2013-09-30
Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for... Soundscapes Under Sea Ice: Can we listen for open water? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...the source. These different sounds can be described as “ soundscapes ”, and graphically represented by comparing two or more features of the sound
CPAD: Cyber-Physical Attack Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferragut, Erik M; Laska, Jason A
The CPAD technology relates to anomaly detection and more specifically to cyber physical attack detection. It infers underlying physical relationships between components by analyzing the sensor measurements of a system. It then uses these measurements to detect signs of a non-physically realizable state, which is indicative of an integrity attack on the system. CPAD can be used on any highly-instrumented cyber-physical system to detect integrity attacks and identify the component or components compromised. It has applications to power transmission and distribution, nuclear and industrial plants, and complex vehicles.
Construct Validation of the Physics Metacognition Inventory
NASA Astrophysics Data System (ADS)
Taasoobshirazi, Gita; Farley, John
2013-02-01
The 24-item Physics Metacognition Inventory was developed to measure physics students' metacognition for problem solving. Items were classified into eight subcomponents subsumed under two broader components: knowledge of cognition and regulation of cognition. The students' scores on the inventory were found to be reliable and related to students' physics motivation and physics grade. An exploratory factor analysis provided evidence of construct validity, revealing six components of students' metacognition when solving physics problems including: knowledge of cognition, planning, monitoring, evaluation, debugging, and information management. Although women and men differed on the components, they had equivalent overall metacognition for problem solving. The implications of these findings for future research are discussed.
10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...
10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...
Esteghamati, Alireza; Zandieh, Ali; Khalilzadeh, Omid; Morteza, Afsaneh; Meysamie, Alipasha; Nakhjavani, Manouchehr; Gouya, Mohammad Mehdi
2010-10-01
Metabolic syndrome (MetS), manifested by insulin resistance, dyslipidemia, central obesity, and hypertension, is conceived to be associated with hyperleptinemia and physical activity. The aim of this study was to elucidate the factors underlying components of MetS and also to test the suitability of leptin and physical activity as additional components of this syndrome. Data of the individuals without history of diabetes mellitus, aged 25-64 years, from third national surveillance of risk factors of non-communicable diseases (SuRFNCD-2007), were analyzed. Performing factor analysis on waist circumference, homeostasis model assessment of insulin resistance, systolic blood pressure, triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) led to extraction of two factors which explained around 59.0% of the total variance in both genders. When TG and HDL-C were replaced by TG to HDL-C ratio, a single factor was obtained. In contrast to physical activity, addition of leptin was consistent with one-factor structure of MetS and improved the ability of suggested models to identify obesity (BMI≥30 kg/m2, P<0.01), using receiver-operator characteristics curve analysis. In general, physical activity loaded on the first identified factor. Our study shows that one underlying factor structure of MetS is also plausible and the inclusion of leptin does not interfere with this structure. Further, this study suggests that physical activity influences MetS components via modulation of the main underlying pathophysiologic pathway of this syndrome.
Construct Validation of the Physics Metacognition Inventory
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Farley, John
2013-01-01
The 24-item Physics Metacognition Inventory was developed to measure physics students' metacognition for problem solving. Items were classified into eight subcomponents subsumed under two broader components: knowledge of cognition and regulation of cognition. The students' scores on the inventory were found to be reliable and related to students'…
1988-09-01
surfaces as components of materials . In particular, we hope to develop the ability to rationalize and predict the macroscooic properties of surfaces...of much of the current research in areas such as materials science, condensed matter and device physics, and polymer physical chemistry. Surface...6 Underlying our program in surface chemistry is a broad interest in the prop- erties of organic surfaces as components of materials . In particular
Ohno, Satoshi; Sumiyoshi, Yoshiteru; Hashine, Katsuyoshi; Shirato, Akitomi; Kyo, Satoru; Inoue, Masaki
2013-10-01
The aim of this preliminary clinical study was to assess if the daily intake of Agaricus blazei Murill (ABM) granulated powder (SSI Co., Ltd., Tokyo, Japan) for 6 months improved the quality of life (QOL) in cancer patients in remission. Open study. Subjects diurnally took 1 (1.8 g; N=23), 2 (3.6 g; N=22), or 3 (5.4 g; N=22) packs/day orally for 6 months. The SF-8 Health Survey questionnaire was used to evaluate the QOL. The differences between the SF-8 baseline scores at the time of entry and 6-months after ABM treatment were evaluated. The results showed a significant improvement in QOL in both physical and mental components. More specifically, QOL effects of ABM in different genders showed males improved physical components, while females improved only mental components. QOL effects in the different age groups showed that ages 65 and under improved mental components, while ages 66 and older improved physical components. Furthermore, with respect to optimal dose effects of ABM with respect to QOL improvement, two packs per day for 6 months showed improvements in both physical and mental components. This preliminary longitudinal clinical study demonstrated that daily intake of ABM appears to improve both physical and mental components based on SF-8 qualimetric analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sibley, Kathryn M.; Straus, Sharon E.; Inness, Elizabeth L.; Salbach, Nancy M.
2011-01-01
Background Balance impairment is a significant problem for older adults, as it can influence daily functioning. Treating balance impairment in this population is a major focus of physical therapist practice. Objective The purpose of this study was to document current practices in clinical balance assessment and compare components of balance assessed and measures used across practice areas among physical therapists. Design This was a cross-sectional study. Methods A survey questionnaire was mailed to 1,000 practicing physical therapists in Ontario, Canada. Results Three hundred sixty-nine individuals completed the survey questionnaire. More than 80% of respondents reported that they regularly (more than 60% of the time) assessed postural alignment, static and dynamic stability, functional balance, and underlying motor systems. Underlying sensory systems, cognitive contributions to balance, and reactive control were regularly assessed by 59.6%, 55.0%, and 41.2% of the respondents, respectively. The standardized measures regularly used by the most respondents were the single-leg stance test (79.1%), the Berg Balance Scale (45.0%), and the Timed “Up & Go” Test (27.6%). There was considerable variation in the components of balance assessed and measures used by respondents treating individuals in the orthopedic, neurologic, geriatric, and general rehabilitation populations. Limitations The survey provides quantitative data about what is done to assess balance, but does not explain the factors influencing current practice. Conclusions Many important components of balance and standardized measures are regularly used by physical therapists to assess balance. Further research, however, is needed to understand the factors contributing to the relatively lower rates of assessing reactive control, the component of balance most directly responsible for avoiding a fall. PMID:21868613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, S.M.; Finn, R.D.
1995-07-17
This research continues the long term goals of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. This program fits into the nuclear medicine component of DOE`s mission, which is aimed at enhancing the beneficial applications of radiation, radionuclides, and stable isotopes in the diagnosis, study and treatment of human diseases. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology/Immunology; and Imaging Physics. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Section under the DOE grant during the 1992--1995more » will be employed in the Pharmacology/Immunology component in the period 1996--1999. Imaging Physics resolves relevant imaging related physics issues that arise during the experimentation that results. In addition to the basic research mission, this project also provides a basis for training of research scientists in radiochemistry, immunology, bioengineering and imaging physics.« less
ERIC Educational Resources Information Center
Sebbane, M.; Remaoun, M.; Harchaoui, Y.; Abdelkader, A.; Karrou, M.
2009-01-01
This study aims to explore the somatotype of Algerian high-school pupils of 16-19 years old. Various works in the field of sport have shown that athletic performance is a result of multiple factors that could be classified under psychological, physiological and physical. This last factor relates to the physical aspects. It gathers anthropometric…
Brain Representations of Basic Physics Concepts
NASA Astrophysics Data System (ADS)
Just, Marcel Adam
2017-09-01
The findings concerning physics concepts build on the remarkable new ability to determine the neural signature (or activation pattern) corresponding to an individual concept using fMRI brain imaging. Moreover, the neural signatures can be decomposed into meaningful underlying dimensions, identifying the individual, interpretable components of the neural representation of a concept. The investigation of physics concepts representations reveals how relatively recent physics concepts (formalized only in the last few centuries) are stored in the millenia-old information system of the human brain.
USDA-ARS?s Scientific Manuscript database
The inclusion of sorghum into human food and feed is limited by its low digestibility compared to corn, which has been linked to the higher total kafirin levels in sorghum grain. Water stress after pollination reduced grain filling, affects the grain composition, functional components and grain phys...
NASA Technical Reports Server (NTRS)
1976-01-01
The Work Breakdown Structure (WBS) and Dictionary (DR-MA-06) for initial and subsequent flights of the Atmospheric Cloud Physics Laboratory (ACPL) is presented. An attempt is made to identify specific equipment and components in each of the eleven subsystems; they are listed under the appropriate subdivisions of the WBS. The reader is cautioned that some of these components are likely to change substantially during the course of the study, and the list provided should only be considered representative.
Two-component flux explanation for the high energy neutrino events at IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chien-Yi; Dev, P. S. Bhupal; Soni, Amarjit
In understanding the spectral and flavor composition of the astrophysical neutrino flux responsible for the recently observed ultrahigh-energy events at IceCube we see how important both astrophysics and particle physics are. Here, we perform a statistical likelihood analysis to the three-year IceCube data and derive the allowed range of the spectral index and flux normalization for various well-motivated physical flavor compositions at the source. While most of the existing analyses so far assume the flavor composition of the neutrinos at an astrophysical source to be (1:2:0), it seems rather unnatural to assume only one type of source, once we recognizemore » the possibility of at least two physical sources. Bearing this in mind, we entertain the possibility of a two-component source for the analysis of IceCube data. It appears that our two-component hypothesis explains some key features of the data better than a single-component scenario; i.e. it addresses the apparent energy gap between 400 TeV and about 1 PeV and easily accommodates the observed track-to-shower ratio. Given the extreme importance of the flavor composition for the correct interpretation of the underlying astrophysical processes as well as for the ramification for particle physics, this two-component flux should be tested as more data is accumulated.« less
Two-component flux explanation for the high energy neutrino events at IceCube
Chen, Chien-Yi; Dev, P. S. Bhupal; Soni, Amarjit
2015-10-01
In understanding the spectral and flavor composition of the astrophysical neutrino flux responsible for the recently observed ultrahigh-energy events at IceCube we see how important both astrophysics and particle physics are. Here, we perform a statistical likelihood analysis to the three-year IceCube data and derive the allowed range of the spectral index and flux normalization for various well-motivated physical flavor compositions at the source. While most of the existing analyses so far assume the flavor composition of the neutrinos at an astrophysical source to be (1:2:0), it seems rather unnatural to assume only one type of source, once we recognizemore » the possibility of at least two physical sources. Bearing this in mind, we entertain the possibility of a two-component source for the analysis of IceCube data. It appears that our two-component hypothesis explains some key features of the data better than a single-component scenario; i.e. it addresses the apparent energy gap between 400 TeV and about 1 PeV and easily accommodates the observed track-to-shower ratio. Given the extreme importance of the flavor composition for the correct interpretation of the underlying astrophysical processes as well as for the ramification for particle physics, this two-component flux should be tested as more data is accumulated.« less
Side Effect Perceptions and Their Impact on Treatment Decisions in Women.
Waters, Erika A; Pachur, Thorsten; Colditz, Graham A
2017-04-01
Side effects prompt some patients to forego otherwise-beneficial therapies. This study explored which characteristics make side effects particularly aversive. We used a psychometric approach, originating from research on risk perception, to identify the factors (or components) underlying side effect perceptions. Women ( N = 149) aged 40 to 74 years were recruited from a patient registry to complete an online experiment. Participants were presented with hypothetical scenarios in which an effective and necessary medication conferred a small risk of a single side effect (e.g., nausea, dizziness). They rated a broad range of side effects on several characteristics (e.g., embarrassing, treatable). In addition, we collected 4 measures of aversiveness for each side effect: choosing to take the medication, willingness to pay to avoid the side effect (WTP), negative affective attitude associated with the side effect, and how each side effect ranks among others in terms of undesirability. A principal components analysis (PCA) was used to identify the components underlying side effect perceptions. Then, for each aversiveness measure separately, regression analyses were used to determine which components predicted differences in aversiveness among the side effects. The PCA revealed 4 components underlying side effect perceptions: affective challenge (e.g., frightening), social challenge (e.g., disfiguring), physical challenge (e.g., painful), and familiarity (e.g., common). Side effects perceived as affectively and physically challenging elicited the highest levels of aversiveness across all 4 measures. Understanding what side effect characteristics are most aversive may inform interventions to improve medical decisions and facilitate the translation of novel biomedical therapies into clinical practice.
Side Effect Perceptions and their Impact on Treatment Decisions in Women
Waters, Erika A.; Pachur, Thorsten; Colditz, Graham A.
2016-01-01
Background Side effects prompt some patients to forego otherwise-beneficial therapies. This study explored which characteristics make side effects particularly aversive. Methods We used a psychometric approach, originating from research on risk perception, to identify the factors (or components) underlying side effect perceptions. Women (N=149) aged 40–74 were recruited from a patient registry to complete an online experiment. Participants were presented with hypothetical scenarios in which an effective and necessary medication conferred a small risk of a single side effect (e.g., nausea, dizziness). They rated a broad range of side effects on several characteristics (e.g., embarrassing, treatable). In addition, we collected four measures of aversiveness for each side effect: choosing to take the medication, willingness to pay to avoid the side effect (WTP), negative affective attitude associated with the side effect, and how each side effect ranks among others in terms of undesirability. A principle-components analysis (PCA) was used to identify the components underlying side effect perceptions. Then, for each aversiveness measure separately, regression analyses were used to determine which components predicted differences in aversiveness among the side effects. Results The PCA revealed four components underlying side effect perceptions: affective challenge (e.g., frightening), social challenge (e.g., disfiguring), physical challenge (e.g., painful), and familiarity (e.g., common). Side effects perceived as affectively and physically challenging elicited the highest levels of aversiveness across all four measures. Conclusions Understanding what side effect characteristics are most aversive may inform interventions to improve medical decisions and facilitate the translation of novel biomedical therapies into clinical practice. PMID:27216581
Manufacturing Methods and Technology Project Summary Reports
1981-06-01
a tough urethane film. The basic principle is to pump two components to a spinning disc, mixing the components just prior to depositing in a well...and check out an electronic target scoring device using developed scientific principles without drastically modifying existing commercial...equipment. The scoring device selected and installed was an Accubar Model ATS-16D using the underlying physics principle of acoustic shock wave propagation
NASA Technical Reports Server (NTRS)
DiCarlo, James A.
2011-01-01
Under the Supersonics Project of the NASA Fundamental Aeronautics Program, modeling and experimental efforts are underway to develop generic physics-based tools to better implement lightweight ceramic matrix composites into supersonic engine components and to assure sufficient durability for these components in the engine environment. These activities, which have a crosscutting aspect for other areas of the Fundamental Aero program, are focusing primarily on improving the multi-directional design strength and rupture strength of high-performance SiC/SiC composites by advanced fiber architecture design. This presentation discusses progress in tool development with particular focus on the use of 2.5D-woven architectures and state-of-the-art constituents for a generic un-cooled SiC/SiC low-pressure turbine blade.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
.... lactis is a natural and indispensable component of cultured dairy processes (including yogurt, cheese and... experiments, BL1 physical containment is recommended. For large-scale fermentation experiments, the...
2003-01-01
The approach being pursued, under this program structure, is to eliminate the use of physical surfaces on the component as datum. The use of physical...will eliminate /minimize fretting and low-cycle fatigue and the blade-disk interface. This optimum coating and/or coating process will be evaluated both...Utilizes MCLB infrastructure Avoids costs associated with existing APCS Biofiltration produces no secondary emissions Biofiltration is the most
Mary Anne Sword Sayer
2007-01-01
Prescribed fire every 2 to 4 years is an important component of longleaf pine ecosystem restoration. Under some circumstances, repeated fire could change soil physical properties on the Western Gulf Coastal Plain. The objective of this study was to evaluate the soil bulk density, porosity fractions, and plant-available water holding capacity of restored longleaf pine...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, B.; Teyssedre, G.; Laurent, C.
The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with differentmore » weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.« less
Neary, W J; Hillier, V F; Flute, T; Stephens, S D G; Ramsden, R T; Evans, D G R
2010-08-01
To investigate the relationship between those issues concerning quality of life in patients with neurofibromatosis type 2 (NF2) as identified by the closed set NF2 questionnaire and the eight norm-based measures and the physical component summary (PCS) and mental component summary (MCS) scores of the Short Form-36 (SF-36) Questionnaire. Postal questionnaire study. Questionnaires sent to subjects' home addresses. Eighty-seven adult subjects under the care of the Manchester Multidisciplinary NF2 Clinic were invited to participate. Sixty-two (71%) completed sets of closed set NF2 questionnaires and SF-36 questionnaires were returned. Subjects with NF2 scored less than the norm of 50 on both the physical component summary and mental component summary scores and the eight individual norm-based measures of the Short Form-36 questionnaire. Correlations (using Kendall's tau) were examined between patients' perceptions of their severity of difficulty with the following activities and the eight norm-based measures and the physical component summary and mental component summary scores of the Short Form-36 questionnaire: Communicating with spouse/significant other (N = 61). The correlation coefficients were significant at the 0.01 level for the mental component summary score, together with three of the norm-based scores [vitality (VT), social functioning and role emotional]. Social communication (N = 62). All 10 correlations were significant at the 0.01 or 0.001 level. Balance (N = 59). All 10 correlations were highly significant at the P < 0.001 level. Hearing difficulties (N = 61). All correlations were significant at either the 0.01 level or less apart from the mental component summary score and three of the norm-based scores (role physical, VT and mental health). Mood change (N = 61). All correlations were significant at the 0.01 level or less, apart from one norm-based score (role physical). The Short Form-36 questionnaire has allowed us to relate patients' perceptions of their difficulties, as identified by the closed set NF2 questionnaire, to the physical and mental domains measured by this validated and widely used scale, and has provided further insight into areas of functioning affected by NF2.
Nuclear spectroscopic studies. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.
1994-02-18
The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).
Code of Federal Regulations, 2010 CFR
2010-01-01
... official of the local DOE field office and authorized by the Director, Office of Health and Safety, to... performance of work under DOE jurisdiction. Field organization. Any organizational component of the DOE... Government property. Medical condition. General health, physical condition, and emotional and mental...
Conservation Laws in Weak Interactions
DOE R&D Accomplishments Database
Lee, T. D.
1957-03-01
Notes are presented on four lectures given at Harvard University in March 1957 on elementary particle physics, the theta-tau problem, validity of parity conservation, tests for invariance under P, C, and T, and the two-component theory of the neutrino. (W.D.M.)
Percolation under noise: Detecting explosive percolation using the second-largest component
NASA Astrophysics Data System (ADS)
Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.
2016-05-01
We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models
Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; ...
2015-04-06
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.
Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y
2016-04-01
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. © 2015 Society for Risk Analysis.
Multiple-component Decomposition from Millimeter Single-channel Data
NASA Astrophysics Data System (ADS)
Rodríguez-Montoya, Iván; Sánchez-Argüelles, David; Aretxaga, Itziar; Bertone, Emanuele; Chávez-Dagostino, Miguel; Hughes, David H.; Montaña, Alfredo; Wilson, Grant W.; Zeballos, Milagros
2018-03-01
We present an implementation of a blind source separation algorithm to remove foregrounds off millimeter surveys made by single-channel instruments. In order to make possible such a decomposition over single-wavelength data, we generate levels of artificial redundancy, then perform a blind decomposition, calibrate the resulting maps, and lastly measure physical information. We simulate the reduction pipeline using mock data: atmospheric fluctuations, extended astrophysical foregrounds, and point-like sources, but we apply the same methodology to the Aztronomical Thermal Emission Camera/ASTE survey of the Great Observatories Origins Deep Survey–South (GOODS-S). In both applications, our technique robustly decomposes redundant maps into their underlying components, reducing flux bias, improving signal-to-noise ratio, and minimizing information loss. In particular, GOODS-S is decomposed into four independent physical components: one of them is the already-known map of point sources, two are atmospheric and systematic foregrounds, and the fourth component is an extended emission that can be interpreted as the confusion background of faint sources.
Magneto-optical visualization of three spatial components of inhomogeneous stray fields
NASA Astrophysics Data System (ADS)
Ivanov, V. E.
2012-08-01
The article deals with the physical principles of magneto-optical visualization (MO) of three spatial components of inhomogeneous stray fields with the help of FeCo metal indicator films in the longitudinal Kerr effect geometry. The inhomogeneous field is created by permanent magnets. Both p- and s-polarization light is used for obtaining MO images with their subsequent summing, subtracting and digitizing. As a result, the MO images and corresponding intensity coordinate dependences reflecting the distributions of the horizontal and vertical magnetization components in pure form have been obtained. Modeling of both the magnetization distribution in the indicator film and the corresponding MO images shows that corresponding to polar sensitivity the intensity is proportional to the normal field component, which permits normal field component mapping. Corresponding to longitudinal sensitivity, the intensity of the MO images reflects the angular distribution of the planar field component. MO images have singular points in which the planar component is zero and their movement under an externally homogeneous planar field permits obtaining of additional information on the two planar components of the field under study. The intensity distribution character in the vicinity of sources and sinks (singular points) remains the same under different orientations of the light incidence plane. The change of incident plane orientation by π/2 alters the distribution pattern in the vicinity of the saddle points.
A Fiber Optic Beam Controller for Phased Array Radars.
1982-06-01
characteristics with limited discussion of the underlying physics . The components which will be surveyed are: ( 1 ) Optical Fibers, (2) Light Emitters, (3...effect rather than by a physical grating. The defining equation is An = 1 /2 n3 ps p = photo-elastic constant (21) s = the acoustic strain amplitude...RESULTS AND AN INTUITIVE MODEL OF NEAR TERM TECHNOLOGY CHANGES The experimental results are combined with other data and the conclusions drawn are: ( 1
Outreach programs in physics at Hampton University
NASA Astrophysics Data System (ADS)
Pittman, Carlane J.; Temple, Doyle A.
1996-07-01
The Department of Physics at Hampton University generates over 4.5 M dollars of external research funding annually and operates three research centers, the Nuclear High Energy Physics Research Center, the Research Center for Optical Physics, and the Center for Fusion Training and Research. An integral component of these centers is an active outreach and recruitment program led by the Associate Director for Outreach. This program includes summer internships and research mentorships, both at Hampton University and at national laboratories such as CEBAF and NASA Langley. Faculty presentations ar local area elementary schools, middle schools and high schools are also under the auspices of this program.
Algorithms for Spectral Decomposition with Applications to Optical Plume Anomaly Detection
NASA Technical Reports Server (NTRS)
Srivastava, Askok N.; Matthews, Bryan; Das, Santanu
2008-01-01
The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main approaches that can be taken to extract relevant features from these high-dimensional data streams. The first set of approaches relies on extracting features using a physics-based paradigm where the underlying physical mechanism that generates the spectra is used to infer the most important features in the data stream. We focus on a complementary methodology that uses a data-driven technique that is informed by the underlying physics but also has the ability to adapt to unmodeled system attributes and dynamics. We discuss the following four algorithms: Spectral Decomposition Algorithm (SDA), Non-Negative Matrix Factorization (NMF), Independent Component Analysis (ICA) and Principal Components Analysis (PCA) and compare their performance on a spectral emulator which we use to generate artificial data with known statistical properties. This spectral emulator mimics the real-world phenomena arising from the plume of the space shuttle main engine and can be used to validate the results that arise from various spectral decomposition algorithms and is very useful for situations where real-world systems have very low probabilities of fault or failure. Our results indicate that methods like SDA and NMF provide a straightforward way of incorporating prior physical knowledge while NMF with a tuning mechanism can give superior performance on some tests. We demonstrate these algorithms to detect potential system-health issues on data from a spectral emulator with tunable health parameters.
Hataji, Osamu; Nishii, Yoichi; Ito, Kentaro; Sakaguchi, Tadashi; Saiki, Haruko; Suzuki, Yuta; D'Alessandro-Gabazza, Corina; Fujimoto, Hajime; Kobayashi, Tetsu; Gabazza, Esteban C.; Taguchi, Osamu
2017-01-01
Combined therapy with tiotropium and olodaterol notably improves parameters of lung function and quality of life in patients with chronic obstructive pulmonary disease (COPD) compared to mono-components; however, its effect on physical activity is unknown. The present study evaluated whether combination therapy affects daily physical performance in patients with COPD under a smart watch-based encouragement program. This was a non-blinded clinical trial with no randomization or placebo control. A total of 20 patients with COPD were enrolled in the present study. The patients carried an accelerometer for 4 weeks; they received no therapy during the first 2 weeks but they were treated with combined tiotropium and olodaterol under a smart watch-based encouragement program for the last 2 weeks. The pulmonary function test, COPD assessment test, 6-min walk distance and parameters of physical activity were significantly improved (P<0.05) by combination therapy under smart watch-based coaching compared with values prior to treatment. To the best of our knowledge, the present study for the first time provides evidence that smart watch-based coaching in combination with tiotropium and olodaterol may improve daily physical activity in chronic obstructive pulmonary disease. PMID:29104624
Hataji, Osamu; Nishii, Yoichi; Ito, Kentaro; Sakaguchi, Tadashi; Saiki, Haruko; Suzuki, Yuta; D'Alessandro-Gabazza, Corina; Fujimoto, Hajime; Kobayashi, Tetsu; Gabazza, Esteban C; Taguchi, Osamu
2017-11-01
Combined therapy with tiotropium and olodaterol notably improves parameters of lung function and quality of life in patients with chronic obstructive pulmonary disease (COPD) compared to mono-components; however, its effect on physical activity is unknown. The present study evaluated whether combination therapy affects daily physical performance in patients with COPD under a smart watch-based encouragement program. This was a non-blinded clinical trial with no randomization or placebo control. A total of 20 patients with COPD were enrolled in the present study. The patients carried an accelerometer for 4 weeks; they received no therapy during the first 2 weeks but they were treated with combined tiotropium and olodaterol under a smart watch-based encouragement program for the last 2 weeks. The pulmonary function test, COPD assessment test, 6-min walk distance and parameters of physical activity were significantly improved (P<0.05) by combination therapy under smart watch-based coaching compared with values prior to treatment. To the best of our knowledge, the present study for the first time provides evidence that smart watch-based coaching in combination with tiotropium and olodaterol may improve daily physical activity in chronic obstructive pulmonary disease.
RICH detectors: Analysis methods and their impact on physics
NASA Astrophysics Data System (ADS)
Križan, Peter
2017-12-01
The paper discusses the importance of particle identification in particle physics experiments, and reviews the impact of ring imaging Cherenkov (RICH) counters in experiments that are currently running, or are under construction. Several analysis methods are discussed that are needed to calibrate a RICH counter, and to align its components with the rest of the detector. Finally, methods are reviewed on how to employ the collected data to efficiently separate one particle species from the other.
Dual polarized, heat spreading rectenna
NASA Technical Reports Server (NTRS)
Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor); Smith, R. Peter (Inventor); Smith, Hugh K. (Inventor)
1999-01-01
An aperture coupled patch splits energy from two different polarization components to different locations to spread heat. In addition, there is no physical electrical connection between the slot, patch and circuitry. The circuitry is located under a ground plane which shields against harmonic radiation back to the RF source.
The mass-zero spin-two field and gravitational theory.
NASA Technical Reports Server (NTRS)
Coulter, C. A.
1972-01-01
Demonstration that the conventional theory of the mass-zero spin-two field with sources introduces extraneous nonspin-two field components in source regions and fails to be covariant under the full or restricted conformal group. A modified theory is given, expressed in terms of the physical components of mass-zero spin-two field rather than in terms of 'potentials,' which has no extraneous components inside or outside sources, and which is covariant under the full conformal group. For a proper choice of source term, this modified theory has the correct Newtonian limit and automatically implies that a symmetric second-rank source tensor has zero divergence. It is shown that possibly a generally covariant form of the spin-two theory derived here can be constructed to agree with general relativity in all currently accessible experimental situations.
Thermodynamic and Differential Entropy under a Change of Variables
Hnizdo, Vladimir; Gilson, Michael K.
2013-01-01
The differential Shannon entropy of information theory can change under a change of variables (coordinates), but the thermodynamic entropy of a physical system must be invariant under such a change. This difference is puzzling, because the Shannon and Gibbs entropies have the same functional form. We show that a canonical change of variables can, indeed, alter the spatial component of the thermodynamic entropy just as it alters the differential Shannon entropy. However, there is also a momentum part of the entropy, which turns out to undergo an equal and opposite change when the coordinates are transformed, so that the total thermodynamic entropy remains invariant. We furthermore show how one may correctly write the change in total entropy for an isothermal physical process in any set of spatial coordinates. PMID:24436633
NASA Astrophysics Data System (ADS)
Beerenwinkel, Anne; von Arx, Matthias
2017-04-01
For the last three decades, moderate constructivism has become an increasingly prominent perspective in science education. Researchers have defined characteristics of constructivist-oriented science classrooms, but the implementation of such science teaching in daily classroom practice seems difficult. Against this background, we conducted a sub-study within the tri-national research project Quality of Instruction in Physics (QuIP) analysing 60 videotaped physics classes involving a large sample of students ( N = 1192) from Finland, Germany and Switzerland in order to investigate the kinds of constructivist components and teaching patterns that can be found in regular classrooms without any intervention. We applied a newly developed coding scheme to capture constructivist facets of science teaching and conducted principal component and cluster analyses to explore which components and patterns were most prominent in the classes observed. Two underlying components were found, resulting in two scales—Structured Knowledge Acquisition and Fostering Autonomy—which describe key aspects of constructivist teaching. Only the first scale was rather well established in the lessons investigated. Classes were clustered based on these scales. The analysis of the different clusters suggested that teaching physics in a structured way combined with fostering students' autonomy contributes to students' motivation. However, our regression models indicated that content knowledge is a more important predictor for students' motivation, and there was no homogeneous pattern for all gender- and country-specific subgroups investigated. The results are discussed in light of recent discussions on the feasibility of constructivism in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas; Windes, William; Swank, W. David
The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less
Multi-Parameter Linear Least-Squares Fitting to Poisson Data One Count at a Time
NASA Technical Reports Server (NTRS)
Wheaton, W.; Dunklee, A.; Jacobson, A.; Ling, J.; Mahoney, W.; Radocinski, R.
1993-01-01
A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multi-component linear model, with underlying physical count rates or fluxes which are to be estimated from the data.
2013-10-28
apl.washington.edu Award Number: N00014-08-1-0394 Physical Oceanography Component Soundscapes Under Sea Ice: Can we listen for open water? LONG-TERM GOALS...as “ soundscapes ”, and graphically represented by comparing two or more features of the sound field, such as SPL levels at different frequencies or...spectral slopes between selected frequencies (Figure 1). Soundscapes are persistent on the time scale of hours to days, but can change rapidly if
A situated reasoning architecture for space-based repair and replace tasks
NASA Technical Reports Server (NTRS)
Bloom, Ben; Mcgrath, Debra; Sanborn, Jim
1989-01-01
Space-based robots need low level control for collision detection and avoidance, short-term load management, fine-grained motion, and other physical tasks. In addition, higher level control is required to focus strategic decision making as missions are assigned and carried out. Reasoning and control must be responsive to ongoing changes in the environment. Research aimed at bridging the gap between high level artificial intelligence (AI) planning techniques and task-level robot programming for telerobotic systems is described. Situated reasoning is incorporated into AI and Robotics systems in order to coordinate a robot's activity within its environment. An integrated system under development in a component maintenance domain is described. It is geared towards replacing worn and/or failed Orbital Replacement Units (ORUs) designed for use aboard NASA's Space Station Freedom based on the collection of components available at a given time. High level control reasons in component space in order to maximize the number operational component-cells over time, while the task-level controls sensors and effectors, detects collisions, and carries out pick and place tasks in physical space. Situated reasoning is used throughout the system to cope with component failures, imperfect information, and unexpected events.
Bio-chemo-mechanical models of vascular mechanics
Kim, Jungsil; Wagenseil, Jessica E.
2014-01-01
Models of vascular mechanics are necessary to predict the response of an artery under a variety of loads, for complex geometries, and in pathological adaptation. Classic constitutive models for arteries are phenomenological and the fitted parameters are not associated with physical components of the wall. Recently, microstructurally-linked models have been developed that associate structural information about the wall components with tissue-level mechanics. Microstructurally-linked models are useful for correlating changes in specific components with pathological outcomes, so that targeted treatments may be developed to prevent or reverse the physical changes. However, most treatments, and many causes, of vascular disease have chemical components. Chemical signaling within cells, between cells, and between cells and matrix constituents affects the biology and mechanics of the arterial wall in the short- and long-term. Hence, bio-chemo-mechanical models that include chemical signaling are critical for robust models of vascular mechanics. This review summarizes bio-mechanical and bio-chemo-mechanical models with a focus on large elastic arteries. We provide applications of these models and challenges for future work. PMID:25465618
NASA Astrophysics Data System (ADS)
Maiorov, Vladimir S.
2002-04-01
The paper gives a description of the phenomenon that has a considerable, and often a decisive, influence on the course of physical processes under laser radiation interaction with a substance having at least one liquid phase. The explanation of the essence of this phenomenon lies at the intersection of two branches of science: mechanics of liquids and gases, and physical chemistry (thermodynamics of heterogeneous systems). Capillary thermo-concentration instability (CTCI) is present at any non-isotropic input of energy to a heterogeneous thermodynamical system having several phases. This instability manifests itself at the phase boundary and causes processes of mass transfer, redistribution of components, emergence of new phases, relaxation vibrations. This phenomenon is most pronounced in local processes at interaction of laser radiation with matter. The theory and practice of this phenomenon unite and describe a new class of effects widely spread in nature, which play a decisive role in many physical and chemical processes and find even more various spheres of practical application. A number of examples of capillary thermo- concentration instability application are given: separation of liquid mixtures to components under thermal action of laser beam; a new method of thermal silver-free photography; control of liquid metal convection in laser alloying.
Doubova, Svetlana V; Mino-León, Dolores; Pérez-Cuevas, Ricardo
2013-12-01
To assess the association between quality of care and health-related quality of life among type 2 diabetes patients. A cross-sectional study assessing the association between quality of care and quality of life using multiple linear regression analysis. Family medicine clinics (FMC) (n = 39) of the Mexican Institute of Social Security (IMSS) in Mexico City. Type 2 diabetes patients (n = 312), older than 19 years. Health-related quality of life was measured using the MOS Short-Form-12 (SF-12); quality of healthcare was measured as the percentage of recommended care received under each of four domains: early detection of diabetes complications, non-pharmacological treatment, pharmacological treatment and health outcomes. The average quality of life score was 41.4 points on the physical component and 47.9 points on the mental component. Assessment of the quality of care revealed deficiencies. The average percentages of recommended care received were 21.9 for health outcomes and 56.6 for early detection of diabetes complications and pharmacological treatment; for every 10 percent additional points on the pharmacological treatment component, quality of life improved by 0.4 points on the physical component (coefficient 0.04, 95% confidence intervals 0.01-0.07). There was a positive association between the quality of pharmacological care and the physical component of quality of life. The quality of healthcare for type 2 diabetes patients in FMC of the IMSS in Mexico City is not optimal.
A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop.
Zhang, Lifu; Zhang, Heng
2016-03-26
Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas.
Investigation on harsh environmental effects on polymer fiber optic link for aircraft systems
NASA Astrophysics Data System (ADS)
Cherian, Sandy; Spangenberg, Holger; Caspary, Reinhard
2014-09-01
To integrate polymer fiber based physical layer for avionic data network, it is necessary to understand the impact and cause of harsh environments on polymer fiber optic components and harnesses. Since temperature and vibration have a significant influence, we investigate the variation in optical transmittance and monitor the endurance of different types of connector and splices under extreme aircraft environments. Presently, there is no specific aerospace standard for the application of polymer fiber and components in the aircraft data network. Therefore, in the paper we examine and define the thermal cycling and vibration measurement set up and methods to evaluate the performance capability of the physical layer of the data network. Some of the interesting results observed during the measurements are also presented.
Colloidally separated samples from Allende residues - Noble gases, carbon and an ESCA-study
NASA Technical Reports Server (NTRS)
Ott, U.; Kronenbitter, J.; Flores, J.; Chang, S.
1984-01-01
Results are presented which strengthen the hypothesis of heterogeneity among the carbon- and nitrogen-bearing phases of the Allende meteorite. These data also highlight the possibility of performing physical separations yielding samples in which some of the noble gas- and carbon-bearing phases are extraordinarily predominant over others. The conclusion, based on mass and isotope balance arguments, that a significant portion of the carbonaceous matter in Allende is likely to be gas-poor or gas-free need not weaken the case for carbonaceous carriers for the major noble gas components. The concept that acid-soluble carbonaceous phases contain a multiplicity of components, each of which may have formed under a multiplicity of different physical-chemical conditions, is reemphasized by the results of the present study.
Active tensor magnetic gradiometer system final report for Project MM–1514
Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond
2014-01-01
An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Redox Flow Batteries, a Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoxville, U. Tennessee; U. Texas Austin; U, McGill
2011-07-15
Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.
Temporomandibular disorders. Part 2: conservative management
Shaffer, Stephen M; Brismée, Jean-Michel; Sizer, Phillip S; Courtney, Carol A
2014-01-01
Appropriate management of temporomandibular disorders (TMD) requires an understanding of the underlying dysfunction associated with the temporomandibular joint (TMJ) and surrounding structures. A comprehensive examination process, as described in part 1 of this series, can reveal underlying clinical findings that assist in the delivery of comprehensive physical therapy services for patients with TMD. Part 2 of this series focuses on management strategies for TMD. Physical therapy is the preferred conservative management approach for TMD. Physical therapists are professionally well-positioned to step into the void and provide clinical services for patients with TMD. Clinicians should utilize examination findings to design rehabilitation programs that focus on addressing patient-specific impairments. Potentially appropriate plan of care components include joint and soft tissue mobilization, trigger point dry needling, friction massage, therapeutic exercise, patient education, modalities, and outside referral. Management options should address both symptom reduction and oral function. Satisfactory results can often be achieved when management focuses on patient-specific clinical variables. PMID:24976744
NASA Astrophysics Data System (ADS)
Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo, Yuyi; Lueking, Lee
2010-04-01
The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.
NASA Technical Reports Server (NTRS)
Weinberg, Michael C.
1986-01-01
In this work consideration is given to the problem of the extraction of physical data information from gas bubble dissolution and growth measurements. The discussion is limited to the analysis of the simplest experimental systems consisting of a single, one component gas bubble in a glassmelt. It is observed that if the glassmelt is highly under- (super-) saturated, then surface tension effects may be ignored, simplifying the task of extracting gas diffusivity values from the measurements. If, in addition, the bubble rise velocity is very small (or very large) the ease of obtaining physical property data is enhanced. Illustrations are given for typical cases.
A Model-Based Prognostics Approach Applied to Pneumatic Valves
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Goebel, Kai
2011-01-01
Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.
Lir, D N; Perevalov, A Ya
Organization of recreational activities in the children's camps is inseparable from the assessment of their effectiveness. The objective of the present study was to estimate the influence of the pastime of the children in a summer camp under the habitual climatic conditions and the resulting improvement of their health status including the body component composition and the functional state of the organism. The study included 44 schoolchildren at the age from 9 to12 years. The analysis of the effectiveness of recreational activities was carried out with the use of the method for the assessment of health improvement based at the children`s summer camps. Alterations in the component composition of the body were evaluated from the results of bioimpedansometry. The physical development of the majority of the schoolchildren involved in the study both in the beginning and the end of the camp period was fairly well balanced. During the period of resting in the camp (14 days), changes in the body weight were largely attributable to the alteration in the lean body mass whereas the fat component remained rather stable. The cardio-respiratory system did not show any unambiguous signs of positive dynamics. The physical conditions of the children estimated based on the hand dynamometry index showed a negative change. The comprehensive assessment of the degree of health improvement with the use of a scoring system made it possible to demonstrated that half of the schoolchildren spending time in the summer camp under the moderate climate conditions markedly improved their somatic health, functional and physical state whereas the remaining half enjoyed only a slight improvement. We suppose that the main causes preventing manifestations of the maximal positive effect of the pastime in the summer camp on the health status of the children included the short period of stay in the camp and the irrational use of the available complex of recreational activities, such as the sound nutrition regimen, adequate physical loading including locomotor activity, and psychological comfort). Bioimpedansometry which objectively reflects any changes in the body component composition is recommended for the application as one of the additional instruments for the objective analysis of the changes in the body component composition of the children and of the effects exerted by the recreational activities in the summer camp on their health status.
Physics for Allied Health Students
NASA Astrophysics Data System (ADS)
Goldick, Howard
2000-04-01
In this paper I will describe two courses that I have been teaching for the past 6 years to physical therapy and occupational therapy students Emphasis will be paced on those points that distinguish these courses from others with which I am familiar. I will discuss the syllabus: homework, exams, labs and the final grade. I will also present a topic outline of the courses showing how examples are drawn from the human body to illustrate the physics concept under discussion and to stimulate the students's interest in the material. The following basic concepts of physics will be covered (each with human body examples): vectors, components, statics, conservation of energy, efficiency, change of state, heat transfer, electric charge, electric field, voltage and capacitance.
A Geometric Interpretation of the Effective Uniaxial Anisotropy Field in Magnetic Films
NASA Astrophysics Data System (ADS)
Kozlov, V. I.
2018-01-01
It is shown that the effective uniaxial anisotropy field that is usually applied in thin magnetic films (TMFs), which is noncollinear to the magnetization vector, is insufficient for deeper understanding of these processes, although it explains many physical processes in films. The analysis of the magnetization discontinuity in films under certain conditions yields the component of the effective uniaxial anisotropy field collinear to the magnetization vector. This component explains the magnetization discontinuity and allows one to speak of the total effective uniaxial anisotropy field in TMFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.
The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.
2015-01-01
severe or per- vasive unwelcome sexual advances, comments, or physical conduct that offends service members – sexual quid pro quo—incidents in which...the person never made physical contact with a private area of their body (which would have allowed categorization under the non-penetrative sexual ...which require the intent to be to “abuse, humiliate, harass, or degrade any person” or Sexual Assault Findings: Active Component 15 “ arouse or
The crystallography of correlated disorder.
Keen, David A; Goodwin, Andrew L
2015-05-21
Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.
A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop
Zhang, Lifu; Zhang, Heng
2016-01-01
Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas. PMID:27023559
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.
2009-01-01
Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.
Secondary aerospace batteries and battery materials: A bibliography, 1969 - 1974
NASA Technical Reports Server (NTRS)
Mcdermott, P.; Halpert, G.; Ekpanyaskun, S.; Nche, P.
1976-01-01
This annotated bibliography on the subject of secondary aerospace battery materials and related physical and electrochemical processes was compiled from references to journal articles published between 1969 and 1974. A total of 332 citations are arranged in chronological order under journal titles. Indices by system and component, techniques and processes, and author are included.
NASA Astrophysics Data System (ADS)
Valsala, Renu; Govindarajan, Suresh Kumar
2018-06-01
Interaction of various physical, chemical and biological transport processes plays an important role in deciding the fate and migration of contaminants in groundwater systems. In this study, a numerical investigation on the interaction of various transport processes of BTEX in a saturated groundwater system is carried out. In addition, the multi-component dissolution from a residual BTEX source under unsteady flow conditions is incorporated in the modeling framework. The model considers Benzene, Toluene, Ethyl Benzene and Xylene dissolving from the residual BTEX source zone to undergo sorption and aerobic biodegradation within the groundwater aquifer. Spatial concentration profiles of dissolved BTEX components under the interaction of various sorption and biodegradation conditions have been studied. Subsequently, a spatial moment analysis is carried out to analyze the effect of interaction of various transport processes on the total dissolved mass and the mobility of dissolved BTEX components. Results from the present numerical study suggest that the interaction of dissolution, sorption and biodegradation significantly influence the spatial distribution of dissolved BTEX components within the saturated groundwater system. Mobility of dissolved BTEX components is also found to be affected by the interaction of these transport processes.
Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan
2011-07-01
Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.
[Meteoadaptogenic properties of peptide drugs in healthy volunteers].
Shabanov, P D; Ganapol'skiĭ, V P; Aleksandrov, P V
2007-01-01
The meteoadaptogenic properties of a series of drugs with peptide (cortexin, noopept, dilept) and nonpeptide (vinpotropil) structure were investigated in a climate thermobarocomplex (Tabay, Japan) on a group of healthy volunteers aged 20-24. All the studied drugs produced a meteoadaptogenic action, the extent of which depended on the environmental test conditions (overcooling, overheating, hypobaric hypoxia). Vinpotropil, optimizing a physiological component of the functional state, can be recommended as a meteoadaptogen for both cold and hot climate as well as for hypobaric hypoxia, where it improved the psychological component of the functional state. Cortexin is qualified as an adaptogen and actoprotector only for hypobaric hypoxia conditions (uplands). Noopept, affecting positively a psychological component of the functional state, can be used for rapid adaptation to both cold and hot climate. In the hot climate, noopept also enhanced the physical work capacity. Dilept mostly elevated the psychological component of the functional state and can be considered as a psychomotor enhancer and adaptogen. Therefore, all the drugs studied (vinpotropil, cortexin, noopept and dilept) can be recommended as the agents producing activation, support and recovery of the physical and psychological efficiency under rapidly changing environment conditions.
Nonlinear ultrasonics for material state awareness
NASA Astrophysics Data System (ADS)
Jacobs, L. J.
2014-02-01
Predictive health monitoring of structural components will require the development of advanced sensing techniques capable of providing quantitative information on the damage state of structural materials. By focusing on nonlinear acoustic techniques, it is possible to measure absolute, strength based material parameters that can then be coupled with uncertainty models to enable accurate and quantitative life prediction. Starting at the material level, this review will present current research that involves a combination of sensing techniques and physics-based models to characterize damage in metallic materials. In metals, these nonlinear ultrasonic measurements can sense material state, before the formation of micro- and macro-cracks. Typically, cracks of a measurable size appear quite late in a component's total life, while the material's integrity in terms of toughness and strength gradually decreases due to the microplasticity (dislocations) and associated change in the material's microstructure. This review focuses on second harmonic generation techniques. Since these nonlinear acoustic techniques are acoustic wave based, component interrogation can be performed with bulk, surface and guided waves using the same underlying material physics; these nonlinear ultrasonic techniques provide results which are independent of the wave type used. Recent physics-based models consider the evolution of damage due to dislocations, slip bands, interstitials, and precipitates in the lattice structure, which can lead to localized damage.
In vitro physical stimulation of tissue-engineered and native cartilage.
Li, Kelvin W; Klein, Travis J; Chawla, Kanika; Nugent, Gayle E; Bae, Won C; Sah, Robert L
2004-01-01
Because of the limited availability of donor cartilage for resurfacing defects in articular surfaces, there is tremendous interest in the in vitro bioengineering of cartilage replacements for clinical applications. However, attaining mechanical properties in engineered cartilaginous constructs that approach those of native cartilage has not been previously achieved when constructs are cultured under free-swelling conditions. One approach toward stimulating the development of constructs that are mechanically more robust is to expose them to physical environments that are similar, in certain ways, to those encountered by native cartilage. This is a strategy motivated by observations in numerous short-term experiments that certain mechanical signals are potent stimulators of cartilage metabolism. On the other hand, excess mechanical loading can have a deleterious effect on cartilage. Culture conditions that include a physical stimulation component are made possible by the use of specialized bioreactors. This chapter addresses some of the issues involved in using bioreactors as integral components of cartilage tissue engineering and in studying the physical regulation of cartilage. We first consider the generation of cartilaginous constructs in vitro. Next we describe the rationale and design of bioreactors that can impart either mechanical deformation or fluid-induced mechanical signals.
Bohannon, Richard W
2012-01-01
Measures of balance are an important component of the physical therapist examination. This study investigated the usefulness of timed static stance durations for identifying balance impairments among patients receiving home-based physical therapy. This study involved the retrospective retrieval of data from the records of 48 patients at least 60 years of age. Their balance was measured under 3 foot configurations; that is, feet apart, feet together, and on each foot. Every patient demonstrated impaired standing balance. Most, but not all could balance 30 seconds with the feet apart or together. Only 19 could maintain balance on each of both feet. Of those who could so balance, none was able to achieve the average time of normal individuals of comparable age. Although not able to identify all aspects of balance, timed durations of stance under different configurations demonstrate a high prevalence of balance impairments among patients receiving home-based physical therapy. As the tests are objective, fast, and require little space, they can be advocated in such a setting.
