ERIC Educational Resources Information Center
Florida State Univ., Tallahassee. Program of Vocational Education.
Part of a system by which local education agency (LEA) personnel may evaluate secondary and postsecondary vocational education programs, this fifth of eight components focuses on an analysis of the utilization of community resources. Utilization of the component is designed to open communication channels among all segments of the community so that…
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2008-01-01
In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.
NASA Astrophysics Data System (ADS)
Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong
2018-05-01
Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2008-01-01
In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.
Least squares restoration of multi-channel images
NASA Technical Reports Server (NTRS)
Chin, Roland T.; Galatsanos, Nikolas P.
1989-01-01
In this paper, a least squares filter for the restoration of multichannel imagery is presented. The restoration filter is based on a linear, space-invariant imaging model and makes use of an iterative matrix inversion algorithm. The restoration utilizes both within-channel (spatial) and cross-channel information as constraints. Experiments using color images (three-channel imagery with red, green, and blue components) were performed to evaluate the filter's performance and to compare it with other monochrome and multichannel filters.
Least squares restoration of multichannel images
NASA Technical Reports Server (NTRS)
Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.
1991-01-01
Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.
USDA-ARS?s Scientific Manuscript database
Medusahead (Taeniatherum caput-medusae [L.] Nevski) has become a major component replacing vegetation on the Channeled Scablands of eastern Washington. Livestock typically avoid grazing medusahead and forage alternatives are becoming limited in the region. We hypothesized that protein supplementat...
A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations
Mak, Terrence S. T.; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang
2008-01-01
Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired. PMID:17190033
Fang, Wai-Chi; Huang, Kuan-Ju; Chou, Chia-Ching; Chang, Jui-Chung; Cauwenberghs, Gert; Jung, Tzyy-Ping
2014-01-01
This is a proposal for an efficient very-large-scale integration (VLSI) design, 16-channel on-line recursive independent component analysis (ORICA) processor ASIC for real-time EEG system, implemented with TSMC 40 nm CMOS technology. ORICA is appropriate to be used in real-time EEG system to separate artifacts because of its highly efficient and real-time process features. The proposed ORICA processor is composed of an ORICA processing unit and a singular value decomposition (SVD) processing unit. Compared with previous work [1], this proposed ORICA processor has enhanced effectiveness and reduced hardware complexity by utilizing a deeper pipeline architecture, shared arithmetic processing unit, and shared registers. The 16-channel random signals which contain 8-channel super-Gaussian and 8-channel sub-Gaussian components are used to analyze the dependence of the source components, and the average correlation coefficient is 0.95452 between the original source signals and extracted ORICA signals. Finally, the proposed ORICA processor ASIC is implemented with TSMC 40 nm CMOS technology, and it consumes 15.72 mW at 100 MHz operating frequency.
Passive Tracking System and Method
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, Jon (Inventor); Hill, Brent W. (Inventor)
2003-01-01
Systems and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes an antenna array with three antenna elements, which preferably are patch antenna elements spaced apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.
Passive Tracking System and Method
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, John (Inventor); Hill, Brent W. (Inventor)
2005-01-01
System and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes antenna array with three antenna elements, which preferably are patch antenna elements placed apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.
Influence of stationary components on unsteady flow in industrial centrifugal compressors
NASA Technical Reports Server (NTRS)
Bonciani, L.; Terrinoni, L.
1984-01-01
An experimental investigation was performed to determine the characteristics of the onset and the growth of rotating nonuniform flow in a standard low specific speed stage, normally utilized in high pressure applications, in relation to change of stationary component geometry. Four configurations, differing only in the return channel and crossover geometry were tested on an atmospheric pressure open loop test rig. Experimental results make conspicious the effect of return channel geometry and give the possibility of shifting the unstable zone onset varying such geometry. An attempt was made to interpret the experimental results in the Emmons - Stenning's rotating stall theory.
Implementation of a VLSI Level Zero Processing system utilizing the functional component approach
NASA Technical Reports Server (NTRS)
Shi, Jianfei; Horner, Ward P.; Grebowsky, Gerald J.; Chesney, James R.
1991-01-01
A high rate Level Zero Processing system is currently being prototyped at NASA/Goddard Space Flight Center (GSFC). Based on state-of-the-art VLSI technology and the functional component approach, the new system promises capabilities of handling multiple Virtual Channels and Applications with a combined data rate of up to 20 Megabits per second (Mbps) at low cost.
Tunable all-optical photonic crystal channel drop filter for DWDM systems
NASA Astrophysics Data System (ADS)
Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.
2009-06-01
In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.
Guided filter and principal component analysis hybrid method for hyperspectral pansharpening
NASA Astrophysics Data System (ADS)
Qu, Jiahui; Li, Yunsong; Dong, Wenqian
2018-01-01
Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.
THz instrumentation for the Herschel Space Observatory's heterodyne instrument for far infrared
NASA Astrophysics Data System (ADS)
Pearson, John C.; Mehdi, Imran; Ward, John S.; Maiwald, Frank W.; Ferber, Robert R.; LeDuc, Henry G.; Schlecht, Erich T.; Gill, John J.; Hatch, William A.; Kawamura, Jonathan H.; Stern, Jeffrey A.; Gaier, Todd C.; Samoska, Lorene A.; Weinreb, Sander; Bumble, Bruce; Pukala, David M.; Javadi, Hamid H.; Finamore, Bradley P.; Lin, Robert H.; Dengler, Robert J.; Velebir, James R.; Luong, Edward M.; Tsang, Raymond; Peralta, Alejandro; Wells, Mary; Chun, William; Zmuidzinas, Jonas; Karpov, Alexandre; Phillips, Thomas; Miller, David; Maestrini, Alain E.; Erickson, Neal; Swift, Gerald; Liao, K. T.; Paquette, Michael
2004-10-01
The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480- 1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-band Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.
THz Instrumentation for the Herschel Space Observatory's Heterodyne Instrument for Far Infrared
NASA Technical Reports Server (NTRS)
Pearson, J. C.; Mehdi, I.; Ward, J. S.; Maiwald, F.; Ferber, R. R.; Leduc, H. G.; Schlecht, E. T.; Gill, J. J.; Hatch, W. A.; Kawamura, J. H.;
2004-01-01
The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-bapd Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.
Kuzmenkov, Alexey I; Vassilevski, Alexander A; Kudryashova, Kseniya S; Nekrasova, Oksana V; Peigneur, Steve; Tytgat, Jan; Feofanov, Alexey V; Kirpichnikov, Mikhail P; Grishin, Eugene V
2015-05-08
The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/β and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1-780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1
Kuzmenkov, Alexey I.; Vassilevski, Alexander A.; Kudryashova, Kseniya S.; Nekrasova, Oksana V.; Peigneur, Steve; Tytgat, Jan; Feofanov, Alexey V.; Kirpichnikov, Mikhail P.; Grishin, Eugene V.
2015-01-01
The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/β and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1–780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs. PMID:25792741
Performance improvement of PEFC modules with cell containing low amount of platinum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Y.; Kadowaki, M.; Hamada, A.
1996-12-31
Cell components of the PEFC module were studied to improve the module performance. The cell performance in a high air utilization region was improved by selecting an air channel design of the separator in which high air flow speed was obtained. Optimization of Teflon{reg_sign} amount on the cathode backing carbon paper also contributed the cell performance. Modifications of the gas channel design and the backing carbon paper were carried out in a 200 cm{sup 2} x 20-cell module and 36-cell module. Dependence of air utilization on module performance was remarkably improved and power density of more than 0.3 W/cm{sup 2}more » was achieved in spite of the platinum amount in the cells was decreased to 1.1 Mg/cm{sup 2}.« less
A voltage-dependent chloride channel fine-tunes photosynthesis in plants
Herdean, Andrei; Teardo, Enrico; Nilsson, Anders K.; Pfeil, Bernard E.; Johansson, Oskar N.; Ünnep, Renáta; Nagy, Gergely; Zsiros, Ottó; Dana, Somnath; Solymosi, Katalin; Garab, Győző; Szabó, Ildikó; Spetea, Cornelia; Lundin, Björn
2016-01-01
In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl−) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl− channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments. PMID:27216227
Analysis of soft-decision FEC on non-AWGN channels.
Cho, Junho; Xie, Chongjin; Winzer, Peter J
2012-03-26
Soft-decision forward error correction (SD-FEC) schemes are typically designed for additive white Gaussian noise (AWGN) channels. In a fiber-optic communication system, noise may be neither circularly symmetric nor Gaussian, thus violating an important assumption underlying SD-FEC design. This paper quantifies the impact of non-AWGN noise on SD-FEC performance for such optical channels. We use a conditionally bivariate Gaussian noise model (CBGN) to analyze the impact of correlations among the signal's two quadrature components, and assess the effect of CBGN on SD-FEC performance using the density evolution of low-density parity-check (LDPC) codes. On a CBGN channel generating severely elliptic noise clouds, it is shown that more than 3 dB of coding gain are attainable by utilizing correlation information. Our analyses also give insights into potential improvements of the detection performance for fiber-optic transmission systems assisted by SD-FEC.
Loui, Hung; Brock, Billy C.
2016-10-25
The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.
Jin, Byung-Ju; Ko, Eun-A; Namkung, Wan; Verkman, A S
2013-10-07
We previously developed cell-based kinetics assays of chloride channel modulators utilizing genetically encoded yellow fluorescent proteins. Fluorescence platereader-based high-throughput screens yielded small-molecule activators and inhibitors of the cAMP-activated chloride channel CFTR and calcium-activated chloride channels, including TMEM16A. Here, we report a microfluidics platform for single-shot determination of concentration-activity relations in which a 1.5 × 1.5 mm square area of adherent cultured cells is exposed for 5-10 min to a pseudo-logarithmic gradient of test compound generated by iterative, two-component channel mixing. Cell fluorescence is imaged following perfusion with an iodide-containing solution to give iodide influx rate at each location in the image field, thus quantifying modulator effects over a wide range of concentrations in a single measurement. IC50 determined for CFTR and TMEM16A activators and inhibitors by single-shot microfluidics were in agreement with conventional plate reader measurements. The microfluidics approach developed here may accelerate the discovery and characterization of chloride channel-targeted drugs.
UNRAVELLING THE COMPONENTS OF A MULTI-THERMAL CORONAL LOOP USING MAGNETOHYDRODYNAMIC SEISMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, S. Krishna; Jess, D. B.; Klimchuk, J. A.
Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multithermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variationmore » along the loop in both channels, and thus are able to resolve two individual components of the multithermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.« less
Characterization of Ca2+ channel currents in cultured rat cerebellar granule neurones.
Pearson, H A; Sutton, K G; Scott, R H; Dolphin, A C
1995-02-01
1. High-threshold voltage-gated calcium channel currents (IBa) were studied in cultured rat cerebellar granule neurones using the whole-cell patch clamp technique with 10 mM Ba2+ as the charge carrier. The putative P-type component of whole-cell current was characterized by utilizing the toxin omega-agatoxin IVA (omega-Aga IVA) in combination with other blockers. 2. omega-Aga IVA (100 nM) inhibited the high voltage-activated (HVA) IBa by 40.9 +/- 3.4% (n = 27), and the dissociation constant Kd was 2.7 nM. Maximal inhibition occurred within a 2-3 min time course, and was irreversible. The isolated omega-Aga IVA-sensitive current was non-inactivating. 3. omega-Aga IVA exhibited overlapping selectivity with both N- and L-channel blockers; omega-conotoxin GVIA (omega-CTX GVIA) (1 microM) and the dihydropyridine (-)-202-709 (1 microM), respectively. Together these toxins reduced the omega-Aga IVA-sensitive component to just 4.5 +/- 1.4% (n = 3). Thus only a small proportion of the current can be unequivocally attributed to P-type current. Inhibition of the HVA IBa by omega-Aga IA also reduced the proportion of omega-Aga IVA-sensitive current to 28.0 +/- 3.2% (n = 3). 4. Application of omega-Aga IVA and a synthetic form of funnel-web toxin, N-(7-amino-4-azaheptyl)-L-argininamide (sFTX-3.3; 10 microM), produced an additive block of the HVA IBa. Consequently these two toxins do not act on the same channel in cerebellar granule neurones. 5. omega-Aga IVA inhibition of low voltage-activated (LVA) IBa was studied in the ND7-23 neuronal cell line. omega-Aga IVA (100 nM) reduced the LVA current by 41.3 +/- 3.2% (n = 17) in a fully reversible manner with no shift in the steady-state inactivation of the channel. 6. A component of current insensitive to N-, L- and P-channel blockers remained unclassified in all our studies. This component, and also that remaining following block by omega-Aga IVA and omega-Aga IA, exhibited relatively rapid, although incomplete, inactivation compared to the other currents isolated in this study. 7. In conclusion, omega-Aga IVA inhibits a component of current in cultured cerebellar granule neurones which overlaps almost completely with that inhibited by L- and N-channel blockers. In addition, a large component of whole-cell current in these neurones still remains unclassified.
Rabiner, D J; Stearns, S C; Mutran, E
1994-01-01
OBJECTIVE. This study explored the relationship between participation in a home/community-based long-term care case management intervention (known as the Channeling demonstration), use of formal in-home care, and subsequent nursing home utilization. STUDY DESIGN. Structural analysis of the randomized Channeling intervention was conducted to decompose the total effects of Channeling on nursing home use into direct and indirect effects. DATA COLLECTION METHOD. Secondary data analysis of the National Long-Term Care Data Set. PRINCIPAL FINDINGS. The use of formal in-home care, which was increased by the Channeling intervention, was positively associated with nursing home utilization at 12 months. However, the negative direct effect of Channeling on nursing home use was of sufficient magnitude to offset this positive indirect effect, so that a small but significant negative total effect of Channeling on subsequent nursing home utilization was found. CONCLUSIONS. This study shows why Channeling did not have a large total impact on nursing home utilization. The analysis did not provide evidence of direct substitution of in-home care for nursing home care because the direct reductions in nursing home utilization due to other aspects of Channeling (including, but not limited to case management) were substantially offset by the indirect increases in nursing home utilization associated with additional home care use. PMID:8002352
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shi, M.; Sun, J.; Yang, C.; Zhang, Yajuan; Scopesi, F.; Makobore, P.; Chin, C.; Serra, G.; Wickramasinghe, Y. A. B. D.; Rolfe, P.
2015-02-01
Brain activity can be monitored non-invasively by functional near-infrared spectroscopy (fNIRS), which has several advantages in comparison with other methods, such as flexibility, portability, low cost and fewer physical restrictions. However, in practice fNIRS measurements are often contaminated by physiological interference arising from cardiac contraction, breathing and blood pressure fluctuations, thereby severely limiting the utility of the method. Hence, further improvement is necessary to reduce or eliminate such interference in order that the evoked brain activity information can be extracted reliably from fNIRS data. In the present paper, the multi-distance fNIRS probe configuration has been adopted. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Independent component analysis (ICA) is employed for the fNIRS recordings to separate the brain signals and the interference. Least-absolute deviation (LAD) estimator is employed to recover the brain activity signals. We also utilized Monte Carlo simulations based on a five-layer model of the adult human head to evaluate our methodology. The results demonstrate that the ICA algorithm has the potential to separate physiological interference in fNIRS data and the LAD estimator could be a useful criterion to recover the brain activity signals.
Experimental Investigation of the Near-Wall Region in the NASA HiVHAc EDU2 Hall Thruster
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Kamhawi, Hani; Huang, Wensheng; Haag, Thomas W.
2015-01-01
The HiVHAc propulsion system is currently being developed to support Discovery-class NASA science missions. Presently, the thruster meets the required operational lifetime by utilizing a novel discharge channel replacement mechanism. As a risk reduction activity, an alternative approach is being investigated that modifies the existing magnetic circuit to shift the ion acceleration zone further downstream such that the magnetic components are not exposed to direct ion impingement during the thruster's lifetime while maintaining adequate thruster performance and stability. To measure the change in plasma properties between the original magnetic circuit configuration and the modified, "advanced" configuration, six Langmuir probes were flush-mounted within each channel wall near the thruster exit plane. Plasma potential and electron temperature were measured for both configurations across a wide range of discharge voltages and powers. Measurements indicate that the upstream edge of the acceleration zone shifted downstream by as much as 0.104 channel lengths, depending on operating condition. The upstream edge of the acceleration zone also appears to be more insensitive to operating condition in the advanced configuration, remaining between 0.136 and 0.178 channel lengths upstream of the thruster exit plane. Facility effects studies performed on the original configuration indicate that the plasma and acceleration zone recede further upstream into the channel with increasing facility pressure. These results will be used to inform further modifications to the magnetic circuit that will provide maximum protection of the magnetic components without significant changes to thruster performance and stability.
Turbine component having surface cooling channels and method of forming same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Carlos Miguel; Trimmer, Andrew Lee; Kottilingam, Srikanth Chandrudu
2017-09-05
A component for a turbine engine includes a substrate that includes a first surface, and an insert coupled to the substrate proximate the substrate first surface. The component also includes a channel. The channel is defined by a first channel wall formed in the substrate and a second channel wall formed by at least one coating disposed on the substrate first surface. The component further includes an inlet opening defined in flow communication with the channel. The inlet opening is defined by a first inlet wall formed in the substrate and a second inlet wall defined by the insert.
NASA Astrophysics Data System (ADS)
Thomas, W. A.; McAnally, W. H., Jr.
1985-07-01
TABS-2 is a generalized numerical modeling system for open-channel flows, sedimentation, and constituent transport. It consists of more than 40 computer programs to perform modeling and related tasks. The major modeling components--RMA-2V, STUDH, and RMA-4--calculate two-dimensional, depth-averaged flows, sedimentation, and dispersive transport, respectively. The other programs in the system perform digitizing, mesh generation, data management, graphical display, output analysis, and model interfacing tasks. Utilities include file management and automatic generation of computer job control instructions. TABS-2 has been applied to a variety of waterways, including rivers, estuaries, bays, and marshes. It is designed for use by engineers and scientists who may not have a rigorous computer background. Use of the various components is described in Appendices A-O. The bound version of the report does not include the appendices. A looseleaf form with Appendices A-O is distributed to system users.
Symbolic Constraint Maintenance Grid
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.
High data rate modem simulation for the space station multiple-access communications system
NASA Technical Reports Server (NTRS)
Horan, Stephen
1987-01-01
The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.
Single-cell isolation using a DVD optical pickup
Kasukurti, A.; Potcoava, M.; Desai, S.A.; Eggleton, C.; Marr, D. W. M.
2011-01-01
A low-cost single-cell isolation system incorporating a digital versatile disc burner (DVD RW) optical pickup has been developed. We show that these readily available modules have the required laser power and focusing optics to provide a steady Gaussian beam capable of optically trapping micron-sized colloids and red blood cells. Utility of the pickup is demonstrated through the non-destructive isolation of such particles in a laminar-flow based microfluidic device that captures and translates single microscale objects across streamlines into designated channel exits. In this, the integrated objective lens focusing coils are used to steer the optical trap across the channel, resulting in the isolation of colloids and red blood cells using a very inexpensive off-the-shelf optical component. PMID:21643294
Moore, Eugene L; Haspel, Gal; Libersat, Frederic; Adams, Michael E
2006-07-01
The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists beta-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. Copyright 2006 Wiley Periodicals, Inc.
2010-10-01
the reference domain has been variously affected by human activities. Each river basin contains at least one reservoir that influences the timing...Phillips 2003). Transportation corridors, utility rights-of-way, oil and gas exploration, and channelization also affect hydrology by altering runoff...also are regularly affected by stream flooding, and therefore have a riverine functional component. This is incorporated in the classification system
Hot gas path component having near wall cooling features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul
A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheetmore » to bond it to at least a portion of the exterior surface of the hot gas path component.« less
Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka
2016-07-08
Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity.
Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring
NASA Astrophysics Data System (ADS)
Liu, Yu; Li, Xinghui; Dokmeci, Mehmet R.; Wang, Ming L.
2011-04-01
Single-walled carbon nanotubes (SWNTs) with their unique electrical properties and large surface area are remarkable materials for detecting low concentration of toxic and hazardous chemicals (both from the gaseous and liquid phases). Ionic adsorbates in water will attach on to SWNTs and drastically alter their electrical properties. Several SWNTs based pH and chemical sensors have been demonstrated. However, most of them require external components to test and analyze the response of SWNTs to ions inside the liquid samples. Here, we report a water quality monitoring sensor composed of SWNTs integrated inside microfluidic channels and on-chip testing components with a wireless transmission board. To detect multiple analytes in water requires the functionalization of SWNTs with different chemistries. In addition, microfluidic channels are used to guide liquid samples to individual nanotube sensors in an efficient manner. Furthermore, the microfluidic system enables sample mixing and separation before testing. To realize the nanosensors, first microelectrodes were fabricated on an oxidized silicon substrate. Next, PDMS micro channels were fabricated and bonded on the substrate. These channels can be incorporated with a microfluidic system which can be designed to manipulate different analytes for specific molecule detection. Low temperature, solution based Dielectrophoretic (DEP) assembly was conducted inside this microfluidic system which successfully bridged SWNTs between the microelectrodes. The SWNTs sensors were next characterized with different pH buffer solutions. The resistance of SWNTs had a linearly increase as the pH values ranged from 5 to 8. The nanosensor incorporated within the microfluidic system is a versatile platform and can be utilized to detect numerous water pollutants, including toxic organics and microorganisms down to low concentrations. On-chip processing and wireless transmission enables the realization of a full autonomous system for real time monitoring of water quality.
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
NASA Astrophysics Data System (ADS)
McMillan, Mitchell; Hu, Zhiyong
2017-10-01
Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.
Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W
2015-11-01
The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. Published by Elsevier B.V.
Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements
NASA Technical Reports Server (NTRS)
Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin
2014-01-01
Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.
Capacity, cutoff rate, and coding for a direct-detection optical channel
NASA Technical Reports Server (NTRS)
Massey, J. L.
1980-01-01
It is shown that Pierce's pulse position modulation scheme with 2 to the L pulse positions used on a self-noise-limited direct detection optical communication channel results in a 2 to the L-ary erasure channel that is equivalent to the parallel combination of L completely correlated binary erasure channels. The capacity of the full channel is the sum of the capacities of the component channels, but the cutoff rate of the full channel is shown to be much smaller than the sum of the cutoff rates. An interpretation of the cutoff rate is given that suggests a complexity advantage in coding separately on the component channels. It is shown that if short-constraint-length convolutional codes with Viterbi decoders are used on the component channels, then the performance and complexity compare favorably with the Reed-Solomon coding system proposed by McEliece for the full channel. The reasons for this unexpectedly fine performance by the convolutional code system are explored in detail, as are various facets of the channel structure.
Equalization for a page-oriented optical memory system
NASA Astrophysics Data System (ADS)
Trelewicz, Jennifer Q.; Capone, Jeffrey
1999-11-01
In this work, a method of decision-feedback equalization is developed for a digital holographic channel that experiences moderate-to-severe imaging errors. Decision feedback is utilized, not only where the channel is well-behaved, but also near the edges of the camera grid that are subject to a high degree of imaging error. In addition to these effects, the channel is worsened by typical problems of holographic channels, including non-uniform illumination, dropouts, and stuck bits. The approach described in this paper builds on established methods for performing trained and blind equalization on time-varying channels. The approach is tested on experimental data sets. On most of these data sets, the method of equalization described in this work delivers at least an order of magnitude improvement in bit-error rate (BER) before error-correction coding (ECC). When ECC is introduced, the approach is able to recover stored data with no errors for many of the tested data sets. Furthermore, a low BER was maintained even over a range of small alignment perturbations in the system. It is believed that this equalization method can allow cost reductions to be made in page-memory systems, by allowing for a larger image area per page or less complex imaging components, without sacrificing the low BER required by data storage applications.
Utilization of all Spectral Channels of IASI for the Retrieval of the Atmospheric State
NASA Astrophysics Data System (ADS)
Del Bianco, S.; Cortesi, U.; Carli, B.
2010-12-01
The retrieval of atmospheric state parameters from broadband measurements acquired by high spectral resolution sensors, such as the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Meteorological Operational (MetOp) platform, generally requires to deal with a prohibitively large number of spectral elements available from a single observation (8461 samples in the case of IASI, covering the 645-2760 cm-1 range with a resolution of 0.5 cm-1 and a spectral sampling of 0.25 cm-1). Most inversion algorithms developed for both operational and scientific analysis of IASI spectra perform a reduction of the data - typically based on channel selection, super-channel clustering or Principal Component Analysis (PCA) techniques - in order to handle the high dimensionality of the problem. Accordingly, simultaneous processing of all IASI channels received relatively low attention. Here we prove the feasibility of a retrieval approach exploiting all spectral channels of IASI, to extract information on water vapor, temperature and ozone profiles. This multi-target retrieval removes the systematic errors due to interfering parameters and makes the channel selection no longer necessary. The challenging computation is made possible by the use of a coarse spectral grid for the forward model calculation and by the abatement of the associated modeling errors through the use of a variance-covariance matrix of the residuals that takes into account all the forward model errors.
NASA Astrophysics Data System (ADS)
Epstein, J.; Lind, P.
2017-12-01
Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons learned from design, construction, and monitoring will be synthesized to share what worked and what didn't, and what key elements a practitioner should think about as part of enhancement project design.
NASA Astrophysics Data System (ADS)
Broderson, D.; Dierking, C.; Stevens, E.; Heinrichs, T. A.; Cherry, J. E.
2016-12-01
The Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) uses two direct broadcast antennas to receive data from a number of polar-orbiting weather satellites, including the Suomi National Polar Partnership (S-NPP) satellite. GINA uses data from S-NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to generate a variety of multispectral imagery products developed with the needs of the National Weather Service operational meteorologist in mind. Multispectral products have two primary advantages over single-channel products. First, they can more clearly highlight some terrain and meteorological features which are less evident in the component single channels. Second, multispectral present the information from several bands through just one image, thereby sparing the meteorologist unnecessary time interrogating the component single bands individually. With 22 channels available from the VIIRS instrument, the number of possible multispectral products is theoretically huge. A small number of products will be emphasized in this presentation, with the products chosen based on their proven utility in the forecasting environment. Multispectral products can be generated upstream of the end user or by the end user at their own workstation. The advantage and disadvantages of both approaches will be outlined. Lastly, the technique of improving the appearance of multispectral imagery by correcting for atmospheric reflectance at the shorter wavelengths will be described.
'The genetic analysis of functional connectomics in Drosophila'
Meinertzhagen, Ian A.; Lee, Chi-Hon
2014-01-01
Fly and vertebrate nervous systems share many organization characteristics, such as layers, columns and glomeruli, and utilize similar synaptic components, such ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly’s connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental computation mechanisms that underlie behaviour. PMID:23084874
Combining Absorption and Dispersion Signals to Improve Signal-to-noise for Rapid Scan EPR Imaging
Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Eaton, Sandra S.; Eaton, Gareth R.
2010-01-01
Direct detection of the rapid scan EPR signal with quadrature detection and without automatic frequency control provides both the absorption and dispersion components of the signal. The use of a cross-loop resonator results in similar signal-to-noise in the two channels. The dispersion signal can be converted to an equivalent absorption signal by means of Kramers-Kronig relations. The converted signal is added to the directly-measured absorption signal. Since the noise in the two channels is not correlated, this procedure increases the signal-to-noise ratio of the resultant absorption signal by up to a factor of √2. The utility of this method was demonstrated for 2D spectral-spatial imaging of a phantom containing 3 tubes of LiPc with different oxygen concentrations and therefore different linewidths. PMID:20181505
Hot gas path component cooling system
Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael
2014-02-18
A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.
Modulation frequency discrimination with single and multiple channels in cochlear implant users
Galvin, John J.; Oba, Sandy; Başkent, Deniz; Fu, Qian-Jie
2015-01-01
Temporal envelope cues convey important speech information for cochlear implant (CI) users. Many studies have explored CI users’ single-channel temporal envelope processing. However, in clinical CI speech processors, temporal envelope information is processed by multiple channels. Previous studies have shown that amplitude modulation frequency discrimination (AMFD) thresholds are better when temporal envelopes are delivered to multiple rather than single channels. In clinical fitting, current levels on single channels must often be reduced to accommodate multi-channel loudness summation. As such, it is unclear whether the multi-channel advantage in AMFD observed in previous studies was due to coherent envelope information distributed across the cochlea or to greater loudness associated with multi-channel stimulation. In this study, single- and multi-channel AMFD thresholds were measured in CI users. Multi-channel component electrodes were either widely or narrowly spaced to vary the degree of overlap between neural populations. The reference amplitude modulation (AM) frequency was 100 Hz, and coherent modulation was applied to all channels. In Experiment 1, single- and multi-channel AMFD thresholds were measured at similar loudness. In this case, current levels on component channels were higher for single- than for multi-channel AM stimuli, and the modulation depth was approximately 100% of the perceptual dynamic range (i.e., between threshold and maximum acceptable loudness). Results showed no significant difference in AMFD thresholds between similarly loud single- and multi-channel modulated stimuli. In Experiment 2, single- and multi-channel AMFD thresholds were compared at substantially different loudness. In this case, current levels on component channels were the same for single-and multi-channel stimuli (“summation-adjusted” current levels) and the same range of modulation (in dB) was applied to the component channels for both single- and multi-channel testing. With the summation-adjusted current levels, loudness was lower with single than with multiple channels and the AM depth resulted in substantial stimulation below single-channel audibility, thereby reducing the perceptual range of AM. Results showed that AMFD thresholds were significantly better with multiple channels than with any of the single component channels. There was no significant effect of the distribution of electrodes on multi-channel AMFD thresholds. The results suggest that increased loudness due to multi-channel summation may contribute to the multi-channel advantage in AMFD, and that that overall loudness may matter more than the distribution of envelope information in the cochlea. PMID:25746914
Universal feature in optical control of a p -wave Feshbach resonance
NASA Astrophysics Data System (ADS)
Peng, Peng; Zhang, Ren; Huang, Lianghui; Li, Donghao; Meng, Zengming; Wang, Pengjun; Zhai, Hui; Zhang, Peng; Zhang, Jing
2018-01-01
We report the experimental results on the optical control of a p -wave Feshbach resonance by utilizing a laser-driven bound-to-bound transition to shift the energy of a closed-channel molecule state. The magnetic field location for the p -wave resonance as a function of laser detuning can be captured by a simple formula with essentially one parameter, which describes how sensitively the resonance depends on the laser detuning. The key result of this work is to demonstrate, both experimentally and theoretically, that the ratio between this parameter for the m =0 component of the resonance and that for the m =±1 component, to a large extent, is universal. We also show that this optical control can create intriguing situations where interesting few- and many-body physics can occur, such as a p -wave resonance overlapping with an s -wave resonance or the three components of a p -wave resonance being degenerate.
Opportunistic quantum network coding based on quantum teleportation
NASA Astrophysics Data System (ADS)
Shang, Tao; Du, Gang; Liu, Jian-wei
2016-04-01
It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.
Inherently aligned microfluidic electrodes composed of liquid metal.
So, Ju-Hee; Dickey, Michael D
2011-03-07
This paper describes the fabrication and characterization of microelectrodes that are inherently aligned with microfluidic channels and in direct contact with the fluid in the channels. Injecting low melting point alloys, such as eutectic gallium indium (EGaIn), into microchannels at room temperature (or just above room temperature) offers a simple way to fabricate microelectrodes. The channels that define the shape and position of the microelectrodes are fabricated simultaneously with other microfluidic channels (i.e., those used to manipulate fluids) in a single step; consequently, all of the components are inherently aligned. In contrast, conventional techniques require multiple fabrication steps and registration (i.e., alignment of the electrodes with the microfluidic channels), which are technically challenging. The distinguishing characteristic of this work is that the electrodes are in direct contact with the fluid in the microfluidic channel, which is useful for a number of applications such as electrophoresis. Periodic posts between the microelectrodes and the microfluidic channel prevent the liquid metal from entering the microfluidic channel during injection. A thin oxide skin that forms rapidly and spontaneously on the surface of the metal stabilizes mechanically the otherwise low viscosity, high surface tension fluid within the channel. Moreover, the injected electrodes vertically span the sidewalls of the channel, which allows for the application of uniform electric field lines throughout the height of the channel and perpendicular to the direction of flow. The electrodes are mechanically stable over operating conditions commonly used in microfluidic applications; the mechanical stability depends on the magnitude of the applied bias, the nature of the bias (DC vs. AC), and the conductivity of the solutions in the microfluidic channel. Electrodes formed using alloys with melting points above room temperature ensure mechanical stability over all of the conditions explored. As a demonstration of their utility, the fluidic electrodes are used for electrohydrodynamic mixing, which requires extremely high electric fields (~10(5) V m(-1)).
Under-sampling in a Multiple-Channel Laser Vibrometry System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corey, Jordan
2007-03-01
Laser vibrometry is a technique used to detect vibrations on objects using the interference of coherent light with itself. Most vibrometry systems process only one target location at a time, but processing multiple locations simultaneously provides improved detection capabilities. Traditional laser vibrometry systems employ oversampling to sample the incoming modulated-light signal, however as the number of channels increases in these systems, certain issues arise such a higher computational cost, excessive heat, increased power requirements, and increased component cost. This thesis describes a novel approach to laser vibrometry that utilizes undersampling to control the undesirable issues associated with over-sampled systems. Undersamplingmore » allows for significantly less samples to represent the modulated-light signals, which offers several advantages in the overall system design. These advantages include an improvement in thermal efficiency, lower processing requirements, and a higher immunity to the relative intensity noise inherent in laser vibrometry applications. A unique feature of this implementation is the use of a parallel architecture to increase the overall system throughput. This parallelism is realized using a hierarchical multi-channel architecture based on off-the-shelf programmable logic devices (PLDs).« less
FastICA peel-off for ECG interference removal from surface EMG.
Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping
2016-06-13
Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.
NPP ATMS Snowfall Rate Product
NASA Technical Reports Server (NTRS)
Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua
2015-01-01
Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.
Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis
Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert
2016-01-01
Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257
The ultraviolet detection component based on Te-Cs image intensifier
NASA Astrophysics Data System (ADS)
Qian, Yunsheng; Zhou, Xiaoyu; Wu, Yujing; Wang, Yan; Xu, Hua
2017-05-01
Ultraviolet detection technology has been widely focused and adopted in the fields of ultraviolet warning and corona detection for its significant value and practical meaning. The component structure of ultraviolet ICMOS, imaging driving and the photon counting algorithm are studied in this paper. Firstly, the one-inch and wide dynamic range CMOS chip with the coupling optical fiber panel is coupled to the ultraviolet image intensifier. The photocathode material in ultraviolet image intensifier is Te-Cs, which contributes to the solar blind characteristic, and the dual micro-channel plates (MCP) structure ensures the sufficient gain to achieve the single photon counting. Then, in consideration of the ultraviolet detection demand, the drive circuit of the CMOS chip is designed and the corresponding program based on Verilog language is written. According to the characteristics of ultraviolet imaging, the histogram equalization method is applied to enhance the ultraviolet image and the connected components labeling way is utilized for the ultraviolet single photon counting. Moreover, one visible light video channel is reserved in the ultraviolet ICOMS camera, which can be used for the fusion of ultraviolet and visible images. Based upon the module, the ultraviolet optical lens and the deep cut-off solar blind filter are adopted to construct the ultraviolet detector. At last, the detection experiment of the single photon signal is carried out, and the test results are given and analyzed.
Spectrum slicer for snapshot spectral imaging
NASA Astrophysics Data System (ADS)
Tamamitsu, Miu; Kitagawa, Yutaro; Nakagawa, Keiichi; Horisaki, Ryoichi; Oishi, Yu; Morita, Shin-ya; Yamagata, Yutaka; Motohara, Kentaro; Goda, Keisuke
2015-12-01
We propose and demonstrate an optical component that overcomes critical limitations in our previously demonstrated high-speed multispectral videography-a method in which an array of periscopes placed in a prism-based spectral shaper is used to achieve snapshot multispectral imaging with the frame rate only limited by that of an image-recording sensor. The demonstrated optical component consists of a slicing mirror incorporated into a 4f-relaying lens system that we refer to as a spectrum slicer (SS). With its simple design, we can easily increase the number of spectral channels without adding fabrication complexity while preserving the capability of high-speed multispectral videography. We present a theoretical framework for the SS and its experimental utility to spectral imaging by showing real-time monitoring of a dynamic colorful event through five different visible windows.
Time and space integrating acousto-optic folded spectrum processing for SETI
NASA Technical Reports Server (NTRS)
Wagner, K.; Psaltis, D.
1986-01-01
Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.
Nanocrystal-based complementary inverters constructed on flexible plastic substrates.
Jang, Jaewon; Cho, Kyoungah; Yun, Junggwon; Kim, Sangsig
2013-05-01
We demonstrate a nanocrystal (NC)-based complementary inverter constructed on a flexible plastic substrate. The NC-based complementary inverter consists of n-type HgSe NC- and p-type HgTe NC-based thin-film transistors (TFTs). Solid films on a plastic substrate obtained from HgSe and HgTe nanocrystals by thermal transformation are utilized as the n- and p-channel layers in these TFTs, respectively. The electrical properties of these component TFTs on unstrained and strained substrates are characterized and the performance of the inverter on the flexible substrate is investigated. The inverter on the unstrained substrate exhibits a logic gain of about 8, a logic swing of 90%, and a noise margin of 2.0 V. The characteristics of the inverter are changed under tensile and compressive strains, but not very significantly. Moreover, a comparison of the electrical characteristics of the n- and p-channel TFTs and the inverter is made in this paper.
Pan, Bifeng; Géléoc, Gwenaelle S; Asai, Yukako; Horwitz, Geoffrey C; Kurima, Kiyoto; Ishikawa, Kotaro; Kawashima, Yoshiyuki; Griffith, Andrew J; Holt, Jeffrey R
2013-08-07
Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.;
2015-01-01
Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.
Flume experimentation and simulation of bedrock channel processes
NASA Astrophysics Data System (ADS)
Thompson, Douglas; Wohl, Ellen
Flume experiments can provide cost effective, physically manageable miniature representations of complex bedrock channels. The inherent change in scale in such experiments requires a corresponding change in the scale of the forces represented in the flume system. Three modeling approaches have been developed that either ignore the scaling effects, utilize the change in scaled forces, or assume similarity of process between scales. An understanding of the nonlinear influence of a change in scale on all the forces involved is important to correctly analyze model results. Similarly, proper design and operation of flume experiments requires knowledge of the fundamental components of flume systems. Entrance and exit regions of the flume are used to provide good experimental conditions in the measurement region of the flume where data are collected. To insure reproducibility, large-scale turbulence must be removed in the head of the flume and velocity profiles must become fully developed in the entrance region. Water-surface slope and flow acceleration effects from downstream water-depth control must also be isolated in the exit region. Statistical design and development of representative channel substrate also influence model results in these systems. With proper experimental design, flumes may be used to investigate bedrock channel hydraulics, sediment-transport relations, and morphologic evolution. In particular, researchers have successfully used flume experiments to demonstrate the importance of turbulence and substrate characteristics in bedrock channel evolution. Turbulence often operates in a self perpetuating fashion, can erode bedrock walls with clear water and increase the mobility of sediment particles. Bedrock substrate influences channel evolution by offering varying resistance to erosion, controlling the location or type of incision and modifying the local influence of turbulence. An increased usage of scaled flume models may help to clarify the remaining uncertainties involving turbulence, channel substrate and bedrock channel evolution.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.
1995-01-01
To determine the feasibility of coupling the output of an optical fiber to a rib waveguide in a temperature environment ranging from 20 C to 300 C, a theoretical calculation of the coupling efficiency between the two was investigated. This is a significant problem which needs to be addressed to determine whether an integrated optic device can function in a harsh temperature environment. Because the behavior of the integrated-optic device is polarization sensitive, a polarization-preserving optic fiber, via its elliptical core, was used to couple light with a known polarization into the device. To couple light energy efficiently from an optical fiber into a channel waveguide, the design of both components should provide for well-matched electric field profiles. The rib waveguide analyzed was the light input channel of an integrated-optic pressure sensor. Due to the complex geometry of the rib waveguide, there is no analytical solution to the wave equation for the guided modes. Approximation or numerical techniques must be utilized to determine the propagation constants and field patterns of the guide. In this study, three solution methods were used to determine the field profiles of both the fiber and guide: the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of a rib channel waveguide and elliptical fiber at two temperatures, 20 C and 300 C. These temperatures were chosen to represent a nominal and a high temperature that the device would experience. Using the electric field profile calculated from each method, the theoretical coupling efficiency between the single-mode optical fiber and rib waveguide was calculated using the overlap integral and results of the techniques compared. Initially, perfect alignment was assumed and the coupling efficiency calculated. Then, the coupling efficiency calculation was repeated for a range of transverse offsets at both temperatures. Results of the calculation indicate a high coupling efficiency can be achieved when the two components were properly aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.
Multiphase transport in polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Gauthier, Eric D.
Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the flow channel. We have compared the role of GDL materials in liquid drop and gas bubble formation and movement within fuel cells.
Single-channel mixed signal blind source separation algorithm based on multiple ICA processing
NASA Astrophysics Data System (ADS)
Cheng, Xiefeng; Li, Ji
2017-01-01
Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.
Use of Robotic Pets in Providing Stimulation for Nursing Home Residents with Dementia.
