NASA Astrophysics Data System (ADS)
Longère, P.; Dragon, A.; Trumel, H.; de Resseguier, T.; Deprince, X.; Petitpas, E.
2002-12-01
L'objectif industriel du travail dans lequel s'inscrit ce papier est la simulation numérique de la réponse de structures à l'impact. Or, pour un grand nombre de matériaux métalliques à haute résistance soumis à des sollicitations à grande vitesse, le cisaillement adiabatique constitue un processus endommageant conduisant souvent à la ruine par macrofissuration. Nous présentons ici un modèle continu qui, construit sur des bases thermodynamiques, rend compte du comportement thermo-élasto/viscoplastique du matériau sain et de l'anisotropie mécanique (dégradation directionnelle des modules élastiques et viscoplastiques induite par la présence des bandes de cisaillement adiabatique dans le matériau endommagé. Dans notre démarche de modélisation qui tend à refléter les constats expérimentaux, la population de bandes est représentée par une variable tensorielle d'endommagement au sein d'un matériau homogène équivalent. Le modèle est formulé dans le cadre des transformations finies élasto-plastiques avec prise en compte de l'anisotropie induite. Sa particularisation au cas des petites perturbations est illustrée pour certains processus homogènes.
NASA Astrophysics Data System (ADS)
Leger, Michel T.
Les activites humaines energivores telles l'utilisation intensive de l'automobile, la surconsommation de biens et l'usage excessif d'electricite contribuent aux changements climatiques et autres problemes environnementaux. Bien que plusieurs recherches rapportent que l'etre humain est de plus en plus conscient de ses impacts sur le climat de la planete, ces memes recherches indiquent qu'en general, les gens continuent a se comporter de facon non ecologique. Que ce soit a l'ecole ou dans la communaute, plusieurs chercheurs en education relative a l'environnement estiment qu'une personne bien intentionnee est capable d'adopter des comportements plus respectueux de l'environnement. Le but de cette these etait de comprendre le processus d'integration de comportements d'attenuation des changements climatiques dans des familles. A cette fin, nous nous sommes fixe deux objectifs : 1) decrire les competences et les procedes qui favorisent l'adoption de comportements d'attenuation des changements climatiques dans des familles et 2) decrire les facteurs et les dynamiques familiales qui facilitent et limitent l'adoption de comportements d'attenuation des changements climatiques dans des familles. Des familles ont ete invitees a essayer des comportements personnels et collectifs d'attenuation des changements climatiques de sorte a integrer des modes de vie plus ecologiques. Sur une periode de huit mois, nous avons suivi leur experience de changement afin de mieux comprendre comment se produit le processus de changement dans des familles qui decident volontairement d'adopter des comportements d'attenuation des changements climatiques. Apres leur avoir fourni quelques connaissances de base sur les changements climatiques, nous avons observe le vecu de changement des familles durant huit mois d'essais a l'aide de journaux reflexifs, d'entretiens d'explicitation et du journal du chercheur. La these comporte trois articles scientifiques. Dans le premier article, nous presentons une
NASA Astrophysics Data System (ADS)
Leger, Michel T.
Les activites humaines energivores telles l'utilisation intensive de l'automobile, la surconsommation de biens et l'usage excessif d'electricite contribuent aux changements climatiques et autres problemes environnementaux. Bien que plusieurs recherches rapportent que l'etre humain est de plus en plus conscient de ses impacts sur le climat de la planete, ces memes recherches indiquent qu'en general, les gens continuent a se comporter de facon non ecologique. Que ce soit a l'ecole ou dans la communaute, plusieurs chercheurs en education relative a l'environnement estiment qu'une personne bien intentionnee est capable d'adopter des comportements plus respectueux de l'environnement. Le but de cette these etait de comprendre le processus d'integration de comportements d'attenuation des changements climatiques dans des familles. A cette fin, nous nous sommes fixe deux objectifs : 1) decrire les competences et les procedes qui favorisent l'adoption de comportements d'attenuation des changements climatiques dans des familles et 2) decrire les facteurs et les dynamiques familiales qui facilitent et limitent l'adoption de comportements d'attenuation des changements climatiques dans des familles. Des familles ont ete invitees a essayer des comportements personnels et collectifs d'attenuation des changements climatiques de sorte a integrer des modes de vie plus ecologiques. Sur une periode de huit mois, nous avons suivi leur experience de changement afin de mieux comprendre comment se produit le processus de changement dans des familles qui decident volontairement d'adopter des comportements d'attenuation des changements climatiques. Apres leur avoir fourni quelques connaissances de base sur les changements climatiques, nous avons observe le vecu de changement des familles durant huit mois d'essais a l'aide de journaux reflexifs, d'entretiens d'explicitation et du journal du chercheur. La these comporte trois articles scientifiques. Dans le premier article, nous presentons une
NASA Astrophysics Data System (ADS)
Miquel, Benjamin
The dynamic or seismic behavior of hydraulic structures is, as for conventional structures, essential to assure protection of human lives. These types of analyses also aim at limiting structural damage caused by an earthquake to prevent rupture or collapse of the structure. The particularity of these hydraulic structures is that not only the internal displacements are caused by the earthquake, but also by the hydrodynamic loads resulting from fluid-structure interaction. This thesis reviews the existing complex and simplified methods to perform such dynamic analysis for hydraulic structures. For the complex existing methods, attention is placed on the difficulties arising from their use. Particularly, interest is given in this work on the use of transmitting boundary conditions to simulate the semi infinity of reservoirs. A procedure has been developed to estimate the error that these boundary conditions can introduce in finite element dynamic analysis. Depending on their formulation and location, we showed that they can considerably affect the response of such fluid-structure systems. For practical engineering applications, simplified procedures are still needed to evaluate the dynamic behavior of structures in contact with water. A review of the existing simplified procedures showed that these methods are based on numerous simplifications that can affect the prediction of the dynamic behavior of such systems. One of the main objectives of this thesis has been to develop new simplified methods that are more accurate than those existing. First, a new spectral analysis method has been proposed. Expressions for the fundamental frequency of fluid-structure systems, key parameter of spectral analysis, have been developed. We show that this new technique can easily be implemented in a spreadsheet or program, and that its calculation time is near instantaneous. When compared to more complex analytical or numerical method, this new procedure yields excellent prediction of the dynamic behavior of fluid-structure systems. Spectral analyses ignore the transient and oscillatory nature of vibrations. When such dynamic analyses show that some areas of the studied structure undergo excessive stresses, time history analyses allow a better estimate of the extent of these zones as well as a time notion of these excessive stresses. Furthermore, the existing spectral analyses methods for fluid-structure systems account only for the static effect of higher modes. Thought this can generally be sufficient for dams, for flexible structures the dynamic effect of these modes should be accounted for. New methods have been developed for fluid-structure systems to account for these observations as well as the flexibility of foundations. A first method was developed to study structures in contact with one or two finite or infinite water domains. This new technique includes flexibility of structures and foundations as well as the dynamic effect of higher vibration modes and variations of the levels of the water domains. Extension of this method was performed to study beam structures in contact with fluids. These new developments have also allowed extending existing analytical formulations of the dynamic properties of a dry beam to a new formulation that includes effect of fluid-structure interaction. The method yields a very good estimate of the dynamic behavior of beam-fluid systems or beam like structures in contact with fluid. Finally, a Modified Accelerogram Method (MAM) has been developed to modify the design earthquake into a new accelerogram that directly accounts for the effect of fluid-structure interaction. This new accelerogram can therefore be applied directly to the dry structure (i.e. without water) in order to calculate the dynamic response of the fluid-structure system. This original technique can include numerous parameters that influence the dynamic response of such systems and allows to treat analytically the fluid-structure interaction while keeping the advantages of finite element modeling.
Etude de la dynamique des porteurs dans des nanofils de silicium par spectroscopie terahertz
NASA Astrophysics Data System (ADS)
Beaudoin, Alexandre
Ce memoire presente une etude des proprietes de conduction electrique et de la dynamique temporelle des porteurs de charges dans des nanofils de silicium sondes par rayonnement terahertz. Les cas de nanofils de silicium non intentionnellement dopes et dopes type n sont compares pour differentes configurations du montage experimental. Les mesures de spectroscopie terahertz en transmission montre qu'il est possible de detecter la presence de dopants dans les nanofils via leur absorption du rayonnement terahertz (˜ 1--12 meV). Les difficultes de modelisation de la transmission d'une impulsion electromagnetique dans un systeme de nanofils sont egalement discutees. La detection differentielle, une modification au systeme de spectroscopie terahertz, est testee et ses performances sont comparees au montage de caracterisation standard. Les instructions et des recommendations pour la mise en place de ce type de mesure sont incluses. Les resultats d'une experience de pompe optique-sonde terahertz sont egalement presentes. Dans cette experience, les porteurs de charge temporairement crees suite a l'absorption de la pompe optique (lambda ˜ 800 nm) dans les nanofils (les photoporteurs) s'ajoutent aux porteurs initialement presents et augmentent done l'absorption du rayonnement terahertz. Premierement, l'anisotropie de l'absorption terahertz et de la pompe optique par les nanofils est demontree. Deuxiemement, le temps de recombinaison des photoporteurs est etudie en fonction du nombre de photoporteurs injectes. Une hypothese expliquant les comportements observes pour les nanofils non-dopes et dopes-n est presentee. Troisiemement, la photoconductivite est extraite pour les nanofils non-dopes et dopes-n sur une plage de 0.5 a 2 THz. Un lissage sur la photoconductivite permet d'estimer le nombre de dopants dans les nanofils dopes-n. Mots-cles: nanofil, silicium, terahertz, conductivite, spectroscopie, photoconductivite.
Cinematique et dynamique des galaxies spirales barrees
NASA Astrophysics Data System (ADS)
Hernandez, Olivier
The total mass (luminous and dark) of galaxies is derived from their circular velocities. Spectroscopic Fabry-Perot observations of the ionized gas component of spiral galaxies allow one to derive their kinematics. In the case of purely axisymmetric velocity fields--as in non-active and unbarred spirals galaxies-- the circular velocities can be derived directly. However, the velocity fields of barred galaxies (which constitute two thirds of the spirals) exhibit strong non-circular motions and need a careful analysis to retrieve the circular component. This thesis proposes the necessary steps to recover the axisymmetric component of barred spiral galaxies. The first step was to develop the best instrumentation possible for this work. [Special characters omitted.] , which is the most sensitive photon counting camera ever developed, was coupled to a Fabry-Perot interferometer. The observations of a sample of barred spiral galaxies--the BH a BAR sample--was assembled in order to obtain the most rigourous velocity fields. Then, the Tremaine-Weinberg method, which can determine the bar pattern speed and is usually used with the observations of stellar component, has been tested on the ionised gas and gave satisfactory results. Finally, all the above techniques have been applied to the BH a BAR sample in order to study the key parameters of the galaxies' evolution--bar pattern speeds, multiple stationary waves, resonances etc.--which will allow one to use N-body+SPH simulations to model properly the non-circular motions and determine the true total mass of barred spiral galaxies.
Dynamique spatio-temporelle de la forêt tropicale
NASA Astrophysics Data System (ADS)
Chave, J.
Spatio-temporal dynamics of the tropical rain forest Mechanisms which drive the dynamics of forest ecosystems are complex, from seedling establishment to pollination, and seed dispersal by animals, running water or wind. These processes are more complex when the ecosystem shelters a large number of species and of vegetative forms, as it is the case in the tropical rainforest. To take them into account, we must develop and use models. I present a review of the fundamental mechanisms for the of a natural forest dynamics — photosynthesis, tree growth, recruitment and mortality — as well as a description of the past and of the present of tropical rainforests. This information is used to develop a spatially-explicit and individual-based forest model. Simplified models are deduced from it, and they serve to address more specific issues, such as the resilience of the forest to climate disturbances, or savanna-forest dynamics. The last topic is related to the spatio-temporal description of tropical plant biodiversity. A detailed introduction to the problem is provided, and models accounting for the maintenance of diversity are compared. These models include non spatial as well a spatial approaches (branching anihilating random walks and voter model with mutation). Les mécanismes régissant la dynamique des écosystèmes forestiers sont complexes, de l'établissement des plantules à la pollinisation et la dispersion des graines, transportées par les animaux, l'eau ou le vent. Ces processus sont d'autant plus divers que l'écosystème abrite un large nombre d'espèces et de formes végétatives, comme c'est le cas dans les forêts tropicales humides. Leur prise en compte et la compréhension de leur importance relative doit passer par la définition de modèles. Je présente une revue des différents mécanismes fondamentaux dans la dynamique d'une forêt—photosynthèse, croissance des arbres, reproduction, mortalité—ainsi qu'une description du passé et de l
Frisch, E.; Johnson, C.G.