NASA Astrophysics Data System (ADS)
Linke, J.
2006-04-01
The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.
Lin, Yousheng; Ma, Xiaoqian; Peng, Xiaowei; Yu, Zhaosheng
2017-11-01
In this work, five typical components were employed as representative pseudo-components to indirectly complete previous established simulation system during hydrothermal carbonization (HTC) of municipal solid waste. The fuel characteristics and combustion behavior of HTC-derived hydrochars were evaluated. Results clearly illustrated that the energy ranks of hydrochars were upgraded after HTC. For paper and wood, superior combustion performances of their hydrochars could achieve under suitable conditions. While for food, none positive enrichments on combustion loss rate were observed for hydrochars due to its high solubilization and decomposition under hot compressed water. It was noteworthy that a new weight loss peak was detected for paper and food, suggesting that new compounds were formed. For rubber, the HTC process made the properties of styrene butadiene rubber more close to natural rubber. Therefore, the first peak of hydrochars became significantly intense. While for plastic, only physical changes of polypropylene and polyethylene were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
New experimental developments for s- and p-process research
NASA Astrophysics Data System (ADS)
Reifarth, R.; Ershova, O.; Glorius, J.; Göbel, K.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Sonnabend, K.; Heil, M.
2012-12-01
Almost all of the heavy elements are produced via neutron-induced processes in a multitude of stellar production sites. The remaining minor part is produced via photon- and proton-induced reactions. The predictive power of the underlying stellar models is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. An important tool to determine such components is the comparison of observed with modeled abundance distributions based on improved nuclear physics input. The FRANZ facility at the Goethe University Frankfurt, which is currently under construction will provide unprecedented neutron fluxes and proton currents available for nuclear astrophysics. It will be possible to investigate important branchpoint nuclei of the s-process nucleosynthesis path and proton-induced reactions important for p-process modeling. At the GSI close to Darmstadt radioactive isotopes can be investigated in inverse kinematics. This allows experiments such as proton-induced cross section measurements using a heavy-ion storage ring or measurements of gamma-induced reactions using the Coulomb dissociation method. The future FAIR facility will allow similar experiments on very exotic nuclei, since orders of magnitude higher radioactive ions beams will be possible.
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Goebel, Kai Frank
2010-01-01
Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.
NASA Astrophysics Data System (ADS)
Elkhateeb, M. M.; Nouh, M. I.; Nelson, R. H.
2015-02-01
A first photometric study for the newly discovered systems USNO-B1.0 1091-0130715 and GSC-03449-0680 was carried out by means of recent a windows interface version of the Wilson and Devinney code based on model atmospheres by Kurucz (1993). The accepted models reveal some absolute parameters for both systems, which are used in deriving the spectral type of the system components and their evolutionary status. Distances to each systems and physical properties were estimated. Comparisons of the computed physical parameters with stellar models are discussed. The components of the system USNO-B1.0 1091-0130715 and the primary of the system GSC-03449-0680 are found to be on or near the ZAMS track, while the secondary of GSC-03449-0680 system found to be severely under luminous and too cool compared to its ZAMS mass.
Systems engineering at the nanoscale
NASA Astrophysics Data System (ADS)
Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey
2012-06-01
Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.
NASA Astrophysics Data System (ADS)
Katsura, Tomoo; Baba, Kiyoshi; Yoshino, Takashi; Kogiso, Tetsu
2017-10-01
We review the currently available results of laboratory experiments, geochemistry and MT observations and attempt to explain the conductivity structures in the oceanic asthenosphere by constructing mineral-physics models for the depleted mid-oceanic ridge basalt (MORB) mantle (DMM) and volatile-enriched plume mantle (EM) along the normal and plume geotherms. The hopping and ionic conductivity of olivine has a large temperature dependence, whereas the proton conductivity has a smaller dependence. The contribution of proton conduction is small in DMM. Melt conductivity is enhanced by the H2O and CO2 components. The effects of incipient melts with high volatile components on bulk conductivity are significant. The low solidus temperatures of the hydrous carbonated peridotite produce incipient melts in the asthenosphere, which strongly increase conductivity around 100 km depth under older plates. DMM has a conductivity of 10- 1.2 - 1.5 S/m at 100-300 km depth, regardless of the plate age. Plume mantle should have much higher conductivity than normal mantle, due to its high volatile content and high temperatures. The MT observations of the oceanic asthenosphere show a relatively uniform conductivity at 200-300 km depth, consistent with the mineral-physics model. On the other hand, the MT observations show large lateral variations in shallow parts of the asthenosphere despite similar tectonic settings and close locations. Such variations are difficult to explain with the mineral-physics model. High conductivity layers (HCL), which are associated with anisotropy in the direction of the plate motion, have only been observed in the asthenosphere under infant or young plates, but they are not ubiquitous in the oceanic asthenosphere. Although the general features of HCL imply their high-temperature melting origin, the mineral-physics model cannot explain them quantitatively. Much lower conductivity under hotspots, compared with the model plume-mantle conductivity suggests the extraction of volatiles from the plume mantle by the ocean island basalt (OIB) magmatism.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-08-06
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-01-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250
Physical habitat simulation system reference manual: version II
Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.
1989-01-01
There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.
Improved Cook-off Modeling of Multi-component Cast Explosives
NASA Astrophysics Data System (ADS)
Nichols, Albert
2017-06-01
In order to understand the hazards associated with energetic materials, it is important to understand their behavior in adverse thermal environments. These processes have been relatively well understood for solid explosives, however, the same cannot be said for multi-component melt-cast explosives. Here we describe the continued development of ALE3D, a coupled thermal/chemical/mechanical code, to improve its description of fluid explosives. The improved physics models include: 1) Chemical potential driven species segregation. This model allows us to model the complex flow fields associated with the melting and decomposing Comp-B, where the denser RDX tends to settle and the decomposing gasses rise, 2) Automatically scaled stream-wise diffusion model for thermal, species, and momentum diffusion. These models add sufficient numerical diffusion in the direction of flow to maintain numerical stability when the system is under resolved, as occurs for large systems. And 3) a slurry viscosity model, required to properly define the flow characteristics of the multi-component fluidized system. These models will be demonstrated on a simple Comp-B system. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Behzad, Mehdi
2014-10-01
A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.
(Invited) Effect of Aging on Mechanical Properties of Lithium Ion Cell Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zenan; Cao, Lei; Hartig, Julia
The mechanical properties of aged and fresh lithium ion cell components are evaluated in this paper. Cells components were obtained from destructive physical analysis of 40Ah NMC/Graphite-based pouch cells before and after cycling and were subjected to mechanical testing. The aging tests comprised of cycling the cell across a voltage window of 4.1V to 3.0V at room temperature (25?). Using a 2C charging rate and 1C discharging rate, the cells were subjected to over 5600 cycles before a 80% drop in the name-plate capacity was observed. Mechanical tests, including compression test, tensile test and indentation test, were conducted on themore » cell components to investigate differences in the mechanical performance. Comparison of the fresh and aged cells components shows that cycling the cells has different degrees of impact on the different cell components. Anodes suffered the most serious deterioration in mechanical properties while separators remained intact under the test condition investigated.« less
The alloy with a memory, 55-Nitinol: Its physical metallurgy, properties, and applications
NASA Technical Reports Server (NTRS)
Jackson, C. M.; Wagner, H. J.; Wasilewski, R. J.
1972-01-01
A series of nickel titanium alloys (55-Nitinol), which are unique in that they possess a shape memory, are described. Components made of these materials that are altered in their shapes by deformation under proper conditions return to predetermined shapes when they are heated to the proper temperature range. The shape memory, together with the force exerted and the ability of the material to do mechanical work as it returns to its predetermined shape, suggest a wide variety of industrial applications for the alloy. Also included are discussions of the physical metallurgy and the mechanical, physical, and chemical properties of 55-Nitinol; procedures for melting and processing the material into useful shapes; and a summary of applications.
Wavelet-bounded empirical mode decomposition for measured time series analysis
NASA Astrophysics Data System (ADS)
Moore, Keegan J.; Kurt, Mehmet; Eriten, Melih; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.
2018-01-01
Empirical mode decomposition (EMD) is a powerful technique for separating the transient responses of nonlinear and nonstationary systems into finite sets of nearly orthogonal components, called intrinsic mode functions (IMFs), which represent the dynamics on different characteristic time scales. However, a deficiency of EMD is the mixing of two or more components in a single IMF, which can drastically affect the physical meaning of the empirical decomposition results. In this paper, we present a new approached based on EMD, designated as wavelet-bounded empirical mode decomposition (WBEMD), which is a closed-loop, optimization-based solution to the problem of mode mixing. The optimization routine relies on maximizing the isolation of an IMF around a characteristic frequency. This isolation is measured by fitting a bounding function around the IMF in the frequency domain and computing the area under this function. It follows that a large (small) area corresponds to a poorly (well) separated IMF. An optimization routine is developed based on this result with the objective of minimizing the bounding-function area and with the masking signal parameters serving as free parameters, such that a well-separated IMF is extracted. As examples of application of WBEMD we apply the proposed method, first to a stationary, two-component signal, and then to the numerically simulated response of a cantilever beam with an essentially nonlinear end attachment. We find that WBEMD vastly improves upon EMD and that the extracted sets of IMFs provide insight into the underlying physics of the response of each system.
NASA Astrophysics Data System (ADS)
Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong
2015-09-01
The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)
On classifying the divisor involutions in Calabi-Yau threefolds
NASA Astrophysics Data System (ADS)
Gao, Xin; Shukla, Pramod
2013-11-01
In order to support the odd moduli in models of (type IIB) string compactification, we classify the Calabi-Yau threefolds with h 1,1 ≤ 4 which exhibit pairs of identical divisors, with different line-bundle charges, mapping to each other under possible divisor exchange involutions. For this purpose, the divisors of interest are identified as completely rigid surface, Wilson surface, K3 surface and some other deformation surfaces. Subsequently, various possible exchange involutions are examined under the symmetry of Stanley-Reisner Ideal. In addition, we search for the Calabi-Yau theefolds which contain a divisor with several disjoint components. Under certain reflection involution, such spaces also have nontrivial odd components in (1,1)-cohomology class. String compactifications on such Calabi-Yau orientifolds with non-zero could be promising for concrete model building in both particle physics and cosmology. In the spirit of using such Calabi-Yau orientifolds in the context of LARGE volume scenario, we also present some concrete examples of (strong/weak) swiss-cheese type volume form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua
2014-11-01
Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less
NASA Astrophysics Data System (ADS)
Pitarka, Arben; Mellors, Robert; Rodgers, Arthur; Vorobiev, Oleg; Ezzedine, Souheil; Matzel, Eric; Ford, Sean; Walter, Bill; Antoun, Tarabay; Wagoner, Jeffery; Pasyanos, Mike; Petersson, Anders; Sjogreen, Bjorn
2014-05-01
We investigate the excitation and propagation of far-field (epicentral distance larger than 20 m) seismic waves by analyzing and modeling ground motion from an underground chemical explosion recorded during the Source Physics Experiment (SPE), Nevada. The far-field recorded ground motion is characterized by complex features, such as large azimuthal variations in P- and S-wave amplitudes, as well as substantial energy on the tangential component of motion. Shear wave energy is also observed on the tangential component of the near-field motion (epicentral distance smaller than 20 m) suggesting that shear waves were generated at or very near the source. These features become more pronounced as the waves propagate away from the source. We address the shear wave generation during the explosion by modeling ground motion waveforms recorded in the frequency range 0.01-20 Hz, at distances of up to 1 km. We used a physics based approach that combines hydrodynamic modeling of the source with anelastic modeling of wave propagation in order to separate the contributions from the source and near-source wave scattering on shear motion generation. We found that wave propagation scattering caused by the near-source geological environment, including surface topography, contributes to enhancement of shear waves generated from the explosion source. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-06NA25946/ NST11-NCNS-TM-EXP-PD15.
Tipping point analysis of atmospheric oxygen concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livina, V. N.; Forbes, A. B.; Vaz Martins, T. M.
2015-03-15
We apply tipping point analysis to nine observational oxygen concentration records around the globe, analyse their dynamics and perform projections under possible future scenarios, leading to oxygen deficiency in the atmosphere. The analysis is based on statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the observed data using Bayesian and wavelet techniques.
Patrick J. Flowers; Patricia B. Shinkle; Daria A. Cain; Thomas J. Mills
1985-01-01
In the last decade, the fire management program of the Forest Service, U.S. Department of Agriculture, has come under closer scrutiny because of ever-rising program costs. The Forest Service has responded by conducting several studies analyzing the economic efficiency of its fire management program. Some components of the analytical models have been difficult to...
O'Donnell, Allison N; Williams, Mark; Kilbourne, Amy M
2013-12-01
The Chronic Care Model (CCM) has been shown to improve medical and psychiatric outcomes for persons with mental disorders in primary care settings, and has been proposed as a model to integrate mental health care in the patient-centered medical home under healthcare reform. However, the CCM has not been widely implemented in primary care settings, primarily because of a lack of a comprehensive reimbursement strategy to compensate providers for day-to-day provision of its core components, including care management and provider decision support. Drawing upon the existing literature and regulatory guidelines, we provide a critical analysis of challenges and opportunities in reimbursing CCM components under the current fee-for-service system, and describe an emerging financial model involving bundled payments to support core CCM components to integrate mental health treatment into primary care settings. Ultimately, for the CCM to be used and sustained over time to integrate physical and mental health care, effective reimbursement models will need to be negotiated across payers and providers. Such payments should provide sufficient support for primary care providers to implement practice redesigns around core CCM components, including care management, measurement-based care, and mental health specialist consultation.
Quality of life in bipolar disorder: towards a dynamic understanding.
Morton, E; Murray, G; Michalak, E E; Lam, R W; Beaulieu, S; Sharma, V; Cervantes, P; Parikh, S V; Yatham, L N
2018-05-01
Although quality of life (QoL) is receiving increasing attention in bipolar disorder (BD) research and practice, little is known about its naturalistic trajectory. The dual aims of this study were to prospectively investigate: (a) the trajectory of QoL under guideline-driven treatment and (b) the dynamic relationship between mood symptoms and QoL. In total, 362 patients with BD receiving guideline-driven treatment were prospectively followed at 3-month intervals for up to 5 years. Mental (Mental Component Score - MCS) and physical (Physical Component Score - PCS) QoL were measured using the self-report SF-36. Clinician-rated symptom data were recorded for mania and depression. Multilevel modelling was used to analyse MCS and PCS over time, QoL trajectories predicted by time-lagged symptoms, and symptom trajectories predicted by time-lagged QoL. MCS exhibited a positive trajectory, while PCS worsened over time. Investigation of temporal relationships between QoL and symptoms suggested bidirectional effects: earlier depressive symptoms were negatively associated with mental QoL, and earlier manic symptoms were negatively associated with physical QoL. Importantly, earlier MCS and PCS were both negatively associated with downstream symptoms of mania and depression. The present investigation illustrates real-world outcomes for QoL under guideline-driven BD treatment: improvements in mental QoL and decrements in physical QoL were observed. The data permitted investigation of dynamic interactions between QoL and symptoms, generating novel evidence for bidirectional effects and encouraging further research into this important interplay. Investigation of relevant time-varying covariates (e.g. medications) was beyond scope. Future research should investigate possible determinants of QoL and the interplay between symptoms and wellbeing/satisfaction-centric measures of QoL.
Human-directed social behaviour in dogs shows significant heritability.
Persson, M E; Roth, L S V; Johnsson, M; Wright, D; Jensen, P
2015-04-01
Through domestication and co-evolution with humans, dogs have developed abilities to attract human attention, e.g. in a manner of seeking assistance when faced with a problem solving task. The aims of this study were to investigate within breed variation in human-directed contact seeking in dogs and to estimate its genetic basis. To do this, 498 research beagles, bred and kept under standardized conditions, were tested in an unsolvable problem task. Contact seeking behaviours recorded included both eye contact and physical interactions. Behavioural data was summarized through a principal component analysis, resulting in four components: test interactions, social interactions, eye contact and physical contact. Females scored significantly higher on social interactions and physical contact and age had an effect on eye contact scores. Narrow sense heritabilities (h(2) ) of the two largest components were estimated at 0.32 and 0.23 but were not significant for the last two components. These results show that within the studied dog population, behavioural variation in human-directed social behaviours was sex dependent and that the utilization of eye contact seeking increased with age and experience. Hence, heritability estimates indicate a significant genetic contribution to the variation found in human-directed social interactions, suggesting that social skills in dogs have a genetic basis, but can also be shaped and enhanced through individual experiences. This research gives the opportunity to further investigate the genetics behind dogs' social skills, which could also play a significant part into research on human social disorders such as autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Polyenergetic known-component reconstruction without prior shape models
NASA Astrophysics Data System (ADS)
Zhang, C.; Zbijewski, W.; Zhang, X.; Xu, S.; Stayman, J. W.
2017-03-01
Purpose: Previous work has demonstrated that structural models of surgical tools and implants can be integrated into model-based CT reconstruction to greatly reduce metal artifacts and improve image quality. This work extends a polyenergetic formulation of known-component reconstruction (Poly-KCR) by removing the requirement that a physical model (e.g. CAD drawing) be known a priori, permitting much more widespread application. Methods: We adopt a single-threshold segmentation technique with the help of morphological structuring elements to build a shape model of metal components in a patient scan based on initial filtered-backprojection (FBP) reconstruction. This shape model is used as an input to Poly-KCR, a formulation of known-component reconstruction that does not require a prior knowledge of beam quality or component material composition. An investigation of performance as a function of segmentation thresholds is performed in simulation studies, and qualitative comparisons to Poly-KCR with an a priori shape model are made using physical CBCT data of an implanted cadaver and in patient data from a prototype extremities scanner. Results: We find that model-free Poly-KCR (MF-Poly-KCR) provides much better image quality compared to conventional reconstruction techniques (e.g. FBP). Moreover, the performance closely approximates that of Poly- KCR with an a prior shape model. In simulation studies, we find that imaging performance generally follows segmentation accuracy with slight under- or over-estimation based on the shape of the implant. In both simulation and physical data studies we find that the proposed approach can remove most of the blooming and streak artifacts around the component permitting visualization of the surrounding soft-tissues. Conclusion: This work shows that it is possible to perform known-component reconstruction without prior knowledge of the known component. In conjunction with the Poly-KCR technique that does not require knowledge of beam quality or material composition, very little needs to be known about the metal implant and system beforehand. These generalizations will allow more widespread application of KCR techniques in real patient studies where the information of surgical tools and implants is limited or not available.
van Adrichem, Edwin J; Krijnen, Wim P; Dekker, Rienk; Ranchor, Adelita V; Dijkstra, Pieter U; van der Schans, Cees P
2017-11-01
To explore the underlying dimensions of the Barriers and Motivators Questionnaire that is used to assess barriers to and motivators of physical activity experienced by recipients of solid organ transplantation and thereby improve the application in research and clinical settings. A cross-sectional study was performed in recipients of solid organ transplantation (n = 591; median (IQR) age = 59 (49; 66); 56% male). The multidimensional structure of the questionnaire was analyzed by exploratory principal component analysis. Cronbach's α was calculated to determine internal consistency of the entire questionnaire and individual components. The barriers scale had a Cronbach's α of 0.86 and was subdivided into four components; α of the corresponding subscales varied between 0.80 and 0.66. The motivator scale had an α of 0.91 and was subdivided into four components with an α between 0.88 to 0.70. Nine of the original barrier items and two motivator items were not included in the component structure. A four-dimensional structure for both the barriers and motivators scale of the questionnaire is supported. The use of the indicated subscales increases the usability in research and clinical settings compared to the overall scores and provide opportunities to identify modifiable constructs to be targeted in interventions. Implications for rehabilitation Organ transplant recipients are less active than the general population despite established health benefits of physical activity. A multidimensional structure is shown in the Barriers and Motivators Questionnaire, the use of the identified subscales increases applicability in research and clinical settings. The use of the questionnaire with its component structure in the clinical practice of a rehabilitation physician could result in a faster assessment of problem areas in daily practice and result in a higher degree of clarity as opposed to the use of the individual items of the questionnaire.
Area-efficient physically unclonable function circuit architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurrieri, Thomas; Hamlet, Jason; Bauer, Todd
Generating a physically a physically unclonable function ("PUF") circuit value includes comparing each of first identification components in a first bank to each of second identification components in a second bank. A given first identification component in the first bank is not compared to another first identification component in the first bank and a given second identification component in the second bank is not compared to another second identification component in the second bank. A digital bit value is generated for each comparison made while comparing each of the first identification components to each of the second identification components. Amore » PUF circuit value is generated from the digital bit values from each comparison made.« less
Development of Standardized Lunar Regolith Simulant Materials
NASA Technical Reports Server (NTRS)
Carpenter, P.; Sibille, L.; Meeker, G.; Wilson, S.
2006-01-01
Lunar exploration requires scientific and engineering studies using standardized testing procedures that ultimately support flight certification of technologies and hardware. It is necessary to anticipate the range of source materials and environmental constraints that are expected on the Moon and Mars, and to evaluate in-situ resource utilization (ISRU) coupled with testing and development. We describe here the development of standardized lunar regolith simulant (SLRS) materials that are traceable inter-laboratory standards for testing and technology development. These SLRS materials must simulate the lunar regolith in terms of physical, chemical, and mineralogical properties. A summary of these issues is contained in the 2005 Workshop on Lunar Regolith Simulant Materials [l]. Lunar mare basalt simulants MLS-1 and JSC-1 were developed in the late 1980s. MLS-1 approximates an Apollo 11 high-Ti basalt, and was produced by milling of a holocrystalline, coarse-grained intrusive gabbro (Fig. 1). JSC-1 approximates an Apollo 14 basalt with a relatively low-Ti content, and was obtained from a glassy volcanic ash (Fig. 2). Supplies of MLS-1 and JSC-1 have been exhausted and these materials are no longer available. No highland anorthosite simulant was previously developed. Upcoming lunar polar missions thus require the identification, assessment, and development of both mare and highland simulants. A lunar regolith simulant is manufactured from terrestrial components for the purpose of simulating the physical and chemical properties of the lunar regolith. Significant challenges exist in the identification of appropriate terrestrial source materials. Lunar materials formed under comparatively reducing conditions in the absence of water, and were modified by meteorite impact events. Terrestrial materials formed under more oxidizing conditions with significantly greater access to water, and were modified by a wide range of weathering processes. The composition space of lunar materials can be modeled by mixing programs utilizing a low-Ti basalt, ilmenite, KREEP component, high-Ca anorthosite, and meteoritic components. This approach has been used for genetic studies of lunar samples via chemical and modal analysis. A reduced composition space may be appropriate for simulant development, but it is necessary to determine the controlling properties that affect the physical, chemical and mineralogical components of the simulant.
Development progress of the Materials Analysis and Particle Probe
NASA Astrophysics Data System (ADS)
Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.
2014-11-01
The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.
Development progress of the Materials Analysis and Particle Probe.
Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St
2014-11-01
The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.
On the physics of the emergence of sensorimotor control in the absence of the brain.
Matsuno, Koichiro
2015-12-01
The evolutionary origin of sensorimotor control requires a sort of physical durability, other than Galilean inertia being accessible in third-person description in the present tense. One candidate to address this need is the 'class property' of a material body's durability remaining invariant during the exchange of component elements. Using grammatical tense as a descriptive attribute, this durability is accessible only in the frequent update of the present perfect tense in the present progressive tense at the 'now' of the present moment. In this view, the update of the perfect tense is equated with the onset and occurrence of on/off switching behavior of physical origin underlying the phenomena of sensorimotor control. Notably, the physical update of the perfect tense is specific only to the 'now and here' that is central in the tradition of phenomenology. The phenomena upholding thermodynamics, when taken apart from its theory, are decisive in facilitating the onset of sensorimotor control. Instrumental to the emergence of both life in general and sensorimotor control in particular may be the occurrence of a 'physical and chemical affinity' of the material bodies of whatever type. Such will let the constant exchange of component elements be feasible, so that the class identity equipped with the capacity for measurement is made available within the phenomenon. Material bodies constantly exchanging such component elements would make the material world open to biology by allowing each element to experience the organizational whole from within. The internal observer responsible for the origins of life may do double duty of letting itself be durable on the material basis while observing the conditions making it durable on the linguistic ground. The origins of life appear to us a material phenomenon when they are approached with use of our linguistic tools that can get rid of the strict stipulation of an abstract nature applied to the description of dynamical laws in physics. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-03-01
The task of developing principles of cyber-physical system constitution at the Industry 4.0 company of the item designing components of mechanical assembly production is being studied. The task has been solved by analyzing the components and technologies, which have some practical application in the digital production organization. The list of components has been defined and the authors proposed the scheme of the components and technologies interconnection in the Industry 4.0 of mechanical assembly production to make an uninterrupted manufacturing route of the item designing components with application of some cyber-physical systems.
Identifying items to assess methodological quality in physical therapy trials: a factor analysis.
Armijo-Olivo, Susan; Cummings, Greta G; Fuentes, Jorge; Saltaji, Humam; Ha, Christine; Chisholm, Annabritt; Pasichnyk, Dion; Rogers, Todd
2014-09-01
Numerous tools and individual items have been proposed to assess the methodological quality of randomized controlled trials (RCTs). The frequency of use of these items varies according to health area, which suggests a lack of agreement regarding their relevance to trial quality or risk of bias. The objectives of this study were: (1) to identify the underlying component structure of items and (2) to determine relevant items to evaluate the quality and risk of bias of trials in physical therapy by using an exploratory factor analysis (EFA). A methodological research design was used, and an EFA was performed. Randomized controlled trials used for this study were randomly selected from searches of the Cochrane Database of Systematic Reviews. Two reviewers used 45 items gathered from 7 different quality tools to assess the methodological quality of the RCTs. An exploratory factor analysis was conducted using the principal axis factoring (PAF) method followed by varimax rotation. Principal axis factoring identified 34 items loaded on 9 common factors: (1) selection bias; (2) performance and detection bias; (3) eligibility, intervention details, and description of outcome measures; (4) psychometric properties of the main outcome; (5) contamination and adherence to treatment; (6) attrition bias; (7) data analysis; (8) sample size; and (9) control and placebo adequacy. Because of the exploratory nature of the results, a confirmatory factor analysis is needed to validate this model. To the authors' knowledge, this is the first factor analysis to explore the underlying component items used to evaluate the methodological quality or risk of bias of RCTs in physical therapy. The items and factors represent a starting point for evaluating the methodological quality and risk of bias in physical therapy trials. Empirical evidence of the association among these items with treatment effects and a confirmatory factor analysis of these results are needed to validate these items. © 2014 American Physical Therapy Association.
Analysis of In-Flight Vibration Measurements from Helicopter Transmissions
NASA Technical Reports Server (NTRS)
Mosher, Marianne; Huff, Ed; Barszcz
2004-01-01
In-flight vibration measurements from the transmission of an OH-58C KIOWA are analyzed. In order to understand the effect of normal flight variation on signal shape, the first gear mesh components of the planetary gear system and bevel gear are studied in detail. Systematic patterns occur in the amplitude and phase of these signal components with implications for making time synchronous averages and interpreting gear metrics in flight. The phase of the signal component increases as the torque increases; limits on the torque range included in a time synchronous average may now be selected to correspond to phase change limits on the underlying signal. For some sensors and components, an increase in phase variation and/or abrupt change in the slope of the phase dependence on torque are observed in regions of very low amplitude of the signal component. A physical mechanism for this deviation is postulated. Time synchronous averages should not be constructed in torque regions with wide phase variation.
Alsaadawi, I S; Sakeri, F A; Al-Dulaimy, S M
1990-09-01
Field observations indicated thatEuphorbia prostrata strongly interferes withCynodon dactylon (L.) Pers. Analysis of some physical and chemical soil factors indicated that competition was not the dominant factor of that interference. Soil collected from underE. prostrata stands was very inhibitory to seed germination and seeding growth of some of the test species including C.Dactylon. This suggests the presence of inhibitory compounds in soil ofE. prostrata stands. Subsequent experiments showed that aqueous extract, decaying residues, and root exudates ofE. prostrata were inhibitory to most of the test species including C.Dactylon. Thus, it appears that allelopathy is the major component of the interference, with competition probably accentuating its effect. It also was found that allelopathy is an important component of the interference byE. prostrata againstAmaranthus retroflexus, Medicago sativa, andGossypium hirsutum.
Actively controlling coolant-cooled cold plate configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Parida, Pritish R.
Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, formore » example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.« less
Brittle and ductile friction and the physics of tectonic tremor
Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.
2011-01-01
Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.
Murphy, Jessica E; Smock, Laura; Hunter-Adams, Jo; Xuan, Ziming; Cochran, Jennifer; Paasche-Orlow, Michael K; Geltman, Paul L
2018-06-15
Little is known about the impacts of health literacy and English proficiency on the health status of Somali refugees. Data came from interviews in 2009-2011 of 411 adult Somali refugees recently resettled in Massachusetts. English proficiency, health literacy, and physical and mental health were measured using the Basic English Skills Test Plus, the Short Test of Health Literacy in Adults, and the Physical and Mental Component Summaries of the Short Form-12. Associations were analyzed using multiple linear regression. In adjusted analyses, higher English proficiency was associated with worse mental health in males. English proficiency was not associated with physical health. Health literacy was associated with neither physical nor mental health. Language proficiency may adversely affect the mental health of male Somali refugees, contrary to findings in other immigrant groups. Research on underlying mechanisms and opportunities to understand this relationship are needed.
Ego Network Analysis of Upper Division Physics Student Survey
NASA Astrophysics Data System (ADS)
Brewe, Eric
2017-01-01
We present the analysis of student networks derived from a survey of upper division physics students. Ego networks focus on the connections that center on one person (the ego). The ego networks in this talk come from a survey that is part of an overall project focused on understanding student retention and persistence. The theory underlying this work is that social and academic integration are essential components to supporting students continued enrollment and ultimately graduation. This work uses network analysis as a way to investigate the role of social and academic interactions in retention and persistence decisions. We focus on student interactions with peers, on mentoring interactions with physics department faculty, and on engagement in physics groups and how they influence persistence. Our results, which are preliminary, will help frame the ongoing research project and identify ways in which departments can support students. This work supported by NSF grant #PHY 1344247.
Using Bayesian Networks and Decision Theory to Model Physical Security
2003-02-01
Home automation technologies allow a person to monitor and control various activities within a home or office setting. Cameras, sensors and other...components used along with the simple rules in the home automation software provide an environment where the lights, security and other appliances can be...monitored and controlled. These home automation technologies, however, lack the power to reason under uncertain conditions and thus the system can
ERIC Educational Resources Information Center
Dieye, Amadou M.
2016-01-01
Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project…
Luu, Van; Jona, Janan; Stanton, Mary K; Peterson, Matthew L; Morrison, Henry G; Nagapudi, Karthik; Tan, Helming
2013-01-30
A 96-well high-throughput cocrystal screening workflow has been developed consisting of solvent-mediated sonic blending synthesis and on-plate solid/solution stability characterization by XRPD. A strategy of cocrystallization screening in selected blend solvents including water mixtures is proposed to not only manipulate solubility of the cocrystal components but also differentiate physical stability of the cocrystal products. Caffeine-oxalic acid and theophylline-oxalic acid cocrystals were prepared and evaluated in relation to saturation levels of the cocrystal components and stability of the cocrystal products in anhydrous and hydrous solvents. AMG 517 was screened with a number of coformers, and solid/solution stability of the resulting cocrystals on the 96-well plate was investigated. A stability trend was observed and confirmed that cocrystals comprised of lower aqueous solubility coformers tended to be more stable in water. Furthermore, cocrystals which could be isolated under hydrous solvent blending condition exhibited superior physical stability to those which could only be obtained under anhydrous condition. This integrated HTS workflow provides an efficient route in an API-sparing approach to screen and identify cocrystal candidates with proper solubility and solid/solution stability properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Myer, Gregory D; Faigenbaum, Avery D; Edwards, Nicholas M; Clark, Joseph F; Best, Thomas M; Sallis, Robert E
2015-12-01
Current recommendations for physical activity in children overlook the critical importance of motor skill acquisition early in life. Instead, they focus on the quantitative aspects of physical activity (eg, accumulate 60 min of daily moderate to vigorous physical activity) and selected health-related components of physical fitness (eg, aerobic fitness, muscular strength, muscular endurance, flexibility and body composition). This focus on exercise quantity in youth may limit considerations of qualitative aspects of programme design which include (1) skill development, (2) socialisation and (3) enjoyment of exercise. The timing of brain development and associated neuroplasticity for motor skill learning makes the preadolescence period a critical time to develop and reinforce fundamental movement skills in boys and girls. Children who do not participate regularly in structured motor skill-enriched activities during physical education classes or diverse youth sports programmes may never reach their genetic potential for motor skill control which underlies sustainable physical fitness later in life. The goals of this review are twofold: (1) challenge current dogma that is currently focused on the quantitative rather than qualitative aspects of physical activity recommendations for youth and (2) synthesise the latest evidence regarding the brain and motor control that will provide the foundation for integrative exercise programming that provide a framework sustainable activity for life. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
A compact model for selectors based on metal doped electrolyte
NASA Astrophysics Data System (ADS)
Zhang, Lu; Song, Wenhao; Yang, J. Joshua; Li, Hai; Chen, Yiran
2018-04-01
A selector device that demonstrates high nonlinearity and low switching voltages was fabricated using HfOx as a solid electrolyte doped with Ag electrodes. The electronic conductance of the volatile conductive filaments responsible for the switching was studied under both static and dynamic conditions. A compact model is developed from this study that describes the physical processes of the formation and rupture of the Ag filament(s). A dynamic capacitance model is used to fit the transient current traces under different voltage bias, which enables the extraction of parameters associated with the various parasitic components in the device.
Small prey species' behaviour and welfare: implications for veterinary professionals.
McBride, E Anne
2017-08-01
People have obligations to ensure the welfare of animals under their care. Offences under the UK Animal Welfare Act are acts, or failures of action, causing unnecessary suffering. Veterinary professionals need to be able to provide current, scientifically based prophylactic advice, and respect the limits of their expertise. The ethical concept of a life worth living and the Five Freedoms are core to welfare. Behaviour is a central component, both influencing and influenced by physical health. Owners frequently misunderstand the behaviour of small prey mammals and how to meet their needs. This review provides insight into the physical-social (external) and the cognitive-emotional (internal) environments of small prey mammals, contextualised within an evolutionary perspective. This is extrapolated to captivity and practical suggestions given for meeting behavioural freedoms and enhancing client understanding and enjoyment of their animals, thereby improving welfare. © 2017 British Small Animal Veterinary Association.
NASA Astrophysics Data System (ADS)
Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise
2018-05-01
Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects.
Large-N Seismic Deployment at the Source Physics Experiment (SPE) Site
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.; Pitarka, A.
2015-12-01
The Source Physics Experiment (SPE) is multi-institutional and multi-disciplinary project that consists of a series of chemical explosion experiments at the Nevada National Security Site. The goal of SPE is to understand the complicated effect of earth structures on source energy partitioning and seismic wave propagation, develop and validate physics-based monitoring, and ultimately better discriminate low-yield nuclear explosions from background seismicity. Deployment of a large number of seismic sensors is planned for SPE to image the full 3-D wavefield with about 500 three-component sensors and 500 vertical component sensors. This large-N seismic deployment will operate near the site of SPE-5 shot for about one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources. This presentation focuses on the design of the large-N seismic deployment. We show how we optimized the sensor layout based on the geological structure and experiment goals with a limited number of sensors. In addition, we will also show some preliminary record sections from deployment. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
High heat flux testing of CFC composites for the tokamak physics experiment
NASA Astrophysics Data System (ADS)
Valentine, P. G.; Nygren, R. E.; Burns, R. W.; Rocket, P. D.; Colleraine, A. P.; Lederich, R. J.; Bradley, J. T.
1996-10-01
High heat flux (HHF) testing of carbon fiber reinforced carbon composites (CFC's) was conducted under the General Atomics program to develop plasma-facing components (PFC's) for Princeton Plasma Physics Laboratory's tokamak physics experiment (TPX). As part of the process of selecting TPX CFC materials, a series of HHF tests were conducted with the 30 kW electron beam test system (EBTS) facility at Sandia National Laboratories, and with the plasma disruption simulator I (PLADIS-I) facility at the University of New Mexico. The purpose of the tests was to make assessments of the thermal performance and erosion behavior of CFC materials. Tests were conducted with 42 different CFC materials. In general, the CFC materials withstood the rapid thermal pulse environments without fracturing, delaminating, or degrading in a non-uniform manner; significant differences in thermal performance, erosion behavior, vapor evolution, etc. were observed and preliminary findings are presented below. The CFC's exposed to the hydrogen plasma pulses in PLADIS-I exhibited greater erosion rates than the CFC materials exposed to the electron-beam pulses in EBTS. The results obtained support the continued consideration of a variety of CFC composites for TPX PFC components.
Aging, physical activity, and cognitive processing: an examination of P300.
McDowell, K; Kerick, S E; Santa Maria, D L; Hatfield, B D
2003-01-01
Physical activity appears to attenuate the decline of cognitive function typically observed in older men and women. The P300 component of the event-related potential (ERP) is particularly affected by aging and allows for basic neurobiological assessment of cognitive function. Three aspects of the P300 component (i.e. latency, amplitude, and area under the curve (AUC)), elicited by an oddball task, were derived to assess cognitive function in young and older participants (N=73) who were further classified as high- and low-active. The low-active elderly participants exhibited larger AUC values than those observed in all other groups which were undifferentiated. That is, the high-active elderly and the young participants exhibited smaller AUC values than the low-active older group. In conclusion, higher levels of physical activity in the elderly may be associated with a reduction in the neural resources allocated in response to simple cognitive challenge. This interpretation is consistent with the concept of psychomotor efficiency proposed by Hatfield and Hillman [The psychophysiology of sport: a mechanistic understanding of the psychology of superior performance. In: Singer RN, Hausenbias HA, Janelle CM, editors. Handbook of sport psychology. 2nd ed. New York: Wiley; 2001, p. 362-88].
Zonda is a novel early component of the autophagy pathway in Drosophila.
Melani, Mariana; Valko, Ayelén; Romero, Nuria M; Aguilera, Milton O; Acevedo, Julieta M; Bhujabal, Zambarlal; Perez-Perri, Joel; de la Riva-Carrasco, Rocío V; Katz, Maximiliano J; Sorianello, Eleonora; D'Alessio, Cecilia; Juhász, Gabor; Johansen, Terje; Colombo, María I; Wappner, Pablo
2017-11-01
Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation. © 2017 Melani, Valko, Romero, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Díaz, Manuel; Rubio, Bartolomé; Van den Abeele, Floris
2018-01-01
Currently, applications in the Internet of Things (IoT) are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved. PMID:29701698
Martín, Cristian; Hoebeke, Jeroen; Rossey, Jen; Díaz, Manuel; Rubio, Bartolomé; Van den Abeele, Floris
2018-04-26
Currently, applications in the Internet of Things (IoT) are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved.
Failure of Local Thermal Equilibrium in Quantum Friction
NASA Astrophysics Data System (ADS)
Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.
2016-09-01
Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. While this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...
2014-06-30
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less
Recovering the Physical Properties of Molecular Gas in Galaxies from CO SLED Modeling
NASA Astrophysics Data System (ADS)
Kamenetzky, J.; Privon, G. C.; Narayanan, D.
2018-05-01
Modeling of the spectral line energy distribution (SLED) of the CO molecule can reveal the physical conditions (temperature and density) of molecular gas in Galactic clouds and other galaxies. Recently, the Herschel Space Observatory and ALMA have offered, for the first time, a comprehensive view of the rotational J = 4‑3 through J = 13‑12 lines, which arise from a complex, diverse range of physical conditions that must be simplified to one, two, or three components when modeled. Here we investigate the recoverability of physical conditions from SLEDs produced by galaxy evolution simulations containing a large dynamical range in physical properties. These simulated SLEDs were generally fit well by one component of gas whose properties largely resemble or slightly underestimate the luminosity-weighted properties of the simulations when clumping due to nonthermal velocity dispersion is taken into account. If only modeling the first three rotational lines, the median values of the marginalized parameter distributions better represent the luminosity-weighted properties of the simulations, but the uncertainties in the fitted parameters are nearly an order of magnitude, compared to approximately 0.2 dex in the “best-case” scenario of a fully sampled SLED through J = 10‑9. This study demonstrates that while common CO SLED modeling techniques cannot reveal the underlying complexities of the molecular gas, they can distinguish bulk luminosity-weighted properties that vary with star formation surface densities and galaxy evolution, if a sufficient number of lines are detected and modeled.
A physics based method for combining multiple anatomy models with application to medical simulation.
Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David
2009-01-01
We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
Lessard, Laura; Lesesne, Catherine; Kakietek, Jakub; Breck, Andrew; Jernigan, Jan; Dunn, Lillian; Nonas, Cathy; O'Dell, Sarah Abood; Stephens, Robert L; Xu, Ye; Kettel Khan, Laura
2014-10-16
Policy interventions designed to change the nutrition environment and increase physical activity in child care centers are becoming more common, but an understanding of the implementation of these interventions is yet to be developed. The objective of this study was to explore the extent and consistency of compliance with a policy intervention designed to promote nutrition and physical activity among licensed child care centers in New York City. We used a multimethod cross-sectional approach and 2 independent components of data collection (Center Evaluation Component and Classroom Evaluation Component). The methods were designed to evaluate the impact of regulations on beverages served, physical activity, and screen time at child care centers. We calculated compliance scores for each evaluation component and each regulation and percentage agreement between compliance in the center and classroom components. Compliance with certain requirements of the beverage regulations was high and fairly consistent between components, whereas compliance with the physical activity regulation varied according to the data collection component. Compliance with the regulation on amount and content of screen time was high and consistent. Compliance with the physical activity regulation may be a more fluid, day-to-day issue, whereas compliance with the regulations on beverages and television viewing may be easier to control at the center level. Multiple indicators over multiple time points may provide a more complete picture of compliance - especially in the assessment of compliance with physical activity policies.
Efficient Coupling of Fluid-Plasma and Monte-Carlo-Neutrals Models for Edge Plasma Transport
NASA Astrophysics Data System (ADS)
Dimits, A. M.; Cohen, B. I.; Friedman, A.; Joseph, I.; Lodestro, L. L.; Rensink, M. E.; Rognlien, T. D.; Sjogreen, B.; Stotler, D. P.; Umansky, M. V.
2017-10-01
UEDGE has been valuable for modeling transport in the tokamak edge and scrape-off layer due in part to its efficient fully implicit solution of coupled fluid neutrals and plasma models. We are developing an implicit coupling of the kinetic Monte-Carlo (MC) code DEGAS-2, as the neutrals model component, to the UEDGE plasma component, based on an extension of the Jacobian-free Newton-Krylov (JFNK) method to MC residuals. The coupling components build on the methods and coding already present in UEDGE. For the linear Krylov iterations, a procedure has been developed to ``extract'' a good preconditioner from that of UEDGE. This preconditioner may also be used to greatly accelerate the convergence rate of a relaxed fixed-point iteration, which may provide a useful ``intermediate'' algorithm. The JFNK method also requires calculation of Jacobian-vector products, for which any finite-difference procedure is inaccurate when a MC component is present. A semi-analytical procedure that retains the standard MC accuracy and fully kinetic neutrals physics is therefore being developed. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 15-ERD-059, by PPPL under Contract DE-AC02-09CH11466, and supported in part by the U.S. DOE, OFES.
The Interstellar Medium in External Galaxies: Summaries of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)
1990-01-01
The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.
Daffner, Kirk R; Zhuravleva, Tatyana Y; Sun, Xue; Tarbi, Elise C; Haring, Anna E; Rentz, Dorene M; Holcomb, Phillip J
2012-02-01
Numerous studies have demonstrated that selective attention to color is associated with a larger neural response under attend than ignore conditions, but have not addressed whether this difference reflects enhanced activity under attend or suppressed activity under ignore. In this study, a color-neutral condition was included, which presented stimuli physically identical to those under attend and ignore conditions, but in which color was not task relevant. Attention to color did not modulate the early sensory-evoked P1 and N1 components. Traditional ERP markers of early selection (the anterior Selection Positivity and posterior Selection Negativity) did not differ between the attend and neutral conditions, arguing against a mechanism of enhanced activity. However, there were markedly reduced responses under the ignore relative to the neutral condition, consistent with the view that early selection mechanisms reflect suppression of neural activity under the ignore condition. Copyright © 2011 Elsevier B.V. All rights reserved.
Peden, M E; Okely, A D; Eady, M J; Jones, R A
2018-05-31
The purpose of this systematic review was to investigate professional learning models (length, mode, content) offered as part of objectively measured physical childcare-based interventions. A systematic review of eight electronic databases was conducted to June 2017. Only English, peer-reviewed studies that evaluated childcare-based physical activity interventions, incorporated professional learning and reported objectively measured physical activity were included. Study designs included randomized controlled trails, cluster randomized trials, experimental or pilot studies. The search identified 11 studies. Ten studies objectively measured physical activity using accelerometers; five studies used both accelerometer and direct observation tools and one study measured physical activity using direct observation only. Seven of these studies reported statistically significant intervention effects. Only six studies described all components of professional learning, but only two studies reported specific professional learning outcomes and physical activity outcomes. No patterns were identified between the length, mode and content of professional learning and children's physical activity outcomes in childcare settings. Educators play a critical role in modifying children's levels of physical activity in childcare settings. The findings of this review suggest that professional learning offered as part of a physical activity intervention that potentially impacts on children's physical activity outcomes remains under-reported. © 2018 World Obesity Federation.
The ATLAS Simulation Infrastructure
Aad, G.; Abbott, B.; Abdallah, J.; ...
2010-09-25
The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, andmore » the validation of the simulated output against known physics processes.« less
Embedded electronics for intelligent structures
NASA Astrophysics Data System (ADS)
Warkentin, David J.; Crawley, Edward F.
The signal, power, and communications provisions for the distributed control processing, sensing, and actuation of an intelligent structure could benefit from a method of physically embedding some electronic components. The preliminary feasibility of embedding electronic components in load-bearing intelligent composite structures is addressed. A technique for embedding integrated circuits on silicon chips within graphite/epoxy composite structures is presented which addresses the problems of electrical, mechanical, and chemical isolation. The mechanical and chemical isolation of test articles manufactured by this technique are tested by subjecting them to static and cyclic mechanical loads and a temperature/humidity/bias environment. The likely failure modes under these conditions are identified, and suggestions for further improvements in the technique are discussed.
An analysis of satellite state vector observability using SST tracking data
NASA Technical Reports Server (NTRS)
Englar, T. S., Jr.; Hammond, C. L.
1976-01-01
Observability of satellite state vectors, using only SST tracking data was investigated by covariance analysis under a variety of satellite and station configurations. These results indicate very precarious observability in most short arc cases. The consequences of this are large variances on many state components, such as the downrange component of the relay satellite position. To illustrate the impact of observability problems, an example is given of two distinct satellite orbit pairs generating essentially the same data arc. The physical bases for unobservability are outlined and related to proposed TDRSS configurations. Results are relevant to any mission depending upon TDRSS to determine satellite state. The required mathematical analysis and the software used is described.
Validity assessment and the neurological physical examination.
Zasler, Nathan D
2015-01-01
The assessment of any patient or examinee with neurological impairment, whether acquired or congenital, provides a key set of data points in the context of developing accurate diagnostic impressions and implementing an appropriate neurorehabilitation program. As part of that assessment, the neurological physical exam is an extremely important component of the overall neurological assessment. In the aforementioned context, clinicians often are confounded by unusual, atypical or unexplainable physical exam findings that bring into question the organicity, veracity, and/or underlying cause of the observed clinical presentation. The purpose of this review is to provide readers with general directions and specific caveats regarding validity assessment in the context of the neurological physical exam. It is of utmost importance for health care practitioners to be aware of assessment methodologies that may assist in determining the validity of the neurological physical exam and differentiating organic from non-organic/functional impairments. Maybe more importantly, the limitations of many commonly used strategies for assessment of non-organicity should be recognized and consider prior to labeling observed physical findings on neurological exam as non-organic or functional.