Naganuma, M; Ohkubo, E; Kato, N
2015-01-01
Trial experiments utilized robotic pets to facilitate self-reliance in nursing home residents. A remote-control robot modeled clear and meaningful behaviors to elderly residents. Special attention was paid to its effects on mental and social domains. Employing the robot as a gaze target and center of attention created a cue to initiate a communication channel between residents who normally show no interest in each other. The Sony AIBO robot in this study uses commercially available wireless equipment, and all its components are easily accessible to any medical or welfare institution interested in additional practice of these activities.
Far-Field Plume Measurements of a Nested-Channel Hall-Effect Thruster (PREPRINT)
2010-12-13
nude Faraday probe, retarding potential analyzer, and ExB probe. Data from these probes were used to calculate utilization efficiencies from existing...USA Far-field plume measurements were performed on the X2 nested-channel Hall-effect thruster using an ar- ray of diagnostics, including a nude Faraday...mode to nested-channel mode by utilizing a traditional array of far-field diagnostics, which include a nude Faraday probe, retarding potential analyzer
NASA Astrophysics Data System (ADS)
Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej
2009-05-01
Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.
Low power data acquisition unit for autonomous geophysical instrumentation
NASA Astrophysics Data System (ADS)
Prystai, Andrii
2017-04-01
The development of an autonomous instrumentation for field research is always a challenge which needs knowledge and application of recent advances in technology and components production. Using this information a super-low power, low-cost, stand-alone GPS time synchronized data acquisition unit was created. It comprises an extended utilization of the microcontroller modules and peripherals and special firmware with flexible PLL parameters. The present report is devoted to a discussion of synchronization mode of data sampling in autonomous field instruments with possibility of GPS random breaks. In the result the achieved sampling timing accuracy is better than ± 60 ns without phase jumps and distortion plus fixed shift depending on the sample rate. The main application of the system is for simultaneous measurement of several channels from magnetic and electric sensors in field conditions for magneto-telluric instruments. First utilization of this system was in the new developed versions of LEMI-026 magnetometer and LEMI-423 field station, where it was applied for digitizing of up to 6 analogue channels with 32-bit resolution in the range ± 2.5V, digital filtration (LPF) and maximum sample rate 4kS/s. It is ready for record in 5 minutes after being turned on. Recently, this system was successfully utilized with the drone-portable magnetometers destined for the search of metallic objects, like UXO, in rural areas, research of engineering underground structure and for mapping ore bodies. The successful tests of drone-portable system were made and tests results are also discussed.
Traffic shaping and scheduling for OBS-based IP/WDM backbones
NASA Astrophysics Data System (ADS)
Elhaddad, Mahmoud S.; Melhem, Rami G.; Znati, Taieb; Basak, Debashis
2003-10-01
We introduce Proactive Reservation-based Switching (PRS) -- a switching architecture for IP/WDM networks based on Labeled Optical Burst Switching. PRS achieves packet delay and loss performance comparable to that of packet-switched networks, without requiring large buffering capacity, or burst scheduling across a large number of wavelengths at the core routers. PRS combines proactive channel reservation with periodic shaping of ingress-egress traffic aggregates to hide the offset latency and approximate the utilization/buffering characteristics of discrete-time queues with periodic arrival streams. A channel scheduling algorithm imposes constraints on burst departure times to ensure efficient utilization of wavelength channels and to maintain the distance between consecutive bursts through the network. Results obtained from simulation using TCP traffic over carefully designed topologies indicate that PRS consistently achieves channel utilization above 90% with modest buffering requirements.
Dejean, Laurent M.; Martinez-Caballero, Sonia; Guo, Liang; Hughes, Cynthia; Teijido, Oscar; Ducret, Thomas; Ichas, François; Korsmeyer, Stanley J.; Antonsson, Bruno; Jonas, Elizabeth A.; Kinnally, Kathleen W.
2005-01-01
Bcl-2 family proteins regulate apoptosis, in part, by controlling formation of the mitochondrial apoptosis-induced channel (MAC), which is a putative cytochrome c release channel induced early in the intrinsic apoptotic pathway. This channel activity was never observed in Bcl-2–overexpressing cells. Furthermore, MAC appears when Bax translocates to mitochondria and cytochrome c is released in cells dying by intrinsic apoptosis. Bax is a component of MAC of staurosporine-treated HeLa cells because MAC activity is immunodepleted by Bax antibodies. MAC is preferentially associated with oligomeric, not monomeric, Bax. The single channel behavior of recombinant oligomeric Bax and MAC is similar. Both channel activities are modified by cytochrome c, consistent with entrance of this protein into the pore. The mean conductance of patches of mitochondria isolated after green fluorescent protein-Bax translocation is significantly higher than those from untreated cells, consistent with onset of MAC activity. In contrast, the mean conductance of patches of mitochondria indicates MAC activity is present in apoptotic cells deficient in Bax but absent in apoptotic cells deficient in both Bax and Bak. These findings indicate Bax is a component of MAC in staurosporine-treated HeLa cells and suggest Bax and Bak are functionally redundant as components of MAC. PMID:15772159
Blind ICA detection based on second-order cone programming for MC-CDMA systems
NASA Astrophysics Data System (ADS)
Jen, Chih-Wei; Jou, Shyh-Jye
2014-12-01
The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Evaluation of using ferrofluid as an interface material for a field-reversible thermal connector
NASA Astrophysics Data System (ADS)
Yousif, Ahmed S.
The electrical functionality of an avionics chassis is limited due to heat dissipation limits. The limits arise due to the fact that components in an avionic computer boxes are packed very compactly, with the components mounted onto plug-in cards, and the harsh environment experienced by the chassis limits how heat can be dissipated from the cards. Convective and radiative heat transfer to the ambient are generally not possible. Therefore it is necessary to have heat transferred from the components conducted to the edge of the plug-in cards. The heat then needs to conduct from the card edge to a cold block that not only holds the card in place, but also removes the generated heat by some heat transfer fluid that is circulated through the cold block. The interface between the plug-in card and the cold block typically has a high thermal resistance since it is necessary for the card to have the capability to be re-workable, meaning that the card can be removed and then returned to the chassis. Reducing the thermal resistance of the interface is the objective of the current study and the topic of this thesis. The current design uses a pressure interface between the card and cold block. The contact pressure is increased through the addition of a wedgelock, which is a field-reversible mechanical connector. To use a wedgelock, the cold block has channels milled on the surface with widths that are larger than the thickness of the plug-in card and the un-expanded wedgelock. The card edge is placed in the channel and placed against one of the channel walls. A wedgelock is then placed between the card and the other channel wall. The wedgelock is then expanded by using either a screw or a lever. As the wedgelock expands it fills in the remaining channel gap and bears against the other face of the plug-in card. The majority of heat generated by the components on the plug-in card is forced to conduct from the card into the wall of the cold block, effectively a single sided, dry conduction heat transfer path. Having started as a student design competition named RevCon Challenge, work was performed to evaluate the use of new field-reversible thermal connectors. The new design proposed by the University of Missouri utilized oil based iron nanoparticles, commonly known as a ferrofluid, as a thermal interface material. By using a liquid type of interface material the channel gap can be reduced to a few micrometers, within machining tolerances, and heat can be dissipated off both sides of the card. The addition of nanoparticles improves the effective thermal conductivity of base fluid. The use of iron nanoparticles allows magnets to be used to hold the fluid in place, so the electronic cards may be easily inserted and removed while keeping the ferrofluid in the cold block channel. The ferrofluid-based design which was investigated has shown lower thermal resistance than the current wedgelock design. These results open the door for further development of electronic cards by using higher heat emitting components without compromising the simplicity of attaching/detaching cards from cooling plates.
Random access to mobile networks with advanced error correction
NASA Technical Reports Server (NTRS)
Dippold, Michael
1990-01-01
A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Jin; Lu, Chun-Ming; Biswal, Bharat B.; Zang, Yu-Feng; Peng, Dan-Lin; Zhu, Chao-Zhe
2010-07-01
Functional connectivity has become one of the important approaches to understanding the functional organization of the human brain. Recently, functional near-infrared spectroscopy (fNIRS) was demonstrated as a feasible method to study resting-state functional connectivity (RSFC) in the sensory and motor systems. However, whether such fNIRS-based RSFC can be revealed in high-level and complex functional systems remains unknown. In the present study, the feasibility of such an approach is tested on the language system, of which the neural substrates have been well documented in the literature. After determination of a seed channel by a language localizer task, the correlation strength between the low frequency fluctuations of the fNIRS signal at the seed channel and those at all other channels is used to evaluate the language system RSFC. Our results show a significant RSFC between the left inferior frontal cortex and superior temporal cortex, components both associated with dominant language regions. Moreover, the RSFC map demonstrates left lateralization of the language system. In conclusion, the present study successfully utilized fNIRS-based RSFC to study a complex and high-level neural system, and provides further evidence for the validity of the fNIRS-based RSFC approach.
Real-time software-based end-to-end wireless visual communications simulation platform
NASA Astrophysics Data System (ADS)
Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell
1995-04-01
Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.
NASA Astrophysics Data System (ADS)
Ballora, Mark; Hall, David L.
2010-04-01
Detection of intrusions is a continuing problem in network security. Due to the large volumes of data recorded in Web server logs, analysis is typically forensic, taking place only after a problem has occurred. This paper describes a novel method of representing Web log information through multi-channel sound, while simultaneously visualizing network activity using a 3-D immersive environment. We are exploring the detection of intrusion signatures and patterns, utilizing human aural and visual pattern recognition ability to detect intrusions as they occur. IP addresses and return codes are mapped to an informative and unobtrusive listening environment to act as a situational sound track of Web traffic. Web log data is parsed and formatted using Python, then read as a data array by the synthesis language SuperCollider [1], which renders it as a sonification. This can be done either for the study of pre-existing data sets or in monitoring Web traffic in real time. Components rendered aurally include IP address, geographical information, and server Return Codes. Users can interact with the data, speeding or slowing the speed of representation (for pre-existing data sets) or "mixing" sound components to optimize intelligibility for tracking suspicious activity.
Zhu, Li; Bharadwaj, Hari; Xia, Jing; Shinn-Cunningham, Barbara
2013-01-01
Two experiments, both presenting diotic, harmonic tone complexes (100 Hz fundamental), were conducted to explore the envelope-related component of the frequency-following response (FFRENV), a measure of synchronous, subcortical neural activity evoked by a periodic acoustic input. Experiment 1 directly compared two common analysis methods, computing the magnitude spectrum and the phase-locking value (PLV). Bootstrapping identified which FFRENV frequency components were statistically above the noise floor for each metric and quantified the statistical power of the approaches. Across listeners and conditions, the two methods produced highly correlated results. However, PLV analysis required fewer processing stages to produce readily interpretable results. Moreover, at the fundamental frequency of the input, PLVs were farther above the metric's noise floor than spectral magnitudes. Having established the advantages of PLV analysis, the efficacy of the approach was further demonstrated by investigating how different acoustic frequencies contribute to FFRENV, analyzing responses to complex tones composed of different acoustic harmonics of 100 Hz (Experiment 2). Results show that the FFRENV response is dominated by peripheral auditory channels responding to unresolved harmonics, although low-frequency channels driven by resolved harmonics also contribute. These results demonstrate the utility of the PLV for quantifying the strength of FFRENV across conditions. PMID:23862815
Method and system for providing cooling for turbine components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Victor John; Lacy, Benjamin Paul
2016-08-16
A system for providing cooling for a turbine component that includes an outer surface exposed to combustion gases is provided. A component base includes at least one fluid supply passage coupleable to a source of cooling fluid. At least one feed passage communicates with the at least one fluid supply passage. At least one delivery channel communicates with the at least one feed passage. At least one cover layer covers the at least one feed passage and the at least one delivery channel, defining at least in part the component outer surface. At least one discharge passage extends to themore » outer surface. A diffuser section is defined in at least one of the at least one delivery channel and the at least one discharge passage, such that a fluid channeled through the system is diffused prior to discharge adjacent the outer surface.« less
Device and method for automated separation of a sample of whole blood into aliquots
Burtis, Carl A.; Johnson, Wayne F.
1989-01-01
A device and a method for automated processing and separation of an unmeasured sample of whole blood into multiple aliquots of plasma. Capillaries are radially oriented on a rotor, with the rotor defining a sample chamber, transfer channels, overflow chamber, overflow channel, vent channel, cell chambers, and processing chambers. A sample of whole blood is placed in the sample chamber, and when the rotor is rotated, the blood moves outward through the transfer channels to the processing chambers where the blood is centrifugally separated into a solid cellular component and a liquid plasma component. When the rotor speed is decreased, the plasma component backfills the capillaries resulting in uniform aliquots of plasma which may be used for subsequent analytical procedures.
An information theory of image gathering
NASA Technical Reports Server (NTRS)
Fales, Carl L.; Huck, Friedrich O.
1991-01-01
Shannon's mathematical theory of communication is extended to image gathering. Expressions are obtained for the total information that is received with a single image-gathering channel and with parallel channels. It is concluded that the aliased signal components carry information even though these components interfere with the within-passband components in conventional image gathering and restoration, thereby degrading the fidelity and visual quality of the restored image. An examination of the expression for minimum mean-square-error, or Wiener-matrix, restoration from parallel image-gathering channels reveals a method for unscrambling the within-passband and aliased signal components to restore spatial frequencies beyond the sampling passband out to the spatial frequency response cutoff of the optical aperture.
Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo
2012-01-01
Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527
He, Zhixue; Li, Xiang; Luo, Ming; Hu, Rong; Li, Cai; Qiu, Ying; Fu, Songnian; Yang, Qi; Yu, Shaohua
2016-05-02
We propose and experimentally demonstrate two independent component analysis (ICA) based channel equalizers (CEs) for 6 × 6 MIMO-OFDM transmission over few-mode fiber. Compared with the conventional channel equalizer based on training symbols (TSs-CE), the proposed two ICA-based channel equalizers (ICA-CE-I and ICA-CE-II) can achieve comparable performances, while requiring much less training symbols. Consequently, the overheads for channel equalization can be substantially reduced from 13.7% to 0.4% and 2.6%, respectively. Meanwhile, we also experimentally investigate the convergence speed of the proposed ICA-based CEs.
All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor.
Wang, Chao; Xiong, Ye; Wang, Hanwei; Sun, Qingfeng
2018-05-30
All-round utilization of resources is proposed for maximizing environmental and economic benefits. Herein, the concept of all-round utilization on biomass derivations applying to carbon-based supercapacitors is demonstrated. Orange peel is used for all subassemblies of supercapacitor, including electrodes, separator and electrolyte. A monolithic porous carbon (OPHPC) is prepared by one-step carbonization of orange peel and another composite electrode is further synthesized by a simple hydrothermal process, based on sufficient utilization of natural structure and chemical components. OPHPC exhibits a high specific surface area of 860 m 2 g -1 and naturally doped nitrogen. The composite electrode shows the homogeneous and high mass loading of MnO 2 . Orange peel also affords the role of separator benefited from the natural porous channel structure and high porosity of 74.6%. Orange peel juice is exploited to produce the electrolyte, and exhibits the best retention in natural separator. All-orange peel all-solid-state supercapacitor shows the high areal capacitance of 3987 mF cm -2 . Furthermore, the flexibility of orange peel is also utilized to achieve the shape-tailored monolithic porous carbon electrode and device, which further extends the utilized dimensionality in biomass applying to supercapacitors. The work starts with all dimensional utilization for biomass derived supercapacitor. Copyright © 2018. Published by Elsevier Inc.
Bovine chromaffin cells possess FTX-sensitive calcium channels.
Gandía, L; Albillos, A; García, A G
1993-07-30
The effects of the synthetic analogue of the toxin from the venom of the funnel-web spider Agenelopsis aperta (sFTX) on whole-cell Ba2+ currents through Ca2+ channels were studied in cultured bovine chromaffin cells. sFTX selectively and reversibly blocked a significant component (55 +/- 3%) of the whole-cell IBa. Effects of sFTX were additive to those of omega-conotoxin GVIA, a selective blocker of N-type Ca2+ channels, and those of furnidipine, a novel dihydropyridine L-type Ca2+ channel blocker. We conclude that the cultured bovine chromaffin cells, in addition to N- and L-type Ca2+ channels, possess a P-type component in their whole-cell currents through their Ca2+ channels.
MIMO channel estimation and evaluation for airborne traffic surveillance in cellular networks
NASA Astrophysics Data System (ADS)
Vahidi, Vahid; Saberinia, Ebrahim
2018-01-01
A channel estimation (CE) procedure based on compressed sensing is proposed to estimate the multiple-input multiple-output sparse channel for traffic data transmission from drones to ground stations. The proposed procedure consists of an offline phase and a real-time phase. In the offline phase, a pilot arrangement method, which considers the interblock and block mutual coherence simultaneously, is proposed. The real-time phase contains three steps. At the first step, it obtains the priori estimate of the channel by block orthogonal matching pursuit; afterward, it utilizes that estimated channel to calculate the linear minimum mean square error of the received pilots. Finally, the block compressive sampling matching pursuit utilizes the enhanced received pilots to estimate the channel more accurately. The performance of the CE procedure is evaluated by simulating the transmission of traffic data through the communication channel and evaluating its fidelity for car detection after demodulation. Simulation results indicate that the proposed CE technique enhances the performance of the car detection in a traffic image considerably.
Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.
Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas
2016-01-01
Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.
Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control
Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas
2016-01-01
Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209
Stream-based Hebbian eigenfilter for real-time neuronal spike discrimination
2012-01-01
Background Principal component analysis (PCA) has been widely employed for automatic neuronal spike sorting. Calculating principal components (PCs) is computationally expensive, and requires complex numerical operations and large memory resources. Substantial hardware resources are therefore needed for hardware implementations of PCA. General Hebbian algorithm (GHA) has been proposed for calculating PCs of neuronal spikes in our previous work, which eliminates the needs of computationally expensive covariance analysis and eigenvalue decomposition in conventional PCA algorithms. However, large memory resources are still inherently required for storing a large volume of aligned spikes for training PCs. The large size memory will consume large hardware resources and contribute significant power dissipation, which make GHA difficult to be implemented in portable or implantable multi-channel recording micro-systems. Method In this paper, we present a new algorithm for PCA-based spike sorting based on GHA, namely stream-based Hebbian eigenfilter, which eliminates the inherent memory requirements of GHA while keeping the accuracy of spike sorting by utilizing the pseudo-stationarity of neuronal spikes. Because of the reduction of large hardware storage requirements, the proposed algorithm can lead to ultra-low hardware resources and power consumption of hardware implementations, which is critical for the future multi-channel micro-systems. Both clinical and synthetic neural recording data sets were employed for evaluating the accuracy of the stream-based Hebbian eigenfilter. The performance of spike sorting using stream-based eigenfilter and the computational complexity of the eigenfilter were rigorously evaluated and compared with conventional PCA algorithms. Field programmable logic arrays (FPGAs) were employed to implement the proposed algorithm, evaluate the hardware implementations and demonstrate the reduction in both power consumption and hardware memories achieved by the streaming computing Results and discussion Results demonstrate that the stream-based eigenfilter can achieve the same accuracy and is 10 times more computationally efficient when compared with conventional PCA algorithms. Hardware evaluations show that 90.3% logic resources, 95.1% power consumption and 86.8% computing latency can be reduced by the stream-based eigenfilter when compared with PCA hardware. By utilizing the streaming method, 92% memory resources and 67% power consumption can be saved when compared with the direct implementation of GHA. Conclusion Stream-based Hebbian eigenfilter presents a novel approach to enable real-time spike sorting with reduced computational complexity and hardware costs. This new design can be further utilized for multi-channel neuro-physiological experiments or chronic implants. PMID:22490725
NASA Astrophysics Data System (ADS)
Yun, Changho; Kim, Kiseon
2006-04-01
For the passive star-coupled wavelength-division multiple-access (WDMA) network, a modified accelerative preallocation WDMA (MAP-WDMA) media access control (MAC) protocol is proposed, which is based on AP-WDMA. To show the advantages of MAP-WDMA as an adequate MAC protocol for the network over AP-WDMA, the channel utilization, the channel-access delay, and the latency of MAP-WDMA are investigated and compared with those of AP-WDMA under various data traffic patterns, including uniform, quasi-uniform type, disconnected type, mesh type, and ring type data traffics, as well as the assumption that a given number of network stations is equal to that of channels, in other words, without channel sharing. As a result, the channel utilization of MAP-WDMA can be competitive with respect to that of AP-WDMA at the expense of insignificantly higher latency. Namely, if the number of network stations is small, MAP-WDMA provides better channel utilization for uniform, quasi-uniform-type, and disconnected-type data traffics at all data traffic loads, as well as for mesh and ring-type data traffics at low data traffic loads. Otherwise, MAP-WDMA only outperforms AP-WDMA for the first three data traffics at higher data traffic loads. In the aspect of channel-access delay, MAP-WDMA gives better performance than AP-WDMA, regardless of data traffic patterns and the number of network stations.
Multicomponent reactions provide key molecules for secret communication.
Boukis, Andreas C; Reiter, Kevin; Frölich, Maximiliane; Hofheinz, Dennis; Meier, Michael A R
2018-04-12
A convenient and inherently more secure communication channel for encoding messages via specifically designed molecular keys is introduced by combining advanced encryption standard cryptography with molecular steganography. The necessary molecular keys require large structural diversity, thus suggesting the application of multicomponent reactions. Herein, the Ugi four-component reaction of perfluorinated acids is utilized to establish an exemplary database consisting of 130 commercially available components. Considering all permutations, this combinatorial approach can unambiguously provide 500,000 molecular keys in only one synthetic procedure per key. The molecular keys are transferred nondigitally and concealed by either adsorption onto paper, coffee, tea or sugar as well as by dissolution in a perfume or in blood. Re-isolation and purification from these disguises is simplified by the perfluorinated sidechains of the molecular keys. High resolution tandem mass spectrometry can unequivocally determine the molecular structure and thus the identity of the key for a subsequent decryption of an encoded message.
Rifai Chai; Naik, Ganesh R; Sai Ho Ling; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-07-01
This paper presents a classification of driver fatigue with electroencephalography (EEG) channels selection analysis. The system employs independent component analysis (ICA) with scalp map back projection to select the dominant of EEG channels. After channel selection, the features of the selected EEG channels were extracted based on power spectral density (PSD), and then classified using a Bayesian neural network. The results of the ICA decomposition with the back-projected scalp map and a threshold showed that the EEG channels can be reduced from 32 channels into 16 dominants channels involved in fatigue assessment as chosen channels, which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert classification of the selected 16 channels yielded a sensitivity of 76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, the classification results of the selected 16 channels are comparable to those using the original 32 channels. So, the selected 16 channels is preferable for ergonomics improvement of EEG-based fatigue classification system.
Observations of a bi-directional lightning leader producing an M-component
NASA Astrophysics Data System (ADS)
Kotovsky, D. A.; Uman, M. A.; Wilkes, R.; Carvalho, F. L.; Jordan, D. M.
2017-12-01
Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi
2018-02-01
In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.
Real-time information management environment (RIME)
NASA Astrophysics Data System (ADS)
DeCleene, Brian T.; Griffin, Sean; Matchett, Garry; Niejadlik, Richard
2000-08-01
Whereas data mining and exploitation improve the quality and quantity of information available to the user, there remains a mission requirement to assist the end-user in managing the access to this information and ensuring that the appropriate information is delivered to the right user in time to make decisions and take action. This paper discusses TASC's federated architecture to next- generation information management, contrasts the approach against emerging technologies, and quantifies the performance gains. This architecture and implementation, known as Real-time Information Management Environment (RIME), is based on two key concepts: information utility and content-based channelization. The introduction of utility allows users to express the importance and delivery requirements of their information needs in the context of their mission. Rather than competing for resources on a first-come/first-served basis, the infrastructure employs these utility functions to dynamically react to unanticipated loading by optimizing the delivered information utility. Furthermore, commander's resource policies shape these functions to ensure that resources are allocated according to military doctrine. Using information about the desired content, channelization identifies opportunities to aggregate users onto shared channels reducing redundant transmissions. Hence, channelization increases the information throughput of the system and balances sender/receiver processing load.
Studies of the Twin Helix Parametric-resonance Ionization Cooling Channel with COSY INFINITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Maloney, K.B. Beard, R.P. Johnson, A. Afanasev, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov, B. Erdelyi
2012-07-01
A primary technical challenge to the design of a high luminosity muon collider is an effective beam cooling system. An epicyclic twin-helix channel utilizing parametric-resonance ionization cooling has been proposed for the final 6D cooling stage. A proposed design of this twin-helix channel is presented that utilizes correlated optics between the horizontal and vertical betatron periods to simultaneously focus transverse motion of the beam in both planes. Parametric resonance is induced in both planes via a system of helical quadrupole harmonics. Ionization cooling is achieved via periodically placed wedges of absorbing material, with intermittent rf cavities restoring longitudinal momentum necessarymore » to maintain stable orbit of the beam. COSY INFINITY is utilized to simulate the theory at first order. The motion of particles around a hyperbolic fixed point is tracked. Comparison is made between the EPIC cooling channel and standard ionization cooling effects. Cooling effects are measured, after including stochastic effects, for both a single particle and a distribution of particles.« less
Turbine component cooling channel mesh with intersection chambers
Lee, Ching-Pang; Marra, John J
2014-05-06
A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).
Monolithically compatible impedance measurement
Ericson, Milton Nance; Holcomb, David Eugene
2002-01-01
A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.
2014-06-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
On codes with multi-level error-correction capabilities
NASA Technical Reports Server (NTRS)
Lin, Shu
1987-01-01
In conventional coding for error control, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other symbols. As a result, it is desired to devise codes with multilevel error-correcting capabilities. Another situation where codes with multi-level error-correcting capabilities are desired is in broadcast communication systems. An m-user broadcast channel has one input and m outputs. The single input and each output form a component channel. The component channels may have different noise levels, and hence the messages transmitted over the component channels require different levels of protection against errors. Block codes with multi-level error-correcting capabilities are also known as unequal error protection (UEP) codes. Structural properties of these codes are derived. Based on these structural properties, two classes of UEP codes are constructed.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-09-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-11-19
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Buch, Aditi; Archana, G; Naresh Kumar, G
2008-01-01
Most phosphate-solubilizing bacteria (PSB), including the Pseudomonas species, release P from sparingly soluble mineral phosphates by producing high levels of gluconic acid from extracellular glucose, in a reaction catalyzed by periplasmic glucose dehydrogenase, which is an integral component of glucose catabolism of pseudomonads. To investigate the differences in the glucose metabolism of gluconic acid-producing PSB pseudomonads and low gluconic acid-producing/non-PSB strains, several parameters pertaining to growth and glucose utilization under P-sufficient and P-deficient conditions were monitored for the PSB isolate Pseudomonas aeruginosa P4 (producing approximately 46 mM gluconic acid releasing 437 microM P) and non-PSB P. fluorescens 13525. Our results show interesting differences in the channeling of glucose towards gluconate and other catabolic end-products like pyruvate and acetate with respect to P status for both strains. However, PSB strain P. aeruginosa P4, apart from exhibiting better growth under both low and high Pi conditions, differed from P. fluorescens 13525 in its ability to accumulate gluconate under P-solubilizing conditions. These alterations in growth, glucose utilization and acid secretion are correlated with glucose dehydrogenase, glucose-6-phosphate dehydrogenase and pyruvate carboxylase activities. The ability to shift glucose towards a direct oxidative pathway under P deficiency is speculated to underlie the differential gluconic acid-mediated P-solubilizing ability observed amongst pseudomonads.
A modular microfluidic architecture for integrated biochemical analysis.
Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang
2005-07-12
Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.
Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating
Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar
2012-01-01
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342
a Novel Two-Component Decomposition for Co-Polar Channels of GF-3 Quad-Pol Data
NASA Astrophysics Data System (ADS)
Kwok, E.; Li, C. H.; Zhao, Q. H.; Li, Y.
2018-04-01
Polarimetric target decomposition theory is the most dynamic and exploratory research area in the field of PolSAR. But most methods of target decomposition are based on fully polarized data (quad pol) and seldom utilize dual-polar data for target decomposition. Given this, we proposed a novel two-component decomposition method for co-polar channels of GF-3 quad-pol data. This method decomposes the data into two scattering contributions: surface, double bounce in dual co-polar channels. To save this underdetermined problem, a criterion for determining the model is proposed. The criterion can be named as second-order averaged scattering angle, which originates from the H/α decomposition. and we also put forward an alternative parameter of it. To validate the effectiveness of proposed decomposition, Liaodong Bay is selected as research area. The area is located in northeastern China, where it grows various wetland resources and appears sea ice phenomenon in winter. and we use the GF-3 quad-pol data as study data, which which is China's first C-band polarimetric synthetic aperture radar (PolSAR) satellite. The dependencies between the features of proposed algorithm and comparison decompositions (Pauli decomposition, An&Yang decomposition, Yamaguchi S4R decomposition) were investigated in the study. Though several aspects of the experimental discussion, we can draw the conclusion: the proposed algorithm may be suitable for special scenes with low vegetation coverage or low vegetation in the non-growing season; proposed decomposition features only using co-polar data are highly correlated with the corresponding comparison decomposition features under quad-polarization data. Moreover, it would be become input of the subsequent classification or parameter inversion.
NASA Technical Reports Server (NTRS)
Bates, Harry
1990-01-01
A number of optical communication lines are now in use at the Kennedy Space Center (KSC) for the transmission of voice, computer data, and video signals. Presently, all of these channels utilize a single carrier wavelength centered near 1300 nm. The theoretical bandwidth of the fiber far exceeds the utilized capacity. Yet, practical considerations limit the usable bandwidth. The fibers have the capability of transmitting a multiplicity of signals simultaneously in each of two separate bands (1300 and 1550 nm). Thus, in principle, the number of transmission channels can be increased without installing new cable if some means of wavelength division multiplexing (WDM) can be utilized. The main goal of these experiments was to demonstrate that a factor of 2 increase in bandwidth utilization can share the same fiber in both a unidirectional configuration and a bidirectional mode of operation. Both signal and multimode fiber are installed at KSC. The great majority is multimode; therefore, this effort concentrated on multimode systems.
Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter
NASA Technical Reports Server (NTRS)
Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel
2013-01-01
This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels, with 50-GHz bandwidth, were designed, each using multiple transmission line media such as microstrip, coplanar waveguide, and quasi-lumped components on 0.45- m thick silicon. In the design process, modeling issues had to be overcome. Due to the extremely high frequencies, very thin Si substrate, and the superconducting metal layers, most commercially available software fails in various ways. These issues were mitigated by using alternative software that was capable of handling them at the expense of greater simulation time. The design of on-chip components for the filter characterization, such as a broadband antenna, Wilkinson power dividers, attenuators, detectors, and transitions has been completed.
Pacific Northwest tide channel utilization by fish as an ecosystem service
Background/Question/Methods: Saltwater marsh tide channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of tide channels in Pacific Northwest estuaries has ...
A 16-channel cassette tape recorder system for clinical EEGs.
Barlow, J S
1975-02-01
A 16-channel EEG tape recorder system having a frequency response of DC-100 Hz for each channel is described. The system utilized standard commercially available highfidelity audio tape decks in conjunction with specially designed circuits for time-division multiplexing a balanced amplitude modulation
Namkung, Wan; Thiagarajah, Jay R; Phuan, Puay-Wah; Verkman, A S
2010-11-01
TMEM16A was found recently to be a calcium-activated Cl(-) channel (CaCC). CaCCs perform important functions in cell physiology, including regulation of epithelial secretion, cardiac and neuronal excitability, and smooth muscle contraction. CaCC modulators are of potential utility for treatment of hypertension, diarrhea, and cystic fibrosis. Screening of drug and natural product collections identified tannic acid as an inhibitor of TMEM16A, with IC(50) ∼ 6 μM and ∼100% inhibition at higher concentrations. Tannic acid inhibited CaCCs in multiple cell types but did not affect CFTR Cl(-) channels. Structure-activity analysis indicated the requirement of gallic or digallic acid substituents on a macromolecular scaffold (gallotannins), as are present in green tea and red wine. Other polyphenolic components of teas and wines, including epicatechin, catechin, and malvidin-3-glucoside, poorly inhibited CaCCs. Remarkably, a 1000-fold dilution of red wine and 100-fold dilution of green tea inhibited CaCCs by >50%. Tannic acid, red wine, and green tea inhibited arterial smooth muscle contraction and intestinal Cl(-) secretion. Gallotannins are thus potent CaCC inhibitors whose biological activity provides a potential molecular basis for the cardioprotective and antisecretory benefits of red wine and green tea.
NASA Technical Reports Server (NTRS)
Koenig, E. W.; Holman, K. A.
1980-01-01
The concept of adding four spectral channels to the 20 channel HIRS/2 instrument for the purpose of determining the origin and profile of radiant existence from the Earth's atmosphere is considered. Methods of addition of three channels at 0.5, 1.0 and 1.6 micron m to the present 0.7 micron m visible channel and an 18-25 micron m channel to the present 19 channels spaced from 3.7 micron m to 15 micron m are addressed. Optical components and physical positions were found that permit inclusion of these added channels with negligible effect on the performance of the present 20 channels. Data format changes permit inclusion of the ERB data in the 288 bits allocated to HIRS for each scan element. A lamp and collimating optic assembly may replace one of the on board radiometric black bodies to provide a reference source for the albedo channels. Some increase in instrument dimensions, weight and power will be required to accommodate the modifications.
Long-term Controlled Drug Release from bi-component Electrospun Fibers
NASA Astrophysics Data System (ADS)
Xu, Shanshan; Zhang, Zixin; Xia, Qinghua; Han, Charles
Multi-drug delivery systems with timed programmed release are hard to be produced due to the complex drug release kinetics which mainly refers to the diffusion of drug molecules from the fiber and the degradation of the carrier. This study focused on the whole life-time story of the long-term drug releasing fibrous systems. Electrospun membrane utilizing FDA approved polymers and broad-spectrum antibiotics showed specific drug release profiles which could be divided into three stages based on the profile slope. With throughout morphology observation, cumulative release amount and releasing duration, releasing kinetics and critical factors were fully discussed during three stages. Through changing the second component, approximately linear drug release profile and a drug release duration about 13 days was prepared, which is perfect for preventing post-operative infection. The addition of this semi-crystalline polymer in turn influenced the fiber swelling and created drug diffusion channels. In conclusion, through adjusting and optimization of the blending component, initial burst release, delayed release for certain duration, and especially the sustained release profile could all be controlled, as well as specific anti-bacterial behavior could be obtained.
An 81.6 μW FastICA processor for epileptic seizure detection.
Yang, Chia-Hsiang; Shih, Yi-Hsin; Chiueh, Herming
2015-02-01
To improve the performance of epileptic seizure detection, independent component analysis (ICA) is applied to multi-channel signals to separate artifacts and signals of interest. FastICA is an efficient algorithm to compute ICA. To reduce the energy dissipation, eigenvalue decomposition (EVD) is utilized in the preprocessing stage to reduce the convergence time of iterative calculation of ICA components. EVD is computed efficiently through an array structure of processing elements running in parallel. Area-efficient EVD architecture is realized by leveraging the approximate Jacobi algorithm, leading to a 77.2% area reduction. By choosing proper memory element and reduced wordlength, the power and area of storage memory are reduced by 95.6% and 51.7%, respectively. The chip area is minimized through fixed-point implementation and architectural transformations. Given a latency constraint of 0.1 s, an 86.5% area reduction is achieved compared to the direct-mapped architecture. Fabricated in 90 nm CMOS, the core area of the chip is 0.40 mm(2). The FastICA processor, part of an integrated epileptic control SoC, dissipates 81.6 μW at 0.32 V. The computation delay of a frame of 256 samples for 8 channels is 84.2 ms. Compared to prior work, 0.5% power dissipation, 26.7% silicon area, and 3.4 × computation speedup are achieved. The performance of the chip was verified by human dataset.
A numerical investigation of premixed combustion in wave rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi; Paxson, Daniel E.
1996-01-01
Wave rotor cycles which utilize premixed combustion processes within the passages are examined numerically using a one-dimensional CFD-based simulation. Internal-combustion wave rotors are envisioned for use as pressure-gain combustors in gas turbine engines. The simulation methodology is described, including a presentation of the assumed governing equations for the flow and reaction in the channels, the numerical integration method used, and the modeling of external components such as recirculation ducts. A number of cycle simulations are then presented which illustrate both turbulent-deflagration and detonation modes of combustion. Estimates of performance and rotor wall temperatures for the various cycles are made, and the advantages and disadvantages of each are discussed.
Separation system with a sheath-flow supported electrochemical detector
Mathies, Richard A [Moraga, CA; Emrich, Charles A [Berkeley, CA; Singhal, Pankaj [Pasadena, CA; Ertl, Peter [Styria, AT
2008-10-21
An electrochemical detector including side channels associated with a separation channel of a sample component separation apparatus is provided. The side channels of the detector, in one configuration, provide a sheath-flow for an analyte exiting the separation channel which directs the analyte to the electrically developed electrochemical detector.
Pacific Northwest tide channel utilization by fish as an ecosystem service - August 2013
Background/Question/Methods: Saltwater marsh tide channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of tide channels in Pacific Northwest estuaries has r...
NASA Astrophysics Data System (ADS)
Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.
2016-05-01
This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.
Microfluidic process monitor for industrial solvent extraction system
Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood
2016-01-12
The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.
Design of a line-VISAR interferometer system for the Sandia Z Machine
NASA Astrophysics Data System (ADS)
Galbraith, J.; Austin, K.; Baker, J.; Bettencourt, R.; Bliss, E.; Celeste, J.; Clancy, T.; Cohen, S.; Crosley, M.; Datte, P.; Fratanduono, D.; Frieders, G.; Hammer, J.; Jackson, J.; Johnson, D.; Jones, M.; Koen, D.; Lusk, J.; Martinez, A.; Massey, W.; McCarville, T.; McLean, H.; Raman, K.; Rodriguez, S.; Spencer, D.; Springer, P.; Wong, J.
2017-08-01
A joint team comprised of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) personnel is designing a line-VISAR (Velocity Interferometer System for Any Reflector) for the Sandia Z Machine, Z Line-VISAR. The diagnostic utilizes interferometry to assess current delivery as a function of radius during a magnetically-driven implosion. The Z Line-VISAR system is comprised of the following: a two-leg line-VISAR interferometer, an eight-channel Gated Optical Imager (GOI), and a fifty-meter transport beampath to/from the target of interest. The Z Machine presents unique optomechanical design challenges. The machine utilizes magnetically driven pulsed power to drive a target to elevated temperatures and pressures useful for high energy density science. Shock accelerations exceeding 30g and a strong electromagnetic pulse (EMP) are generated during the shot event as the machine discharges currents of over 25 million amps. Sensitive optical components must be protected from shock loading, and electrical equipment must be adequately shielded from the EMP. The optical design must accommodate temperature and humidity fluctuations in the facility as well as airborne hydrocarbons from the pulsed power components. We will describe the engineering design and concept of operations of the Z Line-VISAR system. Focus will be on optomechanical design.
Ion channel pharmacology under flow: automation via well-plate microfluidics.
Spencer, C Ian; Li, Nianzhen; Chen, Qin; Johnson, Juliette; Nevill, Tanner; Kammonen, Juha; Ionescu-Zanetti, Cristian
2012-08-01
Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format.
Schneider, M F; Dubois, J M
1986-01-01
The effects of benzocaine (0.5-1 mM) on normal Na currents, and on Na current and gating charge movement (Q) of batrachotoxin (BTX)-modified Na channels were analyzed in voltage-clamped frog node of Ranvier. Without BTX treatment the decay of Na current during pulses to between -40 and 0 mV could be decomposed into two exponential components both in the absence and in the presence of benzocaine. Benzocaine did not significantly alter the inactivation time constant of either component, but reduced both their amplitudes. The amplitude of the slow inactivating component was more decreased by benzocaine than the amplitude of the fast one, leading to an apparently faster decline of the overall Na current. After removal of Na inactivation and charge movement immobilization by BTX, benzocaine decreased the amplitude of INa with no change in time course. INa, QON, and QOFF were all reduced by the same factor. The results suggest that the rate of reaction of benzocaine with its receptor is slow compared to the rates of channel activation and inactivation. The differential effects of benzocaine on the two components of Na current inactivation in normal channels can be explained assuming two types of channel with different rates of inactivation and different affinities for the drug. PMID:2428413
Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition.
Park, Chulhee; Kang, Moon Gi
2016-05-18
A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors.
Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition
Park, Chulhee; Kang, Moon Gi
2016-01-01
A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors. PMID:27213381
Component having cooling channel with hourglass cross section
Campbell, Christian X; Lee, Ching-Pang
2015-04-28
A cooling channel (36, 36B, 63-66) cools inner surfaces (48, 50) of exterior walls (41, 43) of a component (20, 60). Interior side surfaces (52, 54) of the channel converge to a waist (W2), forming an hourglass shaped transverse profile (46). The inner surfaces (48, 50) may have fins (44) aligned with the coolant flow (22). The fins may have a transverse profile (56A, 56B) highest at mid-width of the inner surfaces (48, 50). Turbulators (92) may be provided on the side surfaces (52, 54) of the channel, and may urge the coolant flow toward the inner surfaces (48, 50). Each turbulator (92) may have a peak (97) that defines the waist of the cooling channel. Each turbulator may have a convex upstream side (93). These elements increase coolant flow in the corners (C) of the channel to more uniformly and efficiently cool the exterior walls (41, 43).