1962-05-15
A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)
Dynamique et interférence de paquets d'ondes dans les atomes et dimères d'alcalins
NASA Astrophysics Data System (ADS)
Bouchene, M. A.
2002-11-01
(saturation regime, chirped pulse, ...) that allow us to determine the advantages and limits of this technique. In the case of molecules, the interaction of the two-pulse sequence leads to the interference of vibrational wave packets. We analyse and discuss in this case the effects of a thermal distribution of initial states on the temporal coherent control signal. Ce travail porte sur l'étude expérimentale résolue en temps de la dynamique atomique et moléculaire prenant place sur une échelle de temps femtoseconde. Il présente deux orientations distinctes et complémentaires. La première concerne l'étude de la dynamique de paquets d'ondes dans des atomes et dimères d'alcalins (K, K2) par des méthodes pompe-sonde. Dans le cas du potassium atomique le paquet d'ondes est une superposition des états de structure fine de l'état 4p et représente un paquet de spin électronique. Nous observons la dynamique de ce paquet d'ondes au cours du temps et montrons que celle-ci correspond à une inversion du sens d'orientation du spin. Le formalisme théorique des états brillants et noirs est particulièrement adapté à la description de ce type de dynamique. Nous présentons alors une méthode originale qui, tirant avantage du mouvement d'inversion du spin, permet de produire des électrons polarisés en spin à l'échelle femtoseconde. Dans le cas des molécules, le paquet d'ondes créé est une superposition d'états vibrationnels. Nous présentons les résultats d'une étude systématique de la dynamique de paquet d'ondes vibrationnel dans les états électroniques A^1Σ^+_u et 2^1Pi_g. Le signal pompe-sonde dépend alors de la compétition entre les dynamiques associées aux paquets d'ondes créés dans les deux états électroniques. La deuxième partie traite d'expériences d'interférences de paquets d'ondes dans des systèmes similaires (K, Cs, Cs2). Cette technique, complémentaire de la première, consiste à faire interagir une séquence de deux impulsions
NASA Astrophysics Data System (ADS)
Metiche, Slimane
La demande croissante en poteaux pour les differents reseaux d'electricite et de telecommunications a rendu necessaire l'utilisation de materiaux innovants, qui preservent l'environnement. La majorite des poteaux electriques existants au Canada ainsi qu'a travers le monde, sont fabriques a partir de materiaux traditionnels tel que le bois, le beton ou l'acier. Les motivations des industriels et des chercheurs a penser a d'autres solutions sont diverses, citons entre autre: La limitation en longueur des poteaux en bois ainsi que la vulnerabilite des poteaux fabriques en beton ou en acier aux agressions climatiques. Les nouveaux poteaux en materiaux composites se presentent comme de bons candidats a cet effet, cependant; leur comportement structural n'est pas connu et des etudes theoriques et experimentales approfondies sont necessaires avant leur mise en marche a grande echelle. Un programme de recherche intensif comportant plusieurs projets experimentaux, analytiques et numeriques est en cours a l'Universite de Sherbrooke afin d'evaluer le comportement a court et a long termes de ces nouveaux poteaux en Polymeres Renforces de Fibres (PRF). C'est dans ce contexte que s'inscrit la presente these, et notre recherche vise a evaluer le comportement a la flexion de nouveaux poteaux tubulaires coniques fabriques en materiaux composites par enroulement filamentaire et ce, a travers une etude theorique, ainsi qu'a travers une serie d'essais de flexion en "grandeur reelle" afin de comprendre le comportement structural de ces poteaux, d'optimiser la conception et de proposer une procedure de dimensionnement pour les utilisateurs. Les poteaux en Polymeres Renforces de Fibres (PRF) etudies dans cette these sont fabriques avec une resine epoxyde renforcee de fibres de verre type E. Chaque type poteaux est constitue principalement de trois zones ou les proprietes geometriques (epaisseur, diametre) et les proprietes mecaniques sont differentes d'une zone a l'autre. La difference
Mécanismes de rupture d'interfaces sous sollicitation dynamique rapide
NASA Astrophysics Data System (ADS)
Bolis, C.; Berthe, L.; Boustie, M.; Arrigoni, M.; Jeandin, M.; Barradas, S.
2003-03-01
Le test d'adhérence par choc laser (LASer Adhesion Test : LASAT) est développé afin de devenir une mesure non destructrice de l'adhérence à l'interface entre deux matériaux. Cette technique utilise un laser impulsionnel de forte puissance pour générer une onde de choc se propageant dans le substrat puis dans la couche. Des contraintes de traction peuvent ainsi être induites entre la couche et le substrat par le jeu des réflexions sur les différentes interfaces du système. La rupture peut être détectée sur l'historique de la vitesse de la face opposée au laser. Celle ci est mesurée par vélocimétrie Doppler de type VISAR (Velocity Interferometer System for Any Reflector). Les résultats expérimentaux obtenus sur un système (substrat : aluminium, couche : cuivre) déposé par projection plasma permettent de valider cette nouvelle technique. En particulier, le test permet d'étudier l'influence des paramètres de projection sur l'adhérence entre le cuivre et l'aluminium. Par ailleurs, une première interprétation numérique des mécanismes de rupture sous sollicitation dynamique est donnée grâce à l'utilisation de différents critères de rupture dans un code de propagation des chocs.
Etude de l'affaiblissement du comportement mecanique du pergelisol du au rechauffement climatique
NASA Astrophysics Data System (ADS)
Buteau, Sylvie
Le rechauffement climatique predit pour les prochaines decennies, aura des impacts majeurs sur le pergelisol qui sont tres peu documentes pour l'instant. La presente etude a pour but d'evaluer ces impacts sur les proprietes mecaniques du pergelisol et sa stabilite a long terme. Une nouvelle technique d'essai de penetration au cone a taux de deformation controle, a ete developpee pour caracteriser en place le pergelisol. Ces essais geotechniques et la mesure de differentes proprietes physiques ont ete effectues sur une butte de pergelisol au cours du printemps 2000. Le developpement et l'utilisation d'un modele geothermique 1D tenant compte de la thermodependance du comportement mecanique ont permis d'evaluer que les etendues de pergelisol chaud deviendraient instables a la suite d'un rechauffement de l'ordre de 5°C sur cent ans. En effet, la resistance mecanique du pergelisol diminuera alors rapidement jusqu'a 11,6 MPa, ce qui correspond a une perte relative de 98% de la resistance par rapport a un scenario sans rechauffement.
Exploration des mécanismes de repliement des protéines par dynamique moléculaire
NASA Astrophysics Data System (ADS)
Gilquin, B.
2005-11-01
Comment se replient les protéines? Cette question est ancienne. En introduction nous rappellerons ce qu'est le paradoxe de Levinthal et comment on est passé de la notion de chemin de repliement à la notion de paysage énergétique. Les simulations de dynamique moléculaire ont permis d'aborder la compréhension du processus de repliement au niveau atomique. Cependant l'échelle de temps des processus de repliement (de l'ordre de la milliseconde) n'est pas accessible aux simulations numériques (de l'ordre de la nanoseconde). Plusieurs auteurs ont donc proposé de simuler le dépliement des protéines par dynamique moléculaire. En admettant le principe de micro-réversibilité l'étude du processus de dépliement renseigne sur celui de repliement. Cependant, il est nécessaire d'accélérer le dépliement en introduisant un biais afin que les états dépliées soient accessibles aux échelles de temps des simulations. Nous présenterons un exemple de ce qui a été réalise dans le cas de l'étude de protéines de petite taille suivant un repliement simple, globalement à deux états. Nous présenterons ensuite ce que nous avons réalisé dans le cas d'une protéine de taille plus importante et pour laquelle le processus de repliement est plus complexe car il existe un intermédiaire transitoire de repliement. C'est le cas du lysozyme pour lequel les simulations de dépliement permettent d'accéder au mécanisme atomique de repliement et de comprendre pourquoi des mutants de cette protéine se replient plus lentement et forment des fibres amyloïdiques. Ainsi les intermédiaires de repliement seraient à l'origine de formes pathogènes des protéines observées dans les maladies neuro-dégéneratives. Enfin nous montrerons comment à partir de plusieurs simulations longues de dynamique moléculaire, le paysage énergétique pour de petites protéines peut être calculé.
Modelisation et simulation du comportement des alliages de magnesium lors de la deformation a chaud
NASA Astrophysics Data System (ADS)
Levesque, Julie
Les alliages de magnesium sont de plus en plus utilises dans l'industrie automobile. Leur faible masse volumique permet d'alleger les vehicules, donc de diminuer l'utilisation de carburant et les emissions de gaz a effet de serre. La ductilite du magnesium a temperature ambiante est faible, mais une augmentation de celle-ci permet l'activation de systemes de glissement supplementaires et une meilleure formabilite. L'hydroformage a chaud pourrait donc permettre de fabriquer des pieces en alliages de magnesium destinees a l'industrie automobile. L'objectif de ce travail etait de developper un modele numerique permettant de simuler le comportement des alliages de magnesium deformes a temperature moderee (200°C). Les principales difficultes resident dans le fait que le magnesium ne se deforme pas seulement par glissement, mais aussi par maclage. En plus de reorienter les mailles cristallines, le maclage amene egalement un schema de durcissement complexe. Le modele utilise en est un de plasticite cristalline, qui tient compte de l'evolution de la texture lors de la deformation. Le modele de depart a ete adapte au magnesium en y incluant le maclage. Il tient compte de la reorientation des mailles cristallines, ainsi que du durcissement cause par les joints de macles. Le modele a d'abord ete calibre grace aux courbes de traction et de compression uniaxiale, puis a ete valide par la simulation de l'essai de deformation circonferentielle. L'evolution de texture observee a aussi permis de valider le modele. Des equations permettant d'ajuster les parametres du modele en fonction du taux de deformation ont egalement ete developpees. Les diagrammes des limites de formage dans les directions conventionnelle et d'hydroformage ont ete traces. Le maclage semble contribuer legerement a la formabilite des alliages de magnesium a la temperature etudiee. Une augmentation de l'index de sensibilite a la vitesse de deformation a aussi un effet positif sur la formabilite. Les resultats
Approche pour les comportements sexuels inappropriés chez des personnes atteintes de démence
Joller, Petra; Gupta, Neeraj; Seitz, Dallas P.; Frank, Christopher; Gibson, Michelle; Gill, Sudeep S.
