SDS in lintnerized maize starches. These observations demonstrate that the supramolecular A-type crystalline structure, including the distribution and perfection of crystalline regions (both crystalline and amorphous lamellae), determines the slow digestion property of native cereal starches.
NASA Astrophysics Data System (ADS)
Bhattacharya, Susmita; Ghosh, Sudeshna; Dasgupta, Swagata; Roy, Anushree
2013-10-01
The difference in molecular structure of native HEWL and its fibrils, grown at a pH value near physiological pH 7.4 and at a pH value just above the pI, 10.7 in presence and absence of Cu(II) ions, is discussed. We focus on differences between the molecular structure of the native protein and fibrils using principal component analysis of their Raman spectra. The overlap areas of the scores of each species are used to quantify the difference in the structure of the native HEWL and fibrils in different environments. The overall molecular structures are significantly different for fibrils grown at two pH values. However, in presence of Cu(II) ions, the fibrils have similarities in their molecular structures at these pH environments. Spectral variation within each species, as obtained from the standard deviations of the scores in PCA plots, reveals the variability in the structure within a particular species.
Zhang, Ji-Bin; Zhao, Li-Rong; Cui, Tian-Xiang; Chen, Xie-Wan; Yang, Qiao; Zhou, Yi-Bing; Chen, Zheng-Tang; Zhang, Shao-Xiang; Sun, Jian-Guo
2018-01-01
The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring. PMID:29556300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiyagarajan, Rajesh; Vikraman, S; Maragathaveni, S
2015-06-15
Purpose: To quantify the dosimetric accuracy of respiratory gated stereotactic body radiation therapy delivery using dynamic thorax phantom. Methods: Three patients with mobile target (2 lung, 1liver) were chosen. Retrospective 4DCT image sets were acquired for using Varian RPM system. An in-house MATLAB program was designed for MIP, MinIP and AvgIP generation. ITV was contoured on MIP image set for lung patients and on MinIP for liver patient. Dynamic IMRT plans were generated on selected phase bin image set in Eclipse (v10.0) planning system. CIRS dynamic thorax phantom was used to perform the dosimetric quality assurance. Patient breathing pattern filemore » from RPM system was converted to phantom compatible file by an in-house MATLAB program. This respiratory pattern fed to the CIRS dynamic thorax phantom. 4DCT image set was acquired for this phantom using patient breathing pattern. Verification plans were generated using patient gating window and delivered on the phantom. Measurements were carried out using with ion chamber and EBT2 film. Exposed films were analyzed and evaluated in FilmQA software. Results: The stability of gated output in comparison with un-gated output was within 0.5%. The Ion chamber measured and TPS calculated dose compared for all the patients. The difference observed was 0.45%, −0.52% and −0.54 for Patient 1, Patient2 and Patient 3 respectively.Gamma value evaluated from EBT film shows pass rates from 92.41% to 99.93% for 3% dose difference and 3mm distance to agreement criteria. Conclusion: Dosimetric accuracy of respiratory gated SBRT delivery for lung and liver was dosimetrically acceptable. The Ion chamber measured dose was within 0.203±0.5659% of the expected dose. Gamma pass rates were within 96.63±3.84% of the expected dose.« less
Shirey, Robert J; Wu, Hsinshun Terry
2018-01-01
This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. Central axis dose values extracted from each of the calculated plans were compared to dose values measured with a calibrated PTW Markus chamber at various depths in RW3 solid water. Dose was measured at 12 depths, ranging from the surface to 5 cm, for each of the 18 different air gaps, which ranged from 0.5 to 28 cm. TPS dosimetric accuracy, defined as the ratio of calculated dose relative to the measured dose, was plotted as functions of depth and air gap for the pencil beam and Monte Carlo dose algorithms. The accuracy of the TPS pencil beam dose algorithm was found to be clinically unacceptable at depths shallower than 3 cm with air gaps wider than 10 cm, and increased range shifter thickness only added to the dosimetric inaccuracy of the pencil beam algorithm. Each configuration calculated with Monte Carlo was determined to be clinically acceptable. Further comparisons of the Monte Carlo dose algorithm to the measured spread-out Bragg Peaks of multiple fields used during machine commissioning verified the dosimetric accuracy of Monte Carlo in a variety of beam energies and field sizes. Discrepancies between measured and TPS calculated dose values can mainly be attributed to the ability (or lack thereof) of the TPS pencil beam dose algorithm to properly model secondary proton scatter generated in the range shifter. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ryan; Han Gang; Sarangkasiri, Siriporn
2013-01-01
Purpose: To report clinical and dosimetric factors predictive of radiation pneumonitis (RP) in patients receiving lung stereotactic body radiation therapy (SBRT) from a series of 240 patients. Methods and Materials: Of the 297 isocenters treating 263 patients, 240 patients (n=263 isocenters) had evaluable information regarding RP. Age, gender, current smoking status and pack-years, O{sub 2} use, Charlson Comorbidity Index, prior lung radiation therapy (yes/no), dose/fractionation, V{sub 5}, V{sub 13}, V{sub 20}, V{sub prescription}, mean lung dose, planning target volume (PTV), total lung volume, and PTV/lung volume ratio were recorded. Results: Twenty-nine patients (11.0%) developed symptomatic pneumonitis (26 grade 2, 3more » grade 3). The mean V{sub 20} was 6.5% (range, 0.4%-20.2%), and the average mean lung dose was 5.03 Gy (0.547-12.2 Gy). In univariable analysis female gender (P=.0257) and Charlson Comorbidity index (P=.0366) were significantly predictive of RP. Among dosimetric parameters, V{sub 5} (P=.0186), V{sub 13} (P=.0438), and V{sub prescription} (where dose = 60 Gy) (P=.0128) were significant. There was only a trend toward significance for V{sub 20} (P=.0610). Planning target volume/normal lung volume ratio was highly significant (P=.0024). In multivariable analysis the clinical factors of female gender, pack-years smoking, and larger gross internal tumor volume and PTV were predictive (P=.0094, .0312, .0364, and .052, respectively), but no dosimetric factors were significant. Conclusions: Rate of symptomatic RP was 11%. Our mean lung dose was <600 cGy in most cases and V20 <10%. In univariable analysis, dosimetric factors were predictive, while tumor size (or tumor/lung volume ratio) played a role in multivariable and univariable and analysis, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J; Gu, X; Lu, W
Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidatemore » and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will provide dosimetrically important label selection strategy in multi-atlas segmentation. CPRIT grant RP150485.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rachana; Al-Hallaq, Hania; Pelizzari, Charles A.
2003-12-31
The purpose of this study was to compare conventional low-dose-rate prostate brachytherapy dosimetric quality parameters with their biological effective dose (BED) counterparts. To validate a model for transformation from conventional dose to BED, the postimplant plans of 31 prostate brachytherapy patients were evaluated using conventional dose-volume histogram (DVH) quality endpoints and analogous BED-DVH endpoints. Based on CT scans obtained 4 weeks after implantation, DVHs were computed and standard dosimetric endpoints V100 (volume receiving 100% of the prescribed dose), V150, V200, HI (1-[V150/V100]), and D90 (dose that 90% of the target volume received) were obtained for quality analysis. Using known andmore » reported transformations, dose grids were transformed to BED-early ({alpha}/{beta} = 10 Gy) and BED-late ({alpha}/{beta} = 3 Gy) grids, and the same dosimetric endpoints were analyzed. For conventional, BED-early and BED-late DVHs, no differences in V100 were seen (0.896, 0.893, and 0.894, respectively). However, V150 and V200 were significantly higher for both BED-early (0.582 and 0.316) and BED-late (0.595 and 0.337), compared with the conventional (0.539 and 0.255) DVHs. D90 was significantly lower for the BED-early (103.1 Gy) and BED-late transformations (106.9 Gy) as compared with the conventional (119.5 Gy) DVHs. The conventional prescription parameter V100 is the same for the corresponding BED-early and BED-late transformed DVHs. The toxicity parameters V150 and V200 are slightly higher using the BED transformations, suggesting that the BED doses are somewhat higher than predicted using conventional DVHs. The prescription/quality parameter D90 is slightly lower, implying that target coverage is lower than predicted using conventional DVHs. This methodology can be applied to analyze BED dosimetric endpoints to improve clinical outcome and reduce complications of prostate brachytherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, A; Han, B; Bush, K
Purpose: Dosimetric verification of VMAT/SBRT is currently performed on one or two planes in a phantom with either film or array detectors. A robust and easy-to-use 3D dosimetric tool has been sought since the advent of conformal radiation therapy. Here we present such a strategy for independent 3D VMAT/SBRT plan verification system by a combined use of EPID and cloud-based Monte Carlo (MC) dose calculation. Methods: The 3D dosimetric verification proceeds in two steps. First, the plan was delivered with a high resolution portable EPID mounted on the gantry, and the EPID-captured gantry-angle-resolved VMAT/SBRT field images were converted into fluencemore » by using the EPID pixel response function derived from MC simulations. The fluence was resampled and used as the input for an in-house developed Amazon cloud-based MC software to reconstruct the 3D dose distribution. The accuracy of the developed 3D dosimetric tool was assessed using a Delta4 phantom with various field sizes (square, circular, rectangular, and irregular MLC fields) and different patient cases. The method was applied to validate VMAT/SBRT plans using WFF and FFF photon beams (Varian TrueBeam STX). Results: It was found that the proposed method yielded results consistent with the Delta4 measurements. For points on the two detector planes, a good agreement within 1.5% were found for all the testing fields. Patient VMAT/SBRT plan studies revealed similar level of accuracy: an average γ-index passing rate of 99.2± 0.6% (3mm/3%), 97.4± 2.4% (2mm/2%), and 72.6± 8.4 % ( 1mm/1%). Conclusion: A valuable 3D dosimetric verification strategy has been developed for VMAT/SBRT plan validation. The technique provides a viable solution for a number of intractable dosimetry problems, such as small fields and plans with high dose gradient.« less
Sung, KiHoon; Choi, Young Eun; Lee, Kyu Chan
2017-06-01
This is a dosimetric study to identify a simple geometric indicator to discriminate patients who meet the selection criterion for heart-sparing radiotherapy (RT). The authors proposed a cardiac risk index (CRI), directly measurable from the CT images at the time of scanning. Treatment plans were regenerated using the CT data of 312 consecutive patients with left-sided breast cancer. Dosimetric analysis was performed to estimate the risk of cardiac mortality using cardiac dosimetric parameters, such as the relative heart volumes receiving ≥25 Gy (heart V 25 ). For each CT data set, in-field heart depth (HD) and in-field heart width (HW) were measured to generate the geometric parameters, including maximum HW (HW max ) and maximum HD (HD max ). Seven geometric parameters were evaluated as candidates for CRI. Receiver operating characteristic (ROC) curve analyses were used to examine the overall discriminatory power of the geometric parameters to select high-risk patients (heart V 25 ≥ 10%). Seventy-one high-risk (22.8%) and 241 low-risk patients (77.2%) were identified by dosimetric analysis. The geometric and dosimetric parameters were significantly higher in the high-risk group. Heart V 25 showed the strong positive correlations with all geometric parameters examined (r > 0.8, p < 0.001). The product of HD max and HW max (CRI) revealed the largest area under the curve (AUC) value (0.969) and maintained 100% sensitivity and 88% specificity at the optimal cut-off value of 14.58 cm 2 . Cardiac risk index proposed as a simple geometric indicator to select high-risk patients provides useful guidance for clinicians considering optimal implementation of heart-sparing RT. © 2016 The Royal Australian and New Zealand College of Radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L; Allan, E; Putten, M Van
Purpose: To investigate the dose contributions of scattered electrons from dental amalgams during head and neck radiotherapy, and to evaluate the protective role of dosimetric dental stents during treatment to prevent oral mucositis. Methods: A phantom was produced to accurately simulate the oral cavity and head. The oral cavity consisted of a tissue equivalent upper and lower jaw and complete set of teeth. A set of 4 mm ethylene copolymer dosimetric stents was made for the upper and lower teeth. Five removable gold caps were fitted to apposing right molars, and the phantom was crafted to accomodate horizontal and verticalmore » film for 2D dosimetry and NanoDot dosimeter for recording point doses. The head was simulated using a small cylindrical glass water bath. CT simulation was performed on the phantom with and without metal fittings and, in each case, with and without the dental stent. The CT image sets were imported into Eclipse treatment planning system for contouring and treatment planning, and a 9-field IMRT treatment plan was developed for each scenario. These plans were delivered using a Varian TrueBeam linear accelerator. Doses were recorded using GafChromic EBT2 films and NanoDot dosimeters. Results: The measurements revealed a 43% relative increase in dose measured adjacent to the metal fixtures in the horizontal plane without the use of the dental stent. This equates to a total dose of 100 Gy to the oral mucosa during a standard course of definitive radiotherapy. To our knowledge, this is the first dosimetric analysis of dental stents using an anatomically realistic phantom and modern beam arrangement. Conclusion: These results support the use of dosimetric dental stents in head and neck radiotherapy for patients with metallic dental fixtures as a way to effectively reduce dose to nearby mucosal surfaces and, hence, reduce the risk and severity of mucositis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffy, Olivia; Forde, Elizabeth; Leech, Michelle, E-mail: leechm@tcd.ie
With margin reduction common in head and neck radiotherapy, it is critical that the dosimetric effects of setup deviations are quantified. With past studies focusing on the quantification of positional and volumetric changes of organs at risk (OARs), this study aimed to measure the dose delivered to these the parotid gland (PG) and pharyngeal constrictor muscles (PCMs) using cone beam computed tomography (CBCT). Furthermore, this investigation sought to establish a potential time trend of change in dose delivered to target volumes secondary to ascertaining the need for daily image guidance (IG) to reduce the dose burden to these important OARs.more » Intensity modulated radiotherapy (IMRT) plans for 5 locally advanced head and neck patients' plans were created and mapped to weekly CBCTs. Each plan was recalculated without heterogeneity correction allowing for dosimetric comparison. Dosimetric endpoints recorded to assess the effect of positional variation were as per ICRU 83 and included D{sub 95} and D{sub 98} for the target volumes, mean dose (MD) and V{sub 30} {sub Gy} for the PGs, and V{sub 50} {sub Gy} and MD for the PCMs. Results were deemed statistically significant if p < 0.05. No significant time trends were established for these OARs. A significant decrease in V{sub 50} {sub Gy} was observed for all PCMs (p < 0.001) on all CBCTs relative to the original plan. Regarding target volumes, a highly significant decrease in MD (MD = 20 Gy, CI: −20.310 to −19.820) in D{sub 98} of the high-dose planning target volume (PTV [70 Gy]; PTVD{sub 98%} = 70 Gy) for case 3 was found (p ≤ 0.001). A nonpredictable, yet significant dosimetric effect was found. A clinically acceptable balance must be achieved between OAR dosimetry and target coverage as can be achieved by frequent IG.« less
Ponmalar, Retna; Manickam, Ravikumar; Ganesh, K M; Saminathan, Sathiyan; Raman, Arun; Godson, Henry Finlay
2017-01-01
The modern radiotherapy techniques impose new challenges for dosimetry systems with high precision and accuracy in in vivo and in phantom dosimetric measurements. The knowledge of the basic characterization of a dosimetric system before patient dose verification is crucial. This incites the investigation of the potential use of nanoDot optically stimulated luminescence dosimeter (OSLD) for application in radiotherapy with therapeutic photon beams. Measurements were carried out with nanoDot OSLDs to evaluate the dosimetric characteristics such as dose linearity, dependency on field size, dose rate, energy and source-to-surface distance (SSD), reproducibility, fading effect, reader stability, and signal depletion per read out with cobalt-60 (60 Co) beam, 6 and 18 MV therapeutic photon beams. The data acquired with OSLDs were validated with ionization chamber data where applicable. Good dose linearity was observed for doses up to 300 cGy and above which supralinear behavior. The standard uncertainty with field size observed was 1.10% ± 0.4%, 1.09% ± 0.34%, and 1.2% ± 0.26% for 6 MV, 18 MV, and 60 Co beam, respectively. The maximum difference with dose rate was 1.3% ± 0.4% for 6 MV and 1.4% ± 0.4% for 18 MV photon beams. The largest variation in SSD was 1.5% ± 1.2% for 60 Co, 1.5% ± 0.9% for 6 MV, and 1.5% ± 1.3% for 18 MV photon beams. The energy dependence of OSL response at 18 MV and 60 Co with 6 MV beam was 1.5% ± 0.7% and 1.7% ± 0.6%, respectively. In addition, good reproducibility, stability after the decay of transient signal, and predictable fading were observed. The results obtained in this study indicate the efficacy and suitability of nanoDot OSLD for dosimetric measurements in clinical radiotherapy.
Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C
2015-03-01
To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Dong, P; Xing, L
Purpose: Traditional radiotherapy inverse planning relies on the weighting factors to phenomenologically balance the conflicting criteria for different structures. The resulting manual trial-and-error determination of the weights has long been recognized as the most time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the inter-structural dosimetric tradeoff among with physically more meaningful quantities to simplify the search for a clinically sensible plan. Methods: A permissible dosimetric uncertainty is introduced for each of the structures to balance their conflicting dosimetric requirements. The inverse planning is then formulated as a convex feasibilitymore » problem, which aims to generate plans with acceptable dosimetric uncertainties. A sequential procedure (SP) is derived to decompose the model into three submodels to constrain the uncertainty in the planning target volume (PTV), the critical structures, and all other structures to spare, sequentially. The proposed technique is applied to plan a liver case and a head-and-neck case and compared with a conventional approach. Results: Our results show that the strategy is able to generate clinically sensible plans with little trial-and-error. In the case of liver IMRT, the fractional volumes to liver and heart above 20Gy are found to be 22% and 10%, respectively, which are 15.1% and 33.3% lower than that of the counterpart conventional plan while maintaining the same PTV coverage. The planning of the head and neck IMRT show the same level of success, with the DVHs for all organs at risk and PTV very competitive to a counterpart plan. Conclusion: A new inverse planning framework has been established. With physically more meaningful modeling of the inter-structural tradeoff, the technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters and opens new opportunities of incorporating prior knowledge to facilitate the treatment planning process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, K; Alopoor, H
Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less
Koh, Vicky Y; Buhari, Shaik A; Tan, Poh Wee; Tan, Yun Inn; Leong, Yuh Fun; Earnest, Arul; Tang, Johann I
2014-06-01
Currently, there are two described methods of catheter insertion for women undergoing multicatheter interstitial accelerated partial breast irradiation (APBI). These are a volume based template approach (template) and a non-template ultrasound guidance freehand approach (non-template). We aim to compare dosimetric endpoints between the template and non-template approach. Twenty patients, who received adjuvant multicatheter interstitial APBI between August 2008 to March 2010 formed the study cohort. Dosimetric planning was based on the RTOG 04-13 protocol. For standardization, the planning target volume evaluation (PTV-Eval) and organs at risk were contoured with the assistance of the attending surgeon. Dosimetric endpoints include D90 of the PTV-Eval, Dose Homogeneity Index (DHI), V200, maximum skin dose (MSD), and maximum chest wall dose (MCD). A median of 18 catheters was used per patient. The dose prescribed was 34 Gy in 10 fractions BID over 5 days. The average breast volume was 846 cm(3) (526-1384) for the entire cohort and there was no difference between the two groups (p = 0.6). Insertion time was significantly longer for the non-template approach (mean 150 minutes) compared to the template approach (mean: 90 minutes) (p = 0.02). The planning time was also significantly longer for the non-template approach (mean: 240 minutes) compared to the template approach (mean: 150 minutes) (p < 0.01). The template approach yielded a higher D90 (mean: 95%) compared to the non-template approach (mean: 92%) (p < 0.01). There were no differences in DHI (p = 0.14), V200 (p = 0.21), MSD (p = 0.7), and MCD (p = 0.8). Compared to the non-template approach, the template approach offered significant shorter insertion and planning times with significantly improved dosimetric PTV-Eval coverage without significantly compromising organs at risk dosimetrically.
Dickey, Mike; Roa, Wilson; Drodge, Suzanne; Ghosh, Sunita; Murray, Brad; Scrimger, Rufus; Gabos, Zsolt
2015-01-01
The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van׳t Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R100%, p < 0.0001), the maximum dose 2cm away from the PTV (D2cm, p = 0.005), and van׳t Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R50%, p = 0.05). VMAT was significantly better than CA for R100% (p < 0.0001), R50% (p < 0.0001), D2cm (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J
2015-01-01
Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412
Native language shapes automatic neural processing of speech.
Intartaglia, Bastien; White-Schwoch, Travis; Meunier, Christine; Roman, Stéphane; Kraus, Nina; Schön, Daniele
2016-08-01
The development of the phoneme inventory is driven by the acoustic-phonetic properties of one's native language. Neural representation of speech is known to be shaped by language experience, as indexed by cortical responses, and recent studies suggest that subcortical processing also exhibits this attunement to native language. However, most work to date has focused on the differences between tonal and non-tonal languages that use pitch variations to convey phonemic categories. The aim of this cross-language study is to determine whether subcortical encoding of speech sounds is sensitive to language experience by comparing native speakers of two non-tonal languages (French and English). We hypothesized that neural representations would be more robust and fine-grained for speech sounds that belong to the native phonemic inventory of the listener, and especially for the dimensions that are phonetically relevant to the listener such as high frequency components. We recorded neural responses of American English and French native speakers, listening to natural syllables of both languages. Results showed that, independently of the stimulus, American participants exhibited greater neural representation of the fundamental frequency compared to French participants, consistent with the importance of the fundamental frequency to convey stress patterns in English. Furthermore, participants showed more robust encoding and more precise spectral representations of the first formant when listening to the syllable of their native language as compared to non-native language. These results align with the hypothesis that language experience shapes sensory processing of speech and that this plasticity occurs as a function of what is meaningful to a listener. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddleman, L.E.
1980-01-01
Shrubs are an important component of plant communities in southeastern Montana. Re-establishment of the majority of native shrubs by seed on surface coal mine lands has not been generally successful. Field plantings at the Rosebud Mine of 25 shrub and half-shrub species were initiated in 1978 using seed from native populations. Three species Atriplex canescens, Atriplex nuttallii and Ceratoids lanata establish numerous seedlings in both wet and dry years. No emergence was obtained from 12 species.
A synthetic system for expression of components of a bacterial microcompartment.
Sargent, Frank; Davidson, Fordyce A; Kelly, Ciarán L; Binny, Rachelle; Christodoulides, Natasha; Gibson, David; Johansson, Emelie; Kozyrska, Katarzyna; Lado, Lucia Licandro; Maccallum, Jane; Montague, Rachel; Ortmann, Brian; Owen, Richard; Coulthurst, Sarah J; Dupuy, Lionel; Prescott, Alan R; Palmer, Tracy
2013-11-01
In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the Salmonella propanediol utilization (Pdu) microcompartment. The genes chosen included pduA, -B, -J, -K, -N, -T and -U, and each was shown to produce protein in an Escherichia coli chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an in vivo protease accessibility assay suggested that a PduD-GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.
FLUKA simulation studies on in-phantom dosimetric parameters of a LINAC-based BNCT
NASA Astrophysics Data System (ADS)
Ghal-Eh, N.; Goudarzi, H.; Rahmani, F.
2017-12-01
The Monte Carlo simulation code, FLUKA version 2011.2c.5, has been used to estimate the in-phantom dosimetric parameters for use in BNCT studies. The in-phantom parameters of a typical Snyder head, which are necessary information prior to any clinical treatment, have been calculated with both FLUKA and MCNPX codes, which exhibit a promising agreement. The results confirm that FLUKA can be regarded as a good alternative for the MCNPX in BNCT dosimetry simulations.
Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R
2017-02-01
The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.
Jacoboski, L I; Mendonça-Lima, A de; Hartz, S M
2016-04-19
Replacement of native habitats by tree plantations has increased dramatically in Brazil, resulting in loss of structural components for birds, such as appropriate substrates for foraging and nesting. Tree plantations can also reduce faunal richness and change the composition of bird species. This study evaluated the structure of avian communities in eucalyptus plantations of different ages and in a native forest. We classified species as habitat specialists or generalists, and assessed if the species found in eucalyptus plantations are a subset of the species that occur in the native forest. Forty-one sampling sites were evaluated, with three point counts each, in a native forest and in eucalyptus plantations of four different ages. A total of 71 bird species were identified. Species richness and abundance were higher in the native forest, reflecting the greater heterogeneity of the habitat. The composition of bird species also differed between the native forest and plantations. The species recorded in the plantations represented a subset of the species of the native forest, with a predominance of generalist species. These species are more tolerant of habitat changes and are able to use the plantations. The commercial plantations studied here can serve as a main or occasional habitat for these generalists, especially for those that are semi-dependent on edge and forest. The bird species most affected by silviculture are those that are typical of open grasslands, and those that are highly dependent on well-preserved forests.
Linking of total elbow prosthesis during surgery; a biomechanical analysis.
De Vos, Maarten J; Wagener, Marc L; Hendriks, Jan C M; Eygendaal, Denise; Verdonschot, Nico
2013-09-01
Presently, 2 types of elbow prostheses are used: unlinked and linked. The Latitude total elbow prosthesis allows the surgeon to decide during the implantation whether the prosthesis is placed unlinked or linked, and whether the native radial head is retained, resected, or replaced. The purpose of this study is to assess and to compare the varus and valgus laxity of the unlinked and linked version of the latitude total elbow prosthesis with: (1) the native radial head preserved, (2) the native radial head excised, and (3) the native radial head replaced by a radial head component. Biomechanical testing was performed on 14 fresh-frozen upper limb specimens. Linking the prosthesis predominantly influences the valgus laxity of the elbow. Linking the Latitude total elbow prosthesis results in increased valgus stability. In the linked version of the total elbow prosthesis, the radial head only plays a small part in both valgus and varus stability. An unlinked situation is not advised in absence of a native radial head or in case of inability to replace the radial head. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Humic Substances in Organic Wastes and their Effects on Amended Soils
NASA Astrophysics Data System (ADS)
Senesi, N.; Ciavatta, C.; Plaza, C.
2009-04-01
Soil humic substances (HS) are universally recognized to play a major role in a wide number of agronomic and environmental processes. For example, soil HS are able to bind mineral particles together, thus promoting a good soil structure, constitute an important source of nutrients for plants and microorganisms, contribute largely to the acid-base buffering capacity of soils, and exert a marked control on the biological availability, physico-chemical behavior, and environmental fate of toxic metal ions and xenobiotics. For these reasons, the knowledge of the short- and long-term effects of organic amendments on the status, quality, and reactivity of indigenous soil HS is of paramount importance. The objective of this presentation is to provide an overview of the chemical and physico-chemical data available in the literature for the evaluation of the effects of organic wastes of various origin and nature used as soil amendments on the composition, structure, and chemical reactivity of native soil HS. In general, HS-like components of organic wastes are typically characterized by a relatively larger presence of aliphatic, amide, and polysaccharide structures, simple structural components of wide molecular heterogeneity, smaller contents of oxygen, acidic functional groups, and organic free radicals, and smaller degrees of aromatic ring polycondensation, polymerization, and humification than native soil HS. Further, with respect to native soil HS, HS-like fractions from organic wastes generally exhibit smaller binding capacities and affinities for metal ions and organic xenobiotics. Appropriate treatment processes of raw organic wastes able to produce environmentally safe and agronomically efficient soil amendments, such as composting, yield HS-like fractions characterized by chemical and physico-chemical features that approach those of native soil HS. In general, aliphatic, polysaccharide, and lignin structures and S- and N-containing groups of the HS-like fractions of organic wastes can be partially incorporated into native soil HS determining modifications at various extents of their composition, structure, and chemistry. The changes occurred in amended soil HS are more evident when untreated organic materials are used. However, with increasing time after land application, the effects observed become less and less apparent with a clear trend to approach the molecular properties typical of native soil HS.