Channel Model Optimization with Reflection Residual Component for Indoor MIMO-VLC System
NASA Astrophysics Data System (ADS)
Chen, Yong; Li, Tengfei; Liu, Huanlin; Li, Yichao
2017-12-01
A fast channel modeling method is studied to solve the problem of reflection channel gain for multiple input multiple output-visible light communications (MIMO-VLC) in the paper. For reducing the computational complexity when associating with the reflection times, no more than 3 reflections are taken into consideration in VLC. We think that higher order reflection link consists of corresponding many times line of sight link and firstly present reflection residual component to characterize higher reflection (more than 2 reflections). We perform computer simulation results for point-to-point channel impulse response, receiving optical power and receiving signal to noise ratio. Based on theoretical analysis and simulation results, the proposed method can effectively reduce the computational complexity of higher order reflection in channel modeling.
Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug
2011-08-01
A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.
Intelligent Systems for Self-Healing Electronics
NASA Technical Reports Server (NTRS)
Latino, Carl D.
2001-01-01
For long duration missions it is imperative to be able to monitor and record critical information. The data acquisition systems used must therefore be fault tolerant. This usually meant having redundant copies of critical channels. Since each channel usually consists of various components, the parts count, cost, weight and complexity of the system could be very high. The Advanced Data Acquisition System (ADAS) has been developed as a proof of concept. The purpose was to demonstrate an architecture where individual spare parts can replace defective ones to repair a channel. By so doing entire channels do not need replication. This reduces the need of total redundancy and reduces the parts count. This has the added feature that in addition to spare parts, good components of a failed channel can be used as spares in another channel. In addition to reducing parts count and cost, this configuration, with an intelligent decision maker, can improve the reliability of the overall system. Another unique feature of ADAS is that it uses reconfigurable analog filters. These components can be programmed, by the smart system to meet the specific needs of the part they are to replace. This way one part can serve as spare for many different components. The hardware was built and now serves as a platform for developing intelligent algorithms. Another related project was a wireless data acquisition system. I was invited to participate in the meetings and issue suggestions. A brief description of this system will also be included.
NASA Astrophysics Data System (ADS)
Kolmasova, I.; Santolik, O.; Defer, E.; Stéphane, P.; Lan, R.; Uhlir, L.; Coquillat, S.; Lambert, D.; Pinty, J. P.; Prieur, S.
2016-12-01
Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.
Miniaturized Ka-Band Dual-Channel Radar
NASA Technical Reports Server (NTRS)
Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian
2011-01-01
Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.
Level-1C Product from AIRS: Principal Component Filtering
NASA Technical Reports Server (NTRS)
Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott
2012-01-01
The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.
NASA Technical Reports Server (NTRS)
St. John, Clint; Ratnayake, Nalin A.; Frederick, Mike
2012-01-01
The presentation describes supersonic flight testing accomplished on a novel mixed-compression axisymmetric inlet utilizing channels for off-design flow matching rather than a translating centerbody concept.
NASA Technical Reports Server (NTRS)
SaintJohn, Clint; Ratnayake, Nalin; Frederick, Mike
2012-01-01
The presentation describes supersonic flight testing accomplished on a novel mixed compression axisymmetric inlet utilizing channels for off design flow matching rather than a translating centerbody concept.
NASA Astrophysics Data System (ADS)
Hooshyar, Milad; Wang, Dingbao; Kim, Seoyoung; Medeiros, Stephen C.; Hagen, Scott C.
2016-10-01
A method for automatic extraction of valley and channel networks from high-resolution digital elevation models (DEMs) is presented. This method utilizes both positive (i.e., convergent topography) and negative (i.e., divergent topography) curvature to delineate the valley network. The valley and ridge skeletons are extracted using the pixels' curvature and the local terrain conditions. The valley network is generated by checking the terrain for the existence of at least one ridge between two intersecting valleys. The transition from unchannelized to channelized sections (i.e., channel head) in each first-order valley tributary is identified independently by categorizing the corresponding contours using an unsupervised approach based on k-means clustering. The method does not require a spatially constant channel initiation threshold (e.g., curvature or contributing area). Moreover, instead of a point attribute (e.g., curvature), the proposed clustering method utilizes the shape of contours, which reflects the entire cross-sectional profile including possible banks. The method was applied to three catchments: Indian Creek and Mid Bailey Run in Ohio and Feather River in California. The accuracy of channel head extraction from the proposed method is comparable to state-of-the-art channel extraction methods.
Validity of the Electrodiffusion Model for Calculating Conductance of Simple Ion Channels.
Pohorille, Andrew; Wilson, Michael A; Wei, Chenyu
2017-04-20
We examine the validity and utility of the electrodiffusion (ED) equation, i.e., the generalized Nernst-Planck equation, to characterize, in combination with molecular dynamics, the electrophysiological behavior of simple ion channels. As models, we consider three systems-two naturally occurring channels formed by α-helical bundles of peptaibols, trichotoxin, and alamethicin, and a synthetic, hexameric channel, formed by a peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. Starting with equilibrium properties, such as the potential of mean force experienced by an ion traversing the channel and diffusivity, obtained from molecular dynamics simulations, the ED equation can be used to determine the full current-voltage dependence with modest or no additional effort. The potential of mean force can be obtained not only from equilibrium simulations, but also, with comparable accuracy, from nonequilibrium simulations at a single voltage. The main assumptions underlying the ED equation appear to hold well for the channels and voltages studied here. To expand the utility of the ED equation, we examine what are the necessary and sufficient conditions for Ohmic and nonrectifying behavior and relate deviations from this behavior to the shape of the ionic potential of mean force.
30 CFR 942.817 - Performance standards-Underground mining activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) Channel lining shall be designed using standards engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 817.46(c)(1)(ii)(A) of this chapter, sedimentation ponds shall provide a...
30 CFR 942.816 - Performance standards-Surface mining activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (1) Channel lining shall be designed using standard engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 816.46(c)(1)(iii)(A) of this chapter, sedimentation ponds shall provide a...
30 CFR 942.817 - Performance standards-Underground mining activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (1) Channel lining shall be designed using standards engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 817.46(c)(1)(ii)(A) of this chapter, sedimentation ponds shall provide a...
30 CFR 942.816 - Performance standards-Surface mining activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) Channel lining shall be designed using standard engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 816.46(c)(1)(iii)(A) of this chapter, sedimentation ponds shall provide a...
Cooling arrangement for a gas turbine component
Lee, Ching-Pang; Heneveld, Benjamin E
2015-02-10
A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.
Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism
NASA Astrophysics Data System (ADS)
Jiang, Rubin; Qie, Xiushu; Yang, Jing; Wang, Caixia; Zhao, Yang
2013-09-01
The current and electric field pulses associated with M-component following dart leader-return stroke sequences in negative rocket-triggered lightning flashes were analyzed in detail by using the data from Shandong Artificially Triggering Lightning Experiment, conducted from 2005 to 2010. For 63 M-components with current waveforms superimposed on the relatively steady continuing current, the geometric mean values of the peak current, duration, and charge transfer were 276 A, 1.21 ms, and 101 mC, respectively. The behaviors of the channel base current versus close electric field changes and the observation facts by different authors were carefully examined for investigation on mechanism of the M-component. A modified model based on Rakov's "two-wave" theory is proposed and confirms that the evolution of M-component through the lightning channel involves a downward wave transferring negative charge from the upper to the lower channel and an upward wave draining the charge transported by the downward wave. The upward wave serves to deplete the negative charge by the downward wave at its interface and makes the charge density of the channel beneath the interface layer to be roughly zero. Such modified concept is recognized to be reasonable by the simulated results showing a good agreement between the calculated and the measured E-field waveforms.
The ISS 2B PVTCS Ammonia Leak: An Operational History
NASA Technical Reports Server (NTRS)
Vareha, Anthony
2014-01-01
In 2006, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B power channel began leaking ammonia at a rate of approximately 1.5lbm/year (out of a starting approximately 53lbm system ammonia mass). Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity during the STS-134 mission. During this mission the system was topped off with ammonia piped over from a separate thermal control system. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. Without these periodic EVAs to refill the 2B coolant system, the channel would eventually leak enough fluid as to risk pump cavitation and system failure, resulting in the loss of the 2B power channel - the most critical of the Space Station's 8 power channels. In mid-2012, the leak rate increased to approximately 5lbm/year. Once discovered, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to a dormant thermal control system not intended to be utilized as anything other than spare components. The purpose of this rerouting of the TCS was to increase system volume and to isolate the photovoltaic radiator, thought to be the likely leak source. This EVA was successfully executed on November 1st, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a totally different radiator than what the system was designed to utilize. Unfortunately, data monitoring over the next several months showed that the isolated radiator was not leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the crew noticing the leak, an EVA was in progress to replace the coolant pump - the only other replaceable leak source. This paper will explore the management of the 2B PVTCS leak from the operations perspective. It will discuss the methodology of performing the STS-134 refill, the considerations and contingency plans which went into the architectural overhaul of the system in 2012, and the unprecedented effort which went into the EVA response to the visible leak of May 2013. In particular the paper will focus on the techniques utilized by flight controllers to monitor the system health and to respond to such instances as the rapid May 2013 leak by putting the electrical system in a safe configuration for loss of cooling, and will use recorded telemetry of these events to describe system response to EVA crew and ground actions. It will discuss the innovative design for redundancy of the integrated truss structure's cooling systems which allowed for this leak to be managed with minimal impact to other ISS operations and electrical services, contrasted against the real unintended operations consequences of utilizing the flexibility of the spacecraft's design in this manner. The paper will discuss how the training of the crew and flight controller personnel has adapted to the changing architecture of the power system and the unpredictable nature of the 2B leak.
Study on fabrication technology of silicon-based silica array waveguide grating
NASA Astrophysics Data System (ADS)
Sun, Yanjun; Dong, Lianhe; Leng, Yanbing
2009-05-01
Array waveguide grating (AWG) is an important plane optical element in dense wavelength division multiplex/demultiplex system. There are many virtue, channel quantity larger,lower loss, lower crosstalk, size smaller and high reliability etc. This article describs AWG fabrication technics utilizing IC(Integrated Circles) techniques, based on sixteen channel Silicon-Based Silica Array Waveguide Grating, put emphasis on discussing doping and deposition of waveguide core film,technics theory and interrelated parameter condition of photoetch and ion etching. Experiment result indicates that it depens on electrode structure, energy of radio-frequency electrode gas component, pressure ,flowing speed and substrate temperature by CVD depositing film .During depositing waveguide film by PE-CVD, the silicon is not reacted, When temperature becomes lower,it is reacted and it is easy to realize the control of film thickness and time with a result of film thickness uniformity reaching about 4% after optimizing deposition parameter and condition. We get the result of high etching speed rate, outline zoom, and side frame smooth by photoresist/Cr multiple mask and optimizing etching technics.
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
NASA Astrophysics Data System (ADS)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-01
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.
Novel on-demand droplet generation for selective fluid sample extraction
Lin, Robert; Fisher, Jeffery S.; Simon, Melinda G.; Lee, Abraham P.
2012-01-01
A novel microfluidic device enabling selective generation of droplets and encapsulation of targets is presented. Unlike conventional methods, the presented mechanism generates droplets with unique selectivity by utilizing a K-junction design. The K-junction is a modified version of the classic T-junction with an added leg that serves as the exit channel for waste. The dispersed phase fluid enters from one diagonal of the K and exits the other diagonal while the continuous phase travels in the straight leg of the K. The intersection forms an interface that allows the dispersed phase to be controllably injected through actuation of an elastomer membrane located above the inlet channel near the interface. We have characterized two critical components in controlling the droplet size—membrane actuation pressure and timing as well as identified the region of fluid in which the droplet will be formed. This scheme will have applications in fluid sampling processes and selective encapsulation of materials. Selective encapsulation of a single cell from the dispersed phase fluid is demonstrated as an example of functionality of this design. PMID:22655015
Active superconducting devices formed of thin films
Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.
1991-05-28
Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-04
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arraysmore » of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.« less
The international fine aerosol networks
NASA Astrophysics Data System (ADS)
Cahill, Thomas A.
1993-04-01
The adoption by the United States of a PIXE-based protocol for its fine aerosol network, after open competitions involving numerous laboratories and methods, has encouraged cooperation with other countries possessing similar capabilities and similar needs. These informal cooperative programs, involving about a dozen countries at the end of 1991, almost all use PIXE as a major component of the analytical protocols. The University of California, Davis, Air Quality Group assisted such programs through indefinite loans of a quality assurance sampler, the IMPROVE Channel A, and analyses at no cost of a small fraction of the samples taken in a side-by-side configuration. In December 1991, the World Meteorological Organization chose a protocol essentially identical to IMPROVE for the Global Atmospheric Watch (GAW) network and began deploying units, the IMPROVE Channel A, to sites around the world. Preferred analyses include fine (less than about 2.5 μm) mass, ions by ion chromatography and elements by PIXE + PESA (or, lacking that, XRF). This paper will describe progress in both programs, giving examples of the utility of the data and projecting the future expansion of the network to about 20 GAW sites by 1994.
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong
2018-01-01
In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.
Reliable video transmission over fading channels via channel state estimation
NASA Astrophysics Data System (ADS)
Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay
2000-04-01
Transmission of continuous media such as video over time- varying wireless communication channels can benefit from the use of adaptation techniques in both source and channel coding. An adaptive feedback-based wireless video transmission scheme is investigated in this research with special emphasis on feedback-based adaptation. To be more specific, an interactive adaptive transmission scheme is developed by letting the receiver estimate the channel state information and send it back to the transmitter. By utilizing the feedback information, the transmitter is capable of adapting the level of protection by changing the flexible RCPC (rate-compatible punctured convolutional) code ratio depending on the instantaneous channel condition. The wireless channel is modeled as a fading channel, where the long-term and short- term fading effects are modeled as the log-normal fading and the Rayleigh flat fading, respectively. Then, its state (mainly the long term fading portion) is tracked and predicted by using an adaptive LMS (least mean squares) algorithm. By utilizing the delayed feedback on the channel condition, the adaptation performance of the proposed scheme is first evaluated in terms of the error probability and the throughput. It is then extended to incorporate variable size packets of ITU-T H.263+ video with the error resilience option. Finally, the end-to-end performance of wireless video transmission is compared against several non-adaptive protection schemes.
Implications of two-component dark matter induced by forbidden channels and thermal freeze-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@tum.de
2017-01-01
We consider a model of two-component dark matter based on a hidden U(1) {sub D} symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden U(1) {sub D} symmetry is spontaneously broken to a residual Z{sub 4} symmetry, and the lightest Z{sub 4} charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared tomore » the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of ΛCDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore detectabilities of these dark matter particles and show some parameter space can be tested by the SHiP experiment.« less
NASA Astrophysics Data System (ADS)
Boev, Ivan Krasimirov
In the present PhD work, three sophisticated models based on the "Engineering" modeling approach have been utilized to conveniently describe and thoroughly analyze details of Lightning events at the CN Tower. Both the CN Tower and the Lightning Channel are represented by a number of connected in series Transmission Line sections in order to account for the variations in the shape of the tower and for plasma processes that take place within the Lightning Channel. A sum of two Heidler functions is used to describe the "uncontaminated" Return Stroke current, which is injected at the attachment point between the CN Tower and the Lightning Channel. Reflections and refractions at all points of mismatched impedances are considered until their contribution becomes less than 1% of the originally injected current wave. In the proposed models, the problem with the current discontinuity at the Lightning Channel front, commonly taken care of by introducing a "turn-on" term when computing radiation fields, is uniquely treated by introducing reflected and transmitted components. For the first time, variable speed of propagation of the Return Stroke current front has been considered and its influence upon the predicted current distributions along the whole Lightning Channel path and upon the radiated distant fields analyzed. Furthermore, as another novelty, computation of the electromagnetic field is accomplished in Cartesian Coordinates. This fact permits to relax the requirement on the verticality of the Lightning Channel, normally imposed in Cylindrical Coordinates. Therefore, it becomes possible to study without difficulty the influence of a slanted Lightning Channel upon the surrounding electromagnetic field. Since the proposed sophisticated Five-Section Model has the capability to represent very closely the structure of the CN Tower and to emulate faithfully the shape of, as well as physical processes within the Lightning Channel, it is believed to have the potential of truthfully reproducing observed fields. The developed modeling approach can be easily adapted to study the anticipated radiated fields at tall structures even before construction.
Channel modeling, signal processing and coding for perpendicular magnetic recording
NASA Astrophysics Data System (ADS)
Wu, Zheng
With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple write precompensation scheme. Soft-decision decoding for algebraic codes can improve performance for magnetic recording systems. In this dissertation, we propose two soft-decision decoding methods for tensor-product parity codes. We also present a list decoding algorithm for generalized error locating codes.
Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2
Telezhkin, Vsevolod; Brown, David A.
2012-01-01
Low-threshold voltage-gated M-type potassium channels (M channels) are tetraheteromers, commonly of two Kv7.2 and two Kv7.3 subunits. Though gated by voltage, the channels have an absolute requirement for binding of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to open. We have investigated the quantitative relation between the concentration of a water-soluble PI(4,5)P2 analog, dioctanoyl-PI(4,5)P2 (DiC8-PI(4,5)P2), and channel open probability (Popen) by fast application of increasing concentrations of DiC8-PI(4,5)P2 to the inside face of membrane patches excised from Chinese hamster ovary cells expressing M channels as heteromeric Kv7.2/7.3 subunits. The rationale for the experiments is that this will mimic the effect of changes in membrane PI(4,5)P2 concentration. Single-channel conductances from channel current–voltage relations in cell-attached mode were 9.2 ± 0.1 pS with a 2.5-mM pipette [K+]. Plots of Popen against DiC8-PI(4,5)P2 concentration were best fitted using a two-component concentration–Popen relationship with high and low affinity, half-maximal effective concentration (EC50) values of 1.3 ± 0.14 and 75.5 ± 2.5 µM, respectively, and Hill slopes of 1.4 ± 0.06. In contrast, homomeric channels from cells expressing only Kv7.2 or Kv7.3 constructs yielded single-component curves with EC50 values of 76.2 ± 19.9 or 3.6 ± 1.0 µM, respectively. When wild-type (WT) Kv7.2 was coexpressed with a mutated Kv7.3 subunit with >100-fold reduced sensitivity to PI(4,5)P2, the high-affinity component of the activation curve was lost. Fitting the data for WT and mutant channels to an activation mechanism with independent PI(4,5)P2 binding to two Kv7.2 and two Kv7.3 subunits suggests that the two components of the M-channel activation curve correspond to the interaction of PI(4,5)P2 with the Kv7.3 and Kv7.2 subunits, respectively, that channels can open when only the two Kv7.3 subunits have bound DiC8-PI(4,5)P2, and that maximum channel opening requires binding to all four subunits. PMID:22689829
Utilization of Palm Oil Clinker as Cement Replacement Material
Kanadasan, Jegathish; Abdul Razak, Hashim
2015-01-01
The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized. PMID:28793748
Utilization of Palm Oil Clinker as Cement Replacement Material.
Kanadasan, Jegathish; Abdul Razak, Hashim
2015-12-16
The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.
Progressive video coding for noisy channels
NASA Astrophysics Data System (ADS)
Kim, Beong-Jo; Xiong, Zixiang; Pearlman, William A.
1998-10-01
We extend the work of Sherwood and Zeger to progressive video coding for noisy channels. By utilizing a 3D extension of the set partitioning in hierarchical trees (SPIHT) algorithm, we cascade the resulting 3D SPIHT video coder with a rate-compatible punctured convolutional channel coder for transmission of video over a binary symmetric channel. Progressive coding is achieved by increasing the target rate of the 3D embedded SPIHT video coder as the channel condition improves. The performance of our proposed coding system is acceptable at low transmission rate and bad channel conditions. Its low complexity makes it suitable for emerging applications such as video over wireless channels.
Fast shut-down protection system for radio frequency breakdown and multipactor testing.
Graves, T P; Hanson, P; Michaelson, J M; Farkas, A D; Hubble, A A
2014-02-01
Radio frequency (RF) breakdown such as multipactor or ionization breakdown is a device-limiting phenomenon for on-orbit spacecraft used for communication, navigation, or other RF payloads. Ground testing is therefore part of the qualification process for all high power components used in these space systems. This paper illustrates a shut-down protection system to be incorporated into multipactor/ionization breakdown ground testing for susceptible RF devices. This 8 channel system allows simultaneous use of different diagnostic classes and different noise floors. With initiation of a breakdown event, diagnostic signals increase above a user-specified level, which then opens an RF switch to eliminate RF power from the high power amplifier. Examples of this system in use are shown for a typical setup, illustrating the reproducibility of breakdown threshold voltages and the lack of multipactor conditioning. This system can also be utilized to prevent excessive damage to RF components in tests with sensitive or flight hardware.
Learning immersion without getting wet
NASA Astrophysics Data System (ADS)
Aguilera, Julieta C.
2012-03-01
This paper describes the teaching of an immersive environments class on the Spring of 2011. The class had students from undergraduate as well as graduate art related majors. Their digital background and interests were also diverse. These variables were channeled as different approaches throughout the semester. Class components included fundamentals of stereoscopic computer graphics to explore spatial depth, 3D modeling and skeleton animation to in turn explore presence, exposure to formats like a stereo projection wall and dome environments to compare field of view across devices, and finally, interaction and tracking to explore issues of embodiment. All these components were supported by theoretical readings discussed in class. Guest artists presented their work in Virtual Reality, Dome Environments and other immersive formats. Museum professionals also introduced students to space science visualizations, which utilize immersive formats. Here I present the assignments and their outcome, together with insights as to how the creation of immersive environments can be learned through constraints that expose students to situations of embodied cognition.
NASA Astrophysics Data System (ADS)
Vista Wulandari, Ayu; Rizki Pratama, Khafid; Ismail, Prayoga
2018-05-01
Accurate and realtime data in wide spatial space at this time is still a problem because of the unavailability of observation of rainfall in each region. Weather satellites have a very wide range of observations and can be used to determine rainfall variability with better resolution compared with a limited direct observation. Utilization of Himawari-8 satellite data in estimating rainfall using Convective Stratiform Technique (CST) method. The CST method is performed by separating convective and stratiform cloud components using infrared channel satellite data. Cloud components are classified by slope because the physical and dynamic growth processes are very different. This research was conducted in Bali area on December 14, 2016 by verifying the result of CST process with rainfall data from Ngurah Rai Meteorology Station Bali. It is found that CST method result had simililar value with data observation in Ngurah Rai meteorological station, so it assumed that CST method can be used for rainfall estimation in Bali region.
Hill, M P; Brotchie, J M
1999-01-01
The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by κ-opioid receptor activation and blockade of voltage-dependent Ca2+-channels has been investigated in synaptosomes prepared from rat and marmoset striatum.4-Aminopyridine (4-AP)-stimulated, Ca2+-dependent glutamate release was inhibited by enadoline, a selective κ-opioid receptor agonist, in a concentration-dependent and nor-binaltorphimine (nor-BNI, selective κ-opioid receptor antagonist)-sensitive manner in rat (IC50=4.4±0.4 μM) and marmoset (IC50=2.9±0.7 μM) striatal synaptosomes. However, in the marmoset, there was a significant (≈23%) nor-BNI-insensitive component.In rat striatal synaptosomes, the Ca2+-channel antagonists ω-agatoxin-IVA (P/Q-type blocker), ω-conotoxin-MVIIC (N/P/Q-type blocker) and ω-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+-dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5±0.9 nM, 75.5±5.9 nM and 106.5±8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+-dependent glutamate release was significantly inhibited by ω-agatoxin-IVA (30 nM, 57.6±2.3%, inhibition), ω-conotoxin-MVIIC (300 nM, 57.8±3.1%) and ω-conotoxin-GVIA (1 μM, 56.7±2%).Studies utilizing combinations of Ca2+-channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+-channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+-channel activation.Studies using combinations of enadoline and the Ca2+-channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+-influx through P-type Ca2+-channels in the rat but via N-type Ca2+-channels in the marmoset.In conclusion, the results presented suggest that there are species differences in the control of glutamate release by κ-opioid receptors and Ca2+-channels. PMID:10369483
Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.
2009-01-01
A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.
Evaluation of distributed gas cooling of pressurized PAFC for utility power generation
NASA Technical Reports Server (NTRS)
Farooque, M.; Maru, H.; Skok, A.
1981-01-01
Two short stacks were pressure tested at 446 kPa (4.4 atm.) and the pressure gains were more than the theoretically predicted gains. Temperature profiles were observed to be independent of operating pressure. The pressure drop was found to be inversely proportional to operating pressure as expected. Continuous pressurized operation of a stack for 1000 hours verified the compatability of the fuel cell component design. A simple pressurization procedure was also developed. Six separate designs, covering two gas cooling schemes (DIGAS and separated) and two cooling channel geometries (straight through and treed), were analysed on the net voltage output basis. Separated cooling with 5 cells per cooler was recognized to be the best among the designs considered.
Moyer, Robert D.
1985-01-01
A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.
Analysis of background irradiation in thermal IR hyper-spectral imaging systems
NASA Astrophysics Data System (ADS)
Xu, Weiming; Yuan, Liyin; Lin, Ying; He, Zhiping; Shu, Rong; Wang, Jianyu
2010-04-01
Our group designed a thermal IR hyper-spectral imaging system in this paper mounted in a vacuum encapsulated cavity with temperature controlling equipments. The spectral resolution is 80 nm; the spatial resolution is 1.0 mrad; the spectral channels are 32. By comparing and verifying the theoretical simulated calculation and experimental results for this system, we obtained the precise relationship between the temperature and background irradiation of optical and mechanical structures, and found the most significant components in the optic path for improving imaging quality that should be traded especially, also we had a conclusion that it should cool the imaging optics and structures to about 100K if we need utilize the full dynamic range and capture high quality of imagery.
Moyer, R.D.
A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.
Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors
NASA Technical Reports Server (NTRS)
Crowe, E.; Bennett, C. L.; Chuss, D. T.; Denis, K. L.; Eimer, J.; Lourie, N.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.;
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK.
Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.
Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre
2014-06-15
We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.
Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.
2012-01-01
The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel
2009-04-07
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
NASA Technical Reports Server (NTRS)
Parada, N. D. J.; Novo, E. M. L. M.
1983-01-01
Two sets of MSS/LANDSAT data with solar elevation ranging from 22 deg to 41 deg were used at the Image-100 System to implement the Eliason et alii technique for extracting the topographic modulation component. An unsupervised cluster analysis was used to obtain an average brightness image for each channel. Analysis of the enhanced imaged shows that the technique for extracting topographic modulation component is more appropriated to MSS data obtained under high sun elevation ngles. Low sun elevation increases the variance of each cluster so that the average brightness doesn't represent its albedo proprties. The topographic modulation component applied to low sun elevation angle damages rather than enhance topographic information. Better results were produced for channels 4 and 5 than for channels 6 and 7.
Duan, X; Giddings, R P; Bolea, M; Ling, Y; Cao, B; Mansoor, S; Tang, J M
2014-08-11
Real-time optical OFDM (OOFDM) transceivers with on-line software-controllable channel reconfigurability and transmission performance adaptability are experimentally demonstrated, for the first time, utilizing Hilbert-pair-based 32-tap digital orthogonal filters implemented in FPGAs. By making use of an 8-bit DAC/ADC operating at 2GS/s, an oversampling factor of 2 and an EML intensity modulator, the demonstrated RF conversion-free transceiver supports end-to-end real-time simultaneous adaptive transmissions, within a 1GHz signal spectrum region, of a 2.03Gb/s in-phase OOFDM channel and a 1.41Gb/s quadrature-phase OOFDM channel over a 25km SSMF IMDD system. In addition, detailed experimental explorations are also undertaken of key physical mechanisms limiting the maximum achievable transmission performance, impacts of transceiver's channel multiplexing/demultiplexing operations on the system BER performance, and the feasibility of utilizing adaptive modulation to combat impairments associated with low-complexity digital filter designs. Furthermore, experimental results indicate that the transceiver incorporating a fixed digital orthogonal filter DSP architecture can be made transparent to various signal modulation formats up to 64-QAM.
Systematic study of anharmonic features in a principal component analysis of gramicidin A.
Kurylowicz, Martin; Yu, Ching-Hsing; Pomès, Régis
2010-02-03
We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Namkung, Wan; Thiagarajah, Jay R.; Phuan, Puay-Wah; Verkman, A. S.
2010-01-01
TMEM16A was found recently to be a calcium-activated Cl− channel (CaCC). CaCCs perform important functions in cell physiology, including regulation of epithelial secretion, cardiac and neuronal excitability, and smooth muscle contraction. CaCC modulators are of potential utility for treatment of hypertension, diarrhea, and cystic fibrosis. Screening of drug and natural product collections identified tannic acid as an inhibitor of TMEM16A, with IC50 ∼ 6 μM and ∼100% inhibition at higher concentrations. Tannic acid inhibited CaCCs in multiple cell types but did not affect CFTR Cl− channels. Structure-activity analysis indicated the requirement of gallic or digallic acid substituents on a macromolecular scaffold (gallotannins), as are present in green tea and red wine. Other polyphenolic components of teas and wines, including epicatechin, catechin, and malvidin-3-glucoside, poorly inhibited CaCCs. Remarkably, a 1000-fold dilution of red wine and 100-fold dilution of green tea inhibited CaCCs by >50%. Tannic acid, red wine, and green tea inhibited arterial smooth muscle contraction and intestinal Cl− secretion. Gallotannins are thus potent CaCC inhibitors whose biological activity provides a potential molecular basis for the cardioprotective and antisecretory benefits of red wine and green tea.—Namkung, W., Thiagarajah, J. R., Phuan, P.-W., Verkman, A. S. Inhibition of Ca2+-activated Cl− channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. PMID:20581223
Sochol, Ryan D; Lu, Albert; Lei, Jonathan; Iwai, Kosuke; Lee, Luke P; Lin, Liwei
2014-05-07
Self-regulating fluidic components are critical to the advancement of microfluidic processors for chemical and biological applications, such as sample preparation on chip, point-of-care molecular diagnostics, and implantable drug delivery devices. Although researchers have developed a wide range of components to enable flow rectification in fluidic systems, engineering microfluidic diodes that function at the low Reynolds number (Re) flows and smaller scales of emerging micro/nanofluidic platforms has remained a considerable challenge. Recently, researchers have demonstrated microfluidic diodes that utilize high numbers of suspended microbeads as dynamic resistive elements; however, using spherical particles to block fluid flow through rectangular microchannels is inherently limited. To overcome this issue, here we present a single-layer microfluidic bead-based diode (18 μm in height) that uses a targeted circular-shaped microchannel for the docking of a single microbead (15 μm in diameter) to rectify fluid flow under low Re conditions. Three-dimensional simulations and experimental results revealed that adjusting the docking channel geometry and size to better match the suspended microbead greatly increased the diodicity (Di) performance. Arraying multiple bead-based diodes in parallel was found to adversely affect system efficacy, while arraying multiple diodes in series was observed to enhance device performance. In particular, systems consisting of four microfluidic bead-based diodes with targeted circular-shaped docking channels in series revealed average Di's ranging from 2.72 ± 0.41 to 10.21 ± 1.53 corresponding to Re varying from 0.1 to 0.6.
Electrogenesis in the lower Metazoa and implications for neuronal integration
Meech, Robert W.
2015-01-01
Electrogenic communication appears to have evolved independently in a variety of animal and plant lineages. Considered here are metazoan cells as disparate as the loose three-dimensional parenchyma of glass sponges, the two-dimensional epithelial sheets of hydrozoan jellyfish and the egg cell membranes of the ctenophore Beroe ovata, all of which are capable of generating electrical impulses. Neuronal electrogenesis may have evolved independently in ctenophores and cnidarians but the dearth of electrophysiological data relating to ctenophore nerves means that our attention is focused on the Cnidaria, whose nervous systems have been the subject of extensive study. The aim here is to show how their active and passive neuronal properties interact to give integrated behaviour. Neuronal electrogenesis, goes beyond simply relaying ‘states of excitement’ and utilizes the equivalent of a set of basic electrical ‘apps’ to integrate incoming sensory information with internally generated pacemaker activity. A small number of membrane-based processes make up these analogue applications. Passive components include the decremental spread of current determined by cellular anatomy; active components include ion channels specified by their selectivity and voltage dependence. A recurring theme is the role of inactivating potassium channels in regulating performance. Although different aspects of cnidarian behaviour are controlled by separate neuronal systems, integrated responses and coordinated movements depend on interactions between them. Integrative interactions discussed here include those between feeding and swimming, between tentacle contraction and swimming and between slow and fast swimming in the hydrozoan jellyfish Aglantha digitale. PMID:25696817
Characteristics of a Nonvolatile SRAM Memory Cell Utilizing a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.
2011-01-01
The SRAM cell circuit is a standard for volatile data storage. When utilizing one or more ferroelectric transistors, the hysteresis characteristics give unique properties to the SRAM circuit, providing for investigation into the development of a nonvolatile memory cell. This paper discusses various formations of the SRAM circuit, using ferroelectric transistors, n-channel and p-channel MOSFETs, and resistive loads. With varied source and supply voltages, the effects on the timing and retention characteristics are investigated, including retention times of up to 24 hours.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... the quality, utility, and clarity of the information collected; (d) ways to minimize the burden of the... kilometers of a TV channel 7 transmitter to ensure that the system does not cause interference to TV channel 7 viewers. Applicants shall serve a copy of the analysis to the licensee of the affected TV Channel...
Robust Models for Operator Workload Estimation
2015-03-01
piloted aircraft (RPA) simultaneously, a vast improvement in resource utilization compared to existing operations that require several operators per...into distinct cognitive channels (visual, auditory, spatial, etc.) based on our ability to multitask effectively as long as no one channel is
Channel coding in the space station data system network
NASA Technical Reports Server (NTRS)
Healy, T.
1982-01-01
A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.
Hanck, Dorothy A; Nikitina, Elena; McNulty, Megan M; Fozzard, Harry A; Lipkind, Gregory M; Sheets, Michael F
2009-08-28
Lidocaine and other antiarrhythmic drugs bind in the inner pore of voltage-gated Na channels and affect gating use-dependently. A phenylalanine in domain IV, S6 (Phe1759 in Na(V)1.5), modeled to face the inner pore just below the selectivity filter, is critical in use-dependent drug block. Measurement of gating currents and concentration-dependent availability curves to determine the role of Phe1759 in coupling of drug binding to the gating changes. The measurements showed that replacement of Phe1759 with a nonaromatic residue permits clear separation of action of lidocaine and benzocaine into 2 components that can be related to channel conformations. One component represents the drug acting as a voltage-independent, low-affinity blocker of closed channels (designated as lipophilic block), and the second represents high-affinity, voltage-dependent block of open/inactivated channels linked to stabilization of the S4s in domains III and IV (designated as voltage-sensor inhibition) by Phe1759. A homology model for how lidocaine and benzocaine bind in the closed and open/inactivated channel conformation is proposed. These 2 components, lipophilic block and voltage-sensor inhibition, can explain the differences in estimates between tonic and open-state/inactivated-state affinities, and they identify how differences in affinity for the 2 binding conformations can control use-dependence, the hallmark of successful antiarrhythmic drugs.
Evaluation of habitat quality for selected wildlife species associated with back channels.
Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry
2013-01-01
The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.
Google Hangouts: Leveraging Social Media to Reach the Education Community
NASA Astrophysics Data System (ADS)
Eisenhamer, Bonnie; Summers, Frank; McCallister, Dan; Ryer, Holly
2015-01-01
Research shows that educator professional development is most effective when it is sustained and/or when a follow-on component is included to support the learning process. In order to create more comprehensive learning experiences for our workshop participants, the education team at the Space Telescope Science Institute is working collaboratively with scientific staff and other experts to create a follow-on component for our professional development program. The new component utilizes video conferencing platforms, such as Google's Hangouts On Air, to provide educators with content updates and extended learning opportunities in between in-person professional development experiences. The goal is to enhance our professional development program in a cost-effective way while reaching a greater cross-section of educators. Video broadcasts go live on Google+, YouTube, and our website - thus providing access to any user with a web browser. Additionally, the broadcasts are automatically recorded and archived for future viewing on our YouTube channel. This provides educators with anywhere, anytime training that best suits their needs and schedules. This poster will highlight our new Hangouts for educators as well as our cross-departmental efforts to expand the reach of our Hubble Hangouts for the public through a targeted recruitment strategy.
Contribution of the AIRS Shortwave Sounding Channels to Retrieval Accuracy
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis
2006-01-01
AIRS contains 2376 high spectral resolution channels between 650/cm and 2665/cm, including channels in both the 15 micron (near 667/cm) and 4.2 micron (near 2400/cm) COP sounding bands. Use of temperature sounding channels in the 15 micron CO2 band has considerable heritage in infra-red remote sensing. Channels in the 4.2 micron CO2 band have potential advantages for temperature sounding purposes because they are essentially insensitive to absorption by water vapor and ozone, and also have considerably sharper lower tropospheric temperature sounding weighting functions than do the 15 micron temperature sounding channels. Potential drawbacks with regard to use of 4.2 micron channels arise from effects on the observed radiances of solar radiation reflected by the surface and clouds, as well as effects of non-local thermodynamic equilibrium on shortwave observations during the day. These are of no practical consequences, however, when properly accounted for. We show results of experiments performed utilizing different spectral regions of AIRS, conducted with the AIRS Science Team candidate Version 5 algorithm. Experiments were performed using temperature sounding channels within the entire AIRS spectral coverage, within only the spectral region 650/cm to 1614 /cm; and within only the spectral region 1000/cm-2665/cm. These show the relative importance of utilizing only 15 micron temperature sounding channels, only the 4.2 micron temperature sounding channels, and both, with regards to sounding accuracy. The spectral region 2380/cm to 2400/cm is shown to contribute significantly to improve sounding accuracy in the lower troposphere, both day and night.
Active parallel redundancy for electronic integrator-type control circuits
NASA Technical Reports Server (NTRS)
Peterson, R. A.
1971-01-01
Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.
47 CFR 101.521 - Spectrum utilization.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spectrum utilization. 101.521 Section 101.521... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.521 Spectrum utilization. All... contain detailed descriptions of the modulation method, the channel time sharing method, any error...
A robust functional-data-analysis method for data recovery in multichannel sensor systems.
Sun, Jian; Liao, Haitao; Upadhyaya, Belle R
2014-08-01
Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.
Hulvey, Matthew K; Martin, R. Scott
2010-01-01
This paper describes the fabrication and characterization of a microfluidic device that utilizes a reservoir-based approach for endothelial cell immobilization and integrated embedded carbon ink microelectrodes for the amperometric detection of extracellular nitric oxide (NO) release. The design utilizes a buffer channel to continuously introduce buffer or a plug of stimulant to the reservoir as well as a separate sampling channel that constantly withdraws buffer from the reservoir and over the microelectrode. A steel pin is used for both the fluidic connection to the sampling channel and to provide a quasi-reference electrode for the carbon ink microelectrode. Characterization of the device was performed using NO standards produced from a NONOate salt. Finally, NO release from a layer of immobilized endothelial cells was monitored and quantified using the system. This system holds promise as a means to electrochemically detect extracellular NO release from endothelial cells in either an array of reservoirs or concurrently with fluorescence-based intracellular NO measurements. PMID:18989663
Lang, Alexander E; Neumeyer, Tobias; Sun, Jianjun; Collier, R John; Benz, Roland; Aktories, Klaus
2008-08-12
The actin-ADP-ribosylating Clostridium botulinum C2 toxin consists of the enzymatic component C2I and the binding component C2II. C2II forms heptameric channels involved in translocation of the enzymatic component into the target cell. On the basis of the heptameric toxin channel, we studied functional consequences of mutagenesis of amino acid residues probably lining the lumen of the toxin channel. Substitution of glutamate-399 of C2II with alanine blocked channel formation and cytotoxicity of the holotoxin. Although cytotoxicity and rounding up of cells by C2I were completely blocked by exchange of phenylalanine-428 with alanine, the mutation increased potassium conductance caused by C2II in artificial membranes by about 2-3-fold over that of wild-type toxin. In contrast to its effects on single-channel potassium conductance in artificial membranes, the F428A mutation delayed the kinetics of pore formation in lipid vesicles and inhibited the activity of C2II in promoting (86)Rb (+) release from preloaded intact cells after pH shift of the medium. Moreover, F428A C2II exhibited delayed and diminished formation of C2II aggregates at low pH, indicating major changes of the biophysical properties of the toxin. The data indicate that phenylalanine-428 of C2II plays a major role in conformational changes occurring during pore formation of the binding component of C2II.
Schottky barrier MOSFET systems and fabrication thereof
Welch, James D.
1997-01-01
(MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.
Schottky barrier MOSFET systems and fabrication thereof
Welch, J.D.
1997-09-02
(MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.
Guan, Dongxu; Horton, Leslie R.; Armstrong, William E.
2011-01-01
Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K+ channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K+ currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K+ current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3–5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4–5 wk of age. PMID:21451062
Guan, Dongxu; Horton, Leslie R; Armstrong, William E; Foehring, Robert C
2011-06-01
Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K(+) channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K(+) currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K(+) current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3-5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4-5 wk of age.