2013-01-01
Résumé Objectif Présenter aux médecins de famille une mise à jour sur l’approche au diagnostic et à la prise en charge des comportements sexuels inappropriés (CSI) chez les personnes atteintes de démence. Sources des données On a fait une recherche dans MEDLINE et EMBASE pour cerner des articles pertinents publiés avant juin 2012. On n’a trouvé aucune étude de niveau I; la plupart des articles fournissaient des données probantes de niveau III. Message principal Les comportements sexuels inappropriés sont fréquents chez les personnes atteintes de démence. Divers facteurs (p. ex., culturels, religieux, perspectives sociétales de la sexualité gériatrique, questions médicolégales) pourraient compliquer l’évaluation de tels comportements et doivent être pris en compte pour permettre une prise en charge appropriée à chaque patient. Il existe des outils pour documenter les CSI. Des interventions créatives non pharmacologiques pour les CSI pourraient être efficaces quand elles sont adaptées à chaque patient. Certaines pharmacothérapies (p. ex., antidépresseurs, antiandrogènes, antipsychotiques et anticonvulsifs) ont été proposées pour les symptômes qui ne répondent pas aux interventions non pharmacologiques. Par ailleurs, les données probantes à l’appui des traitements à l’aide de médicaments sont limitées, les effets secondaires demeurent un aspect important à considérer et il est incertain s’ils devraient être utilisés comme traitement de première ou de deuxième intention. Conclusion Quoiqu’il n’y ait pas d’algorithme de traitements empiriquement établi pour les CSI reliés à la démence, les ouvrages actuels offrent certaines données probantes concernant diverses thérapies pharmacologiques et non pharmacologiques. Des recherches de grande qualité plus approfondies sont nécessaires de toute urgence pour guider les médecins de famille qui prennent en charge des patients qui ont des CSI reliés à la
NASA Astrophysics Data System (ADS)
Savard, Stephane
choisi, nous avons mesure les proprietes intrinseques du meme echantillon de YBa2Cu3O7- delta avec la technique pompe-visible et sonde-terahertz donnant, elle aussi, acces aux temps caracteristiques regissant l'evolution hors-equilibre de ce materiau. Dans le meilleur scenario, ces temps caracteristiques devraient correspondre a ceux evalues grace a la modelisation des antennes. Un bon controle des parametres de croissance des couches minces supraconductrices et de fabrication du dispositif nous a permis de realiser des antennes d'emission terahertz possedant d'excellentes caracteristiques en terme de largeur de bande d'emission (typiquement 3 THz) exploitables pour des applications de spectroscopie resolue dans le domaine temporel. Le modele developpe et retenu pour le lissage du spectre terahertz decrit bien les caracteristiques de l'antenne supraconductrice pour tous les parametres d'operation. Toutefois, le lien avec la technique pompe-sonde lors de la comparaison des proprietes intrinseques n'est pas direct malgre que les deux techniques montrent que le temps de relaxation des porteurs augmente pres de la temperature critique. Les donnees en pompe-sonde indiquent que la mesure du temps de relaxation depend de la frequence de la sonde, ce qui complique la correspondance des proprietes intrinseques entre les deux techniques. De meme, le temps de relaxation extrait a partir du spectre de l'antenne terahertz augmente en s'approchant de la temperature critique (T c) de YBa2Cu 3O7-delta. Le comportement en temperature du temps de relaxation correspond a une loi de puissance qui est fonction de l'inverse du gap supraconducteur avec un exposant 5 soit 1/Delta 5(T). Le travail presente dans cette these permet de mieux decrire les caracteristiques des antennes supraconductrices a haute temperature critique et de les relier aux proprietes intrinseques du materiau qui les compose. De plus, cette these presente les parametres a ajuster comme le courant applique, la puissance de
Comportement de quelques materiaux envisageables dans un reacteur nucleaire a sels fondus
NASA Astrophysics Data System (ADS)
Broc, M.; Fauvet, P.; Sannier, J.; Santarini, G.
1983-12-01
This work presents a set of experiments aimed at an evaluation of the behaviour of different materials in contact with liquid or solid media likely to be encountered in a molten salt nuclear reactor. The main results are as follows: graphite can be used to build test loops working for thousands of hours in the presence of molten fluorides; low-alloyed steels may be used in the presence of solid fluorides without risk of severe corrosion; the simultaneous presences of carbon materials and metallic alloys in contact with molten fluorides may give rise to mass transfers; no noticeable galvanic coupling effect is observed at 550°C between liquid lead and steels in the presence of molten fluorides; the phenomena involved in the wetting of steels in contact simultaneously with liquid lead and molten fluorides develop with time, though it seems that at equilibrium a steel surface is wetted more by lead than by fluorides.
Verrue géante et récalcitrante: succès d'un traitement par photothérapie dynamique
Meziane, Mariame; Bettioui, Asmae; Krich, Sanae; Mernissi, Fatima-zahra
2013-01-01
La photothérapie dynamique (PDT) utilisant l'acide methyl ester amino-levulinique est essentiellement utilisée dans les pathologies cutanées cancéreuses et précancéreuses. Son application au traitement des verrues est de description récente. Nous rapportons le cas d'un patient immunocompétent ayant une verrue géante et récalcitrante de la main droite traitée avec succès par la PDT, et discutons les difficultés de la prise en charge de ces verrues et l'intérêt de ce traitement dans l'obtention d'une bonne réponse thérapeutique et cosmétique avec peu de risque de récidive. PMID:24570800
Bagny, Aklesso; Dusabe, Angelique; Bouglouga, Oumboma; Lawson-ananisoh, Mawuli Late; Kaaga, Yeba Laconi; Djibril, Mohaman Awalou; Soedje, Kokou Mensah; Dassa, Simliwa Kolou; Redah, Datouda
2014-01-01
Introduction L'hémorragie digestive haute est une urgence, qui constitue souvent pour les patients un danger mortel suscitant inquiétude et agitation. Dans cet état, le patient dépend de ses accompagnants pour ses soins et pour honorer le traitement; mais souvent, il a été observé une discordance entre l'urgence et les comportements des accompagnants. Le but de cette étude était de décrire les facteurs socioéconomiques et psychologiques pouvant influencer les comportements des accompagnants des patients admis pour HDH, estimer l'indice de relation entre ces comportements et les facteurs associés d'une part et le vécu des patients admis pour HDH d'autre part. Méthodes Il s'agit d'une étude prospective menée de Septembre 2010 à Juin 2011 (soit 10 mois). Nous avions utilisé l'entretien semi-dirigé et l'observation directe pour collecter nos données, ces dernières avaient été traitées par les méthodes statistiques et d'analyse de contenu. Résultats Dans la présente étude, les comportements des accompagnants des patients admis pour HDH sont en majorité marqués par l'abandon (84%) et le manque de sollicitude (80,2%). Ces comportements sont souvent stimulés par les facteurs socioéconomiques tels que les difficultés économiques (83,2%), des conflits intrafamiliaux (85,1%) et des représentations (maladie incurable ou envoûtement) de la maladie par les accompagnants (73,3%) des cas. Quant aux patients, ils vivent ces comportements comme étant des menaces de mort ou des rejets (77,20%) et comme étant une dévalorisation ou une humiliation de la part de leurs accompagnants (70,30%). Les résultats confirment l'existence de lien significatif entre les comportements des accompagnants et les facteurs socio économiques, entre les comportements des accompagnants et des facteurs psychologiques, et entre le vécu des patients admis pour l'HDH et les comportements des accompagnants. Conclusion Des études ultérieures devraient aborder les points
Ginell, W.S.
1989-04-25
A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.
Ginell, W.S.
1982-03-17
A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.
NASA Astrophysics Data System (ADS)
Bouguerra, Kheireddine
Au cours des dernieres annees, la deterioration des structures en beton arme a pris une ampleur sans precedent, et ce, malgre le fait que leur duree de vie en service initialement prevue est loin d'etre atteinte. La corrosion de l'armature d'acier est un des principaux facteurs reduisant la duree de vie des ponts en beton arme d'acier. Par ailleurs, l'armature en materiaux composites de polymeres renforces de fibres (PRF) constitue une solution a l'armature metallique afin de pallier au probleme de la corrosion d'acier et a la deterioration des structures en beton arme. Aussi, les barres d'armature en materiaux composites de PRF possedent une resistance en traction elevee (environ 2 a 6 fois la limite elastique de l'acier d'armature conventionnel), ce qui leur permet de constituer un renforcement structural attrayant pour les structures en beton. Le comportement d'elements structuraux en beton arme de barres en PRF est different de ceux en beton arme de barres d'acier. En effet, les barres en PRF possedent un module d'elasticite relativement plus faible que celui de l'acier et ont des proprietes d'adherence differentes de celles des barres d'acier. L'utilisation des barres d'armature en PRF pour armer les dalles de tabliers de ponts se concretise de plus en plus avec l'avancement des recherches dans ce domaine. La recherche entamee dans le cadre de cette these s'inscrit dans un programme de travaux realises au sein de la Chaire de recherche CRSNG/Industrie sur les Materiaux composites novateurs en PRF pour les infrastructures au departement de genie civil a l'Universite de Sherbrooke. Le comportement de membrures en beton arme de PRF soumis a des sollicitations mecaniques constitue un des principaux axes de recherche. Dans le cadre de cette these, une serie d'essais a ete effectuee sur huit dalles de ponts a confinement interne a grande echelle. Les parametres des essais comprennent: (1) l'epaisseur de la dalle, (2) le type et le taux d'armature transversale de l
Stabilisation dynamique d'un winging scapula (à propos d'un cas avec revue de la littérature)
Boukhris, Jalal; Boussouga, Mostapha; Jaafar, Abdelouahab; Bouslmame, Nabil
2014-01-01
Décrit pour la première fois par Velpeau en 1937, le winging scapula reste une affection rare, encore peu connue aussi bien du grand public que des professionnels de santé. Il s'agit en fait de la paralysie isolée du nerf thoracique long, responsable de l'innervation unique du muscle serratus antérieur, laquelle paralysie génère un décollement du bord spinal et de la pointe de l'omoplate, particulièrement visible lors des mouvements d'abduction et d'antépulsion du bras. Evoluant habituellement vers la récupération spontanée, le diagnostic de cette affection est essentiellement clinique, l'exploration électromyographique, peut appuyer le diagnostic et surtout servir d’élément de surveillance. Le traitement est avant tout conservateur; la chirurgie n’étant envisagée que dans les formes chroniques qui ne répondent pas à la rééducation, le cas d'ailleurs de notre patient. Le choix du type d'intervention devra obéir à des critères précis. La stabilisation dynamique de la scapula est une intervention séduisante et donne entre des mains entraînées des résultats très satisfaisants, beaucoup de critiques sont faites sur la récupération de la force musculaire, ce qui en limite l'indication quand les exigences professionnelles des patients sont importantes. Néanmoins, certaines séries en font la méthode de choix avec des résultats excellents. PMID:25918571
NASA Astrophysics Data System (ADS)
Kryachko, Eugene S.
The general features of the nonadiabatic coupling and its relation to molecular properties are surveyed. Some consequences of the [`]equation of motion', formally expressing a [`]smoothness' of a given molecular property within the diabatic basis, are demonstrated. A particular emphasis is made on the relation between a [`]smoothness' of the electronic dipole moment and the generalized Mulliken-Hush formula for the diabatic electronic coupling.
Babelay, E.F.
1962-02-13
A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)
NASA Technical Reports Server (NTRS)
Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)
1979-01-01
A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.
NASA Astrophysics Data System (ADS)
Arsenault, Louis-Francois
Les applications reliees a la generation d'energie motivent la recherche de materiaux ayant un fort pouvoir thermoelectrique (S). De plus, S nous renseigne sur certaines proprietes fondamentales des materiaux, comme, par exemple, la transition entre l'etat coherent et incoherent des quasi-particules lorsque la temperature augmente. Empiriquement, la presence de fortes interactions electron-electron peut mener a un pouvoir thermoelectrique geant. Nous avons donc etudie le modele le plus simple qui tient compte de ces fortes interactions, le modele de Hubbard. La theorie du champ moyen dynamique (DMFT) est tout indiquee dans ce cas. Nous nous sommes concentres sur un systeme tridimensionnel (3d) cubique a face centree (fcc), et ce, pour plusieurs raisons. A) Ce type de cristal est tres commun dans la nature. B) La DMFT donne de tres bons resultats en 3d et donc ce choix sert aussi de preuve de principe de la methode. C) Finalement, a cause de la frustration electronique intrinseque au fcc, celui-ci ne presente pas de symetrie particule-trou, ce qui est tres favorable a l'apparition d'une grande valeur de S. Ce travail demontre que lorsque le materiau est un isolant a demi-remplissage a cause des fortes interactions (isolant de Mott), il est possible d'obtenir de grands pouvoirs thermoelectriques en le dopant legerement. C'est un resultat pratique important. Du point de vue methodologique, nous avons montre comment la limite de frequence infinie de S et l'approche dite de Kelvin, qui considere la limite de frequence nulle avant la limite thermodynamique pour S, donnent des estimations fiables de la vraie limite continue (DC) dans les domaines de temperature appropriee. Ces deux approches facilitent grandement les calculs en court-circuit ant la necessite de recourir a de problematiques prolongements analytiques. Nous avons trouve que la methode de calcul a frequence infinie fonctionne bien lorsque les echelles d'energie sont relativement faibles. En d'autres termes
NASA Astrophysics Data System (ADS)
Meule, Samuel
'un panache de surface et par les chenaux deltaiques. Une forte turbulence favorisera un processus dit de "sedimentation convective induite par un melange turbulent" ("mixing-induced convective sedimentation "). Le comportement des vagues de tempete qui se propagent sur la partie superieure de la pente du Delta du Fraser depend du marnage, de l'incidence de propagation et de la morphologie sous-marine. Ces facteurs controlent une divergence dans le transport sedimentaire au niveau de la rupture de pente deltaique. A maree haute, le transport sedimentaire sera essentiellement "onshore".