Synthesis and characterization of CaF2:Dy nanophosphor for dosimetric application
NASA Astrophysics Data System (ADS)
Bhadane, Mahesh S.; Patil, B. J.; Dahiwale, S. S.; Kulkarni, M. S.; Bhatt, B. C.; Bhoraskar, V. N.; Dhole, S. D.
2015-06-01
In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF2:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF2:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF2:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF2:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.
Determination of dosimetric quantities in pediatric abdominal computed tomography scans*
Jornada, Tiago da Silva; da Silva, Teógenes Augusto
2014-01-01
Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okladnikova, N.; Pesternikova, V.; Sumina, M.
1998-12-01
Phase 1 of Project 2.3, a short-term collaborative Feasibility Study, was funded for 12 months starting on 1 February 1996. The overall aim of the study was to determine the practical feasibility of using the dosimetric and clinical data on the MAYAK worker population to study the deterministic effects of exposure to external gamma radiation and to internal alpha radiation from inhaled plutonium. Phase 1 efforts were limited to the period of greatest worker exposure (1948--1954) and focused on collaboratively: assessing the comprehensiveness, availability, quality, and suitability of the Russian clinical and dosimetric data for the study of deterministic effects;more » creating an electronic data base containing complete clinical and dosimetric data on a small, representative sample of MAYAK workers; developing computer software for the testing of a currently used health risk model of hematopoietic effects; and familiarizing the US team with the Russian diagnostic criteria and techniques used in the identification of Chronic Radiation Sickness.« less
Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.
Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno
2015-04-07
We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.
Cottrell, J E; Vaughan, S P; Connolly, T; Sing, L; Moodley, D J; Russell, K
2009-08-01
Conversion of lowland woodland to agricultural land and resulting fragmentation in Britain has been ongoing since Neolithic times. To counteract this decline, plantations of native species, often based on non-British planting stock, have been established. This may ultimately be detrimental to the integrity of the native gene pool. We explore the genetic and ecological factors influencing the success of components of the local pollen pool, including the effect of a non-native planting on an ancient woodland population of wild cherry. Wild cherry exhibits gametophytic self-incompatibility (GSI) and vegetative reproduction, both of which may be determinants of paternal success. The majority (61%) of the successful pollen originated from within the study site with a maximum pollen transfer distance of 694 m. There was a distinct departure from random mating, with over half the successful pollen originating from trees which occur within 100 m of the mother tree. Self-incompatibility, clonality, tree size and proximity to the mother tree were all found to influence paternal success. Kinship of pollen gametes within a maternal progeny was highest when a mother tree was surrounded by a large number of ramets of a single, compatible clone consisting of large, adult trees. Although the contribution from the non-native plantation is currently low, it is likely that this will increasingly contribute to the progeny of the adjacent ancient population as it matures. The results clearly show that in self-incompatible species, such as P. avium, close neighbours may be pollinated by very different components of the local pollen pool.
Intra- and inter-specific variation in alarm pheromone produced by Solenopsis fire ants.
Hu, L; Balusu, R R; Zhang, W-Q; Ajayi, O S; Lu, Y-Y; Zeng, R-S; Fadamiro, H Y; Chen, L
2017-12-10
Some fire ants of the genus Solenopsis have become invasive species in the southern United States displacing native species by competition. Although the displacement pattern seems clear, the mechanisms underlying competitive advantage remain unclear. The ability of ant workers to produce relatively larger amount of alarm pheromone may correspond to relative greater fitness among sympatric fire ant species. Here we report on quantitative intra-specific (i.e. inter-caste) and inter-specific differences of alarm pheromone component, 2-ethyl-3,6-dimethylpyrazine (2E36DMP), for several fire ant species. The alarm pheromone component was extracted by soaking ants in hexane for 48 h and subsequently quantified by gas chromatography-mass spectrometry at single ion monitoring mode. Solenopsis invicta workers had more 2E36DMP than male or female alates by relative weight; individual workers, however, contained significantly less pyrazine. We thus believe that alarm pheromones may serve additional roles in alates. Workers of Solenopsis richteri, S. invicta, and hybrid (S. richteri × S. invicta) had significantly more 2E36DMP than a native fire ant species, Solenopsis geminata. The hybrid fire ant had significantly less 2E36DMP than the two parent species, S. richteri and S. invicta. It seems likely that higher alarm pheromone content may have favored invasion success of exotic fire ants over native species. We discuss the potential role of inter-specific variation in pyrazine content for the relationship between the observed shifts in the spatial distributions of the three exotic fire ant species in southern United States and the displacement of native fire ant species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Sen; Li, Guangjun; Wang, Maojie
The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less
LiMgPO 4:Tb,B - A new sensitive OSL phosphor for dosimetry
NASA Astrophysics Data System (ADS)
Dhabekar, Bhushan; Menon, S. N.; Alagu Raja, E.; Bakshi, A. K.; Singh, A. K.; Chougaonkar, M. P.; Mayya, Y. S.
2011-08-01
Optically Stimulated Luminescence (OSL) technique has emerged as a serious competitor to Thermally Stimulated Luminescence (TSL) technique in various dosimetric applications, especially after the development of crystalline alumina (Al 2O 3:C) doped with carbon. Since then, several attempts are being made to develop other possible materials for OSL based dosimetric applications. Efforts conducted in our laboratory in this direction have led to the development of a new phosphor, Lithium Magnesium Phosphate doped with terbium and boron (LiMgPO 4:Tb,B). This phosphor is prepared by solid-state diffusion method involving conventional air furnaces with operating temperature 1000 °C and easily amenable to large scale production without compromising primary dosimetric advantages. In this work we present some of the dosimetric OSL characteristics of this phosphor. The phosphor exhibits a main TSL peak at 250 °C. The phosphor also emits OSL, when the irradiated phosphor is stimulated with 470 nm light with the OSL sensitivity 1.3 times that of commercially available Al 2O 3:C. Photoluminescence (PL) emission spectrum consists of sharp lines characteristics of Tb 3+ emission. The OSL discs made out of this phosphor are reusable up to at least 50 cycles, the phosphor exhibits dose linearity up to 1 kGy. Minimum detectable dose is found to be 20 μGy and fading of the OSL signal is found to be about 16% in four days, after which the OSL signal stabilizes.
Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart
2016-09-01
For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.
Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V
2013-01-01
Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621
Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose
NASA Astrophysics Data System (ADS)
Aboelezz, E.; Hassan, G. M.
2018-04-01
The dosimetric properties of the simplest amino acid "glycine"- using EPR technique- were investigated in comparison to reference standard alanine dosimeter. The EPR spectrum of glycine at room temperature is complex, but immediately after irradiation, it appears as a triplet hyperfine structure probably due to the dominant contribution of the (•CH2COO-) radical. The dosimetric peak of glycine is at g-factor 2.0026 ± 0.0015 and its line width is 9 G at large modulation amplitude (7 G). The optimum microwave was studied and was found to be as alanine 8 mW; the post-irradiation as well as the dose rate effects were discussed. Dosimetric peak intensity of glycine fades rapidly to be about one quarter of its original value during 20 days for dried samples and it stabilizes after that. The dose response study in an intermediate range (2-1000 Gy) reveals that the glycine SNR is about 2 times more than that of alanine pellets when measured immediately after irradiation and 4 times more than that of glycine itself after 22 days of irradiation. The effect of energy dependence was studied and interpreted theoretically by calculation of mass energy absorption coefficient. The calculated combined uncertainties for glycine and alanine are nearly the same and were found to be 2.42% and 2.33%, respectively. Glycine shows interesting dosimetric properties in the range of ionizing radiation doses investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N
Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less
Do immigrants working illegally reduce the natives' legal employment? Evidence from Italy.
Venturini, A
1999-01-01
This paper examines how immigrants working illegally in the shadow economy affect the legal employment of native and foreign workers in the official economy of Italy. The data set used was provided by the Central Statistical Office and includes information regarding the units of labor employed both in official production and in underground production; employment in the latter is subdivided into native workers and foreign workers. Estimates were then made as to how "legal employment" has reacted to changes in "illegal employment", with special reference to the effect of the foreign component of "illegal labor". The results of the cross sector-time series analysis of the demand for legal labor in the Italian economy from 1980 to 1995 showed that the increase of illegal units of labor produces a reduction in the use of legal labor, albeit a very limited one. An analysis by sectors shows that the competitive effects of illegal foreign workers is not homogeneous and is strongest in the agricultural sector while complementarity between the two categories of labor is evident in the nontradable services sector. When comparing the number of effects of illegal foreign and illegal native workers, illegal native workers are lower than the illegal foreign workers. Despite regularization in Italy and the lack of flexibility in the labor market, neither regular nor nonregular foreign workers have begun to openly displace native workers.
Glyphosate (Ab)sorption by Shoots and Rhizomes of Native versus Hybrid Cattail (Typha).
Zheng, Tianye; Sutton, Nora B; de Jager, Pim; Grosshans, Richard; Munira, Sirajum; Farenhorst, Annemieke
2017-11-01
Wetlands in the Prairie Pothole Region of North America are integrated with farmland and contain mixtures of herbicide contaminants. Passive nonfacilitated diffusion is how most herbicides can move across plant membranes, making this perhaps an important process by which herbicide contaminants are absorbed by wetland vegetation. Prairie wetlands are dominated by native cattail (Typha latifolia) and hybrid cattail (Typha x glauca). The objective of this batch equilibrium study was to compare glyphosate absorption by the shoots and rhizomes of native versus hybrid cattails. Although it has been previously reported for some pesticides that passive diffusion is greater for rhizome than shoot components, this is the first study to demonstrate that the absorption capacity of rhizomes is species dependent, with the glyphosate absorption being significantly greater for rhizomes than shoots in case of native cattails, but with no significant differences in glyphosate absorption between rhizomes and shoots in case of hybrid cattails. Most importantly, glyphosate absorption by native rhizomes far exceeded that of the absorption occurring for hybrid rhizomes, native shoots and hybrid shoots. Glyphosate has long been used to manage invasive hybrid cattails in wetlands in North America, but hybrid cattail expansions continue to occur. Since our results showed limited glyphosate absorption by hybrid shoots and rhizomes, this lack of sorption may partially explain the poorer ability of glyphosate to control hybrid cattails in wetlands.
Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Si-Fa
2012-01-01
Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.
ENDOR-Induced EPR of Disordered Systems: Application to X-Irradiated Alanine.
Kusakovskij, Jevgenij; Maes, Kwinten; Callens, Freddy; Vrielinck, Henk
2018-02-15
The electron paramagnetic resonance (EPR) spectra of radiation-induced radicals in organic solids are generally composed of multiple components that largely overlap due to their similar weak g anisotropy and a large number of hyperfine (HF) interactions. Such properties make these systems difficult to study using standard cw EPR spectroscopy even in single crystals. Electron-nuclear double-resonance (ENDOR) spectroscopy is a powerful and widely used complementary technique. In particular, ENDOR-induced EPR (EIE) experiments are useful for separating the overlapping contributions. In the present work, these techniques were employed to study the EPR spectrum of stable radicals in X-irradiated alanine, which is widely used in dosimetric applications. The principal values of all major proton HF interactions of the dominant radicals were determined by analyzing the magnetic field dependence of the ENDOR spectrum at 50 K, where the rotation of methyl groups is frozen. Accurate simulations of the EPR spectrum were performed after the major components were separated using an EIE analysis. As a result, new evidence in favor of the model of the second dominant radical was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayyas, E; Vance, S; Brown, S
Purpose: To determine in a prospective study, the correlation between radiation dose/volume, clinical toxicities and patient-reported, quality of life (QOL) resulting from lung SBRT. Methods: For 106 non-small cell lung cancer (NSCLC) patients receiving SBRT (12 Gy × 4), symptoms including cough, dyspnea, fatigue and pneumonitis were measured at baseline (before treatment), after treatment and 3, 6, and 12 months post-treatment. Toxicity was graded from zero to five. Dosimetric parameters such as the MLD, D10%, D20%, and lung subvolumes (V10 and V20) were obtained from the treatment plan. Dosimetric parameters and number of patients demonstrating toxicity ≥ grade 2 weremore » tabulated. Linear regression analysis was used to calculate correlations between MLD and D10, D20, V10 and V20. Results: The percentages of patients with > grade 2 pneumonitis, fatigue, cough, and dyspnea over 3 to 12 months increased from 0.0% to 3.5%, 3.2% to 10.5%, 4.3% to 8.3%, and 10.8% to 18.8%, respectively. Computed dose indices D10%, D20% were 7.9±4.8 Gy and 3.0±2.3 Gy, respectively. MLD ranged from 0.34 Gy up to 9.9 Gy with overall average 3.0±1.7 Gy. The averages of the subvolumes V10 and V20 were respectively 8.9±5.3% and 3.0±2.4%. The linear regression analysis showed that V10 and D10 demonstrated the strongest correlation to MLD; R2= 0.92 and 0.87, respectively. V20, and D20 were also strongly correlated with MLD; R2 = 0.81 and 0.84 respectively. A correlation was also found to exist between MLD > 2 Gy and ≥ grade 2 cough and dyspnea. Subvolume values for 2Gy MLD were 5.3% for V10 and 2% for V20. Conclusion: Dosimetric indices: MLD ≥ 2Gy, D10 ≥ 5Gy and V10 ≥ 5% of the total lung volume were predictive of > grade 2 cough and dyspnea QOL data. The QOL results are a novel component of this work. acknowledgement of the Varian grant support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Tsair-Fwu, E-mail: tflee@cc.kuas.edu.t; Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Chao, Pei-Ju
2011-04-01
The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality indexmore » (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm{sup 3} (median 3.39 cm{sup 3}), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 {+-} 0.23 vs. 1.94 {+-} 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 {+-} 10.9 vs. 64.9 {+-} 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 {+-} 0.03 vs. 1.09 {+-} 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 {+-} 0.45. Plan analysis using PQI (HT 0.37 {+-} 0.12 vs. DCAT 0.65 {+-} 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 {+-} 7.4 vs. 4.6 {+-} 0.9 min; p < 0.01) and consumed more monitor units (16772 {+-} 3803 vs. 1776 {+-} 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis confirmed the dosimetric advantage of HT, although not all indices revealed a better outcome for HT. Whether this dosimetric advantage translates into a clinical benefit deserves further investigation.« less
Date palm pollen allergoid: characterization of its chemical-physical and immunological properties.
Mistrello, G; Harfi, H; Roncarolo, D; Kwaasi, A; Zanoni, D; Falagiani, P; Panzani, R
2008-01-01
Date palm (DP) pollen can cause allergic symptoms in people living in different countries. Specific immunotherapy with allergenic extracts by subcutaneous route is effective to cure allergic people. However, the risk of side effects has led to explore safer therapeutic modalities. The aim of our work was to evaluate IgE cross-reactivity between DP and autochthonous palm (European fan palm, EFP) pollen extracts, to chemically modify DP extract with potassium cyanate in order to obtain an allergoid, and to characterize it. By radioallergosorbent test inhibition, immunoblotting (IB) and skin prick test, in vitro and in vivo allergenic activities of native and modified DP extracts were compared. By SDS-PAGE and IB, we compared the protein profile and IgE-binding capacity of both native and modified DP, as well as of EFP extracts. By IB inhibition, IgE cross-reactivity of native DP and EFP extracts was evaluated. By ELISA, the capacity of modified DP-induced IgG to react with native DP extract was determined. Radioallergosorbent test inhibition, IB and skin prick test results demonstrated that modified DP was significantly less allergenic than native DP extract. The SDS-PAGE profile showed that potassium cyanate treatment of DP extract did not alter the molecular weight of its components. In addition, no difference was observed between native DP and EFP extracts. Subsequent IB inhibition data evidenced the existence of a strong IgE cross-reactivity between native DP and EFP extracts. ELISA results indicated that the administration of modified DP in mice was able to induce specific IgG also recognizing native DP extract. Modified DP extract (allergoid) seems to be a good candidate for immunotherapy of patients affected by specific allergy. 2007 S. Karger AG, Basel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R; Mannheim Medical Center, Mannheim, Baden-Wurttemberg; Bai, W
2015-06-15
Purpose: quantification and modelling of the dosimetric impact of the treatment couch in Monaco Treatment Planning System. Methods: The attenuation characteristics of couchtop EP was evaluated for two different photon acceleration potentials (6MV and 10MV) for a field size of (10×10) cm2. Phantom positions in A-B direction: on the left half, in the center and on the right half of the couch. Dose measurements of couch attenuation were performed at gantry angles from 180° to 122°, using a 0.125cc semiflex ionization chamber isocentrically placed in the center of a homogeneous cylindric sliced RW3 phantom. Each experimental setup was first measuredmore » on the LINAC and then reproduced in the TPS. By adjusting the relative-to-water electron density (ED) values of the couch, the measured attenuation was replicated. The simulated results were evaluated by comparing the measurements and simulations. Results: Without the couch model included the maximum difference between measured and calculated dose was 5.5% (5.1%) and 6.6% (6.1%) for 2 mm and 5 mm voxel size, when the phantom was positioned on the left (center). The couch model was included in the TPS with a uniform ED of 0.18 or a 2 component model with a fiber ED= 0.6 and foam core ED= 0.1. After including the treatment couch, the mean dose attenuation was reduced from 2.8% without couch included to (0.0, 0.8, −0.2, 0.6)%. The 4 different values represent the 1 and 2 components model and 2 and 5 mm voxel grid size. Conclusion: For a uniform relative-to-water couch electron density of 0.18 a good agreement between measured and calculated dose distributions was obtained for all different energies, voxel grid spacings and gantry angles. Therefore, we conclude that the Monaco couch model accurately describes the dose perturbations due to the presence of the patient couch and should therefore be used during treatment planning. This project is supported by Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Hebei Personnel of China.« less
The internal dosimetry code PLEIADES.
Fell, T P; Phipps, A W; Smith, T J
2007-01-01
The International Commission on Radiological Protection (ICRP) has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public, including children and pregnant or lactating women. The calculation of these coefficients divides naturally into two distinct parts-the biokinetic and dosimetric. This paper describes in detail the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES. A summary of the dosimetric treatment is included.
The spectral applications of Beer-Lambert law for some biological and dosimetric materials
NASA Astrophysics Data System (ADS)
Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.
2014-08-01
The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.
Native gel analysis for RISC assembly.
Kawamata, Tomoko; Tomari, Yukihide
2011-01-01
Small-interfering RNAs (siRNAs) and microRNAs (miRNAs) regulate expression of their target mRNAs via the RNA-induced silencing complex (RISC). A core component of RISC is the Argonaute (Ago) protein, which dictates the RISC function. In Drosophila, miRNAs and siRNAs are generally loaded into Ago1-containing RISC (Ago1-RISC) and Ago2-containing RISC (Ago2-RISC), respectively. We developed a native agarose gel system to directly detect Ago1-RISC, Ago2-RISC, and their precursor complexes. Methods presented here will provide powerful tools to biochemically dissect the RISC assembly pathways.
Thermal inactivation of oral polio vaccine: contribution of RNA and protein inactivation.
Rombaut, B; Verheyden, B; Andries, K; Boeyé, A
1994-01-01
Heating the Sabin strains of poliovirus at 42 to 45 degrees C caused inactivation, loss of native antigen, and release of the viral RNA (vRNA). The loss of virion infectivity exceeded the loss of vRNA infectivity (as measured by transfection) by roughly 2 log10. Pirodavir inhibited the loss of native antigen and RNA release and reduced the loss of virion infectivity to the same level as the loss of vRNA infectivity. Thermoinactivation thus involves an RNA and a protein component, and pirodavir protected only against the latter. PMID:8083982
Phytochemical, morphological, and biological investigations of propolis from Central Chile.
Valcic, S; Montenegro, G; Mujica, A M; Avila, G; Franzblau, S; Singh, M P; Maiese, W M; Timmermann, B N
1999-01-01
Propolis from central Chile was investigated for its plant origin by microscopical analysis of pollen grains and leaf fragments found in the sample. The pollen grains that appear with significant higher frequency in the sample corresponded to four native and two introduced species, whereas leaf fragments corresponded to four native species. Seventeen phenolic compounds that belong to the phenylpropane, benzaldehyde, dihydrobenzofuran, or benzopyran classes, were isolated from an organic extract that was found to have a moderate growth inhibitory activity against Mycobacterium avium, M. tuberculosis, and two strains of Staphylococcus aureus. The components responsible for activity were determined.
Creating biomaterials with spatially organized functionality.
Chow, Lesley W; Fischer, Jacob F
2016-05-01
Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.
Herzog, Thaddeus A; Pokhrel, Pallav
2012-12-01
This study tests hypotheses concerning ethnic disparities in daily cigarette smoking rates, nicotine dependence, cessation motivation, and knowledge and past use of cessation methods (e.g., counseling) and products (e.g., nicotine patch) in a multiethnic sample of smokers in Hawaii. Previous research has revealed significant differences in smoking prevalence among Native Hawaiians, Filipinos, Japanese, and Caucasians in Hawaii. However, no study has examined differences in dependence and cessation-related knowledge and practices among smokers representing these ethnic groups. Participants were recruited through newspaper advertisement as part of a larger smoking cessation intervention study. Participants (N = 919; M age = 45.6, SD = 12.7; 48 % women) eligible to participate provided self-report data through mail and telephone. Participants included 271 self-identified Native Hawaiians, 63 Filipinos, 316 Caucasians, 145 "East Asians" (e.g., Japanese, Chinese), and 124 "other" (e.g., Hispanic, African-American). Pair-wise comparisons of means, controlling for age, gender, income, education, and marital status, indicated that Native Hawaiian smokers reported significantly higher daily smoking rates and higher levels of nicotine dependence compared to East Asians. Native Hawaiian smokers reported significantly lower motivation to quit smoking than Caucasians. Further, Filipino and Native Hawaiian smokers reported lesser knowledge of cessation methods and products, and less frequent use of these methods and products than Caucasians. The results suggest that Native Hawaiian and Filipino smokers could be underserved with regard to receiving cessation-related advice, and may lack adequate access to smoking cessation products and services. In addition, cessation interventions tailored for Native Hawaiian smokers could benefit from a motivational enhancement component.
Guayule resin detection and influence on guayule rubber
USDA-ARS?s Scientific Manuscript database
Guayule (Parthenium argentatum) is a natural rubber (cis-1,4-polyisoprene) producing crop, native to North America. Guayule also produces organic resins, complex mixtures of terpenes, triglycerides, guayulins, triterpenoids and other components. During natural rubber extraction, guayule resins can b...
Materese, Christopher Kroboth; Goldmon, Christa Charisse; Papoian, Garegin A
2008-08-05
The native state dynamics of the small globular serine protease inhibitor eglin c has been studied in a long 336 ns computer simulation in explicit solvent. We have elucidated the energy landscape explored during the course of the simulation by using Principal Component Analysis. We observe several basins in the energy landscape in which the system lingers for extended periods. Through an iterative process we have generated a tree-like hierarchy of states describing the observed dynamics. We observe a range of divergent contact types including salt bridges, hydrogen bonds, hydrophilic interactions, and hydrophobic interactions, pointing to the frustration between competing interactions. Additionally, we find evidence of competing water-mediated interactions. Divergence in water-mediated interactions may be found to supplement existing direct contacts, but they are also found to be independent of such changes. Water-mediated contacts facilitate interactions between residues of like charge as observed in the simulation. Our results provide insight into the complexity of the dynamic native state of a globular protein and directly probe the residual frustration in the native state.
Native and sodium dodecyl sulfate-capillary gel electrophoresis of proteins on a single microchip.
Tsai, Shuo-Wen; Loughran, Michael; Suzuki, Hiroaki; Karube, Isao
2004-02-01
Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.
Tomé, Hudson Vaner V; Barbosa, Wagner F; Martins, Gustavo F; Guedes, Raul Narciso C
2015-04-01
The risks imposed by novel insecticides, mainly bioinsecticides, are largely unknown despite their increased use and their perceived environmental safety, which is based on their natural origin. Furthermore, unlike honeybees, native pollinator species have received little attention. In the present study, the lethal and sublethal effects of the neonicotinoid imidacloprid and the bioinsecticide spinosad were assessed in the stingless bee species Meliponaquadrifasciata, an important native pollinator in the Neotropical region. The adult stingless bee workers exhibited high oral insecticide susceptibility, with LD50s of 23.54 and 12.07 ng a.i./bee for imidacloprid and spinosad, respectively. Imidacloprid also impaired worker respiration and overall group activity and flight, while spinosad significantly impaired only worker flight despite exhibiting higher oral toxicity to adult workers than imidacloprid. These findings indicate the hazardous nature not only of imidacloprid but also the bioinsecticide spinosad to adult workers of the native pollinator M. quadrifasciata. Therefore, bioinsecticides should not be exempted from risk assessment analysis due to their lethal and sublethal components. Copyright © 2014 Elsevier Ltd. All rights reserved.
Townsend, Claire K M; Miyamoto, Robin E S; Antonio, Mapuana; Zhang, Guangxing; Paloma, Diane; Basques, DeAnna; Braun, Kathryn L; Kaholokula, Joseph Keawe'aimoku
2016-06-01
A previously translated Diabetes Prevention Program Lifestyle Intervention (DPP-LI) was adapted for delivery as a worksite-based intervention, called PILI@Work, to address obesity disparities in Native Hawaiians/Pacific Islanders. This study examined the effectiveness of PILI@Work and factors associated with weight loss at post-intervention. Overweight/obese employees of 15 Native Hawaiian-serving organizations received the 3-month component of PILI@Work. Assessments included weight, systolic/diastolic blood pressure, physical activity and functioning, fat intake, locus of weight control, social support, and self-efficacy. Weight, systolic/diastolic blood pressure, physical functioning, physical activity frequency, fat intake, family support, and eating self-efficacy improved from pre- to post-intervention. Regression analysis indicated that worksite type, decreased diastolic blood pressure, increased physical activity, and more internalized locus of weight control were significantly associated with 3-month weight loss. PILI@Work initiated weight loss in Native Hawaiians/Pacific Islanders. DPP-LI translated to worksite settings and tailored for specific populations can be effective for addressing obesity.
Catelli, María Laura; Alvarez-Iglesias, Vanesa; Gómez-Carballa, Alberto; Mosquera-Miguel, Ana; Romanini, Carola; Borosky, Alicia; Amigo, Jorge; Carracedo, Angel; Vullo, Carlos; Salas, Antonio
2011-08-30
The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome. Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country. Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence.