System for Processing Coded OFDM Under Doppler and Fading
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Darden, Scott; Lee, Dennis; Yan, Tsun-Yee
2005-01-01
An advanced communication system has been proposed for transmitting and receiving coded digital data conveyed as a form of quadrature amplitude modulation (QAM) on orthogonal frequency-division multiplexing (OFDM) signals in the presence of such adverse propagation-channel effects as large dynamic Doppler shifts and frequency-selective multipath fading. Such adverse channel effects are typical of data communications between mobile units or between mobile and stationary units (e.g., telemetric transmissions from aircraft to ground stations). The proposed system incorporates novel signal processing techniques intended to reduce the losses associated with adverse channel effects while maintaining compatibility with the high-speed physical layer specifications defined for wireless local area networks (LANs) as the standard 802.11a of the Institute of Electrical and Electronics Engineers (IEEE 802.11a). OFDM is a multi-carrier modulation technique that is widely used for wireless transmission of data in LANs and in metropolitan area networks (MANs). OFDM has been adopted in IEEE 802.11a and some other industry standards because it affords robust performance under frequency-selective fading. However, its intrinsic frequency-diversity feature is highly sensitive to synchronization errors; this sensitivity poses a challenge to preserve coherence between the component subcarriers of an OFDM system in order to avoid intercarrier interference in the presence of large dynamic Doppler shifts as well as frequency-selective fading. As a result, heretofore, the use of OFDM has been limited primarily to applications involving small or zero Doppler shifts. The proposed system includes a digital coherent OFDM communication system that would utilize enhanced 802.1la-compatible signal-processing algorithms to overcome effects of frequency-selective fading and large dynamic Doppler shifts. The overall transceiver design would implement a two-frequency-channel architecture (see figure) that would afford frequency diversity for reducing the adverse effects of multipath fading. By using parallel concatenated convolutional codes (also known as Turbo codes) across the dual-channel and advanced OFDM signal processing within each channel, the proposed system is intended to achieve at least an order of magnitude improvement in received signal-to-noise ratio under adverse channel effects while preserving spectral efficiency.
Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy
Bradley, David; Nisbet, Andrew
2014-01-01
The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple‐channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple‐channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation, film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single‐channel dosimetry. Triple‐channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple‐channel dosimetry separates dose and dose‐independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier‐like effects and to provide reliable dosimetric results. We have demonstrated that radiochromic film dosimetry with GAFCHROMIC EBT3 film and a commercial flatbed scanner is a viable method for brachytherapy dose distribution measurement, and uncertainties may be reduced with triple‐channel dosimetry and specific film scan and evaluation methodologies. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:25207417
NASA Technical Reports Server (NTRS)
Vermote, Eric F.; Vassiliou, George D.; Kaufman, Yoram J.; Holben, Brent N.
1992-01-01
An inflight absolute calibration method has been adapted and applied to channel 1 of the AVHRR. The approach is based on AVHRR observations in channels 1, 2 and 4. A rigorous cloud screening is performed, based on the homogeneity of the data in channel 1 and 2 and on the temperature in channel 4. In a combined approach, the off-nadir view satellite count in channel 2 is used to detect the aerosol optical thickness and loading and the count of channel 1 is used to calibrate this channel, based on the predictable Rayleigh scattering component. Water vapor data are used, and the channels are intercalibrated using the ratio between channels 1 and 2 over the glint region.
Effects of funnel web spider toxin on Ca2+ currents in neurohypophysial terminals.
Wang, G; Lemos, J R
1994-11-14
Funnel web spider toxin (FTX) is reportedly a specific blocker of P-type Ca2+ channels. The effects of FTX on the Ca2+ currents of isolated neurohypophysial nerve terminals of the rat were investigated using the 'whole-cell' patch-clamp technique. Both the transient and long-lasting Ca2+ current components were maximally elicited by depolarization from a holding potential equal to the normal terminal resting potential (-90 mV). Externally applied FTX inhibited the high-voltage-threshold, transient component of the Ca2+ current in a concentration-dependent manner, with a half-maximal inhibition at a dilution of approximately 1:10000. FTX also shifted the peak current of the I-V relationship by +10 mV. The long-lasting Ca2+ current component, which is sensitive to L-type Ca2+ channel blockers, was insensitive to FTX. The transient current, which is sensitive to omega-conotoxin GVIA, was completely blocked by FTX. These results suggest that there could be a novel, inactivating Ca2+ channel in the rat neurohypophysial terminals which is affected by both N-type and P-type Ca2+ channel blockers.
Capacitively readout multi-element sensor array with common-mode cancellation
Britton, Jr., Charles L.; Warmack, Robert J.; Bryan, William L.; Jones, Robert L.; Oden, Patrick Ian; Thundat, Thomas
2001-01-01
An improved multi-element apparatus for detecting the presence of at least one chemical, biological or physical component in a monitored area comprising an array or single set of the following elements: a capacitive transducer having at least one cantilever spring element secured thereto, the cantilever element having an area thereof coated with a chemical having an affinity for the component to be detected; a pick-up plate positioned adjacent to the cantilever element at a distance such that a capacitance between the cantilever element and the pick-up plate changes as the distance between the cantilever element and the pick-up plate varies, the change in capacitance being a measurable variation; a detection means for measuring the measurable variation in the capacitance between the cantilever element and the pick-up plate that forms a measurement channel signal; and at least one feedback cantilever spring element positioned apart from the coated cantilever element, the cantilever element substantially unaffected by the component being monitored and providing a reference channel signal to the detection means that achieves a common mode cancellation between the measurement channel signal and reference channel signal.
NASA Astrophysics Data System (ADS)
Murshid, Syed H.; Finch, Michael F.; Lovell, Gregory L.
2014-09-01
Spatial domain multiplexing (SDM) is a system that allows multiple channels of light to traverse a single fiber, utilizing separate spatial regions inside the carrier fiber, thereby applying a new degree of photon freedom for optical fiber communications. These channels follow a helical pattern, the screen projection of which is viewable as concentric rings at the output end of the system. The MIMO nature of the SDM system implies that a typical pin-diode or APD will be unable to distinguish between these channels, as the diode will interpret the combination of the SDM signals from all channels as a single signal. As such, spatial de-multiplexing methods must be introduced to properly detect the SDM based MIMO signals. One such method utilizes a fiber consisting of multiple, concentric, hollow core fibers to route each channel independently and thereby de-mux the signals into separate fibers or detectors. These de-mux fibers consist of hollow core cylindrical structures with beveled edges on one side that gradually taper to route the circular, ring type, output energy patterns into a spot with the highest possible efficiency. This paper analyzes the beveled edge by varying its length and analyzing the total output power for each predetermined length allowing us to simulate ideal bevel length to minimize both system losses as well as total de-mux footprint. OptiBPM simulation engine is employed for these analyses.
Tsunoo, A; Yoshii, M; Narahashi, T
1986-12-01
Leucine-enkephalin, methionine-enkephalin, and morphine caused a reversible block of Ca2+ channel currents in neuroblastoma-glioma hybrid cells (NG108-15). The long-lasting (type 2) component of the Ca2+ channel current was blocked by leucine-enkephalin, while the transient (type 1) component was not affected. The enkephalin-induced blocking action was antagonized by naloxone and appears to be mediated by delta-opiate receptors. Two different aspects of the blocking effect were detected, a resting block and a recovery from block during prolonged depolarizing pulses. Recovery from block was more complete, and its time course was more rapid, with depolarization to more positive potentials. The dose dependence of the type 2 channel block at rest indicated a one-to-one binding stoichiometry, with an apparent dissociation constant of 8.8 nM. Somatostatin exerted a similar selective blocking action on the type 2 Ca2+ channel. The time- and voltage-dependent block of type 2 Ca2+ channels may provide a mechanism underlying the enkephalinergic presynaptic inhibition of transmitter release and the somatostatin block of pituitary growth hormone release.
Ab initio calculation of atomic interactions on Al(110): implications for epitaxial growth
NASA Astrophysics Data System (ADS)
Fichthorn, Kristen; Tiwary, Yogesh
2007-03-01
Using first-principles calculations based on density-functional theory, we resolved atomic interactions between adsorbed Al atoms on Al(110). Relevant pair and trio interactions were quantified. We find that pair interactions extend to the third in-channel and second cross-channel neighbor on the anisotropic (110) surface. Beyond these distances, pair interactions are negligible. The nearest-neighbor interaction in the in-channel direction is attractive, but nearest-neighbor cross-channel interaction is repulsive. While nearest-neighbor, cross-channel repulsion does not support the experimental observation of 3D hut formation in Al/Al(110) homoepitaxial growth [1], we find that trio interactions can be significant and attractive and they support cross-channel bonding. The pair and trio interactions have direct and indirect components. We have quantified the electronic and elastic components of the indirect, substrate-mediated interactions. We also probe the influence of these interactions on the energy barriers for adatom hopping. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003).
Escudero, Javier; Hornero, Roberto; Abásolo, Daniel; Fernández, Alberto; Poza, Jesús
2007-01-01
The aim of this study was to improve the diagnosis of Alzheimer's disease (AD) patients applying a blind source separation (BSS) and component selection procedure to their magnetoencephalogram (MEG) recordings. MEGs from 18 AD patients and 18 control subjects were decomposed with the algorithm for multiple unknown signals extraction. MEG channels and components were characterized by their mean frequency, spectral entropy, approximate entropy, and Lempel-Ziv complexity. Using Student's t-test, the components which accounted for the most significant differences between groups were selected. Then, these relevant components were used to partially reconstruct the MEG channels. By means of a linear discriminant analysis, we found that the BSS-preprocessed MEGs classified the subjects with an accuracy of 80.6%, whereas 72.2% accuracy was obtained without the BSS and component selection procedure.
Design of a multi-channel free space optical interconnection component
NASA Astrophysics Data System (ADS)
Jia, Da-Gong; Zhang, Pei-Song; Jing, Wen-Cai; Tan, Jun; Zhang, Hong-Xia; Zhang, Yi-Mo
2008-11-01
A multi-channel free space optical interconnection component, fiber optic rotary joint, was designed using a Dove prism. When the Dove prism is rotated an angle of α around the longitudinal axis, the image rotates an angle of 2 α. The optical interconnection component consists of the signal transmission system, Dove prim and driving mechanism. The planetary gears are used to achieve the speed ratio of 2:1 between the total optical interconnection component and the Dove prism. The C-lenses are employed to couple different optical signals in the signal transmission system. The coupling loss between the receiving fiber of stationary part and the transmitting fiber of rotary part is measured.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... County People's Utility District; Notice of Preliminary Permit Application Accepted for Filing and... County People's Utility District (Northern Wasco) filed an application for a preliminary permit, pursuant...; (2) two five-foot by five-foot sluice gates connecting the new intake channel structure to the...
Hemoglobin crystals immersed in liquid oxygen reveal diffusion channels.
Terrell, James Ross; Gumpper, Ryan H; Luo, Ming
2018-01-08
Human hemoglobin (HbA) transports molecular oxygen (O 2 ) from the lung to tissues where the partial pressure of O 2 is lower. O 2 binds to HbA at the heme cofactor and is stabilized by a distal histidine (HisE7). HisE7 has been observed to occupy opened and closed conformations, and is postulated to act as a gate controlling the binding/release of O 2 . However, it has been suggested that HbA also contains intraprotein oxygen channels for entrances/exits far from the heme. In this study, we developed a novel method of crystal immersion in liquid oxygen prior to X-ray data collection. In the crystals immersed in liquid oxygen, the heme center was oxidized to generate aquomethemoglobin. Increases of structural flexibility were also observed in regions that are synonymous with previously postulated oxygen channels. These regions also correspond to medically relevant mutations which affect O 2 affinity. The way HbA utilizes these O 2 channels could have a profound impact on understanding the relationship of HbA O 2 transport within these disease conditions. Finally, the liquid oxygen immersion technique can be utilized as a new tool to crystallographically examine proteins and protein complexes which utilize O 2 for enzyme catalysis or transport. Copyright © 2017 Elsevier Inc. All rights reserved.
Colquhoun, D; Sakmann, B
1985-01-01
The fine structure of ion-channel activations by junctional nicotinic receptors in adult frog muscle fibres has been investigated. The agonists used were acetylcholine (ACh), carbachol (CCh), suberyldicholine (SubCh) and decan-1,10-dicarboxylic acid dicholine ester (DecCh). Individual activations (bursts) were interrupted by short closed periods; the distribution of their durations showed a major fast component ('short gaps') and a minor slower component ('intermediate gaps'). The mean duration of both short and intermediate gaps was dependent on the nature of the agonist. For short gaps the mean durations (microseconds) were: ACh, 20; SubCh, 43; DecCh, 71; CCh, 13. The mean number of short gaps per burst were: ACh, 1.9; SubCh, 4.1; DecCh, 2.0. The mean number of short gaps per burst, and the mean number per unit open time, were dependent on the nature of the agonist, but showed little dependence on agonist concentration or membrane potential for ACh, SubCh and DecCh. The short gaps in CCh increased in frequency with agonist concentration and were mainly produced by channel blockages by CCh itself. Partially open channels (subconductance states) were clearly resolved rarely (0.4% of gaps within bursts) but regularly. Conductances of 18% (most commonly) and 71% of the main value were found. However, most short gaps were probably full closures. The distribution of burst lengths had two components. The faster component represented mainly isolated short openings that were much more common at low agonist concentrations. The slower component represented bursts of longer openings. Except at very low concentrations more than 85% of activations were of this type, which corresponds to the 'channel lifetime' found by noise analysis. The frequency of channel openings increased slightly with hyperpolarization. The short gaps during activations were little affected when (a) the [H+]o or [Ca2+]o were reduced to 1/10th of normal, (b) when extracellular Ca2+ was replaced by Mg2+, (c) when the [Cl-]i was raised or (d) when, in one experiment on an isolated inside-out patch, the normal intracellular constituents were replaced by KCl. Reduction of [Ca2+]O to 1/10 of normal increased the single-channel conductance by 50%, and considerably increased the number of intermediate gaps. No temporal asymmetry was detectable in the bursts of openings. Positive correlations were found between the lengths of successive apparent open times at low SubCh concentrations, but no correlations between burst lengths were detectable. The component of brief openings behaves, at low concentrations, as though it originates from openings of singly occupied channels.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 11 Fig. 14 Plate 1 PMID:2419552
Hanck, Dorothy A.; Nikitina, Elena; McNulty, Megan M.; Fozzard, Harry A.; Lipkind, Gregory M.; Sheets, Michael F.
2009-01-01
Rationale Lidocaine and other antiarrhythmic drugs bind in the inner pore of voltage-gated Na channels and affect gating use-dependently. A phenylalanine in domain IV, S6 (Phe1759 in NaV1.5), modeled to face the inner pore just below the selectivity filter, is critical in use-dependent drug block. Objective Measurement of gating currents and concentration-dependent availability curves to determine the role of Phe1759 in coupling of drug binding to the gating changes. Methods & Results The measurements showed that replacement of Phe1759 with a non-aromatic residue permits clear separation of action of lidocaine and benzocaine into two components that can be related to channel conformations. One component represents the drug acting as a voltage-independent, low-affinity blocker of closed channels (designated as lipophilic block), and the second represents high-affinity, voltage-dependent block of open/inactivated channels linked to stabilization of the S4's in domains III and IV (designated as voltage-sensor inhibition) by Phe1759. A homology model for how lidocaine and benzocaine bind in the closed and open/inactivated channel conformation is proposed. Conclusions These two components, lipophilic block and voltage-sensor inhibition, can explain the differences in estimates between tonic and open-state/inactivated-state affinities, and they identify how differences in affinity for the two binding conformations can control use-dependence, the hallmark of successful antiarrhythmic drugs. PMID:19661462
Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng
2013-03-01
Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.
Social Media as an Engagement Tool for Schools and Colleges of Pharmacy.
Chen, Emily; DiVall, Margarita
2018-05-01
Objective. To describe the importance of and potential approaches to social media strategy development for schools and colleges of pharmacy. Findings. In recent years, pharmacy educators have begun exploring the benefits of social media. Effectively utilizing social media as a tool to fulfill marketing, recruitment, and student engagement initiatives is contingent on having a fully developed social media strategy that is well-positioned for success. Developing a sustainable social media strategy involves the following important components: establishing goals and objectives, identifying target audiences, performing competitive and channel analyses, developing content strategy, activities planning, identifying roles, budget and resources planning, and analyzing ongoing performance. Summary. This paper provides relevant information and guidance for colleges and schools of pharmacy that wish to enhance their social media presence.
Social Media as an Engagement Tool for Schools and Colleges of Pharmacy
Chen, Emily
2018-01-01
Objective. To describe the importance of and potential approaches to social media strategy development for schools and colleges of pharmacy. Findings. In recent years, pharmacy educators have begun exploring the benefits of social media. Effectively utilizing social media as a tool to fulfill marketing, recruitment, and student engagement initiatives is contingent on having a fully developed social media strategy that is well-positioned for success. Developing a sustainable social media strategy involves the following important components: establishing goals and objectives, identifying target audiences, performing competitive and channel analyses, developing content strategy, activities planning, identifying roles, budget and resources planning, and analyzing ongoing performance. Summary. This paper provides relevant information and guidance for colleges and schools of pharmacy that wish to enhance their social media presence. PMID:29867244
S192 multispectral scanner channel 13 electromechanical noise investigation ECP-166
NASA Technical Reports Server (NTRS)
Koumjian, H.
1975-01-01
A review is presented of all data on the multispectral scanner having to do with low frequency noise. The noise is component-induced, either mechanical or electrical or a combination of both. To assist in understanding the source of the noise, several dynamic analyses both structural and electrical were made and are reported. A review is presented of structural resonance test data obtained with the use of an accelerometer and strain gage sensors. Results of an analysis of the natural frequencies of the Dewar leads is included along with an analysis of the S192 cooler and its supporting structure. Other topics discussed include electronic stability of the forward signal, automatic gain control, and the offset control feedback loops as well as the preamplifier which utilized on integrator feedback circuit.
Phelan, Kevin D.; Shwe, U Thaung; Cozart, Michael A.; Wu, Hong; Mock, Matthew M.; Abramowitz, Joel; Birnbaumer, Lutz; Zheng, Fang
2016-01-01
Summary Objective Canonical transient receptor potential (TRPC) channels constitute a family of cation channels that exhibit a regional and cell-specific expression pattern throughout the brain. It has been reported previously that TRPC3 channels are effectors of the BDNF/trkB signaling pathway. Given the long postulated role of BDNF in epileptogenesis, TRPC3 channels may be a critical component in the underlying pathophysiology of seizure and epilepsy. In this study, we investigated the precise role of TRPC3 channels in pilocarpine-induced Status Epilepticus (SE). Methods The role of TRPC3 channels was investigated using TRPC3 knockout (KO) mice and TRPC3-selective inhibitor Pyr3. Video and EEG recording of pilocarpine-induced seizures were performed. Results We found that genetic ablation of TRPC3 channels reduces behavioral manifestations of seizures and the root-mean-square (RMS) power of SE, indicating a significant contribution of TRPC3 channels to pilocarpine-induced SE. Furthermore, the reduction in SE in TRPC3KO mice is caused by a selective attenuation of pilocarpine-induced theta activity which dominates both the pre-ictal phase and SE phase. Pyr3 also caused a reduction in the overall RMS power of pilocarpine-induced SE and a selective reduction in the theta activity during SE. Significance Our results demonstrate that TRPC3 channels unequivocally contribute to pilocarpine-induced SE and could be a novel molecular target for new anti-convulsive drugs. PMID:28012173
Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba
2003-01-01
A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.
Watts, Adreanna T M; Tootell, Anne V; Fix, Spencer T; Aviyente, Selin; Bernat, Edward M
2018-04-29
The neurophysiological mechanisms involved in the evaluation of performance feedback have been widely studied in the ERP literature over the past twenty years, but understanding has been limited by the use of traditional time-domain amplitude analytic approaches. Gambling outcome valence has been identified as an important factor modulating event-related potential (ERP) components, most notably the feedback negativity (FN). Recent work employing time-frequency analysis has shown that processes indexed by the FN are confounded in the time-domain and can be better represented as separable feedback-related processes in the theta (3-7 Hz) and delta (0-3 Hz) frequency bands. In addition to time-frequency amplitude analysis, phase synchrony measures have begun to further our understanding of performance evaluation by revealing how feedback information is processed within and between various brain regions. The current study aimed to provide an integrative assessment of time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony changes following monetary feedback in a gambling task. Results revealed that time-frequency amplitude activity explained separable loss and gain processes confounded in the time-domain. Furthermore, phase synchrony measures explained unique variance above and beyond amplitude measures and demonstrated enhanced functional integration between medial prefrontal and bilateral frontal, motor, and occipital regions for loss relative to gain feedback. These findings demonstrate the utility of assessing time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony together to better elucidate the neurophysiology of feedback processing. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiechtner, Gregory J; Singh, Anup K; Wiedenman, Boyd J
2008-03-18
The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.
UWB channel estimation using new generating TR transceivers
Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA; Spiridon, Alex [Palo Alto, CA; Haugen, Peter C [Livermore, CA; Benzel, Dave M [Livermore, CA
2011-06-28
The present invention presents a simple and novel channel estimation scheme for UWB communication systems. As disclosed herein, the present invention maximizes the extraction of information by incorporating a new generation of transmitted-reference (Tr) transceivers that utilize a single reference pulse(s) or a preamble of reference pulses to provide improved channel estimation while offering higher Bit Error Rate (BER) performance and data rates without diluting the transmitter power.
Voltage-gated calcium channel and antisense oligonucleotides thereto
NASA Technical Reports Server (NTRS)
Friedman, Peter A. (Inventor); Duncan, Randall L. (Inventor); Hruska, Keith A. (Inventor); Barry, Elizabeth L. R. (Inventor)
1998-01-01
An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.
Reproductive health information for young women in Kazakhstan: disparities in access by channel.
Buckley, Cynthia; Barrett, Jennifer; Adkins, Kristen
2008-01-01
This study explores young women's reliance on reproductive and sexual health information channels, examining the relationship between information sources and reproductive health knowledge. Utilizing 1995 and 1999 Kazakhstan Demographic and Health Surveys, we investigate access to reproductive health knowledge among young women (ages 15-24) during a key period in the development of wide-scale reproductive health programs in Kazakhstan. Despite reproductive health campaigns throughout the 1990s, we find consistently high proportions of young women without family planning information access. Among young women with access to information, few received information from channels most strongly linked to knowledge and behavioral changes (family and medical professionals). Mass media sources and peer information networks remained the most often utilized channels. Urban residence, non-Kazakh ethnicity, older age (20-24), and higher education significantly increased the odds of accessing family planning information among young Kazakhstani women, and these same factors were especially important in terms of the relative odds of accessing medical and parental channels. While overall contraceptive knowledge and prevalence rose in Kazakhstan during the 1990s, we find knowledge varied by the information channel accessed. Findings also indicate that young women, regardless of marital status, possessed consistently low levels of reproductive health knowledge at the decade's end.
NASA Astrophysics Data System (ADS)
Li, Haiqing; Chatterjee, Samir
With rapid advances in information and communication technology, computer-mediated communication (CMC) technologies are utilizing multiple IT platforms such as email, websites, cell-phones/PDAs, social networking sites, and gaming environments. However, no studies have compared the effectiveness of a persuasive system using such alternative channels and various persuasive techniques. Moreover, how affective computing impacts the effectiveness of persuasive systems is not clear. This study proposes (1) persuasive technology channels in combination with persuasive strategies will have different persuasive effectiveness; (2) Adding positive emotion to a message that leads to a better overall user experience could increase persuasive effectiveness. The affective computing or emotion information was added to the experiment using emoticons. The initial results of a pilot study show that computer-mediated communication channels along with various persuasive strategies can affect the persuasive effectiveness to varying degrees. These results also shows that adding a positive emoticon to a message leads to a better user experience which increases the overall persuasive effectiveness of a system.
A Compact, Flexible, High Channel Count DAQ Built From Off-the-Shelf Components
Heffner, M.; Riot, V.; Fabris, L.
2013-06-01
Medium to large channel count detectors are usually faced with a few unattractive options for data acquisition (DAQ). Small to medium sized TPC experiments, for example, can be too small to justify the high expense and long development time of application specific integrated circuit (ASIC) development. In some cases an experiment can piggy-back on a larger experiment and the associated ASIC development, but this puts the time line of development out of the hands of the smaller experiment. Another option is to run perhaps thousands of cables to rack mounted equipment, which is clearly undesirable. The development of commercial high-speedmore » high-density FPGAs and ADCs combined with the small discrete components and robotic assembly open a new option that scales to tens of thousands of channels and is only slightly larger than ASICs using off-the-shelf components.« less
Software system for data management and distributed processing of multichannel biomedical signals.
Franaszczuk, P J; Jouny, C C
2004-01-01
The presented software is designed for efficient utilization of cluster of PC computers for signal analysis of multichannel physiological data. The system consists of three main components: 1) a library of input and output procedures, 2) a database storing additional information about location in a storage system, 3) a user interface for selecting data for analysis, choosing programs for analysis, and distributing computing and output data on cluster nodes. The system allows for processing multichannel time series data in multiple binary formats. The description of data format, channels and time of recording are included in separate text files. Definition and selection of multiple channel montages is possible. Epochs for analysis can be selected both manually and automatically. Implementation of a new signal processing procedures is possible with a minimal programming overhead for the input/output processing and user interface. The number of nodes in cluster used for computations and amount of storage can be changed with no major modification to software. Current implementations include the time-frequency analysis of multiday, multichannel recordings of intracranial EEG of epileptic patients as well as evoked response analyses of repeated cognitive tasks.
Reconstruction of hyperspectral image using matting model for classification
NASA Astrophysics Data System (ADS)
Xie, Weiying; Li, Yunsong; Ge, Chiru
2016-05-01
Although hyperspectral images (HSIs) captured by satellites provide much information in spectral regions, some bands are redundant or have large amounts of noise, which are not suitable for image analysis. To address this problem, we introduce a method for reconstructing the HSI with noise reduction and contrast enhancement using a matting model for the first time. The matting model refers to each spectral band of an HSI that can be decomposed into three components, i.e., alpha channel, spectral foreground, and spectral background. First, one spectral band of an HSI with more refined information than most other bands is selected, and is referred to as an alpha channel of the HSI to estimate the hyperspectral foreground and hyperspectral background. Finally, a combination operation is applied to reconstruct the HSI. In addition, the support vector machine (SVM) classifier and three sparsity-based classifiers, i.e., orthogonal matching pursuit (OMP), simultaneous OMP, and OMP based on first-order neighborhood system weighted classifiers, are utilized on the reconstructed HSI and the original HSI to verify the effectiveness of the proposed method. Specifically, using the reconstructed HSI, the average accuracy of the SVM classifier can be improved by as much as 19%.
Controlling Surface Chemistry of Gallium Liquid Metal Alloys to Enhance their Fluidic Properties
NASA Astrophysics Data System (ADS)
Ilyas, Nahid; Cumby, Brad; Cook, Alexander; Durstock, Michael; Tabor, Christopher; Materials; Manufacturing Directorate Team
Gallium liquid metal alloys (GaLMAs) are one of the key components of emerging technologies in reconfigurable electronics, such as tunable radio frequency antennas and electronic switches. Reversible flow of GaLMA in microchannels of these types of devices is hindered by the instantaneous formation of its oxide skin in ambient environment. The oxide film sticks to most surfaces leaving unwanted metallic residues that can cause undesired electronic properties. In this report, residue-free reversible flow of a binary alloy of gallium (eutectic gallium indium) is demonstrated via two types of surface modifications where the oxide film is either protected by an organic thin film or chemically removed. An interface modification layer (alkyl phosphonic acids) was introduced into the microfluidic system to modify the liquid metal surface and protect its oxide layer. Alternatively, an ion exchange membrane was utilized as a 'sponge-like' channel material to store and slowly release small amounts of HCl to react with the surface oxide of the liquid metal. Characterization of these interfaces at molecular level by surface spectroscopy and microscopy provided with mechanistic details for the interfacial interactions between the liquid metal surface and the channel materials.
A chaotic micromixer using obstruction-pairs
NASA Astrophysics Data System (ADS)
Park, Jang Min; Duck Seo, Kyoung; Kwon, Tai Hun
2010-01-01
A micromixer is one of the most important components for a chemical and/or diagnostic analysis in microfluidic devices such as a micro-total-analysis-system and a lab-on-a-chip. In this paper, a novel chaotic micromixer is developed in a simple design by introducing obstruction-pairs on the bottom of a microchannel. An obstruction-pair, which is composed of two hexahedron blocks arranged in an asymmetric manner, can induce a rotational flow along the down-channel direction due to the anisotropy of flow resistance. By utilizing this characteristic of the obstruction-pair, four mixing units are designed in such a way that three obstruction-pairs induce three rotational flows which result in a down-welling and a hyperbolic point in the channel cross-section. There can be a variety of micromixer geometries by arranging the mixing units in various sequences along the microchannel, and their mixing performances will differ from each other due to different flow characteristics. In this regard, numerical investigations are carried out to predict and characterize the mixing performances of various micromixers. Also experimental verifications are carried out by a flow visualization technique using phenolphthalein and sodium hydroxide solutions in a polydimethylsiloxane-based micromixer.
Accessing the diffracted wavefield by coherent subtraction
NASA Astrophysics Data System (ADS)
Schwarz, Benjamin; Gajewski, Dirk
2017-10-01
Diffractions have unique properties which are still rarely exploited in common practice. Aside from containing subwavelength information on the scattering geometry or indicating small-scale structural complexity, they provide superior illumination compared to reflections. While diffraction occurs arguably on all scales and in most realistic media, the respective signatures typically have low amplitudes and are likely to be masked by more prominent wavefield components. It has been widely observed that automated stacking acts as a directional filter favouring the most coherent arrivals. In contrast to other works, which commonly aim at steering the summation operator towards fainter contributions, we utilize this directional selection to coherently approximate the most dominant arrivals and subtract them from the data. Supported by additional filter functions which can be derived from wave front attributes gained during the stacking procedure, this strategy allows for a fully data-driven recovery of faint diffractions and makes them accessible for further processing. A complex single-channel field data example recorded in the Aegean sea near Santorini illustrates that the diffracted background wavefield is surprisingly rich and despite the absence of a high channel count can still be detected and characterized, suggesting a variety of applications in industry and academia.
Nonlinear Ballistic Transport in an Atomically Thin Material.
Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R
2016-01-26
Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms
NASA Astrophysics Data System (ADS)
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-01
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
2015-01-01
Here, we construct an open-channel on-chip electroosmotic pump capable of generating pressures up to ∼170 bar and flow rates up to ∼500 nL/min, adequate for high performance liquid chromatographic (HPLC) separations. A great feature of this pump is that a number of its basic pump units can be connected in series to enhance its pumping power; the output pressure is directly proportional to the number of pump units connected. This additive nature is excellent and useful, and no other pumps can work in this fashion. We demonstrate the feasibility of using this pump to perform nanoflow HPLC separations; tryptic digests of bovine serum albumin (BSA), transferrin factor (TF), and human immunoglobulins (IgG) are utilized as exemplary samples. We also compare the performance of our electroosmotic (EO)-driven HPLC with Agilent 1200 HPLC; comparable efficiencies, resolutions, and peak capacities are obtained. Since the pump is based on electroosmosis, it has no moving parts. The common material and process also allow this pump to be integrated with other microfabricated functional components. Development of this high-pressure on-chip pump will have a profound impact on the advancement of lab-on-a-chip devices. PMID:24495233
Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9
NASA Astrophysics Data System (ADS)
Shrestha, K.; Graf, D.; Marinova, V.; Lorenz, B.; Chu, C. W.
2017-10-01
We have investigated the weak antilocalization (WAL) effect in the p-type Bi2Se2.1Te0.9 topological system. The magnetoconductance shows a cusp-like feature at low magnetic fields, indicating the presence of the WAL effect. The WAL curves measured at different tilt angles merge together when they are plotted as a function of the normal field components, showing that surface states dominate the magnetoconductance in the Bi2Se2.1Te0.9 crystal. We have calculated magnetoconductance per conduction channel and applied the Hikami-Larkin-Nagaoka formula to determine the physical parameters that characterize the WAL effect. The number of conduction channels and the phase coherence length do not change with temperature up to T = 5 K. In addition, the sample shows a large positive magnetoresistance that reaches 1900% under a magnetic field of 35 T at T = 0.33 K with no sign of saturation. The magnetoresistance value decreases with both increasing temperature and tilt angle of the sample surface with respect to the magnetic field. The large magnetoresistance of topological insulators can be utilized in future technology such as sensors and memory devices.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-10
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Wheatley, J.C.; Paulson, D.N.; Allen, P.C.
1983-01-04
A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.
1983-01-01
A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.
Li, Xiangpeng; Brooks, Jessica C; Hu, Juan; Ford, Katarena I; Easley, Christopher J
2017-01-17
A fully automated, 16-channel microfluidic input/output multiplexer (μMUX) has been developed for interfacing to primary cells and to improve understanding of the dynamics of endocrine tissue function. The device utilizes pressure driven push-up valves for precise manipulation of nutrient input and hormone output dynamics, allowing time resolved interrogation of the cells. The ability to alternate any of the 16 channels from input to output, and vice versa, provides for high experimental flexibility without the need to alter microchannel designs. 3D-printed interface templates were custom designed to sculpt the above-channel polydimethylsiloxane (PDMS) in microdevices, creating millimeter scale reservoirs and confinement chambers to interface primary murine islets and adipose tissue explants to the μMUX sampling channels. This μMUX device and control system was first programmed for dynamic studies of pancreatic islet function to collect ∼90 minute insulin secretion profiles from groups of ∼10 islets. The automated system was also operated in temporal stimulation and cell imaging mode. Adipose tissue explants were exposed to a temporal mimic of post-prandial insulin and glucose levels, while simultaneous switching between labeled and unlabeled free fatty acid permitted fluorescent imaging of fatty acid uptake dynamics in real time over a ∼2.5 hour period. Application with varying stimulation and sampling modes on multiple murine tissue types highlights the inherent flexibility of this novel, 3D-templated μMUX device. The tissue culture reservoirs and μMUX control components presented herein should be adaptable as individual modules in other microfluidic systems, such as organ-on-a-chip devices, and should be translatable to different tissues such as liver, heart, skeletal muscle, and others.
Enhancements to the WRF-Hydro Hydrologic Model Structure for Semi-arid Environments
NASA Astrophysics Data System (ADS)
Lahmers, T. M.; Gupta, H.; Hazenberg, P.; Castro, C. L.; Gochis, D.; Yates, D. N.; Dugger, A. L.; Goodrich, D. C.
2017-12-01
The NOAA National Water Center (NWC) implemented an operational National Water Model (NWM) in August 2016 to simulate and forecast streamflow and soil moisture throughout the Contiguous US (CONUS). The NWM is based on the WRF-Hydro hydrologic model architecture, with a 1-km resolution Noah-MP LSM grid and a 250m routing grid. The operational NWM does not currently resolve infiltration of water from the beds of ephemeral channels, which is an important component of the water balance in semi-arid environments common in many portions of the western US. This work demonstrates the benefit of a conceptual channel infiltration function in the WRF-Hydro model architecture following calibration. The updated model structure and parameters for the NWM architecture, when implemented operationally, will permit its use in flow simulation and forecasting in the southwest US, particularly for flash floods in basins with smaller drainage areas. Our channel infiltration function is based on that of the KINEROS2 semi-distributed hydrologic model, which has been tested throughout the southwest CONUS for flash flood forecasts. Model calibration utilizes the Dynamically Dimensioned Search (DDS) algorithm, and the model is calibrated using NLDAS-2 atmospheric forcing and NCEP Stage-IV precipitation. Our results show that adding channel infiltration to WRF-Hydro can produce a physically consistent hydrologic response with a high-resolution gauge based precipitation forcing dataset in the USDA-ARS Walnut Gulch Experimental Watershed. NWM WRF-Hydro is also tested for the Babocomari River, Beaver Creek, and Sycamore Creek catchments in southern and central Arizona. In these basins, model skill is degraded due to uncertainties in the NCEP Stage-IV precipitation forcing dataset.
Extended length microchannels for high density high throughput electrophoresis systems
Davidson, James C.; Balch, Joseph W.
2000-01-01
High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.
Tataw, David Besong; Ekúndayò, Olúgbémiga T
2017-01-01
This article reports on the use of sequential and integrated mixed-methods approach in a focused population and small-area analysis. The study framework integrates focus groups, survey research, and community engagement strategies in a search for evidence related to prostate cancer screening services utilization as a component of cancer prevention planning in a marginalized African American community in the United States. Research and data analysis methods are synthesized by aggregation, configuration, and interpretive analysis. The results of synthesis show that qualitative and quantitative data validate and complement each other in advancing our knowledge of population characteristics, variable associations, the complex context in which variables exist, and the best options for prevention and service planning. Synthesis of findings and interpretive analysis provided two important explanations which seemed inexplicable in regression outputs: (a) Focus group data on the limitations of the church as an educational source explain the negative association between preferred educational channels and screening behavior found in quantitative analysis. (b) Focus group data on unwelcoming provider environments explain the inconsistent relationship between knowledge of local sites and screening services utilization found in quantitative analysis. The findings suggest that planners, evaluators, and scientists should grow their planning and evaluation evidence from the community they serve.
Weddle, M; Prado-Monje, H
1999-01-01
The past decade has been a period of evolution for the Federal disaster response system within the United States. Two domestic hurricanes were pivotal events that influenced the methods used for organizing Federal disaster assistance. The lessons of Hurricane Hugo (1989) and Hurricane Andrew (1992) were incorporated into the successful response to Hurricane Marilyn in the U.S. Virgin Islands in 1995. Following each of these storms, the Department of Defense was a major component of the response by the health sector. Despite progress in many areas, lack of clear communication between military and civilian managers and confusion among those requesting Department of Defense health resources may remain as obstacles to rapid response. This discussion is based on an unpublished case report utilizing interviews with military and civilian managers involved in the Hurricane Marilyn response. The findings suggest that out-of-channel pathways normally utilized in the warning and emergency phase of the response remained operational after more formal civilian-military communication pathways and local assessment capability had been established. It is concluded that delays may be avoided if the system in place was to make all active pathways for the request and validation of military resources visible to the designated Federal managers located within the area of operations.
NASA Astrophysics Data System (ADS)
Dmitriev, S. S.; Vasil'ev, K. E.; Mokhamed, S. M. S. O.; Gusev, A. A.; Barbashin, A. V.
2017-11-01
In modern combined cycle gas turbines (CCGT), when designing the reducers from the output diffuser of a gas turbine to a boiler-utilizer, wide-angle diffusers are used, in which practically from the input a flow separation and transition to jet stream regime occurs. In such channels, the energy loss in the field of velocities sharply rise and the field of velocities in the output from them is characterized by considerable unevenness that worsens the heat transfer process in the first by motion tube bundles of the boiler-utilizer. The results of experimental research of the method for reducing the energy loss and alignment of the field of velocities at the output from a flat asymmetrical diffuser channel with one deflecting wall with the opening angle of 40° by means of placing inside the channel the flat plate parallel to the deflecting wall are presented in the paper. It is revealed that, at this placement of the plate in the channel, it has a chance to reduce the energy loss by 20%, considerably align the output field of velocities, and decrease the dynamic loads on the walls in the output cross-section. The studied method of resistance reduction and alignment of the fields of velocities in the flat diffuser channels was used for optimization of the reducer from the output diffuser of the gas turbine to the boiler-utilizer of CCGT of PGU-450T type of Kaliningrad Thermal Power Plant-2. The obtained results are evidence that the configuration of the reducer installed in the PGU-450T of Kaliningrad Thermal Power Plant-2 is not optimal. It follows also from the obtained data that working-off the reducer should be necessarily conducted by the test results of the channel consisting of the model of reducer with the model of boiler-utilizer installed behind it. Application of the method of alignment of output field of velocities and reducing the resistance in the wide-angle diffusers investigated in the work made it possible—when using the known model of diffusion reducer for PGU-450T, which is bad from the standpoint of aerodynamics— to reduce the value of the coefficient of the total loss by almost 20% as compared with the model of real reducer of PGU-450T.
Status of the Direct Data Distribution (D(exp 3)) Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence
2001-01-01
NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.
Revegetation of medusahead-invaded rangelands in the channeled scablands of eastern Washington
USDA-ARS?s Scientific Manuscript database
Vegetation on the Channeled Scablands of eastern Washington has been altered to a community dominated by medusahead (Taeniatherum caput-medusae [L.] Nevski). Medusahead is unpalatable and seldom utilized by livestock thus, decreasing carrying capacity. The objective of this study was to determine if...
Channeling a Community's Aging Resources.
ERIC Educational Resources Information Center
Smith, Daniel J.
This report addresses the issue of community utilization of resources for the elderly population. A strategy for channeling resources is presented, including: (1) design of a comprehensive aging services administration and delivery plan based on needs assessment data and a service resource inventory; (2) development of a service agencies network…
Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells.
Kronhardt, Angelika; Beitzinger, Christoph; Barth, Holger; Benz, Roland
2016-08-10
C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells' receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa.
Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells
Kronhardt, Angelika; Beitzinger, Christoph; Barth, Holger; Benz, Roland
2016-01-01
C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells’ receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa. PMID:27517960
Overcoming Communication Restrictions in Collectives
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2004-01-01
Many large distributed system are characterized by having a large number of components (eg., agents, neurons) whose actions and interactions determine a %orld utility which rates the performance of the overall system. Such collectives are often subject to communication restrictions, making it difficult for components which try to optimize their own private utilities, to take actions that also help optimize the world utility. In this article we address that coordination problem and derive four utility functions which present different compromises between how aligned a component s private utility is with the world utility and how readily that component can determine the actions that optimize its utility. The results show that the utility functions specifically derived to operate under communication restrictions outperform both traditional methods and previous collective-based methods by up to 75%.