Parental physical activity, safety perceptions and children’s independent mobility
2013-01-01
Background Parents are likely to be a basic influence on their children's behavior. There is an absence of information about the associations between parents' physical activity and perception of neighborhood environment with children’s independent mobility. The purpose of this study is to examine the contribution of parental physical activity and perception of neighborhood safety to children’s independent mobility. Methods In this cross-sectional study of 354 pupils and their parents, independent mobility, perceptions of neighborhood safety and physical activity were evaluated by questionnaire. Categorical principal components analyses were used to determine the underlying dimensions of both independent mobility and perceptions of neighborhood safety items. Results The strongest predictor of independent mobility was the parental perception of sidewalk and street safety (ß = 0.132). Parent’s physical activity was also a significant predictor. The final model accounted for 13.0% of the variance. Conclusions Parental perception of neighborhood safety and parents’ self reported physical activity might be associated with children’s independent mobility. Further research in this topic is needed to explore this possible association. PMID:23767778
Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, T.; Takahashi, Y.
1998-08-20
Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.
Unification of height systems in the frame of GGOS
NASA Astrophysics Data System (ADS)
Sánchez, Laura
2015-04-01
Most of the existing vertical reference systems do not fulfil the accuracy requirements of modern Geodesy. They refer to local sea surface levels, are stationary (do not consider variations in time), realize different physical height types (orthometric, normal, normal-orthometric, etc.), and their combination in a global frame presents uncertainties at the metre level. To provide a precise geodetic infrastructure for monitoring the Earth system, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), promotes the standardization of the height systems worldwide. The main purpose is to establish a global gravity field-related vertical reference system that (1) supports a highly-precise (at cm-level) combination of physical and geometric heights worldwide, (2) allows the unification of all existing local height datums, and (3) guarantees vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time). Under this umbrella, the present contribution concentrates on the definition and realization of a conventional global vertical reference system; the standardization of the geodetic data referring to the existing height systems; and the formulation of appropriate strategies for the precise transformation of the local height datums into the global vertical reference system. The proposed vertical reference system is based on two components: a geometric component consisting of ellipsoidal heights as coordinates and a level ellipsoid as the reference surface, and a physical component comprising geopotential numbers as coordinates and an equipotential surface defined by a conventional W0 value as the reference surface. The definition of the physical component is based on potential parameters in order to provide reference to any type of physical heights (normal, orthometric, etc.). The conversion of geopotential numbers into metric heights and the modelling of the reference surface (geoid or quasigeoid determination) are considered as steps of the realization. The vertical datum unification strategy is based on (1) the physical connection of height datums to determine their discrepancies, (2) joint analysis of satellite altimetry and tide gauge records to determine time variations of sea level at reference tide gauges, (3) combination of geometrical and physical heights in a well-distributed and high-precise reference frame to estimate the relationship between the individual vertical levels and the global one, and (4) analysis of GNSS time series at reference tide gauges to separate crustal movements from sea level changes. The final vertical transformation parameters are provided by the common adjustment of the observation equations derived from these methods.
On the physical parameters for Centaurus X-3 and Hercules X-1.
NASA Technical Reports Server (NTRS)
Mccluskey, G. E., Jr.; Kondo, Y.
1972-01-01
It is shown how upper and lower limits on the physical parameters of X-ray sources in Centaurus X-3 and Hercules X-1 may be determined from a reasonably simple and straightforward consideration. The basic assumption is that component A (the non-X-ray emitting component) is not a star collapsing toward its Schwartzschild radius (i.e., a black hole). This assumption appears reasonable since component A (the radius of the central occulting star) appears to physically occult component X. If component A is a 'normal' star, both observation and theory indicate that its mass is not greater than about 60 solar masses. The possibility in which component X is either a neutron star or a white dwarf is considered.
Ramírez-Vélez, Robinson; Rodrigues-Bezerra, Diogo; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Lobelo, Felipe
2015-01-01
Substantial evidence indicates that youth physical fitness levels are an important marker of lifestyle and cardio-metabolic health profiles and predict future risk of chronic diseases. The reliability physical fitness tests have not been explored in Latino-American youth population. This study’s aim was to examine the reliability of health-related physical fitness tests that were used in the Colombian health promotion “Fuprecol study”. Participants were 229 Colombian youth (boys n = 124 and girls n = 105) aged 9 to 17.9 years old. Five components of health-related physical fitness were measured: 1) morphological component: height, weight, body mass index (BMI), waist circumference, triceps skinfold, subscapular skinfold, and body fat (%) via impedance; 2) musculoskeletal component: handgrip and standing long jump test; 3) motor component: speed/agility test (4x10 m shuttle run); 4) flexibility component (hamstring and lumbar extensibility, sit-and-reach test); 5) cardiorespiratory component: 20-meter shuttle-run test (SRT) to estimate maximal oxygen consumption. The tests were performed two times, 1 week apart on the same day of the week, except for the SRT which was performed only once. Intra-observer technical errors of measurement (TEMs) and inter-rater (reliability) were assessed in the morphological component. Reliability for the Musculoskeletal, motor and cardiorespiratory fitness components was examined using Bland–Altman tests. For the morphological component, TEMs were small and reliability was greater than 95% of all cases. For the musculoskeletal, motor, flexibility and cardiorespiratory components, we found adequate reliability patterns in terms of systematic errors (bias) and random error (95% limits of agreement). When the fitness assessments were performed twice, the systematic error was nearly 0 for all tests, except for the sit and reach (mean difference: -1.03% [95% CI = -4.35% to -2.28%]. The results from this study indicate that the “Fuprecol study” health-related physical fitness battery, administered by physical education teachers, was reliable for measuring health-related components of fitness in children and adolescents aged 9–17.9 years old in a school setting in Colombia. PMID:26474474
Ramírez-Vélez, Robinson; Rodrigues-Bezerra, Diogo; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Lobelo, Felipe
2015-01-01
Substantial evidence indicates that youth physical fitness levels are an important marker of lifestyle and cardio-metabolic health profiles and predict future risk of chronic diseases. The reliability physical fitness tests have not been explored in Latino-American youth population. This study's aim was to examine the reliability of health-related physical fitness tests that were used in the Colombian health promotion "Fuprecol study". Participants were 229 Colombian youth (boys n = 124 and girls n = 105) aged 9 to 17.9 years old. Five components of health-related physical fitness were measured: 1) morphological component: height, weight, body mass index (BMI), waist circumference, triceps skinfold, subscapular skinfold, and body fat (%) via impedance; 2) musculoskeletal component: handgrip and standing long jump test; 3) motor component: speed/agility test (4x10 m shuttle run); 4) flexibility component (hamstring and lumbar extensibility, sit-and-reach test); 5) cardiorespiratory component: 20-meter shuttle-run test (SRT) to estimate maximal oxygen consumption. The tests were performed two times, 1 week apart on the same day of the week, except for the SRT which was performed only once. Intra-observer technical errors of measurement (TEMs) and inter-rater (reliability) were assessed in the morphological component. Reliability for the Musculoskeletal, motor and cardiorespiratory fitness components was examined using Bland-Altman tests. For the morphological component, TEMs were small and reliability was greater than 95% of all cases. For the musculoskeletal, motor, flexibility and cardiorespiratory components, we found adequate reliability patterns in terms of systematic errors (bias) and random error (95% limits of agreement). When the fitness assessments were performed twice, the systematic error was nearly 0 for all tests, except for the sit and reach (mean difference: -1.03% [95% CI = -4.35% to -2.28%]. The results from this study indicate that the "Fuprecol study" health-related physical fitness battery, administered by physical education teachers, was reliable for measuring health-related components of fitness in children and adolescents aged 9-17.9 years old in a school setting in Colombia.
An integrated database with system optimization and design features
NASA Technical Reports Server (NTRS)
Arabyan, A.; Nikravesh, P. E.; Vincent, T. L.
1992-01-01
A customized, mission-specific relational database package was developed to allow researchers working on the Mars oxygen manufacturing plant to enter physical description, engineering, and connectivity data through a uniform, graphical interface and to store the data in formats compatible with other software also developed as part of the project. These latter components include an optimization program to maximize or minimize various criteria as the system evolves into its final design; programs to simulate the behavior of various parts of the plant in Martian conditions; an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; and a control program to investigate the stability and response of the system under different disturbance conditions. All components of the system are interconnected so that changes entered through one component are reflected in the others.
NASA Astrophysics Data System (ADS)
Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.
2016-09-01
The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.
ERIC Educational Resources Information Center
Ward, Phillip
2016-01-01
If teaching physical education is a moral activity, it follows that there is a moral component to the preparation of teachers of physical education and thus a moral component to the preparation of teacher educators. In this article, I examine the major policies, agendas, and practices that influence doctoral preparation in physical education…
Müller-Schwefe, Gerhard; Morlion, Bart; Ahlbeck, Karsten; Alon, Eli; Coaccioli, Stefano; Coluzzi, Flaminia; Huygen, Frank; Jaksch, Wolfgang; Kalso, Eija; Kocot-Kępska, Magdalena; Kress, Hans-Georg; Mangas, Ana Cristina; Margarit Ferri, Cesar; Mavrocordatos, Philippe; Nicolaou, Andrew; Hernández, Concepción Pérez; Pergolizzi, Joseph; Schäfer, Michael; Sichère, Patrick
2017-07-01
Chronic low back pain: Chronic pain is the most common cause for people to utilize healthcare resources and has a considerable impact upon patients' lives. The most prevalent chronic pain condition is chronic low back pain (CLBP). CLBP may be nociceptive or neuropathic, or may incorporate both components. The presence of a neuropathic component is associated with more intense pain of longer duration, and a higher prevalence of co-morbidities. However, many physicians' knowledge of chronic pain mechanisms is currently limited and there are no universally accepted treatment guidelines, so the condition is not particularly well managed. Diagnosis should begin with a focused medical history and physical examination, to exclude serious spinal pathology that may require evaluation by an appropriate specialist. Most patients have non-specific CLBP, which cannot be attributed to a particular cause. It is important to try and establish whether a neuropathic component is present, by combining the findings of physical and neurological examinations with the patient's history. This may prove difficult, however, even when using screening instruments. Multimodal management: The multifactorial nature of CLBP indicates that the most logical treatment approach is multimodal: i.e. integrated multidisciplinary therapy with co-ordinated somatic and psychotherapeutic elements. As both nociceptive and neuropathic components may be present, combining analgesic agents with different mechanisms of action is a rational treatment modality. Individually tailored combination therapy can improve analgesia whilst reducing the doses of constituent agents, thereby lessening the incidence of side effects. This paper outlines the development of CLBP and the underlying mechanisms involved, as well as providing information on diagnosis and the use of a wide range of pharmaceutical agents in managing the condition (including NSAIDs, COX-2 inhibitors, tricyclic antidepressants, opioids and anticonvulsants), supplemented by appropriate non-pharmacological measures such as exercise programs, manual therapies, behavioral therapies, interventional pain management and traction. Surgery may be appropriate in carefully selected patients.
Heritability of physical activity traits in Brazilian families: the Baependi Heart Study
2011-01-01
Background It is commonly recognized that physical activity has familial aggregation; however, the genetic influences on physical activity phenotypes are not well characterized. This study aimed to (1) estimate the heritability of physical activity traits in Brazilian families; and (2) investigate whether genetic and environmental variance components contribute differently to the expression of these phenotypes in males and females. Methods The sample that constitutes the Baependi Heart Study is comprised of 1,693 individuals in 95 Brazilian families. The phenotypes were self-reported in a questionnaire based on the WHO-MONICA instrument. Variance component approaches, implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package, were applied to estimate the heritability and to evaluate the heterogeneity of variance components by gender on the studied phenotypes. Results The heritability estimates were intermediate (35%) for weekly physical activity among non-sedentary subjects (weekly PA_NS), and low (9-14%) for sedentarism, weekly physical activity (weekly PA), and level of daily physical activity (daily PA). Significant evidence for heterogeneity in variance components by gender was observed for the sedentarism and weekly PA phenotypes. No significant gender differences in genetic or environmental variance components were observed for the weekly PA_NS trait. The daily PA phenotype was predominantly influenced by environmental factors, with larger effects in males than in females. Conclusions Heritability estimates for physical activity phenotypes in this sample of the Brazilian population were significant in both males and females, and varied from low to intermediate magnitude. Significant evidence for heterogeneity in variance components by gender was observed. These data add to the knowledge of the physical activity traits in the Brazilian study population, and are concordant with the notion of significant biological determination in active behavior. PMID:22126647
Heritability of physical activity traits in Brazilian families: the Baependi Heart Study.
Horimoto, Andréa R V R; Giolo, Suely R; Oliveira, Camila M; Alvim, Rafael O; Soler, Júlia P; de Andrade, Mariza; Krieger, José E; Pereira, Alexandre C
2011-11-29
It is commonly recognized that physical activity has familial aggregation; however, the genetic influences on physical activity phenotypes are not well characterized. This study aimed to (1) estimate the heritability of physical activity traits in Brazilian families; and (2) investigate whether genetic and environmental variance components contribute differently to the expression of these phenotypes in males and females. The sample that constitutes the Baependi Heart Study is comprised of 1,693 individuals in 95 Brazilian families. The phenotypes were self-reported in a questionnaire based on the WHO-MONICA instrument. Variance component approaches, implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package, were applied to estimate the heritability and to evaluate the heterogeneity of variance components by gender on the studied phenotypes. The heritability estimates were intermediate (35%) for weekly physical activity among non-sedentary subjects (weekly PA_NS), and low (9-14%) for sedentarism, weekly physical activity (weekly PA), and level of daily physical activity (daily PA). Significant evidence for heterogeneity in variance components by gender was observed for the sedentarism and weekly PA phenotypes. No significant gender differences in genetic or environmental variance components were observed for the weekly PA_NS trait. The daily PA phenotype was predominantly influenced by environmental factors, with larger effects in males than in females. Heritability estimates for physical activity phenotypes in this sample of the Brazilian population were significant in both males and females, and varied from low to intermediate magnitude. Significant evidence for heterogeneity in variance components by gender was observed. These data add to the knowledge of the physical activity traits in the Brazilian study population, and are concordant with the notion of significant biological determination in active behavior.
Chrono: A Parallel Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics
2013-08-01
big data. Chrono::Render is capable of using 320 cores and is built around Pixar’s RenderMan. All these components combine to produce Chrono, a multi...rather small collection of rigid and/or deformable bodies of complex geometry (hourglass wall, wheel, track shoe, excava- tor blade, dipper ), and a...motivated by the scope of arbitrary data sets and the potentially immense scene complexity that results from big data; REYES, the underlying architecture
Nuclear physics: quantitative single-cell approaches to nuclear organization and gene expression.
Lionnet, T; Wu, B; Grünwald, D; Singer, R H; Larson, D R
2010-01-01
The internal workings of the nucleus remain a mystery. A list of component parts exists, and in many cases their functional roles are known for events such as transcription, RNA processing, or nuclear export. Some of these components exhibit structural features in the nucleus, regions of concentration or bodies that have given rise to the concept of functional compartmentalization--that there are underlying organizational principles to be described. In contrast, a picture is emerging in which transcription appears to drive the assembly of the functional components required for gene expression, drawing from pools of excess factors. Unifying this seemingly dual nature requires a more rigorous approach, one in which components are tracked in time and space and correlated with onset of specific nuclear functions. In this chapter, we anticipate tools that will address these questions and provide the missing kinetics of nuclear function. These tools are based on analyzing the fluctuations inherent in the weak signals of endogenous nuclear processes and determining values for them. In this way, it will be possible eventually to provide a computational model describing the functional relationships of essential components.
Role of the Z band in the mechanical properties of the heart.
Goldstein, M A; Schroeter, J P; Michael, L H
1991-05-01
In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.
Status and Plans for the TRANSP Interpretive and Predictive Simulation Code
NASA Astrophysics Data System (ADS)
Kaye, Stanley; Andre, Robert; Marina, Gorelenkova; Yuan, Xingqui; Hawryluk, Richard; Jardin, Steven; Poli, Francesca
2015-11-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT_SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP also incorporates such source models as NUBEAM for neutral beam injection, GENRAY, TORAY, TORBEAM, TORIC and CQL3D for ICRH, LHCD, ECH and HHFW. The implementation of selected components makes efficient use of MPI for speed up of code calculations. TRANSP has a wide international user-base, and it is run on the FusionGrid to allow for timely support and quick turnaround by the PPPL Computational Plasma Physics Group. It is being used as a basis for both analysis and development of control algorithms and discharge operational scenarios, including simulation of ITER plasmas. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Progress on implementing TRANSP as a component in the ITER IMAS will also be described. This research was supported by the U.S. Department of Energy under contracts DE-AC02-09CH11466.
Identifying Items to Assess Methodological Quality in Physical Therapy Trials: A Factor Analysis
Cummings, Greta G.; Fuentes, Jorge; Saltaji, Humam; Ha, Christine; Chisholm, Annabritt; Pasichnyk, Dion; Rogers, Todd
2014-01-01
Background Numerous tools and individual items have been proposed to assess the methodological quality of randomized controlled trials (RCTs). The frequency of use of these items varies according to health area, which suggests a lack of agreement regarding their relevance to trial quality or risk of bias. Objective The objectives of this study were: (1) to identify the underlying component structure of items and (2) to determine relevant items to evaluate the quality and risk of bias of trials in physical therapy by using an exploratory factor analysis (EFA). Design A methodological research design was used, and an EFA was performed. Methods Randomized controlled trials used for this study were randomly selected from searches of the Cochrane Database of Systematic Reviews. Two reviewers used 45 items gathered from 7 different quality tools to assess the methodological quality of the RCTs. An exploratory factor analysis was conducted using the principal axis factoring (PAF) method followed by varimax rotation. Results Principal axis factoring identified 34 items loaded on 9 common factors: (1) selection bias; (2) performance and detection bias; (3) eligibility, intervention details, and description of outcome measures; (4) psychometric properties of the main outcome; (5) contamination and adherence to treatment; (6) attrition bias; (7) data analysis; (8) sample size; and (9) control and placebo adequacy. Limitation Because of the exploratory nature of the results, a confirmatory factor analysis is needed to validate this model. Conclusions To the authors' knowledge, this is the first factor analysis to explore the underlying component items used to evaluate the methodological quality or risk of bias of RCTs in physical therapy. The items and factors represent a starting point for evaluating the methodological quality and risk of bias in physical therapy trials. Empirical evidence of the association among these items with treatment effects and a confirmatory factor analysis of these results are needed to validate these items. PMID:24786942
Mutation Testing for Effective Verification of Digital Components of Physical Systems
NASA Astrophysics Data System (ADS)
Kushik, N. G.; Evtushenko, N. V.; Torgaev, S. N.
2015-12-01
Digital components of modern physical systems are often designed applying circuitry solutions based on the field programmable gate array technology (FPGA). Such (embedded) digital components should be carefully tested. In this paper, an approach for the verification of digital physical system components based on mutation testing is proposed. The reference description of the behavior of a digital component in the hardware description language (HDL) is mutated by introducing into it the most probable errors and, unlike mutants in high-level programming languages, the corresponding test case is effectively derived based on a comparison of special scalable representations of the specification and the constructed mutant using various logic synthesis and verification systems.
Dulloo, A G; Miles-Chan, J L; Montani, J-P; Schutz, Y
2017-02-01
Isometric thermogenesis as applied to human energy expenditure refers to heat production resulting from increased muscle tension. While most physical activities consist of both dynamic and static (isometric) muscle actions, the isometric component is very often essential for the optimal performance of dynamic work given its role in coordinating posture during standing, walking and most physical activities of everyday life. Over the past 75 years, there has been sporadic interest into the relevance of isometric work to thermoregulatory thermogenesis and to adaptive thermogenesis pertaining to body-weight regulation. This has been in relation to (i) a role for skeletal muscle minor tremor or microvibration - nowadays referred to as 'resting muscle mechanical activity' - in maintaining body temperature in response to mild cooling; (ii) a role for slowed skeletal muscle isometric contraction-relaxation cycle as a mechanism for energy conservation in response to caloric restriction and weight loss and (iii) a role for spontaneous physical activity (which is contributed importantly by isometric work for posture maintenance and fidgeting behaviours) in adaptive thermogenesis pertaining to weight regulation. This paper reviews the evidence underlying these proposed roles for isometric work in adaptive thermogenesis and highlights the contention that variability in this neglected component of energy expenditure could contribute to human predisposition to obesity. © 2017 World Obesity Federation.
A Natural Component-Based Oxygen Indicator with In-Pack Activation for Intelligent Food Packaging.
Won, Keehoon; Jang, Nan Young; Jeon, Junsu
2016-12-28
Intelligent food packaging can provide consumers with reliable and correct information on the quality and safety of packaged foods. One of the key constituents in intelligent packaging is a colorimetric oxygen indicator, which is widely used to detect oxygen gas involved in food spoilage by means of a color change. Traditional oxygen indicators consisting of redox dyes and strong reducing agents have two major problems: they must be manufactured and stored under anaerobic conditions because air depletes the reductant, and their components are synthetic and toxic. To address both of these serious problems, we have developed a natural component-based oxygen indicator characterized by in-pack activation. The conventional oxygen indicator composed of synthetic and artificial components was redesigned using naturally occurring compounds (laccase, guaiacol, and cysteine). These natural components were physically separated into two compartments by a fragile barrier. Only when the barrier was broken were all of the components mixed and the function as an oxygen indicator was begun (i.e., in-pack activation). Depending on the component concentrations, the natural component-based oxygen indicator exhibited different response times and color differences. The rate of the color change was proportional to the oxygen concentration. This novel colorimetric oxygen indicator will contribute greatly to intelligent packaging for healthier and safer foods.
Simulation Enabled Safeguards Assessment Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Bean; Trond Bjornard; Thomas Larson
2007-09-01
It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements inmore » functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.« less
Zonda is a novel early component of the autophagy pathway in Drosophila
Melani, Mariana; Valko, Ayelén; Romero, Nuria M.; Aguilera, Milton O.; Acevedo, Julieta M.; Bhujabal, Zambarlal; Perez-Perri, Joel; de la Riva-Carrasco, Rocío V.; Katz, Maximiliano J.; Sorianello, Eleonora; D’Alessio, Cecilia; Juhász, Gabor; Johansen, Terje; Colombo, María I.; Wappner, Pablo
2017-01-01
Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum–associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation. PMID:28904211
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
21 CFR 890.5350 - Exercise component.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Exercise component. 890.5350 Section 890.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5350 Exercise component. (a...
NASA Astrophysics Data System (ADS)
Solarz, R. W.
1985-02-01
Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.
ERIC Educational Resources Information Center
Bawden, David; Robinson, Lyn
2013-01-01
Introduction: Rolf Landauer declared in 1991 that "information is physical". Since then, information has come to be seen by many physicists as a fundamental component of the physical world; indeed by some as the physical component. This idea is now gaining currency in popular science communication. However, it is often far from clear…
Physical and Mental Health of Mothers Caring for a Child with Rett Syndrome
ERIC Educational Resources Information Center
Laurvick, Crystal L.; Msall, Michael E.; Silburn, Sven; Bower, Carol; de Klerk, Nicholas; Leonard, Helen
2007-01-01
Objectives: Our goal was to investigate the physical and mental health of mothers who care for a child with Rett syndrome. Methods: We assessed maternal physical and mental health by using the SF-12 version 1 physical component summary and mental component summary scores as the outcome measures of interest. Mothers (n = 135) of children with Rett…
Emotional Component in Teaching and Learning
NASA Astrophysics Data System (ADS)
Ponnambalam, Michael
2018-02-01
The laws of physics are often seen as objective truth, pure and simple. Hence, they tend to appear cerebral and cold. However, their presentation is necessarily subjective and may vary from being boring to being exciting. A detailed analysis of physics education reform efforts over the last three decades finds that interactive instruction results in greater learning gains than the traditional lecture format. In interactive engagement, the emotional component plays a far greater role than acknowledged by many. As an experienced physics teacher [(i) Four decades of teaching and research in four continents (teaching all courses to undergraduate physics majors and algebra-based physics to high school seniors as well as college freshmen), (ii) 11 years of volunteer work in Physics Popularization in six countries to many thousands of students in elementary, middle, and high schools as well as colleges and universities, and (iii) eight years as a Master Teacher and mentor], I feel that the emotional component in teaching and learning physics has been neglected. This paper presents the role of the emotional component in transforming ordinary teaching and learning of physics into an enjoyable and exciting experience for students as well as teachers.
Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions
Damiani, Rick R.; Dana, Scott; Annoni, Jennifer; ...
2018-04-13
Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less
Assessment of Wind Turbine Component Loads Under Yaw-Offset Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, Rick R.; Dana, Scott; Annoni, Jennifer
Renewed interest in yaw control for wind turbine and power plants for wake redirection and load mitigation demands a clear understanding of the effects of running with skewed inflow. In this paper, we investigate the physics of yawed operations, building up the complexity from a simplified analytical treatment to more complex aeroelastic simulations. Results in terms of damage equivalent loads (DELs) and extreme loads under operating, misaligned conditions are compared to data collected from an instrumented, utility-scale wind turbine. The analysis shows that multiple factors are responsible for the DELs of the various components, and that airfoil aerodynamics, elastic characteristicsmore » of the rotor, and turbulence intensities are the primary drivers. Both fatigue and extreme loads are observed to have relatively complex trends with yaw offsets, which can change depending on the wind-speed regime. As a result, good agreement is found between predicted and measured trends for both fatigue and ultimate loads.« less
Das, Siddhartha; Chakraborty, Suman
2011-08-01
In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.
Progress towards computer simulation of NiH2 battery performance over life
NASA Technical Reports Server (NTRS)
Zimmerman, Albert H.; Quinzio, M. V.
1995-01-01
The long-term performance of rechargeable battery cells has traditionally been verified through life-testing, a procedure that generally requires significant commitments of funding and test resources. In the situation of nickel hydrogen battery cells, which have the capability of providing extremely long cycle life, the time and cost required to conduct even accelerated testing has become a serious impediment to transitioning technology improvements into spacecraft applications. The utilization of computer simulations to indicate the changes in performance to be expected in response to design or operating changes in nickel hydrogen cells is therefore a particularly attractive tool in advanced battery development, as well as for verifying performance in different applications. Computer-based simulations of the long-term performance of rechargeable battery cells have typically had very limited success in the past. There are a number of reasons for the lack in progress in this area. First, and probably most important, all battery cells are relatively complex electrochemical systems, in which performance is dictated by a large number of interacting physical and chemical processes. While the complexity alone is a significant part of the problem, in many instances the fundamental chemical and physical processes underlying long-term degradation and its effects on performance have not even been understood. Second, while specific chemical and physical changes within cell components have been associated with degradation, there has been no generalized simulation architecture that enables the chemical and physical structure (and changes therein) to be translated into cell performance. For the nickel hydrogen battery cell, our knowledge of the underlying reactions that control the performance of this cell has progressed to where it clearly is possible to model them. The recent development of a relative generalized cell modelling approach provides the framework for translating the chemical and physical structure of the components inside a cell into its performance characteristics over its entire cycle life. This report describes our approach to this task in terms of defining those processes deemed critical in controlling performance over life, and the model architecture required to translate the fundamental cell processes into performance profiles.
An extensible circuit QED architecture for quantum computation
NASA Astrophysics Data System (ADS)
Dicarlo, Leo
Realizing a logical qubit robust to single errors in its constituent physical elements is an immediate challenge for quantum information processing platforms. A longer-term challenge will be achieving quantum fault tolerance, i.e., improving logical qubit resilience by increasing redundancy in the underlying quantum error correction code (QEC). In QuTech, we target these challenges in collaboration with industrial and academic partners. I will present the circuit QED quantum hardware, room-temperature control electronics, and software components of the complete architecture. I will show the extensibility of each component to the Surface-17 and -49 circuits needed to reach the objectives with surface-code QEC, and provide an overview of latest developments. Research funded by IARPA and Intel Corporation.
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1990-01-01
Strong artificial intelligence claims that conscious thought can arise in computers containing the right algorithms even though none of the programs or components of those computers understand which is going on. As proof, it asserts that brains are finite webs of neurons, each with a definite function governed by the laws of physics; this web has a set of equations that can be solved (or simulated) by a sufficiently powerful computer. Strong AI claims the Turing test as a criterion of success. A recent debate in Scientific American concludes that the Turing test is not sufficient, but leaves intact the underlying premise that thought is a computable process. The recent book by Roger Penrose, however, offers a sharp challenge, arguing that the laws of quantum physics may govern mental processes and that these laws may not be computable. In every area of mathematics and physics, Penrose finds evidence of nonalgorithmic human activity and concludes that mental processes are inherently more powerful than computational processes.
Learning by doing at the Colorado School of Mines
NASA Astrophysics Data System (ADS)
Furtak, Thomas E.; Ruskell, Todd G.
2013-03-01
With over 260 majors, the undergraduate physics program at CSM is among the largest in the country. An underlying theme in this success is experiential learning, starting with a studio teaching method in the introductory calculus-based physics courses. After their second year students complete a 6-week full-time summer course devoted to hands-on practical knowledge and skills, including machine shop techniques, high-vacuum technology, applied optics, electronic control systems, and computational tools. This precedes a two-semester laboratory sequence that can be taught at an advanced level because of the students' experience. The required capstone senior course is a year-long open-ended challenge in which students partner with members of the faculty to work on authentic research projects, teaming with grad students or post-docs as contributing members to the department's externally funded scholarship. All of these features are important components of our B.S. degree, Engineering Physics, which is officially accredited by ABET.
NASA Astrophysics Data System (ADS)
Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac
2016-10-01
Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.
Wellness Assessment: A Rationale, A Measure, and Physical/Psychological Components.
ERIC Educational Resources Information Center
Shuffield, Gilda; Dana, Richard H.
Wellness, or holistic health, represents a positive attitude toward the integration of physical and psychological aspects of lifestyle. There have been few attempts to assess wellness that contain more than questionnaire items across several component areas. This paper describes a test battery that includes physical (nutrition, cardiorespiratory…
Marrale, M; Collura, G; Brai, M; Toschi, N; Midiri, F; La Tona, G; Lo Casto, A; Gagliardo, C
2016-12-01
In recent years many papers about diagnostic applications of diffusion tensor imaging (DTI) have been published. This is because DTI allows to evaluate in vivo and in a non-invasive way the process of diffusion of water molecules in biological tissues. However, the simplified description of the diffusion process assumed in DTI does not permit to completely map the complex underlying cellular components and structures, which hinder and restrict the diffusion of water molecules. These limitations can be partially overcome by means of diffusion kurtosis imaging (DKI). The aim of this paper is the description of the theory of DKI, a new topic of growing interest in radiology. DKI is a higher order diffusion model that is a straightforward extension of the DTI model. Here, we analyze the physics underlying this method, we report our MRI acquisition protocol with the preprocessing pipeline used and the DKI parametric maps obtained on a 1.5 T scanner, and we review the most relevant clinical applications of this technique in various neurological diseases.
Changes of wood cell walls in response to hygro-mechanical steam treatment.
Guo, Juan; Song, Kunlin; Salmén, Lennart; Yin, Yafang
2015-01-22
The effects of compression combined with steam treatment (CS-treatment), i.e. a hygro-mechanical steam treatment on Spruce wood were studied on a cell-structure level to understand the chemical and physical changes of the secondary cell wall occurring under such conditions. Specially, imaging FT-IR microscopy, nanoindentation and dynamic vapour absorption were used to track changes in the chemical structure, in micromechanical and hygroscopic properties. It was shown that CS-treatment resulted in different changes in morphological, chemical and physical properties of the cell wall, in comparison with those under pure steam treatment. After CS-treatment, the cellular structure displayed significant deformations, and the biopolymer components, e.g. hemicellulose and lignin, were degraded, resulting in decreased hygroscopicity and increased mechanical properties of the wood compared to both untreated and steam treated wood. Moreover, CS-treatment resulted in a higher degree of degradation especially in earlywood compared to a more uniform behaviour of wood treated only by steam. Copyright © 2014 Elsevier Ltd. All rights reserved.
Semiconductor devices for entangled photon pair generation: a review
NASA Astrophysics Data System (ADS)
Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara
2017-07-01
Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.
Failure of local thermal equilibrium in quantum friction
Intravaia, Francesco; Behunin, Ryan; Henkel, Carsten; ...
2016-09-01
Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. Whilemore » this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Here, our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.« less
Physics of neutral gas jet interaction with magnetized plasmas
NASA Astrophysics Data System (ADS)
Wang, Zhanhui; Xu, Xueqiao; Diamond, Patrick; Xu, Min; Duan, Xuru; Yu, Deliang; Zhou, Yulin; Shi, Yongfu; Nie, Lin; Ke, Rui; Zhong, Wulv; Shi, Zhongbing; Sun, Aiping; Li, Jiquan; Yao, Lianghua
2017-10-01
It is critical to understand the physics and transport dynamics during the plasma fuelling process. Plasma and neutral interactions involve the transfer of charge, momentum, and energy in ion-neutral and electron-neutral collisions. Thus, a seven field fluid model of neutral gas jet injection (NGJI) is obtained, which couples plasma density, heat, and momentum transport equations together with neutrals density and momentum transport equations of both molecules and atoms. Transport dynamics of plasma and neutrals are simulated for a complete range of discharge times, including steady state before NGJI, transport during NGJI, and relaxation after NGJI. With the trans-neut module of BOUT + + code, the simulations of mean profile variations and fueling depths during fueling have been benchmarked well with other codes and also validated with HL-2A experiment results. Both fast component (FC) and slow component (SC) of NGJI are simulated and validated with the HL-2A experimental measurements. The plasma blocking effect on the FC penetration is also simulated and validated well with the experiment. This work is supported by the National Natural Science Foundation of China under Grant No. 11575055.
A National Solar Digital Observatory
NASA Astrophysics Data System (ADS)
Hill, F.
2000-05-01
The continuing development of the Internet as a research tool, combined with an improving funding climate, has sparked new interest in the development of Internet-linked astronomical data bases and analysis tools. Here I outline a concept for a National Solar Digital Observatory (NSDO), a set of data archives and analysis tools distributed in physical location at sites which already host such systems. A central web site would be implemented from which a user could search all of the component archives, select and download data, and perform analyses. Example components include NSO's Digital Library containing its synoptic and GONG data, and the forthcoming SOLIS archive. Several other archives, in various stages of development, also exist. Potential analysis tools include content-based searches, visualized programming tools, and graphics routines. The existence of an NSDO would greatly facilitate solar physics research, as a user would no longer need to have detailed knowledge of all solar archive sites. It would also improve public outreach efforts. The National Solar Observatory is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation.
Zhang, Wei-Hong; Xue, Peng; Yao, Meng-Ying; Chang, Hai-Min; Wu, Yan; Zhang, Lei
2013-01-01
The present study aimed to estimate the up-to-date prevalence of metabolic syndrome and its relationship with physical activity among suburban adults in Beijing, China. A cross-sectional survey in a representative sample of 19,003 suburban adults aged 18-76 years was carried out in 2007-2008. Data was collected via questionnaires and blood pressure, anthropometric, and laboratory measurements. Of the residents aged 18-76 years in suburban Beijing, 25.9% (27.3% in men and 25.1% in women), 21.3% (19.4% in men and 22.9% in women), and 25.3% (24.2% in men and 26.1% in women) had 1 component, 2 components, and 3 or more components of metabolic syndrome, respectively. The age-standardized prevalence of metabolic syndrome and its components, including abdominal obesity, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting plasma glucose, decreased across categories with increasing physical activity. After adjusting for age, sex, education level, smoking, and alcohol consumption, residents were more likely to have metabolic syndrome across categories with decreasing physical activity; a similar relationship also applied to components of metabolic syndrome. A high prevalence of metabolic syndrome and its components is commonly present in suburban Beijing. Increasing physical activity can reduce the relative risk of metabolic syndrome and it components.
Xiao, Jing; Shen, Chong; Chu, Min J; Gao, Yue X; Xu, Guang F; Huang, Jian P; Xu, Qiong Q; Cai, Hui
2016-01-01
Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15-40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15-30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also, recommendations are developed to reduce prevalence of metabolic syndrome and its components in rural Chinese populations.
Visual Basic Applications to Physics Teaching
ERIC Educational Resources Information Center
Chitu, Catalin; Inpuscatu, Razvan Constantin; Viziru, Marilena
2011-01-01
Derived from basic language, VB (Visual Basic) is a programming language focused on the video interface component. With graphics and functional components implemented, the programmer is able to bring and use their components to achieve the desired application in a relatively short time. Language VB is a useful tool in physics teaching by creating…
Using Theory to Support Classroom Teachers as Physical Activity Promoters
ERIC Educational Resources Information Center
Egan, Catherine A.; Webster, Collin A.
2018-01-01
Recently, there has been growing attention on the importance of the staff involvement component of a comprehensive school physical activity program (CSPAP). In particular, classroom teachers (CTs) are increasingly being called upon to promote physical activity (PA) in their classrooms as part of the PA during school component of a CSPAP.…
NASA Astrophysics Data System (ADS)
Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele
2017-08-01
Effective policies, leading to sustainable management solutions for land and water resources, require a full understanding of interactions between socio-economic and physical processes. However, the complex nature of these interactions, combined with limited stakeholder engagement, hinders the incorporation of socio-economic components into physical models. The present study addresses this challenge by integrating the physical Spatial Agro Hydro Salinity Model (SAHYSMOD) with a participatory group-built system dynamics model (GBSDM) that includes socio-economic factors. A stepwise process to quantify the GBSDM is presented, along with governing equations and model assumptions. Sub-modules of the GBSDM, describing agricultural, economic, water and farm management factors, are linked together with feedbacks and finally coupled with the physically based SAHYSMOD model through commonly used tools (i.e., MS Excel and a Python script). The overall integrated model (GBSDM-SAHYSMOD) can be used to help facilitate the role of stakeholders with limited expertise and resources in model and policy development and implementation. Following the development of the integrated model, a testing methodology was used to validate the structure and behavior of the integrated model. Model robustness under different operating conditions was also assessed. The model structure was able to produce anticipated real behaviours under the tested scenarios, from which it can be concluded that the formulated structures generate the right behaviour for the right reasons.
Self-esteem, social participation, and quality of life in patients with multiple sclerosis.
Mikula, Pavol; Nagyova, Iveta; Krokavcova, Martina; Vitkova, Marianna; Rosenberger, Jaroslav; Szilasiova, Jarmila; Gdovinova, Zuzana; Stewart, Roy E; Groothoff, Johan W; van Dijk, Jitse P
2017-07-01
The aim of this study is to explore whether self-esteem and social participation are associated with the physical and mental quality of life (Physical Component Summary, Mental Component Summary) and whether self-esteem can mediate the association between these variables. We collected information from 118 consecutive multiple sclerosis patients. Age, gender, disease duration, disability status, and participation were significant predictors of Physical Component Summary, explaining 55.4 percent of the total variance. Self-esteem fully mediated the association between social participation and Mental Component Summary (estimate/standard error = -4.872; p < 0.001) and along with disability status explained 48.3 percent of the variance in Mental Component Summary. These results can be used in intervention and educational programs.
Peeters, Maarten W; Van Aken, Katrijn; Claessens, Albrecht L
2013-01-01
The second to fourth-digit-ratio (2D:4D), a putative marker of prenatal androgen action and a sexually dimorphic trait, has been suggested to be related with fitness and sports performance, although results are not univocal. Most studies however focus on a single aspect of physical fitness or one sports discipline. In this study the 2D:4D ratio of 178 adolescent girls (age 13.5-18 y) was measured on X-rays of the left hand. The relation between 2D:4D digit ratio and multiple aspects of physical fitness (balance, speed of limb movement, flexibility, explosive strength, static strength, trunk strength, functional strength, running speed/agility, and endurance) was studied by correlation analyses and stepwise multiple regression. For comparison the relation between these physical fitness components and a selected number of objectively measured anthropometric traits (stature, mass, BMI, somatotype components and the Bayer & Bailey androgyny index) are presented alongside the results of 2D:4D digit ratio. Left hand 2D:4D digit ratio (0.925±0.019) was not significantly correlated with any of the physical fitness components nor any of the anthropometric variables included in the present study. 2D:4D did not enter the multiple stepwise regression for any of the physical fitness components in which other anthropometric traits explained between 9.2% (flexibility) and 33.9% (static strength) of variance. Unlike other anthropometric traits the 2D:4D digit ratio does not seem to be related to any physical fitness component in adolescent girls and therefore most likely should not be considered in talent detection programs for sporting ability in girls.
Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines
NASA Technical Reports Server (NTRS)
Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.
2014-01-01
Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.
Modeling and Prediction of Krueger Device Noise
NASA Technical Reports Server (NTRS)
Guo, Yueping; Burley, Casey L.; Thomas, Russell H.
2016-01-01
This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.
A principal components model of soundscape perception.
Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta
2010-11-01
There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.
Luce, Robert; Hildebrandt, Peter; Kuhlmann, Uwe; Liesen, Jörg
2016-09-01
The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed. © The Author(s) 2016.
Improving Turbine Performance with Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.
2007-01-01
Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.
Quantitative simulation of extraterrestrial engineering devices
NASA Technical Reports Server (NTRS)
Arabyan, A.; Nikravesh, P. E.; Vincent, T. L.
1991-01-01
This is a multicomponent, multidisciplinary project whose overall objective is to build an integrated database, simulation, visualization, and optimization system for the proposed oxygen manufacturing plant on Mars. Specifically, the system allows users to enter physical description, engineering, and connectivity data through a uniform, user-friendly interface and stores the data in formats compatible with other software also developed as part of this project. These latter components include: (1) programs to simulate the behavior of various parts of the plant in Martian conditions; (2) an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; (3) a control program to investigate the stability and response of the system under different disturbance conditions; and (4) an optimization program to maximize or minimize various criteria as the system evolves into its final design. All components of the system are interconnected so that changes entered through one component are reflected in the others.
A simulation framework for the CMS Track Trigger electronics
NASA Astrophysics Data System (ADS)
Amstutz, C.; Magazzù, G.; Weber, M.; Palla, F.
2015-03-01
A simulation framework has been developed to test and characterize algorithms, architectures and hardware implementations of the vastly complex CMS Track Trigger for the high luminosity upgrade of the CMS experiment at the Large Hadron Collider in Geneva. High-level SystemC models of all system components have been developed to simulate a portion of the track trigger. The simulation of the system components together with input data from physics simulations allows evaluating figures of merit, like delays or bandwidths, under realistic conditions. The use of SystemC for high-level modelling allows co-simulation with models developed in Hardware Description Languages, e.g. VHDL or Verilog. Therefore, the simulation framework can also be used as a test bench for digital modules developed for the final system.
Evaluation of optimal configuration of hybrid Life Support System for Space.
Bartsev, S I; Mezhevikin, V V; Okhonin, V A
2000-01-01
Any comprehensive evaluation of Life Support Systems (LSS) for space applications has to be conducted taking into account not only mass of LSS components but also all relevant equipment and storage: spare parts, additional mass of space ship walls, power supply and heat rejection systems. In this paper different combinations of hybrid LSS (HLSS) components were evaluated. Three variants of power supply were under consideration--solar arrays, direct solar light transmission to plants, and nuclear power. The software based on simplex approach was used for optimizing LSS configuration with respect to its mass. It was shown that there are several LSS configuration, which are optimal for different time intervals. Optimal configurations of physical-chemical (P/C), biological and hybrid LSS for three types of power supply are presented.
Comprehensive nursing case management. An advanced practice model.
Taylor, P
1999-01-01
Under managed care and capitated reimbursement systems, case management is a core strategy for providing high-quality, cost-effective care by decreasing fragmentation, enhancing quality, ensuring efficient use of resources, and containing costs. Although case management is used in various areas of the healthcare arena, it suffers from a lack of consensus regarding its definition, essential components, and appropriate application. The purpose of this paper is to examine the components and limitations of existing case management models, outline the competencies of an effective case manager, and present a model of advanced practice nursing case management that focuses on a continuum of care that integrates medical and psychosocial resources to promote optimal clinical fiscal outcomes and enables patients to work as partners with the healthcare team in facilitating and maintaining their physical and emotional well-being.
Electronic and magneto-transport in chirality sorted carbon nanotube films
NASA Astrophysics Data System (ADS)
Janas, Dawid; Czechowski, Nikodem; Adamus, Zbigniew; GiŻewski, Tomasz
2018-01-01
This research details electronic and magneto-transport in unsorted and chirality-enriched carbon nanotube (CNT) films. By measuring the electrical conductivity from 4 K to 297 K, we were able to assign the governing mechanism of electronic transport. Fluctuation-induced tunnelling was in accordance with the obtained data and very well matched the underlying physics. We demonstrated how a change in the type of CNT to make the film affects its electrical performance. As the temperature was decreased down to cryogenic conditions, up to a 56-fold increase in resistance was noted. Moreover, the measurement of magnetoresistance (MR) revealed a non-monotonic dependence on the applied magnetic field. The initial negative component of MR was eventually overpowered by the positive MR component as the field strength was increased beyond a certain threshold.
A sensitivity study of s-process: the impact of uncertainties from nuclear reaction rates
NASA Astrophysics Data System (ADS)
Vinyoles, N.; Serenelli, A.
2016-01-01
The slow neutron capture process (s-process) is responsible for the production of about half the elements beyond the Fe-peak. The production sites and the conditions under which the different components of s-process occur are relatively well established. A detailed quantitative understanding of s-process nucleosynthesis may yield light in physical processes, e.g. convection and mixing, taking place in the production sites. For this, it is important that the impact of uncertainties in the nuclear physics is well understood. In this work we perform a study of the sensitivity of s-process nucleosynthesis, with particular emphasis in the main component, on the nuclear reaction rates. Our aims are: to quantify the current uncertainties in the production factors of s-process elements originating from nuclear physics and, to identify key nuclear reactions that require more precise experimental determinations. In this work we studied two different production sites in which s-process occurs with very different neutron exposures: 1) a low-mass extremely metal-poor star during the He-core flash (nn reaching up to values of ∼ 1014cm-3); 2) the TP-AGB phase of a M⊙, Z=0.01 model, the typical site of the main s-process component (nn up to 108 — 109cm-3). In the first case, the main variation in the production of s-process elements comes from the neutron poisons and with relative variations around 30%-50%. In the second, the neutron poison are not as important because of the higher metallicity of the star that actually acts as a seed and therefore, the final error of the abundances are much lower around 10%-25%.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-09-01
Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M⊙-25M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
Flexibility is associated with motor competence in schoolchildren.
Lopes, L; Póvoas, S; Mota, J; Okely, A D; Coelho-E-Silva, M J; Cliff, D P; Lopes, V P; Santos, R
2017-12-01
Available data on the associations between motor competence (MC) and flexibility are limited and result inconclusive. This study aims to examine the relationship between flexibility and MC in children. The sample comprised 596 Portuguese children (47.1% girls) aged 9.7 ± 0.6 years. Motor competence was evaluated with the body coordination test, Körperkoordination Test für Kinder. Cardiorespiratory fitness (20-m shuttle run), muscular strength (curl-up and push-up tests), and flexibility (back-saver sit and reach and trunk-lift tests) were evaluated using the Fitnessgram Test Battery. Z-scores by age and gender for the physical fitness tests were constructed. Analysis of variance and regression analysis were performed. Participants in the healthy zone groups of both flexibility tests exhibited significantly better scores of MC than the participants under the healthy zone (P < 0.001). Back-saver sit and reach and trunk-lift Z-scores, either individually or as a sum, were significant predictors of MC (P < 0.05 for all) after adjustments for the other physical fitness components, age, body mass index, and socioeconomic status, in both genders. Our findings highlight the importance of promoting and developing flexibility, as well as the other health-related physical fitness components in schoolchildren to reach adequate levels of MC. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Coupled Physics Environment (CouPE) library - Design, Implementation, and Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.