2011-01-01
Background The genetic background of Argentineans is a mosaic of different continental ancestries. From colonial to present times, the genetic contribution of Europeans and sub-Saharan Africans has superposed to or replaced the indigenous genetic 'stratum'. A sample of 384 individuals representing different Argentinean provinces was collected and genotyped for the first and the second mitochondrial DNA (mtDNA) hypervariable regions, and selectively genotyped for mtDNA SNPs. This data was analyzed together with additional 440 profiles from rural and urban populations plus 304 from Native American Argentineans, all available from the literature. A worldwide database was used for phylogeographic inferences, inter-population comparisons, and admixture analysis. Samples identified as belonging to hg (hg) H2a5 were sequenced for the entire mtDNA genome. Results Phylogenetic and admixture analyses indicate that only half of the Native American component in urban Argentineans might be attributed to the legacy of extinct ancestral Argentineans and that the Spanish genetic contribution is slightly higher than the Italian one. Entire H2a5 genomes linked these Argentinean mtDNAs to the Basque Country and improved the phylogeny of this Basque autochthonous clade. The fingerprint of African slaves in urban Argentinean mtDNAs was low and it can be phylogeographically attributed predominantly to western African. The European component is significantly more prevalent in the Buenos Aires province, the main gate of entrance for Atlantic immigration to Argentina, while the Native American component is larger in North and South Argentina. AMOVA, Principal Component Analysis and hgs/haplotype patterns in Argentina revealed an important level of genetic sub-structure in the country. Conclusions Studies aimed to compare mtDNA frequency profiles from different Argentinean geographical regions (e.g., forensic and case-control studies) should take into account the important genetic heterogeneity of the country in order to prevent false positive claims of association in disease studies or inadequate evaluation of forensic evidence. PMID:21878127
Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty.
Lee, Yong Seuk; Howell, Stephen M; Won, Ye-Yeon; Lee, O-Sung; Lee, Seung Hoon; Vahedi, Hamed; Teo, Seow Hui
2017-11-01
A systematic review was conducted to answer the following questions: (1) Does kinematically aligned (KA) total knee arthroplasty (TKA) achieve clinical outcomes comparable to those of mechanically aligned (MA) TKA? (2) How do the limb, knee, and component alignments differ between KA and MA TKA? (3) How is joint line orientation angle (JLOA) changed from the native knee in KA TKA compared to that in MA TKA? Nine full-text articles in English that reported the clinical and radiological outcomes of KA TKA were included. Five studies had a control group of patients who underwent MA TKA. Data on patient demographics, clinical scores, and radiological results were extracted. There were two level I, one level II, three level III, and three level IV studies. Six of the nine studies used patient-specific instrumentation, one study used computer navigation, and two studies used manual instrumentation. The clinical outcomes of KA TKA were comparable or superior to those of MA TKA with a minimum 2-year follow-up. Limb and knee alignment in KA TKA was similar to those in MA TKA, and component alignment showed slightly more varus in the tibial component and slightly more valgus in the femoral component. The JLOA in KA TKA was relatively parallel to the floor compared to that in the native knee and not oblique (medial side up and lateral side down) compared to that in MA TKA. The implant survivorship and complication rate of the KA TKA were similar to those of the MA TKA. Similar or better clinical outcomes were produced by using a KA TKA at early-term follow-up and the component alignment differed from that of MA TKA. KA TKA seemed to restore function without catastrophic failure regardless of the alignment category up to midterm follow-up. The JLOA in KA TKA was relatively parallel to the floor similar to the native knee compared to that in MA TKA. The present review of nine published studies suggests that relatively new kinematic alignment is an acceptable and alternative alignment to mechanical alignment, which is better understood. Further validation of these findings requires more randomized clinical trials with longer follow-up. Level II.
Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi
2015-01-01
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittauer, K; Deraniyagala, R; Li, J
2014-06-01
Purpose: Different breath-hold (BH) maneuvers (abdominal breathing vs. chest breathing) during CT simulation and treatment can lead to chest wall positional variation. The purpose of this study is to quantify the variation of active breathing control (ABC)-assisted BH and estimate its dosimetric impact for left-sided whole-breast radiotherapy with a real-time optical tracking system (OTS). Methods: Seven breast cancer patients were included. An in-house OTS tracked an infrared (IR) marker affixed over the xiphoid process of the patient at CT simulation and throughout the treatment course to measure BH variations. Correlation between the IR marker and the breast was studied formore » dosimetric purposes. The positional variations of 860 BHs were retrospectively incorporated into treatment plans to assess their dosimetric impact on breast and cardiac organs (heart and left anterior descending artery [LAD]). Results: The mean intrafraction variations were 2.8 mm, 2.7 mm, and 1.6 mm in the anteroposterior (AP), craniocaudal (CC), and mediolateral (ML) directions, respectively. Mean stability in any direction was within 1.5 mm. A general trend of BH undershoot at treatment relative to CT simulation was observed with an average of 4.4 mm, 3.6 mm, and 0.1 mm in the AP, CC, and ML directions, respectively. Undershoot up to 12.6 mm was observed for individual patients. The difference between the planned and delivered dose to breast targets was negligible. The average planned/delivered mean heart doses, mean LAD doses, and max LAD doses were 1.4/2.1, 7.4/15.7, and 18.6/31.0 Gy, respectively. Conclusion: Systematic undershoot was observed in ABC-assisted BHs from CT simulation to treatment. Its dosimetric impact on breast coverage was minimized with image guidance, but the benefits of cardiac organ sparing were degraded. A real-time tracking system can be used in junction with the ABC device to improve BH reproducibility.« less
Al-Jundi, J; Li, W B; Abusini, M; Tschiersch, J; Hoeschen, C; Oeh, U
2011-06-01
High indoor radon concentrations in Jordan result in internal exposures of the residents due to the inhalation of radon and its short-lived progeny. It is therefore important to quantify the annual effective dose and further the radiation risk to the radon exposure. This study describes the methodology and the biokinetic and dosimetric models used for calculation of the inhalation doses exposed to radon progeny. The regional depositions of aerosol particles in the human respiratory tract were firstly calculated. For the attached progeny, the activity median aerodynamic diameters of 50 nm, 230 nm and 2500 nm were chosen to represent the nucleation, accumulation and coarse modes of the aerosol particles, respectively. For the unattached progeny, the activity median thermodynamic diameter of 1 nm was chosen to represent the free progeny nuclide in the room air. The biokinetic models developed by the International Commission on Radiological Protection (ICRP) were used to calculate the nuclear transformations of radon progeny in the human body, and then the dosimetric model was applied to estimate the organ equivalent doses and the effective doses with the specific effective energies derived from the mathematical anthropomorphic phantoms. The dose conversion coefficient estimated in this study was 15 mSv WLM(-1) which was in the range of the values of 6-20 mSv WLM(-1) reported by other investigators. Implementing the average indoor radon concentration in Jordan, the annual effective doses were calculated to be 4.1 mSv y(-1) and 0.08 mSv y(-1) due to the inhalation of radon progeny and radon gas, respectively. The total annual effective dose estimated for Jordanian population was 4.2 mSv y(-1). This high annual effective dose calculated by the dosimetric approach using ICRP biokinetic and dosimetric models resulted in an increase of a factor of two in comparison to the value by epidemiological study. This phenomenon was presented by the ICRP in its new published statement on radon. Copyright © 2011 Elsevier Ltd. All rights reserved.
SU-E-T-467: Monte Carlo Dosimetric Study of the New Flexisource Co-60 High Dose Rate Source.
Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F
2012-06-01
Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V.). This study aims to obtain quality dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Penelope2008 and GEANT4 Monte Carlo codes were used to dosimetrically characterize this source. Water composition and mass density was that recommended by AAPM. Due to the high energy of the 60Co, dose for small distances cannot be approximated by collisional kerma. Therefore, we have considered absorbed dose to water for r<0.75 cm and collisional kerma from 0.75
Zhang, Hualin; Gopalakrishnan, Mahesh; Lee, Plato; Kang, Zhuang; Sathiaseelan, Vythialingam
2016-09-08
The purpose of this study was to evaluate the dosimetric impact of cylinder size in high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT). Sample plans of HDR VCBT in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm incre-ment were created and analyzed. The doses were prescribed either at the 0.5cm depth with 5.5 Gy for 4 fractions or at the cylinder surface with 8.8 Gy for 4 frac-tions, in various treatment lengths. A 0.5 cm shell volume called PTV_Eval was contoured for each plan and served as the target volume for dosimetric evaluation. The cumulative and differential dose volume histograms (c-DVH and d-DVH), mean doses (D-mean) and the doses covering 90% (D90), 10% (D10), and 5% (D5) of PTV_Eval were calculated. In the 0.5 cm depth regimen, the DVH curves were found to have shifted toward the lower dose zone when a larger cylinder was used, but in the surface regimen the DVH curves shifted toward the higher dose zone as the cylinder size increased. The D-means of the both regimens were between 6.9 and 7.8 Gy and dependent on the cylinder size but independent of the treatment length. A 0.5 cm variation of diameter could result in a 4% change of D-mean. Average D90s were 5.7 (ranging from 5.6 to 5.8 Gy) and 6.1 Gy (from 5.7 to 6.4 Gy), respectively, for the 0.5 cm and surface regimens. Average D10 and D5 were 9.2 and 11 Gy, respectively, for the 0.5 cm depth regimen, and 8.9 and 9.7 Gy, respectively, for the surface regimen. D-mean, D90, D10, and D5 for other prescription doses could be calculated from the lookup tables of this study. Results indicated that the cylinder size has moderate dosimetric impact, and that both regimens are comparable in dosimetric quality. © 2016 The Authors.
Dosimetric challenges of small animal irradiation with a commercial X-ray unit.
Kuess, Peter; Bozsaky, Eva; Hopfgartner, Johannes; Seifritz, Gerhard; Dörr, Wolfgang; Georg, Dietmar
2014-12-01
A commercial X-ray unit was recently installed at the Medical University Vienna for partial and whole body irradiation of small experimental animals. For 200 kV X-rays the dose deviations with respect to the reference dose measured in the geometrical center of the potential available field size was investigated for various experimental setup plates used for mouse irradiations. Furthermore, the HVL was measured in mm Al and mm Cu at 200 kV for two types of filtration. Three different setup constructions for small animal irradiation were dosimetrically characterized, covering field sizes from 9×20 mm2 to 210×200 mm2. Different types of detectors were investigated. Additionally LiF:MG,Ti TLD chips were used for mouse in-vivo dosimetry. The use of an additional 0.5 mm Cu filter reduced the deviation of the dose between each irradiation position on the setup plates. Multiple animals were irradiated at the same time using an individual setup plate for each experimental purpose. The dose deviations of each irradiation position to the center was measured to be ±4% or better. The depth dose curve measured in a solid water phantom was more pronounced for smaller field sizes. The comparison between estimated dose and measured dose in a PMMA phantom regarding the dose decline yielded in a difference of 3.9% at 20 mm depth. In-vivo measurements in a mouse snouts irradiation model confirmed the reference dosimetry, accomplished in PMMA phantoms, in terms of administered dose and deviation within different points of measurement. The outlined experiments dealt with a wide variety of dosimetric challenges during the installation of a new X-ray unit in the laboratory. The depth dose profiles measured for different field sizes were in good agreement with literature data. Different field sizes and spatial arrangement of the animals (depending on each purpose) provide additional challenges for the dosimetric measurements. Thorough dosimetric commissioning has to be performed before a new experimental setup is approved for biological experiments. Copyright © 2014. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Jonathan; Sulman, Erik P.; Jhingran, Anuja
Purpose: To determine the incidence of duodenal toxicity in patients receiving intensity modulated radiation therapy (IMRT) for treatment of para-aortic nodes and to identify dosimetric parameters predictive of late duodenal toxicity. Methods and Materials: We identified 105 eligible patients with gynecologic malignancies who were treated with IMRT for gross metastatic disease in the para-aortic nodes from January 1, 2005, through December 31, 2009. Patients were treated to a nodal clinical target volume to 45 to 50.4 Gy with a boost to 60 to 66 Gy. The duodenum was contoured, and dosimetric data were exported for analysis. Duodenal toxicity was scoredmore » according to Radiation Therapy Oncology Group criteria. Univariate Cox proportional hazards analysis and recursive partitioning analysis were used to determine associations between dosimetric variables and time to toxicity and to identify the optimal threshold that separated patients according to risk of toxicity. Results: Nine of the 105 patients experienced grade 2 to grade 5 duodenal toxicity, confirmed by endoscopy in all cases. The 3-year actuarial rate of any duodenal toxicity was 11.7%. A larger volume of the duodenum receiving 55 Gy (V55) was associated with higher rates of duodenal toxicity. The 3-year actuarial rates of duodenal toxicity with V55 above and below 15 cm{sup 3} were 48.6% and 7.4%, respectively (P<.01). In Cox univariate analysis of dosimetric variables, V55 was associated with duodenal toxicity (P=.029). In recursive partitioning analysis, V55 less than 13.94% segregated all patients with duodenal toxicity. Conclusions: Dose-escalated IMRT can safely and effectively treat para-aortic nodal disease in gynecologic malignancies, provided that care is taken to limit the dose to the duodenum to reduce the risk of late duodenal toxicity. Limiting V55 to below 15 cm{sup 3} may reduce the risk of duodenal complications. In cases where the treatment cannot be delivered within these constraints, consideration should be given to other treatment approaches such as resection or initial chemotherapy.« less
SU-F-E-06: Dosimetric Characterization of Small Photons Beams of a Novel Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almonte, A; Polanco, G; Sanchez, E
2016-06-15
Purpose: The aim of the present contribution was to measure the main dosimetric quantities of small fields produced by UNIQUE and evaluate its matching with the corresponding dosimetric data of one 21EX conventional linear accelerator (Varian) in operation at the same center. The second step was to evaluate comparative performance of the EDGE diode detector and the PinPoint micro-ionization chamber for dosimetry of small fields. Methods: UNIQUE is configured with MLC (120 leaves with 0.5 cm leaf width) and a single low photon energy of 6 MV. Beam data were measured with scanning EDGE diode detector (volume of 0.019 mm{supmore » 3}), a PinPoint micro-ionization chamber (PTW) and for larger fields (≥ 4×4cm{sup 2}) a PTW Semi flex chamber (0.125 cm{sup 3}) was used. The scanning system used was the 3D cylindrical tank manufactured by Sun Nuclear, Inc. The measurement of PDD and profiles were done at 100 cm SSD and 1.5 depth; the relative output factors were measured at 10 cm depth. Results: PDD and the profile data showed less than 1% variation between the two linear accelerators for fields size between 2×2 cm{sup 2} and 5×5cm{sup 2}. Output factor differences was less than 1% for field sizes between 3×3 cm{sup 2} and 10×10 cm{sup 2} and less of 1.5 % for fields of 1.5×1.5 cm{sup 2} and 2×2 cm{sup 2} respectively. The dmax value of the EDGE diode detector, measured from the PDD, was 8.347 mm for 0.5×0,5cm{sup 2} for UNIQUE. The performance of EDGE diode detector was comparable for all measurements in small fields. Conclusion: UNIQUE linear accelerator show similar dosimetrics characteristics as conventional 21EX Varian linear accelerator for small, medium and large field sizes.EDGE detector show good performance by measuring dosimetrics quantities in small fields typically used in IMRT and radiosurgery treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chera, B; Price, A; Kostich, M
Purpose: To investigate the correlation between different dosimetric indices of salivary glands (as separate or combined structures) to patient-reported dry mouth 6 months post radiotherapy using the novel patient reported outcome version of the CTCAE (PRO-CTCAE). Methods: Forty-three patients with oropharyngeal squamous cell carcinoma were treated on a prospective multi-institutional study. All patients received de-intensified 60 Gy intensity modulated radiotherapy. Dosimetric constraints were used for the salivary glands (e.g. mean dose to the contralateral-parotid < 26 Gy). We investigated correlations of individual patient dosimetric data of the parotid and submandibular glands (as separate or combined structures) to their self-reported 6more » month post-treatment dry mouth responses. Moderate dry mouth responses were most prevalent and were used as the clinical endpoint indicating response. The correlation of Dmean, Dmax and a range of dosevolume (VD) points were assessed through the area under the Receiver Operating Characteristic curve (ROC) and Odds Ratios (OR). Results: Patients reporting non/mild dry mouth response (N=22) had average Dmean = 19.6 ± 6.2Gy to the contralateral-parotid compared to an average Dmean = 28.0 ± 8.3Gy and an AUC = 0.758 for the patients reporting moderate/severe/very severe dry mouth (N=21). Analysis of the range of VD’s for patients who had reported dry mouth showed that for the contralateral-parotid the indices V18 through V22 had the highest area under the curves (AUC) (0.762 – 0.772) compared to a more traditional dosimetric index V30, which had an AUC = 0.732. The highest AUC was observed for the combination of contralateral parotid and contralateral submandibular glands, for which V16 through V28 had AUC = 0.801 – 0.834. Conclusion: Patients who report moderate/severe/very severe dry mouth 6 months post radiotherapy had on average higher Dmean. The V16-V28 of the combination of the contralateral glands showed the highest correlation with the clinical endpoint.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, K; Altman, M; Garcia-Ramirez, J
Purpose: Treatment planning guidelines for accelerated partial breast irradiation (ABPI) using the strut-adjusted volume implant (SAVI) are inconsistent between the manufacturer and NSABP B-39/RTOG 0413 protocol. Furthermore neither set of guidelines accounts for different applicator sizes. The purpose of this work is to establish guidelines specific to the SAVI that are based on clinically achievable dose distributions. Methods: Sixty-two consecutive patients were implanted with a SAVI and prescribed to receive 34 Gy in 10 fractions twice daily using high dose-rate (HDR) Ir-192 brachytherapy. The target (PTV-EVAL) was defined per NSABP. The treatments were planned and evaluated using a combination ofmore » dosimetric planning goals provided by the NSABP, the manufacturer, and our prior clinical experience. Parameters evaluated included maximum doses to skin and ribs, and volumes of PTV-EVAL receiving 90%, 95%, 100%, 150%, and 200% of the prescription (V90, etc). All target parameters were evaluated for correlation with device size using the Pearson correlation coefficient. Revised dosimetric guidelines for target coverage and heterogeneity were determined from this population. Results: Revised guidelines for minimum target coverage (ideal in parentheses): V90≥95%(97%), V95≥90%(95%), V100≥88%(91%). The only dosimetric parameters that were significantly correlated (p<0.05) with device size were V150 and V200. Heterogeneity criteria were revised for the 6–1 Mini/6-1 applicators to V150≤30cc and V200≤15cc, and unchanged for the other sizes. Re-evaluation of patient plans showed 90% (56/62) met the revised minimum guidelines and 76% (47/62) met the ideal guidelines. All and 56/62 patients met our institutional guidelines for maximum skin and rib dose, respectively. Conclusions: We have optimized dosimetric guidelines for the SAVI applicators, and found that implementation of these revised guidelines for SAVI treatment planning yielded target coverage exceeding that required by existing guidelines while preserving heterogeneity constraints and minimizing dose to organs at risk.« less
Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B
2017-01-01
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Ghandour, Sarah; Matzinger, Oscar
2015-01-01
The purpose of this work is to evaluate the volumetric‐modulated arc therapy (VMAT) multicriteria optimization (MCO) algorithm clinically available in the RayStation treatment planning system (TPS) and its ability to reduce treatment planning time while providing high dosimetric plan quality. Nine patients with localized prostate cancer who were previously treated with 78 Gy in 39 fractions using VMAT plans and rayArc system based on the direct machine parameter optimization (DMPO) algorithm were selected and replanned using the VMAT‐MCO system. First, the dosimetric quality of the plans was evaluated using multiple conformity metrics that account for target coverage and sparing of healthy tissue, used in our departmental clinical protocols. The conformity and homogeneity index, number of monitor units, and treatment planning time for both modalities were assessed. Next, the effects of the technical plan parameters, such as constraint leaf motion CLM (cm/°) and maximum arc delivery time T (s), on the accuracy of delivered dose were evaluated using quality assurance passing rates (QAs) measured using the Delta4 phantom from ScandiDos. For the dosimetric plan's quality analysis, the results show that the VMAT‐MCO system provides plans comparable to the rayArc system with no statistical difference for V95% (p<0.01), D1% (p<0.01), CI (p<0.01), and HI (p<0.01) of the PTV, bladder (p<0.01), and rectum (p<0.01) constraints, except for the femoral heads and healthy tissues, for which a dose reduction was observed using MCO compared with rayArc (p<0.01). The technical parameter study showed that a combination of CLM equal to 0.5 cm/degree and a maximum delivery time of 72 s allowed the accurate delivery of the VMAT‐MCO plan on the Elekta Versa HD linear accelerator. Planning evaluation and dosimetric measurements showed that VMAT‐MCO can be used clinically with the advantage of enhanced planning process efficiency by reducing the treatment planning time without impairing dosimetric quality. PACS numbers: 87.55.D, 87.55.de, 87.55.Qr PMID:26103500
Brodecki, Marcin; Domienik, Joanna U; Zmyślony, Marek
2012-01-01
The current system of dosimetric quantities has been defined by the International Commission on Radiological Protection (ICRP) and the International Commission on Radiation Units and Measurements (ICRU). Complexity of the system implies the physical nature of ionizing radiation, resulting from the presence of different types of radiation of different ionization capabilities, as well as the individual radiation sensitivity of biological material exposed. According to the latest recommendations, there are three types of dosimeter quantities relevant to radiation protection and radiological assessment of occupational exposure. These are the basic quantities, safety quantities and operational quantities. Dose limits for occupational exposure relate directly to the protection quantities, i.e. the equivalent dose and effective dose, while these quantities are practically unmeasurable in real measurement conditions. For this reason, in the system of dosimetric quantities directly measurable operating volumes were defined. They represent equivalents of the protection quantities that allow for a reliable assessment of equivalent and effective dose by conducting routine monitoring of occupational exposure. This paper presents the characteristics of these quantities, their relationships and importance in assessing individual effects of radiation. Also the methods for their implementation in personal and environmental dosimetry were showcased. The material contained in the article is a compendium of essential information about dosimetric quantities with reference to the contemporary requirements of the law, including the changed annual occupational exposure limit for the lens of the eye. The material is especially addressed to those responsible for dosimetry monitoring in the workplace, radiation protection inspectors and occupational health physicians.
Kim, Eun Seok; Yeo, Seung-Gu
2014-06-01
Previous studies on advanced radiotherapy (RT) techniques for early stage glottic cancer have focused on sparing the carotid artery. However, the aim of the present study was to evaluate the dosimetric advantages of volumetric modulated arc therapy (VMAT) in terms of sparing the thyroid gland in early-stage glottic cancer patients. In total, 15 cT1N0M0 glottic cancer patients treated with definitive RT using VMAT were selected, and for dosimetric comparison, a conventional RT plan comprising opposed-lateral wedged fields was generated for each patient. The carotid artery, thyroid gland and spinal cord were considered organs at risk. The prescription dose was 63 Gy at 2.25 Gy per fraction. For the thyroid gland and carotid artery, all compared parameters were significantly lower with VMAT compared with conventional RT. For the thyroid gland, the median reduction rates of the mean dose (D mean ), the volume receiving ≥30% of the prescription dose (V 30 ) and the V 50 were 32.6, 40.9 and 46.0%, respectively. The D mean was 14.7±2.6 Gy when using VMAT compared with 22.2±3.9 Gy when using conventional RT. The differences between the techniques in terms of planning target volume coverage and dose homogeneity were not significant. When considering a recent normal tissue complication probability model, which indicated the mean thyroid gland dose as the most significant predictor of radiation-induced hypothyroidism, the dosimetric advantage shown in this study may be valuable in reducing hypothyroidism following RT for early stage glottic cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Tian, Z; Gu, X
Purpose: To investigate the dosimetric benefit of adaptive re-planning for lung stereotactic body radiotherapy(SBRT). Methods: Five lung cancer patients with SBRT treatment were retrospectively investigated. Our in-house supercomputing online re-planning environment (SCORE) was used to realize the re-planning process. First a deformable image registration was carried out to transfer contours from treatment planning CT to each treatment CBCT. Then an automatic re-planning using original plan DVH guided fluence-map optimization is performed to get a new plan for the up-to-date patient geometry. We compared the re-optimized plan to the original plan projected on the up-to-date patient geometry in critical dosimetric parameters,more » such as PTV coverage, spinal cord maximum and volumetric constraint dose, esophagus maximum and volumetric constraint dose. Results: The average volume of PTV covered by prescription dose for all patients was improved by 7.56% after the adaptive re-planning. The volume of the spinal cord receiving 14.5Gy and 23Gy (V14.5, V23) decreased by 1.48% and 0.68%, respectively. For the esophagus, the volume receiving 19.5Gy (V19.5) reduced by 1.37%. Meanwhile, the maximum dose dropped off by 2.87% for spinal cord and 4.80% for esophagus. Conclusion: Our experimental results demonstrate that adaptive re-planning for lung SBRT has the potential to minimize the dosimetric effect of inter-fraction deformation and thus improve target coverage while reducing the risk of toxicity to nearby normal tissues.« less
Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization
NASA Astrophysics Data System (ADS)
Koger, B.; Kirkby, C.
2017-11-01
One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.
Dosimetric and clinical predictors of radiation-induced lung toxicity in esophageal carcinoma.
Zhu, Shu-Chai; Shen, Wen-Bin; Liu, Zhi-Kun; Li, Juan; Su, Jing-Wei; Wang, Yu-Xiang
2011-01-01
Radiation-induced lung toxicity occurs frequently in patients with esophageal carcinoma. This study aims to evaluate the clinical and three-dimensional dosimetric parameters associated with lung toxicity after radiotherapy for esophageal carcinoma. The records of 56 patients treated for esophageal carcinoma were reviewed. The Radiation Therapy Oncology Group criteria for grading of lung toxicity were followed. Spearman's correlation test, the chi-square test and logistic regression analyses were used for statistical analysis. Ten of the 56 patients developed acute toxicity. The toxicity grades were grade 2 in 7 patients and grade 3 in 3 patients; none of the patients developed grade 4 or worse toxicity. One case of toxicity occurred during radiotherapy and 9 occurred 2 weeks to 3 months after radiotherapy. The median time was 2.0 months after radiotherapy. Fourteen patients developed late irradiated lung injury, 3 after 3.5 months, 7 after 9 months, and 4 after 14 months. Radiographic imaging demonstrated patchy consolidation (n = 5), atelectasis with parenchymal distortion (n = 6), and solid consolidation (n = 3). For acute toxicity, the irradiated esophageal volume, number of fields, and most dosimetric parameters were predictive. For late toxicity, chemotherapy combined with radiotherapy and other dosimetric parameters were predictive. No obvious association between the occurrence of acute and late injury was observed. The percent of lung tissue receiving at least 25 Gy (V25), the number of fields, and the irradiated length of the esophagus can be used as predictors of the risk of acute toxicity. Lungs V30, as well as chemotherapy combined with radiotherapy, are predictive of late lung injury.
Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J
2017-01-01
Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.
Analysis of splicing in vitro using extracts of Saccharomyces cerevisiae.
Ares, Manuel
2013-10-01
In vitro splicing studies are a powerful means of investigating the requirements and mechanisms of action of the many components of the splicing apparatus. The ability to add and subtract components, purify activities, and reconstitute activity, as well as to expose the apparatus to chemical probes of various types, allows a far more mechanistically detailed view of the process to emerge than is available from genetic or in vivo studies alone. Two kinds of activities are assayed during in vitro splicing. The first concerns the chemical conversion of the substrate pre-mRNA into splicing intermediates and products and is usually visualized using a labeled substrate followed by separation on a denaturing gel. The second concerns the assembly of noncovalent complexes between the substrate and the myriad components of the splicing apparatus. This is also visualized using a labeled substrate, but the separation of complexes is achieved using native gel electrophoresis or gradient sedimentation. In this protocol, we describe the splicing reaction and its preparation for analysis by denaturing gels and native splicing complex gels. We also provide conditions for depletion of ATP, a critical cofactor that is hydrolyzed during numerous key steps in spliceosome assembly and splicing progression.