Performance of convolutionally encoded noncoherent MFSK modem in fading channels
NASA Technical Reports Server (NTRS)
Modestino, J. W.; Mui, S. Y.
1976-01-01
The performance of a convolutionally encoded noncoherent multiple-frequency shift-keyed (MFSK) modem utilizing Viterbi maximum-likelihood decoding and operating on a fading channel is described. Both the lognormal and classical Rician fading channels are considered for both slow and time-varying channel conditions. Primary interest is in the resulting bit error rate as a function of the ratio between the energy per transmitted information bit and noise spectral density, parameterized by both the fading channel and code parameters. Fairly general upper bounds on bit error probability are provided and compared with simulation results in the two extremes of zero and infinite channel memory. The efficacy of simple block interleaving in combatting channel memory effects are thoroughly explored. Both quantized and unquantized receiver outputs are considered.
Baldelli, Pietro; Hernández-Guijo, Jesus Miguel; Carabelli, Valentina; Novara, Monica; Cesetti, Tiziana; Andrés-Mateos, Eva; Montiel, Carmen; Carbone, Emilio
2004-02-01
Understanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells. L-channels are effectively inhibited by the released content of secretory granules or by applying mixtures of exogenous ATP, opioids, and adrenaline through the activation of receptor-coupled G proteins. This unusual inhibition persists in a wide range of potentials and results from a direct (membrane-delimited) interaction of G protein subunits with the L-channels co-localized in membrane microareas. Inhibition of L-channels can be reversed when the cAMP/PKA pathway is activated by membrane permeable cAMP analog or when cells are exposed to isoprenaline (remote action), suggesting the existence of parallel and opposite effects on L-channel gating by distinctly activated membrane autoreceptors. Here, the authors review the molecular components underlying these two opposing signaling pathways and present new evidence supporting the presence of two L-channel types in rat chromaffin cells (alpha1C and alpha1D), which open new interesting issues concerning Ca(2+)-channel modulation. In light of recent findings on the regulation of exocytosis by Ca(2+)-channel modulation, the authors explore the possible role of L-channels in the autocontrol of catecholamine release.
A joint source-channel distortion model for JPEG compressed images.
Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C
2006-06-01
The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.
Load-adaptive practical multi-channel communications in wireless sensor networks.
Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon
2010-01-01
In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.
Teutsch, Christine; Kondo, Richard P; Dederko, Dorothy A; Chrast, Jacqueline; Chien, Kenneth R; Giles, Wayne R
2007-03-01
Regional differences in repolarizing K(+) current densities and expression levels of their molecular components are important for coordinating the pattern of electrical excitation and repolarization of the heart. The small size of hearts from mice may obscure these interventricular and/or transmural expression differences of K(+) channels. We have examined this possibility in adult mouse ventricle using a technology that provides very high spatial resolution of tissue collection. Conventional manual dissection and laser capture microdissection (LCM) were utilized to dissect tissue from distinct ventricular regions. RNA was isolated from epicardial, mid-myocardial and endocardial layers of both the right and left ventricles. Real-time RT-PCR was used to quantify the transcript expression in these different regions. LCM revealed significant interventricular and transmural gradients for both Kv4.2 and the alpha-subunit of KChIP2. The expression profile of a second K(+) channel transcript, Kir2.1, which is responsible for the inwardly rectifying K(+) current I(k1), showed no interventricular or transmural gradients and therefore served as a negative control. Our findings are in contrast to previous reports of a relatively uniform left ventricular transmural pattern of expression of Kv4.2, Kv4.3 and KChIP2 in adult mouse heart, which appear to be different than that in larger mammals. Specifically, our results demonstrate significant epi- to endocardial differences in the patterns of expression of both Kv4.2 and KChIP2.
Narayanan, Ram M; Pooler, Richard K; Martone, Anthony F; Gallagher, Kyle A; Sherbondy, Kelly D
2018-02-22
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE).
NASA Astrophysics Data System (ADS)
Bell, R.; Labovitz, M. L.
1982-07-01
A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.
Pooler, Richard K.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.
2018-01-01
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE). PMID:29470448
NASA Technical Reports Server (NTRS)
Bell, R.; Labovitz, M. L.
1982-01-01
A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.
Wyllie, David J A; Béhé, Philippe; Colquhoun, David
1998-01-01
We have expressed recombinant NR1a/NR2A and NR1a/NR2D N-methyl-D-aspartate (NMDA) receptor channels in Xenopus oocytes and made recordings of single-channel and macroscopic currents in outside-out membrane patches. For each receptor type we measured (a) the individual single-channel activations evoked by low glutamate concentrations in steady-state recordings, and (b) the macroscopic responses elicited by brief concentration jumps with high agonist concentrations, and we explore the relationship between these two sorts of observation. Low concentration (5–100 nM) steady-state recordings of NR1a/NR2A and NR1a/NR2D single-channel activity generated shut-time distributions that were best fitted with a mixture of five and six exponential components, respectively. Individual activations of either receptor type were resolved as bursts of openings, which we refer to as ‘super-clusters’. During a single activation, NR1a/NR2A receptors were open for 36 % of the time, but NR1a/NR2D receptors were open for only 4 % of the time. For both, distributions of super-cluster durations were best fitted with a mixture of six exponential components. Their overall mean durations were 35.8 and 1602 ms, respectively. Steady-state super-clusters were aligned on their first openings and averaged. The average was well fitted by a sum of exponentials with time constants taken from fits to super-cluster length distributions. It is shown that this is what would be expected for a channel that shows simple Markovian behaviour. The current through NR1a/NR2A channels following a concentration jump from zero to 1 mM glutamate for 1 ms was well fitted by three exponential components with time constants of 13 ms (rising phase), 70 ms and 350 ms (decaying phase). Similar concentration jumps on NR1a/NR2D channels were well fitted by two exponentials with means of 45 ms (rising phase) and 4408 ms (decaying phase) components. During prolonged exposure to glutamate, NR1a/NR2A channels desensitized with a time constant of 649 ms, while NR1a/NR2D channels exhibited no apparent desensitization. We show that under certain conditions, the time constants for the macroscopic jump response should be the same as those for the distribution of super-cluster lengths, though the resolution of the latter is so much greater that it cannot be expected that all the components will be resolvable in a macroscopic current. Good agreement was found for jumps on NR1a/NR2D receptors, and for some jump experiments on NR1a/NR2A. However, the latter were rather variable and some were slower than predicted. Slow decays were associated with patches that had large currents. PMID:9625862
Xu, Fengzhou; Shi, Hui; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Yan, Lv'an; Ye, Xiaosheng; Tang, Jinlu; Shangguan, Jingfang; Luo, Lan
2015-06-21
A novel channel-switch-mode strategy for simultaneous sensing of Fe(3+) and Hg(2+) is developed with dual-excitation single-emission graphene quantum dots (GQDs). By utilizing the dual-channel fluorescence response performance of GQDs, this strategy achieved a facile, low-cost, masking agent-free, quantitative and selective dual-ion assay even in mixed ion samples and practical water samples.
Sub-component modeling for face image reconstruction in video communications
NASA Astrophysics Data System (ADS)
Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.
2008-08-01
Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.
High speed analog-to-digital conversion with silicon photonics
NASA Astrophysics Data System (ADS)
Holzwarth, C. W.; Amatya, R.; Araghchini, M.; Birge, J.; Byun, H.; Chen, J.; Dahlem, M.; DiLello, N. A.; Gan, F.; Hoyt, J. L.; Ippen, E. P.; Kärtner, F. X.; Khilo, A.; Kim, J.; Kim, M.; Motamedi, A.; Orcutt, J. S.; Park, M.; Perrott, M.; Popovic, M. A.; Ram, R. J.; Smith, H. I.; Zhou, G. R.; Spector, S. J.; Lyszczarz, T. M.; Geis, M. W.; Lennon, D. M.; Yoon, J. U.; Grein, M. E.; Schulein, R. T.; Frolov, S.; Hanjani, A.; Shmulovich, J.
2009-02-01
Sampling rates of high-performance electronic analog-to-digital converters (ADC) are fundamentally limited by the timing jitter of the electronic clock. This limit is overcome in photonic ADC's by taking advantage of the ultra-low timing jitter of femtosecond lasers. We have developed designs and strategies for a photonic ADC that is capable of 40 GSa/s at a resolution of 8 bits. This system requires a femtosecond laser with a repetition rate of 2 GHz and timing jitter less than 20 fs. In addition to a femtosecond laser this system calls for the integration of a number of photonic components including: a broadband modulator, optical filter banks, and photodetectors. Using silicon-on-insulator (SOI) as the platform we have fabricated these individual components. The silicon optical modulator is based on a Mach-Zehnder interferometer architecture and achieves a VπL of 2 Vcm. The filter banks comprise 40 second-order microring-resonator filters with a channel spacing of 80 GHz. For the photodetectors we are exploring ion-bombarded silicon waveguide detectors and germanium films epitaxially grown on silicon utilizing a process that minimizes the defect density.
Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey
NASA Astrophysics Data System (ADS)
Guillemot, Christine; Siohan, Pierre
2005-12-01
Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.
All-digital 1.2-Gbit/s real-time HDTV VTR
NASA Astrophysics Data System (ADS)
Thorpe, Laurence J.; Yoshinaka, T.
1992-08-01
In 1984 the first real-time HDTV video tape recorder was introduced. The HDV-1000 was an analog VTR using one inch metal oxide tape and standard SMPTE open reels. It utilized basic Type-C recording principles although also incorporating a considerably higher FM carrier frequency, twice the deviation, and slightly more preemphasis, - all to achieve a 10 MHz baseband video recording bandwidth capability. Four such component analog recording channels were utilized in parallel to achieve a total recording capability of 40 MHz - made up of 20 MHz for the green video signal (or Luminance Y) and 10 MHz each for the red and blue signals (or R-Y and B-Y components in the case of Y, R-Y, B-Y recording). Almost 150 of these machines supported the early pioneering years of HDTV development - worldwide - over the period 1984 to the late 1980's. The HDTV video signal format to which this VTR was designed was based upon the preliminary 1 125/60/16:9/2: 1 system - having specified system bandwiths of 20 MHz for Luminance Y, and 7.0MHz R-Y, and 5.5 MHz B-Y. The HDV-1000 proved to be a remarkably robust, reliable HD VTR workhorse and it early and firmly established the viability of reliable RD real-time image capture. Nevertheless, it's technical shortcomings were soon exposed by a creative and demanding international program production community. The limitations of two channels of analog audio recording, and about four generations of liD video recording in post-production were inconsistent with the needs of high-end program production. The 45 db signal to noise limitation also imposed a boundary to the quality of the HDTV tape to 35 mm film transfers being made by both Electron Beam and Laser Recording techniques. The HDV-1000 had, however, pushed the state of the art in analog FM recording to the boundary. Head and tape technologies were not expected to advance sufficiently to warrant a new generation in analog recording design. Attention thus turned to digital recording techniques.
Bedform dynamics in a large sand-bedded river using multibeam echo sounding
NASA Astrophysics Data System (ADS)
Elliott, C. M.; Jacobson, R. B.; Erwin, S.; Eric, A. B.; DeLonay, A. J.
2014-12-01
High-resolution repeat multibeam Echo Sounder (MBES) surveys of the Lower Missouri River in Missouri, USA demonstrate sand bedform movement at a variety of scales over a range of discharges. Understanding dune transport rates and the temporal and spatial variability in sizes across the channel has implications for how sediment transport measurements are made and for understanding the dynamics of habitats utilized by benthic organisms over a range of life stages. Nearly 800 miles of the Lower Missouri River has been altered through channelization and bank stabilization that began in the early 1900's for navigation purposes. Channelization of the Lower Missouri River has created a self-scouring navigation channel with large dunes that migrate downstream over a wide range of discharges. Until the use of MBES surveys on the Missouri River the spatial variability of dune forms in the Missouri River navigation channel was poorly understood. MBES surveys allow for visualization of a range of sand bedforms and repeat measurements demonstrate that dunes are moving over a wide range of discharges on the river. Understanding the spatial variability of dunes and dune movement across the channel and in different channel settings (bends, channel cross-overs, near channel structures) will inform emerging methods in sediment transport measurement that use bedform differencing calculations and provide context for physical bedload sediment sampling on large sand-bedded rivers. Multiple benthic fish species of interest including the endangered pallid sturgeon utilize Missouri River dune fields and adjacent regions for migration, feeding, spawning, early development and dispersal. Surveys using MBES and other hydroacoustic tools provide fisheries biologists with broad new insights into the functionality of bedforms as habitat for critical life stages of large river fish species in the Missouri River, and similar sand-bedded systems.
High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.
Li, Tianbo; Lu, Gang; Chiang, Eugene Y; Chernov-Rogan, Tania; Grogan, Jane L; Chen, Jun
2017-01-01
Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.
Production of viable homozygous, doubled haploid channel catfish (Ictalurus punctatus)
USDA-ARS?s Scientific Manuscript database
Production of doubled haploids via mitotic gynogenesis is a useful tool for the creation of completely inbred fish. In order to produce viable doubled haploid channel catfish, we utilized hydrostatic pressure or thermal treatments on eggs fertilized with sperm that had been exposed to ultraviolet l...
USDA-ARS?s Scientific Manuscript database
Vegetation on the Channeled Scablands of eastern Washington has been altered to a medusahead-lupine dominated landscape. Medusahead (Taeniatherum caput-medusae [L.] Nevski) is seldom utilized by livestock, decreases carrying capacity, and can lead to the consumption of poisonous plants. Velvet lupin...
47 CFR 95.1115 - General technical requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) In the 1395-1400 MHz and 1427-1432 MHz bands, no specific channels are specified. Wireless medical telemetry devices may operate on any channel within the bands authorized for wireless medical telemetry use in this part. (2) In the 608-614 MHz band, wireless medical telemetry devices utilizing broadband...
ERIC Educational Resources Information Center
Li, Haiqing
2010-01-01
With rapid advancements in information and communication technologies, computer-mediated communication channels such as email, web, mobile smart-phones with SMS, social networking websites (Facebook), multimedia websites, and OEM devices provide users with multiple technology choices to seek information. However, no study has compared the…
44. Detail, bridge land span outboard girder brackets carrying utility ...
44. Detail, bridge land span outboard girder brackets carrying utility conduit. Structure rests on granite blocks mounted on granite piers. - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA
-channel CIIFEN Centro Internacional para la Investigación del Fenómeno de El Niño / International Conocimiento y Uso de la Biodiversidad / National Commission for Knowledge and Use of Biodiversity Sub-channel Center for the Investigation of the El Niño Phenomenon Sub-channel CMACast Regional GEOENTCast Component
Daniele Tonina; John M. Buffington
2011-01-01
Hyporheic flow results from the interaction between streamflow and channel morphology and is an important component of stream ecosystems because it enhances water and solute exchange between the river and its bed. Hyporheic flow in pool-riffle channels is particularly complex because of three-dimensional topography that spans a range of partially to fully submerged...
White, Melanie D.; Milne, Ruth V. J.; Nolan, Matthew F.
2011-01-01
We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins, and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV) or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1, and Kir3.2) and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miRNA). We show that AAV assembled to express HCN1 miRNA produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miRNA with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience. PMID:21772812
Biased and flow driven Brownian motion in periodic channels
NASA Astrophysics Data System (ADS)
Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.
2012-02-01
In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.
Advancements in tailored hot stamping simulations: Cooling channel and distortion analyses
NASA Astrophysics Data System (ADS)
Billur, Eren; Wang, Chao; Bloor, Colin; Holecek, Martin; Porzner, Harald; Altan, Taylan
2013-12-01
Hot stamped components have been widely used in the automotive industry in the last decade where ultra high strength is required. These parts, however, may not provide sufficient toughness to absorb crash energy. Therefore, these components are "tailored" by controlling the microstructure at various locations. Simulation of tailored hot stamped components requires more detailed analysis of microstructural changes. Furthermore, since the part is not uniformly quenched, severe distortion can be observed. CPF, together with ESI have developed a number of techniques to predict the final properties of a tailored part. This paper discusses the recent improvements in modeling distortion and die design with cooling channels.
A Conducting State with Properties of a Slow Inactivated State in a Shaker K+ Channel Mutant
Olcese, Riccardo; Sigg, Daniel; Latorre, Ramon; Bezanilla, Francisco; Stefani, Enrico
2001-01-01
In Shaker K+ channel, the amino terminus deletion Δ6-46 removes fast inactivation (N-type) unmasking a slow inactivation process. In Shaker Δ6-46 (Sh-IR) background, two additional mutations (T449V-I470C) remove slow inactivation, producing a noninactivating channel. However, despite the fact that Sh-IR-T449V-I470C mutant channels remain conductive, prolonged depolarizations (1 min, 0 mV) produce a shift of the QV curve by about −30 mV, suggesting that the channels still undergo the conformational changes typical of slow inactivation. For depolarizations longer than 50 ms, the tail currents measured during repolarization to −90 mV display a slow component that increases in amplitude as the duration of the depolarizing pulse increases. We found that the slow development of the QV shift had a counterpart in the amplitude of the slow component of the ionic tail current that is not present in Sh-IR. During long depolarizations, the time course of both the increase in the slow component of the tail current and the change in voltage dependence of the charge movement could be well fitted by exponential functions with identical time constant of 459 ms. Single channel recordings revealed that after prolonged depolarizations, the channels remain conductive for long periods after membrane repolarization. Nonstationary autocovariance analysis performed on macroscopic current in the T449V-I470C mutant confirmed that a novel open state appears with increasing prepulse depolarization time. These observations suggest that in the mutant studied, a new open state becomes progressively populated during long depolarizations (>50 ms). An appealing interpretation of these results is that the new open state of the mutant channel corresponds to a slow inactivated state of Sh-IR that became conductive. PMID:11158167
Calcium channels in solitary retinal ganglion cells from post-natal rat.
Karschin, A; Lipton, S A
1989-01-01
1. Calcium currents from identified, post-natal retinal ganglion cell neurones from rat were studied with whole-cell and single-channel patch-clamp techniques. Na+ and K+ currents were suppressed with pharmacological agents, allowing isolation of current carried by either 10 mM-Ca2+ or Ba2- during whole-cell recordings. For cell-attached patch recordings, the recording pipette contained 96-110 mM-BaCl2 while the bath solution consisted of isotonic potassium aspartate in order to zero the neuronal membrane potential. 2. A transient component, present in approximately one-third of the whole-cell recordings resembles closely the T-type calcium current observed previously in other tissues. This component activates at low voltages (-40 to -50 mV from holding potentials negative to -80 mV), inactivates with a time constant of 10-30 ms at 35 degrees C, and is carried equally well by Ba2+ or Ca2+. In single-channel recordings small (8 pS) channels are observed whose aggregate microscopic kinetics correspond well to the macroscopic current obtained during whole-cell measurements. 3. During whole-cell recordings, a more prolonged component activates in all retinal ganglion cells at -40 to -20 mV from a holding potential of -90 mV. This component is substantially larger when equimolar Ba2+ replaces Ca2+ as the charge carrier, and is sensitive to the dihydropyridine agonist Bay K8644 (5 microM) and antagonists nifedipine (1-10 microM) and nimodipine (1-10 microM). Thus, the dihydropyridine pharmacology of this prolonged component resembles that of the L-type calcium current found in dorsal root ganglion neurones and in heart cells. Also reminiscent of the L-current, the prolonged component in this preparation is less inactivated at depolarized holding potentials (-60 to -40 mV) than the transient component. In cell-attached recordings, large (20 pS) channels are observed with activation properties similar to those of the prolonged portion of the whole-cell current. 4. omega-Conotoxin fraction GVIA (omega-CgTX VIA), a peptide from the venom of the snail Conus geographus, produces a readily reversible blockade of all components of the calcium current in these central mammalian neurones. This finding is in contrast to that of other preparations in which this toxin is responsible for an ephemeral block of T-current but a long-lasting block of other components of calcium current. 5. In summary, at least two components of calcium current with discrete underlying unitary events are present in post-natal retinal ganglion cells from rat. One component closely resembles the T or transient current observed in other cell types.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2559971
8-PSK Signaling over non-linear satellite channels
NASA Technical Reports Server (NTRS)
Horan, Sheila B.; Caballero, Ruben B. Eng.
1996-01-01
Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.
Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.
Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E
2011-11-22
Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.
Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors
Tremblay, Noah J.; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E.
2013-01-01
Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards ‘intelligent sensors’ that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations. PMID:23754969
NASA Astrophysics Data System (ADS)
Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang
2017-07-01
The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.
NASA Astrophysics Data System (ADS)
Zhao, Fang-Ming; Jiang, Ling-Ge; He, Chen
In this paper, a channel allocation scheme is studied for overlay wireless networks to optimize connection-level QoS. The contributions of our work are threefold. First, a channel allocation strategy using both horizontal channel borrowing and vertical traffic overflowing (HCBVTO) is presented and analyzed. When all the channels in a given macrocell are used, high-mobility real-time handoff requests can borrow channels from adjacent homogeneous cells. In case that the borrowing requests fail, handoff requests may also be overflowed to heterogeneous cells, if possible. Second, high-mobility real-time service is prioritized by allowing it to preempt channels currently used by other services. And third, to meet the high QoS requirements of some services and increase the utilization of radio resources, certain services can be transformed between real-time services and non-real-time services as necessary. Simulation results demonstrate that the proposed schemes can improve system performance.
Joint source-channel coding for motion-compensated DCT-based SNR scalable video.
Kondi, Lisimachos P; Ishtiaq, Faisal; Katsaggelos, Aggelos K
2002-01-01
In this paper, we develop an approach toward joint source-channel coding for motion-compensated DCT-based scalable video coding and transmission. A framework for the optimal selection of the source and channel coding rates over all scalable layers is presented such that the overall distortion is minimized. The algorithm utilizes universal rate distortion characteristics which are obtained experimentally and show the sensitivity of the source encoder and decoder to channel errors. The proposed algorithm allocates the available bit rate between scalable layers and, within each layer, between source and channel coding. We present the results of this rate allocation algorithm for video transmission over a wireless channel using the H.263 Version 2 signal-to-noise ratio (SNR) scalable codec for source coding and rate-compatible punctured convolutional (RCPC) codes for channel coding. We discuss the performance of the algorithm with respect to the channel conditions, coding methodologies, layer rates, and number of layers.
Calcium channels in chicken sperm regulate motility and the acrosome reaction.
Nguyen, Thi Mong Diep; Duittoz, Anne; Praud, Christophe; Combarnous, Yves; Blesbois, Elisabeth
2016-05-01
Intracellular cytoplasmic calcium ([Ca(2+) ]i ) has an important regulatory role in gamete functions. However, the biochemical components involved in Ca(2+) transport are still unknown in birds, an animal class that has lost functional sperm-specific CatSper channels. Here, we provide evidence for the presence and expression of various Ca(2+) channels in chicken sperm, including high voltage-activated channels (L and R types), the store-operated Ca(2+) channel (SOC) component Orai1, the transient receptor potential channel (TRPC1) and inositol-1,4,5-trisphosphate receptors (IP3 R1). L- and R-type channels were mainly localized in the acrosome and the midpiece, and T-type channels were not detected in chicken sperm. Orai1 was found in all compartments, but with a weak, diffuse signal in the flagellum. TRCP1 was mainly localized in the acrosome and the midpiece, but a weak diffuse signal was also observed in the nucleus and the flagellum. IP3 R1 was mainly detected in the nucleus. The L-type channel inhibitor nifedipine, the R-type channel inhibitor SNX-482 and the SOC inhibitors MRS-1845, 2-APB and YM-58483 decreased [Ca(2+) ]i sperm motility and acrosome reaction capability, with the SOC inhibitors inhibiting these functions most efficiently. Furthermore, we showed that Ca(2+) -mediated induction of AMP-activated protein kinase (AMPK) phosphorylation was blocked by SOC inhibition. Our identification of important regulators of Ca(2+) signaling in avian sperm suggests that SOCs play a predominant role in gamete function, whereas T-type channels may not be involved. In addition, Ca(2+) entry via SOCs appears to be the most likely pathway for AMPK activation and energy-requiring sperm functions such as motility and the acrosome reaction. © 2016 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.
2016-03-01
Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian-Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, "Numerical study of collisional particle dynamics in cluster-induced turbulence," J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.
NASA Technical Reports Server (NTRS)
Spalding, E. P.; Hirsch, R. E.; Lewis, D. R.; Qi, Z.; Sussman, M. R.; Lewis, B. D.
1999-01-01
A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K+ channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K+-uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of the wild-type K+ permeability was between 55 and 63% when external [K+] was between 10 and 1,000 microM, and NH4+ was absent. NH4+ specifically inhibited the non-AKT1 component, apparently by competing for K+ binding sites on the transporter(s). This inhibition by NH4+ had significant consequences for akt1 plants: K+ permeability, 86Rb+ fluxes into roots, seed germination, and seedling growth rate of the mutant were each similarly inhibited by NH4+. Wild-type plants were much more resistant to NH4+. Thus, AKT1 channels conduct the K+ influx necessary for the growth of Arabidopsis embryos and seedlings in conditions that block the non-AKT1 mechanism. In contrast to the effects of NH4+, Na+ and H+ significantly stimulated the non-AKT1 portion of the K+ permeability. Stimulation of akt1 growth rate by Na+, a predicted consequence of the previous result, was observed when external [K+] was 10 microM. Collectively, these results indicate that the AKT1 channel is an important component of the K+ uptake apparatus supporting growth, even in the "high-affinity" range of K+ concentrations. In the absence of AKT1 channel activity, an NH4+-sensitive, Na+/H+-stimulated mechanism can suffice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capecelatro, Jesse, E-mail: jcaps@illinois.edu; Desjardins, Olivier; Fox, Rodney O.
Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components ofmore » the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.« less
Wang, Ying; Zhang, Manman; Fu, Jun; Li, Tingting; Wang, Jinggang; Fu, Yingyu
2016-10-01
The interaction between carbamazepine (CBZ) and dissolved organic matter (DOM) from three zones (the nearshore, the river channel, and the coastal areas) in the Yangtze Estuary was investigated using fluorescence quenching titration combined with excitation emission matrix spectra and parallel factor analysis (PARAFAC). The complexation between CBZ and DOM was demonstrated by the increase in hydrogen bonding and the disappearance of the C=O stretch obtained from the Fourier transform infrared spectroscopy analysis. The results indicated that two protein-like substances (component 2 and component3) and two humic-like substances (component 1 and 4) were identified in the DOM from the Yangtze Estuary. The fluorescence quenching curves of each component with the addition of CBZ and the Ryan and Weber model calculation results both demonstrated that the different components exhibited different complexation activities with CBZ. The protein-like components had a stronger affinity with CBZ than did the humic-like substances. On the other hand, the autochthonous tyrosine-like C2 played an important role in the complexation with DOM from the river channel and coastal areas, while C3 influenced by anthropogenic activities showed an obvious effect in the nearshore area. DOMs from the river channel have the highest binding capacity for CBZ, which may ascribe to the relatively high phenol content group in the DOM.
2013-01-01
design of side- vent-channels. The results obtained confirmed the beneficial effects of the side-vent-channels in reducing the blast momentum , although...confirmed the beneficial effects of the side-vent-channels in reducing the blast momentum , although the extent of these effects is relatively small (3...products against the surrounding medium is associated with exchange of linear momentum and various energy components (e.g. potential, thermal
NASA Astrophysics Data System (ADS)
Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Fu, Mengying; Ohki, Yoshimichi; Tanaka, Torahiko; Makishima, Makoto
2016-02-01
Hemagglutination is utilized for various immunological assays, including blood typing and virus detection. Herein, we describe a method of rapid hemagglutination detection based on a microfluidic channel installed on an optical waveguide-mode sensor. Human blood samples mixed with hemagglutinating antibodies associated with different blood groups were injected into the microfluidic channel, and reflectance spectra of the samples were measured after stopping the flow. The agglutinated and nonagglutinated samples were distinguishable by the alterations in their reflectance spectra with time; the microfluidic channels worked as spatial restraints for agglutinated red blood cells. The demonstrated system allowed rapid hemagglutination detection within 1 min. The suitable height of the channels was also discussed.
Mixing of passive tracers in the decay Batchelor regime of a channel flow
NASA Astrophysics Data System (ADS)
Jun, Yonggun; Steinberg, Victor
2010-12-01
We report detailed quantitative studies of passive scalar mixing in a curvilinear channel flow, where elastic turbulence in a dilute polymer solution of high molecular weight polyacrylamide in a high viscosity water-sugar solvent was achieved. For quantitative investigation of mixing, a detailed study of the profiles of mean longitudinal and radial components of the velocity in the channel as a function of Wi was carried out. Besides, a maximum of the average value as well as a rms of the longitudinal velocity was used to determine the threshold of the elastic instability in the channel flow. The rms of the radial derivatives of the longitudinal and radial velocity components was utilized to define the control parameters of the problem, the Weissenberg Wiloc and the Péclet Pe numbers. The main result of these studies is the quantitative test of the theoretical prediction about the value of the mixing length in the decay Batchelor regime. The experiment shows large quantitative discrepancy, more than 200 times in the value of the coefficient C, which appears in the theoretical expression for the mixing length, but with the predicted scaling relation. There are two possible reasons to this discrepancy. First is the assumption made in the theory about the δ-correlated velocity field, which is in odds with the experimental observations. Second, and probably a more relevant suggestion for the significantly increased mixing length and thus reduced mixing efficiency, is the observed jets, the rare, localized, and vigorous ejection of the scalar trapped near the wall, which protrudes into the peripheral region as well as the bulk. They are first found in the recent numerical calculations and then observed in the experiment reported. The jets definitely strongly reduce the mixing efficiency in particular in the peripheral region and so can lead to considerable increase of the mixing length. We hope that this result will initiate further numerical calculations of the mixing length. Finally, we analyze statistical properties of the mixing in the decay Batchelor regime by studying the power spectra, the decay exponents scaling, the structure functions of a tracer and moments of PDF of passive scalar increments, and the temporal and spatial correlation functions and find rather satisfactory agreement with theory.
Phillips, Jeff V.; Ingersoll, Todd L.
1998-01-01
Physical and hydraulic characteristics are presented for 14 river and canal reaches in Arizona for which 37 roughness coefficients have been determined. The verified roughness coefficients which ranged from 0.017 to 0.067, were computed from discharges, channel geometry, and water-surface profiles measured at each of the sites. The information given for each stream segment includes bed and bank descriptions, data tables showing hydraulic components, a plan view, cross-section plots, and color photographs that can be used as a comparison aid in determining roughness coefficients for similarly channeled streams. Relations derived from the data presented relate Manning's roughness coefficient (n) to various hydraulic components. For gravel-bed streams, verified roughness coefficients are related to median grain size of the bed material and hydraulic radius resulting in an equation that can be used to transfer results to similar dry-land channels. The equation developed for base values of n for gravel-bed channels in Arizona is significantly different from similarly derived equations for other regions of the United States and the world.
Hybrid microfluidic and nanofluidic system
Bohn, Paul W [Champaign, IL; Sweedler, Jonathan V [Urbana, IL; Shannon, Mark A [Champaign, IL; Kuo, Tzu-chi [Savoy, IL
2007-05-22
A fluid circuit includes a membrane having a first side, a second side opposite the first side, and a pore extending from the first side to the second side. The circuit also includes a first channel containing fluid extending along the first side of the membrane and a second channel containing fluid extending along the second side of the membrane and crossing the first channel. The circuit also includes an electrical source in electrical communication with at least one of the first fluid and second fluid for selectively developing an electrical potential between fluid in the first channel and fluid in the second channel. This causes at least one component of fluid to pass through the pore in the membrane from one of the first channel and the second channel to the other of the first channel and the second channel.
Turbulent structure in low-concentration drag-reducing channel flows
NASA Technical Reports Server (NTRS)
Luchik, T. S.; Tiederman, W. G.
1988-01-01
A two-component laser-Doppler velocimeter was used to obtain simultaneous measurements of the velocity components parallel and normal to the wall in two fully developed well-mixed low-concentration drag-reducing channel flows and one turbulent channel flow. For the drag-reducing flows, the average time between bursts was found to increase. Although the basic structure of the fundamental momentum transport event is shown to be the same in these drag-reducing flows, the lower-threshold Reynolds-stress-producing motions were found to be damped, while the higher-threshold motions were not. It is suggested that some strong turbulent motions are needed to maintain extended polymer molecules, which produce a solution with properties that can damp lower threshold turbulence and thereby reduce viscous drag.
Paleogeodesy of the Southern Santa Cruz Mountains Frontal Thrusts, Silicon Valley, CA
NASA Astrophysics Data System (ADS)
Aron, F.; Johnstone, S. A.; Mavrommatis, A. P.; Sare, R.; Hilley, G. E.
2015-12-01
We present a method to infer long-term fault slip rate distributions using topography by coupling a three-dimensional elastic boundary element model with a geomorphic incision rule. In particular, we used a 10-m-resolution digital elevation model (DEM) to calculate channel steepness (ksn) throughout the actively deforming southern Santa Cruz Mountains in Central California. We then used these values with a power-law incision rule and the Poly3D code to estimate slip rates over seismogenic, kilometer-scale thrust faults accommodating differential uplift of the relief throughout geologic time. Implicit in such an analysis is the assumption that the topographic surface remains unchanged over time as rock is uplifted by slip on the underlying structures. The fault geometries within the area are defined based on surface mapping, as well as active and passive geophysical imaging. Fault elements are assumed to be traction-free in shear (i.e., frictionless), while opening along them is prohibited. The free parameters in the inversion include the components of the remote strain-rate tensor (ɛij) and the bedrock resistance to channel incision (K), which is allowed to vary according to the mapped distribution of geologic units exposed at the surface. The nonlinear components of the geomorphic model required the use of a Markov chain Monte Carlo method, which simulated the posterior density of the components of the remote strain-rate tensor and values of K for the different mapped geologic units. Interestingly, posterior probability distributions of ɛij and K fall well within the broad range of reported values, suggesting that the joint use of elastic boundary element and geomorphic models may have utility in estimating long-term fault slip-rate distributions. Given an adequate DEM, geologic mapping, and fault models, the proposed paleogeodetic method could be applied to other crustal faults with geological and morphological expressions of long-term uplift.
A numerical study of blood flow using mixture theory
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.
2014-01-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016
A numerical study of blood flow using mixture theory.
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F
2014-03-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.
Vortex Formation During Unsteady Boundary-Layer Separation
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.
1998-11-01
Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.
Lien, Cheng-Chang; Martina, Marco; Schultz, Jobst H; Ehmke, Heimo; Jonas, Peter
2002-01-01
GABAergic interneurones are diverse in their morphological and functional properties. Perisomatic inhibitory cells show fast spiking during sustained current injection, whereas dendritic inhibitory cells fire action potentials with lower frequency. We examined functional and molecular properties of K+ channels in interneurones with horizontal dendrites in stratum oriens-alveus (OA) of the hippocampal CA1 region, which mainly comprise somatostatin-positive dendritic inhibitory cells. Voltage-gated K+ currents in nucleated patches isolated from OA interneurones consisted of three major components: a fast delayed rectifier K+ current component that was highly sensitive to external 4-aminopyridine (4-AP) and tetraethylammonium (TEA) (half-maximal inhibitory concentrations < 0.1 mm for both blockers), a slow delayed rectifier K+ current component that was sensitive to high concentrations of TEA, but insensitive to 4-AP, and a rapidly inactivating A-type K+ current component that was blocked by high concentrations of 4-AP, but resistant to TEA. The relative contributions of these components to the macroscopic K+ current were estimated as 57 ± 5, 25 ± 6, and 19 ± 2 %, respectively. Dendrotoxin, a selective blocker of Kv1 channels had only minimal effects on K+ currents in nucleated patches. Coapplication of the membrane-permeant cAMP analogue 8-(4-chlorophenylthio)-adenosine 3′:5′-cyclic monophosphate (cpt-cAMP) and the phosphodiesterase blocker isobutyl-methylxanthine (IBMX) resulted in a selective inhibition of the fast delayed rectifier K+ current component. This inhibition was absent in the presence of the protein kinase A (PKA) inhibitor H-89, implying the involvement of PKA-mediated phosphorylation. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed a high abundance of Kv3.2 mRNA in OA interneurones, whereas the expression level of Kv3.1 mRNA was markedly lower. Similarly, RT-PCR analysis showed a high abundance of Kv4.3 mRNA, whereas Kv4.2 mRNA was undetectable. This suggests that the fast delayed rectifier K+ current and the A-type K+ current component are mediated predominantly by homomeric Kv3.2 and Kv4.3 channels. Selective modulation of Kv3.2 channels in OA interneurones by cAMP is likely to be an important factor regulating the activity of dendritic inhibitory cells in principal neurone-interneurone microcircuits. PMID:11790809
A WDM/Optical-CDMA (WDM/O-CDMA) Concept for Avionics Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez, A J; Hernandez, V J; Gagliardi, R M
2005-06-02
We describe a concept where WDM and O-CDMA share a set of discrete wavelengths and components while using similar modulation formats. O-CDMA acts as a channel multiplier. Experiments show the feasibility of >2X channel multiplication.
Modulation and coding for fast fading mobile satellite communication channels
NASA Technical Reports Server (NTRS)
Mclane, P. J.; Wittke, P. H.; Smith, W. S.; Lee, A.; Ho, P. K. M.; Loo, C.
1988-01-01
The performance of Gaussian baseband filtered minimum shift keying (GMSK) using differential detection in fast Rician fading, with a novel treatment of the inherent intersymbol interference (ISI) leading to an exact solution is discussed. Trellis-coded differentially coded phase shift keying (DPSK) with a convolutional interleaver is considered. The channel is the Rician Channel with the line-of-sight component subject to a lognormal transformation.
Gilbuena, Romeo; Kawamura, Akira; Medina, Reynaldo; Nakagawa, Naoko; Amaguchi, Hideo
2013-12-15
In recent years, the practice of environmental impact assessment (EIA) has created significant awareness on the role of environmentally sound projects in sustainable development. In view of the recent studies on the effects of climate change, the Philippine government has given high priority to the construction of flood control structures to alleviate the destructive effects of unmitigated floods, especially in highly urbanized areas like Metro Manila. EIA thus, should be carefully and effectively carried out to maximize or optimize the potential benefits that can be derived from structural flood mitigation measures (SFMMs). A utility-based environmental assessment approach may significantly aid flood managers and decision-makers in planning for effective and environmentally sound SFMM projects. This study proposes a utility-based assessment approach using the rapid impact assessment matrix (RIAM) technique, coupled with the evidential reasoning approach, to rationally and systematically evaluate the ecological and socio-economic impacts of 4 planned SFMM projects (i.e. 2 river channel improvements and 2 new open channels) in Metro Manila. Results show that the overall environmental effects of each of the planned SFMM projects are positive, which indicate that the utility of the positive impacts would generally outweigh the negative impacts. The results also imply that the planned river channel improvements will yield higher environmental benefits over the planned open channels. This study was able to present a clear and rational approach in the examination of overall environmental effects of SFMMs, which provides valuable insights that can be used by decision-makers and policy makers to improve the EIA practice and evaluation of projects in the Philippines. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Reliability Simulator for Radiation-Hard Microelectronics Development
1991-07-01
1 3.0 PHASE II WORK PLANS ................................................................ 2... plan . The correlation experimental details including the devices utilized, the hot-carrier stressing and the wafer-level radiation correlation procedure...channel devices, and a new lifetime extrapolation method is demonstrated for p-channel devices. 3.0 PHASE II WORK PLANS The Phase 1I program consisted of
Mammalian Odor Information Recognition by Implanted Microsensor Array in vivo
NASA Astrophysics Data System (ADS)
Zhou, Jun; Dong, Qi; Zhuang, Liujing; Liu, Qingjun; Wang, Ping
2011-09-01
The mammalian olfactory system has an exquisite capacity to rapidly recognize and discriminate thousands of distinct odors in our environment. Our research group focus on reading information from olfactory bulb circuit of anethetized Sprague-Dawley rat and utilize artificial recognition system for odor discrimination. After being stimulated by three odors with concentration of 10 μM to rat nose, the response of mitral cells in olfactory bulb is recorded by eight channel microwire sensor array. In 20 sessions with 3 animals, we obtained 30 discriminated individual cells recordings. The average firing rates of the cells are Isoamyl acetate 26 Hz, Methoxybenzene 16 Hz, and Rose essential oil 11 Hz. By spike sorting, we detect peaks and analyze the interspike interval distribution. Further more, principal component analysis is applied to reduce the dimensionality of the data sets and classify the response.
Visual display and alarm system for wind tunnel static and dynamic loads
NASA Technical Reports Server (NTRS)
Hanly, Richard D.; Fogarty, James T.
1987-01-01
A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanisms, or tunnel shutdown.
Visual display and alarm system for wind tunnel static and dynamic loads
NASA Technical Reports Server (NTRS)
Hanly, Richard D.; Fogarty, James T.
1987-01-01
A wind tunnel balance monitor and alarm system developed at NASA Ames Research Center will produce several beneficial results. The costs of wind tunnel delays because of inadvertent balance damage and the costs of balance repair or replacement can be greatly reduced or eliminated with better real-time information on the balance static and dynamic loading. The wind tunnel itself will have enhanced utility with the elimination of overly cautious limits on test conditions. The microprocessor-based system features automatic scaling and 16 multicolored LED bargraphs to indicate both static and dynamic components of the signals from eight individual channels. Five individually programmable alarm levels are available with relay closures for internal or external visual and audible warning devices and other functions such as automatic activation of external recording devices, model positioning mechanism, or tunnel shutdown.
Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2008-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
Status of Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Lineberry, John T.
2007-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
Environmental performance evaluation of an advanced-design solid-state television camera
NASA Technical Reports Server (NTRS)
1979-01-01
The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.
Zheng, Li-Ping; Wang, Hua-Feng; Li, Bao-Ming; Zeng, Xu-Hui
2013-10-01
There is a global need for an ideal method of male contraception. However, the development of male contraceptives has not been well successful. Research on sperm-specific ion channels, especially the recent advance obtained from electrophysiological studies, has emphasized the conception that those channels are targets with the most potential to develop non-hormonal male contraceptives. While summarizing the general options for male contraception, this review focuses on the properties and functions of sperm ion channels together with the attempts of utilizing these channels to develop male contraceptives. We believe that a deeper insight into the signaling and molecular mechanisms by which ion channels regulate sperm functions will pave the way for developing novel male-based contraceptives. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren
2018-02-01
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.
Optical nondestructive dynamic measurements of wafer-scale encapsulated nanofluidic channels.
Liberman, Vladimir; Smith, Melissa; Weaver, Isaac; Rothschild, Mordechai
2018-05-20
Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed or embedded channels without cleaving the sample. Here, we demonstrate a novel method for accurately extracting nanochannel cross-sectional dimensions and monitoring fluid filling, utilizing spectroscopic ellipsometric scatterometry, combined with rigorous electromagnetic simulations. Our technique is capable of measuring channel dimensions with better than 5-nm accuracy and assessing channel filling within seconds. The developed technique is, thus, well suited for both process monitoring of channel fabrication as well as for studying complex phenomena of fluid flow through nanochannel structures.
Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.
Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger
2014-07-14
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.
Cationic PAMAM Dendrimers as Pore-Blocking Binary Toxin Inhibitors
2015-01-01
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria. PMID:24954629
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides.
Dai, Gucan; Peng, Changhong; Liu, Chunming; Varnum, Michael D
2013-04-01
Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIP(n)), including phosphatidylinositol 3,4,5-triphosphate (PIP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIP(n) application. However, PIP(n) induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIP(n)-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIP(n) application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIP(n) regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIP(n) sensitivity to heteromeric channels formed with PIP(n)-insensitive A subunits. Finally, channels formed by mixtures of PIP(n)-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIP(n) regulation, implying that intersubunit N-C interactions help control the phosphoinositide sensitivity of cone CNG channels.
Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides
Dai, Gucan; Peng, Changhong; Liu, Chunming
2013-01-01
Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIPn), including phosphatidylinositol 3,4,5-triphosphate (PIP3) and phosphatidylinositol 4,5-bisphosphate (PIP2), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIPn application. However, PIPn induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIPn-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIPn application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIPn regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIPn sensitivity to heteromeric channels formed with PIPn-insensitive A subunits. Finally, channels formed by mixtures of PIPn-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIPn regulation, implying that intersubunit N–C interactions help control the phosphoinositide sensitivity of cone CNG channels. PMID:23530136
Catterall, W A; Hartshorne, R P; Beneski, D A
1982-01-01
Neurotoxins that act at specific receptor sites on voltage-sensitive sodium channels have been used as molecular probes to identify and purify protein components of sodium channels from mammalian brain. Photoreactive derivatives of scorpion toxin have been prepared and used to covalently label sodium channels in intact synaptosomes. Two polypeptides, alpha with Mr approximately 270,000 and beta with Mr approximately 38,000, are specifically labeled indicating that they are components of the scorpion toxin receptor site on the sodium channel. The sodium channel can be solubilized with retention of specific binding of [3H] saxitoxin using nonionic detergents such as Triton X-100. The solubilized saxitoxin receptor has molecular weight of 316,000 +/- 63,000 and binds 0.9 g of Triton X-100 and phospholipid per g of protein. The solubilized receptor can be purified 750-fold by ion exchange chromatography, wheat germ lectin/Sepharose chromatography and sucrose gradient sedimentation to a final specific activity of 1488 pmol/mg. Analysis of the polypeptide chain composition of the most highly purified fractions indicates that alpha and beta comprise 65% of the protein of these fractions and are only the polypeptides whose presence correlates with saxitoxin binding activity. These studies lead to a working hypothesis of sodium channel structure in which the intact channel is comprised of a complex with Mr of approximately 316,000 containing one mole of alpha (Mr approximately 270,000) and one to three moles of beta (Mr approximately 38,000).
Role of TRP Channels in Dinoflagellate Mechanotransduction.
Lindström, J B; Pierce, N T; Latz, M I
2017-10-01
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd 3+ ), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.
Welch, James D.
2000-01-01
Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.
Block of high-threshold calcium channels by the synthetic polyamines sFTX-3.3 and FTX-3.3.
Norris, T M; Moya, E; Blagbrough, I S; Adams, M E
1996-10-01
A polyamine component of Agelenopsis aperta spider venom designated FTX is reported to be a selective antagonist of P-type calcium channels in the mammalian brain. Consequently, this component has frequently been used as a pharmacological tool to determine the presence, distribution, and function of P-type channels in physiological systems. We describe antagonism of calcium channels by the synthesized polyamine FTX-3.3, which has the proposed structure of natural FTX. We also examined a corresponding polyamine amide, sFTX-3.3. These polyamines are critically evaluated for antagonism of three high-threshold calcium channel subtypes in rat neurons through the use of the whole-cell patch-clamp technique. FTX-3.3 (IC50 = approximately 0.13 mM) is approximately twice as potent as sFTX-3.3 (IC50 = approximately 0.24 mM) against P-type channels and approximately 3-fold more potent against N-type channels (FTX-3.3, IC50 = approximately 0.24 mM; sFTX-3.3, IC50 = approximately 0.70 mM). Both polyamines also block L-type calcium channels with similar potencies. sFTX-3.3 (1 mM) and FTX-3.3 (0.5 mM) typically block 50% and 65% of Bay K8644-enhanced L-type current, respectively. Antagonism of each calcium channel subtype is voltage dependent, with less inhibition of Ba2+ currents at more-positive potentials. These data show that both sFTX-3.3 and FTX-3.3 antagonize P-, N-, and L-type calcium channels in mammalian Purkinje and superior cervical ganglia neurons with similar IC50 values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, James T.; Thompson, Scott J.; Watson, Scott M.
We present a multi-channel, fast neutron/gamma ray detector array system that utilizes ZnS(Ag) scintillator detectors. The system employs field programmable gate arrays (FPGAs) to do real-time all digital neutron/gamma ray discrimination with pulse height and time histograms to allow count rates in excess of 1,000,000 pulses per second per channel. The system detector number is scalable in blocks of 16 channels.
Graphene-based battery electrodes having continuous flow paths
Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu
2014-05-24
Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Makoto
A new muon channel, MUSIC, is being constructed at the Research Center for Nuclear Physics (RCNP) at Osaka University in Japan. The muon channel utilizes a strong solenoidal magnetic field to collect pions and to transport muons. A large-bore superconducting coil encloses the pion-production target to capture pions with a large solid angle. A long solenoid magnet transports pions and muons with the capability to select the charge and momentum of the particles. The design of the solenoid channel is described in this paper.
NASA Technical Reports Server (NTRS)
Hein, G. F.
1974-01-01
Special purpose satellites are very cost sensitive to the number of broadcast channels, usually will have Poisson arrivals, fairly low utilization (less than 35%), and a very high availability requirement. To solve the problem of determining the effects of limiting C the number of channels, the Poisson arrival, infinite server queueing model will be modified to describe the many server case. The model is predicated on the reproductive property of the Poisson distribution.
Simple measures of channel habitat complexity predict transient hydraulic storage in streams
Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for appropriate follow-up by DIS. DoD Components and industry will assist DIS in publicizing the availability of appropriate reporting channels. Additionally, DoD Components will augment the system when and... commander of the duty organization shall insure that the parent Component of the individual concerned is...
Ellings, Christopher S.; Davis, Melanie; Grossman, Eric E.; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.
2016-01-01
The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.
Scott, Beth E; Schmidt, Wolf P; Aunger, Robert; Garbrah-Aidoo, Nana; Animashaun, Rasaaque
2008-06-01
In 2003-04, a National Handwashing Campaign utilizing mass media and community events took place in Ghana. This article describes the results of the evaluation of the campaign in a sample of 497 women with children <5 years. The unifying message across all communication channels was that hands were not 'truly' clean unless washed with soap. The campaign reached 82% of the study population. Sixty-two per cent of women knew the campaign song, 44% were exposed to one channel and 36% to two or more. Overall, TV and radio had greater reach and impact on reported handwashing than community events, while exposure to both a mass media channel and an event yielded the greatest effect, resulting in a 30% increase in reported handwashing with soap after visiting the toilet or cleaning a child's bottom. Our evaluation questions wide-held belief that community events are more effective agents of behaviour change than mass media commercials, at least in the case of hygiene promotion. However, failure of mass media to reach the entire target audience, particularly in specific regions and lower socio-economic groups, and the additive effect of exposure, underscores the need to implement integrated communication programmes utilizing a variety of complementary channels.
Molecular Mechanism of Active Zone Organization at Vertebrate Neuromuscular Junctions
Nishimune, Hiroshi
2013-01-01
Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses. PMID:22135013
Divergence-free approach for obtaining decompositions of quantum-optical processes
NASA Astrophysics Data System (ADS)
Sabapathy, K. K.; Ivan, J. S.; García-Patrón, R.; Simon, R.
2018-02-01
Operator-sum representations of quantum channels can be obtained by applying the channel to one subsystem of a maximally entangled state and deploying the channel-state isomorphism. However, for continuous-variable systems, such schemes contain natural divergences since the maximally entangled state is ill defined. We introduce a method that avoids such divergences by utilizing finitely entangled (squeezed) states and then taking the limit of arbitrary large squeezing. Using this method, we derive an operator-sum representation for all single-mode bosonic Gaussian channels where a unique feature is that both quantum-limited and noisy channels are treated on an equal footing. This technique facilitates a proof that the rank-1 Kraus decomposition for Gaussian channels at its respective entanglement-breaking thresholds, obtained in the overcomplete coherent-state basis, is unique. The methods could have applications to simulation of continuous-variable channels.
Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA
Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.
2005-01-01
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.
Pérez-García, M Teresa; Colinas, Olaia; Miguel-Velado, Eduardo; Moreno-Domínguez, Alejandro; López-López, José Ramón
2004-01-01
As there are wide interspecies variations in the molecular nature of the O2-sensitive Kv channels in arterial chemoreceptors, we have characterized the expression of these channels and their hypoxic sensitivity in the mouse carotid body (CB). CB chemoreceptor cells were obtained from a transgenic mouse expressing green fluorescent protein (GFP) under the control of tyrosine hydroxylase (TH) promoter. Immunocytochemical identification of TH in CB cell cultures reveals a good match with GFP-positive cells. Furthermore, these cells show an increase in [Ca2+]i in response to low PO2, demonstrating their ability to engender a physiological response. Whole-cell experiments demonstrated slow-inactivating K+ currents with activation threshold around −30 mV and a bi-exponential kinetic of deactivation (τ of 6.24 ± 0.52 and 32.85 ± 4.14 ms). TEA sensitivity of the currents identified also two different components (IC50 of 17.8 ± 2.8 and 940.0 ± 14.7 μm). Current amplitude decreased reversibly in response to hypoxia, which selectively affected the fast deactivating component. Hypoxic inhibition was also abolished in the presence of low (10–50 μm) concentrations of TEA, suggesting that O2 interacts with the component of the current most sensitive to TEA. The kinetic and pharmacological profile of the currents suggested the presence of Kv2 and Kv3 channels as their molecular correlates, and we have identified several members of these two subfamilies by single-cell PCR and immunocytochemistry. This report represents the first functional and molecular characterization of Kv channels in mouse CB chemoreceptor cells, and strongly suggests that O2-sensitive Kv channels in this preparation belong to the Kv3 subfamily. PMID:15034123
Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics
NASA Astrophysics Data System (ADS)
Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.
2018-05-01
Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.
An extended smart utilization medium access control (ESU-MAC) protocol for ad hoc wireless systems
NASA Astrophysics Data System (ADS)
Vashishtha, Jyoti; Sinha, Aakash
2006-05-01
The demand for spontaneous setup of a wireless communication system has increased in recent years for areas like battlefield, disaster relief operations etc., where a pre-deployment of network infrastructure is difficult or unavailable. A mobile ad-hoc network (MANET) is a promising solution, but poses a lot of challenges for all the design layers, specifically medium access control (MAC) layer. Recent existing works have used the concepts of multi-channel and power control in designing MAC layer protocols. SU-MAC developed by the same authors, efficiently uses the 'available' data and control bandwidth to send control information and results in increased throughput via decreasing contention on the control channel. However, SU-MAC protocol was limited for static ad-hoc network and also faced the busy-receiver node problem. We present the Extended SU-MAC (ESU-MAC) protocol which works mobile nodes. Also, we significantly improve the scheme of control information exchange in ESU-MAC to overcome the busy-receiver node problem and thus, further avoid the blockage of control channel for longer periods of time. A power control scheme is used as before to reduce interference and to effectively re-use the available bandwidth. Simulation results show that ESU-MAC protocol is promising for mobile, ad-hoc network in terms of reduced contention at the control channel and improved throughput because of channel re-use. Results show a considerable increase in throughput compared to SU-MAC which could be attributed to increased accessibility of control channel and improved utilization of data channels due to superior control information exchange scheme.
Characteristic analysis on UAV-MIMO channel based on normalized correlation matrix.
Gao, Xi jun; Chen, Zi li; Hu, Yong Jiang
2014-01-01
Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication.
Characteristic Analysis on UAV-MIMO Channel Based on Normalized Correlation Matrix
Xi jun, Gao; Zi li, Chen; Yong Jiang, Hu
2014-01-01
Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication. PMID:24977185
Vulnerable transportation and utility assets near actively migrating streams in Indiana
Sperl, Benjamin J.
2017-11-02
An investigation was completed by the U.S. Geological Survey in cooperation with the Indiana Office of Community and Rural Affairs that found 1,132 transportation and utility assets in Indiana are vulnerable to fluvial erosion hazards due to close proximity to actively migrating streams. Locations of transportation assets (bridges, roadways, and railroad lines) and selected utility assets (high-capacity overhead power-transmission lines, underground pipelines, water treatment facilities, and in-channel dams) were determined using aerial imagery hosted by the Google Earth platform. Identified assets were aggregated by stream reach, county, and class. Accompanying the report is a polyline shapefile of the stream reaches documented by Robinson. The shapefile, derived from line work in the National Hydrography Dataset and attributed with channel migration rates, is released with complete Federal Geographic Data Committee metadata. The data presented in this report are intended to help stakeholders and others identify high-risk areas where transportation and utility assets may be threatened by fluvial erosion hazards thus warranting consideration for mitigation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr
2014-10-06
Plasma plume and thruster performance characteristics associated with multiply charged ions in a cylindrical type Hall thruster (CHT) and an annular type Hall thruster are compared under identical conditions such as channel diameter, channel depth, propellant mass flow rate. A high propellant utilization in a CHT is caused by a high ionization rate, which brings about large multiply charged ions. Ion currents and utilizations are much different due to the presence of multiply charged ions. A high multiply charged ion fraction and a high ionization rate in the CHT result in a higher specific impulse, thrust, and discharge current.
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.
NASA Astrophysics Data System (ADS)
Shaltout, Abdelrazek M. K.; Ichimoto, Kiyoshi
2015-04-01
We analyze penumbral fine structure using high-resolution spectropolarimetric data obtained by the Solar Optical Telescope on board the Hinode satellite. The spatial correlation between the net circular polarization (NCP) and Evershed flow is investigated in detail. Here we obtain that negative NCP structures are correlated with the Evershed flow channels in the limb-side penumbra, and that negative NCP or depressions of positive NCP are associated with the Evershed flow channels in the disk center-side of the penumbra for a negative-polarity sunspot in NOAA 10923. The positive NCP dominant in the disk center-side penumbra is essentially attributed to interflow channels instead of Evershed flow channels. The stratification of magnetic field and velocity are investigated by using SIR-JUMP inversion with a one-component atmosphere, and the NCP of spectral lines in the limb-side and disk center-side of the penumbra is successfully reproduced. The inversion results show that an increased Evershed flow is associated with a strong magnetic field located in the deep photosphere. Our result does not match with the simple two-component penumbral models in which the penumbra consists of Evershed flow and interflow channels and the global NCP is attributed only to the Evershed flow channels.
NASA Astrophysics Data System (ADS)
Lv, ZhuoKai; Yang, Tiejun; Zhu, Chunhua
2018-03-01
Through utilizing the technology of compressive sensing (CS), the channel estimation methods can achieve the purpose of reducing pilots and improving spectrum efficiency. The channel estimation and pilot design scheme are explored during the correspondence under the help of block-structured CS in massive MIMO systems. The block coherence property of the aggregate system matrix can be minimized so that the pilot design scheme based on stochastic search is proposed. Moreover, the block sparsity adaptive matching pursuit (BSAMP) algorithm under the common sparsity model is proposed so that the channel estimation can be caught precisely. Simulation results are to be proved the proposed design algorithm with superimposed pilots design and the BSAMP algorithm can provide better channel estimation than existing methods.
Fractional channel multichannel analyzer
Brackenbush, L.W.; Anderson, G.A.
1994-08-23
A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.
Fractional channel multichannel analyzer
Brackenbush, Larry W.; Anderson, Gordon A.
1994-01-01
A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.
1974-08-01
Node Control Logic 2-27 2.16 Pitch Channel Frequence Response 2-36 2.17 Yaw Channel Frequency Response 2-37 K 4 2.18 Analog Computer Mechanlzation of...8217S 0 121 £l1:c IL-I. TABLE I Elements of the Slgma 5 Digital Computer System Xerox Model- Performance MIOP Channel Description Number Characteristics...transfer control signals to or from the CPU. The MIOP can handle up to 32 I/0 channels each operating simultaneously, provided the overall data
Numerical modeling of dune progression in a high amplitude meandering channel
USDA-ARS?s Scientific Manuscript database
Laboratory experiments carried out by Abad and Garcia (2009) in a high-amplitude Kinoshita meandering channel show bed morphodynamics to comprise steady (local scour and deposition) and unsteady (migrating bedforms) components. The experiments are replicated with a numerical model. The sediment tran...
Gas turbine row #1 steam cooled vane
Cunha, Frank J.
2000-01-01
A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Formaggio, A. R.; Dossantos, J. R.; Dias, L. A. V.
1984-01-01
Automatic pre-processing technique called Principal Components (PRINCO) in analyzing LANDSAT digitized data, for land use and vegetation cover, on the Brazilian cerrados was evaluated. The chosen pilot area, 223/67 of MSS/LANDSAT 3, was classified on a GE Image-100 System, through a maximum-likehood algorithm (MAXVER). The same procedure was applied to the PRINCO treated image. PRINCO consists of a linear transformation performed on the original bands, in order to eliminate the information redundancy of the LANDSAT channels. After PRINCO only two channels were used thus reducing computer effort. The original channels and the PRINCO channels grey levels for the five identified classes (grassland, "cerrado", burned areas, anthropic areas, and gallery forest) were obtained through the MAXVER algorithm. This algorithm also presented the average performance for both cases. In order to evaluate the results, the Jeffreys-Matusita distance (JM-distance) between classes was computed. The classification matrix, obtained through MAXVER, after a PRINCO pre-processing, showed approximately the same average performance in the classes separability.
NASA Astrophysics Data System (ADS)
Sayed, Shehrin; Hong, Seokmin; Datta, Supriyo
We will present a general semiclassical theory for an arbitrary channel with spin-orbit coupling (SOC), that uses four electrochemical potential (U + , D + , U - , and D -) depending on the sign of z-component of the spin (up (U) , down (D)) and the sign of the x-component of the group velocity (+ , -) . This can be considered as an extension of the standard spin diffusion equation that uses two electrochemical potentials for up and down spin states, allowing us to take into account the unique coupling between charge and spin degrees of freedom in channels with SOC. We will describe applications of this model to answer a number of interesting questions in this field such as: (1) whether topological insulators can switch magnets, (2) how the charge to spin conversion is influenced by the channel resistivity, and (3) how device structures can be designed to enhance spin injection. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
NASA Technical Reports Server (NTRS)
1972-01-01
A study of frequency division multiplexing (FDM) systems was made for the purpose of determining the system performance that can be obtained with available state of the art components. System performance was evaluated on the basis of past experience, system analysis, and component evaluation. The system study was specifically directed to the area of FDM systems using subcarrier channel frequencies from 4 kHz to 200 kHz and channel information bandwidths of dc to 1, 2, 4, 8, and 16 kHz. The evaluation also assumes that the demodulation will be from a tape recorder which produces frequency modulation of + or - 1% on the signal due to the tape recorder wow and flutter. For the modulation system it is assumed that the pilot and carrier channel frequencies are stable to within + or - .005% and that the FM on the channel carriers is negligible. The modulator system was evaluated for the temperature range of -20 degree to +85 degree while the demodulator system was evaluated for operation at room temperature.
Lagrangian acceleration statistics in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Stelzenmuller, Nickolas; Polanco, Juan Ignacio; Vignal, Laure; Vinkovic, Ivana; Mordant, Nicolas
2017-05-01
Lagrangian acceleration statistics in a fully developed turbulent channel flow at Reτ=1440 are investigated, based on tracer particle tracking in experiments and direct numerical simulations. The evolution with wall distance of the Lagrangian velocity and acceleration time scales is analyzed. Dependency between acceleration components in the near-wall region is described using cross-correlations and joint probability density functions. The strong streamwise coherent vortices typical of wall-bounded turbulent flows are shown to have a significant impact on the dynamics. This results in a strong anisotropy at small scales in the near-wall region that remains present in most of the channel. Such statistical properties may be used as constraints in building advanced Lagrangian stochastic models to predict the dispersion and mixing of chemical components for combustion or environmental studies.
Alman, David E [Corvallis, OR; Wilson, Rick D [Corvallis, OR; Davis, Daniel L [Albany, OR
2011-03-08
This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.
Progress in Low-Power Digital Microwave Radiometer Technologies
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Kim, Edward J.
2004-01-01
Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.
Wilcox, Andrew C.; Nelson, Jonathan M.; Wohl, Ellen E.
2006-01-01
In step‐pool stream channels, flow resistance is created primarily by bed sediments, spill over step‐pool bed forms, and large woody debris (LWD). In order to measure resistance partitioning between grains, steps, and LWD in step‐pool channels we completed laboratory flume runs in which total resistance was measured with and without grains and steps, with various LWD configurations, and at multiple slopes and discharges. Tests of additive approaches to resistance partitioning found that partitioning estimates are highly sensitive to the order in which components are calculated and that such approaches inflate the values of difficult‐to‐measure components that are calculated by subtraction from measured components. This effect is especially significant where interactions between roughness features create synergistic increases in resistance such that total resistance measured for combinations of resistance components greatly exceeds the sum of those components measured separately. LWD contributes large proportions of total resistance by creating form drag on individual pieces and by increasing the spill resistance effect of steps. The combined effect of LWD and spill over steps was found to dominate total resistance, whereas grain roughness on step treads was a small component of total resistance. The relative contributions of grain, spill, and woody debris resistance were strongly influenced by discharge and to a lesser extent by LWD density. Grain resistance values based on published formulas and debris resistance values calculated using a cylinder drag approach typically underestimated analogous flume‐derived values, further illustrating sources of error in partitioning methods and the importance of accounting for interaction effects between resistance components.
NASA Astrophysics Data System (ADS)
Wilcox, Andrew C.; Nelson, Jonathan M.; Wohl, Ellen E.
2006-05-01
In step-pool stream channels, flow resistance is created primarily by bed sediments, spill over step-pool bed forms, and large woody debris (LWD). In order to measure resistance partitioning between grains, steps, and LWD in step-pool channels we completed laboratory flume runs in which total resistance was measured with and without grains and steps, with various LWD configurations, and at multiple slopes and discharges. Tests of additive approaches to resistance partitioning found that partitioning estimates are highly sensitive to the order in which components are calculated and that such approaches inflate the values of difficult-to-measure components that are calculated by subtraction from measured components. This effect is especially significant where interactions between roughness features create synergistic increases in resistance such that total resistance measured for combinations of resistance components greatly exceeds the sum of those components measured separately. LWD contributes large proportions of total resistance by creating form drag on individual pieces and by increasing the spill resistance effect of steps. The combined effect of LWD and spill over steps was found to dominate total resistance, whereas grain roughness on step treads was a small component of total resistance. The relative contributions of grain, spill, and woody debris resistance were strongly influenced by discharge and to a lesser extent by LWD density. Grain resistance values based on published formulas and debris resistance values calculated using a cylinder drag approach typically underestimated analogous flume-derived values, further illustrating sources of error in partitioning methods and the importance of accounting for interaction effects between resistance components.
USDA-ARS?s Scientific Manuscript database
As one step in the continued effort to utilize acoustic methods and techniques to the betterment of catfish aquaculture, an acoustic “catfish sizer” was designed to determine the size distribution of Channel Catfish Ictalurus punctatus in commercial ponds. The catfish sizer employed a custom-built 4...
78 FR 52172 - Don W. Gilbert Hydro Power, LLC; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... kilowatts (kW) and would utilize the flow from several unnamed springs that converge into an unnamed channel... to the existing stream channel that flows into the Bear River; (5) a 150-foot-long, 480-volt... Construction Implement industry-standard erosion control measures to minimize erosion and sedimentation; Stop...
Method and apparatus for combinatorial chemistry
Foote, Robert S.
2007-02-20
A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.
Method and apparatus for combinatorial chemistry
Foote, Robert S [Oak Ridge, TN
2012-06-05
A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie
2017-07-01
With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.
Split-cross-bridge resistor for testing for proper fabrication of integrated circuits
NASA Technical Reports Server (NTRS)
Buehler, M. G. (Inventor)
1985-01-01
An electrical testing structure and method is described whereby a test structure is fabricated on a large scale integrated circuit wafer along with the circuit components and has a van der Pauw cross resistor in conjunction with a bridge resistor and a split bridge resistor, the latter having two channels each a line width wide, corresponding to the line width of the wafer circuit components, and with the two channels separated by a space equal to the line spacing of the wafer circuit components. The testing structure has associated voltage and current contact pads arranged in a two by four array for conveniently passing currents through the test structure and measuring voltages at appropriate points to calculate the sheet resistance, line width, line spacing, and line pitch of the circuit components on the wafer electrically.
Designer proton-channel transgenic algae for photobiological hydrogen production
Lee, James Weifu [Knoxville, TN
2011-04-26
A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.
NASA Technical Reports Server (NTRS)
Greenberg, Albert G.; Lubachevsky, Boris D.; Nicol, David M.; Wright, Paul E.
1994-01-01
Fast, efficient parallel algorithms are presented for discrete event simulations of dynamic channel assignment schemes for wireless cellular communication networks. The driving events are call arrivals and departures, in continuous time, to cells geographically distributed across the service area. A dynamic channel assignment scheme decides which call arrivals to accept, and which channels to allocate to the accepted calls, attempting to minimize call blocking while ensuring co-channel interference is tolerably low. Specifically, the scheme ensures that the same channel is used concurrently at different cells only if the pairwise distances between those cells are sufficiently large. Much of the complexity of the system comes from ensuring this separation. The network is modeled as a system of interacting continuous time automata, each corresponding to a cell. To simulate the model, conservative methods are used; i.e., methods in which no errors occur in the course of the simulation and so no rollback or relaxation is needed. Implemented on a 16K processor MasPar MP-1, an elegant and simple technique provides speedups of about 15 times over an optimized serial simulation running on a high speed workstation. A drawback of this technique, typical of conservative methods, is that processor utilization is rather low. To overcome this, new methods were developed that exploit slackness in event dependencies over short intervals of time, thereby raising the utilization to above 50 percent and the speedup over the optimized serial code to about 120 times.
Rapid Water Permeation Through Carbon Nanomembranes with Sub-Nanometer Channels.
Yang, Yang; Dementyev, Petr; Biere, Niklas; Emmrich, Daniel; Stohmann, Patrick; Korzetz, Riko; Zhang, Xianghui; Beyer, André; Koch, Sascha; Anselmetti, Dario; Gölzhäuser, Armin
2018-05-22
The provision of clean water is a global challenge, and membrane filtration is a key technology to address it. Conventional filtration membranes are constrained by a trade-off between permeance and selectivity. Recently, some nanostructured membranes demonstrated the ability to overcome this limitation by utilizing well-defined carbon nanoconduits that allow a coordinated passage of water molecules. The fabrication of these materials is still very challenging, but their performance inspires research toward nanofabricated membranes. This study reports on molecularly thin membranes with sub-nanometer channels that combine high water selectivity with an exceptionally high permeance. Carbon nanomembranes (CNMs) of ∼1.2 nm thickness are fabricated from terphenylthiol (TPT) monolayers. Scanning probe microscopy and transport measurements reveal that TPT CNMs consist of a dense network of sub-nanometer channels that efficiently block the passage of most gases and liquids. However, water passes through with an extremely high permeance of ∼1.1 × 10 -4 mol·m -2 ·s -1 ·Pa -1 , as does helium, but with a ∼ 2500 times lower flux. Assuming all channels in a TPT CNM are active in mass transport, we find a single-channel permeation of ∼66 water molecules·s -1 ·Pa -1 . This suggests that water molecules translocate fast and cooperatively through the sub-nanometer channels, similar to carbon nanotubes and membrane proteins (aquaporins). CNMs are thus scalable two-dimensional sieves that can be utilized toward energy-efficient water purification.
Wireless multichannel biopotential recording using an integrated FM telemetry circuit.
Mohseni, Pedram; Najafi, Khalil; Eliades, Steven J; Wang, Xiaoqin
2005-09-01
This paper presents a four-channel telemetric microsystem featuring on-chip alternating current amplification, direct current baseline stabilization, clock generation, time-division multiplexing, and wireless frequency-modulation transmission of microvolt- and millivolt-range input biopotentials in the very high frequency band of 94-98 MHz over a distance of approximately 0.5 m. It consists of a 4.84-mm2 integrated circuit, fabricated using a 1.5-microm double-poly double-metal n-well standard complementary metal-oxide semiconductor process, interfaced with only three off-chip components on a custom-designed printed-circuit board that measures 1.7 x 1.2 x 0.16 cm3, and weighs 1.1 g including two miniature 1.5-V batteries. We characterize the microsystem performance, operating in a truly wireless fashion in single-channel and multichannel operation modes, via extensive benchtop and in vitro tests in saline utilizing two different micromachined neural recording microelectrodes, while dissipating approximately 2.2 mW from a 3-V power supply. Moreover, we demonstrate successful wireless in vivo recording of spontaneous neural activity at 96.2 MHz from the auditory cortex of an awake marmoset monkey at several transmission distances ranging from 10 to 50 cm with signal-to-noise ratios in the range of 8.4-9.5 dB.
Microwave Imaging Radar Reflectometer System Utilizing Digital Beam Forming
NASA Astrophysics Data System (ADS)
Hu, Fengqi; Li, Meijiao; Domier, Calvin W.; Liu, Xiaoguang; Luhmann, Neville C., Jr.
2016-10-01
Microwave Imaging Reflectometry is a radar-like technique developed to measure the electron density fluctuations in fusion plasmas. Phased Antenna Arrays can serve as electronically controlled ``lenses'' that can generate the required wavefronts by phase shifting and amplitude scaling, which is being realized in the digital domain with higher flexibility and faster processing speed. In the transmitter, the resolution of the phase control is 1.4 degrees and the amplitude control is 0.5 dB/ step. A V-band double-sided, printed bow tie antenna which exhibits 49% bandwidth (46 - 76 GHz) is employed. The antenna is fed by a microstrip transmission line for easy impedance matching. The simple structure and the small antenna are suitable for low cost fabrication, easy circuit integration, and phased antenna array multi-frequency applications. In the receiver part, a sub-array of 32 channels with 200 mil spacing is used to collect the scattered reflected signal from one unit spot on the plasma cutoff surface. Pre-amplification is used to control the noise level of the system and wire bondable components are used to accommodate the small spacing between each channel. After down converting, base band signals are digitized and processed in an FPGA module. U.S. Department of Energy Grant No. DE-FG02-99ER54531.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, David D.; Clough, Shepard A.; Liljegren, James C.
2007-11-01
Ground-based two-channel microwave radiometers have been used for over 15 years by the Atmospheric Radiation Measurement (ARM) program to provide observations of downwelling emitted radiance from which precipitable water vapor (PWV) and liquid water path (LWP) – twp geophysical parameters critical for many areas of atmospheric research – are retrieved. An algorithm that utilizes two advanced retrieval techniques, a computationally expensive physical-iterative approach and an efficient statistical method, has been developed to retrieve these parameters. An important component of this Microwave Retrieval (MWRRET) algorithm is the determination of small (< 1K) offsets that are subtracted from the observed brightness temperaturesmore » before the retrievals are performed. Accounting for these offsets removes systematic biases from the observations and/or the model spectroscopy necessary for the retrieval, significantly reducing the systematic biases in the retrieved LWP. The MWRRET algorithm provides significantly more accurate retrievals than the original ARM statistical retrieval which uses monthly retrieval coefficients. By combining the two retrieval methods with the application of brightness temperature offsets to reduce the spurious LWP bias in clear skies, the MWRRET algorithm provides significantly better retrievals of PWV and LWP from the ARM 2-channel microwave radiometers compared to the original ARM product.« less
NASA Technical Reports Server (NTRS)
Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.
2015-01-01
An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.
Theta and Alpha Oscillations in Attentional Interaction during Distracted Driving
Wang, Yu-Kai; Jung, Tzyy-Ping; Lin, Chin-Teng
2018-01-01
Performing multiple tasks simultaneously usually affects the behavioral performance as compared with executing the single task. Moreover, processing multiple tasks simultaneously often involve more cognitive demands. Two visual tasks, lane-keeping task and mental calculation, were utilized to assess the brain dynamics through 32-channel electroencephalogram (EEG) recorded from 14 participants. A 400-ms stimulus onset asynchrony (SOA) factor was used to induce distinct levels of attentional requirements. In the dual-task conditions, the deteriorated behavior reflected the divided attention and the overlapping brain resources used. The frontal, parietal and occipital components were decomposed by independent component analysis (ICA) algorithm. The event- and response-related theta and alpha oscillations in selected brain regions were investigated first. The increased theta oscillation in frontal component and decreased alpha oscillations in parietal and occipital components reflect the cognitive demands and attentional requirements as executing the designed tasks. Furthermore, time-varying interactive over-additive (O-Add), additive (Add) and under-additive (U-Add) activations were explored and summarized through the comparison between the summation of the elicited spectral perturbations in two single-task conditions and the spectral perturbations in the dual task. Add and U-Add activations were observed while executing the dual tasks. U-Add theta and alpha activations dominated the posterior region in dual-task situations. Our results show that both deteriorated behaviors and interactive brain activations should be comprehensively considered for evaluating workload or attentional interaction precisely. PMID:29479310
NASA Astrophysics Data System (ADS)
Wang, Xinlong; Reddy, Divya Dhandapani; Gonzalez-Lima, F.; Liu, Hanli
2017-02-01
Transcranial infrared laser stimulation (TILS) is a non-destructive and non-thermal photobiomodulation therapy or process on the human brain; TILS uses infrared light from lasers or LEDs and has gained increased recognition for its beneficial effects on a variety of neurological and psychological conditions. While the mechanism of TILS has been assumed to stem from cytochrome-c-oxidase (CCO), which is the last enzyme in the electron transportation chain and is the primary photoacceptor, no literature is found to report electrophysiological response to TILS. In this study, a 64-channel electroencephalography (EEG) system was employed to monitor electrophysiological activities from 15 healthy human participants before, during and after TILS. A placebo experimental protocol was also applied for rigorous comparison. After recording a 3-minute baseline, we applied a 1064-nm laser with a power of 3.5W on the right forehead of each human participant for 8 minutes, followed by a 5-minute recovery period. In 64-channel EEG data analysis, we utilized several methods (root mean square, principal component analysis followed by independent component analysis, permutation conditional mutual information, and time-frequency wavelet analysis) to reveal differences in electrophysiological response to TILS between the stimulated versus placebo group. The analyzed results were further investigated using general linear model and paired t-test to reveal statistically meaningful responses induced by TILS. Moreover, this study will provide spatial mapping of human electrophysiological and possibly neural network responses to TILS for first time, indicating the potential of EEG to be an effective method for monitoring neurological improvement induced by TILS.
Machavaram, M.V.; Whittemore, Donald O.; Conrad, M.E.; Miller, N.L.
2006-01-01
A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region - where a pond is located in the stream channel - shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow. ?? 2006 Elsevier B.V. All rights reserved.
Djordjevic, Ivan B
2007-08-06
We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.
Characterization of mannose binding lectin from channel catfish Ictalurus punctatus
USDA-ARS?s Scientific Manuscript database
Mannose-binding lectin (MBL) is an important component of innate immunity capable of activating the lectin pathway of the complement system. A MBL gene was isolated from channel catfish (Ictalurus punctatus). The deduced protein contains a canonical collagen-like domain, a carbohydrate recognition d...
THE EMERGING USE OF LIDAR AS A TOOL FOR ASSESSING WATERSHED MORPHOLOGY
Stream channel morphology is an integral component of the stream fluvial process and is inherently related to the stability of stream aquatic ecology. Numerous studies have shown that changes in stream channel geometry are related to changes in biotic integrity. In urbanizing la...
Influence of Cooling Channel Geometry on the Thermal Response in Silicon Nitride Plates Studied
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Baaklini, George Y.
2002-01-01
Engine manufacturers are continually attempting to improve the performance and efficiency of internal combustion engines. Usually they raise the operating temperature or reduce the cooling air requirement for the hot section turbine components. However, the success of these attempts depends on finding materials that are lightweight, are strong, and can withstand high temperatures. Ceramics are among the top candidate materials considered for such harsh applications. They hold low-density, high-temperature strength, and thermal conductivity, and they are undergoing investigation as potential materials for replacing nickel-base alloys and superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass. The long-term objectives of the High Temperature Propulsion Components (HOTPC) Project are to develop manufacturing technology, thermal and environmental barrier coatings (TBC/EBC), and the analytical modeling capability to predict thermomechanical stresses in minimally cooled silicon nitride turbine nozzle vanes under simulated engine conditions. Two- and three-dimensional finite element analyses with TBC were conducted at the NASA Glenn Research Center. Nondestructive evaluation was used to determine processing defects. The study included conducting preliminary parametric analytical runs of heat transfer and stress analyses under steady-state conditions to demonstrate the feasibility of using cooled Si3N4 parts for turbine applications. The influence of cooling-channel shapes (such as circular, square, and ascending-order cooling channels) on cooling efficiency and thermal stresses was investigated. Temperature distributions were generated for all cases considered under both cooling and no-cooling conditions, with air being the cooling medium. The table shows the magnitude of the maximum and minimum temperature obtained for the plates under air cooling. Each channel's cross-sectional shape delivered a different temperature; however, the two-dimensional analyses for circular and square or equal-side rectangular holes produced close results. Moreover, the model of the panel with ascending order cooling channels experienced the lowest temperature. A difference of near 260 C was found among the three cooling-hole configurations investigated. The ascending-order cooling channels arrangement showed superior performance by attaining the lowest temperature (1077 C) in comparison to the circular (1379 C) and square (1343 C) channels for the same cooling-hole size. This indicates that the panel with ascending-order cooling channels is the most suitable configuration regardless of the complexity involved in its manufacture. More details pertaining to this study are reported.
Pulse-excited, auto-zeroing multiple channel data transmission system
NASA Astrophysics Data System (ADS)
Fasching, G. E.
1985-02-01
A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.
Pulse-excited, auto-zeroing multiple channel data transmission system
Fasching, G.E.
1985-02-22
A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.
Pulse-excited, auto-zeroing multiple channel data transmission system
Fasching, George E.
1987-01-01
A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.
Improved nuclear fuel assembly grid spacer
Marshall, John; Kaplan, Samuel
1977-01-01
An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.
Mechanically Activated Ion Channels
Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem
2015-01-01
Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601
NASA Technical Reports Server (NTRS)
Crooke, Julie A.; Hagopian, John G.
1998-01-01
The Composite InfraRed Spectrometer (CIRS) instrument flying on the Cassini spacecraft to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared (MIR) channels. The CIRS FIR channel is a polarizing interferometer that contains three polarizing grid components. These components are an input polarizer, a polarizing beamsplitter, and an output polarizer/analyzer. They consist of a 1.5 micron thick mylar substrate with 2 gm wide copper wires, with 2 gm spacing (4 micron pitch) photolithographically deposited on the substrate. This paper details the polarization sensitivity studies performed on the output polarizer/analyzer, and the alignment sensitivity studies performed on the input polarizer and beamsplitter components in the FIR interferometer.