Over several years, high fidelity, validated mono-physics solvers with proven scalability on peta-scale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a unified mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-Based Applications) toolkit.more » The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The design of CouPE along with motivations that led to implementation choices are also discussed. The first release of the library will be different from the current version of the code that integrates the components in SHARP and explanation on the need for forking the source base will also be provided. Enhancements in the functionality and improved user guides will be available as part of the release. CouPE v0.1 is scheduled for an open-source release in December 2014 along with SIGMA v1.1 components that provide support for language-agnostic mesh loading, traversal and query interfaces along with scalable solution transfer of fields between different physics codes. The coupling methodology and software interfaces of the library are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the CouPE library.« less
Modelling of the mercury loss in fluorescent lamps under the influence of metal oxide coatings
NASA Astrophysics Data System (ADS)
Santos Abreu, A.; Mayer, J.; Lenk, D.; Horn, S.; Konrad, A.; Tidecks, R.
2016-11-01
The mercury transport and loss mechanisms in the metal oxide coatings of mercury low pressure discharge fluorescent lamps have been investigated. An existing model based on a ballistic process is discussed in the context of experimental mercury loss data. Two different approaches to the modeling of the mercury loss have been developed. The first one is based on mercury transition rates between the plasma, the coating, and the glass without specifying the underlying physical processes. The second one is based on a transport process driven by diffusion and a binding process of mercury reacting to mercury oxide inside the layers. Moreover, we extended the diffusion based model to handle multi-component coatings. All approaches are applied to describe mercury loss experiments under the influence of an Al 2 O 3 coating.
Associations between multidimensional frailty and quality of life among Dutch older people.
Gobbens, Robbert J J; van Assen, Marcel A L M
2017-11-01
To examine the associations between components of physical, psychological and social frailty with quality of life among older people. This cross-sectional study was carried out in a sample of Dutch citizens. A total of 671 people aged 70 years or older completed a web-based questionnaire ('the Senioren Barometer'). This questionnaire contained the Tilburg Frailty Indicator (TFI) for measuring physical, psychological and social frailty, and the WHOQOL-OLD for measuring six quality of life facets (sensory abilities, autonomy, past, present and future activities, social participation, death and dying, intimacy) and quality of life total. Nine of fifteen individual frailty components had an effect on at least one facet of quality of life and quality of life total, after controlling for socio-demographic factors, multimorbidity and the other frailty components. Of these nine components five, two and two refer to physical, psychological and social frailty, respectively. Feeling down was the only frailty component associated with all quality of life facets and quality of life total. Both physical inactivity and lack of social relations were associated with four quality of life facets and quality of life total. This study showed that quality of life in older people is associated with physical, psychological and social frailty components, emphasizing the importance of a multidimensional assessment of frailty. Health care and welfare professionals should in particular pay attention to feeling down, physical inactivity and lack of social relations among older people, because their relation with quality of life seems to be the strongest. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Benjamin, Kathleen; Edwards, Nancy; Guitard, Paulette; Murray, Mary Ann; Caswell, Wenda; Perrier, Marie Josee
2011-01-01
Physical activity has been linked to positive health outcomes for frail seniors. However, our understanding of factors that influence the physical activity of residents in the long-term care (LTC) setting is limited. This article describes our work with focus groups, one component of a multi-component study that examined factors influencing the…
Meta II: Multi-Model Language Suite for Cyber Physical Systems
2013-03-01
AVM META) projects have developed tools for designing cyber physical (or Mechatronic ) Systems . These systems are increasingly complex, take much...projects have developed tools for designing cyber physical (CPS) (or Mechatronic ) systems . Exemplified by modern amphibious and ground military...and parametric interface of Simulink models and defines associations with CyPhy components and component interfaces. 2. Embedded Systems Modeling
Leadership component of type A behavior predicts physical activity in early midlife.
Yang, Xiaolin; Telama, Risto; Hirvensalo, Mirja; Hintsa, Taina; Pulkki-Råback, Laura; Hintsanen, Mirka; Keltikangas-Järvinen, Liisa; Viikari, Jorma S A; Raitakari, Olli T
2012-03-01
Research on the long-term effects of Type A behavior and its components in the prediction of physical activity in adulthood is scarce and there is a lack of prospective data that are able to show such an association. We examined the relations between components of Type A behavior and physical activity from youth to early midlife. The sample included 2,031 participants (43.8% of males) aged 9 to 24 years in 1986 from the Young Finns Study. Type A behavior was measured by the Hunter-Wolf A-B Rating Scale at three phases in 1986, 1989, and 2001. Physical activity was assessed using a short self-report questionnaire at five phases between 1986 and 2007. High Type A leadership was associated with high physical activity in 1986 (r = 0.37, P < 0.01), 1989 (r = 0.36, P < 0.01) and 2001 (r = 0.31, P < 0.01), and youth leadership also predicted high adult physical activity (P < 0.001). After adjustment for age, education, occupation, smoking, body mass index, and baseline physical activity, the association remained significant. There was also a bidirectional association between Type A leadership and physical activity. Persistent physical activity during the adult years was associated with a higher Type A leadership than persistent physical inactivity (Cohen's d = 0.34, P < 0.001), even after controlling for potential confounders. The associations of other components of Type A behavior, i.e., hard-driving, eagerness-energy, and aggression with physical activity were marginal. There is a direct relation between Type A leadership and physical activity at different development phases that maybe bidirectional.
Gardner, Andrew W; Montgomery, Polly S
2008-06-01
To determine the effect of metabolic syndrome components on intermittent claudication, physical function, health-related quality of life, and peripheral circulation in patients with peripheral arterial disease (PAD), and to identify the metabolic syndrome components most predictive of each outcome measure. Patients limited by intermittent claudication with three (n = 48), four (n = 45), or five (n = 40) components of metabolic syndrome were studied. Patients were assessed on PAD-specific measures consisting of ankle-brachial index (ABI), initial claudication distance, absolute claudication distance, physical function measures, health-related quality of life, and calf blood flow and transcutaneous oxygen tension responses after 3 minutes of vascular occlusion. Initial claudication distance (mean +/- SD) progressively declined (P = .019) in those with three (203 +/- 167 m), four (124 +/- 77 m), and five (78 +/- 57 m) metabolic syndrome components, and absolute claudication distance progressively declined (P = .036) in these groups as well (414 +/- 224 m vs 323 +/- 153 m vs 249 +/- 152 m, respectively). Furthermore, compared with patients with only three components of metabolic syndrome, those with all five components had impaired values (P < .05) for peak oxygen uptake, ischemic window, 6-minute walk distance, self-perceived walking ability and health, daily physical activity, health-related quality of life on six of eight domains, calf hyperemia, and calf ischemia after vascular occlusion. Abdominal obesity was the predictor (P < .05) of exercise performance during the treadmill and 6-minute walk tests, as well as physical activity. Elevated fasting glucose was the predictor (P < .05) of peripheral vascular measures, self-perceived walking ability and health, and health-related quality of life. PAD patients with more metabolic syndrome components have worsened intermittent claudication, physical function, health-related quality of life, and peripheral circulation. Abdominal obesity and elevated fasting glucose are the metabolic syndrome components that are most predictive of these outcome measures. Aggressively treating these metabolic syndrome components may be particularly important in managing symptoms and long-term prognosis of PAD patients.
Physics in the Confrontation of Nuclear Weapons
NASA Astrophysics Data System (ADS)
Toevs, James
2011-03-01
Had the detonations on 9/11 involved nuclear explosives rather than jet fuel the number of deaths and the costs would have been multiplied by 100 or 1,000. This talk will briefly describe the nuclear threat and then focus on the technologies, both extant and evolving, for the detection and interdiction of clandestine trafficking of nuclear weapons and nuclear and radiological material. The methods vary from passive detection of heat, gamma radiation, neutrons, or other signatures from nuclear material, through radiological approaches to examine contents of vehicles and cargo containers, to active interrogation concepts that are under development. All of these methods have major physics components ranging from simple gamma ray detection as learned in a senior undergraduate lab to the latest ideas in muon production and acceleration.
TRIQS: A toolbox for research on interacting quantum systems
NASA Astrophysics Data System (ADS)
Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka
2015-11-01
We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.
Audiovisual physics reports: students' video production as a strategy for the didactic laboratory
NASA Astrophysics Data System (ADS)
Vinicius Pereira, Marcus; de Souza Barros, Susana; de Rezende Filho, Luiz Augusto C.; Fauth, Leduc Hermeto de A.
2012-01-01
Constant technological advancement has facilitated access to digital cameras and cell phones. Involving students in a video production project can work as a motivating aspect to make them active and reflective in their learning, intellectually engaged in a recursive process. This project was implemented in high school level physics laboratory classes resulting in 22 videos which are considered as audiovisual reports and analysed under two components: theoretical and experimental. This kind of project allows the students to spontaneously use features such as music, pictures, dramatization, animations, etc, even when the didactic laboratory may not be the place where aesthetic and cultural dimensions are generally developed. This could be due to the fact that digital media are more legitimately used as cultural tools than as teaching strategies.
NASA Astrophysics Data System (ADS)
García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.
2018-07-01
In the past few decades, it has been recognized that 1 / f fluctuations are ubiquitous in nature. The most widely used mathematical models to capture the long-term memory properties of 1 / f fluctuations have been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a model based on fractal stochastic and deterministic components that can provide a valuable basis for the study of complex systems with long-term correlations. The fractal stochastic component is assumed to be a fractional Brownian motion process and the deterministic component is assumed to be a band-limited signal. We also provide a method that, under the assumptions of this model, is able to characterize the fractal stochastic component and to provide an estimate of the deterministic components present in a given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-similar properties of the fractal processes in the wavelet domain. This method has been validated over simulated signals and over real signals with economical and biological origin. Real examples illustrate how our model may be useful for exploring the deterministic-stochastic duality of complex systems, and uncovering interesting patterns present in time series.
Microbial Ecology in Vineyards
USDA-ARS?s Scientific Manuscript database
Soil health affects grapevine health, which, in turn, affects fruit quality. Soil health has chemical, physical, and biological components. The chemical components are the best understood, and there are relatively convenient methods to both evaluate and amend chemical soil fertility. The physical...
Tsai, Hung-Bin; Chao, Chia-Ter; Chang, Ray-E; Hung, Kuan-Yu; COGENT Study Group
2017-06-26
Few studies have addressed health-related quality of life (QoL) in patients who chose conservative management over dialysis. This systematic review aims to better define the role of conservative management in improving health-related QoL in patients with end-stage renal disease (ESRD). Medline, Cochrane and EMBASE were searched for prospective or retrospective studies published until June 30, 2016, that examined QoL of ESRD patients. The primary outcome was health-related QoL. Four studies were included (405 patients received dialysis and 332 received conservative management). Two studies that used the Short Form-36 Survey (SF-36) showed that the dialysis group had higher physical component scores, but the conservative management group had similar, or better, mental component scores at the end of intervention. Another study using the SF-36 showed that the physical and mental component scores of the dialysis group did not significantly change after intervention. In the conservative management group, the physical component scores did not change, but the mental component scores increased significantly over time (0.12 ± 0.32, p < 0.05). One study, which used the Kidney Disease Quality of Life-Short Form (KD QoL-SF), found no change after intervention in either physical or mental component scores in the dialysis group; however, the physical component score declined (p = 0.047) and the mental component score increased (p = 0.033) in the conservative management group. Although there are only a limited number of published articles, ESRD patients who receive conservative management may have improved mental health-related QoL when compared with those who receive dialysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less
Physical conditions in the neutral interstellar medium at z = 2.43 toward Q 2348-011
NASA Astrophysics Data System (ADS)
Noterdaeme, P.; Petitjean, P.; Srianand, R.; Ledoux, C.; Le Petit, F.
2007-07-01
Aims:We aim at deriving the physical conditions in the neutral gas associated with damped Lyman-α systems using observation and analysis of H2 and C i absorptions. Methods: We obtained a high-resolution VLT-UVES spectrum of the quasar Q 2348-011 over a wavelength range that covers most of the prominent metal and molecular absorption lines from the log N(H i) = 20.50 ± 0.10 damped Lyman-α system at z_abs=2.4263. We detected H2 in this system and measured column densities of H2, C i, C i^*, C i**, Si ii, P ii, S ii, Fe ii, and Ni ii. From the column density ratios and, in particular, the relative populations of H2 rotational and C i fine-structure levels, we derived the physical conditions in the gas (relative abundances, dust-depletion, particle density, kinetic temperature, and ionising flux) and discuss physical conditions in the neutral phase. Results: Molecular hydrogen was detected in seven components in the first four rotational levels (J = 0-3) of the vibrational ground state. Absorption lines of H2 J=4 (resp. J = 5) rotational levels are detected in six (resp. two) of these components. This leads to a total molecular fraction of log f ≃ -1.69+0.37-0.58. Fourteen components are needed to reproduce the metal-line profiles. The overall metallicity is found to be -0.80, -0.62, -1.17 ± 0.10 for, respectively, [Si/H], [S/H] and [Fe/H]. We confirm the earlier findings that there is a correlation between log N(Fe ii)/N(S ii) and log N(Si ii)/N(S ii) from different components indicative of a dust-depletion pattern. Surprisingly, however, the depletion of metals onto dust in the H2 components is not large in this system: [Fe/S] = -0.8 to -0.1. The gas in H2-bearing components is found to be cold but still hotter than similar gas in our Galaxy (T > 130 K, instead of typically 80 K) and dense (n ˜ 100-200 cm-3). There is an anti-correlation (R=-0.97) between the logarithm of the photo-absorption rate, log β_0, and log N(H2)/N(C i) derived for each H2 component. We show that this is mostly due to shielding effects and imply that the photo-absorption rate β0 is a good indicator of the physical conditions in the gas. We find that the gas is immersed in an intense UV field, about one order of magnitude higher than in the solar vicinity. These results suggest that the gas in H2-bearing DLAs is clumpy, and star-formation occurs in the associated object. Based on observations carried out at the European Southern Observatory (ESO) under prog. ID No. 072.A-0346 with the UVES spectrograph installed at the Very Large Telescope (VLT) Unit 2, Kueyen, on Cerro Paranal, Chile.
Tanaka, Hideaki
2016-01-01
Cosmetic makeup significantly influences facial perception. Because faces consist of similar physical structures, cosmetic makeup is typically used to highlight individual features, particularly those of the eyes (i.e., eye shadow) and mouth (i.e., lipstick). Though event-related potentials have been utilized to study various aspects of facial processing, the influence of cosmetics on specific ERP components remains unclear. The present study aimed to investigate the relationship between the application of cosmetic makeup and the amplitudes of the P1 and N170 event-related potential components during facial perception tasks. Moreover, the influence of visual perception on N170 amplitude, was evaluated under three makeup conditions: Eye Shadow, Lipstick, and No Makeup. Electroencephalography was used to monitor 17 participants who were exposed to visual stimuli under each these three makeup conditions. The results of the present study subsequently demonstrated that the Lipstick condition elicited a significantly greater N170 amplitude than the No Makeup condition, while P1 amplitude was unaffected by any of the conditions. Such findings indicate that the application of cosmetic makeup alters general facial perception but exerts no influence on the perception of low-level visual features. Collectively, these results support the notion that the application of makeup induces subtle alterations in the processing of facial stimuli, with a particular effect on the processing of specific facial components (i.e., the mouth), as reflected by changes in N170 amplitude.
Tanaka, Hideaki
2016-01-01
Cosmetic makeup significantly influences facial perception. Because faces consist of similar physical structures, cosmetic makeup is typically used to highlight individual features, particularly those of the eyes (i.e., eye shadow) and mouth (i.e., lipstick). Though event-related potentials have been utilized to study various aspects of facial processing, the influence of cosmetics on specific ERP components remains unclear. The present study aimed to investigate the relationship between the application of cosmetic makeup and the amplitudes of the P1 and N170 event-related potential components during facial perception tasks. Moreover, the influence of visual perception on N170 amplitude, was evaluated under three makeup conditions: Eye Shadow, Lipstick, and No Makeup. Electroencephalography was used to monitor 17 participants who were exposed to visual stimuli under each these three makeup conditions. The results of the present study subsequently demonstrated that the Lipstick condition elicited a significantly greater N170 amplitude than the No Makeup condition, while P1 amplitude was unaffected by any of the conditions. Such findings indicate that the application of cosmetic makeup alters general facial perception but exerts no influence on the perception of low-level visual features. Collectively, these results support the notion that the application of makeup induces subtle alterations in the processing of facial stimuli, with a particular effect on the processing of specific facial components (i.e., the mouth), as reflected by changes in N170 amplitude. PMID:27656161
Triggers in advanced neurological conditions: prediction and management of the terminal phase.
Hussain, Jamilla; Adams, Debi; Allgar, Victoria; Campbell, Colin
2014-03-01
The challenge to provide a palliative care service for individuals with advanced neurological conditions is compounded by variability in disease trajectories and symptom profiles. The National End of Life Care Programme (2010) recommended seven 'triggers' for a palliative approach to care for patients with advanced neurological conditions. To establish the frequency of triggers in the palliative phase, and if they could be reduced to fewer components. Management of the terminal phase also was evaluated. Retrospective study of 62 consecutive patients under the care of a specialist palliative neurology service, who had died. Principle component analysis (PCA) was performed to establish the interrelationship between triggers. Frequency of triggers increased as each patient approached death. PCA found that four symptom components explained 76.8% of the variance. These represented: rapid physical decline; significant complex symptoms, including pain; infection in combination with cognitive impairment; and risk of aspiration. Median follow-up under the palliative care service was 336 days. In 56.5% of patients, the cause of death was pneumonia. The terminal phase was recognised in 72.6%. The duration of the terminal phase was 8.8 days on average, and the Liverpool Care of the dying Pathway was commenced in 33.9%. All carers were offered bereavement support. Referral criteria based on the triggers can facilitate appropriate and timely patient access to palliative care. The components deduced through PCA have face validity; however larger studies prospectively validating the triggers are required. Closer scrutiny of the terminal phase is necessary to optimise management.
Callender, Kevin A.; Olson, Sheryl L.; Choe, Daniel E.; Sameroff, Arnold J.
2014-01-01
Examined a cognitive-behavioral pathway by which depressive symptoms in mothers and fathers increase risk for later child externalizing problem behavior via parents’ appraisals of child behavior and physical discipline. Participants were 245 children (118 girls) at risk for school-age conduct problems, and their parents and teachers. Children were approximately 3 years old at Time 1 (T1) and 5 ½ years old at Time 2 (T2). At T1, mothers and fathers reported their depressive symptoms, perceptions of their child’s reciprocal affection and responsiveness, frequency of physical punishment, and child externalizing problems. Mothers, fathers, and teachers provided ratings of externalizing behavior at T2. Structural equation modeling revealed that parents’ negative attributions mediated positive relations between their depressive symptoms and frequency of physical punishment for both fathers and mothers. More frequent physical punishment, in turn, predicted increased child externalizing behavior at T2. In future research, transactional mechanisms underlying effects of clinical depression on child conduct problems should be explored at multiple stages of development. For parents showing depressive symptoms, restructuring distorted perceptions about their children’s behavior may be an important component of intervention programs. PMID:21947616
Callender, Kevin A; Olson, Sheryl L; Choe, Daniel E; Sameroff, Arnold J
2012-04-01
Examined a cognitive-behavioral pathway by which depressive symptoms in mothers and fathers increase risk for later child externalizing problem behavior via parents' appraisals of child behavior and physical discipline. Participants were 245 children (118 girls) at risk for school-age conduct problems, and their parents and teachers. Children were approximately 3 years old at Time 1 (T1) and 5 ½ years old at Time 2 (T2). At T1, mothers and fathers reported their depressive symptoms, perceptions of their child's reciprocal affection and responsiveness, frequency of physical punishment, and child externalizing problems. Mothers, fathers, and teachers provided ratings of externalizing behavior at T2. Structural equation modeling revealed that parents' negative attributions mediated positive relations between their depressive symptoms and frequency of physical punishment for both fathers and mothers. More frequent physical punishment, in turn, predicted increased child externalizing behavior at T2. In future research, transactional mechanisms underlying effects of clinical depression on child conduct problems should be explored at multiple stages of development. For parents showing depressive symptoms, restructuring distorted perceptions about their children's behavior may be an important component of intervention programs.
Levasseur, Mélanie; Dubois, Marie-France; Généreux, Mélissa; Menec, Verena; Raina, Parminder; Roy, Mathieu; Gabaude, Catherine; Couturier, Yves; St-Pierre, Catherine
2017-05-25
To address the challenges of the global aging population, the World Health Organization promoted age-friendly communities as a way to foster the development of active aging community initiatives. Accordingly, key components (i.e., policies, services and structures related to the communities' physical and social environments) should be designed to be age-friendly and help all aging adults to live safely, enjoy good health and stay involved in their communities. Although age-friendly communities are believed to be a promising way to help aging Canadians lead healthy and active lives, little is known about which key components best foster positive health, social participation and health equity, and their underlying mechanisms. This study aims to better understand which and how key components of age-friendly communities best foster positive health, social participation and health equity in aging Canadians. Specifically, the research objectives are to: 1) Describe and compare age-friendly key components of communities across Canada 2) Identify key components best associated with positive health, social participation and health equity of aging adults 3) Explore how these key components foster positive health, social participation and health equity METHODS: A mixed-method sequential explanatory design will be used. The quantitative part will involve a survey of Canadian communities and secondary analysis of cross-sectional data from the Canadian Longitudinal Study on Aging (CLSA). The survey will include an age-friendly questionnaire targeting key components in seven domains: physical environment, housing options, social environment, opportunities for participation, community supports and healthcare services, transportation options, communication and information. The CLSA is a large, national prospective study representative of the Canadian aging population designed to examine health transitions and trajectories of adults as they age. In the qualitative part, a multiple case study will be conducted in five Canadian communities performing best on positive health, social participation and health equity. Building on new and existing collaborations and generating evidence from real-world interventions, the results of this project will help communities to promote age-friendly policies, services and structures which foster positive health, social participation and health equity at a population level.
Religiousness and health-related quality of life of older adults
Abdala, Gina Andrade; Kimura, Miako; Duarte, Yeda Aparecida de Oliveira; Lebrão, Maria Lúcia; dos Santos, Bernardo
2015-01-01
OBJECTIVE To examine whether religiousness mediates the relationship between sociodemographic factors, multimorbidity and health-related quality of life of older adults. METHODS This population-based cross-sectional study is part of the Survey on Health, Well-Being, and Aging (SABE). The sample was composed by 911 older adults from Sao Paulo, SP, Southeastern Brazil. Structural equation modeling was performed to assess the mediator effect of religiousness on the relationship between selected variables and health-related quality of life of older adults, with models for men and women. The independent variables were: age, education, family functioning and multimorbidity. The outcome variable was health-related quality of life of older adults, measured by SF-12 (physical and mental components). The mediator variables were organizational, non-organizational and intrinsic religiousness. Cronbach’s alpha values were: physical component = 0.85; mental component = 0.80; intrinsic religiousness = 0.89 and family APGAR (Adaptability, Partnership, Growth, Affection, and Resolve) = 0.91. RESULTS Higher levels of organizational and intrinsic religiousness were associated with better physical and mental components. Higher education, better family functioning and fewer diseases contributed directly to improved performance in physical and mental components, regardless of religiousness. For women, organizational religiousness mediated the relationship between age and physical (β = 2.401, p < 0.01) and mental (β = 1.663, p < 0.01) components. For men, intrinsic religiousness mediated the relationship between education and mental component (β = 7.158, p < 0.01). CONCLUSIONS Organizational and intrinsic religiousness had a beneficial effect on the relationship between age, education and health-related quality of life of these older adults. PMID:26274870
[Religiousness and health-related quality of life of older adults].
Abdala, Gina Andrade; Kimura, Miako; Duarte, Yeda Aparecida de Oliveira; Lebrão, Maria Lúcia; dos Santos, Bernardo
2015-01-01
To examine whether religiousness mediates the relationship between sociodemographic factors, multimorbidity and health-related quality of life of older adults. This population-based cross-sectional study is part of the Survey on Health, Well-Being, and Aging (SABE). The sample was composed by 911 older adults from Sao Paulo, SP, Southeastern Brazil. Structural equation modeling was performed to assess the mediator effect of religiousness on the relationship between selected variables and health-related quality of life of older adults, with models for men and women. The independent variables were: age, education, family functioning and multimorbidity. The outcome variable was health-related quality of life of older adults, measured by SF-12 (physical and mental components). The mediator variables were organizational, non-organizational and intrinsic religiousness. Cronbach's alpha values were: physical component = 0.85; mental component = 0.80; intrinsic religiousness = 0.89 and family APGAR (Adaptability, Partnership, Growth, Affection, and Resolve) = 0.91. Higher levels of organizational and intrinsic religiousness were associated with better physical and mental components. Higher education, better family functioning and fewer diseases contributed directly to improved performance in physical and mental components, regardless of religiousness. For women, organizational religiousness mediated the relationship between age and physical (β = 2.401, p < 0.01) and mental (β = 1.663, p < 0.01) components. For men, intrinsic religiousness mediated the relationship between education and mental component (β = 7.158, p < 0.01). Organizational and intrinsic religiousness had a beneficial effect on the relationship between age, education and health-related quality of life of these older adults.
Intelligent Life-Extending Controls for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Chen, Philip; Jaw, Link
2005-01-01
Aircraft engine controllers are designed and operated to provide desired performance and stability margins. The purpose of life-extending-control (LEC) is to study the relationship between control action and engine component life usage, and to design an intelligent control algorithm to provide proper trade-offs between performance and engine life usage. The benefit of this approach is that it is expected to maintain safety while minimizing the overall operating costs. With the advances of computer technology, engine operation models, and damage physics, it is necessary to reevaluate the control strategy fro overall operating cost consideration. This paper uses the thermo-mechanical fatigue (TMF) of a critical component to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage with minimum sacrifice in performance. A Monte Carlo simulation is also performed to evaluate the likely engine damage accumulation under various operating conditions. The simulation results show that an optimized acceleration schedule can provide a significant life saving in selected engine components.
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Popović Hadžija, Marijana; Hadžija, Mirko; Aralica, Gorana
2015-06-01
Low-contrast images, such as color microscopic images of unstained histological specimens, are composed of objects with highly correlated spectral profiles. Such images are very hard to segment. Here, we present a method that nonlinearly maps low-contrast color image into an image with an increased number of non-physical channels and a decreased correlation between spectral profiles. The method is a proof-of-concept validated on the unsupervised segmentation of color images of unstained specimens, in which case the tissue components appear colorless when viewed under the light microscope. Specimens of human hepatocellular carcinoma, human liver with metastasis from colon and gastric cancer and mouse fatty liver were used for validation. The average correlation between the spectral profiles of the tissue components was greater than 0.9985, and the worst case correlation was greater than 0.9997. The proposed method can potentially be applied to the segmentation of low-contrast multichannel images with high spatial resolution that arise in other imaging modalities.
A classification of the galaxy groups
NASA Technical Reports Server (NTRS)
Anosova, Joanna P.
1990-01-01
A statistical criterion has been proposed to reveal the random and physical clusterings among stars, galaxies and other objects. This criterion has been applied to the galaxy triples of the list by Karachentseva, Karaschentsev and Scherbanovsky, and the double galaxies of the list by Dahari where the primary components are the Seyfert galaxies. The confident physical, probable physical, probable optical and confident optical groups have been identified. The limit difference of radial velocities of components for the confident physical multiple galaxies has also been estimated.
Lahmek, Pierre; Berlin, Ivan; Michel, Laurent; Berghout, Chafia; Meunier, Nadine; Aubin, Henri-Jean
2009-01-01
Background: To investigate the improvement in quality of life (QoL) of alcohol-dependent patients during a 3-week inpatient withdrawal programme, and to identify the sociodemographic, clinical and alcohol-related variables associated with baseline QoL on admission and with improvement of QoL during residential treatment. Methods: This prospective, observational study included 414 alcohol-dependent patients, hospitalised for a period of 3 weeks. QoL was measured on admission and at discharge using the French version of the Medical Outcome Study SF-36. The mean scores for each dimension and for the Physical and Mental Component Summary scores were calculated. Results: The mean scores per dimension and the mean Physical and Mental Component Summary scores were significantly lower on admission than at discharge; the lowest scores being observed for social functioning and role limitations due to emotional problems. At discharge, the mean scores per dimension were similar to those observed in the French general population. Female gender, age >45 years, living alone, working as a labourer or employee, somatic comorbidity, and the existence of at least five criteria for alcohol dependence according to the DSM-IV classification were associated with a low Physical Component Summary score on admission; psychiatric comorbidity, the presence of at least five DSM-IV dependence criteria, smoking and suicidality were associated with a low Mental Component Summary score on admission. The increase in Physical and Mental Component Summary scores during hospitalisation was more marked when the initial scores were low. Apart from the initial score, the greatest improvement in Physical Component Summary score was seen in patients with a high alcohol intake and in those without a somatic comorbidity; the increase in Mental Component Summary score was greatest in patients without psychotic symptoms and in those who abused or were dependent on illegal drugs. Conclusion: QoL improvement after a residential treatment was related to low QoL scores at admission. Improvement in physical component of QoL was related to baseline alcohol intake and good somatic status. Improvement in mental component of QoL was related to other drugs abuse/dependence. PMID:19461935
Lahmek, Pierre; Berlin, Ivan; Michel, Laurent; Berghout, Chafia; Meunier, Nadine; Aubin, Henri-Jean
2009-05-18
To investigate the improvement in quality of life (QoL) of alcohol-dependent patients during a 3-week inpatient withdrawal programme, and to identify the sociodemographic, clinical and alcohol-related variables associated with baseline QoL on admission and with improvement of QoL during residential treatment. This prospective, observational study included 414 alcohol-dependent patients, hospitalised for a period of 3 weeks. QoL was measured on admission and at discharge using the French version of the Medical Outcome Study SF-36. The mean scores for each dimension and for the Physical and Mental Component Summary scores were calculated. The mean scores per dimension and the mean Physical and Mental Component Summary scores were significantly lower on admission than at discharge; the lowest scores being observed for social functioning and role limitations due to emotional problems. At discharge, the mean scores per dimension were similar to those observed in the French general population. Female gender, age > 45 years, living alone, working as a labourer or employee, somatic comorbidity, and the existence of at least five criteria for alcohol dependence according to the DSM-IV classification were associated with a low Physical Component Summary score on admission; psychiatric comorbidity, the presence of at least five DSM-IV dependence criteria, smoking and suicidality were associated with a low Mental Component Summary score on admission. The increase in Physical and Mental Component Summary scores during hospitalisation was more marked when the initial scores were low. Apart from the initial score, the greatest improvement in Physical Component Summary score was seen in patients with a high alcohol intake and in those without a somatic comorbidity; the increase in Mental Component Summary score was greatest in patients without psychotic symptoms and in those who abused or were dependent on illegal drugs. QoL improvement after a residential treatment was related to low QoL scores at admission. Improvement in physical component of QoL was related to baseline alcohol intake and good somatic status. Improvement in mental component of QoL was related to other drugs abuse/dependence.
Secchi, Jeremías David; García, Gastón César; España-Romero, Vanesa; Castro-Piñero, José
2014-04-01
A high level of physical fitness is associated with cardiovascular health in children and adolescents. At present, there is no systematic implementation of a test battery to assess physical fitness at schools in Argentina. The main objective of this study was to implement the ALPHA test battery to determine the physical fitness of a sample made up of Argentine children and adolescents and to establish the proportion of subjects whose aerobic capacity is indicative of future cardiovascular risk. A sample of 1867 participants (967 girls) aged 6 to 19.5 years old assessed using the ALPHA test battery. Four components of physical fitness were measured: 1) morphological component: height, body weight, and waist circumference; 2) musculoskeletal component: standing long jump test; 3) motor component: speed/agility test (4x10 m shuttle run); 4) cardiorespiratory component: course-navette 20 m, shuttle run test and estimation of maximal oxygen consumption. The 5th, 25th, 50th, 75th, and 95th percentiles were estimated for the main tests. The mean body mass index was 20.8 kg/m2, and 7.8% of participants were classified as obese. In ddition, male participants had a better performance in all physical fitness tests when compared to girls (p< 0.001). An aerobic capacity indicative of cardiovascular risk was observed in 31.6% of all participants. Argentine male children and adolescents included in the sample showed higher levels of physical fitness. Such differences increase with age. Approximately one every three participants had an aerobic capacity indicative of future cardiovascular risk.
Advanced and secure architectural EHR approaches.
Blobel, Bernd
2006-01-01
Electronic Health Records (EHRs) provided as a lifelong patient record advance towards core applications of distributed and co-operating health information systems and health networks. For meeting the challenge of scalable, flexible, portable, secure EHR systems, the underlying EHR architecture must be based on the component paradigm and model driven, separating platform-independent and platform-specific models. Allowing manageable models, real systems must be decomposed and simplified. The resulting modelling approach has to follow the ISO Reference Model - Open Distributing Processing (RM-ODP). The ISO RM-ODP describes any system component from different perspectives. Platform-independent perspectives contain the enterprise view (business process, policies, scenarios, use cases), the information view (classes and associations) and the computational view (composition and decomposition), whereas platform-specific perspectives concern the engineering view (physical distribution and realisation) and the technology view (implementation details from protocols up to education and training) on system components. Those views have to be established for components reflecting aspects of all domains involved in healthcare environments including administrative, legal, medical, technical, etc. Thus, security-related component models reflecting all view mentioned have to be established for enabling both application and communication security services as integral part of the system's architecture. Beside decomposition and simplification of system regarding the different viewpoint on their components, different levels of systems' granularity can be defined hiding internals or focusing on properties of basic components to form a more complex structure. The resulting models describe both structure and behaviour of component-based systems. The described approach has been deployed in different projects defining EHR systems and their underlying architectural principles. In that context, the Australian GEHR project, the openEHR initiative, the revision of CEN ENV 13606 "Electronic Health Record communication", all based on Archetypes, but also the HL7 version 3 activities are discussed in some detail. The latter include the HL7 RIM, the HL7 Development Framework, the HL7's clinical document architecture (CDA) as well as the set of models from use cases, activity diagrams, sequence diagrams up to Domain Information Models (DMIMs) and their building blocks Common Message Element Types (CMET) Constraining Models to their underlying concepts. The future-proof EHR architecture as open, user-centric, user-friendly, flexible, scalable, portable core application in health information systems and health networks has to follow advanced architectural paradigms.
Effective Practices for Training and Inspiring High School Physics Teachers
NASA Astrophysics Data System (ADS)
Magee-Sauer, Karen
It is well-documented that there is a nationwide shortage of highly qualified high school physics teachers. Not surprising, institutions of higher education report that the most common number of physics teacher graduates is zero with the majority of institutions graduating less than two physics teachers per year. With these statistics in mind, it is critical that institutions take a careful look at how they recruit, train, and contribute to the retention of high school physics teachers. PhysTEC is a partnership between the APS and AAPT that is dedicated to improving and promoting the education of high school physics teachers. Primarily funded by the NSF and its partnering organizations, PhysTEC has identified key components that are common to successful physics teacher preparation programs. While creating a successful training program in physics, it is also important that students have the opportunity for a ``do-able'' path to certification that does not add further financial debt. This talk will present an overview of ``what works'' in creating a path for physics majors to a high school physics teaching career, actions and activities that help train and inspire pre-service physics teachers, and frameworks that provide the support for in-service teachers. Obstacles to certification and the importance of a strong partnership with colleges of education will be discussed. Several examples of successful physics high school teacher preparation programs will be presented. This material is part of the Physics Teacher Education Coalition project, which is based upon work supported by the National Science Foundation under Grant Nos. 0808790, 0108787, and 0833210.
Physical Activity and Cancer Survivorship
Garcia, David O.; Thomson, Cynthia A.
2015-01-01
There has been an increase in the cancer survivor population in the United States over the past several decades primarily due to improvements in early detection of first malignancies and effective treatment modalities. A wealth of evidence has demonstrated that regular physical activity is associated with a lower risk of death, all-cause mortality, cancer recurrence, and several chronic diseases, including type 2 diabetes and cardiovascular disease, common comorbid conditions in people who have survived cancer. Physical activity also is a central component of weight management. Methods This review summarizes the current physical activity recommendations and the evidence linking physical activity to improvements in weight management, physiological effects, and psychological health outcomes for cancer survivors. Results The available literature suggests physical activity is safe and is positively associated with weight management, cardiorespiratory fitness, muscular strength and endurance, quality of life, fatigue, and other psychosocial factors in cancer survivors. Yet relationships related to specific cancer diagnoses, treatments, and underlying cardiometabolic mechanisms associated with survival have not been thoroughly examined in randomized controlled trials. Furthermore, factors that influence adherence to physical activity behaviors must be identified to develop effective exercise programs. The use of objective measures of physical activity and the standardization of reporting outcome measures within intervention trials are needed to complement this effort. Conclusions Healthcare providers should consider individual differences among cancer survivors and tailor physical activity programs to meet the individual needs of the patient to assist in the adoption and maintenance of a physically active lifestyle. PMID:25335787
Shen, Yajing; Wu, Congyu; Uyeda, Taro Q P; Plaza, Gustavo R; Liu, Bin; Han, Yu; Lesniak, Maciej S; Cheng, Yu
2017-01-01
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells.
Shen, Yajing; Wu, Congyu; Uyeda, Taro Q. P.; Plaza, Gustavo R.; Liu, Bin; Han, Yu; Lesniak, Maciej S.; Cheng, Yu
2017-01-01
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells. PMID:28529648
Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.
2017-01-01
This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.
Tipping elements in the Earth's climate system.
Lenton, Timothy M; Held, Hermann; Kriegler, Elmar; Hall, Jim W; Lucht, Wolfgang; Rahmstorf, Stefan; Schellnhuber, Hans Joachim
2008-02-12
The term "tipping point" commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here we introduce the term "tipping element" to describe large-scale components of the Earth system that may pass a tipping point. We critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and we assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then we explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.
Remote media vision-based computer input device
NASA Astrophysics Data System (ADS)
Arabnia, Hamid R.; Chen, Ching-Yi
1991-11-01
In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram; Smith, Kandler A; Graf, Peter A
NREL's Energy Storage team is exploring the effect of mechanical crush of lithium ion cells on their thermal and electrical safety. PHEV cells, fresh as well as ones aged over 8 months under different temperatures, voltage windows, and charging rates, were subjected to destructive physical analysis. Constitutive relationship and failure criteria were developed for the electrodes, separator as well as packaging material. The mechanical models capture well, the various modes of failure across different cell components. Cell level validation is being conducted by Sandia National Laboratories.
Model-based tomographic reconstruction of objects containing known components.
Stayman, J Webster; Otake, Yoshito; Prince, Jerry L; Khanna, A Jay; Siewerdsen, Jeffrey H
2012-10-01
The likelihood of finding manufactured components (surgical tools, implants, etc.) within a tomographic field-of-view has been steadily increasing. One reason is the aging population and proliferation of prosthetic devices, such that more people undergoing diagnostic imaging have existing implants, particularly hip and knee implants. Another reason is that use of intraoperative imaging (e.g., cone-beam CT) for surgical guidance is increasing, wherein surgical tools and devices such as screws and plates are placed within or near to the target anatomy. When these components contain metal, the reconstructed volumes are likely to contain severe artifacts that adversely affect the image quality in tissues both near and far from the component. Because physical models of such components exist, there is a unique opportunity to integrate this knowledge into the reconstruction algorithm to reduce these artifacts. We present a model-based penalized-likelihood estimation approach that explicitly incorporates known information about component geometry and composition. The approach uses an alternating maximization method that jointly estimates the anatomy and the position and pose of each of the known components. We demonstrate that the proposed method can produce nearly artifact-free images even near the boundary of a metal implant in simulated vertebral pedicle screw reconstructions and even under conditions of substantial photon starvation. The simultaneous estimation of device pose also provides quantitative information on device placement that could be valuable to quality assurance and verification of treatment delivery.
Predictive Models for Semiconductor Device Design and Processing
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1998-01-01
The device feature size continues to be on a downward trend with a simultaneous upward trend in wafer size to 300 mm. Predictive models are needed more than ever before for this reason. At NASA Ames, a Device and Process Modeling effort has been initiated recently with a view to address these issues. Our activities cover sub-micron device physics, process and equipment modeling, computational chemistry and material science. This talk would outline these efforts and emphasize the interaction among various components. The device physics component is largely based on integrating quantum effects into device simulators. We have two parallel efforts, one based on a quantum mechanics approach and the second, a semiclassical hydrodynamics approach with quantum correction terms. Under the first approach, three different quantum simulators are being developed and compared: a nonequlibrium Green's function (NEGF) approach, Wigner function approach, and a density matrix approach. In this talk, results using various codes will be presented. Our process modeling work focuses primarily on epitaxy and etching using first-principles models coupling reactor level and wafer level features. For the latter, we are using a novel approach based on Level Set theory. Sample results from this effort will also be presented.
Chappell, Jackie; Hawes, Nick
2012-01-01
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended. PMID:22927571
Cusping, transport and variance of solutions to generalized Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Carnaffan, Sean; Kawai, Reiichiro
2017-06-01
We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.
Vector-like quarks coupling discrimination at the LHC and future hadron colliders
NASA Astrophysics Data System (ADS)
Barducci, D.; Panizzi, L.
2017-12-01
The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.
Tiger Team Assessment of the Princeton Plasma Physics Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-03-01
This report documents the Tiger Team Assessment of the Princeton Plasma Physics Laboratory (PPPL) conducted from February 11 to March 12, 1991. The PPPL is operated for the US Department of Energy (DOE) by Princeton University. The assessment was conducted under the auspices of the Headquarters, DOE, Office of Special Projects which is under the Assistant Secretary for Environment, Safety and Health. Activities of the Tiger Team Assessment resulted in identification of compliance findings or concerns and noteworthy practices and an analysis as to the root causes for noncompliance. The PPPL Tiger Team Assessment is one component of a larger,more » comprehensive DOE Tiger Team Assessment program for DOE facilities that will eventually encompass over 100 of the Department's operating facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements; root causes for noncompliances; adequacy of DOE and contractor ES H management programs; response actions to address the identified problems areas; and DOE-wide ES H compliance trends and root causes.« less
Chappell, Jackie; Hawes, Nick
2012-10-05
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended.
Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow
NASA Astrophysics Data System (ADS)
Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan
2016-12-01
Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.
Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W
2014-02-01
A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.
NASA Astrophysics Data System (ADS)
Basu, Sreyashi Jhumki; Calabrese Barton, Angela; Clairmont, Neil; Locke, Donya
2009-06-01
In this manuscript we examine how two students develop and express agency in and through high school physics. We tell the stories of two youth from a low-income, urban community to elucidate the important components of critical science agency in a physics context, and to situate a set of claims about how youth develop and express this concept. This research is part of a larger multiyear study of democratic practice in middle- and high-school science. We present three claims: (a) that critical science agency is intimately related to the leveraging and development of identity, (b) that critical science agency involves the strategic deployment of resources , and (c) that developing critical science agency is an iterative and generative process. Two university researchers have co-written this paper with the two students whose experiences serve as the cases under investigation, to provide both an "emic" perspective and student-focused voices that complement and challenge the researchers' voices.
Physics design of the injector source for ITER neutral beam injector (invited).
Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P
2014-02-01
Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.
Cyber-physical experiments on the efficiency of swimming protocols
NASA Astrophysics Data System (ADS)
Wei, Nathaniel; Floryan, Daniel; van Buren, Tyler; Smits, Alexander
2016-11-01
We present results from experiments on a biologically inspired cyber-physical system, composed of a two-dimensional heaving and pitching rigid airfoil attached to a six component load cell, mounted to a traverse that can move along a water channel. A feedback controller, influenced by the apparatus of Mackowski and Williamson, introduces the effects of a fictional drag force specified by a virtual body profile and drives the traverse accordingly. Free-swimming protocols using the force-feedback system are compared with similar motions on a motionless traverse. The propulsive efficiency of burst-and-coast kinematics is also considered. Of particular interest are (1) the implementation of the cyber-physical control system with respect to the accessible experimental parameter space, (2) the impact of force-based streamwise actuation on experimental data, and (3) the effects of burst-and-coast motions on propulsive efficiency. The work was supported by the Office of Naval Research (ONR) under MURI Grant N00014-14-1-0533.
NASA Astrophysics Data System (ADS)
Pan, M.; Wood, E. F.
2004-05-01
This study explores a method to estimate various components of the water cycle (ET, runoff, land storage, etc.) based on a number of different info sources, including both observations and observation-enhanced model simulations. Different from existing data assimilations, this constrained Kalman filtering approach keeps the water budget perfectly closed while updating the states of the underlying model (VIC model) optimally using observations. Assimilating different data sources in this way has several advantages: (1) physical model is included to make estimation time series smooth, missing-free, and more physically consistent; (2) uncertainties in the model and observations are properly addressed; (3) model is constrained by observation thus to reduce model biases; (4) balance of water is always preserved along the assimilation. Experiments are carried out in Southern Great Plain region where necessary observations have been collected. This method may also be implemented in other applications with physical constraints (e.g. energy cycles) and at different scales.
Córdoba-Torrecilla, S; Aparicio, V A; Soriano-Maldonado, A; Estévez-López, F; Segura-Jiménez, V; Álvarez-Gallardo, I; Femia, P; Delgado-Fernández, M
2016-04-01
To assess the independent associations of individual physical fitness components with anxiety in women with fibromyalgia and to test which physical fitness component shows the greatest association. This population-based cross-sectional study included 439 women with fibromyalgia (age 52.2 ± 8.0 years). Anxiety symptoms were measured with the State Trait Anxiety Inventory (STAI) and the anxiety item of the Revised Fibromyalgia Impact Questionnaire (FIQR). Physical fitness was assessed through the Senior Fitness Test battery and handgrip strength test. Overall, lower physical fitness was associated with higher anxiety levels (all, p < 0.05). The coefficients of the optimal regression model (stepwise selection method) between anxiety symptoms and physical fitness components adjusted for age, body fat percentage and anxiolytics intake showed that the back scratch test (b = -0.18), the chair sit-and-reach test (b = -0.12; p = 0.027) and the 6-min walk test (b = -0.02; p = 0.024) were independently and inversely associated with STAI. The back scratch test and the arm- curl test were associated with FIQR-anxiety (b = -0.05; p < 0.001 and b = -0.07; p = 0.021, respectively). Physical fitness was inversely and consistently associated with anxiety in women with fibromyalgia, regardless of the fitness component evaluated. In particular, upper-body flexibility was an independent indicator of anxiety levels, followed by cardiorespiratory fitness and muscular strength.
NASA Astrophysics Data System (ADS)
Ketcham, Richard A.
2017-04-01
Anisotropy in three-dimensional quantities such as geometric shape and orientation is commonly quantified using principal components analysis, in which a second order tensor determines the orientations of orthogonal components and their relative magnitudes. This approach has many advantages, such as simplicity and ability to accommodate many forms of data, and resilience to data sparsity. However, when data are sufficiently plentiful and precise, they sometimes show that aspects of the principal components approach are oversimplifications that may affect how the data are interpreted or extrapolated for mathematical or physical modeling. High-resolution X-ray computed tomography (CT) can effectively extract thousands of measurements from a single sample, providing a data density sufficient to examine the ways in which anisotropy on the hand-sample scale and smaller can be quantified, and the extent to which the ways the data are simplified are faithful to the underlying distributions. Features within CT data can be considered as discrete objects or continuum fabrics; the latter can be characterized using a variety of metrics, such as the most commonly used mean intercept length, and also the more specialized star length and star volume distributions. Each method posits a different scaling among components that affects the measured degree of anisotropy. The star volume distribution is the most sensitive to anisotropy, and commonly distinguishes strong fabric components that are not orthogonal. Although these data are well-presented using a stereoplot, 3D rose diagrams are another visualization option that can often help identify these components. This talk presents examples from a number of cases, starting with trabecular bone and extending to geological features such as fractures and brittle and ductile fabrics, in which non-orthogonal principal components identified using CT provide some insight into the origin of the underlying structures, and how they should be interpreted and potentially up-scaled.