Études dynamiques des propriétés mécaniques et électriques des contacts entre solides
NASA Astrophysics Data System (ADS)
Mayer, Guy; Hauchecorne, Gérard
1996-08-01
Dynamical methods are used to study contacts between solids. We describe some devices for exciting and measuring periodical oscillations of a small object laying against a table. For small amplitude (simeq 10^{-8} cm) of relative motion, the normal modes of oscillation are harmonic and their frequencies give the derivative of the force versus displacement. The effects of a static force on those mutual frequencies give the second derivatives. In these modes of relative motion the strain potential energy is concentrated in the small volumes (simeq 10^{12} cm3) near the contacts. They show a rather strong damping coefficient which we have measured. For larger amplitudes of motion, various non-linear effects show up. We have studied with some care sub-harmonic generation. When both solids in contact are electrically conducting the impedance modulation induced by the mechanical oscillations has been measured and brings some more information. Hertz theory has guided us. The fractional exponents we observe in the relations force versus displacement for various contacts are reasonably close to the Hertzian predictions. The effect of a magnetic field on the mutual frequencies of two solids made of ferrite (Mn, Zn) has been found too strong to be accounted for easily. Nous étudions par des méthodes dynamiques le nature des contacts entre deux solides. Nous décrivons divers dispositifs permettant de provoquer et d'observer de petites oscillations périodiques d'un objet appuyé contre une table autour de sa positions d'équilibre statique. Pour des amplitudes de mouvement relatif petites, de l'ordre de l'Angström, les modes propres d'oscillation sont harmoniques et leur fréquence donne la dérivée de la force par rapport au déplacement. L'influence d'une force statique sur cette fréquence mutuelle donne la dérivée seconde. Dans ces modes de mouvement relatif l'énergie potentielle de déformation est localisée dans les très petits volumes proches des contacts
Étude expérimentale et modélisation du comportement en compression des structures nid d'abeille
NASA Astrophysics Data System (ADS)
Aminanda, Y.; Castanié, B.; Barrau, J. J.; Thévenet, P.; Guedra-Degeorges, D.
2002-12-01
Dans le domaine aéronautique les impacts, même de faible énergie, sur des structures sandwichs à âme nid d'abeille posent des problèmes majeurs en terme de résistance résiduelle. La modélisation de l'endom magement dû à l'impact nécessite la connaissance préliminaire du comportement du nid d'abeille en compression. Des essais réalisés en compression quasi-statique uniforme sur des pains de nids d'abeille en différents matériaux (Nomex, Aluminium et Canson) permettent de décomposer la séquence de formation du pli et les facteurs influents. Ces essais tendent à montrer que la force de compression transite essentiellement par les arêtes verticales du nida. Des essais complémentaires sur un motif d'arête confirme cette analyse. La modélisation issue de cette analyse propose, pour connaître la réponse d'une structure nid d'abeille en compression ou indentation, de déterminer la réponse individuelle d'une arête verticale par un essai de compression uniforme. A partir de la loi expérimentale obtenue, la réponse à l'indentation de la structure sandwich est la superposition de la réponse des arêtes pour la forme d'indenteur et la profondeur d'indentation considérée. Une bonne corrélation essais/calcul est obtenue lors d'essais de validation sur nida Nomex avec diverses formes d'indenteurs. La méthode proposée est générale et peut être étendue à divers matériaux cellulaires.
Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es
2009-07-01
The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1983-10-04
An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.
Retrofitting gear couplings with diaphragm couplings
Mancuso, J.R. )
1988-10-01
Retrofitting a coupling should not be an afterthought when upgrading a system. Couplings are an integral part of a drive train and should be a major consideration. This article discusses guidelines that should be used when replacing gear couplings with diaphragm couplings. Reviewed are the coupling selection process: how and to what extent the desired diaphragm couplings should be matched to the gear coupling. Also discussed are the details of coupling modification that can be made to accommodate system performance. Included are how changes in materials, configuration and design can help tune a diaphragm coupling to meet the characteristics of the previous gear couplings. The article also discusses the retrofit process for a specific syngas train at International Minerals and Chemical Corp., Sterlington, La.
ERIC Educational Resources Information Center
Sperry, Len; Carlson, Jon
1991-01-01
Sketches taxonomy of work-centered couple. Briefly describes five couple types: the dual-career couple, the commuting couple, the military couple, the executive couple, and the family business couple. Notes that issues of work and career can greatly impact the lives of these couples. Encourages family psychology to further explore this area of…
Biorhythm in Couple Counseling
ERIC Educational Resources Information Center
Araoz, Daniel L.
1977-01-01
Twelve couples in marital counseling were studied during 12 months on the basis of their biorhythms. For each couple a compatibility percentage was obtained. It was found that difficulties in their interaction correlated highly with dissonance in their biorhythms. (Author)
NASA Astrophysics Data System (ADS)
Ryder, J.; Polcher, J.; Peylin, P.; Ottlé, C.; Chen, Y.; van Gorsel, E.; Haverd, V.; McGrath, M. J.; Naudts, K.; Otto, J.; Valade, A.; Luyssaert, S.
2016-01-01
In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has been based on a big-leaf approach, with averaging schemes that represent in-canopy processes. Furthermore, to be stable, that is to say, over large time steps and without large iterations, a surface layer model should be capable of implicit coupling to the atmospheric model. Surface models with large time steps, however, have difficulties in reproducing consistently the energy balance in field observations. Here we outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy). This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multi-layer long-wave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare-soil flux within the canopy space. Significantly, it avoids iterations over the height of the canopy and so maintains implicit coupling to the atmospheric model LMDz (Laboratoire de Météorologie Dynamique Zoomed model). As a first test, the model is evaluated against data from both an intensive measurement campaign and longer-term eddy-covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of energy and water fluxes, as well as the vertical gradients of temperature and of sensible heat fluxes.
NASA Astrophysics Data System (ADS)
Jacquet, E.; Garbuio, P.; Pernin, J. N.
2002-12-01
Pour tenter d'améliorer les techniques d'ostéosynthèse, afin de réduire les fractures du fémur, apparaît la nécessité de développer un modèle géométrique et numérique capable de caractériser le comportement mécanique du fémur humain. La présente étude propose des résultats expérimentaux issus de tests de compression sur fémurs frais équipés de jauges d'extensomètre. Le modèle géométrique est introduit dans un code de calculs par éléments finis pour représenter le champ des déformations à la surface de l'os. On montre la cohérence du modèle au plan qualitatif et des améliorations pouvant être apportées à ce modèle sont discutées.
Response reactions: equilibrium coupling.
Hoffmann, Eufrozina A; Nagypal, Istvan
2006-06-01
It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle. PMID:16722770
Three tooth kinematic coupling
Hale, L.C.
2000-05-23
A three tooth kinematic coupling is disclosed based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.
Three tooth kinematic coupling
Hale, Layton C.
2000-01-01
A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.
NASA Astrophysics Data System (ADS)
Ličer, M.; Smerkol, P.; Fettich, A.; Ravdas, M.; Papapostolou, A.; Mantziafou, A.; Strajnar, B.; Cedilnik, J.; Jeromel, M.; Jerman, J.; Petan, S.; Malačič, V.; Sofianos, S.
2016-01-01
We have studied the performances of (a) a two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmosphere model), as compared to the available in situ measurements during and after a strong Adriatic bora wind event in February 2012, which led to extreme air-sea interactions. The simulations span the period between January and March 2012. The models used were ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) (4.4 km resolution) on the atmosphere side and an Adriatic setup of Princeton ocean model (POM) (1°/30 × 1°/30 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. Two-way coupling ocean feedback to the atmosphere is limited to sea surface temperature. We have compared modeled atmosphere-ocean fluxes and sea temperatures from both setups to platform and CTD (conductivity, temperature, and depth) measurements from three locations in the northern Adriatic. We present objective verification of 2 m atmosphere temperature forecasts using mean bias and standard deviation of errors scores from 23 meteorological stations in the eastern part of Italy. We show that turbulent fluxes from both setups differ up to 20 % during the bora but not significantly before and after the event. When compared to observations, two-way coupling ocean temperatures exhibit a 4 times lower root mean square error (RMSE) than those from one-way coupled system. Two-way coupling improves sensible heat fluxes at all stations but does not improve latent heat loss. The spatial average of the two-way coupled atmosphere component is up to 0.3 °C colder than the one-way coupled setup, which is an improvement for prognostic lead times up to 20 h. Daily spatial average of the standard deviation of air temperature errors shows 0.15 °C improvement in the case of coupled system compared to the uncoupled. Coupled and uncoupled circulations in the northern
NASA Astrophysics Data System (ADS)
Gélin, J. C.; Ghouati, O.; Shahani, R.
1994-04-01
The modelling of rheological behaviour of aluminium alloys for hot metal forming is based on experimental tests. The plane strain compression tests under various thermomechanical conditions (effective strain, effective strain rate, temperature, ...) are used for such a procedure. It is shown that numerical modelling combined with classical approaches can advantageously help in testing interpretation. It is shown, for instance, that the friction coefficient or the thermal exchanges between the specimen and the dies can be accurately fitted. Furthermore, a comparison between the numerical results and micrographical observations shows that it is possible to use numerical results with a good confidence. L'identification du comportement rhéologique des alliages d'aluminium en vue de leur mise en forme à chaud par laminage nécessite la réalisation d'essais expérimentaux. Les essais de bipoinçonnement entre poinçons parallélépipédiques, réalisés sous diverses conditions thermomécaniques (déformation effective, vitesse de déformation effective et température) ont été retenus pour une telle identification. On montre que la simulation numérique des essais permet de corriger de manière substantielle les méthodes d'identification classiques basées sur des approches rigides viscoplastiques. On montre par exemple que les simulations numériques permettent d'ajuster le coefficient de frottement ou les conditions d'échange thermiques. Enfin, une comparaison entre résultats numériques et analyses micrographiques montre que l'on peut utiliser les résultats des simulations en vue de la prévision des évolutions microstructurales des alliages considérés.
Pfleger, Brian; Mendez-Perez, Daniel
2013-11-05
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Pfleger, Brian; Mendez-Perez, Daniel
2015-05-19
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Guo, Yi; Errichello, Robert
2013-08-29
An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.
Depression: The Differing Narratives of Couples in Couple Therapy
ERIC Educational Resources Information Center
Rautiainen, Eija-Liisa; Aaltonen, Jukka
2010-01-01
How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…
Gelfand, N.M.
1994-12-01
The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Koivisto, Tomi; Longden, Chris
2016-03-01
A disformal coupling between two scalar fields is considered in the context of cosmological inflation. The coupling introduces novel derivative interactions mixing the kinetic terms of the fields but without introducing superluminal or unstable propagation of the two scalar fluctuation modes. Though the typical effect of the disformal coupling is to inhibit one of the fields from inflating the universe, the energy density of the other field can drive viable near Sitter -inflation in the presence of nontrivial disformal dynamics, in particular when one assumes exponential instead of power-law form for the couplings. The linear perturbation equations are written for the two-field system, its canonical degrees of freedom are quantised, their spectra are derived and the inflationary predictions are reported for numerically solved exponential models. A generic prediction is low tensor-to-scalar ratio.
[Main Cellular Redox Couples].