NASA Technical Reports Server (NTRS)
Wagner, L. J.
1977-01-01
The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.
Radiation Dose-Volume Effects and the Penile Bulb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Mack, E-mail: mroach@radonc.ucsf.ed; Nam, Jiho; Gagliardi, Giovanna
2010-03-01
The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulbmore » may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques.« less
Woda, Clemens; Bassinet, Céline; Trompier, François; Bortolin, Emanuela; Della Monaca, Sara; Fattibene, Paola
2009-01-01
The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.
Heinz, Tanja; Alvarez-Iglesias, Vanesa; Pardo-Seco, Jacobo; Taboada-Echalar, Patricia; Gómez-Carballa, Alberto; Torres-Balanza, Antonio; Rocabado, Omar; Carracedo, Angel; Vullo, Carlos; Salas, Antonio
2013-09-01
We have genotyped 46 Ancestry Informative Markers (AIMs) in two of the most populated areas in Bolivia, namely, La Paz (Andean region; n=105), and Chuquisaca (Sub-Andean region; n=73). Using different analytical tools, we inferred admixture proportions of these two American communities by comparing the genetic profiles with those publicly available from the CEPH (Centre d'Etude du Polymorphisme Humain) panel representing three main continental groups (Africa, Europe, and America). By way of simulations, we first evaluated the minimum sample size needed in order to obtain accurate estimates of ancestry proportions. The results indicated that sample sizes above 30 individuals could be large enough to estimate main continental ancestry proportions using the 46 AIMs panel. With the exception of a few individuals, the results also indicated that Bolivians showed a predominantly Native American ancestry with variable levels of European admixture. The proportions of ancestry were statistically different in La Paz and Chuquisaca: the Native American component was 86% and 77% (Mann-Whitney U-test: un-adjusted P-value=2.1×10(-5)), while the European ancestry was 13% and 21% (Mann-Whitney U-test: un-adjusted P-value=3.6×10(-5)), respectively. The African ancestry in Bolivians captured by the AIMs analyzed in the present study was below 2%. The inferred ancestry of Bolivians fits well with previous studies undertaken on haplotype data, indicating a major proportion of Native American lineages. The genetic differences observed in these two groups suggest that forensic genetic analysis should be better performed based on local databases built in the main Bolivian areas. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Prins, Pjotr; Goto, Naohisa; Yates, Andrew; Gautier, Laurent; Willis, Scooter; Fields, Christopher; Katayama, Toshiaki
2012-01-01
Open-source software (OSS) encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, OSS comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor. In this chapter, we compare the two principal approaches for sharing software between different programming languages: either by remote procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java Virtual Machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often. Here, we present cross-language examples for sequence translation, and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux.
Pelling, Andrew E.; Li, Yinuo; Shi, Wenyuan; Gimzewski, James K.
2005-01-01
Multicellular microbial communities are the predominant form of existence for microorganisms in nature. As one of the most primitive social organisms, Myxococcus xanthus has been an ideal model bacterium for studying intercellular interaction and multicellular organization. Through previous genetic and EM studies, various extracellular appendages and matrix components have been found to be involved in the social behavior of M. xanthus, but none of them was directly visualized and analyzed under native conditions. Here, we used atomic force microscopy (AFM) imaging and in vivo force spectroscopy to characterize these cellular structures under native conditions. AFM imaging revealed morphological details on the extracellular ultrastructures at an unprecedented resolution, and in vivo force spectroscopy of live cells in fluid allowed us to nanomechanically characterize extracellular polymeric substances. The findings provide the basis for AFM as a useful tool for investigating microbial-surface ultrastructures and nanomechanical properties under native conditions. PMID:15840722
Distribution patterns in the native vascular flora of Iceland.
Wasowicz, Pawel; Pasierbiński, Andrzej; Przedpelska-Wasowicz, Ewa Maria; Kristinsson, Hörður
2014-01-01
The aim of our study was to reveal biogeographical patterns in the native vascular flora of Iceland and to define ecological factors responsible for these patterns. We analysed dataset of more than 500,000 records containing information on the occurrence of vascular plants. Analysis of ecological factors included climatic (derived from WORLDCLIM data), topographic (calculated from digital elevation model) and geological (bedrock characteristics) variables. Spherical k-means clustering and principal component analysis were used to detect biogeographical patterns and to study the factors responsible for them. We defined 10 biotic elements exhibiting different biogeographical patterns. We showed that climatic (temperature-related) and topographic variables were the most important factors contributing to the spatial patterns within the Icelandic vascular flora and that these patterns are almost completely independent of edaphic factors (bedrock type). Our study is the first one to analyse the biogeographical differentiation of the native vascular flora of Iceland.
Dosimetric calculations for uranium miners for epidemiological studies.
Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L
2012-05-01
Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.
Photon small-field measurements with a CMOS active pixel sensor.
Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G
2015-06-07
In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520 × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5 × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Haley; BC Cancer Agency, Surrey, B.C.; BC Cancer Agency, Vancouver, B.C.
2014-08-15
Many have speculated about the future of computational technology in clinical radiation oncology. It has been advocated that the next generation of computational infrastructure will improve on the current generation by incorporating richer aspects of automation, more heavily and seamlessly featuring distributed and parallel computation, and providing more flexibility toward aggregate data analysis. In this report we describe how a recently created — but currently existing — analysis framework (DICOMautomaton) incorporates these aspects. DICOMautomaton supports a variety of use cases but is especially suited for dosimetric outcomes correlation analysis, investigation and comparison of radiotherapy treatment efficacy, and dose-volume computation. Wemore » describe: how it overcomes computational bottlenecks by distributing workload across a network of machines; how modern, asynchronous computational techniques are used to reduce blocking and avoid unnecessary computation; and how issues of out-of-date data are addressed using reactive programming techniques and data dependency chains. We describe internal architecture of the software and give a detailed demonstration of how DICOMautomaton could be used to search for correlations between dosimetric and outcomes data.« less
Broadbent, Arthur; Stevens, Carly J; Peltzer, Duane A; Ostle, Nicholas J; Orwin, Kate H
2018-02-01
Plant invasions and eutrophication are pervasive drivers of global change that cause biodiversity loss. Yet, how invasive plant impacts on native species, and the mechanisms underpinning these impacts, vary in relation to increasing nitrogen (N) availability remains unclear. Competition is often invoked as a likely mechanism, but the relative importance of the above and belowground components of this is poorly understood, particularly under differing levels of N availability. To help resolve these issues, we quantified the impact of a globally invasive grass species, Agrostis capillaris, on two co-occurring native New Zealand grasses, and vice versa. We explicitly separated above- and belowground interactions amongst these species experimentally and incorporated an N addition treatment. We found that competition with the invader had large negative impacts on native species growth (biomass decreased by half), resource capture (total N content decreased by up to 75%) and even nutrient stoichiometry (native species tissue C:N ratios increased). Surprisingly, these impacts were driven directly and indirectly by belowground competition, regardless of N availability. Higher root biomass likely enhanced the invasive grass's competitive superiority belowground, indicating that root traits may be useful tools for understanding invasive plant impacts. Our study shows that belowground competition can be more important in driving invasive plant impacts than aboveground competition in both low and high fertility ecosystems, including those experiencing N enrichment due to global change. This can help to improve predictions of how two key drivers of global change, plant species invasions and eutrophication, impact native species diversity.
Saliou, Jean-Michel; Manival, Xavier; Tillault, Anne-Sophie; Atmanene, Cédric; Bobo, Claude; Branlant, Christiane; Van Dorsselaer, Alain; Charpentier, Bruno; Cianférani, Sarah
2015-08-01
Site-specific isomerization of uridines into pseudouridines in RNAs is catalyzed either by stand-alone enzymes or by box H/ACA ribonucleoprotein particles (sno/sRNPs). The archaeal box H/ACA sRNPs are five-component complexes that consist of a guide RNA and the aCBF5, aNOP10, L7Ae, and aGAR1 proteins. In this study, we performed pairwise incubations of individual constituents of archaeal box H/ACA sRNPs and analyzed their interactions by native MS to build a 2D-connectivity map of direct binders. We describe the use of native MS in combination with ion mobility-MS to monitor the in vitro assembly of the active H/ACA sRNP particle. Real-time native MS was used to monitor how box H/ACA particle functions in multiple-turnover conditions. Native MS also unambiguously revealed that a substrate RNA containing 5-fluorouridine (f(5) U) was hydrolyzed into 5-fluoro-6-hydroxy-pseudouridine (f(5) ho(6) Ψ). In terms of enzymatic mechanism, box H/ACA sRNP was shown to catalyze the pseudouridylation of a first RNA substrate, then to release the RNA product (S22 f(5) ho(6) ψ) from the RNP enzyme and reload a new substrate RNA molecule. Altogether, our native MS-based approaches provide relevant new information about the potential assembly process and catalytic mechanism of box H/ACA RNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brown, Leone M; Breed, Greg A; Severns, Paul M; Crone, Elizabeth E
2017-02-01
Introduced plants can positively affect population viability by augmenting the diet of native herbivores, but can negatively affect populations if they are subpar or toxic resources. In organisms with complex life histories, such as insects specializing on host plants, the impacts of a novel host may differ across life stages, with divergent effects on population persistence. Most research on effects of novel hosts has focused on adult oviposition preference and larval performance, but adult preference may not optimize offspring performance, nor be indicative of host quality from a demographic perspective. We compared population growth rates of the Baltimore checkerspot butterfly, Euphydryas phaeton, on an introduced host, Plantago lanceolata (English plantain), and the native host Chelone glabra (white turtlehead). Contrary to the previous findings suggesting that P. lanceolata could be a population sink, we found higher population growth rates (λ) on the introduced than the native host, even though some component parameters of λ were higher on the native host. Our findings illustrate the importance of moving beyond preference-performance studies to integrate vital rates across all life stages for evaluating herbivore-host plant relationships. Single measures of preference or performance are not sufficient proxies for overall host quality nor do they provide insights into longer term consequences of novel host plant use. In our system, in particular, P. lanceolata may buffer checkerspot populations when the native host is limiting, but high growth rates could lead to crashes over longer time scales.
Kim, Y.-O.; Lee, E.J.
2011-01-01
One prediction of the novel weapons hypothesis (NWH) for the dominance of exotic invasive plant species is that the allelopathic effects of successful invaders will, in general, be more biochemically inhibitory to native species and microbes in invaded regions than the native plants themselves. However, no study has compared biochemical concentrations, compositions, or effects of large numbers of native species to those of large numbers of invasive species. In this context we tested the allelopathic and antimicrobial potentials of nine native plant species and nine invasive species in East Asia by comparing their broad phenolic contents and the effects of extracts made from each of the species on target plants and soil fungi. Three of the invasive species, including Eupatorium rugosum, had higher concentrations of total phenolic compounds than any of the native species, and the mean concentration of total phenolics for invasive species was 2.6 times greater than the mean for native species. Only scopoletin was novel to the invasive species, being found in all of nine invasive species, but not in the native species. More importantly, the effects of the total suites of phenolic compounds produced by invasive species differed from the effects of phenolics produced by natives. Extracts of invasive species reduced radicle growth of the three test plant species by 60-80%, but extracts of native species reduced radicle growth by only 30-50%. Extracts of invasive species reduced shoot growth of the three test species by 20-40%, but the overall effect of native species' extract was to stimulate shoot growth. The antimicrobial activity of invasive species was also significantly higher than that of native species. It should be noted that phenolics are just one component of a plant's potential allelopathic arsenal and non-phenolic compounds are likely to play a role in the total extract effect. For example, extracts of P. americana contained the lowest levels of phenolic compounds, but exhibited the strongest inhibition effect. We could not determine whether the greater inhibitory effects of the extracts from invasive species were due to novel combinations of chemicals or higher concentrations of chemicals, but our results are consistent with the predictions of the NWH. ?? 2010 The Ecological Society of Japan.
Robatjazi, Mostafa; Baghani, Hamid Reza; Mahdavic, Seied Rabi; Felici, Giuseppe
2018-05-01
A shielding disk is used for IOERT procedures to absorb radiation behind the target and protect underlying healthy tissues. Setup variation of shielding disk can affect the corresponding in-vivo dose distribution. In this study, the changes of dosimetric parameters due to the disk setup variations is evaluated using EGSnrc Monte Carlo (MC) code. The results can help treatment team to decide about the level of accuracy in the setup procedure and delivered dose to the target volume during IOERT. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Hali, E-mail: hamorris@ualberta.ca; Meno
Purpose: To estimate the total dosimetric uncertainty at the tumor apex for ocular brachytherapy treatments delivered using 16 mm Collaborative Ocular Melanoma Study (COMS) and Super9 plaques loaded with {sup 125}I seeds in order to determine the size of the apex margin that would be required to ensure adequate dosimetric coverage of the tumor. Methods: The total dosimetric uncertainty was assessed for three reference tumor heights: 3, 5, and 10 mm, using the Guide to the expression of Uncertainty in Measurement/National Institute of Standards and Technology approach. Uncertainties pertaining to seed construction, source strength, plaque assembly, treatment planning calculations, tumormore » height measurement, plaque placement, and plaque tilt for a simple dome-shaped tumor were investigated and quantified to estimate the total dosimetric uncertainty at the tumor apex. Uncertainties in seed construction were determined using EBT3 Gafchromic film measurements around single seeds, plaque assembly uncertainties were determined using high resolution microCT scanning of loaded plaques to measure seed positions in the plaques, and all other uncertainties were determined from the previously published studies and recommended values. All dose calculations were performed using PLAQUESIMULATOR v5.7.6 ophthalmic treatment planning system with the inclusion of plaque heterogeneity corrections. Results: The total dosimetric uncertainties at 3, 5, and 10 mm tumor heights for the 16 mm COMS plaque were 17.3%, 16.1%, and 14.2%, respectively, and for the Super9 plaque were 18.2%, 14.4%, and 13.1%, respectively (all values with coverage factor k = 2). The apex margins at 3, 5, and 10 mm tumor heights required to adequately account for these uncertainties were 1.3, 1.3, and 1.4 mm, respectively, for the 16 mm COMS plaque, and 1.8, 1.4, and 1.2 mm, respectively, for the Super9 plaque. These uncertainties and associated margins are dependent on the dose gradient at the given prescription depth, thus resulting in the changing uncertainties and margins with depth. Conclusions: The margins determined in this work can be used as a guide for determining an appropriate apex margin for a given treatment, which can be chosen based on the tumor height. The required margin may need to be increased for more complex scenarios (mushroom shaped tumors, tumors close to the optic nerve, oblique muscle related tilt, etc.) than the simple dome-shaped tumor examined and should be chosen on a case-by-case basis. The sources of uncertainty contributing most significantly to the total dosimetric uncertainty are seed placement within the plaques, treatment planning calculations, tumor height measurement, and plaque tilt. This work presents an uncertainty-based, rational approach to estimating an appropriate apex margin.« less
Effects of chemical smokes on flora and fauna under field and laboratory exposures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D.J.; Novak, E.W.; Lower, W.R.
1987-06-01
Various types of obscurant smokes are used routinely in training by the U.S. Army. Because continued routine use of the smokes could be detrimental to the native flora and fauna at training sites, a preliminary biological and chemical field study of fogoil, hexachloroethane, and tank diesel smokes was conducted. Smoke plumes were sampled and chemically analyzed at distances of 15-150 m from the smoke source where Tradescantia clones 4430 and 03 and the native plant Ambrosia dumosa and the native rodent Dipodomys merriami were exposed for 30 min. In addition, Tradescantia clone 4430 was exposed to tank diesel in themore » laboratory at concentration levels equivalent to exposure at 15 and 50 m. Tradescantia clones were examined for mutagenic effects indicated by micronuclei induction in developing pollen and pink somatic mutations in stamen hairs. Photosynthetic perturbations were measured in Tradescantia and A. dumosa using variable fluorescence induction. Animals were examined for sister chromatid exchanges and chromosome aberrations. It was found that all of the smokes tested exerted varying degrees of physiological and mutagenic effects in one or more assay system at one or more exposure distance. The studies reported here indicate that exposed ecological systems, or at least components of these systems, are at a higher risk than are unexposed components (e.g., organisms) for several types of damage attributed to obscurant smoke exposure.« less
Ancient remains and the first peopling of the Americas: Reassessing the Hoyo Negro skull.
de Azevedo, Soledad; Bortolini, Maria C; Bonatto, Sandro L; Hünemeier, Tábita; Santos, Fabrício R; González-José, Rolando
2015-11-01
A noticeably well-preserved ∼12.500 years-old skeleton from the Hoyo Negro cave, Yucatán, México, was recently reported, along with its archaeological, genetic and skeletal characteristics. Based exclusively on an anatomical description of the skull (HN5/48), Chatters and colleagues stated that this specimen can be assigned to a set of ancient remains that differ from modern Native Americans, the so called "Paleoamericans". Here, we aim to further explore the morphological affinities of this specimen with a set of comparative cranial samples covering ancient and modern periods from Asia and the Americas. Images published in the original article were analyzed using geometric morphometrics methods. Shape variables were used to perform Principal Component and Discriminant analysis against the reference samples. Even thought the Principal Component Analysis suggests that the Hoyo Negro skull falls in a subregion of the morphospace occupied by both "Paleoamericans" and some modern Native Americans, the Discriminant analyses suggest greater affinity with a modern Native American sample. These results reinforce the idea that the original population that first occupied the New World carried high levels of within-group variation, which we have suggested previously on a synthetic model for the settlement of the Americas. Our results also highlight the importance of developing formal classificatory test before deriving settlement hypothesis purely based on macroscopic descriptions. © 2015 Wiley Periodicals, Inc.
Effects of chemical smokes on flora and fauna under field and laboratory exposures.
Schaeffer, D J; Novak, E W; Lower, W R; Yanders, A; Kapila, S; Wang, R
1987-06-01
Various types of obscurant smokes are used routinely in training by the U.S. Army. Because continued routine use of the smokes could be detrimental to the native flora and fauna at training sites, a preliminary biological and chemical field study of fogoil, hexachloroethane, and tank diesel smokes was conducted. Smoke plumes were sampled and chemically analyzed at distances of 15-150 m from the smoke source where Tradescantia clones 4430 and 03 and the native plant Ambrosia dumosa and the native rodent Dipodomys merriami were exposed for 30 min. In addition, Tradescantia clone 4430 was exposed to tank diesel in the laboratory at concentration levels equivalent to exposure at 15 and 50 m. Tradescantia clones were examined for mutagenic effects indicated by micronuclei induction in developing pollen and pink somatic mutations in stamen hairs. Photosynthetic perturbations were measured in Tradescantia and A. dumosa using variable fluorescence induction. Animals were examined for sister chromatid exchanges and chromosome aberrations. It was found that all of the smokes tested exerted varying degrees of physiological and mutagenic effects in one or more assay system at one or more exposure distance. The studies reported here indicate that exposed ecological systems, or at least components of these systems, are at a higher risk than are unexposed components (e.g., organisms) for several types of damage attributed to obscurant smoke exposure.
NASA Astrophysics Data System (ADS)
Corcel, Mathias; Devaux, Marie-Françoise; Guillon, Fabienne; Barron, Cécile
2017-06-01
Powders produced from plant materials are heterogeneous in relation to native plant heterogeneity, and during grinding, dissociation often occurred at the tissue scale. The tissue composition of powdery samples could be modified through dry fractionation diagrams and impact their end-uses properties. If tissue identification is often made on native plant structure, this characterization is not straightforward in destructured samples such powders. Taking advantage of the autofluorescence properties of cell wall components, multispectral image acquisition is envisioned to identify the tissular origin of particles. Images were acquired on maize stem sections and ground tissues isolated from the same stem by hand dissection. The variability in fluorescence intensity profiles was analysed using principal component analysis. The correspondence between fluorescence profiles and the different tissues observed in maize sections was assessed based on histology or known compositional heterogeneity. Similar variability was encountered in fluorescence profiles extracted from powder leading to the potential ability to predict tissular origin based on this autofluorescence multispectral signal.
Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers
Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT
2007-01-01
Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429
Brain cancer probed by native fluorescence and stokes shift spectroscopy
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.
2012-12-01
Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).
González Silos, Rosa; Marcelain, Katherine; Baez Benavides, Pablo; Barahona Ponce, Carol; Fischer, Christine; Peil, Barbara; Sinsheimer, Janet; Barajas, Olga; Gonzalez-Jose, Rolando; Cátira Bortolini, Maria; Canizales-Quinteros, Samuel; Gallo, Carla; Ruiz Linares, Andres; Rothhammer, Francisco
2017-01-01
Latin Americans are highly heterogeneous regarding the type of Native American ancestry. Consideration of specific associations with common diseases may lead to substantial advances in unraveling of disease etiology and disease prevention. Here we investigate possible associations between the type of Native American ancestry and leading causes of death. After an aggregate-data study based on genome-wide genotype data from 1805 admixed Chileans and 639,789 deaths, we validate an identified association with gallbladder cancer relying on individual data from 64 gallbladder cancer patients, with and without a family history, and 170 healthy controls. Native American proportions were markedly underestimated when the two main types of Native American ancestry in Chile, originated from the Mapuche and Aymara indigenous peoples, were combined together. Consideration of the type of Native American ancestry was crucial to identify disease associations. Native American ancestry showed no association with gallbladder cancer mortality (P = 0.26). By contrast, each 1% increase in the Mapuche proportion represented a 3.7% increased mortality risk by gallbladder cancer (95%CI 3.1–4.3%, P = 6×10−27). Individual-data results and extensive sensitivity analyses confirmed the association between Mapuche ancestry and gallbladder cancer. Increasing Mapuche proportions were also associated with an increased mortality due to asthma and, interestingly, with a decreased mortality by diabetes. The mortality due to skin, bladder, larynx, bronchus and lung cancers increased with increasing Aymara proportions. Described methods should be considered in future studies on human population genetics and human health. Complementary individual-based studies are needed to apportion the genetic and non-genetic components of associations identified relying on aggregate-data. PMID:28542165
Herzog, Thaddeus A; Pokhrel, Pallav
2012-01-01
This study tests hypotheses concerning ethnic disparities in daily cigarette smoking rates, nicotine dependence, cessation motivation, and knowledge and past use of cessation methods (e.g., counseling) and products (e.g., nicotine patch) in a multiethnic sample of smokers in Hawaii. Previous research has revealed significant differences in smoking prevalence among Native Hawaiians, Filipinos, Japanese, and Caucasians in Hawaii. However, no study has examined differences in dependence and cessation-related knowledge and practices among smokers representing these ethnic groups. Participants were recruited through newspaper advertisement as part of a larger smoking cessation intervention study. Participants (N=919; M age=45.6, SD=12.7; 48% Women) eligible to participate provided self-report data through mail and telephone. Participants included 271 self-identified Native Hawaiians, 63 Filipinos, 316 Caucasians, 145 “East Asians” (e.g., Japanese, Chinese), and 124 “Other” (e.g., Hispanic, African-American). Pair-wise comparisons of means, controlling for age, gender, income, education, and marital status, indicated that Native Hawaiian smokers reported significantly higher daily smoking rates and higher levels of nicotine dependence compared to East Asians. Native Hawaiian smokers reported significantly lower motivation to quit smoking than Caucasians. Further, Filipino and Native Hawaiian smokers reported lesser knowledge of cessation methods and products, and less frequent use of these methods and products than Caucasians. The results suggest that Native Hawaiian and Filipino smokers could be underserved with regard to receiving cessation-related advice, and may lack adequate access to smoking cessation products and services. In addition, cessation interventions tailored for Native Hawaiian smokers could benefit from a motivational enhancement component. PMID:22438074
Lorenzo Bermejo, Justo; Boekstegers, Felix; González Silos, Rosa; Marcelain, Katherine; Baez Benavides, Pablo; Barahona Ponce, Carol; Müller, Bettina; Ferreccio, Catterina; Koshiol, Jill; Fischer, Christine; Peil, Barbara; Sinsheimer, Janet; Fuentes Guajardo, Macarena; Barajas, Olga; Gonzalez-Jose, Rolando; Bedoya, Gabriel; Cátira Bortolini, Maria; Canizales-Quinteros, Samuel; Gallo, Carla; Ruiz Linares, Andres; Rothhammer, Francisco
2017-05-01
Latin Americans are highly heterogeneous regarding the type of Native American ancestry. Consideration of specific associations with common diseases may lead to substantial advances in unraveling of disease etiology and disease prevention. Here we investigate possible associations between the type of Native American ancestry and leading causes of death. After an aggregate-data study based on genome-wide genotype data from 1805 admixed Chileans and 639,789 deaths, we validate an identified association with gallbladder cancer relying on individual data from 64 gallbladder cancer patients, with and without a family history, and 170 healthy controls. Native American proportions were markedly underestimated when the two main types of Native American ancestry in Chile, originated from the Mapuche and Aymara indigenous peoples, were combined together. Consideration of the type of Native American ancestry was crucial to identify disease associations. Native American ancestry showed no association with gallbladder cancer mortality (P = 0.26). By contrast, each 1% increase in the Mapuche proportion represented a 3.7% increased mortality risk by gallbladder cancer (95%CI 3.1-4.3%, P = 6×10-27). Individual-data results and extensive sensitivity analyses confirmed the association between Mapuche ancestry and gallbladder cancer. Increasing Mapuche proportions were also associated with an increased mortality due to asthma and, interestingly, with a decreased mortality by diabetes. The mortality due to skin, bladder, larynx, bronchus and lung cancers increased with increasing Aymara proportions. Described methods should be considered in future studies on human population genetics and human health. Complementary individual-based studies are needed to apportion the genetic and non-genetic components of associations identified relying on aggregate-data.
Balogh, Daniel G; Biskup, Jeffery J; O'Sullivan, M Gerard; Scott, Ruth M; Groschen, Donna; Evans, Richard B; Conzemius, Michael G
2016-04-01
To evaluate the biochemical and biomechanical properties of native and decellularized superficial digital flexor tendons (SDFTs) and deep digital flexor tendons (DDFTs) harvested from the pelvic limbs of orthopedically normal dogs. 22 commercially supplied tendon specimens (10 SDFT and 12 DDFT) harvested from the pelvic limbs of 13 canine cadavers. DNA, glycosaminoglycan, collagen, and protein content were measured to biochemically compare native and decellularized SDFT and DDFT specimens. Mechanical testing was performed on 4 groups consisting of native tendons (5 SDFTs and 6 DDFTs) and decellularized tendons (5 SDFTs and 6 DDFTs). All tendons were preconditioned, and tension was applied to failure at 0.5 mm/s. Failure mode was video recorded for each tendon. Load-deformation and stress-strain curves were generated; calculations were performed to determine the Young modulus and stiffness. Biochemical and biomechanical data were statistically compared by use of the Wilcoxon rank sum test. Decellularized SDFT and DDFT specimens had significantly less DNA content than did native tendons. No significant differences were identified between native and decellularized specimens with respect to glycosaminoglycan, collagen, or protein content. Biomechanical comparison yielded no significant intra- or intergroup differences. All DDFT constructs failed at the tendon-clamp interface, whereas nearly half (4/10) of the SDFT constructs failed at midsubstance. Decellularized commercial canine SDFT and DDFT specimens had similar biomechanical properties, compared with each other and with native tendons. The decellularization process significantly decreased DNA content while minimizing loss of extracellular matrix components. Decellularized canine flexor tendons may provide suitable, biocompatible graft scaffolds for bioengineering applications such as tendon or ligament repair.