Morano, Milena; Colella, Dario; Rutigliano, Irene; Fiore, Pietro; Pettoello-Mantovani, Massimo; Campanozzi, Angelo
2012-01-01
(1) To examine relationships among changes in physical activity, physical fitness and some psychosocial determinants of activity behavior in a clinical sample of obese children involved in a multi-component program; (2) to investigate the causal relationship over time between physical activity and one of its strongest correlates (i.e. perceived physical ability). Self-reported physical activity and health-related fitness tests were administered before and after a 9-month intervention in 24 boys and 20 girls aged 8 to 11 years. Individuals' perceptions of strength, speed and agility were assessed using the Perceived Physical Ability Scale, while body image was measured using Collins' Child Figure Drawings. Findings showed that body mass index, physical activity, performances on throwing and weight-bearing tasks, perceived physical ability and body image significantly improved after treatment among obese children. Gender differences were found in the correlational analyses, showing a link between actual and perceived physical abilities in boys, but not in girls. For the specific measurement interval of this study, perception of physical ability was an antecedent and not a potential consequence of physical activity. Results indicate that a multi-component activity program not based merely on a dose-effect approach enhances adherence of the participants and has the potential to increase the lifelong exercise skills of obese children. Rather than focusing entirely on diet and weight loss, findings support the inclusion of interventions directed toward improving perceived physical ability that is predictive of subsequent physical activity.
Variability in syringe components and its impact on functionality of delivery systems.
Rathore, Nitin; Pranay, Pratik; Eu, Bruce; Ji, Wenchang; Walls, Ed
2011-01-01
Prefilled syringes and autoinjectors are becoming increasingly common for parenteral drug administration primarily due to the convenience they offer to the patients. Successful commercialization of such delivery systems requires thorough characterization of individual components. Complete understanding of various sources of variability and their ranking is essential for robust device design. In this work, we studied the impact of variability in various primary container and device components on the delivery forces associated with syringe injection. More specifically, the effects of barrel size, needle size, autoinjector spring force, and frictional forces have been evaluated. An analytical model based on underlying physics is developed that can be used to fully characterize the design space for a product delivery system. Use of prefilled syringes (syringes prefilled with active drug) is becoming increasingly common for injectable drugs. Compared to vials, prefilled syringes offer higher dose accuracy and ease of use due to fewer steps required for dosage. Convenience to end users can be further enhanced through the use of prefilled syringes in combination with delivery devices such as autoinjectors. These devices allow patients to self-administer the drug by following simple steps such as pressing a button. These autoinjectors are often spring-loaded and are designed to keep the needle tip shielded prior to injection. Because the needle is not visible to the user, such autoinjectors are perceived to be less invasive than syringes and help the patient overcome the hesitation associated with self-administration. In order to successfully develop and market such delivery devices, we need to perform an in-depth analysis of the components that come into play during the activation of the device and dose delivery. Typically, an autoinjector is activated by the press of a button that releases a compressed spring; the spring relaxes and provides the driving force to push the drug out of the syringe and into the site of administration. Complete understanding of the spring force, syringe barrel dimensions, needle size, and drug product properties is essential for robust device design. It is equally important to estimate the extent of variability that exists in these components and the resulting impact it could have on the performance of the device. In this work, we studied the impact of variability in syringe and device components on the delivery forces associated with syringe injection. More specifically, the effect of barrel size, needle size, autoinjector spring force, and frictional forces has been evaluated. An analytical model based on underlying physics is developed that can be used to predict the functionality of the autoinjector.
NASA Astrophysics Data System (ADS)
Zhang, Rongwang; Huang, Jian; Wang, Xin; Zhang, Jun A.; Huang, Fei
2016-06-01
Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the -2/3 and -4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.
21 CFR 890.3920 - Wheelchair component.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920 Wheelchair...
21 CFR 890.3920 - Wheelchair component.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920 Wheelchair...
21 CFR 890.3920 - Wheelchair component.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920 Wheelchair...
21 CFR 890.3920 - Wheelchair component.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920 Wheelchair...
21 CFR 890.3920 - Wheelchair component.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920 Wheelchair...
Rossen, Jenny; Yngve, Agneta; Hagströmer, Maria; Brismar, Kerstin; Ainsworth, Barbara E; Iskull, Christina; Möller, Peter; Johansson, Unn-Britt
2015-07-12
Physical activity prevents or delays progression of impaired glucose tolerance in high-risk individuals. Physical activity promotion should serve as a basis in diabetes care. It is necessary to develop and evaluate health-promoting methods that are feasible as well as cost-effective within diabetes care. The aim of Sophia Step Study is to evaluate the impact of a multi-component and a single component physical activity intervention aiming at improving HbA1c (primary outcome) and other metabolic and cardiovascular risk factors, physical activity levels and overall health in patients with pre- and type 2 diabetes. Sophia Step Study is a randomized controlled trial and participants are randomly assigned to either a multi-component intervention group (A), a pedometer group (B) or a control group (C). In total, 310 patients will be included and followed for 24 months. Group A participants are offered pedometers and a website to register steps, physical activity on prescription with yearly follow-ups, motivational interviewing (10 occasions) and group consultations (including walks, 12 occasions). Group B participants are offered pedometers and a website to register steps. Group C are offered usual care. The theoretical framework underpinning the interventions is the Health Belief Model, the Stages of Change Model, and the Social Cognitive Theory. Both the multi-component intervention (group A) and the pedometer intervention (group B) are using several techniques for behavior change such as self-monitoring, goal setting, feedback and relapse prevention. Measurements are made at week 0, 8, 12, 16, month 6, 9, 12, 18 and 24, including metabolic and cardiovascular biomarkers (HbA1c as primary health outcome), accelerometry and daily steps. Furthermore, questionnaires were used to evaluate dietary intake, physical activity, perceived ability to perform physical activity, perceived support for being active, quality of life, anxiety, depression, well-being, perceived treatment, perceived stress and diabetes self- efficacy. This study will show if a multi-component intervention using pedometers with group- and individual consultations is more effective than a single- component intervention using pedometers alone, in increasing physical activity and improving HbA1c, other metabolic and cardiovascular risk factors, physical activity levels and overall health in patients with pre- and type 2 diabetes. ClinicalTrials.gov Identifier: NCT02374788 . Registered 28 January 2015.
Role of physical activity in reducing cognitive decline in older Mexican-American adults.
Ottenbacher, Allison J; Snih, Soham Al; Bindawas, Saad M; Markides, Kyriakos S; Graham, James E; Samper-Ternent, Rafael; Raji, Mukaila; Ottenbacher, Kenneth J
2014-09-01
The effect of physical activity on cognitive function in older adults from minority and disadvantaged populations is not well understood. This study examined the longitudinal association between physical activity and cognition in older Mexican Americans. The study methodology included a prospective cohort with longitudinal analysis of data from the Hispanic Established Populations for the Epidemiologic Study of the Elderly. General linear mixed models were used to assess the associations and interactions between physical activity and cognitive function over 14 years. Community-based assessments were performed in participants' homes. Physical activity was recorded for 1,669 older Mexican Americans using the Physical Activity Scale for the Elderly. Cognition was measured using the Mini-Mental State Examination (MMSE) and separated into memory and nonmemory components. A statistically significant positive association was observed between levels of physical activity and cognitive function after adjusting for age, sex, marital status, education, and comorbid health conditions. There was a statistically significant difference in MMSE scores over time between participants in the third (β = 0.11, standard error (SE) = 0.05) and fourth (β = 0.10, SE = 0.2) quartiles of physical activity and those in the first. The protective effect of physical activity on cognitive decline was evident for the memory component of the MMSE but not the nonmemory component after adjusting for covariates. Greater physical activity at baseline was associated with less cognitive decline over 14 years in older Mexican Americans. The reduction in cognitive decline appeared to be related to the memory components of cognitive function. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
A Worksheet to Enhance Students’ Conceptual Understanding in Vector Components
NASA Astrophysics Data System (ADS)
Wutchana, Umporn; Emarat, Narumon
2017-09-01
With and without physical context, we explored 59 undergraduate students’conceptual and procedural understanding of vector components using both open ended problems and multiple choice items designed based on research instruments used in physics education research. The results showed that a number of students produce errors and revealed alternative conceptions especially when asked to draw graphical form of vector components. It indicated that most of them did not develop a strong foundation of understanding in vector components and could not apply those concepts to such problems with physical context. Based on the findings, we designed a worksheet to enhance the students’ conceptual understanding in vector components. The worksheet is composed of three parts which help students to construct their own understanding of definition, graphical form, and magnitude of vector components. To validate the worksheet, focus group discussions of 3 and 10 graduate students (science in-service teachers) had been conducted. The modified worksheet was then distributed to 41 grade 9 students in a science class. The students spent approximately 50 minutes to complete the worksheet. They sketched and measured vectors and its components and compared with the trigonometry ratio to condense the concepts of vector components. After completing the worksheet, their conceptual model had been verified. 83% of them constructed the correct model of vector components.
Measurements of the Activity of dissolved H2O in an Andesite Melt
NASA Astrophysics Data System (ADS)
Moore, G. M.; Touran, J. P.; Pu, X.; Kelley, K. A.; Cottrell, E.; Ghiorso, M. S.
2016-12-01
The large effect of dissolved H2O on the physical and chemical nature of silicate melts, and its role in driving volcanism, is well known and underscores the importance of this volatile component. A complete understanding of the chemical behavior of dissolved H2O in silicate melts requires the quantification of its thermodynamic activity as a function of pressure, temperature, and melt composition, particularly at low H2O contents (i.e. at under-saturated conditions). Knowledge of the activity of H2O in silicate melts at H2O-undersaturated conditions will improve our understanding of hydrous phase equilibria, as well as our models of physical melt properties. Measurement of the activity of any silicate melt component, much less that of a volatile component such as H2O, is a difficult experimental task however. By using a modified double capsule design (Matjuschkin et al, 2015) to control oxygen fugacity in piston cylinder experiments, along with high precision X-ray absorption techniques (XANES) to measure iron oxidation state in silicate glasses (Cottrell et al, 2009), we are able to constrain the H2O activity in silicate melts at under-saturated conditions. Preliminary results on an andesite melt with low H2O content (3 wt%) have been shown (Moore et al, 2016) to match predicted H2O activity values calculated using the H2O equation of state of Duan and Zhang (1996) and the H2O solubility model of Ghiorso and Gualda (2015). More recent results on the same andesite melt containing approximately 5 wt% H2O however show a large negative deviation from the predicted values. Reversal experiments involving an oxidized starting material are ongoing, as well as further characterization of the samples to detect the presence of possible contaminants that would induce reduction of the melt beyond that related to the H2O activity (e.g. graphite contamination).
Alimentary regimen in non-alcoholic fatty liver disease: Mediterranean diet
Abenavoli, Ludovico; Milic, Natasa; Peta, Valentina; Alfieri, Francesco; De Lorenzo, Antonino; Bellentani, Stefano
2014-01-01
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. The mechanisms of the underlying disease development and progression are awaiting clarification. Insulin resistance and obesity-related inflammation status, among other possible genetic, dietary, and lifestyle factors, are thought to play the key role. There is no consensus concerning the pharmacological treatment. However, the dietary nutritional management to achieve weight loss is an essential component of any treatment strategy. On the basis of its components, the literature reports on the effectiveness of the Mediterranean diet in reducing cardiovascular risk and in preventing major chronic diseases, including obesity and diabetes. New evidence supports the idea that the Mediterranean diet, associated with physical activity and cognitive behaviour therapy, may have an important role in the prevention and the treatment of NAFLD. PMID:25492997
On Organization of Information: Approach and Early Work
NASA Technical Reports Server (NTRS)
Degani, Asaf; Jorgensen, Charles C.; Iverson, David; Shafto, Michael; Olson, Leonard
2009-01-01
In this report we describe an approach for organizing information for presentation and display. "e approach stems from the observation that there is a stepwise progression in the way signals (from the environment and the system under consideration) are extracted and transformed into data, and then analyzed and abstracted to form representations (e.g., indications and icons) on the user interface. In physical environments such as aerospace and process control, many system components and their corresponding data and information are interrelated (e.g., an increase in a chamber s temperature results in an increase in its pressure). "ese interrelationships, when presented clearly, allow users to understand linkages among system components and how they may affect one another. Organization of these interrelationships by means of an orderly structure provides for the so-called "big picture" that pilots, astronauts, and operators strive for.
The mechanism of sound production in túngara frogs and its role in sexual selection and speciation.
Ryan, Michael J; Guerra, Mónica A
2014-10-01
Sexual communication can evolve in response to sexual selection, and it can also cause behavioral reproductive isolation between populations and thus drive speciation. Anurans are an excellent system to investigate these links between behavior and evolution because we have detailed knowledge of how neural mechanisms generate behavioral preferences for calls and how these preferences then generate selection on call variation. But we know far less about the physical mechanisms of call production, especially how different laryngeal morphologies generate call variation. Here we review studies of a group of species that differ in the presence of a secondary call component that evolved under sexual selection. We discuss how the larynx produces this call component, and how laryngeal morphology generates sexual selection and can contribute to speciation. Copyright © 2014. Published by Elsevier Ltd.
Measuring theory of mind in children. Psychometric properties of the ToM Storybooks.
Blijd-Hoogewys, E M A; van Geert, P L C; Serra, M; Minderaa, R B
2008-11-01
Although research on Theory-of-Mind (ToM) is often based on single task measurements, more comprehensive instruments result in a better understanding of ToM development. The ToM Storybooks is a new instrument measuring basic ToM-functioning and associated aspects. There are 34 tasks, tapping various emotions, beliefs, desires and mental-physical distinctions. Four studies on the validity and reliability of the test are presented, in typically developing children (n = 324, 3-12 years) and children with PDD-NOS (n = 30). The ToM Storybooks have good psychometric qualities. A component analysis reveals five components corresponding with the underlying theoretical constructs. The internal consistency, test-retest reliability, inter-rater reliability, construct validity and convergent validity are good. The ToM Storybooks can be used in research as well as in clinical settings.
Katano, Sayuri; Nakamura, Yasuyuki; Nakamura, Aki; Murakami, Yoshitaka; Tanaka, Taichiro; Nakagawa, Hideaki; Takebayashi, Toru; Yamato, Hiroshi; Okayama, Akira; Miura, Katsuyuki; Okamura, Tomonori; Ueshima, Hirotsugu
2010-06-30
To examine the relation between lifestyle and the number of metabolic syndrome (MetS) diagnostic components in a general population, and to find a means of preventing the development of MetS components. We examined baseline data from 3,365 participants (2,714 men and 651 women) aged 19 to 69 years who underwent a physical examination, lifestyle survey, and blood chemical examination. The physical activity of each participant was classified according to the International Physical Activity Questionnaire (IPAQ). We defined four components for MetS in this study as follows: 1) high BP: systolic BP > or = 130 mmHg or diastolic BP > or = 85 mmHg, or the use of antihypertensive drugs; 2) dyslipidemia: high-density lipoprotein-cholesterol concentration < 40 mg/dL, triglycerides concentration > or = 150 mg/dL, or on medication for dyslipidemia; 3) Impaired glucose tolerance: fasting blood sugar level > or = 110 mg/d, or if less than 8 hours after meals > or = 140 mg/dL), or on medication for diabetes mellitus; 4) obesity: body mass index > or = 25 kg/m(2). Those who had 0 to 4 MetS diagnostic components accounted for 1,726, 949, 484, 190, and 16 participants, respectively, in the Poisson distribution. Poisson regression analysis revealed that independent factors contributing to the number of MetS diagnostic components were being male (regression coefficient b=0.600, p < 0.01), age (b=0.027, p < 0.01), IPAQ class (b=-0.272, p= 0.03), and alcohol consumption (b=0.020, p=0.01). The contribution of current smoking was not statistically significant (b=-0.067, p=0.76). Moderate physical activity was inversely associated with the number of MetS diagnostic components, whereas smoking was not associated.
Davis, A M; Perruccio, A V; Ibrahim, S; Hogg-Johnson, S; Wong, R; Badley, E M
2012-12-01
The International Classification of Functioning, Disability and Health framework describes human functioning through body structure and function, activity and participation in the context of a person's social and physical environment. This work tested the temporal relationships of these components. Our hypotheses were: 1) there would be associations among physical impairment, activity limitations and participation restrictions within time; 2) prior status of a component would be associated with future status; 3) prior status of one component would influence status of a second component (e.g. prior activity limitations would be associated with current participation restrictions); and, 4) the magnitude of the within time relationships of the components would vary over time. Participants from Canada with primary hip or knee joint replacement (n = 931), an intervention with predictable improvement in pain and disability, completed standardized outcome measures pre-surgery and five times in the first year post-surgery. These included physical impairment (pain), activity limitations and participation restrictions. ICF component relationships were evaluated cross-sectionally and longitudinally using path analysis adjusting for age, sex, BMI, hip vs. knee, low back pain and mood. All component scores improved significantly over time. The path coefficients supported the hypotheses in that both within and across time, physical impairment was associated with activity limitation and activity limitation was associated with participation restriction; prior status and change in a component were associated with current status in another component; and, the magnitude of the path coefficients varied over time with stronger associations among components to three months post surgery than later in recovery with the exception of the association between impairment and participation restrictions which was of similar magnitude at all times. This work enhances understanding of the complexities of the ICF component relationships in evaluating disability over time. Further longitudinal studies including evaluation of contextual factors are required. Copyright © 2012 Elsevier Ltd. All rights reserved.
Demixing of polymers under nanoimprinting process
NASA Astrophysics Data System (ADS)
Wang, Zhen
Polymer blend has been an important area in polymer science for decades. The knowledge of polymer blend in bulk is well established and technologies based on it have created products ubiquitous in our daily life. More intriguing problem arises when the phase separation of a polymer blend occurs under physical confinement. In this thesis, we investigated the effect of interfacial interactions between constituent polymers and confinement environment on phase evolution. Specifically, morphologies of thin films of binary polymer blends were examined on chemically homogenous substrates (preferential surface, neutral surface), on chemical pattern, between two parallel rigid substrates, and under thermal embossing/step-and-flash nanoimprint lithography conditions. We found that preferential wetting of selective component dominates the phase evolution, which can be suppressed by the use of neutral surfaces or external pressure. By manipulating these factors, a wide range of unique non-equilibrium micro or nanostructures can thus be achieved.
NASA Astrophysics Data System (ADS)
Monfared, Vahid
2018-03-01
Elastic analysis is analytically presented to predict the behaviors of the stress and displacement components in the cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials. This analysis is based on the complex computation of the stress functions in the complex plane and polar coordinates. Also, suitable boundary conditions are considered and assumed to analyze along with the equilibrium equations and bi-harmonic equation. This method has some important applications in many fields of engineering such as mechanical, civil and material engineering generally. One of the applications of this research work is in composite design and designing the cylindrical devices under various loadings. Finally, it is founded that the convergence and accuracy of the results are suitable and acceptable through comparing the results.
Models of Speed Discrimination
NASA Technical Reports Server (NTRS)
1997-01-01
The prime purpose of this project was to investigate various theoretical issues concerning the integration of information across visual space. To date, most of the research efforts in the study of the visual system seem to have been focused in two almost non-overlaping directions. One research focus has been the low level perception as studied by psychophysics. The other focus has been the study of high level vision exemplified by the study of object perception. Most of the effort in psychophysics has been devoted to the search for the fundamental "features" of perception. The general idea is that the most peripheral processes of the visual system decompose the input into features that are then used for classification and recognition. The experimental and theoretical focus has been on finding and describing these analyzers that decompose images into useful components. Various models are then compared to the physiological measurements performed on neurons in the sensory systems. In the study of higher level perception, the work has been focused on the representation of objects and on the connections between various physical effects and object perception. In this category we find the perception of 3D from a variety of physical measurements including motion, shading and other physical phenomena. With few exceptions, there seem to be very limited development of theories describing how the visual system might combine the output of the analyzers to form the representation of visual objects. Therefore, the processes underlying the integration of information over space represent critical aspects of vision system. The understanding of these processes will have implications on our expectations for the underlying physiological mechanisms, as well as for our models of the internal representation for visual percepts. In this project, we explored several mechanisms related to spatial summation, attention, and eye movements. The project comprised three components: 1. Modeling visual search for the detection of speed deviation. 2. Perception of moving objects. 3. Exploring the role of eye movements in various visual tasks.
X-ray simulation for structural integrity for aerospace components - A case study
NASA Astrophysics Data System (ADS)
Singh, Surendra; Gray, Joseph
2016-02-01
The use of Integrated Computational Materials Engineering (ICME) has rapidly evolved from an emerging technology to the industry standards in Materials, Manufacturing, Chemical, Civil, and Aerospace engineering. Despite this the recognition of the ICME merits has been somewhat lacking within NDE community. This is due in part to the makeup of NDE practitioners. They are a very diverse but regimented group. More than 80% of NDE experts are trained and certified as NDT Level 3's and auditors in order to perform their daily inspection jobs. These jobs involve detection of attribute of interest, which may be a defect or condition or both, in a material. These jobs are performed in strict compliance with procedures that have been developed over many years by trial-and-error with minimal understanding of the underlying physics and interplay between the NDE methods setup parameters. It is not in the nature of these trained Level 3's experts to look for alternate or out-of-the box, solutions. Instead, they follow the procedures for compliance as required by regulatory agencies. This approach is time-consuming, subjective, and is treated as a bottleneck in today's manufacturing environments. As such, there is a need for new NDE tools that provide rapid, high quality solutions for studying structural and dimensional integrity in parts at a reduced cost. NDE simulations offer such options by a shortening NDE technique development-time, attaining a new level in the scientific understanding of physics of interactions between interrogating energy and materials, and reducing costs. In this paper, we apply NDE simulation (XRSIM as an example) for simulating X-Ray techniques for studying aerospace components. These results show that NDE simulations help: 1) significantly shorten NDE technique development-time, 2) assist in training NDE experts, by facilitating the understanding of the underlying physics, and 3) improve both capability and reliability of NDE methods in terms of coverage maps.
Cryogenic pellet launcher adapted for controlling of tokamak plasma edge instabilities.
Lang, P T; Cierpka, P; Harhausen, J; Neuhauser, J; Wittmann, C; Gál, K; Kálvin, S; Kocsis, G; Sárközi, J; Szepesi, T; Dorner, C; Kauke, G
2007-02-01
One of the main challenges posed recently on pellet launcher systems in fusion-oriented plasma physics is the control of the plasma edge region. Strong energy bursts ejected from the plasma due to edge localized modes (ELMs) can form a severe threat for in-vessel components but can be mitigated by sufficiently frequent triggering of the underlying instabilities using hydrogen isotope pellet injection. However, pellet injection systems developed mainly for the task of ELM control, keeping the unwanted pellet fueling minimized, are still missing. Here, we report on a novel system developed under the premise of its suitability for control and mitigation of plasma edge instabilities. The system is based on the blower gun principle and is capable of combining high repetition rates up to 143 Hz with low pellet velocities. Thus, the flexibility of the accessible injection geometry can be maximized and the pellet size kept low. As a result the new system allows for an enhancement in the tokamak operation as well as for more sophisticated experiments investigating the underlying physics of the plasma edge instabilities. This article reports on the design of the new system, its main operational characteristics as determined in extensive test bed runs, and also its first test at the tokamak experiment ASDEX Upgrade.
21 CFR 111.15 - What sanitation requirements apply to your physical plant and grounds?
Code of Federal Regulations, 2014 CFR
2014-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Physical... contamination of components, dietary supplements, or contact surfaces. The methods for adequate ground... constitute a source of contamination in areas where components, dietary supplements, or contact surfaces are...
21 CFR 111.15 - What sanitation requirements apply to your physical plant and grounds?
Code of Federal Regulations, 2012 CFR
2012-04-01
... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Physical... contamination of components, dietary supplements, or contact surfaces. The methods for adequate ground... constitute a source of contamination in areas where components, dietary supplements, or contact surfaces are...
Project Physics Programmed Instruction, Vectors 3.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
This is the third of a series of three programmed instruction booklets on vectors developed by Harvard Project Physics. Separating vectors into components and obtaining a vector from its components are the topics covered. For other booklets in this series, see SE 015 549 and SE 015 550. (DT)
21 CFR 890.3410 - External limb orthotic component.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External limb orthotic component. 890.3410 Section 890.3410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3410...
21 CFR 890.3420 - External limb prosthetic component.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...
21 CFR 890.3410 - External limb orthotic component.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External limb orthotic component. 890.3410 Section 890.3410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3410...
21 CFR 890.3410 - External limb orthotic component.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External limb orthotic component. 890.3410 Section 890.3410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3410...
21 CFR 890.3410 - External limb orthotic component.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External limb orthotic component. 890.3410 Section 890.3410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3410...
21 CFR 890.3410 - External limb orthotic component.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External limb orthotic component. 890.3410 Section 890.3410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3410...
21 CFR 890.3420 - External limb prosthetic component.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...
21 CFR 890.3420 - External limb prosthetic component.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...
21 CFR 890.3420 - External limb prosthetic component.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...
21 CFR 890.3420 - External limb prosthetic component.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External limb prosthetic component. 890.3420 Section 890.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3420...
Shc and the mechanotransduction of cellular anchorage and metastasis.
Terada, Lance S
2017-02-17
Tissue cells continually monitor anchorage conditions by gauging the physical properties of their underlying matrix and surrounding environment. The Rho and Ras GTPases are essential components of these mechanosensory pathways. These molecular switches control both cytoskeletal as well as cell fate responses to anchorage conditions and are thus critical to our understanding of how cells respond to their physical environment and, by extension, how malignant cells gainsay these regulatory pathways. Recent studies indicate that 2 proteins produced by the SHC1 gene, thought for the most part to functionally oppose each other, collaborate in their ability to respond to mechanical force by initiating respective Rho and Ras signals. In this review, we focus on the coupling of Shc and GTPases in the cellular response to mechanical anchorage signals, with emphasis on its relevance for cancer.
In Search of the Physics: The Interplay of Experiment and Computation in Slat Aeroacoustics
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Choudhari, Meelan; Singer, Bart A.; Lockard, David P.; Streett, Craig L.
2003-01-01
The synergistic use of experiments and numerical simulations can uncover the underlying physics of airframe noise sources. We focus on the high-lift noise component associated with a leading-edge slat; flap side-edge noise is discussed in a companion paper by Streett et al. (2003). The present paper provides an overview of how slat noise was split into subcomponents and analyzed with carefully planned complementary experimental and numerical tests. We consider both tonal and broadband aspects of slat noise. The predicted far-field noise spectra are shown to be in good qualitative (and, to lesser extent, good quantitative agreement) with acoustic array measurements. Although some questions remain unanswered, the success of current airframe noise studies provides ample promise that remaining technical issues can be successfully addressed in the near future.
Verification of Functional Fault Models and the Use of Resource Efficient Verification Tools
NASA Technical Reports Server (NTRS)
Bis, Rachael; Maul, William A.
2015-01-01
Functional fault models (FFMs) are a directed graph representation of the failure effect propagation paths within a system's physical architecture and are used to support development and real-time diagnostics of complex systems. Verification of these models is required to confirm that the FFMs are correctly built and accurately represent the underlying physical system. However, a manual, comprehensive verification process applied to the FFMs was found to be error prone due to the intensive and customized process necessary to verify each individual component model and to require a burdensome level of resources. To address this problem, automated verification tools have been developed and utilized to mitigate these key pitfalls. This paper discusses the verification of the FFMs and presents the tools that were developed to make the verification process more efficient and effective.
Wavelength dependence in radio-wave scattering and specular-point theory
NASA Technical Reports Server (NTRS)
Tyler, G. L.
1976-01-01
Radio-wave scattering from natural surfaces contains a strong quasispecular component that at fixed wavelengths is consistent with specular-point theory, but often has a strong wavelength dependence that is not predicted by physical optics calculations under the usual limitations of specular-point models. Wavelength dependence can be introduced by a physical approximation that preserves the specular-point assumptions with respect to the radii of curvature of a fictitious, effective scattering surface obtained by smoothing the actual surface. A uniform low-pass filter model of the scattering process yields explicit results for the effective surface roughness versus wavelength. Interpretation of experimental results from planetary surfaces indicates that the asymptotic surface height spectral densities fall at least as fast as an inverse cube of spatial frequency. Asymptotic spectral densities for Mars and portions of the lunar surface evidently decrease more rapidly.
NASA Astrophysics Data System (ADS)
McMahon, Allison; Sauncy, Toni
2008-10-01
Light manipulation is a very powerful tool in physics, biology, and chemistry. There are several physical principles underlying the apparatus known as the ``optical tweezers,'' the term given to using focused light to manipulate and control small objects. By carefully controlling the orientation and position of a focused laser beam, dielectric particles can be effectively trapped and manipulated. We have designed a cost efficient and effective undergraduate optical tweezers apparatus by using standard ``off the shelf'' components and starting with a standard undergraduate laboratory microscope. Images are recorded using a small CCD camera interfaced to a computer and controlled by LabVIEW^TM software. By using wave plates to produce circular polarized light, rotational motion can be induced in small particles of birefringent materials such as calcite and mica.
Park, Ki Byung; Shin, Joon-Shik; Lee, Jinho; Lee, Yoon Jae; Kim, Me-Riong; Lee, Jun-Hwan; Shin, Kyung-Min; Shin, Byung-Cheul; Cho, Jae-Heung; Ha, In-Hyuk
2017-04-15
.: Prospective observational 1-year study. .: To determine minimum clinically important difference (MCID) and substantial clinical benefit (SCB) of outcome measures in failed back surgery syndrome (FBSS) patients, as these metrics enable assessment of whether and when an intervention produces clinically meaningful effects in a patient. .: Several methods have been devised to quantify clinically important difference, but MCID and SCB for FBSS patients has yet to be determined. .: Patients with persisting/recurrent low back pain (LBP) and/or leg pain after lumbar surgery who completed 16 weeks of treatment (n = 105) at two hospitals in Korea from November 2011 to September 2014 were analyzed. Global perceived effect was used to determine receiver operating characteristic curves in visual analogue scale (VAS), Oswestry disability index (ODI), and short form-36 (SF-36) in an anchor-based approach. .: MCIDs for ODI, LBP and leg pain VAS, physical component summary, mental health component summary (MCS), and overall health scores of SF-36 were 9.0, 22.5, 27.5, 10.2, 4.0, and 8.9, and SCBs were 15.0, 32.5, 37.0, 19.7, 19.3, and 21.1, respectively. MCID and SCB area under the curve was ≥0.8, and ≥0.7, respectively. .: LBP and leg pain VAS, ODI, and physical component summary of SF-36 may be used to measure responsiveness in FBSS patients. 3.
Nindl, Bradley C; Alvar, Brent A; R Dudley, Jason; Favre, Mike W; Martin, Gerard J; Sharp, Marilyn A; Warr, Brad J; Stephenson, Mark D; Kraemer, William J
2015-11-01
The National Strength and Conditioning Association's tactical strength and conditioning program sponsored the second Blue Ribbon Panel on military physical readiness: military physical performance testing, April 18-19, 2013, Norfolk, VA. This meeting brought together a total of 20 subject matter experts (SMEs) from the U.S. Air Force, Army, Marine Corps, Navy, and academia representing practitioners, operators, researchers, and policy advisors to discuss the current state of physical performance testing across the Armed Services. The SME panel initially rated 9 common military tasks (jumping over obstacles, moving with agility, carrying heavy loads, dragging heavy loads, running long distances, moving quickly over short distances, climbing over obstacles, lifting heavy objects, loading equipment) by the degree to which health-related fitness components (e.g., aerobic fitness, muscular strength, muscular endurance, flexibility, and body composition) and skill-related fitness components (e.g., muscular power, agility, balance, coordination, speed, and reaction time) were required to accomplish these tasks. A scale from 1 to 10 (10 being highest) was used. Muscular strength, power, and endurance received the highest rating scores. Panel consensus concluded that (a) selected fitness components (particularly for skill-related fitness components) are currently not being assessed by the military; (b) field-expedient options to measure both health-based and skill-based fitness components are currently available; and (c) 95% of the panel concurred that all services should consider a tier II test focused on both health-related and skill-related fitness components based on occupational, functional, and tactical military performance requirements.
A course in tools and procedures for Physics I
NASA Astrophysics Data System (ADS)
Allie, Saalih; Buffler, Andy
1998-07-01
A one-semester course covering the tools, skills, and procedures that are required to engage meaningfully with first-year university physics is described. The course forms part of the Science Foundation Programme at the University of Cape Town which was set up to provide access to a science degree for students who have been educationally disadvantaged, part of the legacy of racial discrimination in South Africa. The course comprises three basic elements: a theoretical component, a laboratory-based experimental component, and a communication skills component. The theory component consists of the various mathematical techniques used in a calculus-based Physics I course, grouped into cognate areas so that each technique is presented immediately in the full range of contexts that will be encountered later on. Part of the theory component involves written explanations of the mathematical formalism. The focus of the communication skills component is on report writing which follows as a natural consequence of the laboratory tasks which have been restructured as problems necessitating an experimental investigation. The implementation of cooperative tutorial groups, which forms an integral part of the learning environment, is also discussed.
Determinants of quality of life in stroke survivors and their informal caregivers.
Jönsson, Ann-Cathrin; Lindgren, Ingrid; Hallström, Björn; Norrving, Bo; Lindgren, Arne
2005-04-01
We examined longitudinal changes of quality of life (QOL) covering physical and mental factors in an unselected group of stroke patients and their informal caregivers. Our hypothesis was that informal caregivers would have better QOL than patients at both follow-ups, and that changes, if any, would be related to the patients' status. QOL of 304 consecutive stroke patients and their 234 informal caregivers from the population-based Lund Stroke Register was assessed 4 months after stroke onset with the Short Form 36 (SF-36) questionnaire. SF-36 was repeated for both groups after 16 months together with Mini Mental State Examination (MMSE) and Geriatric Depression Scale (GDS-20) for patients. The patients' mean QOL scores improved between 4 and 16 months after stroke in the socio-emotional and mental SF-36 domains and decreased in the domain physical function. Multivariate analyses showed that the patients' most important determinants of QOL after 16 months were GDS-20 score, functional status, age, and gender. Informal caregivers had better QOL than patients except for the domain role emotional and the mental component summary. The caregivers' most important determinants of QOL were their own age and the patients' functional status. Our study highlights depressive symptoms in determining QOL of stroke patients. Despite self-perceived deterioration in physical function over time, several other components of QOL improved, suggesting internal adaptation to changes in their life situations. Informal caregivers of stroke patients may be under considerable strain as suggested by their lower emotional-mental scores.
Dissecting Magnetar Variability with Bayesian Hierarchical Models
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela; Brewer, Brendon J.; Hogg, David W.; Murray, Iain; Frean, Marcus; Elenbaas, Chris; Watts, Anna L.; Levin, Yuri; van der Horst, Alexander J.; Kouveliotou, Chryssa
2015-09-01
Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.
DISSECTING MAGNETAR VARIABILITY WITH BAYESIAN HIERARCHICAL MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huppenkothen, Daniela; Elenbaas, Chris; Watts, Anna L.
Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here,more » we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.« less
Motion estimation under location uncertainty for turbulent fluid flows
NASA Astrophysics Data System (ADS)
Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao
2018-01-01
In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.
NASA Astrophysics Data System (ADS)
Spencer, V. K.; Solie, D. J.
2010-12-01
Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.
Draper, Catherine E; Nemutandani, Simon M; Grimsrud, Anna T; Rudolph, Michael; Kolbe-Alexander, Tracy L; de Kock, Lauren; Lambert, Estelle V
2010-01-01
Chronic diseases, an increasing global concern, are prevalent in the low-income communities of South Africa, where rural health systems bear the double burden of infectious and chronic diseases. The Discovery Healthy Lifestyle Programme (DHLP) is a physical activity-based chronic disease prevention program that has been implemented in a low-income, rural setting in South Africa. The DHLP consists of both school- and primary healthcare clinic-based interventions for learners (Healthnutz) and adults (Live it Up), facilitated by teachers, nurses and community volunteers. The aim of this evaluation was to qualitatively assess the process by which the DHLP was implemented, identifying enabling factors and barriers. Data were collected in target communities at schools and clinics from semi-structured focus groups of program leaders and members, teachers and community members (n = 45), situational analyses of the school physical activity environment, informal community observations and informal interviews with program coordinators. The target communities faced socioeconomic and health inequalities and remained under-resourced and under-served. In spite of these and other challenges, the DHLP was well received by community members and stakeholders. It was valued by respondents for its health and psychosocial outcomes, evidenced by increased knowledge and awareness of the importance of physical activity and healthy lifestyles, and positively altered perceptions of physical activity. Program implementers believed the Live it Up component was growing, and this suggested the sustainability of the program. There were, however, some concerns about the fidelity of the Healthnutz intervention, due to timetabling difficulties. Despite this, teachers were positive about the program and its value for their learners, staff and school. The community characteristics of being under-resourced and under-served appeared to positively influence DHLP implementation. Local government involvement in the DHLP resulted in greater ownership of the program, which enabled successful implementation. This study presents a unique opportunity to assess the implementation and sustainability requirements of programs in environments of limited resources, considerable burden of infectious and chronic diseases and extensive socioeconomic challenges. The findings suggest that through enhancement of knowledge, transfer of appropriate skills and the provision of an enabling environment, participation in physical activity can be effectively promoted in a low-income, rural setting. Physical activity interventions that promote the participation and empowerment of rural communities can be feasible and accessible, thereby assisting in addressing the growing burden of chronic diseases in low-income.
Impact of implementing an EMR on physical exam documentation by ambulance personnel.
Katzer, R; Barton, D J; Adelman, S; Clark, S; Seaman, E L; Hudson, K B
2012-01-01
Georgetown University has a student run Emergency Medical Services (EMS) organization with over 100 emergency medical technicians (EMTs). We set out to determine whether implementing an electronic patient care report (ePCR) system was associated with improved physical exam documentation. This study evaluated documentation of the physical exam on prehospital patient care reports (PCRs). An ePCR system was implemented. ePCR documentation was compared to that of the previously used paper PCRs. This study looked retrospectively at 154 PCRs. 77 were hand written PCRs from before the electronic system. The PCRs involved chief complaints that were primarily respiratory, neurologic, or both. 77 ePCRs of matching chief complaint categories were used for comparison. Each chart was reviewed for completion of certain physical exam findings. The mean percentage of documented components from the ePCRs was compared to that of the hand written PCRs. The null hypothesis was that the absolute increase in the mean was not more than 20 percent. The two exclusion criteria were PCRs completed by study investigators after the design of the project and partially or completely missing PCRs. The absolute increase in mean physical exam component documentation was 36% (95% CI = 29-43%). A weighted kappa of 0.894 showed very good agreement between chart reviewers. This study rejected the null hypothesis that the ePCR system was associated with a mean increase of no more than 20%. It observed increase in physical exam documentation. Limitations of this study included the inability to determine whether documentation of physical exam findings reflected performance of the physical exam, and what components of the ePCR system bundle were responsible for the increase in physical exam component documentation.
Impact of implementing an EMR on physical exam documentation by ambulance personnel
Katzer, R.; Barton, D.J.; Adelman, S.; Clark, S.; Seaman, E.L.; Hudson, K.B.
2012-01-01
Objectives Georgetown University has a student run Emergency Medical Services (EMS) organization with over 100 emergency medical technicians (EMTs). We set out to determine whether implementing an electronic patient care report (ePCR) system was associated with improved physical exam documentation. Methods This study evaluated documentation of the physical exam on prehospital patient care reports (PCRs). An ePCR system was implemented. ePCR documentation was compared to that of the previously used paper PCRs. This study looked retrospectively at 154 PCRs. 77 were hand written PCRs from before the electronic system. The PCRs involved chief complaints that were primarily respiratory, neurologic, or both. 77 ePCRs of matching chief complaint categories were used for comparison. Each chart was reviewed for completion of certain physical exam findings. The mean percentage of documented components from the ePCRs was compared to that of the hand written PCRs. The null hypothesis was that the absolute increase in the mean was not more than 20 percent. The two exclusion criteria were PCRs completed by study investigators after the design of the project and partially or completely missing PCRs. Results The absolute increase in mean physical exam component documentation was 36% (95% CI = 29–43%). A weighted kappa of 0.894 showed very good agreement between chart reviewers. Conclusions This study rejected the null hypothesis that the ePCR system was associated with a mean increase of no more than 20%. It observed increase in physical exam documentation. Limitations of this study included the inability to determine whether documentation of physical exam findings reflected performance of the physical exam, and what components of the ePCR system bundle were responsible for the increase in physical exam component documentation. PMID:23646077
Morano, Milena; Colella, Dario; Rutigliano, Irene; Fiore, Pietro; Pettoello-Mantovani, Massimo; Campanozzi, Angelo
2012-01-01
Objectives (1) To examine relationships among changes in physical activity, physical fitness and some psychosocial determinants of activity behavior in a clinical sample of obese children involved in a multi-component program; (2) to investigate the causal relationship over time between physical activity and one of its strongest correlates (i.e. perceived physical ability). Methods Self-reported physical activity and health-related fitness tests were administered before and after a 9-month intervention in 24 boys and 20 girls aged 8 to 11 years. Individuals’ perceptions of strength, speed and agility were assessed using the Perceived Physical Ability Scale, while body image was measured using Collins’ Child Figure Drawings. Results Findings showed that body mass index, physical activity, performances on throwing and weight-bearing tasks, perceived physical ability and body image significantly improved after treatment among obese children. Gender differences were found in the correlational analyses, showing a link between actual and perceived physical abilities in boys, but not in girls. For the specific measurement interval of this study, perception of physical ability was an antecedent and not a potential consequence of physical activity. Conclusions Results indicate that a multi-component activity program not based merely on a dose-effect approach enhances adherence of the participants and has the potential to increase the lifelong exercise skills of obese children. Rather than focusing entirely on diet and weight loss, findings support the inclusion of interventions directed toward improving perceived physical ability that is predictive of subsequent physical activity. PMID:23239985
Handa, Tarun; Jhajra, Shalu; Bhagat, Shweta; Bharatam, P V; Chakraborti, Asit K; Singh, Saranjit
2017-03-20
Combination therapy with the use of fixed-dose combinations (FDCs) is evincing increasing interest of prescribers, manufacturers and even regulators, evidently due to the primary benefit of improved patient compliance. However, owing to potential of drug-drug interaction, FDCs require closer scrutiny with respect to their physical and chemical stability. Accordingly, the purpose of the present study was to explore stability behavior of a popular antihypertensive combination of amlodipine besylate (AML) and losartan potassium (LST). Physical mixtures of the two drugs and multiple marketed formulations were stored under accelerated conditions of temperature and humidity (40°C/75% RH) in a stability chamber and samples were withdrawn after 1 and 3 months. The physical changes were observed visibly, while chemical changes were monitored by HPLC employing a method that could separate the two drugs and all other components present. The combination revealed strong physical instability and also chemical degradation of AML in the presence of LST. Interestingly, three isomeric interaction products of AML were formed in the combination, which otherwise were reported in the literature to be generated on exposure of AML free base above its melting point. The same unusual products were even formed when multiple marketed FDCs were stored under accelerated conditions outside their storage packs. However, these were absent when AML alone was stored in the same studied conditions. Therefore, reasons for physical and chemical incompatibility and the mechanism of degradation of AML in the presence of LST were duly explored at the molecular level. The outcomes of the study are expected to help in development of stable FDCs of the two drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Are biological effects of desert shrubs more important than physical effects on soil microorganisms?
Berg, Naama; Steinberger, Yosef
2010-01-01
Vegetation cover plays a major role in providing organic matter and in acting as a physical barrier, with both together contributing to the formation of "fertile islands," which play an active role in prolonging biological activity in desert ecosystems. By undertaking this study, a longterm research, we designed an experiment to separate the two components-the physical and biotic parts of the perennial plants-and to identify the factor that contributes the most to the ecosystem. The study site was located in the northern Negev Desert, Israel, where 50 Hammada scoparia shrubs and 50 artificial plants were randomly marked. Soil samples were collected monthly over 3 years of research at three locations: under the canopy of H. scoparia shrubs, in the vicinity of the artificial plants, and between the shrubs (control). The contribution to microbial activity was measured by evaluation of the microbial community functions in soil. The functional aspects of the microbial community that were measured were CO2 evolution, microbial biomass, microbial functional diversity, and the physiological profile of the community. The results of this study are presented in two ways: (1) according to the three locations/treatments; and (2) according to the phenological situation of the vegetation (annual and perennial plants) in the research field: the growing phase, the drying process, and the absence of annual plants. The only parameters that were found to affect microbial activity were the contribution of the organic matter of perennial shrubs and the growth of vegetation (annual and perennial) during the growing seasons. The physical component was found to have no effect on soil microbial functional diversity, which elucidates the important contribution of the desert shrub in enhancing biological multiplicity and activity.
Ramírez-Godínez, Juan; Jaimez-Ordaz, Judith; Castañeda-Ovando, Araceli; Añorve-Morga, Javier; Salazar-Pereda, Verónica; González-Olivares, Luis Guillermo; Contreras-López, Elizabeth
2017-03-01
Since ancient times, ginger (Zingiber officinale) has been widely used for culinary and medicinal purposes. This rhizome possesses several chemical constituents; most of them present antioxidant capacity due mainly to the presence of phenolic compounds. Thus, the physical conditions for the optimal extraction of antioxidant components of ginger were investigated by applying a Box-Behnken experimental design. Extracts of ginger were prepared using water as solvent in a conventional solid-liquid extraction. The analyzed variables were time (5, 15 and 25 min), temperature (20, 55 and 90 °C) and sample concentration (2, 6 and 10 %). The antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl method and a modified ferric reducing antioxidant power assay while total phenolics were measured by Folin & Ciocalteu's method. The suggested experimental design allowed the acquisition of aqueous extracts of ginger with diverse antioxidant activity (100-555 mg Trolox/100 g, 147-1237 mg Fe 2+ /100 g and 50-332 mg gallic acid/100 g). Temperature was the determining factor in the extraction of components with antioxidant activity, regardless of time and sample quantity. The optimal physical conditions that allowed the highest antioxidant activity were: 90 °C, 15 min and 2 % of the sample. The correlation value between the antioxidant activity by ferric reducing antioxidant power assay and the content of total phenolics was R 2 = 0.83. The experimental design applied allowed the determination of the physical conditions under which ginger aqueous extracts liberate compounds with antioxidant activity. Most of them are of the phenolic type as it was demonstrated through the correlation established between different methods used to measure antioxidant capacity.
Linking Physical Climate Research and Economic Assessments of Mitigation Policies
NASA Astrophysics Data System (ADS)
Stainforth, David; Calel, Raphael
2017-04-01
Evaluating climate change policies requires economic assessments which balance the costs and benefits of climate action. A certain class of Integrated Assessment Models (IAMS) are widely used for this type of analysis; DICE, PAGE and FUND are three of the most influential. In the economics community there has been much discussion and debate about the economic assumptions implemented within these models. Two aspects in particular have gained much attention: i) the costs of damages resulting from climate change - the so-called damage function, and ii) the choice of discount rate applied to future costs and benefits. There has, however, been rather little attention given to the consequences of the choices made in the physical climate models within these IAMS. Here we discuss the practical aspects of the implementation of the physical models in these IAMS, as well as the implications of choices made in these physical science components for economic assessments[1]. We present a simple breakdown of how these IAMS differently represent the climate system as a consequence of differing underlying physical models, different parametric assumptions (for parameters representing, for instance, feedbacks and ocean heat uptake) and different numerical approaches to solving the models. We present the physical and economic consequences of these differences and reflect on how we might better incorporate the latest physical science understanding in economic models of this type. [1] Calel, R. and Stainforth D.A., "On the Physics of Three Integrated Assessment Models", Bulletin of the American Meteorological Society, in press.
Preparticipation screening - the sports physical therapy perspective.
Sanders, Barbara; Blackburn, Turner A; Boucher, Brenda
2013-04-01
The sports physical therapist (SPT) is uniquely qualified to participate in the provision of preparticipation physical examinations (PPE). The PPE is recommended prior to athletic participation and required by many jurisdictions. There is little research to support the process and components; however, a number of professional organizations have recommendations that direct the PPE process. This clinical commentary highlights the role of the sports physical therapist and current evidence related to the preparticipation physical examination process. Data sources were limited to include professional positions and peer reviewed publications from 1988 through January 2013. Preparticipation physicals should be useful, comprehensive, and cost effective for the athlete and the health care team. Additional research is indicated in many of the areas of the PPE. The SPT is a valuable member of the health care team and can be a primary facilitator of the PPE in concert with the physician, athletic trainer, athletic organization administrators, and others. Well-designed and inclusive PPEs can be provided to meet the major objectives of identification of athletes at risk. Controversy continues over the extent of the cardiac screening component as well as other sport or athlete specific components. 5.