Bilan, D S; Shokhina, A G; Lukyanov, S A; Belousov, V V
2015-01-01
Most of the living cells maintain the continuous flow of electrons, which provides them by energy. Many of the compounds are presented in a cell at the same time in the oxidized and reduced states, forming the active redox couples. Some of the redox couples, such as NAD+/NADH, NADP+/NADPH, oxidized/reduced glutathione (GSSG/GSH), are universal, as they participate in adjusting of many cellular reactions. Ratios of the oxidized and reduced forms of these compounds are important cellular redox parameters. Modern research approaches allow setting the new functions of the main redox couples in the complex organization of cellular processes. The following information is about the main cellular redox couples and their participation in various biological processes.
Semiclassical theory of coupled lasers
Shakir, S.A.; Chow, W.W.
1985-08-01
The semiclassical equations of motion for a system of coupled lasers are developed and the frequency locking of the lasers comprising the system is analyzed. It is shown that the frequency-coupling range, in terms of the coupled cavities' mismatch, is proportional to the coupling coefficient. For a system where the cavities are uniformally filled with the active medium, the coupling vanishes regardless of the transmittance of the coupling mirrors. Our theory is valid for all values of coupling and for any number of lasers in the array. It may also be adapted to study different types of coupling arrangements.
Coupled adaptive complex networks.
Shai, S; Dobson, S
2013-04-01
Adaptive networks, which combine topological evolution of the network with dynamics on the network, are ubiquitous across disciplines. Examples include technical distribution networks such as road networks and the internet, natural and biological networks, and social science networks. These networks often interact with or depend upon other networks, resulting in coupled adaptive networks. In this paper we study susceptible-infected-susceptible (SIS) epidemic dynamics on coupled adaptive networks, where susceptible nodes are able to avoid contact with infected nodes by rewiring their intranetwork connections. However, infected nodes can pass the disease through internetwork connections, which do not change with time: The dependencies between the coupled networks remain constant. We develop an analytical formalism for these systems and validate it using extensive numerical simulation. We find that stability is increased by increasing the number of internetwork links, in the sense that the range of parameters over which both endemic and healthy states coexist (both states are reachable depending on the initial conditions) becomes smaller. Finally, we find a new stable state that does not appear in the case of a single adaptive network but only in the case of weakly coupled networks, in which the infection is endemic in one network but neither becomes endemic nor dies out in the other. Instead, it persists only at the nodes that are coupled to nodes in the other network through internetwork links. We speculate on the implications of these findings. PMID:23679478
Coupled adaptive complex networks
NASA Astrophysics Data System (ADS)
Shai, S.; Dobson, S.
2013-04-01
Adaptive networks, which combine topological evolution of the network with dynamics on the network, are ubiquitous across disciplines. Examples include technical distribution networks such as road networks and the internet, natural and biological networks, and social science networks. These networks often interact with or depend upon other networks, resulting in coupled adaptive networks. In this paper we study susceptible-infected-susceptible (SIS) epidemic dynamics on coupled adaptive networks, where susceptible nodes are able to avoid contact with infected nodes by rewiring their intranetwork connections. However, infected nodes can pass the disease through internetwork connections, which do not change with time: The dependencies between the coupled networks remain constant. We develop an analytical formalism for these systems and validate it using extensive numerical simulation. We find that stability is increased by increasing the number of internetwork links, in the sense that the range of parameters over which both endemic and healthy states coexist (both states are reachable depending on the initial conditions) becomes smaller. Finally, we find a new stable state that does not appear in the case of a single adaptive network but only in the case of weakly coupled networks, in which the infection is endemic in one network but neither becomes endemic nor dies out in the other. Instead, it persists only at the nodes that are coupled to nodes in the other network through internetwork links. We speculate on the implications of these findings.
Abell, Bradley C; Pyrak-Nolte, Laura J
2013-11-01
The interface between two wedges can be treated as a displacement discontinuity characterized by elastic stiffnesses. By representing the boundary between the two quarter-spaces as a displacement discontinuity, coupled wedge waves were determined theoretically to be dispersive and to depend on the specific stiffness of the non-welded contact between the two wedges. Laboratory experiments on isotropic and anisotropic aluminum confirmed the theoretical prediction that the velocity of coupled wedge waves, for a non-welded interface, ranged continuously from the single wedge wave velocity at low stress to the Rayleigh velocity as the load applied normal to the interface was increased. Elastic waves propagating along the coupled wedges of two quarter-spaces in non-welded contact are found to exist theoretically even when the material properties of the two quarter-spaces are the same.
Saturation in coupled oscillators
NASA Astrophysics Data System (ADS)
Roman, Ahmed; Hanna, James
2015-03-01
We consider a weakly nonlinear system consisting of a resonantly forced oscillator coupled to an unforced oscillator. It has long been known that, for quadratic nonlinearities and a 2:1 resonance between the oscillators, a perturbative solution of the dynamics exhibits a phenomenon known as saturation. At low forcing, the forced oscillator responds, while the unforced oscillator is quiescent. Above a critical value of the forcing, the forced oscillator's steady-state amplitude reaches a plateau, while that of the unforced oscillator increases without bound. We show that, contrary to established folklore, saturation is not unique to quadratically nonlinear systems. We present conditions on the form of the nonlinear couplings and resonance that lead to saturation. Our results elucidate a mechanism for localization or diversion of energy in systems of coupled oscillators, and suggest new approaches for the control or suppression of vibrations in engineered systems.
[Couples counseling with Latinos].
Zumaya, Mario
2011-01-01
Intimate ties and emotional relationship gain the function to confirm, to stabilize and, afterwards, to structure the coherency's model of the structured self-organization up to that moment. When the couple perceives the bond of the relationship such as a sole and exclusive for a person, they take a leading role to be able to deduce a sense of individuality and uniqueness in the way to feel himself in the world. Based on these considerations, in this paper I propose a brief description of a counselling method, which characterises the work I am carrying out since several years in the counselling and therapy with couples.
Coupled transport protein systems.
Thatcher, Jack D
2013-04-16
This set of animated lessons provides examples of how transport proteins interact in coupled systems to produce physiologic effects. The gastric pumps animation depicts the secretion of hydrochloric acid into the gastric lumen. The animation called glucose absorption depicts glucose absorption by intestinal epithelial cells. The CFTR animation explains how the cystic fibrosis conductance transmembrane regulator (CFTR) functions as a key component of a coupled system of transport proteins that clears the pulmonary system of mucus and inhaled particulates. These animations serve as valuable resources for any collegiate-level course that describes these processes. Courses that might use them include introductory biology, biochemistry, biophysics, cell biology, pharmacology, and physiology.
Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.
1995-12-01
Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source.
Wakefields and coupling impedances
NASA Astrophysics Data System (ADS)
Kurennoy, Sergey
1995-02-01
After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.
Coupled Oscillators with Chemotaxis
NASA Astrophysics Data System (ADS)
Sawai, Satoshi; Aizawa, Yoji
1998-08-01
A simple coupled oscillator system with chemotaxis is introducedto study morphogenesis of cellular slime molds. The modelsuccessfuly explains the migration of pseudoplasmodium which hasbeen experimentally predicted to be lead by cells with higherintrinsic frequencies. Results obtained predict that its velocityattains its maximum value in the interface region between totallocking and partial locking and also suggest possible rolesplayed by partial synchrony during multicellular development.
Gravitationally coupled electroweak monopole
NASA Astrophysics Data System (ADS)
Cho, Y. M.; Kimm, Kyoungtae; Yoon, J. H.
2016-10-01
We present a family of gravitationally coupled electroweak monopole solutions in Einstein-Weinberg-Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.
Coupling Gammasphere and ORRUBA
Ratkiewicz, A.; Cizewski, J. A.; Manning, B.; Pain, S. D.; Bardayan, D. W.; Blackmon, J. C.; Matos, M.; Chipps, K. A.; Hardy, S.; Shand, C.; Jones, K. L.; Kozub, R. L.; Lister, C. J.; Peters, W. A.; Seweryniak, D.
2013-04-19
The coincident detection of particles and gamma rays allows the study of the structure of exotic nuclei via inverse kinematics reactions using radioactive ion beams and thick targets. We report on the status of the project to couple the highresolution charged-particle detector ORRUBA to Gammasphere, a high-efficiency, high-resolution gamma ray detector.
NASA Astrophysics Data System (ADS)
Roy, G.; Buy, F.; Llorca, F.
2002-12-01
L'étude présentée s'inscrit dans le cadre d'une démarche menant à la construction d'un modèle analytique ou semi analytique de comportement élasto-visco-plastique endommageable, applicable aux chargements rencontrés en configuration d'impact violent et générant de l'écaillage ductile. La prise en compte des effets de compressibilité et de micro inertie est essentielle pour modéliser la phase de croissance. Des simulations numériques globales de la structure et locales à l'échelle des hétérogénéités permettent d'évaluer les niveaux de sollicitations dans les zones susceptibles de s'endommager, dévaluer des critères analytiques de germination de l'endommagement et de comprendre les mécanismes d'interaction entre les défauts. Les effets micro inertiels et de compressibilité sont ainsi mis en évidence dans les phases de germination et de coalescence des micro défauts. II s'agit ici d'une illustration non exhaustive de travaux engagés au CEA Valduc sur le tantale, dans le cadre d'une thèse [10]. Un programme matériaux en partenariat CEA-CNRS sur la modélisation multi échelles du comportement de structures a également été initié dans ce contexte.
Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine
2015-01-01
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of
Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine
2015-01-01
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of
New coupled quintessence cosmology
Jesus, J. F.; Santos, R. C.; Lima, J. A. S.; Alcaniz, J. S.
2008-09-15
A component of dark energy has been recently proposed to explain the current acceleration of the Universe. Unless some unknown symmetry in Nature prevents or suppresses it, such a field may interact with the pressureless component of dark matter, giving rise to the so-called models of coupled quintessence. In this paper we propose a new cosmological scenario where radiation and baryons are conserved, while the dark energy component is decaying into cold dark matter. The dilution of cold dark matter particles, attenuated with respect to the usual a{sup -3} scaling due to the interacting process, is characterized by a positive parameter {epsilon}, whereas the dark energy satisfies the equation of state p{sub x}={omega}{rho}{sub x} ({omega}<0). We carry out a joint statistical analysis involving recent observations from type Ia supernovae, baryon acoustic oscillation peak, and cosmic microwave background shift parameter to check the observational viability of the coupled quintessence scenario here proposed.
Anomalous gauge boson couplings
Barklow, T.; Rizzo, T.; Baur, U.
1997-01-13
The measurement of anomalous gauge boson self couplings is reviewed for a variety of present and planned accelerators. Sensitivities are compared for these accelerators using models based on the effective Lagrangian approach. The sensitivities described here are for measurement of {open_quotes}generic{close_quotes} parameters {kappa}{sub V}, {lambda}{sub V}, etc., defined in the text. Pre-LHC measurements will not probe these coupling parameters to precision better than O(10{sup -1}). The LHC should be sensitive to better than O(10{sup -2}), while a future NLC should achieve sensitivity of O(10{sup -3}) to O(10{sup -4}) for center of mass energies ranging from 0.5 to 1.5 TeV.
Nance, Thomas A.
2009-08-18
A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.
Niemoth, H.R.
1963-02-26
BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)
Luft, Peter A.
2009-05-12
A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.
Dynamic coupling of plasmonic resonators
NASA Astrophysics Data System (ADS)
Lee, Suyeon; Park, Q.-Han
2016-02-01
We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments.
Dynamic coupling of plasmonic resonators
Lee, Suyeon; Park, Q-Han
2016-01-01
We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786
NASA Astrophysics Data System (ADS)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-09-01
We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and
Controllable optomechanical coupling in serially-coupled triple resonators
Huang, Chenguang Zhao, Yunsong; Fan, Jiahua; Zhu, Lin
2014-12-15
Radiation pressure can efficiently couple mechanical modes with optical modes in an optical cavity. The coupling efficiency is quite dependent on the interaction between the optical mode and mechanical mode. In this report, we investigate a serially-coupled triple resonator system, where a freestanding beam is placed in the vicinity of the middle resonator. In this coupled system, we demonstrate that the mechanical mode of the free-standing beam can be selectively coupled to different resonance supermodes through the near field interaction.
NASA Astrophysics Data System (ADS)
Döring, D.; Solodov, I.; Busse, G.
Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.