Frolov, Roman V; Weckström, Matti
2016-01-01
Cellular signaling in both excitable and nonexcitable cells involves several classes of ion channels. Some of them are of minor importance, with very specialized roles in physiology, but here we concentrate on three major channel classes: TRP (transient receptor potential channels), voltage-gated sodium channels (Nav), and voltage-gated calcium channels (Cav). Here, we first propose a conceptual framework binding together all three classes of ion channels, a "flow-of-excitation model" that takes into account the inputs mediated by TRP and other similar channels, the outputs invariably provided by Cav channels, and the regenerative transmission of signals in the neural networks, for which Nav channels are responsible. We use this framework to examine the function, structure, and pharmacology of these channel classes both at cellular and also at whole-body physiological level. Building on that basis we go through the pathologies arising from the direct or indirect malfunction of the channels, utilizing ion channel defects, the channelopathies. The pharmacological interventions affecting these channels are numerous. Part of those are well-established treatments, like treatment of hypertension or some forms of epilepsy, but many other are deeply problematic due to poor drug specificity, ion channel diversity, and widespread expression of the channels in tissues other than those actually targeted. © 2016 Elsevier Inc. All rights reserved.
Garden, Derek L. F.; Rinaldi, Arianna
2016-01-01
Key points We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive.Neurones in the principal olivary nucleus receive monosynaptic extra‐somatic glutamatergic input from the neocortex.Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component.Small conductance calcium‐activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms.Active integration of synaptic input within the inferior olive may play a central role in control of olivo‐cerebellar climbing fibre signals. Abstract The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long‐range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium‐activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium‐activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours. PMID:27767209
Soviet research on crystal channeling of charged particle beams
NASA Astrophysics Data System (ADS)
Kassel, S.
1985-03-01
This report presents an overview of Soviet research in charged particle beam channeling in crystals from 1972 to the present, and the resulting electromagnetic emission, including Soviet proposals for channeling emission lasers in the X-ray region of the spectrum. It analyzes Soviet attitudes toward crystal channeling of charged particles as a subject of research, describes performers of the research, and indicates the level of effort involved. It presents a brief history of crystal channeling research, the differences between channeling and other kinds of electromagnetic radiation, the definition of the main research issues, and estimates of the potential capabilities of channeling radiation, all based on the Soviet viewpoint. It then describes Soviet proposals for laser systems utilizing the channeling radiation mechanism, and analyzes Soviet experimental work involving the observation and measurement of channeling radiation. The author concludes that the outstanding feature of Soviet research in this area is the optimistic belief of Soviet specialists in the technological potential of this research, but finds that the role of the laser proposals in Soviet planning is ambiguous.
Boundary shear stress along rigid trapezoidal bends
Christopher I. Thornton; Kyung-Seop Sin; Paul Sclafani; Steven R. Abt
2012-01-01
The migration of alluvial channels through the geologic landform is an outcome of the natural erosive processes. Mankind continually attempts to stabilize channel meandering processes, both vertically and horizontally, to reduce sediment discharge, provide boundary definition, and enable economic development along the river's edge. A critical component in the...
Blood pressure reprogramming adapter assists signal recording
NASA Technical Reports Server (NTRS)
Vick, H. A.
1967-01-01
Blood pressure reprogramming adapter separates the two components of a blood pressure signal, a dc pressure signal and an ac Korotkoff sounds signal, so that the Korotkoff sounds are recorded on one channel as received while the dc pressure signal is converted to FM and recorded on a second channel.
Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments
NASA Technical Reports Server (NTRS)
Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa
2017-01-01
Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.
Investigation of the effect of scattering centers on low dimensional nanowire channel
NASA Astrophysics Data System (ADS)
Cariappa, K. S.; Shukla, Raja; Sarkar, Niladri
2018-05-01
In this work, we studied the effect of scattering centers on the electron density profiles of a one dimensional Nanowire channel. Density Matrix Formalism is used for calculating the local electron densities at room temperature. Various scattering centers have been simulated in the channel. The nearest neighbor tight binding method is applied to construct the Hamiltonian of nanoscale devices. We invoke scattering centers by adding local scattering potentials to the Hamiltonian. This analysis could give an insight into the understanding and utilization of defects for device engineering.
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Cao, Minghua
2017-02-01
The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.
BCI`S domestic automotive replacement battery shipments by channel of distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
Thirteen manufacturing members, of Battery Council International, supplied the shipment figures contained in this report. This Channel of Distribution continues to account for an estimated 97% of the domestic replacement battery industry. This report indicates solely domestic replacement battery shipments for the following battery classifications: passenger car & light commercial; heavy duty commercial; special tractor; marine; general utility and golf car.
Calcium current in isolated neonatal rat ventricular myocytes.
Cohen, N M; Lederer, W J
1987-01-01
1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004
Measuring Method for Lightning Channel Temperature.
Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R
2016-09-26
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
Calibration of CMS Electromagnetic Calorimeter at LHC startup
NASA Astrophysics Data System (ADS)
Paramatti, Riccardo
2011-04-01
The first 7 TeV LHC collisions recorded with the CMS detector have been used to perform a channel-by-channel calibration of the electromagnetic calorimeter (ECAL). Decays of π° and η into two photons as well as the azimuthal symmetry of the average energy deposition at a given pseudorapidity are utilized to equalize the response of the individual channels. The ECAL comprises a central barrel section and two endcaps. Based on an integrated luminosity of ~ 100 nb-1 a channel-by-channel in-situ calibration precision of 1.15% has been achieved in the barrel ECAL in the pseudorapidity region |η| < 0.8. The energy scale of the ECAL has been investigated and found to agree with the simulation to within 1% in the barrel and 3% in the endcaps.
Effect of oblique channel on discharge characteristics of 200-W Hall thruster
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Peng, Wuji; Sun, Hezhi; Xu, Yu; Wei, Liqiu; Li, Hong; Zeng, Ming; Wang, Fufeng; Yu, Daren
2017-02-01
In an experiment involving a 200-W Hall thruster, partial ionization occurs in the plume area because of the extrapolation of the magnetic field. To improve the thruster performance, the concept of an oblique channel is proposed for improving the ionization degree in the plume area. Calculations performed using a Particle-in-cell (PIC) simulator and the experimental results both show that an oblique channel structure can reduce the wall loss. Compared with a straight channel under similar conditions of the discharge voltage and current, the ionization degree in the plume area, thrust, specific impulse, propellant utilization, and anode efficiency are improved by ˜20%. The oblique channel is an important design consideration for improving the partial ionization of the plume area in the thruster.
Measuring Method for Lightning Channel Temperature
NASA Astrophysics Data System (ADS)
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-09-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
NASA Astrophysics Data System (ADS)
Jung, Yugyung; Hyun, Ji-chul; Choi, Jongchan; Atajanov, Arslan; Yang, Sung
2017-12-01
Controlling cells' movement is an important technique in biological analysis that is performed within a microfluidic system. Many external forces are utilized for manipulation of cells, including their position in the channel. These forces can effectively control cells in a desired manner. Most of techniques used to manipulate cells require sophisticated set-ups and equipment to generate desired effect. The exception to this is the use of hydrodynamic force. In this study, a series of continuously varying herringbone structures is proposed for positioning cells in a microfluidic channel using hydrodynamic force. This structure was experimentally developed by changing parameters, such as the length of the herringbone's apex, the length of the herringbone's base and the ratio of the height of the flat channel to the height of the herringbone structure. Results of this study, have demonstrated that the length of the herringbone's apex and the ratio of the heights of the flat channel and the herringbone structure were crucial parameters influencing positioning of cells at 100 μl/h flow rate. The final design was fixed at 170 and 80 μm for the length of herringbone's apex and the length of herringbone's base, respectively. The average position of cells in this device was 34 μm away from the side wall in a 200 μm wide channel. Finally, to substantiate a practical application of the herringbone structure for positioning, cells were randomly introduced into a microfluidic device, containing an array of trapping structures together with a series of herringbone structures along the channel. The cells were moved toward the trapping structure by the herringbone structure and the trapping efficiency was increased. Therefore, it is anticipated that this device will be utilized to continuously control cells' position without application of external forces.
Analytical study of a microfludic DNA amplification chip using water cooling effect.
Chen, Jyh Jian; Shen, Chia Ming; Ko, Yu Wei
2013-04-01
A novel continuous-flow polymerase chain reaction (PCR) chip has been analyzed in our work. Two temperature zones are controlled by two external controllers and the other temperature zone at the chip center is controlled by the flow rate of the fluid inside a channel under the glass chip. By employing a water cooling channel at the chip center, the sequence of denaturation, annealing, and extension can be created due to the forced convection effect. The required annealing temperature of PCR less than 313 K can also be demonstrated in this chip. The Poly(methyl methacrylate) (PMMA) cooling channel with the thin aluminum cover is utilized to enhance the temperature uniformity. The size of this chip is 76 mm × 26 mm × 3 mm. This device represents the first demonstration of water cooling thermocycling within continuous-flow PCR microfluidics. The commercial software CFD-ACE+(TM) is utilized to determine the distances between the heating assemblies within the chip. We investigate the influences of various chip materials, operational parameters of the cooling channel and geometric parameters of the chip on the temperature uniformity on the chip surface. Concerning the temperature uniformity of the working zones and the lowest temperature at the annealing zone, the air gap spacing of 1 mm and the cooling channel thicknesses of 1 mm of the PMMA channel with an aluminum cover are recommended in our design. The hydrophobic surface of the PDMS channel was modified by filling it with 20 % Tween 20 solution and then adding bovine serum albumin (BSA) solution to the PCR mixture. DNA fragments with different lengths (372 bp and 478 bp) are successfully amplified with the device.
NASA Astrophysics Data System (ADS)
Francis, Laurent A.; Sedki, Amor; André, Nicolas; Kilchytska, Valéria; Gérard, Pierre; Ali, Zeeshan; Udrea, Florin; Flandre, Denis
2018-01-01
In this paper, we study the recovery of onmembrane semiconductor components, such as N-type Field-Effect Transistors (FETs) available in two different channel widths and a Complementary Metal-Oxide-Semiconductor (CMOS) inverter, after the exposure to high dose of proton radiation. Due to the ionizing effect, the electrical characteristics of the components established remarkable shifts, where the threshold voltages showed an average shift of -480 mV and -280 mV respectively for 6 μm and 24 μm N-channel transistors, likewise the inversion point of the inverter showed an important shift of -690 mV. The recovery concept is based mainly on a micro-hotplate, fabricated with backside MEMS micromachining structure and a Silicon-On-Insulator (SOI) technology, ensuring rapid, low power and in situ annealing technique, this method proved its reliability in recent works. Annealing the N-channel transistors and the inverter for 16 min with a temperature of the heater up to 385 °C, guaranteed a partial recovery of the semiconductor based components with a maximum power consumption of 66 mW.
Blöcker, Dagmar; Bachmeyer, Christoph; Benz, Roland; Aktories, Klaus; Barth, Holger
2003-05-13
The binding component (C2II) of the binary Clostridium botulinum C2 toxin mediates transport of the actin ADP-ribosylating enzyme component (C2I) into the cytosol of target cells. C2II (80 kDa) is activated by trypsin cleavage, and proteolytically activated C2II (60 kDa) oligomerizes to heptamers in solution. Activated C2II forms channels in lipid bilayer membranes which are highly cation selective and voltage-gated. A role for this channel in C2I translocation across the cell membrane into the cytosol is discussed. Amino acid residues 303-331 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which likely facilitates membrane insertion and channel formation by creating two antiparallel beta-strands. Some of the residues are in strategic positions within the putative C2II channel, in particular, glutamate 307 (E307) localized in its center and glycine 316 (G316) localized on the trans side of the membrane. Here, single-lysine substitutions of these amino acids and the double mutant E307K/G316K of C2II were analyzed in vivo and in artificial lipid bilayer experiments. The pH dependence of C2I transport across cellular membranes was altered, and a pH of
Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes
NASA Astrophysics Data System (ADS)
Hehr, Adam; Dapino, Marcelo J.
2016-04-01
Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.
NASA Technical Reports Server (NTRS)
Adams, K. M.; Lucas, J. J.
1977-01-01
The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacturer of larger helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D, was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR R-49/epoxy skin and graphite/epoxy frames and stringers. The single cure concept is made possible by the utilization of pre-molded foam cores, over which the graphite/epoxy pre-impregnated frame and stringer reinforcements are positioned. Bolted composite channel sections were selected as the optimum joint construction. The applicability of the single cure concept to larger realistic curved airframe sections, and the durability of the composite structure in a realistic spectrum fatigue environment, was described.
Networking for large-scale science: infrastructure, provisioning, transport and application mapping
NASA Astrophysics Data System (ADS)
Rao, Nageswara S.; Carter, Steven M.; Wu, Qishi; Wing, William R.; Zhu, Mengxia; Mezzacappa, Anthony; Veeraraghavan, Malathi; Blondin, John M.
2005-01-01
Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts.
Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
Chang, Suk Tai; Beaumont, Erin; Petsev, Dimiter N; Velev, Orlin D
2008-01-01
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.
Ge, Zhengwei; Wang, Wei; Yang, Chun
2011-04-07
It is challenging to continuously concentrate sample solutes in microfluidic channels. We present an improved electrokinetic technique for enhancing microfluidic temperature gradient focusing (TGF) of sample solutes using combined AC and DC field induced Joule heating effects. The introduction of an AC electric field component services dual functions: one is to produce Joule heat for generating temperature gradient; the other is to suppress electroosmotic flow. Consequently the required DC voltages for achieving sample concentration by Joule heating induced TGF are reduced, thereby leading to smaller electroosmotic flow (EOF) and thus backpressure effects. As a demonstration, the proposed technique can lead to concentration enhancement of sample solutes of more than 2500-fold, which is much higher than the existing literature reported microfluidic concentration enhancement by utilizing the Joule heating induced TGF technique.
Joining of Silicon Carbide: Diffusion Bond Optimization and Characterization
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2008-01-01
Joining and integration methods are critically needed as enabling technologies for the full utilization of advanced ceramic components in aerospace and aeronautics applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. In the application, several SiC substrates with different hole patterns to form fuel and combustion air channels are bonded to form the injector. Diffusion bonding is a joining approach that offers uniform bonds with high temperature capability, chemical stability, and high strength. Diffusion bonding was investigated with the aid of titanium foils and coatings as the interlayer between SiC substrates to aid bonding. The influence of such variables as interlayer type, interlayer thickness, substrate finish, and processing time were investigated. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.
Time and position sensitive single photon detector for scintillator read-out
NASA Astrophysics Data System (ADS)
Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.
2012-02-01
We have developed a photon counting detector system for combined neutron and γ radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy γ radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate γ energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).
NASA Astrophysics Data System (ADS)
Ha, J.; Chung, W.; Shin, S.
2015-12-01
Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.
The Role of Conjoining (Tie) Channels in Lowland Floodplain Development and Lake Infilling
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Dietrich, W. E.; Day, G.; Lepper, K.; Wilson, C. J.
2003-12-01
In simple models of lowland river systems, water and sediment enter the main stem via tributary and secondary channels and are only redistributed to the floodplain during overbank and crevasse splay events. Along numerous river systems across the globe, however, water and sediment are regularly exchanged between the river and off river water bodies via stable, narrow channels. These channels, known as tie channels on the Fly River in Papua New Guinea and batture channels along the lower Mississippi, are largely overlooked but important components of floodplain sediment dispersal where they exist. These channels become pathways of sediment dispersal to the floodplain system when elevated river stages force sediment-laden flows into the off-river water bodies. On the Fly River, it is estimated that about 50% of the sediment delivery to the floodplain is via these channels, and along low gradient tributary channels during flood driven flow reversals. During low flow, tie channels serve to drain the floodplain. With the outgoing flows, large amounts sediment can be carried and lost to the floodplain; floodplain lakes progressively infill with sediment as the mouth of these channels steadily prograde lakeward. These lake deposits not only become significant stratigraphic components of floodplains (traditionally referred to as clay plugs), but are important local sinks recording hundreds to thousands of years of river history. As with all sinks, the proper interpretation of these stratigraphic records requires understanding the processes by which sediment is delivered to the sink and how these processes alter the paleohydraulic and climatic signals of interest. We have conducted field investigations of conjoining channels in Papua New Guinea (the Fly and Strickland Rivers), Louisiana (Raccourci Old River ~ 65 km upriver of Baton Rouge) and Alaska (Birch Creek). These field investigations include extensive surveys of both cross and along channel morphological trends, grain size characteristics, water levels and geochronological sampling using optically stimulated luminescence (OSL). Across all systems channel morphology is similar and exhibit scale independence, however, channel size and rates of progradation are directly related to the size of the main stem river. Through these studies and ongoing scaled modeling we are examining the morphodynamics that lead to the formation, advancement and stability of these unique self formed channels.
Numerical Simulation of Induction Channel Furnace to Investigate Efficiency for low Frequencies
NASA Astrophysics Data System (ADS)
Hang, N. Tran Thi; Lüdtke, U.
2018-05-01
The foundry industry worldwide commonly uses induction channel furnaces to heat and melt alloys. The operating frequency is one of the main issues when constructing an efficient channel furnace. It is possible to choose operating frequencies lower than 50 Hz using a modern IGBT power converter. This work shows the simulation results using ANSYS with the goal of finding the best electrical frequency necessary to operate the induction furnace. First, a two-dimensional model is used to calculate the efficiency depending on frequency. Then, the channel model is extended to a more realistic three-dimensional model. Finally, the influence of frequency, inductor profile, and several components of the induction channel furnace are discussed.
A system-level view of optimizing high-channel-count wireless biosignal telemetry.
Chandler, Rodney J; Gibson, Sarah; Karkare, Vaibhav; Farshchi, Shahin; Marković, Dejan; Judy, Jack W
2009-01-01
In this paper we perform a system-level analysis of a wireless biosignal telemetry system. We perform an analysis of each major system component (e.g., analog front end, analog-to-digital converter, digital signal processor, and wireless link), in which we consider physical, algorithmic, and design limitations. Since there are a wide range applications for wireless biosignal telemetry systems, each with their own unique set of requirements for key parameters (e.g., channel count, power dissipation, noise level, number of bits, etc.), our analysis is equally broad. The net result is a set of plots, in which the power dissipation for each component and as the system as a whole, are plotted as a function of the number of channels for different architectural strategies. These results are also compared to existing implementations of complete wireless biosignal telemetry systems.
Assessment of disk MHD generators for a base load powerplant
NASA Technical Reports Server (NTRS)
Chubb, D. L.; Retallick, F. D.; Lu, C. L.; Stella, M.; Teare, J. D.; Loubsky, W. J.; Louis, J. F.; Misra, B.
1981-01-01
Results from a study of the disk MHD generator are presented. Both open and closed cycle disk systems were investigated. Costing of the open cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed cycle systems. Preliminary plant design for the open cycle systems was also completed. Based on the system study results, an economic assessment of the open cycle systems is presented. Costs of the open cycle disk conponents are less than comparable linear generator components. Also, costs of electricity for the open cycle disk systems are competitive with comparable linear systems. Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.
Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk
2016-07-18
Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.
Broillet, M C; Firestein, S
1996-02-01
The activation of a cyclic nucleotide-gated channel is the final step in sensory transduction in olfaction. Normally, this channel is opened by the intracellular cyclic nucleotide second messenger cAMP or cGMP. However, in single channel recordings we found that donors of nitric oxide, a putative intercellular messenger, could directly activate the native olfactory neuron channel. Its action was independent of the presence of the normal ligand and did not involve the cyclic nucleotide binding site, suggesting an alternate site on the molecule that is critical in channel gating. The biochemical pathway appears to utilize nitric oxide in one of its alternate redox states, the nitrosonium ion, transnitrosylating a free sulfhydryl group belonging to a cysteine residue tentatively identified as being in the region linking the S6 transmembrane domain to the ligand binding domain.
Thin membrane sensor with biochemical switch
NASA Technical Reports Server (NTRS)
Worley, III, Jennings F. (Inventor); Case, George D. (Inventor)
1994-01-01
A modular biosensor system for chemical or biological agent detection utilizes electrochemical measurement of an ion current across a gate membrane triggered by the reaction of the target agent with a recognition protein conjugated to a channel blocker. The sensor system includes a bioresponse simulator or biochemical switch module which contains the recognition protein-channel blocker conjugate, and in which the detection reactions occur, and a transducer module which contains a gate membrane and a measuring electrode, and in which the presence of agent is sensed electrically. In the poised state, ion channels in the gate membrane are blocked by the recognition protein-channel blocker conjugate. Detection reactions remove the recognition protein-channel blocker conjugate from the ion channels, thus eliciting an ion current surge in the gate membrane which subsequently triggers an output alarm. Sufficiently large currents are generated that simple direct current electronics are adequate for the measurements. The biosensor has applications for environmental, medical, and industrial use.
Li, Fan; Li, Xinying; Yu, Jianjun; Chen, Lin
2014-09-22
We experimentally demonstrated the transmission of 79.86-Gb/s discrete-Fourier-transform spread 32 QAM discrete multi-tone (DFT-spread 32 QAM-DMT) signal over 20-km standard single-mode fiber (SSMF) utilizing directly modulated laser (DML). The experimental results show DFT-spread effectively reduces Peak-to-Average Power Ratio (PAPR) of DMT signal, and also well overcomes narrowband interference and high frequencies power attenuation. We compared different types of training sequence (TS) symbols and found that the optimized TS for channel estimation is the symbol with digital BPSK/QPSK modulation format due to its best performance against optical link noise during channel estimation.
Hybrid architecture for building secure sensor networks
NASA Astrophysics Data System (ADS)
Owens, Ken R., Jr.; Watkins, Steve E.
2012-04-01
Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.
Current use and potential of additive manufacturing for optical applications
NASA Astrophysics Data System (ADS)
Brunelle, Matthew; Ferralli, Ian; Whitsitt, Rebecca; Medicus, Kate
2017-10-01
Additive manufacturing, or 3D printing, has become widely used in recent years for the creation of both prototype and end-use parts. Because the parts are created in a layer-by-layer manner, the flexibility of additive manufacturing is unparalleled and has opened the design space to enable features like undercuts and internal channels which cannot exist on traditional, subtractively manufactured parts. This flexibility can also be leveraged for optical applications. This paper outlines some of the current uses of 3D printing in the optical manufacturing process at Optimax. Several materials and additive technologies are utilized, including polymer printing through fused deposition modeling, which creates parts by depositing a softened thermoplastic filament in a layerwise fashion. Stereolithography, which uses light to cure layers of a photopolymer resin, will also be discussed. These technologies are used to manufacture functional prototypes, fixtures, sealed housings, and other components. Additionally, metal printing through selective laser melting, which uses a laser to melt metal powder layers into a dense solid, will be discussed due to the potential to manufacture thermally stable opticalmechanical assembly frameworks and functional optics. Examples of several additively manufactured optical components will be shown.
Lee, Si Hoon; Lindquist, Nathan C.; Wittenberg, Nathan J.; Jordan, Luke R.; Oh, Sang-Hyun
2012-01-01
With recent advances in high-throughput proteomics and systems biology, there is a growing demand for new instruments that can precisely quantify a wide range of receptor-ligand binding kinetics in a high-throughput fashion. Here we demonstrate a surface plasmon resonance (SPR) imaging spectroscopy instrument capable of extracting binding kinetics and affinities from 50 parallel microfluidic channels simultaneously. The instrument utilizes large-area (~cm2) metallic nanohole arrays as SPR sensing substrates and combines a broadband light source, a high-resolution imaging spectrometer and a low-noise CCD camera to extract spectral information from every channel in real time with a refractive index resolution of 7.7 × 10−6. To demonstrate the utility of our instrument for quantifying a wide range of biomolecular interactions, each parallel microfluidic channel is coated with a biomimetic supported lipid membrane containing ganglioside (GM1) receptors. The binding kinetics of cholera toxin b (CTX-b) to GM1 are then measured in a single experiment from 50 channels. By combining the highly parallel microfluidic device with large-area periodic nanohole array chips, our SPR imaging spectrometer system enables high-throughput, label-free, real-time SPR biosensing, and its full-spectral imaging capability combined with nanohole arrays could enable integration of SPR imaging with concurrent surface-enhanced Raman spectroscopy. PMID:22895607
Application of satellite data to tropic/subtropic moisture coupling
NASA Technical Reports Server (NTRS)
Mcguirk, J. P.; Thompson, A. H.
1985-01-01
The objective is to develop analysis tools for use of satellite data to interpret synoptic-scale systems in data-void regions. Interim goals are to: (1) quantify the synoptic information content of satellite data; and (2) utilize these data in the diagnosis of moisture bursts in the eastern tropical Pacific Ocean. Researchers developed and implemented a statistical procedure for using TIROS N microwave data to infer infrared channel data for overcast conditions; they used the same procedure for deducing full TIROS N channel radiance profiles from NOAA 5 VTPR channel data over regions where the TIROS N data are missing. An empirical orthogonal function analysis of twice-daily channel radiance fields over the tropical eastern Pacific was completed. The vertically oriented eigenfunctions were interpreted in terms of typical meteorological events. The horizontal distribution of the eigenfunction amplitudes relates these meteorological signals to moisture bursts. A pair of moisture burst climatologies is complete: one of four years using infrared imagery (including the highly anomalous 1982 to 83 cold season); the other implementing 850 to 200 mb wind analyses in conjunction with GOES imagery. A number of different evaluations of the synoptic evolution of moisture fields (enhanced infrared imagery, moisture channel data, FGGE humidity analysis, and in situ station and sounding observations) are compared. All have limitations; all can be utilized together; all together are still less than adequate in the tropical Pacific.
The structure of a turbulent flow in a channel of complex shape
Tracy, Hubert Jerome
1976-01-01
Measurements of the Reynolds stresses and the mean motion pattern were made in a uniform turbulent motion in a conduit consisting of a large, nearly square section joined by a smaller rectangular section. The results indicate that the boundary shearing stress is nearly constant over large segments of the boundaries. The magnitudes of the lateral and the vertical components of turbulence are not the same near a boundary and the component normal to the boundary is smaller than the component parallel to the boundary. The difference in the two components in the corner regions of the channel produces secondary mean motions in the plane of the channel section. The strength of the motion depends upon the angle subtended by the corner. A principal function of the secondary motions is to transfer momentum into the corner regions and, elsewhere, to compensate for the excess force due to the shear gradients. In the absence of the secondary motions, the fluid must stagnate and separate from the boundaries in certain regions and be greatly accelerated in others. The secondary motions are conventionally described in terms of symmetrical rotations in cells bounded by the corner bisectors. The measured motion pattern is at variance with this view, unless the symmetry is confined to a very local region. (Woodard-USGS)
MEMS Technology for Space Applications
NASA Technical Reports Server (NTRS)
vandenBerg, A.; Spiering, V. L.; Lammerink, T. S. J.; Elwenspoek, M.; Bergveld, P.
1995-01-01
Micro-technology enables the manufacturing of all kinds of components for miniature systems or micro-systems, such as sensors, pumps, valves, and channels. The integration of these components into a micro-electro-mechanical system (MEMS) drastically decreases the total system volume and mass. These properties, combined with the increasing need for monitoring and control of small flows in (bio)chemical experiments, makes MEMS attractive for space applications. The level of integration and applied technology depends on the product demands and the market. The ultimate integration is process integration, which results in a one-chip system. An example of process integration is a dosing system of pump, flow sensor, micromixer, and hybrid feedback electronics to regulate the flow. However, for many applications, a hybrid integration of components is sufficient and offers the advantages of design flexibility and even the exchange of components in the case of a modular set up. Currently, we are working on hybrid integration of all kinds of sensors (physical and chemical) and flow system modules towards a modular system; the micro total analysis system (micro TAS). The substrate contains electrical connections as in a printed circuit board (PCB) as well as fluid channels for a circuit channel board (CCB) which, when integrated, form a mixed circuit board (MCB).
Ishihara, Keiko; Ehara, Tsuguhisa
2004-04-01
The strong inward rectifier K(+) current, I(K1), shows significant outward current amplitude in the voltage range near the reversal potential and thereby causes rapid repolarization at the final phase of cardiac action potentials. However, the mechanism that generates the outward I(K1) is not well understood. We recorded currents from the inside-out patches of HEK 293T cells that express the strong inward rectifier K(+) channel Kir2.1 and studied the blockage of the currents caused by cytoplasmic polyamines, namely, spermine and spermidine. The outward current-voltage (I-V) relationships of Kir2.1, obtained with 5-10 microm spermine or 10-100 microm spermidine, were similar to the steady-state outward I-V relationship of I(K1), showing a peak at a level that is approximately 20 mV more positive than the reversal potential, with a negative slope at more positive voltages. The relationships exhibited a plateau or a double-hump shape with 1 microm spermine/spermidine or 0.1 microm spermine, respectively. In the chord conductance-voltage relationships, there were extra conductances in the positive voltage range, which could not be described by the Boltzmann relations fitting the major part of the relationships. The extra conductances, which generated most of the outward currents in the presence of 5-10 microm spermine or 10-100 microm spermidine, were quantitatively explained by a model that considered two populations of Kir2.1 channels, which were blocked by polyamines in either a high-affinity mode (Mode 1 channel) or a low-affinity mode (Mode 2 channel). Analysis of the inward tail currents following test pulses indicated that the relief from the spermine block of Kir2.1 consisted of an exponential component and a virtually instantaneous component. The fractions of the two components nearly agreed with the fractions of the blockages in Mode 1 and Mode 2 calculated by the model. The estimated proportion of Mode 1 channels to total channels was 0.9 with 0.1-10 microm spermine, 0.75 with 1-100 microm spermidine, and between 0.75 and 0.9 when spermine and spermidine coexisted. An interaction of spermine/spermidine with the channel at an intracellular site appeared to modify the equilibrium of the two conformational channel states that allow different modes of blockage. Our results suggest that the outward I(K1) is primarily generated by channels with lower affinities for polyamines. Polyamines may regulate the amplitude of the outward I(K1), not only by blocking the channels but also by modifying the proportion of channels that show different sensitivities to the polyamine block.
NASA Technical Reports Server (NTRS)
Sforza, Mario; Buonomo, Sergio
1993-01-01
During the period 1983-1992 the European Space Agency (ESA) carried out several experimental campaigns to investigate the propagation impairments of the Land Mobile Satellite (LMS) communication channel. A substantial amount of data covering quite a large range of elevation angles, environments, and frequencies was obtained. Results from the data analyses are currently used for system planning and design applications within the framework of the future ESA LMS projects. This comprehensive experimental data base is presently utilized also for channel modeling purposes and preliminary results are given. Cumulative Distribution Functions (PDF) and Duration of Fades (DoF) statistics at different elevation angles and environments were also included.
Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju
2017-08-21
Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.
Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference
Santi, C. M.; Yuan, A.; Fawcett, G.; Wang, Z.-W.; Butler, A.; Nonet, M. L.; Wei, A.; Rojas, P.; Salkoff, L.
2003-01-01
GFP-promoter experiments have previously shown that at least nine genes encoding potassium channel subunits are expressed in Caenorhabditis elegans muscle. By using genetic, RNA interference, and physiological techniques we revealed the molecular identity of the major components of the outward K+ currents in body wall muscle cells in culture. We found that under physiological conditions, outward current is dominated by the products of only two genes, Shaker (Kv1) and Shal (Kv4), both expressing voltage-dependent potassium channels. Other channels may be held in reserve to respond to particular circumstances. Because GFP-promoter experiments indicated that slo-2 expression is prominent, we created a deletion mutant to identify the SLO-2 current in vivo. In both whole-cell and single-channel modes, in vivo SLO-2 channels were active only when intracellular Ca2+ and Cl- were raised above normal physiological conditions, as occurs during hypoxia. Under such conditions, SLO-2 is the largest outward current, contributing up to 87% of the total current. Other channels are present in muscle, but our results suggest that they are unlikely to contribute a large outward component under physiological conditions. However, they, too, may contribute currents conditional on other factors. Hence, the picture that emerges is of a complex membrane with a small number of household conductances functioning under normal circumstances, but with additional conductances that are activated during unusual circumstances. PMID:14612577
A Note on McDonald's Generalization of Principal Components Analysis
ERIC Educational Resources Information Center
Shine, Lester C., II
1972-01-01
It is shown that McDonald's generalization of Classical Principal Components Analysis to groups of variables maximally channels the totalvariance of the original variables through the groups of variables acting as groups. An equation is obtained for determining the vectors of correlations of the L2 components with the original variables.…
Automatic and Direct Identification of Blink Components from Scalp EEG
Kong, Wanzeng; Zhou, Zhanpeng; Hu, Sanqing; Zhang, Jianhai; Babiloni, Fabio; Dai, Guojun
2013-01-01
Eye blink is an important and inevitable artifact during scalp electroencephalogram (EEG) recording. The main problem in EEG signal processing is how to identify eye blink components automatically with independent component analysis (ICA). Taking into account the fact that the eye blink as an external source has a higher sum of correlation with frontal EEG channels than all other sources due to both its location and significant amplitude, in this paper, we proposed a method based on correlation index and the feature of power distribution to automatically detect eye blink components. Furthermore, we prove mathematically that the correlation between independent components and scalp EEG channels can be translating directly from the mixing matrix of ICA. This helps to simplify calculations and understand the implications of the correlation. The proposed method doesn't need to select a template or thresholds in advance, and it works without simultaneously recording an electrooculography (EOG) reference. The experimental results demonstrate that the proposed method can automatically recognize eye blink components with a high accuracy on entire datasets from 15 subjects. PMID:23959240
Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif
2007-06-01
Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.
Chang, Hing-Chiu; Bilgin, Ali; Bernstein, Adam; Trouard, Theodore P.
2018-01-01
Over the past several years, significant efforts have been made to improve the spatial resolution of diffusion-weighted imaging (DWI), aiming at better detecting subtle lesions and more reliably resolving white-matter fiber tracts. A major concern with high-resolution DWI is the limited signal-to-noise ratio (SNR), which may significantly offset the advantages of high spatial resolution. Although the SNR of DWI data can be improved by denoising in post-processing, existing denoising procedures may potentially reduce the anatomic resolvability of high-resolution imaging data. Additionally, non-Gaussian noise induced signal bias in low-SNR DWI data may not always be corrected with existing denoising approaches. Here we report an improved denoising procedure, termed diffusion-matched principal component analysis (DM-PCA), which comprises 1) identifying a group of (not necessarily neighboring) voxels that demonstrate very similar magnitude signal variation patterns along the diffusion dimension, 2) correcting low-frequency phase variations in complex-valued DWI data, 3) performing PCA along the diffusion dimension for real- and imaginary-components (in two separate channels) of phase-corrected DWI voxels with matched diffusion properties, 4) suppressing the noisy PCA components in real- and imaginary-components, separately, of phase-corrected DWI data, and 5) combining real- and imaginary-components of denoised DWI data. Our data show that the new two-channel (i.e., for real- and imaginary-components) DM-PCA denoising procedure performs reliably without noticeably compromising anatomic resolvability. Non-Gaussian noise induced signal bias could also be reduced with the new denoising method. The DM-PCA based denoising procedure should prove highly valuable for high-resolution DWI studies in research and clinical uses. PMID:29694400
Sigworth, F J
1985-05-01
The random passage of ions through an open channel is expected to result in shot noise fluctuations in the channel current. The patch-clamp technique now allows fluctuations of this size to be observed in single-channel currents. In the experiments reported here the acetylcholine-induced currents in cultured rat muscle cells were analyzed; fluctuations were found that were considerably larger than expected for shot noise. A low-frequency component, which was fitted with a Lorentzian, was examined in detail; it appears to arise from fluctuations in channel conductance of approximately 3% on a time scale of 1 ms. The characteristic relaxation time is voltage dependent and temperature dependent (Q10 approximately equal to 3) suggesting that the fluctuations arise from conformational fluctuations in the channel protein.
Application of convolve-multiply-convolve SAW processor for satellite communications
NASA Technical Reports Server (NTRS)
Lie, Y. S.; Ching, M.
1991-01-01
There is a need for a satellite communications receiver than can perform simultaneous multi-channel processing of single channel per carrier (SCPC) signals originating from various small (mobile or fixed) earth stations. The number of ground users can be as many as 1000. Conventional techniques of simultaneously processing these signals is by employing as many RF-bandpass filters as the number of channels. Consequently, such an approach would result in a bulky receiver, which becomes impractical for satellite applications. A unique approach utilizing a realtime surface acoustic wave (SAW) chirp transform processor is presented. The application of a Convolve-Multiply-Convolve (CMC) chirp transform processor is described. The CMC processor transforms each input channel into a unique timeslot, while preserving its modulation content (in this case QPSK). Subsequently, each channel is individually demodulated without the need of input channel filters. Circuit complexity is significantly reduced, because the output frequency of the CMC processor is common for all input channel frequencies. The results of theoretical analysis and experimental results are in good agreement.
Kanner, Scott A.; Jain, Ananya; Colecraft, Henry M.
2018-01-01
Long QT Syndrome (LQTS) is an acquired or inherited disorder characterized by prolonged QT interval, exertion-triggered arrhythmias, and sudden cardiac death. One of the most prevalent hereditary LQTS subtypes, LQT2, results from loss-of-function mutations in the hERG channel, which conducts IKr, the rapid component of the delayed rectifier K+ current, critical for cardiac repolarization. The majority of LQT2 mutations result in Class 2 deficits characterized by impaired maturation and trafficking of hERG channels. Here, we have developed a high-throughput flow cytometric assay to analyze the surface and total expression of wild-type (WT) and mutant hERG channels with single-cell resolution. To test our method, we focused on 16 LQT2 mutations in the hERG Per-Arnt-Sim (PAS) domain that were previously studied via a widely used biochemical approach that compares levels of 135-kDa immature and 155-kDa fully glycosylated hERG protein to infer surface expression. We confirmed that LQT2 mutants expressed in HEK293 cells displayed a decreased surface density compared to WT hERG, and were differentially rescued by low temperature. However, we also uncovered some notable differences from the findings obtained via the biochemical approach. In particular, three mutations (N33T, R56Q, and A57P) with apparent WT-like hERG glycosylation patterns displayed up to 50% decreased surface expression. Furthermore, despite WT-like levels of complex glycosylation, these mutants have impaired forward trafficking, and exhibit varying half-lives at the cell surface. The results highlight utility of the surface labeling/flow cytometry approach to quantitatively assess trafficking deficiencies associated with LQT2 mutations, to discern underlying mechanisms, and to report on interventions that rescue deficits in hERG surface expression. PMID:29725305
Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry.
Yue, Guihua Eileen; Roper, Michael G; Jeffery, Erin D; Easley, Christopher J; Balchunas, Catherine; Landers, James P; Ferrance, Jerome P
2005-06-01
In this study a novel glass membrane was prepared for conducting high voltage (HV) to solution in the channel of a microfabricated device for generation of liquid electrospray. Taylor cone formation and mass spectra obtained from this microdevice confirmed the utility of the glass membrane, but voltage conduction through the membrane could not be successfully explained based solely on the conductivity of the glass itself. This novel method for developing a high-voltage interface for microdevices avoids direct metal/liquid contact eliminating bubble formation in the channel due to water hydrolysis on the surface of the metal. Further, this arrangement produces no dead volume as is often found with traditional liquid junctions. At the same time, preliminary investigations into the outlet design of glass microdevices for interfacing with electrospray mass spectrometry, was explored. Both the exit shape and the use of hydrophobic coatings at the channel exit of the microdevice electrospray interface were evaluated using standard proteins with results indicating the utility of this type of design after further optimization.
Modeling of Explorative Procedures for Remote Object Identification
1991-09-01
haptic sensory system and the simulated foveal component of the visual system. Eventually it will allow multiple applications in remote sensing and...superposition of sensory channels. The use of a force reflecting telemanipulator and computer simulated visual foveal component are the tools which...representation of human search models is achieved by using the proprioceptive component of the haptic sensory system and the simulated foveal component of the
User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels
Bennett, James P.
2001-01-01
This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.
Performance of a Cylindrical Hall-Effect Thruster Using Permanent Magnets
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Raitses, Y.; Merino, E.; Fisch, N. J.
2009-01-01
While annular Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope from 1 kW down to 100 W while maintaining an efficiency of 45-55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. In addition, the central magnetic pole piece defining the interior wall of the annular channel can experience excessive heat loads in a miniaturized Hall thruster, with the temperature eventually exceeding the Curie temperature of the material and in extreme circumstances leading to accelerated erosion of the channel wall. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from 50 W up to 1 kW. These thrusters exhibit performance characteristics that are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHTs insulator surface area to discharge chamber volume ratio is lower. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion, making the CHT geometry promising for low-power applications. This potential for high performance in the low-power regime has served as the impetus for research and development efforts aimed at understanding and improving CHT performance. Recently, a 2.6 cm channel diameter permanent magnet CHT (shown in Fig. 1) was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. In addition, beam current data are presented to show the effect of the magnetic field topology on the plume profile and current utilization and to gain insight into the thruster s operation. These data extend and improve upon the results previously presented by the authors in Ref. [1].
KATP Channels in the Cardiovascular System
Foster, Monique N.; Coetzee, William A.
2015-01-01
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease. PMID:26660852
Turbine airfoil with controlled area cooling arrangement
Liang, George
2010-04-27
A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.
Molecular physiology and modulation of somatodendritic A-type potassium channels.
Jerng, Henry H; Pfaffinger, Paul J; Covarrubias, Manuel
2004-12-01
The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.