Tipping elements in the Earth's climate system
Lenton, Timothy M.; Held, Hermann; Kriegler, Elmar; Hall, Jim W.; Lucht, Wolfgang; Rahmstorf, Stefan; Schellnhuber, Hans Joachim
2008-01-01
The term “tipping point” commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here we introduce the term “tipping element” to describe large-scale components of the Earth system that may pass a tipping point. We critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and we assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then we explain how, in principle, early warning systems could be established to detect the proximity of some tipping points. PMID:18258748
Embedded wireless sensors for turbomachine component defect monitoring
Tralshawala, Nilesh; Sexton, Daniel White
2015-11-24
Various embodiments include detection systems adapted to monitor at least one physical property of a component in a turbomachine. In some embodiments a detection system includes at least one sensor configured to be affixed to a component of a turbomachine, the at least one sensor for sensing information regarding at least one physical property of the turbomachine component during operation of the turbomachine, a signal converter communicatively coupled to the at least one sensor and at least one RF communication device configured to be affixed to a stationary component of the turbomachine, the radio frequency communication device configured to communicate with the at least one signal converter via an RF antenna coupled to the signal converter.
A bottom-up approach to urban metabolism: the perspective of BRIDGE
NASA Astrophysics Data System (ADS)
Chrysoulakis, N.; Borrego, C.; San Josè, R.; Grimmond, S. B.; Jones, M. B.; Magliulo, V.; Klostermann, J.; Santamouris, M.
2011-12-01
Urban metabolism considers a city as a system and usually distinguishes between energy and material flows as its components. "Metabolic" studies are usually top-down approaches that assess the inputs and outputs of food, water, energy, and pollutants from a city, or that compare the changing metabolic process of several cities. In contrast, bottom-up approaches are based on quantitative estimates of urban metabolism components at local to regional scales. Such approaches consider the urban metabolism as the 3D exchange and transformation of energy and matter between a city and its environment. The city is considered as a system and the physical flows between this system and its environment are quantitatively estimated. The transformation of landscapes from primarily agricultural and forest uses to urbanized landscapes can greatly modify energy and material exchanges and it is, therefore, an important aspect of an urban area. Here we focus on the exchanges and transformation of energy, water, carbon and pollutants. Recent advances in bio-physical sciences have led to new methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, there is often poor communication of new knowledge and its implications to end-users, such as planners, architects and engineers. The FP7 Project BRIDGE (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aims at bridging this gap and at illustrating the advantages of considering environmental issues in urban planning. BRIDGE does not perform a complete life cycle analysis or calculate whole system urban metabolism, but rather focuses on specific metabolism components (energy, water, carbon and pollutants). Its main goal is the development of a Decision Suport System (DSS) with the potential to select planning actions which better fit the goal of changing the metabolism of urban systems towards sustainability. BRIDGE evaluates how planning alternatives can modify the physical flows of the above urban metabolism components under consideration in five European cities: Helsinki, Athens, London, Firenze and Gliwice. A Multi-Criteria Evaluation approach has been adopted. To cope with the complexity of urban metabolism issues, objectives are defined in relation to the interactions between the environmental elements (fluxes of energy, water, carbon and pollutants) and socio-economic components (investment costs, housing, employment, etc.) of urban sustainability.
NASA Astrophysics Data System (ADS)
Heeter, Ann E.
Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.
Adequate mathematical modelling of environmental processes
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.
2012-04-01
In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same problems are constructed. They include regular perturbed function describing large scale component and a rich family of singular perturbed function corresponding to fine flow components. Solutions are compared with data of laboratory experiments performed on facilities USU "HPC IPMec RAS" under support of Ministry of Education and Science RF (Goscontract No. 16.518.11.7059). Related problems of completeness and accuracy of laboratory and environmental measurements are discussed.
Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; ...
2016-08-12
Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysismore » is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.« less
A Writing and Ethics Component for a Quantum Mechanics, Physical Chemistry Course
ERIC Educational Resources Information Center
Reilly, John T.; Strickland, Michael
2010-01-01
A writing-across-the-curriculum and ethics component is presented for a second-semester, physical chemistry course. The activity involves introducing ethical issues pertinent to scientists. Students are asked to read additional material, participate in discussions, and write essays and a paper on an ethical issue. The writing and discussion…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Richard L.; Kochunas, Brendan; Adams, Brian M.
The Virtual Environment for Reactor Applications components included in this distribution include selected computational tools and supporting infrastructure that solve neutronics, thermal-hydraulics, fuel performance, and coupled neutronics-thermal hydraulics problems. The infrastructure components provide a simplified common user input capability and provide for the physics integration with data transfer and coupled-physics iterative solution algorithms.
Dimensions of emotional intelligence related to physical and mental health and to health behaviors
Fernández-Abascal, Enrique G.; Martín-Díaz, María Dolores
2015-01-01
In this paper the relationship between emotional intelligence (EI) and health is examined. The current work investigated the dimensions of EI are sufficient to explain various components of physical and mental health, and various categories of health-related behaviors. A sample of 855 participants completed two measures of EI, the Trait Meta-Mood Scale and trait emotional intelligence questionnaire, a measure of health, the Health Survey SF-36 Questionnaire (SF-36); and a measure of health-related behaviors, the health behavior checklist. The results show that the EI dimensions analyzed are better predictors of mental health than of physical health. The EI dimensions that positively explain the Mental Health Component are Well-Being, Self-Control and Sociability, and negatively, Attention. Well-Being, Self-Control and Sociability positively explain the Physical Health Component. EI dimensions predict a lower percentage of health-related behaviors than they do health components. Emotionality and Repair predict the Preventive Health Behavior category, and only one dimension, Self-Control, predicts the Risk Taking Behavior category. Older people carry out more preventive behaviors for health. PMID:25859229
Low Order Modeling Tools for Preliminary Pressure Gain Combustion Benefits Analyses
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2012-01-01
Pressure gain combustion (PGC) offers the promise of higher thermodynamic cycle efficiency and greater specific power in propulsion and power systems. This presentation describes a model, developed under a cooperative agreement between NASA and AFRL, for preliminarily assessing the performance enhancement and preliminary size requirements of PGC components either as stand-alone thrust producers or coupled with surrounding turbomachinery. The model is implemented in the Numerical Propulsion Simulation System (NPSS) environment allowing various configurations to be examined at numerous operating points. The validated model is simple, yet physics-based. It executes quickly in NPSS, yet produces realistic results.
Archival-grade optical disc design and international standards
NASA Astrophysics Data System (ADS)
Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo
2015-09-01
Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.
Overview of Threats and Failure Models for Safety-Relevant Computer-Based Systems
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2015-01-01
This document presents a high-level overview of the threats to safety-relevant computer-based systems, including (1) a description of the introduction and activation of physical and logical faults; (2) the propagation of their effects; and (3) function-level and component-level error and failure mode models. These models can be used in the definition of fault hypotheses (i.e., assumptions) for threat-risk mitigation strategies. This document is a contribution to a guide currently under development that is intended to provide a general technical foundation for designers and evaluators of safety-relevant systems.
[Students' physical activity: an analysis according to Pender's health promotion model].
Guedes, Nirla Gomes; Moreira, Rafaella Pessoa; Cavalcante, Tahissa Frota; de Araujo, Thelma Leite; Ximenes, Lorena Barbosa
2009-12-01
The objective of this study was to describe the everyday physical activity habits of students and analyze the practice of physical activity and its determinants, based on the first component of Pender's health promotion model. This cross-sectional study was performed from 2004 to 2005 with 79 students in a public school in Fortaleza, Ceará, Brazil. Data collection was performed by interviews and physical examinations. The data were analyzed according to the referred theoretical model. Most students (n=60) were physically active. Proportionally, adolescents were the most active (80.4%). Those with a sedentary lifestyle had higher rates for overweight and obesity (21.1%). Many students practiced outdoor physical activities, which did not require any physical structure and good financial conditions. The results show that it is possible to associate the first component of Pender's health promotion model with the everyday lives of students in terms of the physical activity practice.
NASA Astrophysics Data System (ADS)
Resseguier, V.; Memin, E.; Chapron, B.; Fox-Kemper, B.
2017-12-01
In order to better observe and predict geophysical flows, ensemble-based data assimilation methods are of high importance. In such methods, an ensemble of random realizations represents the variety of the simulated flow's likely behaviors. For this purpose, randomness needs to be introduced in a suitable way and physically-based stochastic subgrid parametrizations are promising paths. This talk will propose a new kind of such a parametrization referred to as modeling under location uncertainty. The fluid velocity is decomposed into a resolved large-scale component and an aliased small-scale one. The first component is possibly random but time-correlated whereas the second is white-in-time but spatially-correlated and possibly inhomogeneous and anisotropic. With such a velocity, the material derivative of any - possibly active - tracer is modified. Three new terms appear: a correction of the large-scale advection, a multiplicative noise and a possibly heterogeneous and anisotropic diffusion. This parameterization naturally ensures attractive properties such as energy conservation for each realization. Additionally, this stochastic material derivative and the associated Reynolds' transport theorem offer a systematic method to derive stochastic models. In particular, we will discuss the consequences of the Quasi-Geostrophic assumptions in our framework. Depending on the turbulence amount, different models with different physical behaviors are obtained. Under strong turbulence assumptions, a simplified diagnosis of frontolysis and frontogenesis at the surface of the ocean is possible in this framework. A Surface Quasi-Geostrophic (SQG) model with a weaker noise influence has also been simulated. A single realization better represents small scales than a deterministic SQG model at the same resolution. Moreover, an ensemble accurately predicts extreme events, bifurcations as well as the amplitudes and the positions of the simulation errors. Figure 1 highlights this last result and compares it to the strong error underestimation of an ensemble simulated from the deterministic dynamic with random initial conditions.
Reliability of the individual components of the Canadian Armed Forces Physical Employment Standard.
Stockbrugger, Barry G; Reilly, Tara J; Blacklock, Rachel E; Gagnon, Patrick J
2018-01-29
This investigation recruited 24 participants from both the Canadian Armed Forces (CAF) and civilian populations to complete 4 separate trials at "best effort" of each of the 4 components in the CAF Physical Employment Standard named the FORCE Evaluation: Fitness for Operational Requirements of CAF Employment. Analyses were performed to examine the level of variability and reliability within each component. The results demonstrate that candidates should be provided with at least 1 retest if they have recently completed at least 2 previous best effort attempts as per the protocol. In addition, the minimal detectable difference is given for each of the 4 components in seconds which identifies the threshold for subsequent action, either retest or remedial training, for those unable to meet the minimum standard. These results will educate the delivery of this employment standard, function as a method of accommodation, in addition to providing direction for physical training programs.
Actively controlling coolant-cooled cold plate configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Parida, Pritish R.
A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumptionmore » used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.« less
Physical Activity during the School Day
ERIC Educational Resources Information Center
Castelli, Darla M.; Ward, Kimberly
2012-01-01
In response to concerns that children are physically inactive, a Centers for Disease Control and Prevention committee developed school-based implementation strategies centered on the components of a Comprehensive School Physical Activity Program (CSPAP), composed of the physical education program, physical activity during the school day, staff…
Oesch, Peter; Meyer, Kathrin; Jansen, Beatrice; Mowinckel, Petter; Bachmann, Stefan; Hagen, Kare Birger
2012-02-15
Analytical cross-sectional study. To assess the association of "nonorganic somatic components" together with physical and other psychosocial factors on functional capacity evaluation (FCE) in patients with chronic nonspecific low back pain (NSLBP) undergoing fitness-for-work evaluation. Functional capacity evaluation is increasingly used for physical fitness-for-work evaluation in patients with chronic NSLBP, but results seem to be influenced by physical as well as psychosocial factors. The influence of nonorganic somatic components together with physical and other psychosocial factors on FCE performance has not yet been investigated. One hundred twenty-six patients with chronic NSLBP referred for physical fitness-for-work evaluation were included. The 4 FCE tests were lifting from floor to waist, forward bend standing, grip strength, and 6-minute walking. Nonorganic somatic components were assessed with the 8 nonorganic somatic signs as defined by Waddell and were adjusted for age, sex, days off work, salary in the previous occupation, pain intensity, fear avoidance belief, and perceived functional ability in multivariate regression analyses. Between 42% and 58% of the variation in the FCE tests was explained in the final multivariate regression models. Nonorganic somatic components were consistent independent predictors for all tests. Their influence was most important on forward bend standing and walking distance, and less on grip strength and lifting performance. The physical factors of age and/or sex were strongly associated with grip strength and lifting, less with walking distance, and not at all with forward bend standing. The influence of at least 1 other psychosocial factor was observed in all FCE tests, having the highest proportion in the 6-minute walking test. Nonorganic somatic components seem to be consistent independent predictors in FCE testing and should be considered for interpretation of test results.
Tilson, Julie K; Mickan, Sharon
2014-06-25
There is a need for theoretically grounded and evidence-based interventions that enhance the use of research evidence in physical therapist practice. This paper and its companion paper introduce the Physical therapist-driven Education for Actionable Knowledge translation (PEAK) program, an educational program designed to promote physical therapists' integration of research evidence into clinical decision-making. The pedagogical foundations for the PEAK educational program include Albert Bandura's social cognitive theory and Malcolm Knowles's adult learning theory. Additionally, two complementary frameworks of knowledge translation, the Promoting Action on Research Implementation in Health Services (PARiHS) and Knowledge to Action (KTA) Cycle, were used to inform the organizational elements of the program. Finally, the program design was influenced by evidence from previous attempts to facilitate the use of research in practice at the individual and organizational levels. The 6-month PEAK program consisted of four consecutive and interdependent components. First, leadership support was secured and electronic resources were acquired and distributed to participants. Next, a two-day training workshop consisting of didactic and small group activities was conducted that addressed the five steps of evidence based practice. For five months following the workshop, participants worked in small groups to review and synthesize literature around a group-selected area of common clinical interest. Each group contributed to the generation of a "Best Practices List" - a list of locally generated, evidence-based, actionable behaviors relevant to the groups' clinical practice. Ultimately, participants agreed to implement the Best Practices List in their clinical practice. This, first of two companion papers, describes the underlying pedagogical theories, knowledge translation frameworks, and research evidence used to derive the PEAK program - an educational program designed to promote the use of research evidence to inform physical therapist practice. The four components of the program are described in detail. The companion paper reports the results of a mixed methods feasibility analysis of this complex educational intervention.
Physical activity patterns and metabolic syndrome in Costa Rica
Hastert, Theresa A.; Gong, Jian; Campos, Hannia; Baylin, Ana
2015-01-01
Objective To examine whether total physical activity or activity patterns are associated with metabolic syndrome and its components. Methods Participants include 1,994 controls from a case-control study of non-fatal myocardial infarction in Costa Rica (1994–2004). Physical activity was assessed via self-administered questionnaire and patterns were identified using principal components analysis. Metabolic syndrome was assessed via blood samples and anthropometry measurements from in-home study visits. Prevalence ratios (PR) and 95% confidence intervals (CI) were calculated using log binomial regression. Adjusted least squares means of metabolic syndrome components were calculated by quintile of total activity and pattern scores. Results Four activity patterns were identified: rest/sleep, agricultural, light indoor activity, and manual labor. Total activity was not associated with metabolic syndrome. Metabolic syndrome prevalence was 20% lower in participants with the highest scores on the agricultural job pattern compared to those with the lowest (PR: 0.80, 95% CI: 0.68–0.94). Higher total activity was associated with lower triglycerides and lower HDL cholesterol. Higher scores on each pattern were inversely associated with metabolic syndrome components, particularly waist circumference and fasting blood glucose. Conclusions Patterns or types of physical activity may be more strongly associated with metabolic syndrome and its components than total activity levels. PMID:25445330
Software packager user's guide
NASA Technical Reports Server (NTRS)
Callahan, John R.
1995-01-01
Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.
The N400 and the P300 are not all that independent.
Arbel, Yael; Spencer, Kevin M; Donchin, Emanuel
2011-06-01
This study assessed whether two ERP components that are elicited by unexpected events interact. The conditions that are known to elicit the N400 and the P300 ERP components were applied separately and in combination to terminal-words in sentences. Each sentence ended with a terminal-word that was highly expected, semantically unexpected, physically deviant, or both semantically unexpected and physically deviant. In addition, we varied the level of semantic relatedness between the unexpected terminal-words and the expected exemplars. Physically deviant words elicited a P300, whereas semantically unexpected words elicited an N400, whose amplitude was sensitive to the level of semantic relatedness. Words that were both semantically unexpected and physically deviant elicited both an N400 with enhanced amplitude, and a P300 with reduced amplitude. These results suggest an interaction between the processes manifested by the two components. Copyright © 2010 Society for Psychophysiological Research.
Magallares, Alejandro; Schomerus, Georg
2015-01-01
In this meta-analysis, we review studies that compare mental and physical health-related quality of life measured with the Short-Form 36 of obese patients before and after bariatric surgery with a follow-up measure until one year. Twenty-one studies were selected to conduct the meta-analysis about the relationship between quality of life in obesity before (2680 subjects) and after (2251 subjects) bariatric surgery. Results reveal that obese patients scored less in the mental health component of the Short-Form 36 before bariatric surgery than after (d = -9.00). The same pattern could be observed in the case of the physical health component of the Short-Form 36 (d = -22.84). The results show the strong improvement that obese patients experience in both mental and physical components of the Short-Form 36 after receiving bariatric surgery.
Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M
2015-05-01
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.
2015-05-15
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less
NASA Astrophysics Data System (ADS)
Tornambe, Amedeo
1989-08-01
Theoretical rates of mergings of envelope-deprived components of binary systems, which can give rise to supernova events are described. The effects of the various assumptions on the physical properties of the progenitor system and of its evolutionary behavior through common envelope phases are discussed. Four cases have been analyzed: CO-CO, He-CO, He-He double degenerate mergings and He star-CO dwarf merging. It is found that, above a critical efficiency of the common envelope action in system shrinkage, the rate of CO-CO mergings is not strongly sensitive to the efficiency. Below this critical value, no CO-CO systems will survive for times larger than a few Gyr. In contrast, He-CO dwarf systems will continue to merge at a reasonable rate up to 20 Gyr, and more, also under extreme conditions.
Morphological instability of a thermophoretically growing deposit
NASA Technical Reports Server (NTRS)
Castillo, Jose L.; Garcia-Ybarra, Pedro L.; Rosner, Daniel E.
1992-01-01
The stability of the planar interface of a structureless solid growing from a depositing component dilute in a carrier fluid is studied when the main solute transport mechanism is thermal (Soret) diffusion. A linear stability analysis, carried out in the limit of low growth Peclet number, leads to a dispersion relation which shows that the planar front is unstable either when the thermal diffusion factor of the condensing component is positive and the latent heat release is small or when the thermal diffusion factor is negative and the solid grows over a thermally-insulating substrate. Furthermore, the influence of interfacial energy effects and constitutional supersaturation in the vicinity of the moving interface is analyzed in the limit of very small Schmidt numbers (small solute Fickian diffusion). The analysis is relevant to physical vapor deposition of very massive species on cold surfaces, as in recent experiments of organic solid film growth under microgravity conditions.
Teaching Astronomy Classes and Labs in a Smart Classroom
NASA Astrophysics Data System (ADS)
Gugliucci, Nicole E.
2017-01-01
Saint Anselm College is a small liberal arts college in New Hampshire with an enrollment of approximately 1900 students. All students are required to take one science course with a laboratory component. Introduction to Astronomy is now being offered in regular rotation in the Department of Physics, taking advantage of the new "smart" classrooms with the technology and set up to encourage active learning. These classrooms seat 25 students and feature 5 "pods," each with their own screen that can be hooked up to a student computer or one of the iPads available to the professor. I will present how these classrooms are used for Introduction to Astronomy and related courses under development for active learning. Since the class requires a laboratory component and New Hampshire weather is notably unpredictable, the smart classroom offers an alternative using freely available computer simulations to allow for an alternative indoor laboratory experience.
Airframe-Jet Engine Integration Noise
NASA Technical Reports Server (NTRS)
Tam, Christopher; Antcliff, Richard R. (Technical Monitor)
2003-01-01
It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.
Statistics of energy partitions for many-particle systems in arbitrary dimension
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Lombardi, Andrea; Sevryuk, Mikhail B.
2014-05-01
In some previous articles, we defined several partitions of the total kinetic energy T of a system of N classical particles in ℝ d into components corresponding to various modes of motion. In the present paper, we propose formulas for the mean values of these components in the normalization T = 1 (for any d and N) under the assumption that the masses of all the particles are equal. These formulas are proven at the "physical level" of rigor and numerically confirmed for planar systems ( d = 2) at 3 ⩽ N ⩽ 100. The case where the masses of the particles are chosen at random is also considered. The paper complements our article of 2008 [Russian J. Phys. Chem. B, 2(6):947-963] where similar numerical experiments were carried out for spatial systems ( d = 3) at 3 ⩽ N ⩽ 100.
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Chapman, Scott C.; Steidel, Charles C.; Golob, Anneya; Casey, Caitlin M.; Smith, Daniel J. B.; Zitrin, Adi; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Coppin, Kristen E. K.; Farrah, Duncan; Ibar, Eduardo; Michałowski, Michał J.; Sawicki, Marcin; Scott, Douglas; van der Werf, Paul; Fazio, Giovanni G.; Geach, James E.; Gurwell, Mark; Petitpas, Glen; Wilner, David J.
2018-05-01
Interferometric observations have demonstrated that a significant fraction of single-dish submillimetre (submm) sources are blends of multiple submm galaxies (SMGs), but the nature of this multiplicity, i.e. whether the galaxies are physically associated or chance projections, has not been determined. We performed spectroscopy of 11 SMGs in six multicomponent submm sources, obtaining spectroscopic redshifts for nine of them. For an additional two component SMGs, we detected continuum emission but no obvious features. We supplement our observed sources with four single-dish submm sources from the literature. This sample allows us to statistically constrain the physical nature of single-dish submm source multiplicity for the first time. In three (3/7, { or} 43^{+39 }_{ -33} {per cent at 95 {per cent} confidence}) of the single-dish sources for which the nature of the blending is unambiguous, the components for which spectroscopic redshifts are available are physically associated, whereas 4/7 (57^{+33 }_{ -39} per cent) have at least one unassociated component. When components whose spectra exhibit continuum but no features and for which the photometric redshift is significantly different from the spectroscopic redshift of the other component are also considered, 6/9 (67^{+26 }_{ -37} per cent) of the single-dish sources are comprised of at least one unassociated component SMG. The nature of the multiplicity of one single-dish source is ambiguous. We conclude that physically associated systems and chance projections both contribute to the multicomponent single-dish submm source population. This result contradicts the conventional wisdom that bright submm sources are solely a result of merger-induced starbursts, as blending of unassociated galaxies is also important.
Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai
2015-02-01
Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.
Houston, Megan N; Hoch, Johanna M; Van Lunen, Bonnie L; Hoch, Matthew C
2015-11-01
The Disablement in the Physically Active scale (DPA) is a generic patient-reported outcome designed to evaluate constructs of disability in physically active populations. The purpose of this study was to analyze the DPA scale structure for summary components. Four hundred and fifty-six collegiate athletes completed a demographic form and the DPA. A principal component analysis (PCA) was conducted with oblique rotation. Factors with eigenvalues >1 that explained >5 % of the variance were retained. The PCA revealed a two-factor structure consistent with paradigms used to develop the original DPA. Items 1-12 loaded on Factors 1 and Items 13-16 loaded on Factor 2. Items 1-12 pertain to impairment, activity limitations, and participation restrictions. Items 13-16 address psychosocial and emotional well-being. Consideration of item content suggested Factor 1 concerned physical function, while Factor 2 concerned mental well-being. Thus, items clustered around Factor 1 and 2 were identified as physical (DPA-PSC) and mental (DPA-MSC) summary components, respectively. Together, the factors accounted for 65.1 % of the variance. The PCA revealed a two-factor structure for the DPA that resulted in DPA-PSC and DPA-MSC. Analyzing the DPA as separate constructs may provide distinct information that could help to prescribe treatment and rehabilitation strategies.
Igwesi-Chidobe, Chinonso N; Godfrey, Emma L; Kengne, Andre P
2015-08-12
Chronic non-communicable diseases (NCDs) account for a high burden of mortality and morbidity in Africa. Evidence-based clinical guidelines recommend exercise training and promotion of physical activity behaviour changes to control NCDs. Developing such interventions in Africa requires an understanding of the essential components that make them effective in this context. This is a protocol for a systematic mixed studies review that aims to determine the effective components of exercise and physical activity-related behaviour-change interventions for chronic diseases in Africa, by combining quantitative and qualitative research evidence from studies published until July 2015. We will conduct a detailed search to identify all published and unpublished studies that assessed the effects of exercise and physical activity-related interventions or the experiences/perspectives of patients to these interventions for NCDs from bibliographic databases and the grey literature. Bibliographic databases include MEDLINE, EMBASE, CENTRAL (Cochrane Central Register of Controlled Trials), PsycINFO, CINAHL and Web of Science. We will include the following African regional databases: African Index Medicus (AIM) and AFROLIB, which is the WHO's regional office database for Africa. The databases will be searched from inception until 18 July 2015. Appraisal of study quality will be performed after results synthesis. Data synthesis will be performed independently for quantitative and qualitative data using a mixed methods sequential explanatory synthesis for systematic mixed studies reviews. Meta-analysis will be conducted for the quantitative studies, and thematic synthesis for qualitative studies and qualitative results from the non-controlled observational studies. The primary outcome will include exercise adherence and physical activity behaviour changes. This review protocol is reported according to Preferred Reporting Items for Systematic reviews and Meta-Analysis protocols (PRISMA-P) 2015 guidelines. There is no ethical requirement for this study, as it utilises published data. This review is expected to inform the development of exercise and physical activity-related behaviour-change interventions in Africa, and will be presented at conferences, and published in peer reviewed journals and a PhD thesis at King's College London. This study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 22 January 2015 (registration number: PROSPERO 2015: CRD42015016084). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Assessing and Increasing Physical Activity
ERIC Educational Resources Information Center
Van Camp, Carole M.; Hayes, Lynda B.
2012-01-01
Increasing physical activity is a crucial component of any comprehensive approach to combat the growing obesity epidemic. This review summarizes recent behavioral research on the measurement of physical activity and interventions aimed at increasing physical activity and provides directions for future research.
Burnett-Cattaneo continuum theory for shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2011-02-01
We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society
Mission Applicability Assessment of Integrated Power Components and Systems
NASA Technical Reports Server (NTRS)
Raffaelle, R. P.; Hepp, A. F.; Landis, G. A.; Hoffman, D. J.
2002-01-01
The need for smaller lightweight autonomous power systems has recently increased with the increasing focus on micro- and nanosatellites. Small area high-efficiency thin film batteries and solar cells are an attractive choice for such applications. The NASA Glenn Research Center, Johns Hopkins Applied Physics Laboratory, Lithium Power Technologies, MicroSat Systems, and others, have been working on the development of autonomous monolithic packages combining these elements or what are called integrated power supplies (IPS). These supplies can be combined with individual satellite components and are capable of providing continuous power even under intermittent illumination associated with a spinning or Earth orbiting satellite. This paper discusses the space mission applicability, benefits, and current development efforts associated with integrated power supply components and systems. The characteristics and several mission concepts for an IPS that combines thin-film photovoltaic power generation with thin-film lithium ion energy storage are described. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be for small "nanosatellites" or in specialized applications serving as a decentralized or as a distributed power source or uninterruptible power supply.
An Open Source Low-Cost Automatic System for Image-Based 3d Digitization
NASA Astrophysics Data System (ADS)
Menna, F.; Nocerino, E.; Morabito, D.; Farella, E. M.; Perini, M.; Remondino, F.
2017-11-01
3D digitization of heritage artefacts, reverse engineering of industrial components or rapid prototyping-driven design are key topics today. Indeed, millions of archaeological finds all over the world need to be surveyed in 3D either to allow convenient investigations by researchers or because they are inaccessible to visitors and scientists or, unfortunately, because they are seriously endangered by wars and terrorist attacks. On the other hand, in case of industrial and design components there is often the need of deformation analyses or physical replicas starting from reality-based 3D digitisations. The paper is aligned with these needs and presents the realization of the ORION (arduinO Raspberry pI rOtating table for image based 3D recostructioN) prototype system, with its hardware and software components, providing critical insights about its modular design. ORION is an image-based 3D reconstruction system based on automated photogrammetric acquisitions and processing. The system is being developed under a collaborative educational project between FBK Trento, the University of Trento and internship programs with high school in the Trentino province (Italy).
Development of nanostructures on plasma facing components
NASA Astrophysics Data System (ADS)
Ruzic, David; Fiflis, Peter; Kalathiparambil, Kishor Kumar
2015-11-01
Exposure to low temperature helium plasma, with parameters similar to tokamak edge plasmas, have been found to induce the growth of nanostructures on tungsten. These nanostructures results in an increase in the effective surface area, and will alter the physical properties of the components. Although this has several potential applications in the industrial scenario, it is an undesired effect for fusion reactor components, and is hence necessary to understand their growth mechanisms in order to figure out suitable remedial schemes. Work done using a high density, low temperature helicon discharge plasma source with a resistively heated tungsten wire immersed in the discharge as the substrate have demonstrated the well-defined stages of the growth as a function of total fluence. The required fluence was attained by extending the exposure time. Extensive research work has also shown that a variety of other materials are also prone to develop such structures under similar conditions. In the present work, the effect of the experimental conditions on the various stages of structure development will be presented and a comparison between the structures developed on different types of substrates will be shown.
SRS Computer Animation and Drive Train System
NASA Technical Reports Server (NTRS)
Arthun, Daniel; Schachner, Christian
2001-01-01
The spinning rocket simulator (SRS) is an ongoing project at Oral Roberts University. The goal of the SRS is to gather crucial data concerning a spinning rocket under thrust for the purpose of analysis and correction of the coning motion experienced by this type of spacecraft maneuver. The computer animation simulates a virtual, scale model of the component of the SRS that represents the spacecraft itself. This component is known as the (VSM), or virtual spacecraft model. During actual physical simulation, this component of the SRS will experience a coning. The goal of the animation is to cone the VSM within that range to accurately represent the motion of the actual simulator. The drive system of the SRS is the apparatus that turns the actual simulator. It consists of a drive motor, motor mount and chain to power the simulator into motion. The motor mount is adjustable and rigid for high torque application. A digital stepper motor controller actuates the main drive motor for linear acceleration. The chain transfers power from the motor to the simulator via sprockets on both ends.
Hemming, C J; Patey, G N
2004-10-01
Bridge phases associated with a phase transition between two liquid phases occur when a two-component liquid mixture is confined between chemically patterned walls. In the bulk the liquid mixture with components A, B undergoes phase separation into an A-rich phase and a B-rich phase. The walls bear stripes attractive to A. In the bridge phase A-rich and B-rich regions alternate. Grand canonical Monte Carlo studies are performed with the alignment between stripes on opposite walls varied. Misalignment of the stripes places the nanoscopic liquid bridges under shear strain. The bridges exert a Hookean restoring force on the walls for small displacements from equilibrium. As the strain increases there are deviations from Hooke's law. Eventually there is an abrupt yielding of the bridges. Molecular dynamics simulations show the bridges form or disintegrate on time scales which are fast compared to wall motion and transport of molecules into or from the confined space. Some interesting possible applications of the phenomena are discussed. (c) 2004 American Institute of Physics
Analysis of Alternatives for Dismantling of the Equipment in Building 117/1 at Ignalina NPP - 13278
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poskas, Povilas; Simonis, Audrius; Poskas, Gintautas
2013-07-01
Ignalina NPP was operating two RBMK-1500 reactors which are under decommissioning now. In this paper dismantling alternatives of the equipment in Building 117/1 are analyzed. After situation analysis and collection of the primary information related to components' physical and radiological characteristics, location and other data, two different alternatives for dismantling of the equipment are formulated - the first (A1), when major components (vessels and pipes of Emergency Core Cooling System - ECCS) are segmented/halved in situ using flame cutting (oxy-acetylene) and the second one (A2), when these components are segmented/halved at the workshop using CAMC (Contact Arc Metal Cutting) technique.more » To select the preferable alternative MCDA method - AHP (Analytic Hierarchy Process) is applied. Hierarchical list of decision criteria, necessary for assessment of alternatives performance, are formulated. Quantitative decision criteria values for these alternatives are calculated using software DECRAD, which was developed by Lithuanian Energy Institute Nuclear engineering laboratory. While qualitative decision criteria are evaluated using expert judgment. Analysis results show that alternative A1 is better than alternative A2. (authors)« less
Homomorphic Filtering for Improving Time Synchronization in Wireless Networks
Castillo-Secilla, José María; Palomares, José Manuel; León, Fernando; Olivares, Joaquín
2017-01-01
Wireless sensor networks are used to sample the environment in a distributed way. Therefore, it is mandatory for all of the measurements to be tightly synchronized in order to guarantee that every sensor is sampling the environment at the exact same instant of time. The synchronization drift gets bigger in environments suffering from temperature variations. Thus, this work is focused on improving time synchronization under deployments with temperature variations. The working hypothesis demonstrated in this work is that the clock skew of two nodes (the ratio of the real frequencies of the oscillators) is composed of a multiplicative combination of two main components: the clock skew due to the variations between the cut of the crystal of each oscillator and the clock skew due to the different temperatures affecting the nodes. By applying a nonlinear filtering, the homomorphic filtering, both components are separated in an effective way. A correction factor based on temperature, which can be applied to any synchronization protocol, is proposed. For testing it, an improvement of the FTSP synchronization protocol has been developed and physically tested under temperature variation scenarios using TelosB motes flashed with the IEEE 802.15.4 implementation supplied by TinyOS. PMID:28425955
NASA Astrophysics Data System (ADS)
Love, Brooke A.; Olson, M. Brady; Wuori, Tristen
2017-05-01
As research into the biotic effects of ocean acidification has increased, the methods for simulating these environmental changes in the laboratory have multiplied. Here we describe the atmospheric carbon control simulator (ACCS) for the maintenance of plankton under controlled pCO2 conditions, designed for species sensitive to the physical disturbance introduced by the bubbling of cultures and for studies involving trophic interaction. The system consists of gas mixing and equilibration components coupled with large-volume atmospheric simulation chambers. These chambers allow gas exchange to counteract the changes in carbonate chemistry induced by the metabolic activity of the organisms. The system is relatively low cost, very flexible, and when used in conjunction with semi-continuous culture methods, it increases the density of organisms kept under realistic conditions, increases the allowable time interval between dilutions, and/or decreases the metabolically driven change in carbonate chemistry during these intervals. It accommodates a large number of culture vessels, which facilitate multi-trophic level studies and allow the tracking of variable responses within and across plankton populations to ocean acidification. It also includes components that increase the reliability of gas mixing systems using mass flow controllers.
Time-Dependent Behavior of Diabase and a Nonlinear Creep Model
NASA Astrophysics Data System (ADS)
Yang, Wendong; Zhang, Qiangyong; Li, Shucai; Wang, Shugang
2014-07-01
Triaxial creep tests were performed on diabase specimens from the dam foundation of the Dagangshan hydropower station, and the typical characteristics of creep curves were analyzed. Based on the test results under different stress levels, a new nonlinear visco-elasto-plastic creep model with creep threshold and long-term strength was proposed by connecting an instantaneous elastic Hooke body, a visco-elasto-plastic Schiffman body, and a nonlinear visco-plastic body in series mode. By introducing the nonlinear visco-plastic component, this creep model can describe the typical creep behavior, which includes the primary creep stage, the secondary creep stage, and the tertiary creep stage. Three-dimensional creep equations under constant stress conditions were deduced. The yield approach index (YAI) was used as the criterion for the piecewise creep function to resolve the difficulty in determining the creep threshold value and the long-term strength. The expression of the visco-plastic component was derived in detail and the three-dimensional central difference form was given. An example was used to verify the credibility of the model. The creep parameters were identified, and the calculated curves were in good agreement with the experimental curves, indicating that the model is capable of replicating the physical processes.
Homomorphic Filtering for Improving Time Synchronization in Wireless Networks.
Castillo-Secilla, José María; Palomares, José Manuel; León, Fernando; Olivares, Joaquín
2017-04-20
Wireless sensor networks are used to sample the environment in a distributed way. Therefore, it is mandatory for all of the measurements to be tightly synchronized in order to guarantee that every sensor is sampling the environment at the exact same instant of time. The synchronization drift gets bigger in environments suffering from temperature variations. Thus, this work is focused on improving time synchronization under deployments with temperature variations. The working hypothesis demonstrated in this work is that the clock skew of two nodes (the ratio of the real frequencies of the oscillators) is composed of a multiplicative combination of two main components: the clock skew due to the variations between the cut of the crystal of each oscillator and the clock skew due to the different temperatures affecting the nodes. By applying a nonlinear filtering, the homomorphic filtering, both components are separated in an effective way. A correction factor based on temperature, which can be applied to any synchronization protocol, is proposed. For testing it, an improvement of the FTSP synchronization protocol has been developed and physically tested under temperature variation scenarios using TelosB motes flashed with the IEEE 802.15.4 implementation supplied by TinyOS.
Gobbens, R J J; van Assen, M A L M; Schalk, M J D
2014-01-01
Disability is an important health outcome for older persons; it is associated with impaired quality of life, future hospitalization, and mortality. Disability also places a high burden on health care professionals and health care systems. Disability is regarded as an adverse outcome of physical frailty. The main objective of this study was to assess the predictive validity of the eight individual self-reported components of the physical frailty subscale of the TFI for activities of daily living (ADL) and instrumental activities of daily living (IADL) disability. This longitudinal study was carried out with a sample of Dutch citizens. At baseline the sample consisted at 429 people aged 65 years and older and a subset of all respondents participated again two and a half years later (N=355, 83% response rate). The respondents completed a web-based questionnaire comprising the TFI and the Groningen Activity Restriction Scale (GARS) for measuring disability. Five components together (unintentional weakness, weakness, poor endurance, slowness, low physical activity), referring to the phenotype of Fried et al., predicted disability, even after controlling for previous disability and other background characteristics. The other three components of the physical frailty subscale of the TFI (poor balance, poor hearing, poor vision) together did not predict disability. Low physical activity predicted both total and ADL disability, and slowness both total and IADL disability. In conclusion, self-report assessment using the physical subscale of the TFI aids the prediction of future ADL and IADL disability in older persons two and a half years later. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kelder, Steve; Hoelscher, Deanna M; Barroso, Cristina S; Walker, Joey L; Cribb, Peter; Hu, Shaohua
2005-04-01
Although many school-based diet and physical activity interventions have been designed and evaluated, relatively few have been tested for the after-school setting. After-school day-care programmes at either elementary schools or private locations provide a ready-made opportunity for health programmes that may be difficult to incorporate into an already-full school day. The purpose of this paper is to report on a pilot study of an after-school adaptation of the CATCH (Coordinated Approach To Child Health) elementary school programme called the CATCH Kids Club (CKC). The CKC was pilot-tested and formatively evaluated in 16 Texas after-school programmes: eight in El Paso and eight in Austin (four intervention and four reference sites each). Evaluation consisted of direct observation of moderate to vigorous physical activity during play time, self-reported food intake and physical activity, and focus group interviews with after-school programme staff. Students responded well to the physical activity and snack components and were less interested in the five-module education component. Routine staff training was a key variable in achieving proper implementation; the ideal would be a full day with repeated follow-up model teaching visits. Staff turnover was a logistic issue, as was programme leader readiness and interest in conducting the programme. Strong and significant effects were observed for the physical activity but not for the education component. The results of the physical education component suggest it is feasible, effective and ready for larger-scale evaluation or dissemination.
Students' Views on Physical Development and Physical Self-Concept in Adventure-Physical Education
ERIC Educational Resources Information Center
Gehris, Jeffrey; Kress, Jeff; Swalm, Ricky
2010-01-01
This study investigated 10th-grade students' views concerning the physical effects of an adventure-physical education curriculum and the potential of such a curriculum to enhance components of a multidimensional model of physical self-concept. Semistructured interviews were used to obtain students' views and participant observations were conducted…
Teacher-Researcher Professional Development: Case Study at Kansas State University
NASA Astrophysics Data System (ADS)
Rebello, N. Sanjay; Fletcher, Peter R.
2006-02-01
We report on a case study which provides professional development to advanced undergraduate and graduate research team members of the Kansas State University Physics Education Research (KSU-PER) group. An integral component of a student's professional development is the opportunity to participate in a range of research activities and work in collaboration — both as a mentor and a junior researcher with a range of individuals. In order to coordinate and facilitate these opportunities KSU-PER established an ongoing research project investigating students' conceptions of the physics underlying devices. The project utilized an integrated methodological and administrative framework — combining elements from grounded theory, phenomenology and action research. This framework provides a forum and research setting allowing junior and experienced researchers to act in various project management roles and perform a range of research activities. We will conclude by reflecting upon our experiences.
Sandia National Laboratories analysis code data base
NASA Astrophysics Data System (ADS)
Peterson, C. W.
1994-11-01
Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
ELECTRON IRRADIATION OF SOLIDS
Damask, A.C.
1959-11-01
A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.
Non-flammable polyimide materials for aircraft and spacecraft applications
NASA Technical Reports Server (NTRS)
Gagliani, J.; Supkis, D. E.
1979-01-01
Recent developments in polyimide chemistry show promise for producing materials with very low flammability and a wide range of mechanical properties. Polyimide foams can be synthesized to provide fire safety without detectable formation of smoke or toxic byproducts below 204 C (400 F), thus avoiding an environment which is lethal to human habitation. This work has been and is currently being performed under development programs, the objective of which is to provide cost effective processes for producing thermally stable, polyimide flexible resilient foams, thermal-acoustical insulating materials, rigid low density foam panels, and high strength foam structures. The chemical and physical properties demonstrated by these materials represent a technological advancement in the art of thermally stable polyimide polymers which are expected to insure fire protection of structures and components used in air transportation and space exploration. Data compiled to date on thermal, physical and functional properties of these materials are presented.
Life Support Filtration System Trade Study for Deep Space Missions
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Perry, Jay L.
2017-01-01
The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.
Winters, Brian R; Wright, Jonathan L; Holt, Sarah K; Dash, Atreya; Gore, John L; Schade, George R
2017-09-05
Health related quality of life after radical cystectomy and ileal conduit is not well quantified at the population level. We evaluated health related quality of life in patients with bladder cancer compared with noncancer controls and patients with colorectal cancer using data from SEER (Surveillance, Epidemiology and End Results)-MHOS (Medicare Health Outcomes Survey). SEER-MHOS data from 1998 to 2013 were used to identify patients with bladder cancer and those with colorectal cancer who underwent extirpative surgery with ileal conduit or colostomy creation, respectively. A total of 166 patients with bladder cancer treated with radical cystectomy were propensity matched 1:5 to 830 noncancer controls and compared with 154 patients with colorectal cancer. Differences in Mental and Physical Component Summary scores as well as component subscores were determined between patients with bladder cancer, patients with colorectal cancer and noncancer controls. SEER-MHOS patients were more commonly male and white with a mean ± SD age of 77 ± 6 years. Patients treated with radical cystectomy had significantly lower Physical Component Summary scores, select physical subscale scores and all mental subscale scores compared with noncancer controls. These findings were similar in the subset of 40 patients treated with radical cystectomy who had available preoperative and postoperative survey data. Global Mental Component Summary scores did not differ significantly between the groups. No significant differences were observed in global Mental Component Summary, Physical Component Summary or subscale scores between patients with bladder cancer and patients with colorectal cancer. Patients with bladder cancer who undergo radical cystectomy have significant declines in multiple components of physical and mental health related quality of life vs noncancer controls, which mirror those of patients with colorectal cancer. Further longitudinal study is required to better codify the effectors of poor health related quality of life after radical cystectomy to improve patient expectations and outcomes. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Component analysis and initial validity of the exercise fear avoidance scale.
Wingo, Brooks C; Baskin, Monica; Ard, Jamy D; Evans, Retta; Roy, Jane; Vogtle, Laura; Grimley, Diane; Snyder, Scott
2013-01-01
To develop the Exercise Fear Avoidance Scale (EFAS) to measure fear of exercise-induced discomfort. We conducted principal component analysis to determine component structure and Cronbach's alpha to assess internal consistency of the EFAS. Relationships between EFAS scores, BMI, physical activity, and pain were analyzed using multivariate regression. The best fit was a 3-component structure: weight-specific fears, cardiorespiratory fears, and musculoskeletal fears. Cronbach's alpha for the EFAS was α=.86. EFAS scores significantly predicted BMI, physical activity, and PDI scores. Psychometric properties of this scale suggest it may be useful for tailoring exercise prescriptions to address fear of exercise-related discomfort.
NASA Astrophysics Data System (ADS)
Guler Yigitoglu, Askin
In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W., E-mail: luwang@impcas.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Xiong, B.
2014-02-15
A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling mediummore » for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.« less
[Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].
Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang
2007-03-01
The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (< or = 1 mm in diameter) played effective roles on the improvement of soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.
NASA Technical Reports Server (NTRS)
Scherb, Megan Kay
1993-01-01
Since 1988 an interactive computer model of the human body during exercise has been under development by a number of undergraduate students in the Department of Chemical Engineering at Iowa State University. The program, written under the direction of Dr. Richard C. Seagrave, uses physical characteristics of the user, environmental conditions and activity information to predict the onset of hypothermia, hyperthermia, dehydration, or exhaustion for various levels and durations of a specified exercise. The program however, was severely limited in predicting the onset of dehydration due to the lack of sophistication with which the program predicts sweat rate and its relationship to sensible water loss, degree of acclimatization, and level of physical training. Additionally, it was not known whether sweat rate also depended on age and gender. For these reasons, the goal of this creative component was to modify the program in the above mentioned areas by applying known information and empirical relationships from literature. Furthermore, a secondary goal was to improve the consistency with which the program was written by modifying user input statements and improving the efficiency and logic of the program calculations.
Dissociating sensory from decision processes in human perceptual decision making.
Mostert, Pim; Kok, Peter; de Lange, Floris P
2015-12-15
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.
Dissociating sensory from decision processes in human perceptual decision making
Mostert, Pim; Kok, Peter; de Lange, Floris P.
2015-01-01
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393
An evidence based approach to undergraduate physical assessment practicum course development.
Anderson, Brenda; Nix, Elizabeth; Norman, Bilinda; McPike, H Dawn
2014-05-01
Physical assessment is an important component of professional nursing practice. New nurse graduates experience difficulty transitioning the traditional head to toe physical assessment into real world nursing practice. This study was conducted to provide current data concerning physical assessment competencies utilized consistently by registered nurses. This quantitative study used a 126 item survey mailed to 900 Registered Nurses. Participants used a Likert-type scale to report frequency of use for physical assessment competencies. Thirty seven competencies were determined to be essential components of the physical assessment, 18 were determined supplemental, and 71 were determined to be non-essential. Transition of the new graduate nurse into professional practice can be enhanced by focusing content in physical assessment practicum courses on the essential competencies of physical assessment. Faculty for the university has analyzed data from this study to support evidence based changes to the undergraduate nursing program physical assessment practicum course. Copyright © 2013 Elsevier Ltd. All rights reserved.
Connecting Symbolic Integrals to Physical Meaning in Introductory Physics
NASA Astrophysics Data System (ADS)
Amos, Nathaniel R.