Pardini, J.A.; Brubaker, R.C.; Rusnak, J.J.
1982-09-20
Disclosed is a remotely operable releasable sealing coupling which provides fluid-tight joinder of upper and a lower conduit sections. Each conduit section has a concave conical sealing surface adjacent its end portion. A tubular sleeve having convex spherical ends is inserted between the conduit ends to form line contact with the concave conical end portions. An inwardly projecting lip located at one end of the sleeve cooperates with a retaining collar formed on the upper pipe end to provide swivel capture for the sleeve. The upper conduit section also includes a tapered lower end portion which engages the inside surface of the sleeve to limit misalignment of the connected conduit sections.
Klyne, A.A.
1986-11-11
An anti-friction sucker rod coupling is described for connecting a pair of sucker rods and centralizing them in a tubing string, comprising: an elongate, rigid, substantially cylindrical body member, each end of the body member forming means for threadably connecting the body member with a sucker rod. The body member further forms a transversely extending, substantially diametric, generally vertical slot extending therethrough. The body member further forms a pin bore, such pin bore extending transversely through the body member so as to intersect the slot substantially perpendicularly; a wheel member positioned within the slot to rotate in a generally vertical plane. The wheel member has a portion thereof extending beyond the periphery of the body member to engage the inner surface of the tubing string and centralize the coupling; and a pin mounted in the pin bore and supporting member thereon, whereby the wheel member is rotatable within the slot; the wheel member having sufficient clearance between its side surfaces and the wall surfaces of the slot, when the wheel member is centered in the slot on the pin, whereby the wheel member may shift along the pin to assist in ejecting sand and oil from the slot.
Schehl, M
1997-01-01
A study conducted by AVSC International between 1992 and 1995 found that couples around the world go through a highly similar decision-making process when they choose vasectomy as their family planning methods. Study findings are based upon in-depth, qualitative interviews with couples using vasectomy in Bangladesh, Mexico, Kenya, and Rwanda, where the prevalence of vasectomy is relatively low, and Sri Lanka and the US, where it is relatively high. 218 separate interviews were conducted with male and female partners. Concerns about the woman's health were cited by respondents in each country as reasons to cease childbearing and to opt for vasectomy as the means to achieving that end. Also, almost all respondents mentioned varying degrees of financial hardship as contributing to their decision to end childbearing. These findings highlight the concept of partnership in relationships and family planning decision-making, and demonstrate the importance of going beyond traditional stereotypes about gender roles in decision-making. Social influences and the potential risks of using other forms of contraception also contributed to the choice of using vasectomy. The decision-making process and lessons learned are discussed.
Magnetically Coupled Calorimeters
NASA Technical Reports Server (NTRS)
Bandler, Simon
2011-01-01
Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.
NASA Astrophysics Data System (ADS)
Schwarz, J. M.; Zhang, Tao
2015-03-01
The actin cytoskeleton provides the cell with structural integrity and allows it to change shape to crawl along a surface, for example. The actin cytoskeleton can be modeled as a semiflexible biopolymer network that modifies its morphology in response to both external and internal stimuli. Just inside the inner nuclear membrane of a cell exists a network of filamentous lamin that presumably protects the heart of the cell nucleus--the DNA. Lamins are intermediate filaments that can also be modeled as semiflexible biopolymers. It turns out that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins that bridge the outer and inner nuclear membranes. We, therefore, probe the consequences of such a coupling via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the cytoskeletal network. Such study could have implications for mechanical mechanisms of the regulation of transcription, since DNA--yet another semiflexible polymer--contains lamin-binding domains, and, thus, widen the field of epigenetics.
Multiphysics Application Coupling Toolkit
Campbell, Michael T.
2013-12-02
This particular consortium implementation of the software integration infrastructure will, in large part, refactor portions of the Rocstar multiphysics infrastructure. Development of this infrastructure originated at the University of Illinois DOE ASCI Center for Simulation of Advanced Rockets (CSAR) to support the center's massively parallel multiphysics simulation application, Rocstar, and has continued at IllinoisRocstar, a small company formed near the end of the University-based program. IllinoisRocstar is now licensing these new developments as free, open source, in hopes to help improve their own and others' access to infrastructure which can be readily utilized in developing coupled or composite software systems; with particular attention to more rapid production and utilization of multiphysics applications in the HPC environment. There are two major pieces to the consortium implementation, the Application Component Toolkit (ACT), and the Multiphysics Application Coupling Toolkit (MPACT). The current development focus is the ACT, which is (will be) the substrate for MPACT. The ACT itself is built up from the components described in the technical approach. In particular, the ACT has the following major components: 1.The Component Object Manager (COM): The COM package provides encapsulation of user applications, and their data. COM also provides the inter-component function call mechanism. 2.The System Integration Manager (SIM): The SIM package provides constructs and mechanisms for orchestrating composite systems of multiply integrated pieces.
Multiphysics Application Coupling Toolkit
2013-12-02
This particular consortium implementation of the software integration infrastructure will, in large part, refactor portions of the Rocstar multiphysics infrastructure. Development of this infrastructure originated at the University of Illinois DOE ASCI Center for Simulation of Advanced Rockets (CSAR) to support the center's massively parallel multiphysics simulation application, Rocstar, and has continued at IllinoisRocstar, a small company formed near the end of the University-based program. IllinoisRocstar is now licensing these new developments as free, openmore » source, in hopes to help improve their own and others' access to infrastructure which can be readily utilized in developing coupled or composite software systems; with particular attention to more rapid production and utilization of multiphysics applications in the HPC environment. There are two major pieces to the consortium implementation, the Application Component Toolkit (ACT), and the Multiphysics Application Coupling Toolkit (MPACT). The current development focus is the ACT, which is (will be) the substrate for MPACT. The ACT itself is built up from the components described in the technical approach. In particular, the ACT has the following major components: 1.The Component Object Manager (COM): The COM package provides encapsulation of user applications, and their data. COM also provides the inter-component function call mechanism. 2.The System Integration Manager (SIM): The SIM package provides constructs and mechanisms for orchestrating composite systems of multiply integrated pieces.« less
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-05-09
Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled
Using the Model Coupling Toolkit to couple earth system models
Warner, J.C.; Perlin, N.; Skyllingstad, E.D.
2008-01-01
Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.
Anisotropic cubic curvature couplings
NASA Astrophysics Data System (ADS)
Bailey, Quentin G.
2016-09-01
To complement recent work on tests of spacetime symmetry in gravity, cubic curvature couplings are studied using an effective field theory description of spacetime-symmetry breaking. The associated mass-dimension-eight coefficients for Lorentz violation studied do not result in any linearized gravity modifications and instead are revealed in the first nonlinear terms in an expansion of spacetime around a flat background. We consider effects on gravitational radiation through the energy loss of a binary system and we study two-body orbital perturbations using the post-Newtonian metric. Some effects depend on the internal structure of the source and test bodies, thereby breaking the weak equivalence principle for self-gravitating bodies. These coefficients can be measured in Solar-System tests, while binary-pulsar systems and short-range gravity tests are particularly sensitive.
Thomas, George; Johal, Ramandeep S
2011-03-01
We study the one-dimensional isotropic Heisenberg model of two spin-1/2 systems as a quantum heat engine. The engine undergoes a four-step Otto cycle where the two adiabatic branches involve changing the external magnetic field at a fixed value of the coupling constant. We find conditions for the engine efficiency to be higher than in the uncoupled model; in particular, we find an upper bound which is tighter than the Carnot bound. A domain of parameter values is pointed out which was not feasible in the interaction-free model. Locally, each spin seems to cause a flow of heat in a direction opposite to the global temperature gradient. This feature is explained by an analysis of the local effective temperature of the spins.
Cooking strongly coupled plasmas
NASA Astrophysics Data System (ADS)
Clérouin, Jean
2015-09-01
We present the orbital-free method for dense plasmas which allows for efficient variable ionisation molecular dynamics. This approach is a literal application of density functional theory where the use of orbitals is bypassed by a semi-classical estimation of the electron kinetic energy through the Thomas-Fermi theory. Thanks to a coherent definition of ionisation, we evidence a particular regime in which the static structure no longer depends on the temperature: the Γ-plateau. With the help of the well-known Thomas-Fermi scaling laws, we derive the conditions required to obtain a plasma at a given value of the coupling parameter and deduce useful fits. Static and dynamical properties are predicted as well as a a simple equation of state valid on the Γ-plateau. We show that the one component plasma model can be helpful to describe the correlations in real systems.
NASA Astrophysics Data System (ADS)
He, Hong-Jian
1998-08-01
We review the recent progress in studying the anomalous electroweak quartic gauge boson couplings (QGBCs) at the LHC and the next generation high energy e±e- linear colliders (LCs). The main focus is put onto the strong electroweak symmetry breaking scenario in which the non-decoupling guarantees sizable new physics effects for the QGBCs. After commenting upon the current low energy indirect bounds and summarizing the theoretical patterns of QGBCs predicted by the typical resonance/non-resonance models, we review our systematic model-independent analysis on bounding them via WW-fusion and WWZ/ZZZ-production. The interplay of the two production mechanisms and the important role of the beam-polarization at the LCs are emphasized. The same physics may be similarly and better studied at a multi-TeV muon collider with high luminosity.
Nonminimally coupled hybrid inflation
Koh, Seoktae; Minamitsuji, Masato
2011-02-15
We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains {phi}{sup 4} term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum-dominated region becomes either the type (I) or (II), resulting in a blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while around the local minimum it must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.
Gay and lesbian couples in Italy: comparisons with heterosexual couples.
Antonelli, Paolo; Dèttore, Davide; Lasagni, Irene; Snyder, Douglas K; Balderrama-Durbin, Christina
2014-12-01
Assessing couple relationships across diverse languages and cultures has important implications for both clinical intervention and prevention. This is especially true for nontraditional relationships potentially subject to various expressions of negative societal evaluation or bias. Few empirically validated measures of relationship functioning have been developed for cross-cultural applications, and none have been examined for their psychometric sufficiency for evaluating same-sex couples across different languages and cultures. The current study examined the psychometric properties of an Italian translation of the Marital Satisfaction Inventory - Revised (MSI-R), a 150-item 13-scale measure of couple relationship functioning, for its use in assessing the intimate relationships of gay and lesbian couples in Italy. Results for these couples were compared to data from heterosexual married and unmarried cohabiting couples from the same geographical region, as well as to previously published data for gay, lesbian, and unmarried heterosexual couples from the United States. Findings suggest that, despite unique societal pressures confronting Italian same-sex couples, these relationships appear resilient and fare well both overall and in specific domains of functioning compared to heterosexual couples both in Italy and the United States.
Black hole temperature: Minimal coupling vs conformal coupling
Fazel, Mohamadreza; Mirza, Behrouz; Mansoori, Seyed Ali Hosseini
2014-05-15
In this article, we discuss the propagation of scalar fields in conformally transformed spacetimes with either minimal or conformal coupling. The conformally coupled equation of motion is transformed into a one-dimensional Schrödinger-like equation with an invariant potential under conformal transformation. In a second stage, we argue that calculations based on conformal coupling yield the same Hawking temperature as those based on minimal coupling. Finally, it is conjectured that the quasi normal modes of black holes are invariant under conformal transformation.
Gay and lesbian couples in Italy: comparisons with heterosexual couples.
Antonelli, Paolo; Dèttore, Davide; Lasagni, Irene; Snyder, Douglas K; Balderrama-Durbin, Christina
2014-12-01
Assessing couple relationships across diverse languages and cultures has important implications for both clinical intervention and prevention. This is especially true for nontraditional relationships potentially subject to various expressions of negative societal evaluation or bias. Few empirically validated measures of relationship functioning have been developed for cross-cultural applications, and none have been examined for their psychometric sufficiency for evaluating same-sex couples across different languages and cultures. The current study examined the psychometric properties of an Italian translation of the Marital Satisfaction Inventory - Revised (MSI-R), a 150-item 13-scale measure of couple relationship functioning, for its use in assessing the intimate relationships of gay and lesbian couples in Italy. Results for these couples were compared to data from heterosexual married and unmarried cohabiting couples from the same geographical region, as well as to previously published data for gay, lesbian, and unmarried heterosexual couples from the United States. Findings suggest that, despite unique societal pressures confronting Italian same-sex couples, these relationships appear resilient and fare well both overall and in specific domains of functioning compared to heterosexual couples both in Italy and the United States. PMID:24867576
NASA Astrophysics Data System (ADS)
Ain-Souya, A.; Ghers, M.; Haddad, A.; Tebib, W.; Rehamnia, R.; Messsalhi, A.; Bounouala, M.; Djouama, M. C.