Walczak, Katarzyna; Zmyślony, Marek
2013-01-01
Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers), Iran (5), China (4) and India (5). Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings). In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Langhe, Sofie, E-mail: Sofie.DeLanghe@UGent.be; De Ruyck, Kim; Ost, Piet
2013-02-01
Purpose: After radiation therapy for prostate cancer, approximately 50% of the patients experience acute genitourinary symptoms, mostly nocturia. This may be highly bothersome with a major impact on the patient's quality of life. In the past, nocturia is seldom reported as a single, physiologically distinct endpoint, and little is known about its etiology. It is assumed that in addition to dose-volume parameters and patient- and therapy-related factors, a genetic component contributes to the development of radiation-induced damage. In this study, we investigated the association among dosimetric, clinical, and TGF{beta}1 polymorphisms and the development of acute radiation-induced nocturia in prostate cancermore » patients. Methods and Materials: Data were available for 322 prostate cancer patients treated with primary or postoperative intensity modulated radiation therapy (IMRT). Five genetic markers in the TGF{beta}1 gene (-800 G>A, -509 C>T, codon 10 T>C, codon 25 G>C, g.10780 T>G), and a high number of clinical and dosimetric parameters were considered. Toxicity was scored using an symptom scale developed in-house. Results: Radical prostatectomy (P<.001) and the presence of pretreatment nocturia (P<.001) are significantly associated with the occurrence of radiation-induced acute toxicity. The -509 CT/TT (P=.010) and codon 10 TC/CC (P=.005) genotypes are significantly associated with an increased risk for radiation-induced acute nocturia. Conclusions: Radical prostatectomy, the presence of pretreatment nocturia symptoms, and the variant alleles of TGF{beta}1 -509 C>T and codon 10 T>C are identified as factors involved in the development of acute radiation-induced nocturia. These findings may contribute to the research on prediction of late nocturia after IMRT for prostate cancer.« less
NASA Astrophysics Data System (ADS)
Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Zhu, Timothy C.
2017-02-01
Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence, photosensitizer photobleaching rate, and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (Φ) effects are not accounted for, which has a large effect on the oxygen consumption rate. In this preclinical study, reacted singlet oxygen [1O2]rx was investigated as a dosimetric quantity for PDT outcome. The ability of [1O2]rx to predict the long-term local tumor control rate (LCR) for BPD-mediated PDT was examined. Mice bearing radioactivelyinduced fibrosarcoma (RIF) tumors were treated with different in-air fluences (250, 300, and 350 J/cm2) and in-air ϕ (75, 100, and150 mW/cm2) with a BPD dose of 1 mg/kg and a drug-light interval of 3 hours. Treatment was delivered with a collimated laser beam of 1 cm diameter at 690 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and BPD concentration was used to calculate [1O2]rx. Φ was calculated for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Kaplan-Meier analyses for LCR were done for an endpoint of tumor volume <= 100 mm3 using four dose metrics: light fluence, photosensitizer photobleaching rate, PDT dose, and [1O2]rx. PDT dose was defined as the product of the timeintegral of photosensitizer concentration and Φ at a 3 mm tumor depth. Preliminary studies show that [1O2]rx better correlates with LCR and is an effective dosimetric quantity that can predict treatment outcome.
Geographical factors of the abundance of flora in Russian cities
NASA Astrophysics Data System (ADS)
Veselkin, D. V.; Tretyakova, A. S.; Senator, S. A.; Saksonov, S. V.; Mukhin, V. A.; Rozenberg, G. S.
2017-09-01
An analysis of data on the species abundance of flora in 89 cities (urban flora) of the Russian Federation facilitated determination of its main factors. It has been revealed that the factors determining the abundance of native and alien components of urban flora vary. The city area and population number are the main factors of the total number of species and of the abundance of native species in urban flora. The diversity and participation of alien species increase in parallel with. the urbanization rate, anthropogenic transformation of the regions, and the age of cities and are in adverse correlation with the climate severity.
Gray, Norma; Oré de Boehm, Christina; Farnsworth, Angela; Wolf, Denise
2010-01-01
Involvement in creative expression has the potential of engaging individuals in personal and community level change through reflection, empowerment, and the facilitation of connectedness. It is a process that can be a powerful component of community based participatory research as it can facilitate and support the principles of co-learning, egalitarian relationships, and respect for non-academic knowledge. It is also a valuable means of appreciating culture and strengthening identity, which enhances health. This article reviews and discusses methods and benefits of incorporating creative expression into health promotion programs and community based participatory research with Native Americans. PMID:20531099
Thanh, Minh‐Tri Ho; Munro, John J.
2015-01-01
The Source Production & Equipment Co. (SPEC) model M−15 is a new Iridium−192 brachytherapy source model intended for use as a temporary high‐dose‐rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M‐15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M−15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium−192 photons were uniformly generated inside the iridium core of the model M−15 with photon and secondary electron transport replicated using photoatomic cross‐sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4×109 sources photon history for each simulation and the in‐air photon spectrum filtered to remove low‐energy photons below δ=10%keV. Dosimetric data, including D(r,θ),gL(r),F(r,θ),Φan(r), and φ¯an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M−15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M−15 Iridium−192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D˙(r0,θ0)≡D˙(1cm,π/2), is found to be 4.038±0.064 cGy mCi−1 h−1. The air kerma strength, SK, is reported to be 3.632±0.086 cGy cm2 mCi−1 g−1, and the dose rate constant, Λ, is calculated to be 1.112±0.029 cGy h−1 U−1. The normalized dose rate, radial dose function, and anisotropy function with their uncertainties were computed and are represented in both tabular and graphical format in the report. A dosimetric study was performed of the new M−15 Iridium−192 HDR brachytherapy source using the MCNP6 radiation transport code. Dosimetric parameters, including the dose‐rate constant, radial dose function, and anisotropy function, were calculated in accordance with the updated AAPM and ESTRO dosimetric parameters for brachytherapy sources of average energy greater than 50 keV. These data therefore may be applied toward the development of a treatment planning program and for clinical use of the source. PACS numbers: 87.56.bg, 87.53.Jw PMID:26103489
DATABASE OF THE NONINDIGENOUS SPECIES IN THE ESTUARIES OF CALIFORNIA, OREGON, AND WASHINGTON
The number and composition of the native and nonindigenous species is a key component in invasive species risk assessments and regional prioritizations. The problem for both managers and researchers is that this information is scattered in the peer-reviewed literature, gray liter...
ERIC Educational Resources Information Center
Dearmin, Evalyn Titus
1977-01-01
Working with the Humboldt County School District, the Fort McDermitt Indian Education Committee, and four Paiute Teacher aides, the University of Nevada developed a three-component project: a bilingual/bicultural reading text for K-4 Paiutes; an in-service training program in Native American education; and a pilot bilingual curriculum. (JC)
THE PACIFIC COAST ESTUARINE INFORMATION SYSTEM: CREATING A BASELINE FOR THE FUTURE
Coastal researchers and managers have a growing need for ready access to a diversity of
data types, including estuarine-specific lists of native and nonindigenous species and estuarine/landscape characteristics. These data are key components in ecological risk assessments in g...
Coates, James; Jeyaseelan, Asha K; Ybarra, Norma; David, Marc; Faria, Sergio; Souhami, Luis; Cury, Fabio; Duclos, Marie; El Naqa, Issam
2015-04-01
We explore analytical and data-driven approaches to investigate the integration of genetic variations (single nucleotide polymorphisms [SNPs] and copy number variations [CNVs]) with dosimetric and clinical variables in modeling radiation-induced rectal bleeding (RB) and erectile dysfunction (ED) in prostate cancer patients. Sixty-two patients who underwent curative hypofractionated radiotherapy (66 Gy in 22 fractions) between 2002 and 2010 were retrospectively genotyped for CNV and SNP rs5489 in the xrcc1 DNA repair gene. Fifty-four patients had full dosimetric profiles. Two parallel modeling approaches were compared to assess the risk of severe RB (Grade⩾3) and ED (Grade⩾1); Maximum likelihood estimated generalized Lyman-Kutcher-Burman (LKB) and logistic regression. Statistical resampling based on cross-validation was used to evaluate model predictive power and generalizability to unseen data. Integration of biological variables xrcc1 CNV and SNP improved the fit of the RB and ED analytical and data-driven models. Cross-validation of the generalized LKB models yielded increases in classification performance of 27.4% for RB and 14.6% for ED when xrcc1 CNV and SNP were included, respectively. Biological variables added to logistic regression modeling improved classification performance over standard dosimetric models by 33.5% for RB and 21.2% for ED models. As a proof-of-concept, we demonstrated that the combination of genetic and dosimetric variables can provide significant improvement in NTCP prediction using analytical and data-driven approaches. The improvement in prediction performance was more pronounced in the data driven approaches. Moreover, we have shown that CNVs, in addition to SNPs, may be useful structural genetic variants in predicting radiation toxicities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, James R.; Followill, David S.; Imaging and Radiation Oncology Core-Houston, The University of Texas Health Science Center-Houston, Houston, Texas
Purpose: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. Methods and Materials: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points bymore » energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. Results: On average, intensity modulated radiation therapy–style and stereotactic body radiation therapy–style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. Conclusions: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy–style output factors, stereotactic body radiation therapy–style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha
The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented withmore » grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.« less
Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C
2015-01-01
Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. © 2014 Wiley Periodicals, Inc.
CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.
Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F
2016-09-01
About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Todor, Dorin A; Anscher, Mitchell S; Karlin, Jeremy D; Hagan, Michael P
2014-01-01
This is a retrospective study in which we define multiple metrics for similarity and then inquire on the relationship between similarity and currently used dosimetric quantities describing preimplant and postimplant plans. We analyzed a unique cohort of 94 consecutively performed prostate seed implant patients, associated with excellent dosimetric and clinical outcomes. For each patient, an ultrasound (US) preimplant and two CT postimplant (Day 0 and Day 30) studies were available. Measures for similarity were created and computed using feature vectors based on two classes of moments: first, invariant to rotation and translation, and the second polar-radius moments invariant to rotation, translation, and scaling. Both similarity measures were calibrated using controlled perturbations (random and systematic) of seed positions and contours in different size implants, thus producing meaningful numerical threshold values used in the clinical analysis. An important finding is that similarity, for both seed distributions and contours, improves significantly when scaling invariance is added to translation and rotation. No correlation between seed and contours similarity was found. In the setting of preplanned prostate seed implants using preloaded needles, based on our data, similarity between preimplant and postimplant plans does not correlate with either minimum dose to 90% of the volume of the prostate or analogous similarity metrics for prostate contours. We have developed novel tools and metrics, which will allow practitioners to better understand the relationship between preimplant and postimplant plans. Geometrical similarity between a preplan and an actual implant, although useful, does not seem to be necessary to achieve minimum dose to 90% of the volume of the prostate-good dosimetric implants. Copyright © 2014 American Brachytherapy Society. All rights reserved.
Sevillano, David; Mínguez, Cristina; Sánchez, Alicia; Sánchez-Reyes, Alberto
2016-01-01
To obtain specific margin recipes that take into account the dosimetric characteristics of the treatment plans used in a single institution. We obtained dose-population histograms (DPHs) of 20 helical tomotherapy treatment plans for prostate cancer by simulating the effects of different systematic errors (Σ) and random errors (σ) on these plans. We obtained dosimetric margins and margin reductions due to random errors (random margins) by fitting the theoretical results of coverages for Gaussian distributions with coverages of the planned D99% obtained from the DPHs. The dosimetric margins obtained for helical tomotherapy prostate treatments were 3.3 mm, 3 mm, and 1 mm in the lateral (Lat), anterior-posterior (AP), and superior-inferior (SI) directions. Random margins showed parabolic dependencies, yielding expressions of 0.16σ(2), 0.13σ(2), and 0.15σ(2) for the Lat, AP, and SI directions, respectively. When focusing on values up to σ = 5 mm, random margins could be fitted considering Gaussian penumbras with standard deviations (σp) equal to 4.5 mm Lat, 6 mm AP, and 5.5 mm SI. Despite complex dose distributions in helical tomotherapy treatment plans, we were able to simplify the behaviour of our plans against treatment errors to single values of dosimetric and random margins for each direction. These margins allowed us to develop specific margin recipes for the respective treatment technique. The method is general and could be used for any treatment technique provided that DPHs can be obtained. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Guo, Bing; Li, Jianbin; Wang, Wei; Li, Fengxiang; Guo, Yanluan; Li, Yankang; Liu, Tonghai
2015-01-01
This study sought to evaluate the dosimetric impact of tumor bed delineation variability (based on clips, seroma or both clips and seroma) during external-beam partial breast irradiation (EB-PBI) planned utilizing four-dimensional computed tomography (4DCT) scans. 4DCT scans of 20 patients with a seroma clarity score (SCS) 3~5 and ≥5 surgical clips were included in this study. The combined volume of the tumor bed formed using clips, seroma, or both clips and seroma on the 10 phases of 4DCT was defined as the internal gross target volume (termed IGTVC, IGTVS and IGTVC+S, respectively). A 1.5-cm margin was added by defining the planning target volume (termed PTVC, PTVS and PTVC+S, respectively). Three treatment plans were established using the 4DCT images (termed EB-PBIC, EB-PBIS, EB-PBIC+S, respectively). The results showed that the volume of IGTVC+S was significantly larger than that of IGTVCand IGTVS. Similarly, the volume of PTVC+S was markedly larger than that of PTVC and PTVS. However, the PTV coverage for EB-PBIC+S was similar to that of EB-PBIC and EB-PBIS, and there were no significant differences in the homogeneity index or conformity index between the three treatment plans (P=0.878, 0.086). The EB-PBIS plan resulted in the lowest ipsilateral normal breast and ipsilateral lung doses compared with the EB-PBIC and EB-PBIC+S plans. To conclude, the volume variability delineated based on clips, seroma or both clips and seroma resulted in dosimetric variability for organs at risk, but did not show a marked influence on the dosimetric distribution.
Guo, Bing; Li, Jianbin; Wang, Wei; Li, Fengxiang; Guo, Yanluan; Li, Yankang; Liu, Tonghai
2015-01-01
This study sought to evaluate the dosimetric impact of tumor bed delineation variability (based on clips, seroma or both clips and seroma) during external-beam partial breast irradiation (EB-PBI) planned utilizing four-dimensional computed tomography (4DCT) scans. 4DCT scans of 20 patients with a seroma clarity score (SCS) 3~5 and ≥5 surgical clips were included in this study. The combined volume of the tumor bed formed using clips, seroma, or both clips and seroma on the 10 phases of 4DCT was defined as the internal gross target volume (termed IGTVC, IGTVS and IGTVC+S, respectively). A 1.5-cm margin was added by defining the planning target volume (termed PTVC, PTVS and PTVC+S, respectively). Three treatment plans were established using the 4DCT images (termed EB-PBIC, EB-PBIS, EB-PBIC+S, respectively). The results showed that the volume of IGTVC+S was significantly larger than that of IGTVCand IGTVS. Similarly, the volume of PTVC+S was markedly larger than that of PTVC and PTVS. However, the PTV coverage for EB-PBIC+S was similar to that of EB-PBIC and EB-PBIS, and there were no significant differences in the homogeneity index or conformity index between the three treatment plans (P=0.878, 0.086). The EB-PBIS plan resulted in the lowest ipsilateral normal breast and ipsilateral lung doses compared with the EB-PBIC and EB-PBIC+S plans. To conclude, the volume variability delineated based on clips, seroma or both clips and seroma resulted in dosimetric variability for organs at risk, but did not show a marked influence on the dosimetric distribution. PMID:26885108
NASA Astrophysics Data System (ADS)
Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.
2017-08-01
The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.
Dosimetric parameters of three new solid core I‐125 brachytherapy sources
Solberg, Timothy D.; DeMarco, John J.; Hugo, Geoffrey; Wallace, Robert E.
2002-01-01
Monte Carlo calculations and TLD measurements have been performed for the purpose of characterizing dosimetric properties of new commercially available brachytherapy sources. All sources tested consisted of a solid core, upon which a thin layer of I125 has been adsorbed, encased within a titanium housing. The PharmaSeed BT‐125 source manufactured by Syncor is available in silver or palladium core configurations while the ADVANTAGE source from IsoAid has silver only. Dosimetric properties, including the dose rate constant, radial dose function, and anisotropy characteristics were determined according to the TG‐43 protocol. Additionally, the geometry function was calculated exactly using Monte Carlo and compared with both the point and line source approximations. The 1999 NIST standard was followed in determining air kerma strength. Dose rate constants were calculated to be 0.955±0.005,0.967±0.005, and 0.962±0.005 cGyh−1U−1 for the PharmaSeed BT‐125‐1, BT‐125‐2, and ADVANTAGE sources, respectively. TLD measurements were in excellent agreement with Monte Carlo calculations. Radial dose function, g(r), calculated to a distance of 10 cm, and anisotropy function F(r, θ), calculated for radii from 0.5 to 7.0 cm, were similar among all source configurations. Anisotropy constants, ϕ¯an, were calculated to be 0.941, 0.944, and 0.960 for the three sources, respectively. All dosimetric parameters were found to be in close agreement with previously published data for similar source configurations. The MCNP Monte Carlo code appears to be ideally suited to low energy dosimetry applications. PACS number(s): 87.53.–j PMID:11958652
Chen, Ting; Kim, Leonard H.; Nelson, Carl; Gabel, Molly; Narra, Venkat; Haffty, Bruce; Yue, Ning J.
2013-01-01
Purpose To investigate the dosimetric difference due to the different point A definitions in cervical cancer low-dose-rate (LDR) intracavitary brachytherapy. Material and methods Twenty CT-based LDR brachytherapy plans of 11 cervical patients were retrospectively reviewed. Two plans with point As following the modified Manchester system which defines point A being 2 cm superior to the cervical os along the tandem and 2 cm lateral (Aos), and the American Brachytherapy Society (ABS) guideline definition in which the point A is 2 cm superior to the vaginal fornices instead of os (Aovoid) were generated. Using the same source strength, two plans prescribed the same dose to Aos and Aovoid. Dosimetric differences between plans including point A dose rate, treatment volume encompassed by the prescription isodose line (TV), and dose rate of 2 cc of the rectum and bladder to the prescription dose were measured. Results On average Aovoid was 8.9 mm superior to Aos along the tandem direction with a standard deviation of 5.4 mm. With the same source strength and arrangement, Aos dose rate was 19% higher than Aovoid dose rate. The average TV(Aovoid) was 118.0 cc, which was 30% more than the average TV(Aos) of 93.0 cc. D2cc/D(Aprescribe) increased from 51% to 60% for rectum, and increased from 89% and 106% for bladder, if the prescription point changed from Aos to Aovoid. Conclusions Different point A definitions lead to significant dose differences. Careful consideration should be given when changing practice from one point A definition to another, to ensure dosimetric and clinical equivalency from the previous clinical experiences. PMID:24474971
Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer
Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun
2016-01-01
The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5–8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3–5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3–5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. PMID:27605630
Hayashi, Naoki; Malmin, Ryan L; Watanabe, Yoichi
2014-05-01
Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements.
2013-01-01
Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirk, S; Conroy, L; Smith, WL
Partial breast irradiation (PBI) following breast-conserving surgery is emerging as an effective means to achieve local control and reduce irradiated breast volume. Patients are planned on a static CT image; however, treatment is delivered while the patient is free-breathing. Respiratory motion can degrade plan quality by reducing target coverage and/or dose homogeneity. A variety of methods can be used to determine the required margin for respiratory motion in PBI. We derive geometric and dosimetric respiratory 1D margin. We also verify the adequacy of the typical 5 mm respiratory margin in 3D by evaluating plan quality for increasing respiratory amplitudes (2–20more » mm). Ten PBI plans were used for dosimetric evaluation. A database of volunteer respiratory data, with similar characteristics to breast cancer patients, was used for this study. We derived a geometric 95%-margin of 3 mm from the population respiratory data. We derived a dosimetric 95%-margin of 2 mm by convolving 1D dose profiles with respiratory probability density functions. The 5 mm respiratory margin is possibly too large when 1D coverage is assessed and could lead to unnecessary normal tissue irradiation. Assessing margins only for coverage may be insufficient; 3D dosimetric assessment revealed degradation in dose homogeneity is the limiting factor, not target coverage. Hotspots increased even for the smallest respiratory amplitudes, while target coverage only degraded at amplitudes greater than 10 mm. The 5 mm respiratory margin is adequate for coverage, but due to plan quality degradation, respiratory management is recommended for patients with respiratory amplitudes greater than 10 mm.« less
Bair, W J
1989-01-01
In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users. This should facilitate application of the revised human respiratory tract model to worldwide radiation protection needs.
Charlton, Bruce G
2007-01-01
In scientific writing, although clarity and precision of language are vital to effective communication, it seems undeniable that content is more important than form. Potentially valuable knowledge should not be excluded from the scientific literature merely because the researchers lack advanced language skills. Given that global scientific literature is overwhelmingly in the English-language, this presents a problem for non-native speakers. My proposal is that scientists should be permitted to construct papers using a substantial number of direct quotations from the already-published scientific literature. Quotations would need to be explicitly referenced so that the original author and publication should be given full credit for creating such a useful and valid description. At the extreme, this might result in a paper consisting mainly of a 'mosaic' of quotations from the already existing scientific literature, which are linked and extended by relatively few sentences comprising new data or ideas. This model bears some conceptual relationship to the recent trend in computing science for component-based or component-oriented software engineering - in which new programs are constructed by reusing programme components, which may be available in libraries. A new functionality is constructed by linking-together many pre-existing chunks of software. I suggest that journal editors should, in their instructions to authors, explicitly allow this 'component-oriented' method of constructing scientific articles; and carefully describe how it can be accomplished in such a way that proper referencing is enforced, and full credit is allocated to the authors of the reused linguistic components.
Lazzaro, Lorenzo; Mazza, Giuseppe; d'Errico, Giada; Fabiani, Arturo; Giuliani, Claudia; Inghilesi, Alberto F; Lagomarsino, Alessandra; Landi, Silvia; Lastrucci, Lorenzo; Pastorelli, Roberta; Roversi, Pio Federico; Torrini, Giulia; Tricarico, Elena; Foggi, Bruno
2018-05-01
Biological invasions are a global threat to biodiversity. Since the spread of invasive alien plants may have many impacts, an integrated approach, assessing effects across various ecosystem components, is needed for a correct understanding of the invasion process and its consequences. The nitrogen-fixing tree Robinia pseudoacacia (black locust) is a major invasive species worldwide and is used in forestry production. While its effects on plant communities and soils are well known, there have been few studies on soil fauna and microbes. We investigated the impacts of the tree on several ecosystem components, using a multi-trophic approach to combine evidence of soil chemical properties and soil microbial, nematode, microarthropod and plant communities. We sampled soil and vegetation in managed forests, comparing those dominated by black locust with native deciduous oak stands. We found qualitative and quantitative changes in all components analysed, such as the well-known soil nitrification and acidification in stands invaded by black locust. Bacterial richness was the only component favoured by the invasion. On the contrary, abundance and richness of microarthropods, richness of nematodes, and richness and diversity of plant communities decreased significantly in invaded stands. The invasion process caused a compositional shift in all studied biotic communities and in relationships between the different ecosystem components. We obtained clear insights into the effects of invasion of managed native forests by black locust. Our data confirms that the alien species transforms several ecosystem components, modifying the plant-soil community and affecting biodiversity at different levels. Correct management of this aggressive invader in temperate forests is urgently required. Copyright © 2017 Elsevier B.V. All rights reserved.
Bourg, Norman; McShea, William J.; Herrmann, Valentine; Stewart, Chad M.
2017-01-01
Mammalian herbivory and exotic plant species interactions are an important ongoing research topic, due to their presumed impacts on native biodiversity. The extent to which these interactions affect forest understory plant community composition and persistence was the subject of our study. We conducted a 5-year, 2 × 2 factorial experiment in three mid-Atlantic US deciduous forests with high densities of white-tailed deer (Odocoileus virginianus) and exotic understory plants. We predicted: (i) only deer exclusion and exotic plant removal in tandem would increase native plant species metrics; and (ii) deer exclusion alone would decrease exotic plant abundance over time. Treatments combining exotic invasive plant removal and deer exclusion for plots with high initial cover, while not differing from fenced or exotic removal only plots, were the only ones to exhibit positive richness responses by native herbaceous plants compared to control plots. Woody seedling metrics were not affected by any treatments. Deer exclusion caused significant increases in abundance and richness of native woody species >30 cm in height. Abundance changes in two focal members of the native sapling community showed that oaks (Quercus spp.) increased only with combined exotic removal and deer exclusion, while shade-tolerant maples (Acer spp.) showed no changes. We also found significant declines in invasive Japanese stiltgrass (Microstegium vimineum) abundance in deer-excluded plots. Our study demonstrates alien invasive plants and deer impact different components and life-history stages of the forest plant community, and controlling both is needed to enhance understory richness and abundance. Alien plant removal combined with deer exclusion will most benefit native herbaceous species richness under high invasive cover conditions while neither action may impact native woody seedlings. For larger native woody species, only deer exclusion is needed for such increases. Deer exclusion directly facilitated declines in invasive species abundance. Resource managers should consider addressing both factors to achieve their forest management goals.
Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi
2015-01-01
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388
Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian
2016-04-22
The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.
Voltage and frequency dependence of prestin-associated charge transfer
Sun, Sean X.; Farrell, Brenda; Chana, Matthew S.; Oster, George; Brownell, William E.; Spector, Alexander A.
2009-01-01
Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage-and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degree as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein. PMID:19490917
NASA Astrophysics Data System (ADS)
Li, Hongyan; Fitzgerald, Melissa A.; Prakash, Sangeeta; Nicholson, Timothy M.; Gilbert, Robert G.
2017-03-01
The stickiness of cooked rice is important for eating quality and consumer acceptance. The first molecular understanding of stickiness is obtained from leaching and molecular structural characteristics during cooking. Starch is a highly branched glucose polymer. We find (i) the molecular size of leached amylopectin is 30 times smaller than that of native amylopectin while (ii) that of leached amylose is 5 times smaller than that of native amylose, (iii) the chain-length distribution (CLD: the number of monomer units in a chain on the branched polymer) of leached amylopectin is similar to native amylopectin while (iv) the CLD of leached amylose is much narrower than that of the native amylose, and (v) mainly amylopectin, not amylose, leaches out of the granule and rice kernel during cooking. Stickiness is found to increase with decreasing amylose content in the whole grain, and, in the leachate, with increasing total amount of amylopectin, the proportion of short amylopectin chains, and amylopectin molecular size. Molecular adhesion mechanisms are put forward to explain this result. This molecular structural mechanism provides a new tool for rice breeders to select cultivars with desirable palatability by quantifying the components and molecular structure of leached starch.