This dissertation presents a series of studies pertaining to introductory physics students' abilities to derive physical meaning from symbolic integrals (e.g., the integral of vdt) and their components, namely differentials and differential products (e.g., dt and vdt, respectively). Our studies focus on physical meaning in the form of interpretations (e.g., "the total displacement of an object") and units (e.g., "meters"). Our first pair of studies independently attempted to identify introductory-level mechanics students' common conceptual difficulties with and unproductive interpretations of physics integrals and their components, as well as to estimate the frequencies of these difficulties. Our results confirmed some previously-observed incorrect interpretations, such as the notion that differentials are physically meaningless; however, we also uncovered two new conceptualizations of differentials, the "rate" (differentials are "rates" or "derivatives") and "instantaneous value" (differentials are values of physical variables "at an instant") interpretations, which were exhibited by more than half of our participants at least once. Our next study used linear regression analysis to estimate the strengths of the inter-connections between the abilities to derive physical meaning from each of differentials, differential products, and integrals in both first- and second-semester, calculus-based introductory physics. As part of this study, we also developed a highly reliable, multiple choice assessment designed to measure students' abilities to connect symbolic differentials, differential products, and integrals with their physical interpretations and units. Findings from this study were consistent with statistical mediation via differential products. In particular, students' abilities to extract physical meaning from differentials were seen to be strongly related to their abilities to derive physical meaning from differential products, and similarly differential products to integrals; there was seen to be almost no direct connection between the abilities to derive physical meaning from differentials and the abilities to derive physical meaning from integrals. Our final pair of studies intended to implement and quantitatively assess the efficacy of specially-designed instructional tutorials in controlled experiments (with several treatment factors that may impact performance, most notably the effect of feedback during training) for the purpose of promoting better connection between symbolic differentials, differential products, and integrals with their corresponding physical meaning. Results from both experiments consistently and conclusively demonstrated that the ability to connect verbal and symbolic representations of integrals and their components is greatly improved by the provision of electronic feedback during training. We believe that these results signify the first instance of a large, controlled experiment involving introductory physics students that has yielded significantly stronger connection of physics integrals and their components to physical meaning, compared to untrained peers.
Synthesizing long-term sea level rise projections - the MAGICC sea level model v2.0
NASA Astrophysics Data System (ADS)
Nauels, Alexander; Meinshausen, Malte; Mengel, Matthias; Lorbacher, Katja; Wigley, Tom M. L.
2017-06-01
Sea level rise (SLR) is one of the major impacts of global warming; it will threaten coastal populations, infrastructure, and ecosystems around the globe in coming centuries. Well-constrained sea level projections are needed to estimate future losses from SLR and benefits of climate protection and adaptation. Process-based models that are designed to resolve the underlying physics of individual sea level drivers form the basis for state-of-the-art sea level projections. However, associated computational costs allow for only a small number of simulations based on selected scenarios that often vary for different sea level components. This approach does not sufficiently support sea level impact science and climate policy analysis, which require a sea level projection methodology that is flexible with regard to the climate scenario yet comprehensive and bound by the physical constraints provided by process-based models. To fill this gap, we present a sea level model that emulates global-mean long-term process-based model projections for all major sea level components. Thermal expansion estimates are calculated with the hemispheric upwelling-diffusion ocean component of the simple carbon-cycle climate model MAGICC, which has been updated and calibrated against CMIP5 ocean temperature profiles and thermal expansion data. Global glacier contributions are estimated based on a parameterization constrained by transient and equilibrium process-based projections. Sea level contribution estimates for Greenland and Antarctic ice sheets are derived from surface mass balance and solid ice discharge parameterizations reproducing current output from ice-sheet models. The land water storage component replicates recent hydrological modeling results. For 2100, we project 0.35 to 0.56 m (66 % range) total SLR based on the RCP2.6 scenario, 0.45 to 0.67 m for RCP4.5, 0.46 to 0.71 m for RCP6.0, and 0.65 to 0.97 m for RCP8.5. These projections lie within the range of the latest IPCC SLR estimates. SLR projections for 2300 yield median responses of 1.02 m for RCP2.6, 1.76 m for RCP4.5, 2.38 m for RCP6.0, and 4.73 m for RCP8.5. The MAGICC sea level model provides a flexible and efficient platform for the analysis of major scenario, model, and climate uncertainties underlying long-term SLR projections. It can be used as a tool to directly investigate the SLR implications of different mitigation pathways and may also serve as input for regional SLR assessments via component-wise sea level pattern scaling.
ERIC Educational Resources Information Center
Coulter, Maura; Ní Chróinín, Déirdre
2013-01-01
Physical education is a socially constructed activity that forms one component of a wider physical culture that includes sport and health/physical activity. The terms sport and physical education are often used interchangeably in school contexts, where sport and health continue to shape what is understood by the term physical education. This study…
Wang, Jihua; Zhao, Liling; Dou, Xianghua; Zhang, Zhiyong
2008-06-01
Forty nine molecular dynamics simulations of unfolding trajectories of the segment B1 of streptococcal protein G (GB1) provide a direct demonstration of the diversity of unfolding pathway and give a statistically utmost unfolding pathway under the physical property space. Twelve physical properties of the protein were chosen to construct a 12-dimensional property space. Then the 12-dimensional property space was reduced to a 3-dimensional principle component property space. Under the property space, the multiple unfolding trajectories look like "trees", which have some common characters. The "root of the tree" corresponds to the native state, the "bole" homologizes the partially unfolded conformations, and the "crown" is in correspondence to the unfolded state. These unfolding trajectories can be divided into three types. The first one has the characters of straight "bole" and "crown" corresponding to a fast two-state unfolding pathway of GB1. The second one has the character of "the standstill in the middle tree bole", which may correspond to a three-state unfolding pathway. The third one has the character of "the circuitous bole" corresponding to a slow two-state unfolding pathway. The fast two-state unfolding pathway is a statistically utmost unfolding pathway or preferred pathway of GB1, which occupies 53% of 49 unfolding trajectories. In the property space all the unfolding trajectories construct a thermal unfolding pathway ensemble of GB1. The unfolding pathway ensemble resembles a funnel that is gradually emanative from the native state ensemble to the unfolded state ensemble. In the property space, the thermal unfolded state distribution looks like electronic cloud in quantum mechanics. The unfolded states of the independent unfolding simulation trajectories have substantial overlaps, indicating that the thermal unfolded states are confined by the physical property values, and the number of protein unfolded state are much less than that was believed before.
Implementing elements of The Physics Suite at a large metropolitan research university
NASA Astrophysics Data System (ADS)
Efthimiou, Costas; Maronde, Dan; McGreevy, Tim; del Barco, Enrique; McCole, Stefanie
2011-07-01
A key question in physics education is the effectiveness of the teaching methods. A curriculum that has been investigated at the University of Central Florida (UCF) over the last two years is the use of particular elements of The Physics Suite. Select sections of the introductory physics classes at UCF have made use of Interactive Lecture Demonstrations as part of the lecture component of the class. The laboratory component of the class has implemented the RealTime Physics curriculum, again in select sections. The remaining sections have continued with the teaching methods traditionally used. Using pre- and post-semester concept inventory tests, a student survey, student interviews, and a standard for successful completion of the course, the preliminary data indicate improved student learning.
Selected physical properties of various diesel blends
NASA Astrophysics Data System (ADS)
Hlaváčová, Zuzana; Božiková, Monika; Hlaváč, Peter; Regrut, Tomáš; Ardonová, Veronika
2018-01-01
The quality determination of biofuels requires identifying the chemical and physical parameters. The key physical parameters are rheological, thermal and electrical properties. In our study, we investigated samples of diesel blends with rape-seed methyl esters content in the range from 3 to 100%. In these, we measured basic thermophysical properties, including thermal conductivity and thermal diffusivity, using two different transient methods - the hot-wire method and the dynamic plane source. Every thermophysical parameter was measured 100 times using both methods for all samples. Dynamic viscosity was measured during the heating process under the temperature range 20-80°C. A digital rotational viscometer (Brookfield DV 2T) was used for dynamic viscosity detection. Electrical conductivity was measured using digital conductivity meter (Model 1152) in a temperature range from -5 to 30°C. The highest values of thermal parameters were reached in the diesel sample with the highest biofuel content. The dynamic viscosity of samples increased with higher concentration of bio-component rapeseed methyl esters. The electrical conductivity of blends also increased with rapeseed methyl esters content.
WE-DE-206-02: MRI Hardware - Magnet, Gradient, RF Coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharian, A.
Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less
WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooley, R.
Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less
WE-DE-206-01: MRI Signal in Biological Tissues - Proton, Spin, T1, T2, T2*
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorny, K.
Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C.
Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less
NASA Astrophysics Data System (ADS)
Harper, E. B.; Stella, J. C.; Fremier, A. K.
2009-12-01
Fremont cottonwood (Populus fremontii) is an important component of semi-arid riparian ecosystems throughout western North America, but its populations are in decline due to flow regulation. Achieving a balance between human resource needs and riparian ecosystem function requires a mechanistic understanding of the multiple geomorphic and biological factors affecting tree recruitment and survival, including the timing and magnitude of river flows, and the concomitant influence on suitable habitat creation and mortality from scour and sedimentation burial. Despite a great deal of empirical research on some components of the system, such as factors affecting cottonwood recruitment, other key components are less studied. Yet understanding the relative influence of the full suite of physical and life-history drivers is critical to modeling whole-population dynamics under changing environmental conditions. We addressed these issues for the Fremont cottonwood population along the Sacramento River, CA using a sensitivity analysis approach to quantify uncertainty in parameters on the outcomes of a patch-based, dynamic population model. Using a broad range of plausible values for 15 model parameters that represent key physical, biological and climatic components of the ecosystem, we ran 1,000 population simulations that consisted of a subset of 14.3 million possible combinations of parameter estimates to predict the frequency of patch colonization and total forest habitat predicted to occur under current hydrologic conditions after 175 years. Results indicate that Fremont cottonwood populations are highly sensitive to the interactions among flow regime, sedimentation rate and the depth of the capillary fringe (Fig. 1). Estimates of long-term floodplain sedimentation rate would substantially improve model accuracy. Spatial variation in sediment texture was also important to the extent that it determines the depth of the capillary fringe, which regulates the availability of water for germination and adult tree growth. Our sensitivity analyses suggest that models of future scenarios should incorporate regional climate change projections because changes in temperature and the timing and volume of precipitation affects sensitive aspects of the system, including the timing of seed release and spring snowmelt runoff. Figure 1. The relative effects on model predictions of uncertainty around each parameter included in the patch-based population model for Fremont cottonwood.
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Hsu, Nai-Wei; Tsao, Hsuan-Ming; Chen, Hsi-Chung; Chou, Pesus
2014-01-01
Cardiovascular disease and stroke have emerged as substantial and growing health challenges to populations around the world. Besides for the survival and medical prognosis, how to improve the health-related quality of life (HRQoL) might also become one of the goals of treatment programs. There are multiple factors that influence HRQol, including comorbidity, mental function and lifestyle. However, substantial research and investigation have still not clarified these underlying pathways, which merit further attention. The purpose of this study was to determine how psychological factors affect the link between cardiovascular disease and stroke with HRQoL. A total of 1,285 elder subjects at least 65 years of age (47.2% male) were enrolled. The mental function and HRQol of each patient was then measured using the Hospital Anxiety and Depression Scale and Short Form-12. After multiple regression analysis, anxiety, depression, cardiovascular disease, stroke, education level and age were shown to be associated with both mental component score (MCS) and physical component score (PCS). In the mediation analysis using the SPSS macro provided by Preacher and Hayes, cardiovascular disease and stroke affected HRQoL via anxiety and depression, respectively. These results suggest that cardiovascular disease and stroke have negative impacts on patient MCS and PCS through different underlying pathways. Cardiovascular disease influences the HRQoL both directly and indirectly with the mediation of anxiety, and stroke influences the HRQoL by way of depression. These findings support the proposition that different combinations of both physical and psychological support are necessary to best manage these diseases.
Probabilistic Multi-Hazard Assessment of Dry Cask Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bencturk, Bora; Padgett, Jamie; Uddin, Rizwan
systems the concrete shall not only provide shielding but insures stability of the upright canister, facilitates anchoring, allows ventilation, and provides physical protection against theft, severe weather and natural (seismic) as well as man-made events (blast incidences). Given the need to remain functional for 40 years or even longer in case of interim storage, the concrete outerpack and the internal canister components need to be evaluated with regard to their long-term ability to perform their intended design functions. Just as evidenced by deteriorating concrete bridges, there are reported visible degradation mechanisms of dry storage systems especially when high corrosive environmentsmore » are considered in maritime locations. The degradation of reinforced concrete is caused by multiple physical and chemical mechanisms, which may be summarized under the heading of environmental aging. The underlying hygro-thermal transport processes are accelerated by irradiation effects, hence creep and shrinkage need to include the effect of chloride penetration, alkali aggregate reaction as well as corrosion of the reinforcing steel. In light of the above, the two main objectives of this project are to (1) develop a probabilistic multi-hazard assessment framework, and (2) through experimental and numerical research perform a comprehensive assessment under combined earthquake loads and aging induced deterioration, which will also provide data for the development and validation of the probabilistic framework.« less
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
The physical fitness and lifestyle of Canadian school children has been deteriorating in recent years. The main objectives of physical education are directed toward the development of physical fitness and a positive lifestyle. This manual provides an opportunity for measuring the components of physical fitness. Physical fitness testing involves…
Olszanecka-Glinianowicz, Magdalena; Zygmuntowicz, Monika; Owczarek, Aleksander; Elibol, Adam; Chudek, Jerzy
2014-02-01
Hypertension and obesity deteriorate patient health-related quality-of-life (HRQoL). This study assessed the impact of overweight and obesity on HRQoL and blood pressure (BP) control in hypertensive participants, according to sex. HRQoL was assessed using the 12-item Short Form Health Survey in 11,498 white patients treated for hypertension for at least 12 months. Nutritional status was diagnosed according to WHO criteria. Overweight and obesity were associated with worse BP control, regardless of sex. In women, overweight and especially obesity were inversely associated with all analyzed HRQoL dimensions. Among men, obesity decreased all HRQoL dimensions, and overweight influenced only physical functioning, role physical, bodily pain, vitality, general health, and Physical Component Score (PCS) but not Mental Component Score (MCS). Overweight in men did not influence social functioning, or emotional and mental health. The BMI values associated with optimal PCS and MCS scores were higher for men than for women. Age-adjusted multivariate regression analysis revealed that PCS score was associated with obesity, higher education level, comorbidities, and antihypertensive therapy duration, whereas MCS score was associated with female sex. Polydrug BP control diminished PCS and MCS. Overweight and obesity deteriorate BP control, regardless of age and polytherapy. BMI values associated with optimal HRQoL are higher for men than women treated for hypertension. Obesity more strongly diminishes the physical versus mental HRQoL component, regardless of sex. Overweight worsens HRQoL physical components in both sexes and mental component-only in women.
Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu; Jeong, Jae-Woong; Kang, Seung-Kyun; Kim, Jae-Hwan; Shin, Jiho; Yang, Jian; Liu, Zhuangjian; Ameer, Guillermo A; Huang, Yonggang; Rogers, John A
2015-05-13
Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.
Friendship chemistry: An examination of underlying factors☆.
Campbell, Kelly; Holderness, Nicole; Riggs, Matt
2015-06-01
Interpersonal chemistry refers to a connection between two individuals that exists upon first meeting. The goal of the current study is to identify beliefs about the underlying components of friendship chemistry. Individuals respond to an online Friendship Chemistry Questionnaire containing items that are derived from interdependence theory and the friendship formation literature. Participants are randomly divided into two subsamples. A principal axis factor analysis with promax rotation is performed on subsample 1 and produces 5 factors: Reciprocal candor, mutual interest, personableness, similarity, and physical attraction. A confirmatory factor analysis is conducted using subsample 2 and provides support for the 5-factor model. Participants with agreeable, open, and conscientious personalities more commonly report experiencing friendship chemistry, as do those who are female, young, and European/white. Responses from participants who have never experienced chemistry are qualitatively analyzed. Limitations and directions for future research are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vinod
2017-05-05
High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly butmore » important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.« less
Together and apart: a typology of re-partnering in old age.
Koren, Chaya
2014-08-01
The human need for love, friendship, and physical contact, and the fear of loneliness do not diminish with age. Widowhood and late-life divorce and increased life expectancy are likely to lead to alternative relationships, such as re-partnering. The purpose of this paper is to explore interplays between emotional and physical components of re-partnering in old age. Theoretical sampling of 20 couples included men who re-partnered at the age of 65+ years and women at the age of 60+ years, following termination of lifelong marriages due to death or divorce. Living arrangements included married or unmarried cohabitation under the same roof or in separate homes. Forty semi-structured interviews were tape-recorded and transcribed verbatim. The couple was the unit of analysis. Interplays between physical and emotional dimensions were examined using five abductive parameters derived from data analysis resulting in a fourfold typology of emotional and physical closeness/distance in re-partnering in old age: (1) living together (physically and emotionally); (2) living apart (physically) together (emotionally); (3) living together (physically) apart (emotionally); and (4) living apart (physically and emotionally). Findings revealed types of partner relationships that are different from lifelong marriages. The typology could help professionals working with older persons regarding what to expect in re-partnering in old age and be included in developmental theories as an option in old age. A quantitative tool for research and therapy purposes, entitled The Re-partnering in Old Age Typology Scale (RPOAT Scale), based on abductive parameters, could be established for measuring re-partnering relationship quality and classifying re-partnering couples.
Fischer, G
1977-08-01
Comparative investigations were carried out concerning the influence on the motility of mice of different electrobioclimatic conditions (electrostatic field with a residual wave component of 1% and a field strength of 4.500 V/m; pure residual wave component: 32 Vs/s, field strength 120 V/m/ss; electrostatic field established by batteries: initial voltage 900 V, field strength 4.500 V/m; shielded from ambient atmospheric electrical fields: damping efficiency at 99%). The Faraday condition represented the control as absolutely objective physical magnitude. All experimental chambers were positioned under Faraday shields. Following a 20 day period of acclimatization to the unaccustomed surroundings for the animals (adaptation period), we established the previously described electrophysical conditions in the cages for a further period of 20 days (experimental period). The lowest values measured during the daily readings were found in the Faraday cage, resp. in the pure electrostatic field, the highest in the DC-field with residual wave component resp. in the residual wave component alone. We draw the following conclusion from the findings: the pure DC-field apparently does not possess those bioclimatologically decisive importance that has been and is being postulated from several sides. Many of the stimtng effects observed and attributed to the electrostatic field are most probably due to the residual wave component resulting from the high-voltage generators employed.
[Stability of physical state on compound hawthorn dropping pills].
Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan
2008-11-01
To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.
Characterization of structural connections for multicomponent systems
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Huckelbridge, Arthur A.
1988-01-01
This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so that the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.
Hartley, April; Gregson, Celia L; Hannam, Kimberly; Deere, Kevin C; Clark, Emma M; Tobias, Jon H
2018-04-17
Sarcopenia has been associated with reduced physical activity (PA). We aimed to determine if sarcopenia, and specific components of muscle size, function, and physical performance, are associated with high impacts achieved during habitual PA, as these are related to bone strength in community-dwelling older women. Participants were older women from the Cohort of Skeletal Health in Bristol and Avon. We defined sarcopenia using the EWGSOP criteria. Lower limb peak muscle power and force were assessed using Jumping Mechanography (JM). High vertical impacts were assessed by tri-axial accelerometry (at least 1.5g above gravity). Cross-sectional associations were analyzed by linear regression, adjusting for age, height and weight (or fat mass for models including appendicular lean mass index), comorbidities, smoking, alcohol, and Index of Multiple Deprivation. Our analyses included 380 participants, with mean age 76.7 (SD 3.0) years; 242 (64%) also completed JM. In age-adjusted analysis, a negative relationship was observed between severity of sarcopenia and high, but not medium or low, impacts (p = .03 for trend). Regarding components of sarcopenia underlying this relationship, multivariable analyses revealed that gait speed (β 1.47 [95% CI 1.14, 1.89], [β-1] reflects the proportionate increase in high impacts per SD increase in exposure) and peak force (1.40 [1.07, 1.84]) were independently associated with high impacts. Older women with sarcopenia experienced fewer bone-strengthening high impacts than those with presarcopenia or without sarcopenia. To increase bone strengthening activity in older women, interventions need to improve both lower limb muscle force and walking speed.
NASA Astrophysics Data System (ADS)
Frey, M. M.; France, J.; von Glasow, R.; Thomas, M.
2015-12-01
The ocean-ice-atmosphere system is very complex, and there are numerous challenges with conducting fieldwork on sea-ice including costs, safety, experimental controls and access. By creating a new coupled Ocean-Sea-Ice-(Snow)-Atmosphere facility at the University of East Anglia, UK, we are able to perform controlled investigations in areas such as sea-ice physics, physicochemical and biogeochemical processes in sea-ice, and to quantify the bi-directional flux of gases in established, freezing and melting sea-ice. The environmental chamber is capable of controlled programmable temperatures from -55°C to +30°C, allowing a full range of first year sea-ice growing conditions in both the Arctic and Antarctic to be simulated. The sea-ice tank within the chamber measures 2.4 m x 1.4 m x 1 m water depth, with an identically sized Teflon film atmosphere on top of the tank. The tank and atmosphere forms a coupled, isolated mesocosm. Above the atmosphere is a light bank with dimmable solar simulation LEDs, and UVA and UVB broadband fluorescent battens, providing light for a range of experiments such as under ice biogeochemistry and photochemistry. Ice growth in the tank will be ideally suited for studying first-year sea-ice physical properties, with in-situ ice-profile measurements of temperature, salinity, conductivity, pressure and spectral light transmission. Under water and above ice cameras are installed to observe the physical development of the sea-ice. The ASIBIA facility is also well equipped for gas exchange and diffusion studies through sea-ice with a suite of climate relevant gas measuring instruments (CH4, CO2, O3, NOx, NOy permanently installed, further instruments available) able to measure either directly in the atmospheric component, or via a membrane for water side dissolved gases. Here, we present the first results from the ASIBIA sea-ice chamber, focussing on the physical development of first-year sea-ice and show the future plans for the facility over the coming years. The ASIBIA sea-ice facility is a key component of a 5-year ERC funded program with a long-term goal to develop parameterisations for local to global scale models based on experimental results.
Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; He, Fei; Ma, Chris Y. T.
In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resiliencemore » problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.« less
Stability of physical activity, fitness components and diet quality indices.
Mertens, E; Clarys, P; Mullie, P; Lefevre, J; Charlier, R; Knaeps, S; Huybrechts, I; Deforche, B
2017-04-01
Regular physical activity (PA), a high level of fitness and a high diet quality are positively associated with health. However, information about stability of fitness components and diet quality indices is limited. This study aimed to evaluate stability of those parameters. This study includes 652 adults (men=57.56 (10.28) years; women=55.90 (8.34) years at follow-up) who participated in 2002-2004 and returned for follow-up at the Policy Research Centre Leuven in 2012-2014. Minutes sport per day and Physical activity level (PAL) were calculated from the Flemish Physical Activity Computerized Questionnaire. Cardiorespiratory fitness (CRF), morphological fitness (MORF; body mass index and waist circumference) and metabolic fitness (METF) (blood cholesterol and triglycerides) were used as fitness components. Diet quality indices (Healthy Eating Index-2010 (HEI), Diet Quality Index (DQI), Mediterranean Diet Score (MDS)) were calculated from a diet record. Tracking coefficients were calculated using Pearson/Spearman correlation coefficients (r Pearson ) and intra-class correlation coefficients (r ICC ). In both men (r Pearson&ICC =0.51) and women (r Pearson =0.62 and r ICC =0.60) PAL showed good stability, while minutes sport remained stable in women (r Pearson&ICC =0.57) but less in men (r Pearson&ICC =0.45). Most fitness components remained stable (r⩾0.50) except some METF components in women. In general the diet quality indices and their components were unstable (r<0.50). PAL and the majority of the fitness components remained stable, while diet quality was unstable over 10 years. For unstable parameters such as diet quality measurements are needed at both time points in prospective research.
Veligdan, James T.
1993-01-01
Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.
Hagan, Kaitlin A; Chiuve, Stephanie E; Stampfer, Meir J; Katz, Jeffrey N; Grodstein, Francine
2016-07-01
Physical function is integral to healthy aging, in particular as a core component of mobility and independent living in older adults, and is a strong predictor of mortality. Limited research has examined the role of diet, which may be an important strategy to prevent or delay a decline in physical function with aging. We prospectively examined the association between the Alternative Healthy Eating Index-2010 (AHEI-2010), a measure of diet quality, with incident impairment in physical function among 54,762 women from the Nurses' Health Study. Physical function was measured by the Medical Outcomes Short Form-36 (SF-36) physical function scale and was administered every 4 y from 1992 to 2008. Cumulative average diet was assessed using food frequency questionnaires, administered approximately every 4 y. We used multivariable Cox proportional hazards models to estimate the HRs of incident impairment of physical function. Participants in higher quintiles of the AHEI-2010, indicating a healthier diet, were less likely to have incident physical impairment than were participants in lower quintiles (P-trend < 0.001). The multivariable-adjusted HR of physical impairment for those in the top compared with those in the bottom quintile of the AHEI-2010 was 0.87 (95% CI: 0.84, 0.90). For individual AHEI-2010 components, higher intake of vegetables (P-trend = 0.003) and fruits (P-trend = 0.02); lower intake of sugar-sweetened beverages (P-trend < 0.001), trans fats (P-trend = 0.03), and sodium (P-trend < 0.001); and moderate alcohol intake (P-trend < 0.001) were each significantly associated with reduced rates of incident physical impairment. Among top contributors to the food components of the AHEI-2010, the strongest relations were found for increased intake of oranges, orange juice, apples and pears, romaine or leaf lettuce, and walnuts. However, associations with each component and with specific foods were generally weaker than the overall score, indicating that overall diet pattern is more important than individual parts. In this large cohort of older women, a healthier diet was associated with a lower risk of developing impairments in physical function. © 2016 American Society for Nutrition.
Code of Federal Regulations, 2010 CFR
2010-07-01
...'s scholarship component under section 404E of the HEA? 694.10 Section 694.10 Education Regulations... What are the requirements for awards under the program's scholarship component under section 404E of the HEA? (a) Amount of scholarship. (1) Except as provided in paragraph (a)(2) of this section, the...
Xu, Yisheng; Tong, Yunxia; Liu, Siyuan; Chow, Ho Ming; AbdulSabur, Nuria Y.; Mattay, Govind S.; Braun, Allen R.
2014-01-01
A comprehensive set of methods based on spatial independent component analysis (sICA) is presented as a robust technique for artifact removal, applicable to a broad range of functional magnetic resonance imaging (fMRI) experiments that have been plagued by motion-related artifacts. Although the applications of sICA for fMRI denoising have been studied previously, three fundamental elements of this approach have not been established as follows: 1) a mechanistically-based ground truth for component classification; 2) a general framework for evaluating the performance and generalizability of automated classifiers; 3) a reliable method for validating the effectiveness of denoising. Here we perform a thorough investigation of these issues and demonstrate the power of our technique by resolving the problem of severe imaging artifacts associated with continuous overt speech production. As a key methodological feature, a dual-mask sICA method is proposed to isolate a variety of imaging artifacts by directly revealing their extracerebral spatial origins. It also plays an important role for understanding the mechanistic properties of noise components in conjunction with temporal measures of physical or physiological motion. The potentials of a spatially-based machine learning classifier and the general criteria for feature selection have both been examined, in order to maximize the performance and generalizability of automated component classification. The effectiveness of denoising is quantitatively validated by comparing the activation maps of fMRI with those of positron emission tomography acquired under the same task conditions. The general applicability of this technique is further demonstrated by the successful reduction of distance-dependent effect of head motion on resting-state functional connectivity. PMID:25225001
Xu, Yisheng; Tong, Yunxia; Liu, Siyuan; Chow, Ho Ming; AbdulSabur, Nuria Y; Mattay, Govind S; Braun, Allen R
2014-12-01
A comprehensive set of methods based on spatial independent component analysis (sICA) is presented as a robust technique for artifact removal, applicable to a broad range of functional magnetic resonance imaging (fMRI) experiments that have been plagued by motion-related artifacts. Although the applications of sICA for fMRI denoising have been studied previously, three fundamental elements of this approach have not been established as follows: 1) a mechanistically-based ground truth for component classification; 2) a general framework for evaluating the performance and generalizability of automated classifiers; and 3) a reliable method for validating the effectiveness of denoising. Here we perform a thorough investigation of these issues and demonstrate the power of our technique by resolving the problem of severe imaging artifacts associated with continuous overt speech production. As a key methodological feature, a dual-mask sICA method is proposed to isolate a variety of imaging artifacts by directly revealing their extracerebral spatial origins. It also plays an important role for understanding the mechanistic properties of noise components in conjunction with temporal measures of physical or physiological motion. The potentials of a spatially-based machine learning classifier and the general criteria for feature selection have both been examined, in order to maximize the performance and generalizability of automated component classification. The effectiveness of denoising is quantitatively validated by comparing the activation maps of fMRI with those of positron emission tomography acquired under the same task conditions. The general applicability of this technique is further demonstrated by the successful reduction of distance-dependent effect of head motion on resting-state functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff
2017-04-01
The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic shift in ecosystem function under future climatic scenarios.
a New Color Correction Method for Underwater Imaging
NASA Astrophysics Data System (ADS)
Bianco, G.; Muzzupappa, M.; Bruno, F.; Garcia, R.; Neumann, L.
2015-04-01
Recovering correct or at least realistic colors of underwater scenes is a very challenging issue for imaging techniques, since illumination conditions in a refractive and turbid medium as the sea are seriously altered. The need to correct colors of underwater images or videos is an important task required in all image-based applications like 3D imaging, navigation, documentation, etc. Many imaging enhancement methods have been proposed in literature for these purposes. The advantage of these methods is that they do not require the knowledge of the medium physical parameters while some image adjustments can be performed manually (as histogram stretching) or automatically by algorithms based on some criteria as suggested from computational color constancy methods. One of the most popular criterion is based on gray-world hypothesis, which assumes that the average of the captured image should be gray. An interesting application of this assumption is performed in the Ruderman opponent color space lαβ, used in a previous work for hue correction of images captured under colored light sources, which allows to separate the luminance component of the scene from its chromatic components. In this work, we present the first proposal for color correction of underwater images by using lαβ color space. In particular, the chromatic components are changed moving their distributions around the white point (white balancing) and histogram cutoff and stretching of the luminance component is performed to improve image contrast. The experimental results demonstrate the effectiveness of this method under gray-world assumption and supposing uniform illumination of the scene. Moreover, due to its low computational cost it is suitable for real-time implementation.
Girls' Experiences in Physical Education: Competition, Evaluation, & Degradation
ERIC Educational Resources Information Center
van Daalen, Cheryl
2005-01-01
School nurses are often asked to participate in the health component of many physical education (PE) programs in schools. With this opportunity comes an ability to invite a model of physical education that enables physical, mental, and relational health. A pilot study was initiated to explore why girls' enrollment in physical education was…
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing…
HRQOL using SF36 (generic specific) in liver cirrhosis.
Janani, K; Varghese, Joy; Jain, Mayank; Harika, Kavya; Srinivasan, Vijaya; Michael, Tom; Jayanthi, Venkataraman
2017-07-01
Health-related quality of life (HRQOL) is influenced by the disease state, associated complications and their management. In patients with liver cirrhosis co-morbidity, severity of liver disease and their complications are likely to affect the QOL. The aim of the study was to determine the factors that are likely to influence the domains of HRQOL using SF-36 in patients with liver cirrhosis. For the study, 149 patients with liver cirrhosis were compared with age-gender matched healthy controls for physical and mental components of SF-36 score and the effects of age, co-morbidity severity of liver disease and complications of liver cirrhosis on HRQOL were assessed using the same questionnaire. Results of the study showed that except for body pain, all the patients had a significantly low individual and composite domain score (p-value <0.0001) compared to age-gender matched controls. Patients below 45 years, Child-Turcotte-Pugh (CTP) C, a high model for end-stage liver disease (MELD) and higher rates of complication had low scores for body pain (KW p <0.005) and those above 55 years, for physical function (p <0.05). Both the physical components had a major impact on mental composite score (MCS) (KW p <0.05). Co-morbidity that included diabetes, hypertension and hypothyroid states in various combinations had no effect on SF-36 scores while co-morbid conditions like musculoskeletal pain, arthralgia etc. affected physical domains (physical function, body pain and role physical) and physical component score (PCS) (KW p <0.01 to <0.0001). By linear regression, MELD had a direct and significant association with overall PCS and mental component score (MCS).
Muntaner-Mas, Adrià; Pere, Palou; Vidal-Conti, Josep; Esteban-Cornejo, Irene
2018-04-20
To examine the relationship between a battery of obesity indicators and physical fitness components with academic performance in children and to explore the combined and mediation role of the physical fitness components in the relationship between obesity and academic performance in children. A cross-sectional study including data from 250 Spanish schoolchildren (Balearic Islands) between 10 and 12 years of age (mean age, 10.98 ± 0.76 years) was conducted. Obesity measures (body mass index, body fat, waist circumference, hip circumference, and waist-to-height ratio), physical fitness components (cardiorespiratory fitness, muscular fitness, and speed-agility), and academic performance (Spanish language, Catalan language, English language, natural sciences, social sciences, arts, physical education, religion, and grade point average [GPA]) were collected. All obesity measures were negatively related to at least 3 of the 10 academic indicators, including GPA (β range, -0.135 to -0.229; all P < .05). Cardiorespiratory fitness and speed-agility were positively related to all academic indicators (β range, 0.182 to 0.350; all P < .046) and muscular fitness with 3 academic indicators (β range, 0.143 to 0.253; all P < .039). Children considered as fit had better academic performance than their unfit peers (score +0.75; P = .001). The association between body mass index and GPA was mediated by cardiorespiratory fitness and speed-agility. This investigation contributes to the current knowledge by adding evidence about the crucial role of physical fitness in terms of academic performance rather than obesity status, suggesting that physical fitness may ameliorate the negative influence of obesity on academic performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Mi, Baibing; Dang, Shaonong; Li, Qiang; Zhao, Yaling; Yang, Ruihai; Wang, Duolao; Yan, Hong
2015-07-01
Hypertensive patients have more complex health care needs and are more likely to have poorer health-related quality of life than normotensive people. The awareness of hypertension could be related to reduce health-related quality of life. We propose the use of quantile regression to explore more detailed relationships between awareness of hypertension and health-related quality of life. In a cross-sectional, population-based study, 2737 participants (including 1035 hypertensive patients and 1702 normotensive participants) completed the Short-Form Health Survey. A quantile regression model was employed to investigate the association of physical component summary scores and mental component summary scores with awareness of hypertension and to evaluate the associated factors. Patients who were aware of hypertension (N = 554) had lower scores than patients who were unaware of hypertension (N = 481). The median (IQR) of physical component summary scores: 48.20 (13.88) versus 53.27 (10.79), P < 0.01; the mental component summary scores: 50.68 (15.09) versus 51.70 (10.65), P = 0.03. adjusting for covariates, the quantile regression results suggest awareness of hypertension was associated with most physical component summary scores quantiles (P < 0.05 except 10th and 20th quantiles) in which the β-estimates from -2.14 (95% CI: -3.80 to -0.48) to -1.45 (95% CI: -2.42 to -0.47), as the same significant trend with some poorer mental component summary scores quantiles in which the β-estimates from -3.47 (95% CI: -6.65 to -0.39) to -2.18 (95% CI: -4.30 to -0.06). The awareness of hypertension has a greater effect on those with intermediate physical component summary status: the β-estimates were equal to -2.04 (95% CI: -3.51 to -0.57, P < 0.05) at the 40th and decreased further to -1.45 (95% CI: -2.42 to -0.47, P < 0.01) at the 90th quantile. Awareness of hypertension was negatively related to health-related quality of life in hypertensive patients in rural western China, which has a greater effect on mental component summary scores with the poorer status and on physical component summary scores with the intermediate status.
ITS component specification. Appendix B, Input data flows for components
DOT National Transportation Integrated Search
1997-11-01
The objective of the Polaris Project is to define an Intelligent Transportation Systems (ITS) architecture for the state of Minnesota. This appendix defines the input data flows for each component of the Polaris Physical Architecture.
ITS component specification. Appendix C, Output data flows for components
DOT National Transportation Integrated Search
1997-01-01
The objective of the Polaris Project is to define an Intelligent Transportation Systems (ITS) architecture for the state of Minnesota. This appendix defines the output data flows for each component of the Polaris Physical Architecture.
Semi-blind Bayesian inference of CMB map and power spectrum
NASA Astrophysics Data System (ADS)
Vansyngel, Flavien; Wandelt, Benjamin D.; Cardoso, Jean-François; Benabed, Karim
2016-04-01
We present a new blind formulation of the cosmic microwave background (CMB) inference problem. The approach relies on a phenomenological model of the multifrequency microwave sky without the need for physical models of the individual components. For all-sky and high resolution data, it unifies parts of the analysis that had previously been treated separately such as component separation and power spectrum inference. We describe an efficient sampling scheme that fully explores the component separation uncertainties on the inferred CMB products such as maps and/or power spectra. External information about individual components can be incorporated as a prior giving a flexible way to progressively and continuously introduce physical component separation from a maximally blind approach. We connect our Bayesian formalism to existing approaches such as Commander, spectral mismatch independent component analysis (SMICA), and internal linear combination (ILC), and discuss possible future extensions.
Research on temperature field of KDP crystal under ion beam cleaning.
Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin
2016-06-20
KH2PO4 (KDP) crystal is a kind of excellent nonlinear optical component used as a laser frequency conversion unit in a high-power laser system. However, KDP crystal has raised a huge challenge in regards to its fabrication for high precision: KDP crystal has special physical and chemical characteristics. Abrasive-free water-dissolution magnetorheological finishing is used in KDP figuring in our lab. But the iron powders of MRF fluid are easily embedded into the soft surface of KDP crystal, which will greatly decrease the laser-induced damage resistance. This paper proposes to utilize ion beam figuring (IBF) technology to figure and clean the surface of a KDP component. Although IBF has many good performances, the thermal effect control is a headachy problem for the KDP process. To solve this problem, we have established its thermal effect models, which are used to calculate a component's surface temperature and thermal gradient in the whole process. By this way, we can understand how to control a temperature map and its gradient in the IBF process. Many experiments have been done to validate and optimize this method. Finally, a KDP component with the size of 200×200×12 mm is successfully processed by this method.
Maintenance of Certification for Radiation Oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kun, Larry E.; Ang, Kian; Erickson, Beth
2005-06-01
Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document professional development of American Board of Radiology (ABR) diplomates in the essential elements of quality care in Radiation Oncology and Radiologic Physics. ABR MOC has been developed in accord with guidelines of the American Board of Medical Specialties. All Radiation Oncology certificates issued since 1995 are 10-year, time-limited certificates; diplomates with time-limited certificates who wish to maintain specialty certification must complete specific requirements ofmore » the American Board of Radiology MOC program. Diplomates with lifelong certificates are not required to participate but are strongly encouraged to do so. Maintenance of Certification is based on documentation of participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Through these components, MOC addresses six competencies-medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice. Details of requirements for components 1, 2, and 3 of MOC are outlined along with aspects of the fourth component currently under development.« less
NASA Astrophysics Data System (ADS)
Chan, V. S.; Wong, C. P. C.; McLean, A. G.; Luo, G. N.; Wirth, B. D.
2013-10-01
The Xolotl code under development by PSI-SciDAC will enhance predictive modeling capability of plasma-facing materials under burning plasma conditions. The availability and application of experimental data to compare to code-calculated observables are key requirements to validate the breadth and content of physics included in the model and ultimately gain confidence in its results. A dedicated effort has been in progress to collect and organize a) a database of relevant experiments and their publications as previously carried out at sample exposure facilities in US and Asian tokamaks (e.g., DIII-D DiMES, and EAST MAPES), b) diagnostic and surface analysis capabilities available at each device, and c) requirements for future experiments with code validation in mind. The content of this evolving database will serve as a significant resource for the plasma-material interaction (PMI) community. Work supported in part by the US Department of Energy under GA-DE-SC0008698, DE-AC52-07NA27344 and DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Xiangfeng, Zhang; Hong, Jiang
2018-03-01
In this paper, the full vector LCD method is proposed to solve the misjudgment problem caused by the change of the working condition. First, the signal from different working condition is decomposed by LCD, to obtain the Intrinsic Scale Component (ISC)whose instantaneous frequency with physical significance. Then, calculate of the cross correlation coefficient between ISC and the original signal, signal denoising based on the principle of mutual information minimum. At last, calculate the sum of absolute Vector mutual information of the sample under different working condition and the denoised ISC as the characteristics to classify by use of Support vector machine (SVM). The wind turbines vibration platform gear box experiment proves that this method can identify fault characteristics under different working conditions. The advantage of this method is that it reduce dependence of man’s subjective experience, identify fault directly from the original data of vibration signal. It will has high engineering value.
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam
2012-01-01
Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.
Repair of Electronics for Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Pettegrew, Richard D.; Easton, John; Struk, Peter
2007-01-01
To reduce mission risk, long duration spaceflight and exploration activities will require greater degrees of self-sufficiency with regards to repair capability than have ever been employed before in space exploration. The current repair paradigm of replacing Orbital Replacement Units (ORUs) of malfunctioning avionics and electronic hardware will be impractical, since carrying all of the spares that could possibly be needed for a long duration mission would require upmass and volume at unprecedented and unacceptable levels. A strategy of component-level repair for electronics, however, could significantly reduce the mass and volume necessary for spares and enhance mission safety via a generic contingency capability. This approach is already used to varying degrees by the U.S. Navy, where vessels at sea experience some similar constraints such as the need for self sufficiency for moderately long time periods, and restrictions on volume of repair spares and infrastructure. The concept of conducting component-level repairs of electronics in spacecraft requires the development of design guidelines for future avionics (to enable repair), development of diagnostic techniques to allow an astronaut to pinpoint the faulty component aboard a vastly complex vehicle, and development of tools and methodologies for dealing with the physical processes of replacing the component. This physical process includes tasks such as conformal coating removal and replacement, component removal, replacement, and alignment--all in the difficulty of a reduced gravity environment. Further, the gravitational effects on the soldering process must be characterized and accounted for to ensure reliability of the newly repaired components. The Component-Level Electronics-Assembly Repair (CLEAR) project under the NASA Supportability program was established to develop and demonstrate the practicality of this repair approach. CLEAR involves collaborative efforts between NASA s Glenn Research Center, Langley Research Center, Johnson Space Center, the National Center for Space Exploration Research, and the U.S. Navy. The project goals are 1) develop and demonstrate a manually-operated electronics repair capability to be conducted in a spacecraft environment; and 2) develop guidelines for designs of electronics that facilitates component-level repair for future space exploration efforts. This multi-faceted program utilizes a cross-disciplinary approach to examine pre- and post-repair diagnostics, conformal coating removal and replacement, component soldering, and electronics design for supportability. These areas are investigated by a combination of trade studies, ground based testing, reduced gravity aircraft testing, and actual spaceflight testing on the International Space Station (ISS) in multiple experiments. This paper details the efforts of this program, with emphasis on early trade study results, ground-based efforts, and two upcoming ISS experiments.
Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi
2017-04-01
Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh -1 , and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh -1 ), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh -1 ) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact. Copyright © 2017 Elsevier B.V. All rights reserved.
Wermelinger Ávila, Maria Priscila; Corrêa, Jimilly Caputo; Lucchetti, Alessandra Lamas Granero; Lucchetti, Giancarlo
2018-04-01
The aim of this study is to evaluate the relationship between resilience and mental health in older adults and how physical activity influences that relationship. A cross-sectional study was carried out with 312 older adults (179 active and 133 sedentary classified by IPAQ). Considering the whole sample, an inverse relationship was found for resilience (Wagnild-Young's Resilience Scale) with depression and stress (DASS-21). Among the sedentary, in spite of there not being an association between total resilience and mental health, there was an inverse relationship for the "meaning of life" component of the resilience and depression scale. For the active group, there was a relationship between total resilience and its components with depression and stress, but not for the "meaning of life" component of the resilience scale. Physical activity played an important role in the relationship between resilience and depression, showing that active and sedentary people use different components of resilience.
Haring, Catharina M; Cools, Bernadette M; van der Meer, Jos Wm; Postma, Cornelis T
2014-04-08
Many practicing physicians lack skills in physical examination. It is not known whether physical examination skills already show deficiencies after an early phase of clinical training. At the end of the internal medicine clerkship students are expected to be able to perform a general physical examination in every new patient encounter. In a previous study, the basic physical examination items that should standardly be performed were set by consensus. The aim of the current observational study was to assess whether medical students were able to correctly perform a general physical examination regarding completeness as well as technique at the end of the clerkship internal medicine. One hundred students who had just finished their clerkship internal medicine were asked to perform a general physical examination on a standardized patient as they had learned during the clerkship. They were recorded on camera. Frequency of performance of each component of the physical examination was counted. Adequacy of performance was determined as either correct or incorrect or not assessable using a checklist of short descriptions of each physical examination component. A reliability analysis was performed by calculation of the intra class correlation coefficient for total scores of five physical examinations rated by three trained physicians and for their agreement on performance of all items. Approximately 40% of the agreed standard physical examination items were not performed by the students. Students put the most emphasis on examination of general parameters, heart, lungs and abdomen. Many components of the physical examination were not performed as was taught during precourses. Intra-class correlation was high for total scores of the physical examinations 0.91 (p <0.001) and for agreement on performance of the five physical examinations (0.79-0.92 p <0.001). In conclusion, performance of the general physical examination was already below expectation at the end of the internal medicine clerkship. Possible causes and suggestions for improvement are discussed.
Student performance of the general physical examination in internal medicine: an observational study
2014-01-01
Background Many practicing physicians lack skills in physical examination. It is not known whether physical examination skills already show deficiencies after an early phase of clinical training. At the end of the internal medicine clerkship students are expected to be able to perform a general physical examination in every new patient encounter. In a previous study, the basic physical examination items that should standardly be performed were set by consensus. The aim of the current observational study was to assess whether medical students were able to correctly perform a general physical examination regarding completeness as well as technique at the end of the clerkship internal medicine. Methods One hundred students who had just finished their clerkship internal medicine were asked to perform a general physical examination on a standardized patient as they had learned during the clerkship. They were recorded on camera. Frequency of performance of each component of the physical examination was counted. Adequacy of performance was determined as either correct or incorrect or not assessable using a checklist of short descriptions of each physical examination component. A reliability analysis was performed by calculation of the intra class correlation coefficient for total scores of five physical examinations rated by three trained physicians and for their agreement on performance of all items. Results Approximately 40% of the agreed standard physical examination items were not performed by the students. Students put the most emphasis on examination of general parameters, heart, lungs and abdomen. Many components of the physical examination were not performed as was taught during precourses. Intra-class correlation was high for total scores of the physical examinations 0.91 (p <0.001) and for agreement on performance of the five physical examinations (0.79-0.92 p <0.001). Conclusions In conclusion, performance of the general physical examination was already below expectation at the end of the internal medicine clerkship. Possible causes and suggestions for improvement are discussed. PMID:24712683
Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys
NASA Astrophysics Data System (ADS)
Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.
The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.
Spanos, Dimitrios; Melville, Craig Andrew; Hankey, Catherine Ruth
2013-09-23
To evaluate the clinical effectiveness of weight management interventions in adults with intellectual disabilities (ID) and obesity using recommendations from current clinical guidelines for the first line management of obesity in adults. Full papers on lifestyle modification interventions published between 1982 to 2011 were sought by searching the Medline, Embase, PsycINFO and CINAHL databases. Studies were evaluated based on (1) intervention components, (2) methodology, (3) attrition rate (4) reported weight loss and (5) duration of follow up. Twenty two studies met the inclusion criteria. The interventions were classified according to inclusion of the following components: behaviour change alone, behaviour change plus physical activity, dietary advice or physical activity alone, dietary plus physical activity advice and multi-component (all three components). The majority of the studies had the same methodological limitations: no sample size justification, small heterogeneous samples, no information on randomisation methodologies. Eight studies were classified as multi-component interventions, of which one study used a 600 kilocalorie (2510 kilojoule) daily energy deficit diet. Study durations were mostly below the duration recommended in clinical guidelines and varied widely. No study included an exercise program promoting 225-300 minutes or more of moderate intensity physical activity per week but the majority of the studies used the same behaviour change techniques. Three studies reported clinically significant weight loss (≥ 5%) at six months post intervention. Current data indicate weight management interventions in those with ID differ from recommended practice and further studies to examine the effectiveness of multi-component weight management interventions for adults with ID and obesity are justified.