2005-05-01
Les propriétés superficielles des matériaux solides diffèrent de celles du volume. A la surface, des défauts de différentes natures peuvent être présents. Ils permettent à la surface d'être interactive avec le milieu ambiant. Les multiples interactions entre les états de surface et des éléments du milieu extérieur peuvent modifier les propriétés superficielles. Ce travail étudie la régénération de couches semi-conductrices après adsorption isotherme d'oxygène à différentes températures effectuées entre 20 ° C et 300 ° C. Les matériaux qui ont servi à l'étude sont des couches de ZnO, SnO{2} et CdSe. Celles de CdSe ont été obtenues par co-évaporation, sous vide, de cadmium et de sélénium. Les échantillons de ZnO et SnO{2} ont été élaborés par oxydation, à des températures respectives de 450 ° C et 200 ° , de Zn et Sn déposés par électrolyse et par évaporation sous vide. Les matériaux évaporés ont été déposés sur des plaquettes en verre, les autres ont été électrodéposés sur des substrats métalliques. Les variations des propriétés électriques des couches ont été suivies par mesure de leur résistance électrique superficielle R. Les courbes LogR = f (103 /T (K)), relevées sous vide à différentes températures, sont caractéristiques d'un comportement de semi-conducteur. Des essais d'adsorption d'O{2} à différentes températures montrent des variations considérables de R. En effet, la chimisorption forte d'un gaz par une surface semi-conductrice est telle que l'échange électronique entre adsorbant et adsorbat provoque la formation d'une zone de charge d'espace modifiant la conduction superficielle. Les résultats mettent en évidence des domaines de température de plus haute sensibilité à l'oxygène. Pour le CdSe, certaines désorptions isothermes ont été suffisantes pour une régénération totale des échantillons. Les couches de ZnO ont souvent nécessité des désorptions programm
NASA Astrophysics Data System (ADS)
Bocher, L.; Delobelle, P.
1997-09-01
are very rich in informations and lead to classify the different types of loading, with two or three cyclic components, with respect to the observed supplementary hardening. This classification was established as follows: i) The in-phase tests with two or three components (δ = \\varphi = 0^circ); no supplementary hardening is observed. ii) The tension-pressure tests such as r_1 = 1, \\varphi = 90^circ and r_1 = - 1, \\varphi = 60^circ, the hardening is slightly inferior to that of tension-torsion tests. iii) The tension-torsion tests such as r_2 = 1 and δ = 90^circ, where a substantial additionnal hardening takes place. iv) The tension-torsion-pressure tests where the three components are strongly shifted, namely: r_1 = r_2 = 1, δ = 90^circ and \\varphi = 60^circ, and r_2 = 1, r_1 = -1, δ = 41.4^circ and \\varphi = 82.8^circ. The hardening is slightly superior to the one recorded in tension-torsion. A more thorough study is in preparation which considers all the possible combinations in tension-torsion-pressures, and will be performed on the same material. The early results tend to validate the observations presented in this article. Cette étude réside dans la détermination expérimentale du comportement à la température ambiante de l'acier inoxydable 316 L sous chargement cyclique non proportionnel en traction-torsion-pressions interne et externe. Les deux ou trois déformations sinusoïdales appliquées sont soit en phase, soit hors-phase et l'on étudie l'amplitude du durcissement supplémentaire en fonction du degré de multiaxialité. On présente quelques boucles stabilisées typiques. Par rapport au durcissement supplémentaire maximal, les différents essais peuvent être classés comme suit: essais en phase (pas de durcissement supplémentaire), essais de traction-pressions hors-phase, essais de traction-torsion hors phase et essais de traction-torsion-pressions avec déphasages conséquents.
Perspectives on Geospace Plasma Coupling
Baker, Daniel N.
2011-01-04
There are a large variety of fascinating and instructive aspects to examining the coupling of mass and energy from the solar wind into the Earth's magnetosphere. Past research has suggested that magnetic reconnection (in a fluid sense) on the day-side magnetopause plays the key role in controlling the energy coupling. However, both linear and nonlinear coupling processes involving kinetic effects have been suggested through various types of innovative data analysis. Analysis and modeling results have also indicated a prominent role for multi-scale processes of plasma coupling. Examples include evidence of control by solar wind turbulence in the coupling sequence and localized (finite gyroradius) effects in dayside plasma transport. In this paper we describe several solar wind-magnetosphere coupling scenarios. We particularly emphasize the study of solar wind driving of magnetospheric substorm, and related geomagnetic disturbances.
Pulse-coupled BZ oscillators with unequal coupling strengths.
Horvath, Viktor; Kutner, Daniel J; Chavis, John T; Epstein, Irving R
2015-02-14
Coupled chemical oscillators are usually studied with symmetric coupling, either between identical oscillators or between oscillators whose frequencies differ. Asymmetric connectivity is important in neuroscience, where synaptic strength inequality in neural networks commonly occurs. While the properties of the individual oscillators in some coupled chemical systems may be readily changed, enforcing inequality between the connection strengths in a reciprocal coupling is more challenging. We recently demonstrated a novel way of coupling chemical oscillators, which allows for manipulation of individual connection strengths. Here we study two identical, pulse-coupled Belousov-Zhabotinsky (BZ) oscillators with unequal connection strengths. When the pulse perturbations contain KBr (inhibitor), this system exhibits simple out-of-phase and complex oscillations, oscillatory-suppressed states as well as temporally periodic patterns (N : M) in which the two oscillators exhibit different numbers of peaks per cycle. The N : M patterns emerge due to the long-term effect of the inhibitory pulse-perturbations, a feature that has not been considered in earlier works. Time delay was previously shown to have a profound effect on the system's behaviour when pulse coupling was inhibitory and the coupling strengths were equal. When the coupling is asymmetric, however, delay produces no qualitative change in behaviour, though the 1 : 2 temporal pattern becomes more robust. Asymmetry in instantaneous excitatory coupling via AgNO3 injection produces a previously unseen temporal pattern (1 : N patterns starting with a double peak) with time delay and high [AgNO3]. Numerical simulations of the behaviour agree well with theoretical predictions in asymmetrical pulse-coupled systems.
NASA Astrophysics Data System (ADS)
Phillips, R. J.
2008-12-01
We can look beyond the Earth, to Venus and Mars, to find opportunities to understand interactions among crust, mantle, hydrosphere, and atmosphere reservoirs. There has obviously been coupling among some of these reservoirs on other worlds, and in some cases feedback may have been in play but that is more difficult to demonstrate. The massive CO2 atmosphere of Venus has likely fluctuated significantly over its history due to exchange with other reservoirs, with attendant greenhouse effects strongly modulating surface temperature. Additionally, release of H2O and SO2 from large-scale magmatic events may have led to significant surface temperature increases, ΔT0, and the details depend on the competition between IR radiation warming and planetary albedo increase due to cloud formation. Diffusion of Δ T0 into the shallow crust may be responsible for the rapid global formation of compressional wrinkle ridges following widespread volcanic resurfacing [Solomon et al., 1999]. Diffusion of ΔT0 into the venusian upper mantle could have increased the rate of partial melting. The accompanying increase in volatile release to the atmosphere could set up a positive feedback because of increased greenhouse warming diffusing into the planet's interior [Phillips et al., 2001, Venus]. Another outcome of deep penetration of a greenhouse-induced positive ΔT0 is the lowering of mantle viscosity and an accompanying decrease in convective stress, which could shut down an exisiting lithospheric recycling regime [Lenardic et al., 2008]. Mars offers a rich set of possibilities for coupling between reservoirs [Jakosky and Phillips, 2001]. Magmatism at the massive Tharsis volcanic complex possibly induced episodic climate changes in the latter part of the Noachian era (~3.6-4.2 Ga). This could have led to clement conditions, forming valley networks that follow a regional slope caused partly by the mass load of Tharsis itself [Phillips et al., 2001, Mars]. Earlier in the Noachian
Spin reorientation via antiferromagnetic coupling
Ranjbar, M.; Sbiaa, R.; Dumas, R. K.; Åkerman, J.; Piramanayagam, S. N.
2014-05-07
Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.
Cosmological tests of coupled Galileons
Brax, Philippe; Davis, Anne-Christine; Gubitosi, Giulia E-mail: Clare.Burrage@nottingham.ac.uk E-mail: g.gubitosi@imperial.ac.uk
2015-03-01
We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM.
Mobility platform coupling device and method for coupling mobility platforms
Shirey, David L.; Hayward, David R.; Buttz, James H.
2002-01-01
A coupling device for connecting a first mobility platform to a second mobility platform in tandem. An example mobility platform is a robot. The coupling device has a loose link mode for normal steering conditions and a locking position, tight link mode for navigation across difficult terrain and across obstacles, for traversing chasms, and for navigating with a reduced footprint in tight steering conditions.
Session on coupled atmospheric/chemistry coupled models
NASA Technical Reports Server (NTRS)
Thompson, Anne
1993-01-01
The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.
NASA Technical Reports Server (NTRS)
Walker, J. W.; Hornbeck, L. J.; Stubbs, D. P.
1977-01-01
The results are presented of a program to design, fabricate, and test CCD arrays suitable for operation in an electron-bombarded mode. These intensified charge coupled devices have potential application to astronomy as photon-counting arrays. The objectives of this program were to deliver arrays of 250 lines of 400 pixels each and some associated electronics. Some arrays were delivered on tube-compatible headers and some were delivered after incorporation in vacuum tubes. Delivery of these devices required considerable improvements to be made in the processing associated with intensified operation. These improvements resulted in a high yield in the thinning process, reproducible results in the accumulation process, elimination of a dark current source in the accumulation process, solution of a number of header related problems, and the identification of a remaining major source of dark current. Two systematic failure modes were identified and protective measures established. The effects of tube processing on the arrays in the delivered ICCDs were determined and are reported along with the characterization data on the arrays.
Coupled assimilation for an intermediated coupled ENSO prediction model
NASA Astrophysics Data System (ADS)
Zheng, Fei; Zhu, Jiang
2010-10-01
The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.
Coupled Growth in Hypermonotectics
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Coriell, Sam R.
2001-01-01
The overall objective of this project is to obtain a fundamental understanding of the physics controlling solidification processes in immiscible alloy systems. The investigation involves both experimentation and the development of a model describing solidification in monotectic systems. The experimental segment was designed to first demonstrate that it is possible to obtain interface stability and steady state coupled growth in hypermonotectic alloys through microgravity processing. Microgravity results obtained to date have verified this possibility. Future flights will permit experimental determination of the limits of interface stability and the influence of alloy composition and growth rate on microstructure. The objectives of the modeling segment of the investigation include prediction of the limits of interface stability, modeling of convective flow due to residual acceleration, and the influence of surface tension driven flows at the solidification interface. The study of solidification processes in immiscible alloy systems is hindered by the inherent convective flow that occurs on Earth and by the possibility of sedimentation of the higher density immiscible liquid phase. It has been shown that processing using a high thermal gradient and a low growth rate can lead to a stable macroscopically planar growth front even in hypermonotectic alloys. Processing under these growth conditions can avoid constitutional supercooling and prevent the formation of the minor immiscible liquid phase in advance of the solidification front. However, the solute depleted boundary layer that forms in advance of the solidification front is almost always less dense than the liquid away from the solidification front. As a result, convective instability is expected. Ground based testing has indicated that convection is a major problem in these alloy systems and leads to gross compositional variations along the sample and difficulties maintaining interface stability. Sustained low
Relational Communication in Intercultural Couples
ERIC Educational Resources Information Center
Cools, Carine A.