Ishimoto, Yuina; Ishibashi, Ken-Ichi; Yamanaka, Daisuke; Adachi, Yoshiyuki; Ito, Hisatomi; Igami, Kentaro; Miyazaki, Toshitsugu; Ohno, Naohito
2017-01-01
Ganoderma lingzhi is a widely used medicinal mushroom that has antioxidative effects, ameliorates insulin resistance, and improves quality of life in patients with metabolic syndrome. Potentiation of immunity is also a major function of G. lingzhi, and this has been applied in patients with cancer. Supplementing G. lingzhi into foods reduced the metastasis of cancer cells. β-l,3-glucan is an important bioactive component of G. lingzhi. In this study we enhanced the solubilization ofimmunostimulating β-l,3-glucan by autodigestion of G. lingzhi. Fruiting bodies of G. lingzhi were disrupted and suspended in distilled water, then autodigested at 37°C for 24 hours. The resulting suspension was dried by spray drying. To assess the solubilization of β-l,3-glucan by autodigestion, cold and hot water extracts and sodium hydroxide extracts of G. lingzhi were prepared with and without autodigestion. Sodium hydroxide extracts were neutralized and dialyzed against distilled water. The resulting soluble and precipitated fractions were collected. Chemical, biochemical, and immunochemical characteristics of the extracts were compared. The yields of cold water extracts of autodigested and native G. lingzhi were significantly lower than the other extracts. Glucose was the major sugar component of the hot water extract, cold alkali extract (CAS), and the cold hydroxide extract insoluble in neutral aqueous condition (CASP) of the autodigested and native G. lingzhi. Nuclear magnetic resonance analysis revealed branched β-glucans in the hot water extract and CAS of the autodigested and native G. lingzhi. By contrast, the CASP of the autodigested and native G. lingzhi comprised mainly mixtures of linear α-l,3-glucans and linear β-l,3-glucans. Immunostimulation by β-l,3-glucan was examined by limulus factor G activation, dectin-1 binding, and anti-β-glucan antibody binding. Comparing relative activity, immunostimulating β-l,3-glucan was detected in the hot water extract, rather than the CAS, of autodigested and native G. lingzhi. Immunostimulating of β-glucan was also detected in the cold water extract of the autodigested G. lingzhi. These findings demonstrate that autodigestion is a useful processing protocol for enhancing the usefulness of G. lingzhi as a functional food.
The risk of exotic and native plants as hosts for four pest thrips (Thysanoptera: Thripinae).
Schellhorn, N A; Glatz, R V; Wood, G M
2010-10-01
Interactions among insect pests, crops and weeds are well recognised. In fact, the elimination of weed hosts outside of the crop is a common practice to control many insect-vectored viruses. However, little is known about interactions among insect pests, crops and native vegetation, and whether native plants may be used to revegetate areas where weed hosts have been eliminated as part of horticultural management regimes. We used the Northern Adelaide Plains horticultural region (South Australia, Australia) as a model system to study the potential of various plant taxa in hosting four pest thrips (three exotic, one native; Frankliniella occidentalis, F. schultzei, Thrips tabaci and T. imaginis) when located adjacent to, and distant from, horticultural crops. Flower funnels were used for standardised sampling of thrips on flowers from 19 exotic weed and 12 native plant species, representing 13 and three families, respectively. Flowers were sampled monthly over a year, and statistical analyses were performed to identify significant determinants of probability of thrips occurrence and density. Plant family was found to significantly influence both measures for each thrips species. In addition, crop proximity influenced the probability of occurrence for the two Frankliniella species (but only influenced density of the key pest F. occidentalis), and season influenced density of all four pest thrips. All native plant species tested had a low likelihood of hosting the three exotic thrips species. Overall, results suggest that judicious choice of surrounding vegetation has potential to be an important component of integrated pest management (IPM) while increasing biodiversity conservation.
Wulff, Jorg; Keil, Boris; Auvanis, Diyala; Heverhagen, Johannes T; Klose, Klaus Jochen; Zink, Klemens
2008-01-01
The present study aims at the investigation of eye lens shielding of different composition for the use in computed tomography examinations. Measurements with thermo-luminescent dosimeters and a simple cylindrical waterfilled phantom were performed as well as Monte Carlo simulations with an equivalent geometry. Besides conventional shielding made of Bismuth coated latex, a new shielding with a mixture of metallic components was analyzed. This new material leads to an increased dose reduction compared to the Bismuth shielding. Measured and Monte Carlo simulated dose reductions are in good agreement and amount to 34% for the Bismuth shielding and 46% for the new material. For simulations the EGSnrc code system was used and a new application CTDOSPP was developed for the simulation of the computed tomography examination. The investigations show that a satisfying agreement between simulation and measurement with the chosen geometries of this study could only be achieved, when transport of secondary electrons was accounted for in the simulation. The amount of scattered radiation due to the protector by fluorescent photons was analyzed and is larger for the new material due to the smaller atomic number of the metallic components.
NASA Astrophysics Data System (ADS)
Aydarous, Abdulkadir
2016-05-01
The absorption spectra of the EBT2 film's components were investigated in conjunction with its use for UVA dosimetry. The polyester (topside) and adhesive layers of the EBT2 film have been gently removed. Gafchromic™ EBT2 films with and without the protected layers (polyester and adhesive) were exposed to UVR of 365 nm for different durations. Thereafter, the UV-visible spectra were measured using a UV-visible spectrophotometer (Model Spectro Dual Split Beam, UVS-2700). Films were digitized using a Nikon CanoScan 9000F Mark II flatbed scanner. The dosimetric characteristics including film's uniformity, reproducibility and post-irradiation development were investigated. The color development of EBT2 and new modified EBT2 (EBT2-M) films irradiated with UVA was relatively stable (less than 1%) immediately after exposure. Based on this study, the sensitivity of EBT2 to UVR with wavelength between ~350 nm and ~390 nm can significantly be enhanced if the adhesive layer (~25 μm) is removed. The polyester layer plays almost no part on absorbing UVR with wavelength between ~320 nm and ~390 nm. Furthermore, various sensitivities for the EBT2-M film has been established depending on the wavelength of analysis.
Exploring the Essential Components of Reading
ERIC Educational Resources Information Center
Tindall, Evie; Nisbet, Deanna
2010-01-01
Teachers of adult learners of English as a second language (ESL) have increasingly encountered students with limited literacy skills in their native language and/or in English. Yet, many of these practitioners are not adequately equipped to meet the challenge of teaching reading, especially beginning reading skills. Although there is a paucity of…
USDA-ARS?s Scientific Manuscript database
Converting native grassland (NGL) to cropland (CL) decreases soil organic matter contents (components of soil total carbon contents, STCCs), which often leads to soil degradation. Reestablishing grass on CL generally increases soil organic matter, which improves soil conditions. This study was condu...
ERIC Educational Resources Information Center
Lethbridge Univ. (Alberta).
Designed as a text for high school students and adults, this illustrated book presents ethical concepts and teachings of Native societies throughout North America concerning the nature and possibilities of human existence. The final component of a course in self-discovery and development, the book begins with the legend of the "Sacred Tree"…
Disrupting ecosystem components, while transferring and reconstructing them for experiments can produce myriad responses. Establishing the extent of these biological responses as the system approaches a new equilibrium allows us more reliably to emulate comparable native systems....
Bark beetle responses to vegetation management practices
Joel D. McMillin; Christopher J. Fettig
2009-01-01
Native tree-killing bark beetles (Coleoptera: Curculionidae, Scolytinae) are a natural component of forest ecosystems. Eradication is neither possible nor desirable and periodic outbreaks will occur as long as susceptible forests and favorable climatic conditions co-exist. Recent changes in forest structure and tree composition by natural processes and management...
Future directions in EAB-affected forests
Deborah G. McCullough; Roy Van Driesche; Therese M. Poland
2015-01-01
The ability of natural enemies to slow emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), population growth in a given area will play a major role in determining whether many native ash species can persist as functional components of forest ecosystems. Population growth of EAB, like that of any other organism, is...
Regional Novels in the Study of Rural Education.
ERIC Educational Resources Information Center
Peters, Dianne S.
1983-01-01
Contrasts and compares historical research on rural and Native American education and regional novels ("To Kill a Mockingbird" and "Laughing Boy") in order to demonstrate the importance of diversity in the concept of rurality. Suggests regional novels are an important component in the study of rural education. (AH)
Grain and nutritional quality traits of Southwestern U.S. blue maize landraces
USDA-ARS?s Scientific Manuscript database
Anthocyanin-rich pigmented maize has been a key component in socio-cultural life of Native American communities for many centuries. Our research characterizes the grain and nutritional quality traits of southwestern U.S. blue maize landraces. During 2013, six representative accessions and two improv...
Semantics vs. World Knowledge in Prefrontal Cortex
ERIC Educational Resources Information Center
Pylkkanen, Liina; Oliveri, Bridget; Smart, Andrew J.
2009-01-01
Humans have knowledge about the properties of their native language at various levels of representation; sound, structure, and meaning computation constitute the core components of any linguistic theory. Although the brain sciences have engaged with representational theories of sound and syntactic structure, the study of the neural bases of…
DOT National Transportation Integrated Search
2012-03-01
"Re-vegetation strategies and programs for highway rights of way in both rural and urban areas are an importatn component of any : highway construction project. Vegetation is ued to stabilize soils to prevent sheet and gully erosion and to help in so...
Fungi and diseases - natural components of healthy forests
M. E. Ostry; G. Laflamme
2009-01-01
Forest health is described and perceived in different ways by the general public, land owners, managers, politicians, and scientists, depending on their values and objectives. Native tree pathogens and diseases are often associated with negative impacts even though damage is limited or not widespread. Too often, the concepts of tree...
Bonta, Dacian V; Halkar, Raghuveer K; Alazraki, Naomi
2011-09-01
After the extravasation of a therapeutic dose of (131)I-metaiodobenzylguanidine that produced a radiation burn to a patient's forearm, we instituted a catheter placement verification protocol. Before therapy infusion, proper placement is verified by administering 37 MBq of (99m)Tc-pertechnetate through the catheter, and monitoring activity at the administration site and on the contralateral extremity. A dosimetric model describing both high-rate and low-rate dose components was developed and predicted that the basal epidermal layer received a radiation dose consistent with the observed moist desquamation radiation skin toxicity. No extravasation incidents have occurred since the verification procedure was instituted. To protect against radiation injury from extravasation of therapeutic radionuclides, test administration of a small (99m)Tc dose with probe monitoring of comparable sites in both upper extremities appears to be an effective preventive measure.
Dosimetric impact of a change in breathing period on VMAT stereotactic ablative body radiotherapy
NASA Astrophysics Data System (ADS)
Olding, T.; Alexander, KM
2017-05-01
The dosimetric impact of a change in breathing period during treatment was assessed for a volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) lung plan optimized according to our centre’s planning protocol. Plan delivery was evaluated at three breathing rates ranging from 7 to 23 breaths-per-minute (BPM) against the planning anatomy (15 BPM) calculated dose. Dynamic ion chamber, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose within the internal gross tumour volume (IGTV) target.
Dosimetric characteristics of LKB:Cu,P solid TL detector
NASA Astrophysics Data System (ADS)
Hashim, S.; Alajerami, Y. S. M.; Ghoshal, S. K.; Saleh, M. A.; Saripan, M. I.; Kadir, A. B. A.; Bradley, D. A.; Alzimami, K.
2014-11-01
The dosimetric characteristics of newly developed borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and NH4H2PO4 are reported. Broad peaks in the absence of any sharp peak confirms the amorphous nature of the prepared glass. A simple glow curve of Cu doped sample is observed with a single prominent peak (Tm) at 220 °C. The TL intensity response shows an enhancement of ~100 times due to the addition of CuO (0.1 mol%) to LKB compound. A further enhancement of the intensity by a factor of 3 from the addition of 0.25 mol% NH4H2PO4 as a co-dopant impurity is attributed to the creation of extra electron traps with consequent increase in energy transfer of radiation recombination centers. The TL yield performance of LKB:Cu,P with Zeff ≈8.92 is approximately seventeen times less sensitive compared to LiF:Mg,Ti (TLD-100). The proposed dosimeter shows good linearity up to 103 Gy, minimal fading and photon energy independence. These attractive features offered by our dosimeter is expected to pave the way towards dosimetric applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.
Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less
Bradley, David; Nisbet, Andrew
2012-01-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649
Dosimetric characteristics of fabricated silica fibre for postal radiotherapy dose audits
NASA Astrophysics Data System (ADS)
Fadzil, M. S. Ahmad; Ramli, N. N. H.; Jusoh, M. A.; Kadni, T.; Bradley, D. A.; Ung, N. M.; Suhairul, H.; Mohd Noor, N.
2014-11-01
Present investigation aims to establish the dosimetric characteristics of a novel fabricated flat fibre TLD system for postal radiotherapy dose audits. Various thermoluminescence (TL) properties have been investigated for five sizes of 6 mol% Ge-doped optical fibres. Key dosimetric characteristics including reproducibility, linearity, fading and energy dependence have been established. Irradiations were carried out using a linear accelerator (linac) and a Cobalt-60 machine. For doses from 0.5 Gy up to 10 Gy, Ge-doped flat fibres exhibit linearity between TL yield and dose, reproducible to better than 8% standard deviation (SD) following repeat measurements (n = 3). For photons generated at potentials from 1.25 MeV to 10 MV an energy-dependent response is noted, with a coefficient of variation (CV) of less than 40% over the range of energies investigated. For 6.0 mm length flat fibres 100 μm thick × 350 pm wide, the TL fading loss following 30 days of storage at room temperature was < 8%. The Ge-doped flat fibre system represents a viable basis for use in postal radiotherapy dose audits, corrections being made for the various factors influencing the TL yield.
Dosimetric evaluation of a MOSFET detector for clinical application in photon therapy.
Kohno, Ryosuke; Hirano, Eriko; Nishio, Teiji; Miyagishi, Tomoko; Goka, Tomonori; Kawashima, Mitsuhiko; Ogino, Takashi
2008-01-01
Dosimetric characteristics of a metal oxide-silicon semiconductor field effect transistor (MOSFET) detector are studied with megavoltage photon beams for patient dose verification. The major advantages of this detector are its size, which makes it a point dosimeter, and its ease of use. In order to use the MOSFET detector for dose verification of intensity-modulated radiation therapy (IMRT) and in-vivo dosimetry for radiation therapy, we need to evaluate the dosimetric properties of the MOSFET detector. Therefore, we investigated the reproducibility, dose-rate effect, accumulated-dose effect, angular dependence, and accuracy in tissue-maximum ratio measurements. Then, as it takes about 20 min in actual IMRT for the patient, we evaluated fading effect of MOSFET response. When the MOSFETs were read-out 20 min after irradiation, we observed a fading effect of 0.9% with 0.9% standard error of the mean. Further, we applied the MOSFET to the measurement of small field total scatter factor. The MOSFET for dose measurements of small field sizes was better than the reference pinpoint chamber with vertical direction. In conclusion, we assessed the accuracy, reliability, and usefulness of the MOSFET detector in clinical applications such as pinpoint absolute dosimetry for small fields.
Palmer, Antony; Bradley, David; Nisbet, Andrew
2012-06-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.
Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G
2013-12-01
To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.
A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times
NASA Astrophysics Data System (ADS)
Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel
2014-12-01
Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement. Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, J; Jeyaseelan, K; Ybarra, N
2014-06-15
Purpose: It has been realized that inter-patient radiation sensitivity variability is a multifactorial process involving dosimetric, clinical, and genetic factors. Therefore, we explore a new framework to integrate physical, clinical, and biological data denoted as radiogenomic modeling. In demonstrating the feasibility of this work, we investigate the association of genetic variants (copy number variations [CNVs] and single nucleotide polymorphisms [SNPs]) with radiation induced rectal bleeding (RB) and erectile dysfunction (ED) while taking into account dosimetric and clinical variables in prostate cancer patients treated with curative irradiation. Methods: A cohort of 62 prostate cancer patients who underwent hypofractionated radiotherapy (66 Gymore » in 22 fractions) was retrospectively genotyped for CNV and SNP rs25489 in the xrcc1 DNA repair gene. Dosevolume metrics were extracted from treatment plans of 54 patients who had complete dosimetric profiles. Treatment outcomes were considered to be a Result of functional mapping of radiogenomic input variables according to a logit transformation. Model orders were estimated using resampling by leave-one out cross-validation (LOO-CV). Radiogenomic model performance was evaluated using area under the ROC curve (AUC) and LOO-CV. For continuous univariate dosimetric and clinical variables, Spearmans rank coefficients were calculated and p-values reported accordingly. In the case of binary variables, Chi-squared statistics and contingency table calculations were used. Results: Ten patients were found to have three copies of xrcc1 CNV (RB: χ2=14.6 [p<0.001] and ED: χ2=4.88[p=0.0272]) and twelve had heterozygous rs25489 SNP (RB: χ2=0.278[p=0.599] and ED: χ2=0.112[p=0.732]). LOO-CV identified penile bulb D60 as the only significant QUANTEC predictor (rs=0.312 [p=0.0145]) for ED. Radiogenomic modeling yielded statistically significant, cross-validated NTCP models for RB (rs=0.243[p=0.0443], AUC=0.665) and ED (rs=0.276[p=0.0217], AUC=0.754). Conclusion: The radiogenomic modeling approach presented herein has been shown to identify NTCP models which have increased predictive power. Furthermore, CNVs appears to be useful genetic variants when added to dosimetric NTCP models. This work was partially supported by CIHR grant MOP-114910.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Ruan, Dan; Lee, Steve P.
2015-03-15
Purpose: To develop a practical workflow for retrospectively analyzing target and normal tissue dose–volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. Methods and Materials: A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose–volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB-IMRT) or RAPIDARC (TB-RAPIDARC), or Siemens Oncor (Siemens-IMRT, Siemens). A MATLAB-based dose–volume extraction and analysis tool was developed to export dosimetric endpoints for eachmore » patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Results: Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB-IMRT, TB-RAPIDARC, and Siemens-IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose–volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher parotid doses for C-arm linear accelerator–based IMRT and RAPIDARC plans. Conclusion: Patient registry–based processes allowed easy and systematic dosimetric assessment of treatment plan quality and consistency. Our analysis revealed the dependence of certain dosimetric endpoints on the treatment techniques. Technique-specific refinement of planning goals may lead to improvement in plan consistency and plan quality.« less
Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul
2011-07-01
In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostou, T; Papadimitroulas, P; Kagadis, GC
2014-06-15
Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, P; Gang, Y; Qin, S
2016-06-15
Purpose: Many patients with technically unresectable or medically inoperable hepatocellular carcinoma (HCC) had hepatic dosimetric variations as a result of inter-fraction anatomical deformation. This study was conducted to assess the hepatic dosimetric consequences via reconstructing weekly dose in HCC patients receiving three dimensional conformal radiation therapy. Methods: Twenty-one HCC patients with 21 planning CT (pCT) scans and 63 weekly Cone-beam CT (CBCT) scans were enrolled in this investigation. Among them, six patients had been diagnosed of radiation induced liver disease (RILD) and the other fifteen patients had good prognosis after treatment. And each patient had three weekly CBCT before re-planning.more » In reconstructing CBCT-based weekly dose, we registered pCT to CBCT to provide the correct Hounsfield units for the CBCT using gradient-based deformable image registration (DIR), and this modified CBCT (mCBCT) were introduced to enable dose calculation.To obtain the weekly dosimetric consequences, the initial plan beam configurations and dose constraints were re-applied to mCBCT for performing dose calculation, and the mCBCT were extrapolated to 25 fractions. Besides, the manually delineated contour was propagated automatically onto the mCBCT of the new patient by exploiting the deformation vectors field, and the reconstructed weekly dose was mapped back to pCT to understand the dose distribution difference. Also, weekly dosimetric variations were compared with the hepatic radiation tolerance in terms of D50 and Dmean. Results: Among the twenty-one patients, the three weekly D50 increased by 0.7Gy, 5.1Gy and 6.1Gy, respectively, and Dmean increased by 0.9%, 4.7% and 5.5%, respectively. For patients with RILD, the average values of the third weekly D50 and Dmean were both high than hepatic radiation tolerance, while the values of patients without RILD were below. Conclusion: The planned dose on pCT was not a real dose to the liver, and the liver overdose increased the risk of RILD. The author would like to express great thanks to Lei Xing, Daniel S Kapp and Yong Yang in the Stanford University School of Medicine for their valuable suggestions to this work. This work is supported by NSFC(61471226), China Postdoctoral Science Foundation (2015T80739,2014M551949) and research funding from Shandong Province (JQ201516).« less
MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
MO-A-BRC-02: TG167 Report - Detailed Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, M.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
MO-A-BRC-01: TG167 Report - Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, R.
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
NASA Astrophysics Data System (ADS)
Petric, Martin Peter
This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.
Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Takahashi, Kunio; Akimoto, Mami; Miyabe, Yuki; Yokota, Kenji; Kaneko, Shuji; Nakamura, Akira; Itasaka, Satoshi; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro
2016-12-01
The purposes of this study were two-fold: first, to develop a four-axis moving phantom for patient-specific quality assurance (QA) in surrogate signal-based dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT), and second, to evaluate the accuracy of the moving phantom and perform patient-specific dosimetric QA of the surrogate signal-based DTT-IMRT. The four-axis moving phantom comprised three orthogonal linear actuators for target motion and a fourth one for surrogate motion. The positional accuracy was verified using four laser displacement gauges under static conditions (±40 mm displacements along each axis) and moving conditions [eight regular sinusoidal and fourth-power-of-sinusoidal patterns with peak-to-peak motion ranges (H) of 10-80 mm and a breathing period (T) of 4 s, and three irregular respiratory patterns with H of 1.4-2.5 mm in the left-right, 7.7-11.6 mm in the superior-inferior, and 3.1-4.2 mm in the anterior-posterior directions for the target motion, and 4.8-14.5 mm in the anterior-posterior direction for the surrogate motion, and T of 3.9-4.9 s]. Furthermore, perpendicularity, defined as the vector angle between any two axes, was measured using an optical measurement system. The reproducibility of the uncertainties in DTT-IMRT was then evaluated. Respiratory motions from 20 patients acquired in advance were reproduced and compared three-dimensionally with the originals. Furthermore, patient-specific dosimetric QAs of DTT-IMRT were performed for ten pancreatic cancer patients. The doses delivered to Gafchromic films under tracking and moving conditions were compared with those delivered under static conditions without dose normalization. Positional errors of the moving phantom under static and moving conditions were within 0.05 mm. The perpendicularity of the moving phantom was within 0.2° of 90°. The differences in prediction errors between the original and reproduced respiratory motions were -0.1 ± 0.1 mm for the lateral direction, -0.1 ± 0.2 mm for the superior-inferior direction, and -0.1 ± 0.1 mm for the anterior-posterior direction. The dosimetric accuracy showed significant improvements, of 92.9% ± 4.0% with tracking versus 69.8% ± 7.4% without tracking, in the passing rates of γ with the criterion of 3%/1 mm (p < 0.001). Although the dosimetric accuracy of IMRT without tracking showed a significant negative correlation with the 3D motion range of the target (r = - 0.59, p < 0.05), there was no significant correlation for DTT-IMRT (r = 0.03, p = 0.464). The developed four-axis moving phantom had sufficient accuracy to reproduce patient respiratory motions, allowing patient-specific QA of the surrogate signal-based DTT-IMRT under realistic conditions. Although IMRT without tracking decreased the dosimetric accuracy as the target motion increased, the DTT-IMRT achieved high dosimetric accuracy.
Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney
2014-01-01
Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623
Kieffer, Michael J; Vukovic, Rose K
2012-01-01
Drawing on the cognitive and ecological domains within the componential model of reading, this longitudinal study explores heterogeneity in the sources of reading difficulties for language minority learners and native English speakers in urban schools. Students (N = 150) were followed from first through third grade and assessed annually on standardized English language and reading measures. Structural equation modeling was used to investigate the relative contributions of code-related and linguistic comprehension skills in first and second grade to third grade reading comprehension. Linguistic comprehension and the interaction between linguistic comprehension and code-related skills each explained substantial variation in reading comprehension. Among students with low reading comprehension, more than 80% demonstrated weaknesses in linguistic comprehension alone, whereas approximately 15% demonstrated weaknesses in both linguistic comprehension and code-related skills. Results were remarkably similar for the language minority learners and native English speakers, suggesting the importance of their shared socioeconomic backgrounds and schooling contexts.
Atlan, A; Barat, M; Legionnet, A S; Parize, L; Tarayre, M
2010-02-01
The genetic variation in flowering phenology may be an important component of a species' capacity to colonize new environments. In native populations of the invasive species Ulex europaeus, flowering phenology has been shown to be bimodal and related to seed predation. The aim of the present study was to determine if this bimodality has a genetic basis, and to investigate whether the polymorphism in flowering phenology is genetically linked to seed predation, pod production and growth patterns. We set up an experiment raising maternal families in a common garden. Based on mixed analyses of variance and correlations among maternal family means, we found genetic differences between the two main flowering types and confirmed that they reduced seed predation in two different ways: escape in time or predator satiation. We suggest that this polymorphism in strategy may facilitate maintain high genetic diversity for flowering phenology and related life-history traits in native populations of this species, hence providing high evolutionary potential for these traits in invaded areas.
Structural constraints determine the glycosylation of HIV-1 envelope trimers
Pritchard, Laura K.; Vasiljevic, Snezana; Ozorowski, Gabriel; Seabright, Gemma E.; Cupo, Albert; Ringe, Rajesh; Kim, Helen J.; Sanders, Rogier W.; Doores, Katie J.; Burton, Dennis R.; Wilson, Ian A.; Ward, Andrew B.; Moore, John P.; Crispin, Max
2015-01-01
A highly glycosylated, trimeric envelope glycoprotein (Env) mediates HIV-1 cell entry. The high density and heterogeneity of the glycans shield Env from recognition by the immune system but, paradoxically, many potent broadly neutralizing antibodies (bNAbs) recognize epitopes involving this glycan shield. To better understand Env glycosylation and its role in bNAb recognition, we characterized a soluble, cleaved recombinant trimer (BG505 SOSIP.664) that is a close structural and antigenic mimic of native Env. Large, unprocessed oligomannose-type structures (Man8-9GlcNAc2) are notably prevalent on the gp120 components of the trimer, irrespective of the mammalian cell expression system or the bNAb used for affinity-purification. In contrast, gp41 subunits carry more highly processed glycans. The glycans on uncleaved, non-native oligomeric gp140 proteins are also highly processed. A homogeneous, oligomannose-dominated glycan profile is therefore a hallmark of a native Env conformation and a potential Achilles’ heel that can be exploited for bNAb recognition and vaccine design. PMID:26051934
NASA Astrophysics Data System (ADS)
Wang, Leana; Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; He, Yong; Pu, Yang; Nguyen, Thien An; Alfano, Robert R.
2015-03-01
The objective of this study was to find out the emission spectral fingerprints for discrimination of human colorectal and gastric cancer from normal tissue in vitro by applying native fluorescence. The native fluorescence (NFL) and Stokes shift spectra of seventy-two human cancerous and normal colorectal (colon, rectum) and gastric tissues were analyzed using three selected excitation wavelengths (e.g. 300 nm, 320 nm and 340 nm). Three distinct biomarkers, tryptophan, collagen and reduced nicotinamide adenine dinucleotide hydrate (NADH), were found in the samples of cancerous and normal tissues from eighteen subjects. The spectral profiles of tryptophan exhibited a sharp peak in cancerous colon tissues under a 300 nm excitation when compared with normal tissues. The changes in compositions of tryptophan, collagen, and NADH were found between colon cancer and normal tissues under an excitation of 300 nm by the non-negative basic biochemical component analysis (BBCA) model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rejda, J.M.; Johal, S.; Chollet, R.