2013-01-01
To evaluate the clinical effectiveness of weight management interventions in adults with intellectual disabilities (ID) and obesity using recommendations from current clinical guidelines for the first line management of obesity in adults. Full papers on lifestyle modification interventions published between 1982 to 2011 were sought by searching the Medline, Embase, PsycINFO and CINAHL databases. Studies were evaluated based on 1) intervention components, 2) methodology, 3) attrition rate 4) reported weight loss and 5) duration of follow up. Twenty two studies met the inclusion criteria. The interventions were classified according to inclusion of the following components: behaviour change alone, behaviour change plus physical activity, dietary advice or physical activity alone, dietary plus physical activity advice and multi-component (all three components). The majority of the studies had the same methodological limitations: no sample size justification, small heterogeneous samples, no information on randomisation methodologies. Eight studies were classified as multi-component interventions, of which one study used a 600 kilocalorie (2510 kilojoule) daily energy deficit diet. Study durations were mostly below the duration recommended in clinical guidelines and varied widely. No study included an exercise program promoting 225–300 minutes or more of moderate intensity physical activity per week but the majority of the studies used the same behaviour change techniques. Three studies reported clinically significant weight loss (≥ 5%) at six months post intervention. Current data indicate weight management interventions in those with ID differ from recommended practice and further studies to examine the effectiveness of multi-component weight management interventions for adults with ID and obesity are justified. PMID:24060348
Promoting Physical Education: The Link to Academic Achievement
ERIC Educational Resources Information Center
Smith, Nicole J.; Lounsbery, Monica
2009-01-01
Quality physical education is recognized for its health-related benefits and should be supported as an integral component of every school's curriculum. Unfortunately, quality physical education is not easily established or maintained. Many physical education programs face challenges such as reduced staff, large class sizes, inadequate facilities…
Kearney, Kelly A; Butler, Mark; Glazer, Robert; Kelble, Christopher R; Serafy, Joseph E; Stabenau, Erik
2015-04-01
The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.
NASA Astrophysics Data System (ADS)
Kearney, Kelly A.; Butler, Mark; Glazer, Robert; Kelble, Christopher R.; Serafy, Joseph E.; Stabenau, Erik
2015-04-01
The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate ( Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.
Dodson, John A; Arnold, Suzanne V; Reid, Kimberly J; Gill, Thomas M; Rich, Michael W; Masoudi, Frederick A; Spertus, John A; Krumholz, Harlan M; Alexander, Karen P
2012-05-01
Acute myocardial infarction (AMI) may contribute to health status declines including "independence loss" and "physical function decline." Despite the importance of these outcomes for prognosis and quality of life, their incidence and predictors have not been well described. We studied 2,002 patients with AMI enrolled across 24 sites in the TRIUMPH registry who completed assessments of independence and physical function at the time of AMI and 1 year later. Independence was evaluated by the EuroQol-5D (mobility, self-care, and usual activities), and physical function was assessed with the Short Form-12 physical component score. Declines in ≥1 level on EuroQol-5D and >5 points in PCS were considered clinically significant changes. Hierarchical, multivariable, modified Poisson regression models accounting for within-site variability were used to identify predictors of independence loss and physical function decline. One-year post AMI, 43.0% of patients experienced health status declines: 12.8% independence loss alone, 15.2% physical function decline alone, and 15.0% both. After adjustment, variables that predicted independence loss included female sex, nonwhite race, unmarried status, uninsured status, end-stage renal disease, and depression. Variables that predicted physical function decline were uninsured status, lack of cardiac rehabilitation referral, and absence of pre-AMI angina. Age was not predictive of either outcome after adjustment. >40% of patients experience independence loss or physical function decline 1 year after AMI. These changes are distinct but can occur simultaneously. Although some risk factors are not modifiable, others suggest potential targets for strategies to preserve patients' health status. Copyright © 2012 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Y.; Chang, J.; Luo, L.
2017-12-01
It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.
Experimental demonstration of the vertical spin existence in evanescent waves
NASA Astrophysics Data System (ADS)
Maksimyak, P. P.; Maksimyak, A. P.; Ivanskyi, D. I.
2018-01-01
Physical existence of the recently discovered vertical spin arising in an evanescent light wave due to the total internal reflection of a linearly polarized probing beam with azimuthal angle 45° is experimentally verified. Mechanical action, caused by optical force, associated with the extraordinary transverse component of the spin in evanescent wave is demonstrated. The motion of a birefringent plate in a direction controlled by simultaneous action of the canonical momentum and the transversal spin momentum is observed. The contribution of the canonical and spin momenta in determination of the trajectory of the resulting motion occur commensurable under exceptionally delicately determined experimental conditions.
NASA Astrophysics Data System (ADS)
Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong
2017-01-01
Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.
Development of a patient-specific surgical simulator for pediatric laparoscopic procedures.
Saber, Nikoo R; Menon, Vinay; St-Pierre, Jean C; Looi, Thomas; Drake, James M; Cyril, Xavier
2014-01-01
The purpose of this study is to develop and evaluate a pediatric patient-specific surgical simulator for the planning, practice, and validation of laparoscopic surgical procedures prior to intervention, initially focusing on the choledochal cyst resection and reconstruction scenario. The simulator is comprised of software elements including a deformable body physics engine, virtual surgical tools, and abdominal organs. Hardware components such as haptics-enabled hand controllers and a representative endoscopic tool have also been integrated. The prototype is able to perform a number of surgical tasks and further development work is under way to simulate the complete procedure with acceptable fidelity and accuracy.
Analytical formulation of orbiter-payload models coupled by trunnion joints with Coulomb friction
NASA Technical Reports Server (NTRS)
Liu, Frank C.
1987-01-01
An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.
Analytical formulation of orbiter-payload coupled by trunnion joints with Coulomb friction
NASA Technical Reports Server (NTRS)
Liu, Frank C.
1986-01-01
An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.
Parameter Estimation for Viscoplastic Material Modeling
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.
1997-01-01
A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, Christopher J.
Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.
A molecular imaging analysis of C×43 association with Cdo during skeletal myoblast differentiation
NASA Astrophysics Data System (ADS)
Nosi, Daniele; Mercatelli, Raffaella; Chellini, Flaminia; Soria, Silvia; Pini, Alessandro; Formigli, Lucia; Quercioli, Franco
2014-02-01
Cell-to-cell contacts are crucial for cell differentiation. The promyogenic cell surface protein, Cdo, functions as a component of multiprotein clusters to mediate cell adhesion signaling. Connexin43, the main connexin forming gap junctions, also plays a key role in myogenesis. At least part of its effects are independent of the intercellular channel function, but the mechanisms underlying are unknown. Here, using multiple optical approaches, we provided the first evidence that Cx43 physically interacts with Cdo to form dynamic complexes during myoblast differentiation, offering clues for considering this interaction a structural basis of the channel-independent function of Cx43.
Analytical Summary. Part 1. The Physical Properties of STS under Triaxial Stress
1946-06-01
between Octahedral Shear Stress and Octahedral Shear Strain for Zero Mean Hydrostatic Tension. Data for SIS of 115000 (lb)/(in)2 Tensile Strength. Figure (5...the specimen and the twist by the equation a4• S The tensors I + VAr and (I + VAr)-1 have the matrices Ii 0 0 0 00 0 i O and 0 1 0 0 s 1 jO- si The...given in terms of s by the equations = - + V. + ’s + ___ Sis + + =. 2 ’ = - i + i+ 1s2 is 44 e/ l+ 44S2 The rate of strain tensor X has the components
NASA Astrophysics Data System (ADS)
Hetrick, Robert E.; Hohnke, D. K.; Logothetis, E. M.
1981-01-01
Ceramic ZrO2, TiO2 and related oxides with suitable O2-sensitive electrical properties have found important applications in devices for measuring exhaust-gas O2 concentration. For example, such devices are key components in feedback control systems that would maintain the intake air-to-fuel ratio near the stoichiometric value where regulated emissions can be minimized. The physical principles underlying the operation of ZrO2 based O2-concentration cells and TiO2-based resistive devices for the stoichiometric application are described. Finally, a device based on electrochemical O2 pumping is discussed which may be useful for A/F control in the fuel-efficient lean region.
The Teleost Octavolateralis System: Structure and Function
NASA Technical Reports Server (NTRS)
Popper, Arthur N.
1996-01-01
This paper considers the detection of vibrational signals (including sound) by the two components of the octavolateralis system, the ear and mechanosensory lateral line. Together, these systems provide fishes with a good deal of information about their surrounding environment, and enable fishes to detect both predators and prey. While the mechanisms by which fishes and zooplankton produce and detect signals may differ, it is clear that the physical principles underlying the signals themselves are identical, no matter whether we are dealing with fish or zooplankton. Thus, an understanding of signal production and detection mechanisms by fishes can be of significant help in understanding how similar systems would function in zooplankton.
Customer Service Analysis of Air Combat Command Vehicle Maintenance Support
1993-09-01
the survey, the researchers categorized the services or variables into marketing mix components: product, price, promotion, and customer service...comparing and analyzing the variables identified in the previous three phases to determine a strategic marketing mix (46:9). After analyzing the data...service/physical distribution. Additionally, they found that customer service/physical distribution was an integral component of the marketing mix , and
Koenig, H G; Hays, J C; George, L K; Blazer, D G; Larson, D B; Landerman, L R
1997-01-01
The authors examined models of the relationships between religious activities, physical health, social support, and depressive symptoms in a sample of 4,000 persons age 65 and over. Religious activity was examined first as a single composite construct and then split into three component variables that were examined individually. Religious activity as a single construct was correlated with both social support and good physical health but was unrelated to depression. Split into the three components, model fit was significantly increased. Frequency of church attendance was positively related to physical health and negatively related to depression, but was surprisingly unrelated to social support. Frequent churchgoers were about half as likely to be depressed. Private prayer/Bible reading was negatively correlated with physical health and positively correlated with social support, but unrelated to depression. Religious TV/radio listening was unrelated to social support, negatively related to good physical health, and, unexpectedly, positively associated with depression.
[Physical and mental dimensions of quality of life of frail older people].
Gobbens, Robbert J J
2017-09-01
Frail older people have an increased risk of limitations in performing activities of daily living, hospitalization, nursing home admission, and premature death. In this study we determined the difference in experiencing quality of life between frail and non-frail older people. We also investigated the associations between physical, psychological and social components of frailty and the physical and mental dimensions of quality of life. 374 people of 75 years and older filled in a questionnaire, the Senioren Barometer. This questionnaire contained the Tilburg Frailty Indicator (TFI) to assess frailty and the SF-12 for assessing quality of life. The study showed that frail older people on average experience a lower quality of life than non-frail older people. A considerable part of the variance of the physical and mental dimensions of quality of life could be explained by the fifteen components of frailty, after controlling for the background characteristics of the respondents, 33.2% and 36.5%, respectively. The frailty components physical inactivity, physical tiredness, and depressive symptoms were associated with the physical dimension as well as the mental dimension of quality of life. The results confirm the importance of multidimensional assessment of frailty. In addition, they provide a direction to healthcare and welfare professionals in performing interventions with the aim of increasing the quality of life of older people.
Evidence-based lifestyle interventions in the workplace--an overview.
Schröer, S; Haupt, J; Pieper, C
2014-01-01
Lifestyle-related health issues affect the economic position of organizations and contribute to reduced productivity, increased absenteeism and health care costs. To summarize the effectiveness of different workplace health interventions for promoting healthy lifestyle, preventing diseases and reducing health care costs. We searched MEDLINE via Pubmed, EMBASE, Cochrane Library, NelH, HighWire Press and Google Scholar in March 2012. Systematic reviews and meta-analyses of workplace interventions aimed at promoting physical activity, healthy weight and good nutrition were included. Three authors assessed the quality of the reviews and extracted data on methods, interventions, outcomes, results and effect sizes. We identified 15 publications covering a total of 379 original studies. Three systematic reviews found beneficial effects of workplace nutrition interventions on employees' dietary behaviour. Three reviews found multi-component physical activity interventions to be effective in increasing employees' physical activity and fitness. The other activity promotion interventions were less effective regarding physical activity and weight-related outcomes. In terms of weight management, our findings favour multi-component interventions that focus on both physical activity and nutrition over single dietary programmes. Workplace health promotion interventions may improve physical activity, dietary behaviour and healthy weight. There is no evidence of increased efficacy associated with specific intervention types. Workplace health promotion should focus on either physical activity or weight or nutrition behaviour to maximize effectiveness. Best evidence is available for multi-component interventions.
NASA Tech Briefs, July 1997. Volume 21, No. 7
NASA Technical Reports Server (NTRS)
1997-01-01
Topics: Mechanical Components; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Software; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Life Sciences.
Experiments on the flow field physics of confluent boundary layers for high-lift systems
NASA Technical Reports Server (NTRS)
Nelson, Robert C.; Thomas, F. O.; Chu, H. C.
1994-01-01
The use of sub-scale wind tunnel test data to predict the behavior of commercial transport high lift systems at in-flight Reynolds number is limited by the so-called 'inverse Reynolds number effect'. This involves an actual deterioration in the performance of a high lift device with increasing Reynolds number. A lack of understanding of the relevant flow field physics associated with numerous complicated viscous flow interactions that characterize flow over high-lift devices prohibits computational fluid dynamics from addressing Reynolds number effects. Clearly there is a need for research that has as its objective the clarification of the fundamental flow field physics associated with viscous effects in high lift systems. In this investigation, a detailed experimental investigation is being performed to study the interaction between the slat wake and the boundary layer on the primary airfoil which is known as a confluent boundary layer. This little-studied aspect of the multi-element airfoil problem deserves special attention due to its importance in the lift augmentation process. The goal of this research is is to provide an improved understanding of the flow physics associated with high lift generation. This process report will discuss the status of the research being conducted at the Hessert Center for Aerospace Research at the University of Notre Dame. The research is sponsored by NASA Ames Research Center under NASA grant NAG2-905. The report will include a discussion of the models that have been built or that are under construction, a description of the planned experiments, a description of a flow visualization apparatus that has been developed for generating colored smoke for confluent boundary layer studies and some preliminary measurements made using our new 3-component fiber optic LDV system.
PREPARTICIPATION SCREENING – THE SPORTS PHYSICAL THERAPY PERSPECTIVE
Blackburn, Turner A.; Boucher, Brenda
2013-01-01
Background and Purpose: The sports physical therapist (SPT) is uniquely qualified to participate in the provision of preparticipation physical examinations (PPE). The PPE is recommended prior to athletic participation and required by many jurisdictions. There is little research to support the process and components; however, a number of professional organizations have recommendations that direct the PPE process. Description of Topic and Related Evidence: This clinical commentary highlights the role of the sports physical therapist and current evidence related to the preparticipation physical examination process. Data sources were limited to include professional positions and peer reviewed publications from 1988 through January 2013. Relation to Clinical Practice: Preparticipation physicals should be useful, comprehensive, and cost effective for the athlete and the health care team. Additional research is indicated in many of the areas of the PPE. The SPT is a valuable member of the health care team and can be a primary facilitator of the PPE in concert with the physician, athletic trainer, athletic organization administrators, and others. Well‐designed and inclusive PPEs can be provided to meet the major objectives of identification of athletes at risk. Controversy continues over the extent of the cardiac screening component as well as other sport or athlete specific components. Level of Evidence: 5 PMID:23593556
Leisure-time physical activities for community older people with chronic diseases.
Lin, Yen-Chun; Huang, Lian-Hua; Yeh, Mei Chang; Tai, John Jen
2011-04-01
(1) To explore the types and three components (frequency, duration and caloric expenditure) of leisure-time physical activity in community older people with chronic diseases. (2) To identify leisure-time physical activity-related factors in these community older people. Previous research has focused primarily on measuring the actual physiological or psychological benefits of exercise or leisure-time physical activity, little is known about the factors that determine the frequency, intensity and duration of exercise or leisure-time physical activity. The identification of reliable predictors of the various components of leisure-time physical activity will enable healthcare providers to intervene and change the patterns of leisure-time physical activity in the sedentary older people more effectively. A cross-sectional design was used for this study. Participants were recruited from the Xinyi District in Taipei, Taiwan. A total of 206 older people were recruited and were asked to complete three questionnaires during a face-to-face interview with a researcher at the activity setting. The results showed that walking leisurely was the most frequent leisure-time physical activity for participants. The age, gender, living arrangement, affective feeling and environmental control were significant variables of leisure-time physical activity. The study constructs accounted for moderate amounts of variance (22% for leisure-time physical activity frequency, 27% for leisure-time physical activity duration and 24% for leisure-time physical activity caloric expenditure). This study also showed that different variables play different influential roles in the different components of LTPA. An effective intervention strategy for improving leisure-time physical activity of older people may involve tailoring the type, format, intensity, frequency and duration of a physical activity according to an individual's needs. This study described some environmental barriers to LTPA and recommended an increase in the accessibility to LTPA areas. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
McNamee, Jeff; Timken, Gay L.; Coste, Sarah C.; Tompkins, Tanya L.; Peterson, Janet
2017-01-01
This pilot project aimed to demonstrate the efficacy and feasibility of an innovative physical education programme, referred to as a health club (HC) approach, in a high school setting. We measured adolescent girls' moderate to vigorous physical activity (MVPA), components of health-related physical fitness, and perceptions about themselves and…
Harvard Project Physics Newsletter 10. The Project Physics Course, Text.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
A short description of the availability of Harvard Project Physics course components is given as is a discussion of the growth of the use of Project Physics in schools, including some enrollment data and survey results. Locations of the 1970 and 1971 Summer Institutes are listed. Adaptations of Project Physics course outside the United States are…
ERIC Educational Resources Information Center
Harvey, Stephen; Smith, Megan L.; Song, Yang; Robertson, David; Brown, Renee; Smith, Lindsey R.
2016-01-01
The Tactical Games Model (TGM) prefaces the cognitive components of physical education (PE), which has implications for physical activity (PA) accumulation. PA recommendations suggest students reach 50% moderate-vigorous physical activity (MVPA). However, this criterion does not indicate the contribution from vigorous physical activity (VPA).…
Using Game Play Scenarios to Go beyond the Traditional Written Test
ERIC Educational Resources Information Center
Pagnano-Richardson, Karen; Henninger, Mary L.
2010-01-01
The cognitive domain in physical education is an important component of quality physical education as demonstrated through Standard 2 of the National Standards for Physical Education which state that the physically educated person "demonstrates understanding of movement concepts, principles, strategies, and tactics as they apply to learning and…
Physical Education & Outdoor Education: Complementary but Discrete Disciplines
ERIC Educational Resources Information Center
Martin, Peter; McCullagh, John
2011-01-01
The Australian Council for Health, Physical Education and Recreation (ACHPER) includes Outdoor Education (OE) as a component of Physical Education (PE). Yet Outdoor Education is clearly thought of by many as a discrete discipline separate from Physical Education. Outdoor Education has a body of knowledge that differs from that of Physical…
Mapping University Students' Epistemic Framing of Computational Physics Using Network Analysis
ERIC Educational Resources Information Center
Bodin, Madelen
2012-01-01
Solving physics problem in university physics education using a computational approach requires knowledge and skills in several domains, for example, physics, mathematics, programming, and modeling. These competences are in turn related to students' beliefs about the domains as well as about learning. These knowledge and beliefs components are…
Physics Metacognition Inventory Part Ii: Confirmatory Factor Analysis and Rasch Analysis
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Bailey, MarLynn; Farley, John
2015-01-01
The Physics Metacognition Inventory was developed to measure physics students' metacognition for problem solving. In one of our earlier studies, an exploratory factor analysis provided evidence of preliminary construct validity, revealing six components of students' metacognition when solving physics problems including knowledge of cognition,…
Couture, Éva Marjorie; Chouinard, Maud-Christine; Fortin, Martin; Hudon, Catherine
2017-07-06
Although health literacy and quality of life are important concepts in health care, the link between them is unclear, especially for a population of frequent users of health care services with chronic diseases. Low health literacy is a common problem that has been linked to several negative health outcomes. Quality of life is an important health outcome in patient-centered care. Frequent users of health care services are a vulnerable population that deserves attention due to high costs and negative outcomes such as lower quality of life and higher mortality. The objective of this study was to examine the relationship between health literacy and the physical and mental components of quality of life among frequent users of health care services with chronic diseases. This study presents the cross-sectional analysis of data collected through the V1SAGES project, a randomized controlled trial on the effectiveness of a case management intervention in primary care in Quebec, Canada. Participants (n = 247) were frequent users of health care services presenting at least one chronic condition. Health literacy was measured by the Newest Vital Sign (NVS), and the physical and mental components of quality of life were evaluated by the Short Form Health Survey Version 2 (SF-12v2). The association between health literacy (independent variable) and the physical and mental components of quality of life was examined using biserial correlation. No association was found between health literacy and quality of life (physical component: r = 0.108, ρ = 0.11; mental component: r = 0.147, ρ = 0.15). This study suggests that there is no relationship between health literacy and the physical and mental components of quality of life among frequent users of health care services. NCT01719991 . Registered October 25, 2012.
Betts, James A; Richardson, Judith D; Chowdhury, Enhad A; Holman, Geoffrey D; Tsintzas, Kostas; Thompson, Dylan
2014-08-01
Popular beliefs that breakfast is the most important meal of the day are grounded in cross-sectional observations that link breakfast to health, the causal nature of which remains to be explored under real-life conditions. The aim was to conduct a randomized controlled trial examining causal links between breakfast habits and all components of energy balance in free-living humans. The Bath Breakfast Project is a randomized controlled trial with repeated-measures at baseline and follow-up in a cohort in southwest England aged 21-60 y with dual-energy X-ray absorptiometry-derived fat mass indexes ≤11 kg/m² in women (n = 21) and ≤7.5 kg/m² in men (n = 12). Components of energy balance (resting metabolic rate, physical activity thermogenesis, energy intake) and 24-h glycemic responses were measured under free-living conditions with random allocation to daily breakfast (≥700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow-up measures of health markers (eg, hematology/biopsies). Contrary to popular belief, there was no metabolic adaptation to breakfast (eg, resting metabolic rate stable within 11 kcal/d), with limited subsequent suppression of appetite (energy intake remained 539 kcal/d greater than after fasting; 95% CI: 157, 920 kcal/d). Rather, physical activity thermogenesis was markedly higher with breakfast than with fasting (442 kcal/d; 95% CI: 34, 851 kcal/d). Body mass and adiposity did not differ between treatments at baseline or follow-up and neither did adipose tissue glucose uptake or systemic indexes of cardiovascular health. Continuously measured glycemia was more variable during the afternoon and evening with fasting than with breakfast by the final week of the intervention (CV: 3.9%; 95% CI: 0.1%, 7.8%). Daily breakfast is causally linked to higher physical activity thermogenesis in lean adults, with greater overall dietary energy intake but no change in resting metabolism. Cardiovascular health indexes were unaffected by either of the treatments, but breakfast maintained more stable afternoon and evening glycemia than did fasting.
An Object-Oriented Network-Centric Software Architecture for Physical Computing
NASA Astrophysics Data System (ADS)
Palmer, Richard
1997-08-01
Recent developments in object-oriented computer languages and infrastructure such as the Internet, Web browsers, and the like provide an opportunity to define a more productive computational environment for scientific programming that is based more closely on the underlying mathematics describing physics than traditional programming languages such as FORTRAN or C++. In this talk I describe an object-oriented software architecture for representing physical problems that includes classes for such common mathematical objects as geometry, boundary conditions, partial differential and integral equations, discretization and numerical solution methods, etc. In practice, a scientific program written using this architecture looks remarkably like the mathematics used to understand the problem, is typically an order of magnitude smaller than traditional FORTRAN or C++ codes, and hence easier to understand, debug, describe, etc. All objects in this architecture are ``network-enabled,'' which means that components of a software solution to a physical problem can be transparently loaded from anywhere on the Internet or other global network. The architecture is expressed as an ``API,'' or application programmers interface specification, with reference embeddings in Java, Python, and C++. A C++ class library for an early version of this API has been implemented for machines ranging from PC's to the IBM SP2, meaning that phidentical codes run on all architectures.
Suskind, Anne M; Clemens, J Quentin; Kaufman, Samuel R; Stoffel, John T; Oldendorf, Ann; Malaeb, Bahaa S; Jandron, Teresa; Cameron, Anne P
2015-03-01
To determine predictors of physical and emotional discomfort associated with urodynamic testing in men and women both with and without neurologic conditions. An anonymous questionnaire-based study was completed by patients immediately after undergoing fluoroscopic urodynamic testing. Participants were asked questions pertaining to their perceptions of physical and emotional discomfort related to the study, their urologic and general health history, and demographics. Logistic regression was performed to determine predictors of physical and emotional discomfort. A total of 314 patients completed the questionnaire representing a response rate of 60%. Half of the respondents (50.7%) felt that the examination was neither physically nor emotionally uncomfortable, whereas 29.0% and 12.4% of respondents felt that the physical and emotional components of the examination were most uncomfortable, respectively. Placement of the urethral catheter was the most commonly reported component of physical discomfort (42.9%), whereas anxiety (27.7%) was the most commonly reported component of emotional discomfort. Presence of a neurologic problem (odds ratio, 0.273; 95% confidence interval, 0.121-0.617) and older age (odds ratio, 0.585; 95% confidence interval, 0.405-0.847) were factors associated with less physical discomfort. There were no significant predictors of emotional discomfort based on our model. Urodynamic studies were well tolerated regardless of gender. Presence of a neurologic condition and older age were predictors of less physical discomfort. These findings are useful in counseling patients regarding what to expect when having urodynamic procedures. Copyright © 2015 Elsevier Inc. All rights reserved.
Suskind, Anne M.; Clemens, J. Quentin; Kaufman, Samuel R.; Stoffel, John T.; Oldendorf, Ann; Malaeb, Bahaa S.; Jandron, Teresa; Cameron, Anne P.
2014-01-01
Objectives To determine predictors of physical and emotional discomfort associated with urodynamic testing in men and women both with and without neurologic conditions. Methods An anonymous questionnaire-based study completed by patients immediately after undergoing fluoroscopic urodynamic testing. Participants were asked questions pertaining to their perceptions of physical and emotional discomfort related to the study, their urologic and general health history, and demographics. Logistic regression was performed to determine predictors of physical and emotional discomfort. Results A total of 314 patients completed the questionnaire representing a response rate of 60%. Half of the respondents (50.7%) felt that the exam was neither physically nor emotionally uncomfortable, while 29.0% and 12.4% of respondents felt that the physical and emotional components of the exam were most uncomfortable, respectively. Placement of the urethral catheter was the most commonly reported component of physical discomfort (42.9%), while anxiety (27.7%) was the most commonly reported component of emotional discomfort. Having a neurologic problem (OR 0.273; 95% CI 0.121, 0.617) and older age (OR 0.585; 95% CI 0.405, 0.847) were factors associated with less physical discomfort. There were no significant predictors of emotional discomfort based on our model. Conclusions Urodynamic studies were well tolerated regardless of gender. Having a neurologic condition and older age were predictors of less physical discomfort. These findings are useful in counseling patients regarding what to expect when having urodynamic procedures. PMID:25733264
Physical fitness and anthropometric normative values among Colombian-Indian schoolchildren.
Ramos-Sepúlveda, Jeison Alexander; Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; García-Hermoso, Antonio
2016-09-13
Substantial evidence indicates that children's physical fitness levels are markers of their lifestyles and their cardio-metabolic health profile and are predictors of the future risk of chronic diseases such as obesity, cardiometabolic disease, skeletal health and mental health. However, fitness reference values for ethnic children and adolescents have not been published in a Latin-American population. Therefore, the aim of the study was to provide sex- and age-specific physical fitness and anthropometric reference standards among Colombian-Indian schoolchildren. A sample of 576 participants (319 boys and 257 girls) aged 10 to 17 years old was assessed using the FUPRECOL test battery. Four components of physical fitness were measured: 1) morphological component: height, weight, body mass index (BMI), waist circumference (WC), triceps skinfold, subscapular skinfold, and body fat (%); 2) musculoskeletal component: handgrip and standing long jump test; 3) motor component: speed/agility test (4 × 10 m shuttle run); and 4) cardiorespiratory component: course-navette 20 m, shuttle run test and estimation of maximal oxygen consumption by VO2max indirect. Centile smoothed curves for the 3(rd), 10(th), 25(th), 50(th), 75(th), 90(th) and 97(th) percentiles were calculated using Cole's LMS method. Our results show that weight, height and BMI in each age group were higher in boys than in girls. In each groups, age showed a significant effect for BMI and WC. Boys showed better than girls in cardiorespiratory fitness, lower- and upper-limb strength and speed/agility and girls performed better in low back flexibility. Our results provide for the first time sex- and age-specific physical fitness and anthropometric reference values for Colombian Nasa Indian children and adolescents aged 10-17.9 years.
Meslot, Carine; Gauchet, Aurélie; Allenet, Benoît; François, Olivier; Hagger, Martin S
2016-01-01
Interventions to assist individuals in initiating and maintaining regular participation in physical activity are not always effective. Psychological and behavioral theories advocate the importance of both motivation and volition in interventions to change health behavior. Interventions adopting self-regulation strategies that foster motivational and volitional components may, therefore, have utility in promoting regular physical activity participation. We tested the efficacy of an intervention adopting motivational (mental simulation) and volitional (implementation intentions) components to promote a regular physical activity in two studies. Study 1 adopted a cluster randomized design in which participants ( n = 92) were allocated to one of three conditions: mental simulation plus implementation intention, implementation intention only, or control. Study 2 adopted a 2 (mental simulation vs. no mental simulation) × 2 (implementation intention vs. no implementation intention) randomized controlled design in which fitness center attendees ( n = 184) were randomly allocated one of four conditions: mental simulation only, implementation intention only, combined, or control. Physical activity behavior was measured by self-report (Study 1) or fitness center attendance (Study 2) at 4- (Studies 1 and 2) and 19- (Study 2 only) week follow-up periods. Findings revealed no statistically significant main or interactive effects of the mental simulation and implementation intention conditions on physical activity outcomes in either study. Findings are in contrast to previous research which has found pervasive effects for both intervention strategies. Findings are discussed in light of study limitations including the relatively small sample sizes, particularly for Study 1, deviations in the operationalization of the intervention components from previous research and the lack of a prompt for a goal intention. Future research should focus on ensuring uniformity in the format of the intervention components, test the effects of each component alone and in combination using standardized measures across multiple samples, and systematically explore effects of candidate moderators.
Meslot, Carine; Gauchet, Aurélie; Allenet, Benoît; François, Olivier; Hagger, Martin S.
2016-01-01
Interventions to assist individuals in initiating and maintaining regular participation in physical activity are not always effective. Psychological and behavioral theories advocate the importance of both motivation and volition in interventions to change health behavior. Interventions adopting self-regulation strategies that foster motivational and volitional components may, therefore, have utility in promoting regular physical activity participation. We tested the efficacy of an intervention adopting motivational (mental simulation) and volitional (implementation intentions) components to promote a regular physical activity in two studies. Study 1 adopted a cluster randomized design in which participants (n = 92) were allocated to one of three conditions: mental simulation plus implementation intention, implementation intention only, or control. Study 2 adopted a 2 (mental simulation vs. no mental simulation) × 2 (implementation intention vs. no implementation intention) randomized controlled design in which fitness center attendees (n = 184) were randomly allocated one of four conditions: mental simulation only, implementation intention only, combined, or control. Physical activity behavior was measured by self-report (Study 1) or fitness center attendance (Study 2) at 4- (Studies 1 and 2) and 19- (Study 2 only) week follow-up periods. Findings revealed no statistically significant main or interactive effects of the mental simulation and implementation intention conditions on physical activity outcomes in either study. Findings are in contrast to previous research which has found pervasive effects for both intervention strategies. Findings are discussed in light of study limitations including the relatively small sample sizes, particularly for Study 1, deviations in the operationalization of the intervention components from previous research and the lack of a prompt for a goal intention. Future research should focus on ensuring uniformity in the format of the intervention components, test the effects of each component alone and in combination using standardized measures across multiple samples, and systematically explore effects of candidate moderators. PMID:27899904
Rationale, design and methods of the HEALTHY study physical education intervention component.
McMurray, R G; Bassin, S; Jago, R; Bruecker, S; Moe, E L; Murray, T; Mazzuto, S L; Volpe, S L
2009-08-01
The HEALTHY primary prevention trial was designed to reduce risk factors for type 2 diabetes in middle school students. Middle schools at seven centers across the United States participated in the 3-year study. Half of them were randomized to receive a multi-component intervention. The intervention integrated nutrition, physical education (PE) and behavior changes with a communications strategy of promotional and educational materials and activities. The PE intervention component was developed over a series of pilot studies to maximize student participation and the time (in minutes) spent in moderate-to-vigorous physical activity (MVPA), while meeting state-mandated PE guidelines. The goal of the PE intervention component was to achieve > or =150 min of MVPA in PE classes every 10 school days with the expectation that it would provide a direct effect on adiposity and insulin resistance, subsequently reducing the risk of type 2 diabetes in youth. The PE intervention component curriculum used standard lesson plans to provide a comprehensive approach to middle school PE. Equipment and PE teacher assistants were provided for each school. An expert in PE at each center trained the PE teachers and assistants, monitored delivery of the intervention and provided ongoing feedback and guidance.
Rationale, design and methods of the HEALTHY study physical education intervention component
McMurray, RG; Bassin, S; Jago, R; Bruecker, S; Moe, EL; Murray, T; Mazzuto, SL; Volpe, SL
2009-01-01
The HEALTHY primary prevention trial was designed to reduce risk factors for type 2 diabetes in middle school students. Middle schools at seven centers across the United States participated in the 3-year study. Half of them were randomized to receive a multi-component intervention. The intervention integrated nutrition, physical education (PE) and behavior changes with a communications strategy of promotional and educational materials and activities. The PE intervention component was developed over a series of pilot studies to maximize student participation and the time (in minutes) spent in moderate-to-vigorous physical activity (MVPA), while meeting state-mandated PE guidelines. The goal of the PE intervention component was to achieve ≥150 min of MVPA in PE classes every 10 school days with the expectation that it would provide a direct effect on adiposity and insulin resistance, subsequently reducing the risk of type 2 diabetes in youth. The PE intervention component curriculum used standard lesson plans to provide a comprehensive approach to middle school PE. Equipment and PE teacher assistants were provided for each school. An expert in PE at each center trained the PE teachers and assistants, monitored delivery of the intervention and provided ongoing feedback and guidance. PMID:19623187
Physical constraints of cultural evolution of dialects in killer whales.
Filatova, Olga A; Samarra, Filipa I P; Barrett-Lennard, Lance G; Miller, Patrick J O; Ford, John K B; Yurk, Harald; Matkin, Craig O; Hoyt, Erich
2016-11-01
Odontocete sounds are produced by two pairs of phonic lips situated in soft nares below the blowhole; the right pair is larger and is more likely to produce clicks, while the left pair is more likely to produce whistles. This has important implications for the cultural evolution of delphinid sounds: the greater the physical constraints, the greater the probability of random convergence. In this paper the authors examine the call structure of eight killer whale populations to identify structural constraints and to determine if they are consistent among all populations. Constraints were especially pronounced in two-voiced calls. In the calls of all eight populations, the lower component of two-voiced (biphonic) calls was typically centered below 4 kHz, while the upper component was typically above that value. The lower component of two-voiced calls had a narrower frequency range than single-voiced calls in all populations. This may be because some single-voiced calls are homologous to the lower component, while others are homologous to the higher component of two-voiced calls. Physical constraints on the call structure reduce the possible variation and increase the probability of random convergence, producing similar calls in different populations.
The Two-Component Virial Theorem and the Physical Properties of Stellar Systems.
Dantas; Ribeiro; Capelato; de Carvalho RR
2000-01-01
Motivated by present indirect evidence that galaxies are surrounded by dark matter halos, we investigate whether their physical properties can be described by a formulation of the virial theorem that explicitly takes into account the gravitational potential term representing the interaction of the dark halo with the baryonic or luminous component. Our analysis shows that the application of such a "two-component virial theorem" not only accounts for the scaling relations displayed by, in particular, elliptical galaxies, but also for the observed properties of all virialized stellar systems, ranging from globular clusters to galaxy clusters.
2013-01-01
Background Old adults admitted to the hospital are at severe risk of functional loss during hospitalization. Early in-hospital physical rehabilitation programs appear to prevent functional loss in geriatric patients. The first aim of this review was to investigate the effect of early physical rehabilitation programs on physical functioning among geriatric patients acutely admitted to the hospital. The second aim was to evaluate the feasibility of early physical rehabilitation programs. Methods Two searches, one for physical functioning and one for feasibility, were conducted in PubMed, CINAHL, and EMBASE. Additional studies were identified through reference and citation tracking. To be included articles had to report on in-hospital early physical rehabilitation of patients aged 65 years and older with an outcome measure of physical functioning. Studies were excluded when the treatment was performed on specialized units other than geriatric units. Randomized controlled trials were included to examine the effect of early physical rehabilitation on physical functioning, length of stay and discharge destination. To investigate feasibility also non randomized controlled trials were added. Results Fifteen articles, reporting on 13 studies, described the effect on physical functioning. The early physical rehabilitation programs were classified in multidisciplinary programs with an exercise component and usual care with an exercise component. Multidisciplinary programs focussed more on facilitating discharge home and independent ADL, whereas exercise programs aimed at improving functional outcomes. At time of discharge patients who had participated in a multidisciplinary program or exercise program improved more on physical functional tests and were less likely to be discharged to a nursing home compared to patients receiving only usual care. In addition, multidisciplinary programs reduced the length of hospital stay significantly. Follow-up interventions improved physical functioning after discharge. The feasibility search yielded four articles. The feasibility results showed that early physical rehabilitation for acutely hospitalized old adults was safe. Adherence rates differed between studies and the recruitment of patients was sometimes challenging. Conclusions Early physical rehabilitation care for acutely hospitalized old adults leads to functional benefits and can be safely executed. Further research is needed to specifically quantify the physical component in early physical rehabilitation programs. PMID:24112948
Kosse, Nienke M; Dutmer, Alisa L; Dasenbrock, Lena; Bauer, Jürgen M; Lamoth, Claudine J C
2013-10-10
Old adults admitted to the hospital are at severe risk of functional loss during hospitalization. Early in-hospital physical rehabilitation programs appear to prevent functional loss in geriatric patients. The first aim of this review was to investigate the effect of early physical rehabilitation programs on physical functioning among geriatric patients acutely admitted to the hospital. The second aim was to evaluate the feasibility of early physical rehabilitation programs. Two searches, one for physical functioning and one for feasibility, were conducted in PubMed, CINAHL, and EMBASE. Additional studies were identified through reference and citation tracking. To be included articles had to report on in-hospital early physical rehabilitation of patients aged 65 years and older with an outcome measure of physical functioning. Studies were excluded when the treatment was performed on specialized units other than geriatric units. Randomized controlled trials were included to examine the effect of early physical rehabilitation on physical functioning, length of stay and discharge destination. To investigate feasibility also non randomized controlled trials were added. Fifteen articles, reporting on 13 studies, described the effect on physical functioning. The early physical rehabilitation programs were classified in multidisciplinary programs with an exercise component and usual care with an exercise component. Multidisciplinary programs focussed more on facilitating discharge home and independent ADL, whereas exercise programs aimed at improving functional outcomes. At time of discharge patients who had participated in a multidisciplinary program or exercise program improved more on physical functional tests and were less likely to be discharged to a nursing home compared to patients receiving only usual care. In addition, multidisciplinary programs reduced the length of hospital stay significantly. Follow-up interventions improved physical functioning after discharge. The feasibility search yielded four articles. The feasibility results showed that early physical rehabilitation for acutely hospitalized old adults was safe. Adherence rates differed between studies and the recruitment of patients was sometimes challenging. Early physical rehabilitation care for acutely hospitalized old adults leads to functional benefits and can be safely executed. Further research is needed to specifically quantify the physical component in early physical rehabilitation programs.
Teaching Sustainability in Introductory Physics
NASA Astrophysics Data System (ADS)
Coffey, David
Guiding students to a better understanding of sustainability is a key part of a modern undergraduate education. Since 2014, Warren Wilson College has incorporated a sustainability component into our introductory physics courses. Students perform energy audits and abatement plans for a business or building. In the process, students strengthen their competency with basic physics concepts including energy, power, units, and conservation of energy but also gain an appreciation of the complexity of sustainability as well as the need for quantitative understanding. These courses are taught to mostly undergraduate science majors. The challenges and opportunities of incorporating such a broad and personalized educational component will be discussed.
NASA Technical Reports Server (NTRS)
Stewart, L. J.; Murphy, E. D.; Mitchell, C. M.
1982-01-01
A human factors analysis addressed three related yet distinct issues within the area of workstation design for the Earth Radiation Budget Satellite (ERBS) mission operation room (MOR). The first issue, physical layout of the MOR, received the most intensive effort. It involved the positioning of clusters of equipment within the physical dimensions of the ERBS MOR. The second issue for analysis was comprised of several environmental concerns, such as lighting, furniture, and heating and ventilation systems. The third issue was component arrangement, involving the physical arrangement of individual components within clusters of consoles, e.g., a communications panel.
Detection of cocrystal formation based on binary phase diagrams using thermal analysis.
Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide
2013-01-01
Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.
SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.
Xiong, Xiao-Peng; Vogler, Georg; Kurthkoti, Krishna; Samsonova, Anastasia; Zhou, Rui
2015-08-01
microRNAs (miRNAs) are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs) that contain Argonaute (AGO) family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP) implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be evolutionarily widespread.
Greaves, Colin J; Farbus, Lou
2006-05-01
Depression and social isolation affect one in seven people over 65 and there is increasing recognition that social isolation adversely affects long-term health. Research indicates that interventions, which promote active social contact, which encourage creativity, and which use mentoring, are more likely to positively affect health and well-being. The purpose of this study was to evaluate a complex intervention for addressing social isolation in older people, embodying these principles: The Upstream Healthy Living Centre. Mentors delivered a series of individually-tailored activities, with support tailing off over time. Two hundred and twenty-nine participants were offered the Geriatric Depression Scale, SF12 Health Quality of Life, and Medical Outcomes Social Support scale at baseline, then 6 months and 12 months post intervention. Semi-structured interviews were conducted with 26 participants, five carers and four referring health professionals to provide a deeper understanding of outcomes. Data were available for 172 (75%) participants at baseline, 72 (53% of those eligible) at 6 months and 51 (55%) at 12 months. Baseline scores indicated social isolation and high morbidity for mental and physical health. The intervention was successful in engaging this population (80% of referrals were engaged in some form of activity). At 6 months, there were significant improvements in SF12 mental component, and depression scores, but not in perceived physical health or social support. At 12 months, there were significant improvements in depression and social support and a marginally significant improvement in SF12 physical component (p = 0.06), but the SF12 mental component change was not maintained. The qualitative data showed that the intervention was well-received by participants. The data indicated a wide range of responses (both physical and emotional), including increased alertness, social activity, self-worth, optimism about life, and positive changes in health behaviour. Stronger, 'transformational' changes were reported by some participants. Individual tailoring seemed to be a key mediator of outcomes, as was overcoming barriers relating to transport and venues. Key processes underlying outcomes were the development of a positive group identity, and building of confidence/self-efficacy. The Upstream model provides a practical way of engaging socially isolated elderly people and generating social networks. The data suggest a range of psychosocial and physical health benefits. Although there are limitations in attributing causality in uncontrolled studies, the data seem to indicate a reversal of the expected downward trends in some aspects of participants' health, and suggest that this approach is worth further investigation.
The preparticipation physical examination.
Pedraza, Jaime; Jardeleza, Julie Ann
2013-12-01
This article reviews the components of the preparticipation physical examination. It looks at some of the key elements of the history and the physical examination that help determine whether an athlete can participate in an organized sport. Copyright © 2013 Elsevier Inc. All rights reserved.
Using Cooperative Learning Structures in Physical Education.
ERIC Educational Resources Information Center
Dyson, Ben; Grineski, Steve
2001-01-01
Research has determined that cooperative learning has positive effects in physical education. This article presents five important components of cooperative learning to help physical educators maximize learning (team formation, positive interdependence, individual accountability, positive social interaction, and group processing), describing five…
SU-E-T-179: Clinical Impact of IMRT Failure Modes at Or Near TG-142 Tolerance Criteria Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faught, J Tonigan; Balter, P; Johnson, J
2015-06-15
Purpose: Quantitatively assess the clinical impact of 11 critical IMRT dose delivery failure modes. Methods: Eleven step-and-shoot IMRT failure modes (FMs) were introduced into twelve Pinnacle v9.8 treatment plans. One standard and one highly modulated plan on the IROC IMRT phantom and ten previous H&N patient treatment plans were used. FMs included physics components covered by basic QA near tolerance criteria levels (TG-142) such as beam energy, MLC positioning, and MLC modeling. Resultant DVHs were compared to those of failure-free plans and the severity of plan degradation was assessed considering PTV coverage and OAR and normal tissue tolerances and usedmore » for FMEA severity scoring. Six of these FMs were physically simulated and phantom irradiations performed. TLD and radiochromic film results are used for comparison to treatment planning studies. Results: Based on treatment planning studies, the largest clinical impact from the phantom cases was induced by 2 mm systematic MLC shift in one bank with the combination of a D95% target under dose near 16% and OAR overdose near 8%. Cord overdoses of 5%–11% occurred with gantry angle, collimator angle, couch angle, MLC leaf end modeling, and MLC transmission and leakage modeling FMs. PTV coverage and/or OAR sparing was compromised in all FMs introduced in phantom plans with the exception of CT number to electron density tables, MU linearity, and MLC tongue-and-groove modeling. Physical measurements did not entirely agree with treatment planning results. For example, symmetry errors resulted in the largest physically measured discrepancies of up to 3% in the PTVs while a maximum of 0.5% deviation was seen in the treatment planning studies. Patient treatment plan study results are under analysis. Conclusion: Even in the simplistic anatomy of the IROC phantom, some basic physics FMs, just outside of TG-142 tolerance criteria, appear to have the potential for large clinical implications.« less
Liu, Jie; Cheng, Xiliu; Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang
2017-05-01
The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis.
Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang
2017-01-01
The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis. PMID:28558040
Invariance of Topological Indices Under Hilbert Space Truncation
Huang, Zhoushen; Zhu, Wei; Arovas, Daniel P.; ...
2018-01-05
Here, we show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z 2 topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possiblemore » application, we propose a partial quantum tomography scheme from which the topological index of a generic multicomponent wave function can be extracted by measuring only a small subset of wave function components, equivalent to the measurement of a bulk entanglement topological index.« less
Friendship chemistry: An examination of underlying factors☆
Campbell, Kelly; Holderness, Nicole; Riggs, Matt
2015-01-01
Interpersonal chemistry refers to a connection between two individuals that exists upon first meeting. The goal of the current study is to identify beliefs about the underlying components of friendship chemistry. Individuals respond to an online Friendship Chemistry Questionnaire containing items that are derived from interdependence theory and the friendship formation literature. Participants are randomly divided into two subsamples. A principal axis factor analysis with promax rotation is performed on subsample 1 and produces 5 factors: Reciprocal candor, mutual interest, personableness, similarity, and physical attraction. A confirmatory factor analysis is conducted using subsample 2 and provides support for the 5-factor model. Participants with agreeable, open, and conscientious personalities more commonly report experiencing friendship chemistry, as do those who are female, young, and European/white. Responses from participants who have never experienced chemistry are qualitatively analyzed. Limitations and directions for future research are discussed. PMID:26097283
Korkusko, O V; Sarkisov, K G; Frajfel'd, V E
1982-01-01
The muscle blood flow was investigated at rest (MBFR) and after physical load under ischemia conditions (maximal muscle blood flow--MMBF) in 87 practically healthy persons (45 women and 42 men) aged 20--90. The state of muscle blood flow was evaluated by means of the clearance of 133xenon injected into M. tibialis anterior. The data obtained showed a decrease of MBFR and MMBF in older people as compared with younger subjects. In realization of this phenomenon a decrease in muscle capillarisation and a reduction in reactivity of microcirculatory link of vascular system plays an increasingly greater role with aging. The reduction in muscle blood flow forms a circulatory component of the age-associated hypoxia. This fact results in a decrease of muscle blood flow and limits the functional capacity of skeletal muscle under conditions of activity.
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Invariance of Topological Indices Under Hilbert Space Truncation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhoushen; Zhu, Wei; Arovas, Daniel P.
Here, we show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z 2 topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possiblemore » application, we propose a partial quantum tomography scheme from which the topological index of a generic multicomponent wave function can be extracted by measuring only a small subset of wave function components, equivalent to the measurement of a bulk entanglement topological index.« less