Brustovetsky, Nickolay; Tropschug, Maximilian; Heimpel, Simone; Heidkämper, Doerthe; Klingenberg, Martin
2002-10-01
Strong support for the central role of the ADP/ATP carrier (AAC) in the mitochondrial permeability transition (mPT) is provided by the single-channel current measurements in patch-clamp experiments with the isolated reconstituted AAC. In previous work [Brustovetsky, N., and Klingenberg, M. (1996) Biochemistry 35, 8483-8488], this technique was applied to the AAC isolated from bovine heart mitochondria. Here we used recombinant AAC (rAAC) from Neurospora crassa expressed in E. coli, since AAC from mammalian sources cannot be expresssed in E. coli. The rAAC is free from residual mitochondrial components which might associate with the AAC in preparation from bovine heart. Ca(2+)-dependent channels with up to 600 pS are obtained, which are gated at >150 mV. The channel corresponds to a preferential matrix-outside orientation of rAAC in the patch membrane as shown with carboxyatractylate and a polar gating asymmetry. The channel is inhibited by ADP and bongkrekate, not by carboxyatractylate. Cyclophilin, isolated from Neurospora crassa, suppresses the gating, thus increasing conductivity at high positive voltage. Cyclosporin A abolishes the cyclophilin effect. ADP does not eliminate the cyclophilin effect but produces fast large-amplitude flickering of the channel without a stable decrease of the channel conductance. Also the pro-oxidant tert-butyl hydroperoxide reversibly suppresses voltage gating of the channel. The results show that the AAC can be a conducting component of the mPT pore, exhibiting similar characteristics as the mPT pore (response to Ca(2+), BKA, ADP), with a cyclophilin and pro-oxidant-sensitive gating at high voltage.
Moussaieff, Arieh; Rimmerman, Neta; Bregman, Tatiana; Straiker, Alex; Felder, Christian C.; Shoham, Shai; Kashman, Yoel; Huang, Susan M.; Lee, Hyosang; Shohami, Esther; Mackie, Ken; Caterina, Michael J.; Walker, J. Michael; Fride, Ester; Mechoulam, Raphael
2008-01-01
Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3−/− mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3+/+ mice. It had no effect on keratinocytes from TRPV3−/− mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.—Moussaieff, A., Rimmerman, N., Bregman, T., Straiker, A., Felder, C. C., Shoham, S., Kashman, Y., Huang, S. M., Lee, H., Shohami, E., Mackie, K., Caterina, M. J., Walker, J. M., Fride, E., Mechoulam, R. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. PMID:18492727
Hosseini, R; Benton, D C; Dunn, P M; Jenkinson, D H; Moss, G W
2001-09-01
1. Our aim was to identify the small-conductance Ca(2+)-activated K(+) channel(s) (SK) underlying the apamin-sensitive afterhyperpolarization (AHP) in rat superior cervical ganglion (SCG) neurones. 2. Degenerate oligonucleotide primers designed to the putative calmodulin-binding domain conserved in all mammalian SK channel sequences were employed to detect SK DNA in a cDNA library from rat SCG. Only a single band, corresponding to a fragment of the rSK3 gene, was amplified. 3. Northern blot analysis employing a PCR-generated rSK3 fragment showed the presence of mRNA coding for SK3 in SCG as well in other rat peripheral tissues including adrenal gland and liver. 4. The same rSK3 fragment enabled the isolation of a full-length rSK3 cDNA from the library. Its sequence was closely similar to, but not identical with, that of the previously reported rSK3 gene. 5. Expression of the rSK3 gene in mammalian cell lines (CHO, HEK cells) caused the appearance of a K(+) conductance with SK channel properties. 6. The application of selective SK blocking agents (including apamin, scyllatoxin and newer non-peptidic compounds) showed these homomeric SK3 channels to have essentially the same pharmacological characteristics as the SCG afterhyperpolarization, but to differ from those of homomeric SK1 and SK2 channels. 7. Immunohistochemistry using a rSK3 antipeptide antibody revealed the presence of SK3 protein in the cell bodies and processes of cultured SCG neurones. 8. Taken together, these results identify SK3 as a major component of the SK channels responsible for the afterhyperpolarization of cultured rat SCG neurones.
Preliminary Analysis of SiC BWR Channel Box Performance under Normal Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Singh, Gyanender P.; Gorton, Jacob
SiC-SiC composites are being considered for applications in the core components, including BWR channel box and fuel rod cladding, of light water reactors to improve accident tolerance. In the extreme nuclear reactor environment, core components like the BWR channel box will be exposed to neutron damage and a corrosive environment. To ensure reliable and safe operation of a SiC channel box, it is important to assess its deformation behavior under in-reactor conditions including the expected neutron flux and temperature distributions. In particular, this work has evaluated the effect of non-uniform dimensional changes caused by spatially varying neutron flux and temperaturesmore » on the deformation behavior of the channel box over the course of one cycle of irradiation. These analyses have been performed using the fuel performance modeling code BISON and the commercial finite element analysis code Abaqus, based on fast flux and temperature boundary conditions have been calculated using the neutronics and thermal-hydraulics codes Serpent2 and COBRA-TF, respectively. The dependence of dimensions and thermophysical properties on fast flux and temperature has been incorporated into the material models. These initial results indicate significant bowing of the channel box with a lateral displacement greater than 6.5mm. The channel box bowing behavior is time dependent, and driven by the temperature dependence of the SiC irradiation-induced swelling and the neutron flux/fluence gradients. The bowing behavior gradually recovers during the course of the operating cycle as the swelling of the SiC-SiC material saturates. However, the bending relaxation due to temperature gradients does not fully recover and residual bending remains after the swelling saturates in the entire channel box.« less
Stream channels: The link between forests and fishes
Kathleen Sullivan; Thomas E. Lisle; C. Andrew Dolloff; Gordon E. Grant; Leslie M. Reid
1987-01-01
Abstract - The hydraulic characteristics of flow through channels are an important component of fish habitat. Salmonids have evolved in stream systems in which water velocity and flow depth vary spatially within the watershed and temporally on a daily, seasonal, and annual basis. Flow requirements vary during different phases of the freshwater life cycle of salmonids...
Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes.
Phelan, P; Stebbings, L A; Baines, R A; Bacon, J P; Davies, J A; Ford, C
1998-01-08
In most multicellular organisms direct cell-cell communication is mediated by the intercellular channels of gap junctions. These channels allow the exchange of ions and molecules that are believed to be essential for cell signalling during development and in some differentiated tissues. Proteins called connexins, which are products of a multigene family, are the structural components of vertebrate gap junctions. Surprisingly, molecular homologues of the connexins have not been described in any invertebrate. A separate gene family, which includes the Drosophila genes shaking-B and l(1)ogre, and the Caenorhabditis elegans genes unc-7 and eat-5, encodes transmembrane proteins with a predicted structure similar to that of the connexins. shaking-B and eat-5 are required for the formation of functional gap junctions. To test directly whether Shaking-B is a channel protein, we expressed it in paired Xenopus oocytes. Here we show that Shaking-B localizes to the membrane, and that its presence induces the formation of functional intercellular channels. To our knowledge, this is the first structural component of an invertebrate gap junction to be characterized.
Yamashita, M; Yamashita, A; Ishii, T; Naruo, Y; Nagatomo, M
1998-11-01
A portable recording system was developed for analysis of more than three analog signals collected in field works. Stereo audio recorder, available as consumer products, was made use for a core cornponent of the system. For the two tracks of recording, a multiplexed analog signal is stored on one track, and reference code on the other track. The reference code indicates the start of one cycle for multiplexing and swiching point of each channel. Multiplexed signal is playbacked and decoded with a reference of the code to reconstruct original profiles of the signal. Since commercial stereo recorders have cut DC component off, a fixed reference voltage is inserted in the sequence of multiplexing. Change of voltage at switching from the reference to the data channel is measured from playbacked signal to get the original data with its DC component. Movement of vehicles and human head were analyzed by the system. It was verified to be capable to record and analyze multi-channel signal at a sampling rate more than 10Hz.
Gravikinesis in Stylonychia mytilus is based on membrane potential changes.
Krause, Martin; Bräucker, Richard; Hemmersbach, Ruth
2010-01-01
The graviperception of the hypotrichous ciliate Stylonychia mytilus was investigated using electrophysiological methods and behavioural analysis. It is shown that Stylonychia can sense gravity and thereby compensates sedimentation rate by a negative gravikinesis. The graviresponse consists of a velocity-regulating physiological component (negative gravikinesis) and an additional orientational component. The latter is largely based on a physical mechanism but might, in addition, be affected by the frequency of ciliary reversals, which is under physiological control. We show that the external stimulus of gravity is transformed to a physiological signal, activating mechanosensitive calcium and potassium channels. Earlier electrophysiological experiments revealed that these ion channels are distributed in the manner of two opposing gradients over the surface membrane. Here, we show, for the first time, records of gravireceptor potentials in Stylonychia that are presumably based on this two-gradient system of ion channels. The gravireceptor potentials had maximum amplitudes of approximately 4 mV and slow activation characteristics (0.03 mV s(-1)). The presumptive number of involved graviperceptive ion channels was calculated and correlates with the analysis of the locomotive behaviour.
Research and Technology Capabilities Available for Partnership, 2007-2008
2010-01-01
simulated aircraft environment to measure acoustic and/ or IR radiation and signature. Instrumentation is capable of 96 pressure channels and 105...temperature channels. Mobile Aircraft Infrared Measurement System (AIMS) is field deployable and is used to take full-spectrum IR measurements at our CTF...three phase power. The facility is utilized for the development of visible, IR and RF spectrum sensors/seekers, signature measurement collection of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel
Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less
Özgün, Ege; Serebryannikov, Andriy E; Ozbay, Ekmel; Soukoulis, Costas M
2017-11-14
Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enabling [Formula: see text]-symmetric and [Formula: see text]-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the [Formula: see text]-symmetric and [Formula: see text]-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.
Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel; ...
2017-11-14
Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less
Evoked potential correlates of selective attention with multi-channel auditory inputs
NASA Technical Reports Server (NTRS)
Schwent, V. L.; Hillyard, S. A.
1975-01-01
Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.
NASA Astrophysics Data System (ADS)
Yi, Cancan; Lv, Yong; Xiao, Han; Huang, Tao; You, Guanghui
2018-04-01
Since it is difficult to obtain the accurate running status of mechanical equipment with only one sensor, multisensor measurement technology has attracted extensive attention. In the field of mechanical fault diagnosis and condition assessment based on vibration signal analysis, multisensor signal denoising has emerged as an important tool to improve the reliability of the measurement result. A reassignment technique termed the synchrosqueezing wavelet transform (SWT) has obvious superiority in slow time-varying signal representation and denoising for fault diagnosis applications. The SWT uses the time-frequency reassignment scheme, which can provide signal properties in 2D domains (time and frequency). However, when the measured signal contains strong noise components and fast varying instantaneous frequency, the performance of SWT-based analysis still depends on the accuracy of instantaneous frequency estimation. In this paper, a matching synchrosqueezing wavelet transform (MSWT) is investigated as a potential candidate to replace the conventional synchrosqueezing transform for the applications of denoising and fault feature extraction. The improved technology utilizes the comprehensive instantaneous frequency estimation by chirp rate estimation to achieve a highly concentrated time-frequency representation so that the signal resolution can be significantly improved. To exploit inter-channel dependencies, the multisensor denoising strategy is performed by using a modulated multivariate oscillation model to partition the time-frequency domain; then, the common characteristics of the multivariate data can be effectively identified. Furthermore, a modified universal threshold is utilized to remove noise components, while the signal components of interest can be retained. Thus, a novel MSWT-based multisensor signal denoising algorithm is proposed in this paper. The validity of this method is verified by numerical simulation, and experiments including a rolling bearing system and a gear system. The results show that the proposed multisensor matching synchronous squeezing wavelet transform (MMSWT) is superior to existing methods.
Measuring Method for Lightning Channel Temperature
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-01-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937
NASA Technical Reports Server (NTRS)
Kraus, S. P.; Estes, J. E.; Kronenberg, M. R.; Hajic, E. J.
1977-01-01
A summary of Ocean Color Scanner data was examined to evaluate detection and discrimination capabilities of the system for marine resources, oil pollution and man-made sea surface targets of opportunity in the Santa Barbara Channel. Assessment of the utility of OCS for the determination of sediment transport patterns along the coastal zone was a secondary goal. Data products provided 1975 overflight were in digital and analog formats. In evaluating the OCS data, automated and manual procedures were employed. A total of four channels of data in digital format were analyzed, as well as three channels of color combined imagery, and four channels of black and white imagery. In addition, 1:120,000 scale color infrared imagery acquired simultaneously with the OCS data were provided for comparative analysis purposes.
Telezhkin, Vsevolod; Straccia, Marco; Yarova, Polina; Pardo, Monica; Yung, Sun; Vinh, Ngoc-Nga; Hancock, Jane M; Barriga, Gerardo Garcia-Diaz; Brown, David A; Rosser, Anne E; Brown, Jonathan T; Canals, Josep M; Randall, Andrew D; Allen, Nicholas D; Kemp, Paul J
2018-05-24
Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.
Study of information transfer optimization for communication satellites
NASA Technical Reports Server (NTRS)
Odenwalder, J. P.; Viterbi, A. J.; Jacobs, I. M.; Heller, J. A.
1973-01-01
The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described.
Seismic Analysis of the 2017 Oroville Dam Spillway Erosion Crisis
NASA Astrophysics Data System (ADS)
Goodling, P.; Lekic, V.; Prestegaard, K. L.
2017-12-01
The outflow channel of the northern California (USA) Oroville Dam suffered catastrophic erosion damage in February and March, 2017. High discharges released through the spillway (up to 3,000 m3/s) caused rapid spillway erosion, forming a deep chasm. A repeat LiDAR survey obtained from the California Department of Water Resources indicates that the chasm eroded to a depth of 48 meters. A three-component broadband seismometer (STS-1) operated by the Berkeley Digital Seismological Network recorded microseismic energy produced by the flowing water, providing a natural laboratory to test methods for seismically monitoring sudden catastrophic floods and erosion. In this study, we evaluate the three-component waveforms recorded during five constant-discharge periods - before, during, and after the spillway crisis - each of which had a different channel geometry. We apply frequency-dependent polarization analysis (FDPA; following Park, 1987), which characterizes particle motion at each frequency. The method is based on principal component analysis on a spectral covariance matrix in one-hour windows and it produces the horizontal azimuth, vertical tilt, horizontal phase, and vertical phase of the dominant particle motion. The results indicate a greater vertical component (perhaps roughness-induced) of power at a broad range of frequencies at a given discharge after the formation of the chasm. As the outflow crater developed, the back-azimuth of the primary source of seismic energy changed from the nearby Thermalito Diversion Pool (188 degrees) to the center of the outflow channel (170 degrees). To further analyze FDPA results, we apply the 2D spectral-element solver package SPECFEM2D (Tromp et al. 2008), and find that local topography should be considered when interpreting the surface waveforms predicted by FDPA results. This research suggests that monitoring changing channel geometry and erosion in large-scale flood events may be enhanced by seismic FDPA analysis. The results of this work are compared and contrasted with 3-component seismic observations of cobble-bed stream floods in Maryland.
Colby, Jennifer M.; Krantz, Bryan A.
2015-01-01
Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor (LF) and edema factor (EF), into the host cytosol under the proton motive force (PMF). Protein translocation under a PMF is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between LF amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides; and while these steric interactions may make a peptide translocate poorly, in the context of folded domains they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. PMID:26363343
Zhang, Yalan; Brown, Maile R; Hyland, Callen; Chen, Yi; Kronengold, Jack; Fleming, Matthew R; Kohn, Andrea B; Moroz, Leonid L; Kaczmarek, Leonard K
2012-10-31
Loss of the RNA-binding protein fragile X mental retardation protein (FMRP) represents the most common form of inherited intellectual disability. Studies with heterologous expression systems indicate that FMRP interacts directly with Slack Na(+)-activated K(+) channels (K(Na)), producing an enhancement of channel activity. We have now used Aplysia bag cell (BC) neurons, which regulate reproductive behaviors, to examine the effects of Slack and FMRP on excitability. FMRP and Slack immunoreactivity were colocalized at the periphery of isolated BC neurons, and the two proteins could be reciprocally coimmunoprecipitated. Intracellular injection of FMRP lacking its mRNA binding domain rapidly induced a biphasic outward current, with an early transient tetrodotoxin-sensitive component followed by a slowly activating sustained component. The properties of this current matched that of the native Slack potassium current, which was identified using an siRNA approach. Addition of FMRP to inside-out patches containing native Aplysia Slack channels increased channel opening and, in current-clamp recordings, produced narrowing of action potentials. Suppression of Slack expression did not alter the ability of BC neurons to undergo a characteristic prolonged discharge in response to synaptic stimulation, but prevented recovery from a prolonged inhibitory period that normally follows the discharge. Recovery from the inhibited period was also inhibited by the protein synthesis inhibitor anisomycin. Our studies indicate that, in BC neurons, Slack channels are required for prolonged changes in neuronal excitability that require new protein synthesis, and raise the possibility that channel-FMRP interactions may link changes in neuronal firing to changes in protein translation.
Turbulence and Heating in the Flank and Wake Regions of a Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Fan, Siteng; He, Jiansen; Yan, Limei; Tomczyk, Steven; Tian, Hui; Song, Hongqiang; Wang, Linghua; Zhang, Lei
2018-01-01
As a coronal mass ejection (CME) passes, the flank and wake regions are typically strongly disturbed. Various instruments, including the Large Angle and Spectroscopic Coronagraph (LASCO), the Atmospheric Imaging Assembly (AIA), and the Coronal Multi-channel Polarimeter (CoMP), observed a CME close to the east limb on 26 October 2013. A hot ({≈} 10 MK) rising blob was detected on the east limb, with an initial ejection flow speed of {≈} 330 km s^{-1}. The magnetic structures on both sides and in the wake of the CME were strongly distorted, showing initiation of turbulent motions with Doppler-shift oscillations enhanced from {≈} ± 3 km s^{-1} to {≈} ± 15 km s^{-1} and effective thermal velocities from {≈} 30 km s^{-1} to {≈} 60 km s^{-1}, according to the CoMP observations at the Fe xiii line. The CoMP Doppler-shift maps suggest that the turbulence behaved differently at various heights; it showed clear wave-like torsional oscillations at lower altitudes, which are interpreted as the antiphase oscillation of an alternating red/blue Doppler shift across the strands at the flank. The turbulence seems to appear differently in the channels of different temperatures. Its turnover time was {≈} 1000 seconds for the Fe 171 Å channel, while it was {≈} 500 seconds for the Fe 193 Å channel. Mainly horizontal swaying rotations were observed in the Fe 171 Å channel, while more vertical vortices were seen in the Fe 193 Å channel. The differential-emission-measure profiles in the flank and wake regions have two components that evolve differently: the cool component decreased over time, evidently indicating a drop-out of cool materials due to ejection, while the hot component increased dramatically, probably because of the heating process, which is suspected to be a result of magnetic reconnection and turbulence dissipation. These results suggest a new turbulence-heating scenario of the solar corona and solar wind.
NASA Astrophysics Data System (ADS)
Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.
2017-10-01
Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.
Second-sound studies of coflow and counterflow of superfluid {sup 4}He in channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varga, Emil; Skrbek, L.; Babuin, Simone, E-mail: babuin@fzu.cz
2015-06-15
We report a comprehensive study of turbulent superfluid {sup 4}He flow through a channel of square cross section. We study for the first time two distinct flow configurations with the same apparatus: coflow (normal and superfluid components move in the same direction), and counterflow (normal and superfluid components move in opposite directions). We realise also a variation of counterflow with the same relative velocity, but where the superfluid component moves while there is no net flow of the normal component through the channel, i.e., pure superflow. We use the second-sound attenuation technique to measure the density of quantised vortex linesmore » in the temperature range 1.2 K ≲ T ≲ T{sub λ} ≈ 2.18 K and for flow velocities from about 1 mm/s up to almost 1 m/s in fully developed turbulence. We find that both the steady-state and temporal decay of the turbulence significantly differ in the three flow configurations, yielding an interesting insight into two-fluid hydrodynamics. In both pure superflow and counterflow, the same scaling of vortex line density with counterflow velocity is observed, L∝V{sub cf}{sup 2}, with a pronounced temperature dependence; in coflow instead, the vortex line density scales with velocity as L ∝ V{sup 3/2} and is temperature independent; we provide theoretical explanations for these observations. Further, we develop a new promising technique to use different second-sound resonant modes to probe the spatial distribution of quantised vortices in the direction perpendicular to the flow. Preliminary measurements indicate that coflow is less homogeneous than counterflow/superflow, with a denser concentration of vortices between the centre of the channel and its walls.« less
Criteria for equality in two entropic inequalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirokov, M. E., E-mail: msh@mi.ras.ru
2014-07-31
We obtain a simple criterion for local equality between the constrained Holevo capacity and the quantum mutual information of a quantum channel. This shows that the set of all states for which this equality holds is determined by the kernel of the channel (as a linear map). Applications to Bosonic Gaussian channels are considered. It is shown that for a Gaussian channel having no completely depolarizing components the above characteristics may coincide only at non-Gaussian mixed states and a criterion for the existence of such states is given. All the obtained results may be reformulated as conditions for equality betweenmore » the constrained Holevo capacity of a quantum channel and the input von Neumann entropy. Bibliography: 20 titles. (paper)« less
NASA Astrophysics Data System (ADS)
Khan, Akhtar Nawaz
2017-11-01
Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National Institute of Informatics, Tokyo, Japan on the topic large-scale simulation for internet topology analysis. His research interests include design and analysis of optical WDM networks, network algorithms, network routing, and network resource optimization problems.
Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement
NASA Technical Reports Server (NTRS)
Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.
2010-01-01
The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.
Structure and positron annihilation spectra of tin incorporated in mesoporous molecular sieves
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; He, Y. J.; Chen, Y. B.; Wang, H. Y.
2002-12-01
Mesoporous molecular sieves (MCM-41) consist of an ordered array of silica tubules comprised of pores with uniform controllable diameters in the nanometer range. Tin was successfully incorporated into MCM-41 using wet chemical techniques. Detailed structural analysis via x-ray diffraction and high resolution transmission electron microscopy confirm this, and indicate that, after sintering samples in air, SnO2 crystal nanoclusters formed in the channels. These conclusions are further supported by a study of the positron annihilation spectrum. In particular, the insensitivity, after incorporation of tin, of the long-lived component of the positron annihilation spectrum to whether an air or a vacuum annealing atmosphere is used indicates that tin in the MCM-41 channels hinders the entry of quenching oxygen from the air. Furthermore, after sintering, the complete loss of this long-lived component indicates that SnO2 nanoclusters fill the channels.
A 20-channel magnetoencephalography system based on optically pumped magnetometers
NASA Astrophysics Data System (ADS)
Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; Colombo, Anthony P.; Jau, Yuan-Yu; Berry, Christopher; McKay, Jim; Stephen, Julia; Weisend, Michael; Schwindt, Peter D. D.
2017-12-01
We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject’s head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends
NASA Astrophysics Data System (ADS)
Riley, J. D.; Rhoads, B. L.
2007-12-01
The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed and channel morphology were also surveyed with a digital fathometer to document geomorphic change. Preliminary analysis of the velocity data reveals the presence of a well-defined shear layer between the converging flows and secondary circulation in the main channel. The tributary channel appears to oppose high velocity flow directed toward the outer bank by centrifugal acceleration through the meander bend of the main channel, thereby diminishing erosion along the cut bank and possibly stabilizing the meander bend channel. The flow structure and channel morphology of the study sites are compared to consider the effect of spatial scale and geometric characteristics on confluent-meander bend dynamics.
Lisiecki, R S; Voigt, H F
1995-08-01
A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.
Rosholm, Kadla R.; Baker, Matthew A. B.; Ridone, Pietro; Nakayama, Yoshitaka; Rohde, Paul R.; Cuello, Luis G.; Lee, Lawrence K.; Martinac, Boris
2017-01-01
The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform. PMID:28345591
NASA Astrophysics Data System (ADS)
Higashino, Satoru; Kobayashi, Shoei; Yamagami, Tamotsu
2007-06-01
High data transfer rate has been demanded for data storage devices along increasing the storage capacity. In order to increase the transfer rate, high-speed data processing techniques in read-channel devices are required. Generally, parallel architecture is utilized for the high-speed digital processing. We have developed a new architecture of Interpolated Timing Recovery (ITR) to achieve high-speed data transfer rate and wide capture-range in read-channel devices for the information storage channels. It facilitates the parallel implementation on large-scale-integration (LSI) devices.
Characterization of Si3N4/SiO2 optical channel waveguides by photon scanning tunneling microscopy
NASA Technical Reports Server (NTRS)
Wang, Yan; Chudgar, Mona H.; Jackson, Howard E.; Miller, Jeffrey S.; De Brabander, Gregory N.; Boyd, Joseph T.
1993-01-01
Photon scanning tunneling microscopy (PSTM) is used to characterize Si3N4/Si02 optical channel waveguides being used for integrated optical-micromechanical sensors. PSTM utilizes an optical fiber tapered to a fine point which is piezoelectrically positioned to measure the decay of the evanescent field intensity associated with the waveguide propagating mode. Evanescent field decays are recorded for both ridge channel waveguides and planar waveguide regions. Values for the local effective refractive index are calculated from the data for both polarizations and compared to model calculations.
NASA Astrophysics Data System (ADS)
Ivanov, A. V.; Reva, I. L.; Babin, A. A.
2018-04-01
The article deals with influence of various ways to place vibration transmitters on efficiency of rooms safety for negotiations. Standing for remote vibration listening of window glass, electro-optical channel, the most typical technical channel of information leakage, was investigated. The modern system “Sonata-AB” of 4B model is used as an active protection tool. Factors influencing on security tools configuration efficiency have been determined. The results allow utilizer to reduce masking interference level as well as parasitic noise with keeping properties of room safety.
Matalon, Sadis
2014-01-01
CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung. PMID:25381027
NASA Technical Reports Server (NTRS)
Jackson, H. D.; Fiala, J.
1980-01-01
Developments which will reduce the costs associated with the distribution of satellite services are considered with emphasis on digital communication link implementation. A digitally implemented communications experiment (DICE) which demonstrates the flexibility and efficiency of digital transmission of television video and audio, telephone voice, and high-bit-rate data is described. The utilization of the DICE system in a full duplex teleconferencing mode is addressed. Demonstration teleconferencing results obtained during the conduct of two sessions of the 7th AIAA Communication Satellite Systems Conference are discussed. Finally, the results of link characterization tests conducted to determine (1) relationships between the Hermes channel 1 EIRP and DICE model performance and (2) channel spacing criteria for acceptable multichannel operation, are presented.
Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System
NASA Technical Reports Server (NTRS)
Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)
2000-01-01
The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.
Design and Fabrication of a PDMS Microchip Based Immunoassay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guocheng; Wang, Wanjun; Wang, Jun
2010-07-01
In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less
Discriminator aided phase lock acquisition for suppressed carrier signals
NASA Technical Reports Server (NTRS)
Carson, L. M.; Krasin, F. E. (Inventor)
1982-01-01
A discriminator aided technique for acquisition of phase lock to a suppressed carrier signal utilizes a Costas loop which is initially operated open loop and control voltage for its VCXO is derived from a phase detector that compares the VCXO to a reference frequency thus establishing coarse frequency resolution with the received signal. Then the Costas loop is closed with the low-pass filter of the channel having a bandwidth much greater (by a factor of about 10) than in the I channel so that a frequency discriminator effect results to aid carrier resolution. Finally, after carrier acquisition, the Q-channel filter of the Costas loop is switched to a bandwidth substantially equal to that of the I-channel for carrier tracking.
Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui
2013-07-17
Reported here are the new concept of utilizing open metal sites (OMSs) for architectural pore design and its practical implementation. Specifically, it is shown here that OMSs can be used to run extended hooks (isonicotinates in this work) from the framework walls to the channel centers to effect the capture of single metal ions or clusters, with the concurrent partitioning of the large channel spaces into multiple domains, alteration of the host-guest charge relationship and associated guest-exchange properties, and transfer of OMSs from the walls to the channel centers. The concept of the extended hook, demonstrated here in the multicomponent dual-metal and dual-ligand system, should be generally applicable to a range of framework types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Peng; Liu, Hui; Gao, Yuanyuan
The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weakermore » magnetic field in the discharge channel.« less
Multi-wavelength access gate for WDM-formatted words in optical RAM row architectures
NASA Astrophysics Data System (ADS)
Fitsios, D.; Alexoudi, T.; Vagionas, C.; Miliou, A.; Kanellos, G. T.; Pleros, N.
2013-03-01
Optical RAM has emerged as a promising solution for overcoming the "Memory Wall" of electronics, indicating the use of light in RAM architectures as the approach towards enabling ps-regime memory access times. Taking a step further towards exploiting the unique wavelength properties of optical signals, we reveal new architectural perspectives in optical RAM structures by introducing WDM principles in the storage area. To this end, we demonstrate a novel SOAbased multi-wavelength Access Gate for utilization in a 4x4 WDM optical RAM bank architecture. The proposed multiwavelength Access Gate can simultaneously control random access to a 4-bit optical word, exploiting Cross-Gain-Modulation (XGM) to process 8 Bit and Bit channels encoded in 8 different wavelengths. It also suggests simpler optical RAM row architectures, allowing for the effective sharing of one multi-wavelength Access Gate for each row, substituting the eight AGs in the case of conventional optical RAM architectures. The scheme is shown to support 10Gbit/s operation for the incoming 4-bit data streams, with a power consumption of 15mW/Gbit/s. All 8 wavelength channels demonstrate error-free operation with a power penalty lower than 3 dB for all channels, compared to Back-to-Back measurements. The proposed optical RAM architecture reveals that exploiting the WDM capabilities of optical components can lead to RAM bank implementations with smarter column/row encoders/decoders, increased circuit simplicity, reduced number of active elements and associated power consumption. Moreover, exploitation of the wavelength entity can release significant potential towards reconfigurable optical cache mapping schemes when using the wavelength dimension for memory addressing.
Physical habitat simulation system reference manual: version II
Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.
1989-01-01
There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.
Pratt, H; Zaaroor, M; Bleich, N; Starr, A
1991-06-01
Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.
Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji
2015-01-01
Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425
Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji
2015-01-01
Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.
IF digitization receiver of wideband digital array radar test-bed
NASA Astrophysics Data System (ADS)
Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping
2014-10-01
In this paper, an X-band, 8-element wideband digital array radar (DAR) test-bed is presented, which makes use of a novel digital backend coupled with highly-integrated, multi-channel intermediate frequency (IF) digital receiver. Radar returns are received by the broadband antenna and then down-converted to the IF of 0.6GHz-3.0GHz. Four band-pass filters are applied in the front-end to divide the IF returns into four frequency bands with the instantaneous bandwidth of 500MHz. Every four array elements utilize a digital receiver, which is focused in this paper. The digital receivers are designed in a compact and flexible manner to meet the demands of DAR system. Each receiver consists of a fourchannel ADC, a high-performance FPGA, four DDR3 chips and two optical transceivers. With the sampling rate of up to 1.2GHz each channel, the ADC is capable of directly sampling the IF returns of four array elements at 10bits. In addition to serving as FIFO and controller, the onboard FPGA is also utilized for the implementation of various real-time algorithms such as DDC and channel calibration. Data is converted to bit stream and transferred through two low overhead, high data rate and multi-channel optical transceivers. Key technologies such as channel calibration and wideband DOA are studied with the measured data which is obtained in the experiments to illustrate the functionality of the system.
Chan, John D; Zhang, Dan; Liu, Xiaolong; Zarowiecki, Magdalena; Berriman, Matthew; Marchant, Jonathan S
2017-06-01
The robust regenerative capacity of planarian flatworms depends on the orchestration of signaling events from early wounding responses through the stem cell enacted differentiative outcomes that restore appropriate tissue types. Acute signaling events in excitable cells play an important role in determining regenerative polarity, rationalized by the discovery that sub-epidermal muscle cells express critical patterning genes known to control regenerative outcomes. These data imply a dual conductive (neuromuscular signaling) and instructive (anterior-posterior patterning) role for Ca 2+ signaling in planarian regeneration. Here, to facilitate study of acute signaling events in the excitable cell niche, we provide a de novo transcriptome assembly from the planarian Dugesia japonica allowing characterization of the diverse ionotropic portfolio of this model organism. We demonstrate the utility of this resource by proceeding to characterize the individual role of each of the planarian voltage-operated Ca 2+ channels during regeneration, and demonstrate that knockdown of a specific voltage operated Ca 2+ channel (Ca v 1B) that impairs muscle function uniquely creates an environment permissive for anteriorization. Provision of the full transcriptomic dataset should facilitate further investigations of molecules within the planarian voltage-gated channel portfolio to explore the role of excitable cell physiology on regenerative outcomes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2016 Elsevier B.V. All rights reserved.
The effects of crustacean cardioactive peptide on locust oviducts are calcium-dependent.
Donini, Andrew; Lange, Angela B
2002-04-01
The role of calcium as a second messenger in the crustacean cardioactive peptide (CCAP)-induced contractions of the locust oviducts was investigated. Incubation of the oviducts in a calcium-free saline containing, a preferential calcium cation chelator, or an extracellular calcium channel blocker, abolished CCAP-induced contractions, indicating that the effects of CCAP on the oviducts are calcium-dependent. In contrast, sodium free saline did not affect CCAP-induced contractions. Co-application of CCAP to the oviducts with preferential L-type voltage-dependent calcium channel blockers reduced CCAP-induced contractions by 32-54%. Two preferential T-type voltage-dependent calcium channel blockers both inhibited CCAP-induced oviduct contractions although affecting different components of the contractions. Amiloride decreased the tonic component of CCAP-induced contractions by 40-55% and flunarizine dihydrochloride decreased the frequency of CCAP-induced phasic contractions by as much as 65%, without affecting tonus. Flunarizine dihydrochloride did not alter the proctolin-induced contractions of the oviducts. Results suggest that the actions of CCAP are partially mediated by voltage-dependent calcium channels similar to vertebrate L-type and T-type channels. High-potassium saline does not abolish CCAP-induced contractions indicating the presence of receptor-operated calcium channels that mediate the actions of CCAP on the oviducts. The involvement of calcium from intracellular stores in CCAP-induced contractions of the oviducts is likely since, an intracellular calcium antagonist decreased CCAP-induced contractions by 30-35%.
A structural and functional comparison of gap junction channels composed of connexins and innexins
Williams, Jamal B.
2016-01-01
ABSTRACT Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre‐chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue‐ and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure–function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin‐based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522–547, 2017 PMID:27582044
A structural and functional comparison of gap junction channels composed of connexins and innexins.
Skerrett, I Martha; Williams, Jamal B
2017-05-01
Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre-chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue- and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure-function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin-based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522-547, 2017. © 2016 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.
Radiometric Calibration Techniques for Signal-of-Opportunity Reflectometers
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Shah, Rashmi; Deshpande, Manohar; Johnson, Carey
2014-01-01
Bi-static reflection measurements utilizing global navigation satellite service (GNSS) or other signals of opportunity (SoOp) can be used to sense ocean and terrestrial surface properties. End-to-end calibration of GNSS-R has been performed using well-characterized reflection surface (e.g., water), direct path antenna, and receiver gain characterization. We propose an augmented approach using on-board receiver electronics for radiometric calibration of SoOp reflectometers utilizing direct and reflected signal receiving antennas. The method calibrates receiver and correlator gains and offsets utilizing a reference switch and common noise source. On-board electronic calibration sources, such as reference switches, noise diodes and loop-back circuits, have shown great utility in stabilizing total power and correlation microwave radiometer and scatterometer receiver electronics in L-band spaceborne instruments. Application to SoOp instruments is likely to bring several benefits. For example, application to provide short and long time scale calibration stability of the direct path channel, especially in low signal-to-noise ratio configurations, is directly analogous to the microwave radiometer problem. The direct path channel is analogous to the loopback path in a scatterometer to provide a reference of the transmitted power, although the receiver is independent from the reflected path channel. Thus, a common noise source can be used to measure the gain ratio of the two paths. Using these techniques long-term (days to weeks) calibration stability of spaceborne L-band scatterometer and radiometer has been achieved better than 0.1. Similar long-term stability would likely be needed for a spaceborne reflectometer mission to measure terrestrial properties such as soil moisture.
An integrated analog O/E/O link for multi-channel laser neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nahmias, Mitchell A., E-mail: mnahmias@princeton.edu; Tait, Alexander N.; Tolias, Leonidas
2016-04-11
We demonstrate an analog O/E/O electronic link to allow integrated laser neurons to accept many distinguishable, high bandwidth input signals simultaneously. This device utilizes wavelength division multiplexing to achieve multi-channel fan-in, a photodetector to sum signals together, and a laser cavity to perform a nonlinear operation. Its speed outpaces accelerated-time neuromorphic electronics, and it represents a viable direction towards scalable networking approaches.
The 30/20 GHz mixed user architecture development study
NASA Technical Reports Server (NTRS)
1979-01-01
A mixed-user system is described which provides cost-effective communications services to a wide range of user terminal classes, ranging from one or two voice channel support in a direct-to-user mode, to multiple 500 mbps trunking channel support. Advanced satellite capabilities are utilized to minimize the cost of small terminals. In a system with thousands of small terminals, this approach results in minimum system cost.
Bezrukov, Sergey M; Liu, Xian; Karginov, Vladimir A; Wein, Alexander N; Leppla, Stephen H; Popoff, Michel R; Barth, Holger; Nestorovich, Ekaterina M
2012-09-19
Cationic β-cyclodextrin derivatives were recently introduced as highly effective, potentially universal blockers of three binary bacterial toxins: anthrax toxin of Bacillus anthracis, C2 toxin of Clostridium botulinum, and iota toxin of Clostridium perfringens. The binary toxins are made of two separate components: the enzymatic A component, which acts on certain intracellular targets, and the binding/translocation B component, which forms oligomeric channels in the target cell membrane. Here we studied the voltage and salt dependence of the rate constants of binding and dissociation reactions of two structurally different β-cyclodextrins (AmPrβCD and AMBnTβCD) in the PA(63), C2IIa, and Ib channels (B components of anthrax, C2, and iota toxins, respectively). With all three channels, the blocker carrying extra hydrophobic aromatic groups on the thio-alkyl linkers of positively charged amino groups, AMBnTβCD, demonstrated significantly stronger binding compared with AmPrβCD. This effect is seen as an increased residence time of the blocker in the channels, whereas the time between blockages characterizing the binding reaction on-rate stays practically unchanged. Surprisingly, the voltage sensitivity, expressed as a slope of the logarithm of the blocker residence time as a function of voltage, turned out to be practically the same for all six cases studied, suggesting structural similarities among the three channels. Also, the more-effective AMBnTβCD blocker shows weaker salt dependence of the binding and dissociation rate constants compared with AmPrβCD. By estimating the relative contributions of the applied transmembrane field, long-range Coulomb, and salt-concentration-independent, short-range forces, we found that the latter represent the leading interaction, which accounts for the high efficiency of blockage. In a search for the putative groups in the channel lumen that are responsible for the short-range forces, we performed measurements with the F427A mutant of PA(63), which lacks the functionally important phenylalanine clamp. We found that the on-rates of the blockage were virtually conserved, but the residence times and, correspondingly, the binding constants dropped by more than an order of magnitude, which also reduced the difference between the efficiencies of the two blockers. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Flow control for a paper-based microfluidic device by adjusting permeability of paper
NASA Astrophysics Data System (ADS)
Jang, Ilhoon; Kim, Gangjune; Song, Simon
2014-11-01
The paper-based microfluidics has attracted intensive attention as a prospective substitute for conventional microfluidic substrates used for a point-of-care diagnostics due to its superior advantages such as the cost effectiveness and production simplicity. Generally, a paper-based microfluidic device utilizes capillary force to drive a flow. Recent studies on flow control in such a device aimed at obtaining accurate and quantitative results by varying a channel geometry like width and length. According to the Darcy's law describing a flow in a porous media like paper, a flow rate can be adjusted the permeability of paper. In this study, we investigate a flow control method by adjusting the permeability of paper. We utilize the wax printing for the adjustment and the fabrication of paper channels. A rectangular wax pattern was printed on one inlet channel of a Y-channel geometry. By varying the brightness of the wax pattern, a relationship between the flow rate and permeability changes due to the wax was investigated. As a result, we obtained an effective permeability contour with respect to the wax pattern length and brightness. In addition, we developed a paper-based micromixer of which the mixing ratio was controlled precisely by adjusting the permeability.
Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing
2017-01-09
Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.
Ramesh, S; Seshasayanan, R
2016-01-01
In this study, a baseband OFDM-MIMO framework with channel timing and estimation synchronization is composed and executed utilizing the FPGA innovation. The framework is prototyped in light of the IEEE 802.11a standard and the signals transmitted and received utilizing a data transmission of 20 MHz. With the assistance of the QPSK tweak, the framework can accomplish a throughput of 24 Mbps. Besides, the LS formula is executed and the estimation of a frequency-specific fading channel is illustrated. For the rough estimation of timing, MNC plan is examined and actualized. Above all else, the whole framework is demonstrated in MATLAB and a drifting point model is set up. At that point, the altered point model is made with the assistance of Simulink and Xilinx's System Generator for DSP. In this way, the framework is incorporated and actualized inside of Xilinx's ISE tools and focused to Xilinx Virtex 5 board. In addition, an equipment co-simulation is contrived to decrease the preparing time while figuring the BER of the fixed point model. The work concentrates on above all else venture for further examination of planning creative channel estimation strategies towards applications in the fourth era (4G) mobile correspondence frameworks.