Homogeneous preparations of ribulose 1,5-bisphosphate carboxylase/oxygenase were isolated from several diploid and tetraploid cultivars of perennial ryegrass by three different purification protocols. The apparent K/sub m/ values for substrate CO/sub 2/ were essentially identical for the fully CO/sub 2//Mg/sup 2 +/-activated diploid and tetraploid enzymes, as were the kinetics for deactivation and activation of the CO/sub 2//Mg/sup 2 +/-activated and -depleted carboxylases, respectively. Similarly, virtually indistinguishable electrophoretic properties were observed for both the native and dissociated diploid and tetraploid ryegrass proteins, including native and subunit molecular weights and the isoelectric points of the native proteins and the large and smallmore » subunit component polypeptides. The quantity of carboxylase protein or total soluble leaf protein did not differ significantly between the diploid and tetraploid cultivars. Contrary to a previous report, these results indicate that increased ploidy level has had essentially no effect on the quantity or enzymic and physicochemical properties of ribulosebisphosphate carboxylase/oxygenase in perennial ryegrass.« less
An FCS study of unfolding and refolding of CPM-labeled human serum albumin: role of ionic liquid.
Sasmal, Dibyendu Kumar; Mondal, Tridib; Sen Mojumdar, Supratik; Choudhury, Aparajita; Banerjee, Rajat; Bhattacharyya, Kankan
2011-11-10
The effect of a room temperature ionic liquid (RTIL) on the conformational dynamics of a protein, human serum albumin (HSA), is studied by fluorescence correlation spectroscopy (FCS). For this, the protein was covalently labeled by a fluorophore, 7-dimethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). On addition of a RTIL ([pmim][Br]) to the native protein, the diffusion coefficient (D(t)) decreases and the hydrodynamic radius (R(h)) increases. This suggests that the RTIL ([pmim][Br]) acts as a denaturant when the protein is in the native state. However, addition of [pmim][Br] to a protein denatured by GdnHCl causes an increases in D(t) and decrease in R(h). This suggests that in the presence of GdnHCl addition of RTIL helps the protein to refold. In the native state, the conformational dynamics of protein is described by three distinct time constants: ~3.6 ± 0.7, ~29 ± 4.5, and 133 ± 23 μs. The faster components (~3.6 ± 0.7 and ~29 ± 4.5 μs) are ascribed to chain dynamics of the protein, while the slowest component (133 μs) is responsible for interchain interaction or concerted motion. On addition of [pmim][Br], the conformational dynamics of HSA becomes slower (~5.1 ± 1, ~43.5 ± 2.8, and ~311 ± 2.3 μs in the presence of 1.5 M [pmim][Br]). The time constants for the protein denatured by 6 M GdnHCl are 3.2 ± 0.4, 34 ± 6, and 207 ± 38 μs. When 1.5 M [pmim][Br] is added to the denatured protein (in 6 M GdnHCl), the time constants become ~5 ± 1, ~41 ± 10, and ~230 ± 45 μs. The lifetime histogram shows that, on addition of GdnHCl to HSA, the contribution of the shorter lifetime component decreases and vanishes at 6 M GdnHCl. The shorter lifetime component immediately reappears after addition of RTIL to unfolded HSA. This suggests recoiling of the unfolded protein by RTIL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani
Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relativemore » to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.« less
24 CFR Appendix B to Part 1000 - IHBG Block Grant Formula Mechanisms
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false IHBG Block Grant Formula Mechanisms... URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Pt. 1000, App. B Appendix B to Part 1000—IHBG Block Grant Formula Mechanisms 1. The Indian Housing Block Grant (IHBG) formula consists of two components...
Academic Performance of Transfer Versus "Native" Students in Natural Resources & Sciences
ERIC Educational Resources Information Center
Johnson, Matthew D.
2005-01-01
Transfer students comprise a substantial component of the student body in many 4-year academic colleges, but the factors affecting students' success once they have transferred are poorly understood. Using data from standard university records, academic performance was examined for 2,467 students enrolled in natural resource majors at a mid-sized…
Generalized provisional seed zones for native plants
Andrew D. Bower; J. Bradley St.Clair; Vicky Erickson
2014-01-01
Deploying well-adapted and ecologically appropriate plant materials is a core component of successful restoration projects. We have developed generalized provisional seed zones that can be applied to any plant species in the United States to help guide seed movement. These seed zones are based on the intersection of high-resolution climatic data for winter minimum...
Metabolic Syndrome in Yup'ik Eskimos: The Center for Alaska Native Health Research (CANHR) Study
USDA-ARS?s Scientific Manuscript database
Objective: This study investigated the prevalence of metabolic syndrome and its defining components among Yup’ik Eskimos. Research Methods and Procedures: A cross-sectional study design that included 710 adult Yup’ik Eskimos 18 years of age residing in 8 communities in Southwest Alaska. The prevale...
Women's Language Model: A Proposal.
ERIC Educational Resources Information Center
Dumas, Bethany K.
It is possible to think of women's language in terms of the model implied by the following statement. Insofar as native speakers of English are concerned, the language of women in America has four sets of components: those shared with the language of men in America; those shared, in varying proportions, with other women living in patriarchies;…
Plant guide: Douglas' dusty-maiden (Chaenactic douglasii)
Derek Tilley; Dan Ogle; Loren St. John
2010-01-01
Douglas' dustymaiden can be used as part of a native forb component in wildland seedings to increase biodiversity, improve wildlife habitat, and provide food for numerous birds and mammals. Douglas' dustymaiden is readily visited by pollinators and other insect species. It is considered an important species for sage grouse during brood rearing because of its...
History of forests and land-use
Todd F. Hutchinson; Darrin Rubino; Brian C. McCarthy; Elaine Kennedy Sutherland
2003-01-01
Oaks (Quercus) have been a dominant component of eastern forests, including the forests of southeastern Ohio, for more than 5,000 years. Prior to Euro-American settlement, written accounts (1700s) described open, park-like forests and the use of fire by Native Americans for hunting and land management. In seven townships encompassing the four study...
Effect of lunar phase on diurnal activity of Rocky Mountain Elk (Cervus Elaphus Nelsonii)
USDA-ARS?s Scientific Manuscript database
Rocky Mountain elk (Cervus elaphus nelsonii) are important components in many ecosystems across the western US and are integral with both Native American and contemporary western culture. They are prized by hunters and are the object of countless works of art. These magnificent creatures are studi...
Cultivation and irrigation of fernleaf biscuitroot (Lomatium dissectum) for seed production
Myrtle P. Shock; Clinton C. Shock; Erik G. B. Feibert; Nancy L. Shaw; Lamont D. Saunders; Ram K. Sampangi
2012-01-01
Native grass, forb, and shrub seed is needed to restore rangelands of the U.S. Intermountain West. Fernleaf biscuitroot [Lomatium dissectum (Nutt.) Mathias & Constance] is a desirable component of rangelands. Commercial seed production is necessary to provide the quantity and quality of seed needed for rangeland restoration and reclamation efforts. Fernleaf...
Orchard Pollination in Capitol Reef National Park, Utah, USA. Honey Bees or Native Bees?
USDA-ARS?s Scientific Manuscript database
Unlike most National Parks in the United States, Capitol Reef National Park in central Utah includes an agricultural component. The Park surrounds 22 rosaceous fruit orchards started over a century ago by Mormon pioneers. During bloom, hives of the alien honey bee are imported to pollinate the flow...
GRAMMAR--THE PROTEUS OF THE ENGLISH CURRICULUM.
ERIC Educational Resources Information Center
ASTON, KATHARINE O.
THE ENGLISH CURRICULUM CAN BE MADE MORE EFFECTIVE BY CONSIDERING THE SIGNIFICANT PART PLAYED BY THE COMPONENT OF GRAMMAR. THE NATIVE SPEAKER OF ENGLISH POSSESSES AN INTUITIVE KNOWLEDGE OF THE RULES OF GRAMMAR AND YET CANNOT EXPLAIN WHAT HIS INTUITION KNOWS. THEREFORE, A PRECISE, ECONOMICAL DESCRIPTION OF THE LANGUAGE MECHANISM AND HOW IT FUNCTIONS…
Prenatal to Preschool: An Integrated Approach to School Readiness for Native Hawaiian Children.
ERIC Educational Resources Information Center
Herman, Hannah; And Others
This report outlines the Pre-kindergarten Educational Program (PREP) of Kamehameha Schools Bishop Estate in Hawaii, an integrated early education program serving families with children from the prenatal stage through age 5. The paper first discusses the program's three components and how they adapt to developmental changes in children and…
Natural and cultural history of beargrass (Xerophyllum tenax)
Susan Hummel; Sarah Foltz-Jordan; Sophia Polasky
2012-01-01
Beargrass (Xerophyllum tenax (Pursh) Nutt.) is a source of food, habitat, and raw material for animals, pollinating insects, and people across its range in the Western United States. The plant has long been used by Native Americans, who harvest the leaves for basketry and other crafts. More recently, beargrass has become an important component of...
ERIC Educational Resources Information Center
Chalhoub-Deville, Micheline
This study investigated whether different groups of native speakers assess second language learners' language skills differently for three elicitation techniques. Subjects were six learners of college-level Arabic as a second language, tape-recorded performing three tasks: participating in a modified oral proficiency interview, narrating a picture…
Polycaprolactone nanowire surfaces as interfaces for cardiovascular applications
NASA Astrophysics Data System (ADS)
Leszczak, Victoria
Cardiovascular disease is the leading killer of people worldwide. Current treatments include organ transplants, surgery, metabolic products and mechanical/synthetic implants. Of these, mechanical and synthetic implants are the most promising. However, rejection of cardiovascular implants continues to be a problem, eliciting a need for understanding the mechanisms behind tissue-material interaction. Recently, bioartificial implants, consisting of synthetic tissue engineering scaffolds and cells, have shown great promise for cardiovascular repair. An ideal cardiovascular implant surface must be capable of adhering cells and providing appropriate physiological responses while the native tissue integrates with the scaffold. However, the success of these implants is not only dependent on tissue integration but also hemocompatibility (interaction of material with blood components), a property that depends on the surface of the material. A thorough understanding of the interaction of cardiovascular cells and whole blood and its components with the material surface is essential in order to have a successful application which promotes healing as well as native tissue integration and regeneration. The purpose of this research is to study polymeric nanowire surfaces as potential interfaces for cardiovascular applications by investigating cellular response as well as hemocompatibility.
Huang, Yukun; Chen, Rong; Wei, Jingbo; Pei, Xilong; Cao, Jing; Prakash Jayaraman, Prem; Ranjan, Rajiv
2014-01-01
JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded.
Choong, Ferdinand X; Bäck, Marcus; Fahlén, Sara; Johansson, Leif Bg; Melican, Keira; Rhen, Mikael; Nilsson, K Peter R; Richter-Dahlfors, Agneta
2016-01-01
Extracellular matrix (ECM) is the protein- and polysaccharide-rich backbone of bacterial biofilms that provides a defensive barrier in clinical, environmental and industrial settings. Understanding the dynamics of biofilm formation in native environments has been hindered by a lack of research tools. Here we report a method for simultaneous, real-time, in situ detection and differentiation of the Salmonella ECM components curli and cellulose, using non-toxic, luminescent conjugated oligothiophenes (LCOs). These flexible conjugated polymers emit a conformation-dependent fluorescence spectrum, which we use to kinetically define extracellular appearance of curli fibres and cellulose polysaccharides during bacterial growth. The scope of this technique is demonstrated by defining biofilm morphotypes of Salmonella enterica serovars Enteritidis and Typhimurium, and their isogenic mutants in liquid culture and on solid media, and by visualising the ECM components in native biofilms. Our reported use of LCOs across a number of platforms, including intracellular cellulose production in eukaryotic cells and in infected tissues, demonstrates the versatility of this optotracing technology, and its ability to redefine biofilm research.
Choong, Ferdinand X; Bäck, Marcus; Fahlén, Sara; Johansson, Leif BG; Melican, Keira; Rhen, Mikael; Nilsson, K Peter R; Richter-Dahlfors, Agneta
2016-01-01
Extracellular matrix (ECM) is the protein- and polysaccharide-rich backbone of bacterial biofilms that provides a defensive barrier in clinical, environmental and industrial settings. Understanding the dynamics of biofilm formation in native environments has been hindered by a lack of research tools. Here we report a method for simultaneous, real-time, in situ detection and differentiation of the Salmonella ECM components curli and cellulose, using non-toxic, luminescent conjugated oligothiophenes (LCOs). These flexible conjugated polymers emit a conformation-dependent fluorescence spectrum, which we use to kinetically define extracellular appearance of curli fibres and cellulose polysaccharides during bacterial growth. The scope of this technique is demonstrated by defining biofilm morphotypes of Salmonella enterica serovars Enteritidis and Typhimurium, and their isogenic mutants in liquid culture and on solid media, and by visualising the ECM components in native biofilms. Our reported use of LCOs across a number of platforms, including intracellular cellulose production in eukaryotic cells and in infected tissues, demonstrates the versatility of this optotracing technology, and its ability to redefine biofilm research. PMID:28721253
Global Invasion of Lantana camara: Has the Climatic Niche Been Conserved across Continents?
Duarte, Milén; Bustamante, Ramiro O.; Lampo, Margarita; Velásquez, Grisel; Sharma, Gyan P.; García-Rangel, Shaenandhoa
2014-01-01
Lantana camara, a native plant from tropical America, is considered one of the most harmful invasive species worldwide. Several studies have identified potentially invasible areas under scenarios of global change, on the assumption that niche is conserved during the invasion process. Recent studies, however, suggest that many invasive plants do not conserve their niches. Using Principal Components Analyses (PCA), we tested the hypothesis of niche conservatism for L. camara by comparing its native niche in South America with its expressed niche in Africa, Australia and India. Using MaxEnt, the estimated niche for the native region was projected onto each invaded region to generate potential distributions there. Our results demonstrate that while L. camara occupied subsets of its original native niche in Africa and Australia, in India its niche shifted significantly. There, 34% of the occurrences were detected in warmer habitats nonexistent in its native range. The estimated niche for India was also projected onto Africa and Australia to identify other vulnerable areas predicted from the observed niche shift detected in India. As a result, new potentially invasible areas were identified in central Africa and southern Australia. Our findings do not support the hypothesis of niche conservatism for the invasion of L. camara. The mechanisms that allow this species to expand its niche need to be investigated in order to improve our capacity to predict long-term geographic changes in the face of global climatic changes. PMID:25343481
Watkins, W Scott; Xing, Jinchuan; Huff, Chad; Witherspoon, David J; Zhang, Yuhua; Perego, Ugo A; Woodward, Scott R; Jorde, Lynn B
2012-05-20
Populations of the Americas were founded by early migrants from Asia, and some have experienced recent genetic admixture. To better characterize the native and non-native ancestry components in populations from the Americas, we analyzed 815,377 autosomal SNPs, mitochondrial hypervariable segments I and II, and 36 Y-chromosome STRs from 24 Mesoamerican Totonacs and 23 South American Bolivians. We analyzed common genomic regions from native Bolivian and Totonac populations to identify 324 highly predictive Native American ancestry informative markers (AIMs). As few as 40-50 of these AIMs perform nearly as well as large panels of random genome-wide SNPs for predicting and estimating Native American ancestry and admixture levels. These AIMs have greater New World vs. Old World specificity than previous AIMs sets. We identify highly-divergent New World SNPs that coincide with high-frequency haplotypes found at similar frequencies in all populations examined, including the HGDP Pima, Maya, Colombian, Karitiana, and Surui American populations. Some of these regions are potential candidates for positive selection. European admixture in the Bolivian sample is approximately 12%, though individual estimates range from 0-48%. We estimate that the admixture occurred ~360-384 years ago. Little evidence of European or African admixture was found in Totonac individuals. Bolivians with pre-Columbian mtDNA and Y-chromosome haplogroups had 5-30% autosomal European ancestry, demonstrating the limitations of Y-chromosome and mtDNA haplogroups and the need for autosomal ancestry informative markers for assessing ancestry in admixed populations.
Ecological niche transferability using invasive species as a case study.
Fernández, Miguel; Hamilton, Healy
2015-01-01
Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species' native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species' native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger's I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species' dynamics in the invaded range.
A trial of two trouts: Comparing the impacts of rainbow and brown trout on a native galaxiid
Young, K.A.; Dunham, J.B.; Stephenson, J.F.; Terreau, A.; Thailly, A.F.; Gajardo, G.; de Leaniz, C. G.
2010-01-01
Rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are the world's two most widespread exotic fishes, dominate the fish communities of most cold-temperate waters in the southern hemisphere and are implicated in the decline and extirpation of native fish species. Here, we provide the first direct comparison of the impacts of rainbow and brown trout on populations of a native fish by quantifying three components of exotic species impact: range, abundance and effect. We surveyed 54 small streams on the island of Chilo?? in Chilean Patagonia and found that the rainbow trout has colonized significantly more streams and has a wider geographic range than brown trout. The two species had similar post-yearling abundances in allopatry and sympatry, and their abundances depended similarly on reach-level variation in the physical habitat. The species appeared to have dramatically different effects on native drift-feeding Aplochiton spp., which were virtually absent from streams invaded by brown trout but shared a broad sympatric range with rainbow trout. Within this range, the species' post-yearling abundances varied independently before and after controlling for variation in the physical habitat. In the north of the island, Aplochiton spp. inhabited streams uninvaded by exotic trouts. Our results provide a context for investigating the mechanisms responsible for apparent differences in rainbow and brown trout invasion biology and can help inform conservation strategies for native fishes in Chilo?? and elsewhere. ?? 2010 The Authors. Journal compilation ?? 2010 The Zoological Society of London.
Thermal ecological physiology of native and invasive frog species: do invaders perform better?
Cortes, Pablo A; Puschel, Hans; Acuña, Paz; Bartheld, José L; Bozinovic, Francisco
2016-01-01
Biological invasions are recognized as an important biotic component of global change that threatens the composition, structure and functioning of ecosystems, resulting in loss of biodiversity and displacement of native species. Although ecological characteristics facilitating the establishment and spread of non-native species are widely recognized, little is known about organismal attributes underlying invasion success. In this study, we tested the effect of thermal acclimation on thermal tolerance and locomotor performance in the invasive Xenopus laevis and the Chilean native Calyptocephalella gayi . In particular, the maximal righting performance (μ MAX ), optimal temperature ( T O ), lower (CT min ) and upper critical thermal limits (CT max ), thermal breadth ( T br ) and the area under the performance curve (AUC) were studied after 6 weeks acclimation to 10 and 20°C. We observed higher values of μ max and AUC in X. laevis in comparison to C. gayi . On the contrary, the invasive species showed lower values of CT min in comparison to the native one. In contrast, CT max , T O and T br showed no inter-specific differences. Moreover, we found that both species have the ability to acclimate their locomotor performance and lower thermal tolerance limit at low temperatures. Our results demonstrate that X. laevis is a better performer than C. gayi . Although there were differences in CT min , the invasive and native frogs did not differ in their thermal tolerance. Interestingly, in both species the lower and upper critical thermal limits are beyond the minimal and maximal temperatures encountered in nature during the coldest and hottest month, respectively. Overall, our findings suggest that both X. laevis and C. gayi would be resilient to climate warming expectations in Chile.
Berhouet, J; Garaud, P; Favard, L
2013-12-01
A common disadvantage of reverse shoulder arthroplasty is limitation of the range of arm rotation. Several changes to the prosthesis design and implantation technique have been suggested to improve rotation range of motion (ROM). Glenoid component design and degree of humeral component retroversion influence rotation ROM after reverse shoulder arthroplasty. The Aequalis Reversed™ shoulder prosthesis (Tornier Inc., Edina, MN, USA) was implanted into 40 cadaver shoulders. Eight glenoid component combinations were tested, five with the 36-mm sphere (centred seating, eccentric seating, inferior tilt, centred with a 5-mm thick lateralised spacer, and centred with a 7-mm thick lateralised spacer) and three with the 42-mm sphere (centred with no spacer or with a 7-mm or 10-mm spacer). Humeral component position was evaluated with 0°, 10°, 20°, 30°, and 40° of retroversion. External and internal rotation ROMs to posterior and anterior impingement on the scapular neck were measured with the arm in 20° of abduction. The large glenosphere (42 mm) was associated with significantly (P<0.05) greater rotation ROMs, particularly when combined with a lateralised spacer (46° internal and 66° external rotation). Rotation ROMs were smallest with the 36-mm sphere. Greater humeral component retroversion was associated with a decrease in internal rotation and a significant increase (P<0.05) in external rotation. The best balance between rotation ROMs was obtained with the native retroversion, which was estimated at 17.5° on average in this study. Our anatomic study in a large number of cadavers involved a detailed and reproducible experimental protocol. However, we did not evaluate the variability in scapular anatomy. Earlier studies of the influence of technical parameters did not take humeral component retroversion into account. In addition, no previous studies assessed rotation ROMs. Rotation ROM should be improved by the use of a large-diameter glenosphere with a spacer to lateralise the centre of rotation of the gleno-humeral joint, as well as by positioning the humeral component at the patient's native retroversion value. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Shifts in vegetation affect organic carbon quality in a coastal marsh along the Hudson River Estuary
NASA Astrophysics Data System (ADS)
Zhang, A. H.; Corbett, J. E.; Tfaily, M. M.; Martin, I.; Ho, L.; Sun, E.; Sevilla, L.; Vincent, S.; Newton, R.; Peteet, D. M.
2015-12-01
To better understand carbon storage in coastal salt marshes, samples were collected from Piermont Marsh, NY (40 ̊00' N, 73 ̊55'W) located within the Hudson River Estuary. Porewater from three different vegetation sites was analyzed to compare the quality of the dissolved organic carbon. Sites contained either native or invasive vegetation with variations in live plant root depth. Porewater was taken from 0-3m in 50cm intervals, and sites were dominated either by invasive Phragmites australis, native Eleocharis , or native mixed vegetation (Spartina patens, Scirpus, and Typha angustifolia). Sites dominated by invasive Phragmites australis were found to have lower dissolved organic carbon (DOC) concentrations, lower cDOM absorption values, and more labile organic carbon compounds. The molecular composition of the DOC was determined with Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR-MS). Labile DOC components were defined as proteins, carbohydrates, and amino sugars while recalcitrant DOC components were defined as lipids, unsaturated hydrocarbons, lignins, tannins, and condensed hydrocarbons. For the Phragmites, Eleocharis, and mixed vegetation sites, average DOC concentrations with depth were found to be 1.71 ± 1.06, 4.64 ± 1.73, and 4.62 ± 3.5 (mM), respectively and cDOM absorption values with depth were found to be 13.22 ± 4.81, 49.42 ± 10.8, and 35.74 ± 17.49 (m-1). Additionally, DOC concentrations increased with depth in the mixed vegetation and Eleocharis sites, but remained relatively constant in the Phragmites site. The percent of labile compounds in the surface samples were found to be 19.02, 14.64, and 14.07% for the Phragmites, Eleocharis, and mixed vegetation sites, respectively. These findings suggest that sites dominated by Phragmites may have more reactive DOC substrates than sites dominated by native vegetation. These results indicate that the carbon storage in marshes invaded by Phragmites would be expected to decrease over time.
NASA Astrophysics Data System (ADS)
Tuner, H.
2013-01-01
Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.
Dosimetric and clinical experience in eye proton treatment at INFN-LNS
NASA Astrophysics Data System (ADS)
Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Lojacono, P.; Mongelli, V.; Lo Nigro, S.; Ott, J.; Patti, I. V.; Pittera, S.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Russo, G.; Salamone, V.; Sabini, M. G.; Spatola, C.; Valastro, L. M.
2009-05-01
After six years of activity 155 patients have been treated inside the CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) facility. CATANA is the first and unique proton therapy facility in which the 62 MeV proton beams, accelerated by a Superconducting Cyclotron, are used for the radio-therapeutic treatments of choroidal and iris melanomas. Inside CATANA new absolute and relative dosimetric techniques have been developed in order to achieve the best results in terms of treatment precision and dose release accuracy. The follow-up results for 42 patients demonstrated the efficacy of high energy protons in the radiotherapeutic field and encouraged us in our activity in the battle against cancer
The dose-response of Harshaw TLD-700H.
Velbeck, K J; Luo, L Z; Ramlo, M J; Rotunda, J E
2006-01-01
Harshaw TLD-700H (7LiF:Mg,Cu,P) was previously characterised for low- to high-dose ranges from 1 microGy to 20 Gy. This paper describes the studies and results of dose-response and linearity at much higher doses. TLD-700H is a near perfect dosimetric material with near tissue equivalence, flat energy response, and the ability to measure beta, gamma and X rays. These new results extend the applicability of Harshaw TLD-700H into more dosimetric measurement environments. The simple glow curve structure provides insignificant fade, eliminating special oven preparation methods experienced by other materials. The work presented in this paper quantifies the performance of Harshaw TLD-700H in extended ranges.
Colin, Nicole; Villéger, Sébastien; Wilkes, Martin; de Sostoa, Adolfo; Maceda-Veiga, Alberto
2018-06-01
Trait-based ecology has been developed for decades to infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive dataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N=389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have ≤3 species (specialization, FSpe; originality, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native:total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive datasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is essential to develop better management strategies. Copyright © 2018 Elsevier B.V. All rights reserved.
Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N
2016-07-01
Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We demonstrate how empirical and theoretical techniques can be combined to understand better the processes and consequences of alien species invasions for native biodiversity. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Hagenblad, Jenny; Hülskötter, Jennifer; Acharya, Kamal Prasad; Brunet, Jörg; Chabrerie, Olivier; Cousins, Sara A O; Dar, Pervaiz A; Diekmann, Martin; De Frenne, Pieter; Hermy, Martin; Jamoneau, Aurélien; Kolb, Annette; Lemke, Isgard; Plue, Jan; Reshi, Zafar A; Graae, Bente Jessen
2015-08-20
Invasive species can be a major threat to native biodiversity and the number of invasive plant species is increasing across the globe. Population genetic studies of invasive species can provide key insights into their invasion history and ensuing evolution, but also for their control. Here we genetically characterise populations of Impatiens glandulifera, an invasive plant in Europe that can have a major impact on native plant communities. We compared populations from the species' native range in Kashmir, India, to those in its invaded range, along a latitudinal gradient in Europe. For comparison, the results from 39 other studies of genetic diversity in invasive species were collated. Our results suggest that I. glandulifera was established in the wild in Europe at least twice, from an area outside of our Kashmir study area. Our results further revealed that the genetic diversity in invasive populations of I. glandulifera is unusually low compared to native populations, in particular when compared to other invasive species. Genetic drift rather than mutation seems to have played a role in differentiating populations in Europe. We find evidence of limitations to local gene flow after introduction to Europe, but somewhat less restrictions in the native range. I. glandulifera populations with significant inbreeding were only found in the species' native range and invasive species in general showed no increase in inbreeding upon leaving their native ranges. In Europe we detect cases of migration between distantly located populations. Human activities therefore seem to, at least partially, have facilitated not only introductions, but also further spread of I. glandulifera across Europe. Although multiple introductions will facilitate the retention of genetic diversity in invasive ranges, widespread invasive species can remain genetically relatively invariant also after multiple introductions. Phenotypic plasticity may therefore be an important component of the successful spread of Impatiens glandulifera across Europe.
López Nicolás, Angel; Ramos Parreño, José María
2009-12-01
To analyze the patterns of utilisation for three types of public health services (outpatient specialist visits, emergency visits and hospitalisations) in the Comunidad Autónoma de la Región de Murcia. We examine the differences between the average rates of utilization of these services among natives and non-Spanish immigrants, and whether these differences are due to differences in demographic structure, or to different behaviour between these groups. We use econometric models for utilisation to exploit administrative records on health care utilisation and the well established Oaxaca decomposition method. This splits average rates of utilisation and/or average health expenditure into two components: the first one stands for the part of the difference that can be attributed to differential patterns of behaviour among the two groups; the second one represents the part of the difference in average expenditure that can be attributed to the fact that average demographic characteristics among both groups differ. The rates of use of outpatient specialist visits, emergencies and hospital nights by the native population are greater than the corresponding rates for the immigrant population. For individuals aged between 20 to 40 years old, the utilisation rates of African and Latin-American females are higher than those for native females. The average health expenditure of native males is greater than that of immigrants. The difference is mainly due to different demographic features among the native and immigrant populations, except for the
Ecological restoration of litter in mined areas
NASA Astrophysics Data System (ADS)
Teresinha Gonçalves Bizuti, Denise; Nino Diniz, Najara; Schweizer, Daniella; de Marchi Soares, Thaís; Casagrande, José Carlos; Henrique Santin Brancalion, Pedro
2016-04-01
The success of ecological restoration projects depends on going monitoring of key ecological variables to determine if a desired trajectory has been established and, in the case of mining sites, nutrient cycling recovery plays an utmost importance. This study aimed to quantify and compare the annual litter production in native forests, and in restoration sites established in bauxite mines. We collected samples in 6 native forest remnants and 6 year-old restoration sites every month for a period of one year, in the city of Poços de Caldas/MG, SE Brazil. 120 wire collectors were used (0,6x0,6) and suspended 30cm above the soil surface. The material was dried until constant weight, weighed and fractionated in leaves, branches and reproductive material. The average annual litter production was 2,6 Mg ha-1 in native forests and 2,1 in forest in restoration sites, differing statistically. Litter production was higher in the rainy season, especially in September. Among the litter components, the largest contributor to total production was the fraction leaves, with 55,4% of the total dry weight of material collected, followed by reproductive material which contributed 24,5% and branches, with 20%. We conclude that the young areas in restoration process already restored important part, but still below the production observed in native areas.
Slattery, M. L.; Schumacher, M. C.; Lanier, A. P.; Edwards, S.; Edwards, R.; Murtaugh, M. A.; Sandidge, J.; Day, G. E.; Kaufman, D.; Kanekar, S.; Tom-Orme, L.; Henderson, J. A.
2008-01-01
In 2001, the National Cancer Institute funded three centers to test the feasibility of establishing a cohort of American Indian and Alaska Native people. Participating tribal organizations named the study EARTH (Education and Research Towards Health). This paper describes the study methods. A computerized data collection and tracking system was developed using audio computer-assisted survey methodology with touch screens. Data were collected on diet, physical activity, lifestyle and cultural practices, medical and reproductive history, and family history of heart disease, diabetes, and cancer. In addition, a small panel of medical measurements was obtained, including height, weight, waist and hip circumferences, blood pressure, and a lipid panel plus glucose. At the completion of the enrollment visit, data were used to provide immediate health feedback to study participants. During the initial funding period, the authors anticipate enrolling 16,000 American Indian and Alaska Native participants. The age distribution of the study population was similar to that reported in the 2000 US Census for the relevant populations. A component critical to the success of the EARTH Study has been the partnerships with tribal members. The study has focused on involvement of American Indian and Alaska Native communities in development and implementation and on provision of feedback to participants and communities. PMID:17586578
Post-secretion processing influences spider silk performance
Blamires, Sean J.; Wu, Chung-Lin; Blackledge, Todd A.; Tso, I-Min
2012-01-01
Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins—MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this ‘ground state’ with wild native silks. Native silk mechanics varied less among species compared with ‘ground state’ silks. Variability in the mechanics of ‘ground state’ silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web. PMID:22628213
Shi, Lu-Feng; Koenig, Laura L
2016-09-01
Nonnative listeners have difficulty recognizing English words due to underdeveloped acoustic-phonetic and/or lexical skills. The present study used Boothroyd and Nittrouer's (1988)j factor to tease apart these two components of word recognition. Participants included 15 native English and 29 native Russian listeners. Fourteen and 15 of the Russian listeners reported English (ED) and Russian (RD) to be their dominant language, respectively. Listeners were presented 119 consonant-vowel-consonant real and nonsense words in speech-spectrum noise at +6 dB SNR. Responses were scored for word and phoneme recognition, the logarithmic quotient of which yielded j. Word and phoneme recognition was comparable between native and ED listeners but poorer in RD listeners. Analysis of j indicated less effective use of lexical information in RD than in native and ED listeners. Lexical processing was strongly correlated with the length of residence in the United States. Language background is important for nonnative word recognition. Lexical skills can be regarded as nativelike in ED nonnative listeners. Compromised word recognition in ED listeners is unlikely a result of poor lexical processing. Performance should be interpreted with caution for listeners dominant in their first language, whose word recognition is affected by both lexical and acoustic-phonetic factors.
Shi, Lu-Feng; Morozova, Natalia
2012-08-01
Word recognition is a basic component in a comprehensive hearing evaluation, but data are lacking for listeners speaking two languages. This study obtained such data for Russian natives in the US and analysed the data using the perceptual assimilation model (PAM) and speech learning model (SLM). Listeners were randomly presented 200 NU-6 words in quiet. Listeners responded verbally and in writing. Performance was scored on words and phonemes (word-initial consonants, vowels, and word-final consonants). Seven normal-hearing, adult monolingual English natives (NM), 16 English-dominant (ED), and 15 Russian-dominant (RD) Russian natives participated. ED and RD listeners differed significantly in their language background. Consistent with the SLM, NM outperformed ED listeners and ED outperformed RD listeners, whether responses were scored on words or phonemes. NM and ED listeners shared similar phoneme error patterns, whereas RD listeners' errors had unique patterns that could be largely understood via the PAM. RD listeners had particular difficulty differentiating vowel contrasts /i-I/, /æ-ε/, and /ɑ-Λ/, word-initial consonant contrasts /p-h/ and /b-f/, and word-final contrasts /f-v/. Both first-language phonology and second-language learning history affect word and phoneme recognition. Current findings may help clinicians differentiate word recognition errors due to language background from hearing pathologies.
Choreographing an enzyme’s dance
Villali, Janice; Kern, Dorothee
2010-01-01
While ground state structures combined with chemical tools and enzyme kinetics deliver useful information on possible chemical mechanisms of enzyme catalysis, they do not unravel the finely balanced energy inventory to explain the impressive rate enhancement of enzymes. For this goal, a complete description of enzyme catalysis in the form of an energy landscape is needed. Since the rate of catalysis is determined by the climb over a sequence of energy barriers, we focus here on the critical question of transition pathways. A combination of time-resolved NMR and simulation deliver a glimpse into how proteins can so efficiently move within the ensemble of the native conformations while avoiding unfolding during that journey. The loss of energy due to breakage of native contacts is compensated by non-native transient hydrogen bonds during the transition thereby “holding on” to the energy until the new native contacts form that define the alternate functional state. The use of kinetic isotope effects (KIE) to study the chemical step show that coordinated atomic fluctuations of the protein component dictate the probability of “correct” distance and orientation, due to its extreme sensitivity to distance. The examples here stress the point that highly choreographed conformational sampling together with chemical integrity is a prerequisite for efficient enzyme catalysis. PMID:20822946
Tsai, Tsung-Yuan; Dimitriou, Dimitris; Li, Jing-Sheng; Kwon, Young-Min
2016-06-01
The objective was to evaluate whether total hip arthroplasty (THA) using haptic robot assistance restores hip geometry better than the free-hand technique. Twelve robot-assisted and 14 free-hand unilateral THA patients underwent CT scan for three-dimensional (3D) hip models. The anteversion, inclination and hip joint centre locations of the native and implanted hips in each patient were quantified and compared. Significant increase of combined anteversion by 19.1 ± 11.7° and 23.5 ± 23.6° and decrease of cup inclination by 16.5 ± 6.0° and 10.2 ± 6.8° were observed in the robot-assisted and the free-hand THAs, respectively. Less variation in the difference of the component orientations (max 11.1 vs 18.3°) and the femoral head centre (max 4.5 vs 6.3 mm) were found in the robot-assisted group. This study demonstrated that neither robot-assisted nor free-hand THAs had fully restored native hip geometry. However, the higher precision of the robot-assisted THA suggested that it has potential utility in restoring the native hip geometry. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Hierarchical folding free energy landscape of HP35 revealed by most probable path clustering.
Jain, Abhinav; Stock, Gerhard
2014-07-17
Adopting extensive molecular dynamics simulations of villin headpiece protein (HP35) by Shaw and co-workers, a detailed theoretical analysis of the folding of HP35 is presented. The approach is based on the recently proposed most probable path algorithm which identifies the metastable states of the system, combined with dynamical coring of these states in order to obtain a consistent Markov state model. The method facilitates the construction of a dendrogram associated with the folding free-energy landscape of HP35, which reveals a hierarchical funnel structure and shows that the native state is rather a kinetic trap than a network hub. The energy landscape of HP35 consists of the entropic unfolded basin U, where the prestructuring of the protein takes place, the intermediate basin I, which is connected to U via the rate-limiting U → I transition state reflecting the formation of helix-1, and the native basin N, containing a state close to the NMR structure and a native-like state that exhibits enhanced fluctuations of helix-3. The model is in line with recent experimental observations that the intermediate and native states differ mostly in their dynamics (locked vs unlocked states). Employing dihedral angle principal component analysis, subdiffusive motion on a multidimensional free-energy surface is found.
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Hazelbauer, Gerald L; Falke, Joseph J; Parkinson, John S
2008-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on-off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device.
Bacterial chemoreceptors: high-performance signaling in networked arrays
Hazelbauer, Gerald L.; Falke, Joseph J.; Parkinson, John S.
2010-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on–off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device. PMID:18165013
Geber, Monica A; Eckhart, Vincent M
2005-03-01
Because the range boundary is the locale beyond which a taxon fails to persist, it provides a unique opportunity for studying the limits on adaptive evolution. Adaptive constraints on range expansion are perplexing in view of widespread ecotypic differentiation by habitat and region within a species' range (regional adaptation) and rapid evolutionary response to novel environments. In this study of two parapatric subspecies, Clarkia xantiana ssp. xantiana and C. x. ssp. parviflora, we compared the fitness of population transplants within their native region, in a non-native region within the native range, and in the non-native range to assess whether range expansion might be limited by a greater intensity of selection on colonists of a new range versus a new region within the range. The combined range of the two subspecies spans a west-to-east gradient of declining precipitation in the Sierra Nevada of California, with ssp. xantiana in the west being replaced by ssp. parviflora in the east. Both subspecies had significantly higher fitness in the native range (range adaptation), whereas regional adaptation was weak and was found only in the predominantly outcrossing ssp. xantiana but was absent in the inbreeding ssp. parvifilora. Because selection intensity on transplants was much stronger in the non-native range relative to non-native regions, there is a larger adaptive barrier to range versus regional expansion. Three of five sequential fitness components accounted for regional and range adaptation, but only one of them, survivorship from germination to flowering, contributed to both. Flower number contributed to regional adaptation in ssp. xantiana and fruit set (number of fruits per flower) to range adaptation. Differential survivorship of the two taxa or regional populations of ssp. xantiana in non-native environments was attributable, in part, to biotic interactions, including competition, herbivory, and pollination. For example, low fruit set in ssp. xantiana in the east was likely due to the absence of its principal specialist bee pollinators in ssp. parviflora's range. Thus, convergence on self-fertilization may be necessary for ssp. xantiana to invade ssp. parviflora's range, but the evolution of outcrossing would not be required for ssp. parviflora to invade ssp. xantiana's range.
Uranium mining industry views on ICRP statement on radon.
Takala, J
2012-01-01
In 2009, the International Commission on Radiological Protection issued a statement on radon which stated that the dose conversion factor for radon progeny would likely double, and the calculation of risk from radon should move to a dosimetric approach, rather than the longstanding epidemiological approach. Through the World Nuclear Association, whose members represent over 90% of the world's uranium production, industry has been examining this issue with a goal of offering expertise and knowledge to assist with the practical implementation of these evolutionary changes to evaluating the risk from radon progeny. Industry supports the continuing use of the most current epidemiological data as a basis for risk calculation, but believes that further examination of these results is needed to better understand the level of conservatism in the potential epidemiological-based risk models. With regard to adoption of the dosimetric approach, industry believes that further work is needed before this is a practical option. In particular, this work should include a clear demonstration of the validation of the dosimetric model which includes how smoking is handled, the establishment of a practical measurement protocol, and the collection of relevant data for modern workplaces. Industry is actively working to address the latter two items. Copyright © 2012. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galván de la Cruz, Olga Olinca; Lárraga-Gutiérrez, José Manuel, E-mail: jlarraga@innn.edu.mx; Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía
2013-07-01
It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximummore » dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.« less
Can reduction of uncertainties in cervix cancer brachytherapy potentially improve clinical outcome?
Nesvacil, Nicole; Tanderup, Kari; Lindegaard, Jacob C; Pötter, Richard; Kirisits, Christian
2016-09-01
The aim of this study was to quantify the impact of different types and magnitudes of dosimetric uncertainties in cervix cancer brachytherapy (BT) on tumour control probability (TCP) and normal tissue complication probability (NTCP) curves. A dose-response simulation study was based on systematic and random dose uncertainties and TCP/NTCP models for CTV and rectum. Large patient cohorts were simulated assuming different levels of dosimetric uncertainties. TCP and NTCP were computed, based on the planned doses, the simulated dose uncertainty, and an underlying TCP/NTCP model. Systematic uncertainties of 3-20% and random uncertainties with a 5-30% standard deviation per BT fraction were analysed. Systematic dose uncertainties of 5% lead to a 1% decrease/increase of TCP/NTCP, while random uncertainties of 10% had negligible impact on the dose-response curve at clinically relevant dose levels for target and OAR. Random OAR dose uncertainties of 30% resulted in an NTCP increase of 3-4% for planned doses of 70-80Gy EQD2. TCP is robust to dosimetric uncertainties when dose prescription is in the more flat region of the dose-response curve at doses >75Gy. For OARs, improved clinical outcome is expected by reduction of uncertainties via sophisticated dose delivery and treatment verification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Hallaq, H. A.; Reft, C. S.; Roeske, J. C.
2006-03-01
The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.
Cosmic radiation dose measurements from the RaD-X flight campaign
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing
2016-10-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
NASA Astrophysics Data System (ADS)
Talamonti, C.; Bucciolini, M.; Marrazzo, L.; Menichelli, D.; Bruzzi, M.; Cirrone, G. A. P.; Cuttone, G.; LoJacono, P.
2008-10-01
Due to the features of the modern radiotherapy techniques, namely intensity modulated radiation therapy and proton therapy, where high spatial dose gradients are often present, detectors to be employed for 2D dose verifications have to satisfy very narrow requirements. In particular they have to show high spatial resolution. In the framework of the European Integrated Project—Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology (MAESTRO, no. LSHC-CT-2004-503564), a dosimetric detector adequate for 2D pre-treatment dose verifications was developed. It is a modular detector, based on a monolithic silicon-segmented sensor, with an n-type implantation on an epitaxial p-type layer. Each pixel element is 2×2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21×21 pixels. In this paper, we report the dosimetric characterization of the system with a proton beam. The sensor was irradiated with 62 MeV protons for clinical treatments at INFN-Laboratori Nazionali del Sud (LNS) Catania. The studied parameters were repeatability of a same pixel, response linearity versus absorbed dose, and dose rate and dependence on field size. The obtained results are promising since the performances are within the project specifications.
Yahyaabadi, Akram; Torkzadeh, Falamarz; Rezaei Ochbelagh, Dariush; Hosseini Pooya, Seyed Mahdi
2018-04-24
LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure. Copyright © 2018 John Wiley & Sons, Ltd.
Stereotactic multibeam radiation therapy system in a PACS environment
NASA Astrophysics Data System (ADS)
Fresne, Francoise; Le Gall, G.; Barillot, Christian; Gibaud, Bernard; Manens, Jean-Pierre; Toumoulin, Christine; Lemoine, Didier; Chenal, C.; Scarabin, Jean-Marie
1991-05-01
A Multibeam radiation therapy treatment is a non-invasive technique devoted to treat a lesion within the cerebral medium by focusing photon-beams on the same target from a high number of entrance points. We present here a computer assisted dosimetric planning procedure which includes: (1) an analysis module to define the target volume by using 2D and 3D displays, (2) a planing module to issue a treatment strategy including the dosimetric simulations and (3) a treatment module setting up the parameters to order the robotized treatment system (i.e. chair- framework, radiation unit machine). Another important feature of this system is its connection to the PACS system SIRENE settled in the University hospital of Rennes which makes possible the archiving and the communication of the multimodal images (CT, MRI, Angiography) used by this application. The corporate use of stereotactic methods and the multimodality imagery ensures spatial coherence and makes the target definition and the cognition of the structures environment more accurate. The dosimetric planning suited to the spatial reference (i.e. the stereotactic frame) guarantees an optimal distribution of the dose computed by an original 3D volumetric algorithm. The robotic approach of the treatment stage has consisted to design a computer driven chair-framework cluster to position the target volume at the radiation unit isocenter.
Trnková, Petra; Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian
2010-12-01
The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning.
Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian
2011-01-01
Purpose The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. Material and methods For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. Results HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. Conclusions HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning. PMID:27853479
Cook, Taylor
2014-01-01
Purpose. To evaluate our community-based institutional experience with plaque brachytherapy for uveal melanomas with a focus on local control rates, factors impacting disease progression, and dosimetric parameters impacting treatment toxicity. Methods and Materials. Our institution was retrospectively reviewed from 1996 to 2011; all patients who underwent plaque brachytherapy for uveal melanoma were included. Follow-up data were collected regarding local control, distant metastases, and side effects from treatment. Analysis was performed on factors impacting treatment outcomes and treatment toxicity. Results. A total of 107 patients underwent plaque brachytherapy, of which 88 had follow-up data available. Local control at 10 years was 94%. Freedom from progression (FFP) and overall survival at 10 years were 83% and 79%, respectively. On univariate analysis, there were no tumor or dosimetric treatment characteristics that were found to have a prognostic impact on FFP. Brachytherapy treatment was well tolerated, with clinically useful vision (>20/200) maintained in 64% of patients. Statistically significant dosimetric relationships were established with cataract, glaucoma, and retinopathy development (greatest P = 0.05). Conclusions. Treatment with plaque brachytherapy demonstrates excellent outcomes in a community-based setting. It is well tolerated and should remain a standard of care for COMS medium sized tumors. PMID:24734198
Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric;
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Inter-patient image registration algorithms to disentangle regional dose bioeffects.
Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe
2018-03-20
Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.
Van Parijs, Hilde; Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark
2014-01-01
Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine.
Impact of organ shape variations on margin concepts for cervix cancer ART.
Seppenwoolde, Yvette; Stock, Markus; Buschmann, Martin; Georg, Dietmar; Bauer-Novotny, Kwei-Yuang; Pötter, Richard; Georg, Petra
2016-09-01
Target and organ movement motivate adaptive radiotherapy for cervix cancer patients. We investigated the dosimetric impact of margin concepts with different levels of complexity on both organ at risk (OAR) sparing and PTV coverage. Weekly CT and daily CBCT scans were delineated for 10 patients. The dosimetric impact of organ shape variations were evaluated for four (isotropic) margin concepts: two static PTVs (PTV 6mm and PTV 15mm ), a PTV based on ITV of the planning CT and CBCTs of the first treatment week (PTV ART ITV ) and an adaptive PTV based on a library approach (PTV ART Library ). Using static concepts, OAR doses increased with large margins, while smaller margins compromised target coverage. ART PTVs resulted in comparable target coverage and better sparing of bladder (V40Gy: 15% and 7% less), rectum (V40Gy: 18 and 6cc less) and bowel (V40Gy: 106 and 15cc less) compared to PTV 15mm . Target coverage evaluation showed that for elective fields a static 5mm margin sufficed. PTV ART Library achieved the best dosimetric results. However when weighing clinical benefit against workload, ITV margins based on repetitive movement evaluation during the first week also provide improvements over static margin concepts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
An alternative method for immediate dose estimation using CaSO4:Dy based TLD badges
NASA Astrophysics Data System (ADS)
Singh, A. K.; Menon, S. N.; Dhabekar, Bhushan; Kadam, Sonal; Chougaonkar, M. P.; Babu, D. A. R.
2014-11-01
CaSO4:Dy based Thermoluminescence dosimeters (TLDs) are being used in country wide personnel monitoring program in India. The TL glow curve of CaSO4:Dy consists of a dosimetric peak at 220 °C and a low temperature peak at 120 °C which is unstable at room temperature. The TL integral counts in CaSO4:Dy reduces by 15% in seven days after irradiation due to the thermal fading of 120 °C TL peak. As the dosimetric procedure involves total integrated counts for dose conversion, the dosimeters are typically read about a week after receiving. However in the event of a suspected over exposure, where urgent processing is expected, this poses limitation. Post irradiation annealing treatment is used in such cases of immediate readout of cards. In this paper we report a new and easier to use technique based on optical bleaching for the urgent processing of TLD cards. Optical bleaching with green LED (∼555 nm photons) of 25,000 lux for one and half hour removes the low temperature TL peak without affecting the dosimetric peak. This method can be used for immediate dose estimation using CaSO4:Dy based TLD badges.
Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark
2014-01-01
Background. Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. Methods. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. Results. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. Conclusions. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine. PMID:25162031
Vandendorpe, B; Guilbert, P; Champagne, C; Antoni, T; Nguyen, T D; Gaillot-Petit, N; Servagi Vernat, S
2017-12-01
To evaluate the dosimetric contribution of helical tomotherapy for breast cancers compared with conformal radiotherapy in mono-isocentric technique. For 23 patients, the dosimetric results in mono-isocentric 3D conformational radiotherapy did not satisfy the constraints either of target volumes nor organs at risk. A prospective dosimetric comparison between mono-isocentric 3D conformational radiotherapy and helical tomotherapy was therefore carried out. The use of helical tomotherapy showed a benefit in these 23 patients, with either an improvement in the conformity index or homogeneity, but with an increase in low doses. Of the 23 patients, two had pectus excavatum, five had past thoracic irradiation and two required bilateral irradiation. The other 14 patients had a combination of morphology and/or indication of lymph node irradiation. For these patients, helical tomotherapy was therefore preferred to mono-isocentric 3D conformational radiotherapy. Tomotherapy appears to provide better homogeneity and tumour coverage. This technique of irradiation may be justified in the case of morphological situations such as pectus exavatum and in complex clinical situations. In other cases, conformal radiotherapy in mono-isocentric technique remains to be favoured. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Sang Gyu, E-mail: sg.ju@samsung.com; Kim, Min Kyu; Hong, Chae-Seon
2014-02-01
Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{submore » C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, A
Purpose: Novel linac machines, TrueBeam (TB) and Elekta Versa have updated head designing and software control system, include flattening-filter-free (FFF) photon and electron beams. Later on FFF beams were also introduced on C-Series machines. In this work FFF beams for same energy 6MV but from different machine versions were studied with reference to beam data parameters. Methods: The 6MV-FFF percent depth doses, profile symmetry and flatness, dose rate tables, and multi-leaf collimator (MLC) transmission factors were measured during commissioning process of both C-series and Truebeam machines. The scanning and dosimetric data for 6MV-FFF beam from Truebeam and C-Series linacs wasmore » compared. A correlation of 6MV-FFF beam from Elekta Versa with that of Varian linacs was also found. Results: The scanning files were plotted for both qualitative and quantitative analysis. The dosimetric leaf gap (DLG) for C-Series 6MV-FFF beam is 1.1 mm. Published values for Truebeam dosimetric leaf gap is 1.16 mm. 6MV MLC transmission factor varies between 1.3 % and 1.4 % in two separate measurements and measured DLG values vary between 1.32 mm and 1.33 mm on C-Series machine. MLC transmission factor from C-Series machine varies between 1.5 % and 1.6 %. Some of the measured data values from C-Series FFF beam are compared with Truebeam representative data. 6MV-FFF beam parameter values like dmax, OP factors, beam symmetry and flatness and additional parameters for C-Series and Truebeam liancs will be presented and compared in graphical form and tabular data form if selected. Conclusion: The 6MV flattening filter (FF) beam data from C-Series & Truebeam and 6MV-FFF beam data from Truebeam has already presented. This particular analysis to compare 6MV-FFF beam from C-Series and Truebeam provides opportunity to better elaborate FFF mode on novel machines. It was found that C-Series and Truebeam 6MV-FFF dosimetric and beam data was quite similar.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M; Yu, N; Joshi, N
Purpose: To dosimetrically evaluate the importance of timely reviewing daily CBCTs for patients with head and neck cancer. Methods: After each fraction daily cone-beam CT (CBCT) for head and neck patients are reviewed by physicians prior to next treatment. Physician rejected image registrations of CBCT were identified and analyzed for 17 patients. These CBCT images were rigidly fused with planning CT images and the contours from the planning CT were transferred to CBCTs. Because of limited extension in the superior-inferior dimension contours with partial volumes in CBCTs were discarded. The treatment isocenter was placed by applying the clinically recorded shiftsmore » to the volume isocenter of the CBCT. Dose was recalculated at the shifted isocenter using a homogeneous dose calculation algorithm. Dosimetrically relevant changes defined as greater than 5% deviation from the clinically accepted plans but with homogeneous dose calculation were evaluated for the high dose (HD), intermediate dose (ID), and low dose (LD) CTVs, spinal cord, larynx, oropharynx, parotids, and submandibular glands. Results: Among seventeen rejected CBCTS, HD-CTVs, ID-CTVs, and LD-CTVs were completely included in the CBCTs for 17, 1, and 15 patients, respectively. The prescription doses to the HD-CTV, ID-CTV, and LD-CTV were received by < 95% of the CTV volumes in 5/17, 1/1, and 5/15 patients respectively. For the spinal cord, the maximum doses (D0.03cc) were increased > 5% in 13 of 17 patients. For the oropharynx, larynx, parotid, and submandibular glands, the mean dose of these organs at risk was increased > 5% in 7/17, 8/12, 11/16 and 6/16 patients, respectively. Conclusion: Timely review daily CBCTs for head and neck patients under daily CBCT guidance is important, and uncorrected setup errors can translate to dosimetrically relevant dose increases in organsat- risk and dose decreases in the clinical target volumes.« less
Desmet, Céline M.; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M.; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard
2015-01-01
In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not significantly influence the dosimetry for early dose assessment. PMID:26125565
Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer.
Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun
2016-11-01
The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192 Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5-8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3-5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3-5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA
NASA Astrophysics Data System (ADS)
Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia
2018-06-01
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.