2006-01-01
This qualitative study utilises the relational dialectics of Baxter and Montgomery (1996) to examine the relationship communication of six heterosexual intercultural couples living in Finland. In this study, I attempt to answer the following questions: what cultural issues are relevant in the couples' relationship? What intercultural relational…
Collective couplings: Rectification and supertransmittance
NASA Astrophysics Data System (ADS)
Schaller, Gernot; Giusteri, Giulio Giuseppe; Celardo, Giuseppe Luca
2016-09-01
We investigate heat transport between two thermal reservoirs that are coupled via a large spin composed of N identical two-level systems. One coupling implements the dissipative Dicke superradiance. The other coupling is locally of the pure-dephasing type and requires to go beyond the standard weak-coupling limit by employing a Bogoliubov mapping in the corresponding reservoir. After the mapping, the large spin is coupled to a collective mode with the original pure-dephasing interaction, but the collective mode is dissipatively coupled to the residual oscillators. Treating the large spin and the collective mode as the system, a standard master equation approach is now able to capture the energy transfer between the two reservoirs. Assuming fast relaxation of the collective mode, we derive a coarse-grained rate equation for the large spin only and discuss how the original Dicke superradiance is affected by the presence of the additional reservoir. Our main finding is a cooperatively enhanced rectification effect due to the interplay of supertransmittant heat currents (scaling quadratically with N ) and the asymmetric coupling to both reservoirs. For large N , the system can thus significantly amplify current asymmetries under bias reversal, functioning as a heat diode. We also briefly discuss the case when the couplings of the collective spin are locally dissipative, showing that the heat-diode effect is still present.
Exciton coupling in molecular crystals
NASA Technical Reports Server (NTRS)
Ake, R. L.
1976-01-01
The implications of perfect exciton coupling and molecular vibrations were investigated, as well as the effect they have on the lifetime of singlet and triplet excitons coupled in a limiting geometry. Crystalline bibenzyl, Cl4Hl4, provided a situation in which these mechanisms involving exciton coupling can be studied in the limit of perfect coupling between units due to the crystal's geometry. This geometry leads to a coupling between the two halves of the molecule resulting in a splitting of the molecular excited states. The study reported involves an experimental spectroscopic approach and begins with the purification of the bibenzyl. The principal experimental apparatus was an emission spectrometer. A closed cycle cryogenic system was used to vary the temperature of the sample between 20 K and 300 K. The desired results are the temperature-dependent emission spectra of the bibenzyl; in addition, the lifetimes and quantum yields measured at each temperature reveal the effect of competing radiationless processes.
ERIC Educational Resources Information Center
Atkins, David C.; Dimidjian, Sona; Bedics, Jamie D.; Christensen, Andrew
2009-01-01
The association between depression and relationship distress as well as the impact of treatment for the one on the other was examined across 2 treatment-seeking samples: individuals seeking treatment for depression (N = 120) and couples seeking marital therapy (N = 134 couples). Although there was a baseline association between depression and…
A Multiscale Bidirectional Coupling Framework
Kabilan, Senthil; Kuprat, Andrew P.; Hlastala, Michael P.; Corley, Richard A.; Einstein, Daniel R.
2011-12-01
The lung is geometrically articulated across multiple scales from the trachea to the alveoli. A major computational challenge is to tightly link ODEs that describe lower scales to 3D finite element or finite volume models of airway mechanics using iterative communication between scales. In this study, we developed a novel multiscale computational framework for bidirectionally coupling 3D CFD models and systems of lower order ODEs. To validate the coupling framework, a four and eight generation Weibel lung model was constructed. For the coupled CFD-ODE simulations, the lung models were truncated at different generations and a RL circuit represented the truncated portion. The flow characteristics from the coupled models were compared to untruncated full 3D CFD models at peak inhalation and peak exhalation. Results showed that at no time or simulation was the difference in mass flux and/or pressure at a given location between uncoupled and coupled models was greater than 2.43%. The flow characteristics at prime locations for the coupled models showed good agreement to uncoupled models. Remarkably, due to reuse of the Krylov subspace, the cost of the ODE coupling is not much greater than uncoupled full 3D-CFD computations with simple prescribed pressure values at the outlets.
Local coupled feedforward neural network.
Sun, Jianye
2010-01-01
In this paper, the local coupled feedforward neural network is presented. Its connection structure is same as that of Multilayer Perceptron with one hidden layer. In the local coupled feedforward neural network, each hidden node is assigned an address in an input space, and each input activates only the hidden nodes near it. For each input, only the activated hidden nodes take part in forward and backward propagation processes. Theoretical analysis and simulation results show that this neural network owns the "universal approximation" property and can solve the learning problem of feedforward neural networks. In addition, its characteristic of local coupling makes knowledge accumulation possible.
Magnetoelectric coupling at metal surfaces
Gerhard, Lukas; Yamada, T.K.; Balashov, T.; Takacs, A. F.; Wesselink, R.J.H.; Daene, Markus W; Fechner, M.; Ostanin, S.; Ernst, Arthur; Mertig, I.; Wulfhekel, Wulf
2010-10-01
Magnetoelectric coupling allows the magnetic state of a material to be changed by an applied electric field. To date, this phenomenon has mainly been observed in insulating materials such as complex multiferroic oxides. Bulk metallic systems do not exhibit magnetoelectric coupling, because applied electric fields are screened by conduction electrons. We demonstrate strong magnetoelectric coupling at the surface of thin iron films using the electric field from a scanning tunnelling microscope, and are able to write, store and read information to areas with sides of a few nanometres. Our work demonstrates that high-density, non-volatile information storage is possible in metals.
Capacitively-coupled inductive sensor
Ekdahl, Carl A.
1984-01-01
A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.
A Study of Couple Burnout in Infertile Couples
Ghavi, Fatemeh; Jamale, Safieh; Mosalanejad, Leili; Mosallanezhad, Zahra
2016-01-01
Introduction: Infertility is a major crisis that can cause psychological problems and emotionally distressing experiences, and eventually affect a couples’ relationship. The objective of this study is to investigate couple burnout in infertile couples who were undergoing treatmentat the Infertility Clinic of Yazd, Iran. Method: The present study is a cross-sectional descriptive one on 98 infertile couples referringto the Infertility Centerof Yazd, Iran, who were chosen on a simple random sampling basis. The measuring tools consisted of the Couple Burnout Measure (CBM) and a demographic questionnaire. The collected data were analyzed using SPSS 16 and the statistical tests of ANOVA and t-test. P-values less than 0.05 were considered as significant. Results: The results show that infertile women experience higher levels of couple burnout than their husbands (p<0.001). Also, a comparison of the scales of couple burnout—psychological burnout (p<0.01), somatic burnout (p<0.01), and emotional burnout (p<0.001)—between wives and husbands show that women are at greater risk. Conclusion: Infertile couples’ emotional, mental, and sexual problems need to be addressed as part of the infertility treatment programs, and psychotherapists should be included in the medical team. PMID:26573033
Gay Couple Counseling: Proceedings of a Conference
ERIC Educational Resources Information Center
Blair, Ralph; And Others
1974-01-01
This is a report of a conference on gay couple counseling for members of the helping professions. Discussion topics included (1) Therapists' Panel on Female Couples, (2) Therapists' Panel on Male Couples; (3) Panel of Male Couples and (4) Panel of Female Couples. The conference was held in May, 1974 in New York and was sponsored by The Homosexual…
Diphoton excess and running couplings
NASA Astrophysics Data System (ADS)
Bae, Kyu Jung; Endo, Motoi; Hamaguchi, Koichi; Moroi, Takeo
2016-06-01
The recently observed diphoton excess at the LHC may suggest the existence of a singlet (pseudo-)scalar particle with a mass of 750 GeV which couples to gluons and photons. Assuming that the couplings to gluons and photons originate from loops of fermions and/or scalars charged under the Standard Model gauge groups, we show that there is a model-independent upper bound on the cross section σ (pp → S → γγ) as a function of the cutoff scale Λ and masses of the fermions and scalars in the loop. Such a bound comes from the fact that the contribution of each particle to the diphoton event amplitude is proportional to its contribution to the one-loop β functions of the gauge couplings. We also investigate the perturbativity of running Yukawa couplings in models with fermion loops, and show the upper bounds on σ (pp → S → γγ) for explicit models.
DRIFT COMPENSATED DIRECT COUPLED AMPLIFIER
Windsor, A.A.
1959-05-01
An improved direct-coupled amplifier having zerolevel drift correction is described. The need for an auxiliary corrective-potential amplifier is eliminated thereby giving protection against overload saturation of the zero- level drift correcting circuit. (T.R.H.)
Overdamping by weakly coupled environments
Esposito, Massimiliano; Haake, Fritz
2005-12-15
A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment in accord with Fermi's 'golden rule'. We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, and quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a different relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.
Measuring the uncertainty of coupling
NASA Astrophysics Data System (ADS)
Zhao, Xiaojun; Shang, Pengjian
2015-06-01
A new information-theoretic measure, called coupling entropy, is proposed here to detect the causal links in complex systems by taking into account the inner composition alignment of temporal structure. It is a permutation-based asymmetric association measure to infer the uncertainty of coupling between two time series. The coupling entropy is found to be effective in the analysis of Hénon maps, where different noises are added to test its accuracy and sensitivity. The coupling entropy is also applied to analyze the relationship between unemployment rate and CPI change in the U.S., where the CPI change turns out to be the driving variable while the unemployment rate is the responding one.
Microwave interconnects via electromagnetic coupling
NASA Astrophysics Data System (ADS)
Burke, John J.; Jackson, Robert W.
1988-01-01
Two transitions are described which couple coplanar waveguide on one substrate surface (a motherboard) to either coplanar waveguide or microstrip on another substrate surface (a chip). No wire bonds are necessary. A coupled transmission line model, along with a full wave analysis, is used to predict the behavior of these transitions. Experimental results show good agreement with predictions in cases where the coupler length to width ratio is not too small.
[ANTIOXIDANT THERAPY FOR INFERTILE COUPLES].
Nashivochnikova, N A; Krupin, V N; Selivanova, S A
2015-01-01
This study presents results of 113 infertile couples treated with supplements speroton and pregnoton containing folic acid, L-carnitine, vitamin E, zinc, and other vitamins and minerals. Infertility in couples was due to both the pathology of spermatogenesis, and female genital diseases. It has been demonstrated that intake of Speroton restores impaired motility in the ejaculate of patients with several forms of pathospermia, and Pregnoton ensure its preservation in vaginal secretions. PMID:26390564
Lens Coupled Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)
2013-01-01
Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.
Digital Fluoroscopy with AN Optically Coupled Charge-Coupled Device
NASA Astrophysics Data System (ADS)
Liu, Hong
1992-01-01
This research was aimed at investigating the potential of developing an optically coupled charge-coupled device (CCD) imaging system for some digital fluoroscopic applications. The viability of this concept for fluoroscopic imaging was studied with respect to image intensifier-television (II -TV) techniques. The anticipated advantages of the optically coupled CCD, compared with II-TV, include higher contrast sensitivity, larger dynamic range, moderate spatial resolution and clinically acceptable dose. Following an investigation of some theoretical and practical issues concerning the optical coupling efficiency between the intensifying screen and the CCD imager, mathematical methods were developed to relate the signal, signal-to -noise ratio, and x-ray quantum efficiency of the optically coupled CCD imaging chain. The spatial resolution of the system was also analyzed. Using an ultra-sensitive CCD, as well as improved scintillating and optical coupling techniques, we built a laboratory system for experiments. We conducted measurements of the modulation transfer function (MTF), contrast sensitivity, contrast-detail detectability and detector contrast. The results suggest that the lesion detectability of our sub-optimal system was comparable to that of a screen-film technique under the same radiation dose, and was significantly better than II-TV fluoroscopy. Potential clinical applications of our system include mammography, pre-operational localization, pediatric chest radiography, and single tracer autoradiography. Images of selected phantoms, pathological specimens and small animals were acquired to demonstrate the radiologic quality attainable for such procedures. We conclude that developing an x-ray quantum limited, pseudo-real time, digital fluoroscopic imaging system (for some applications) without an II appears to be theoretically and technically feasible. The successful development of optically coupled CCD fluoroscopy has the potential for improving the
Digital fluoroscopy with an optically coupled charge-coupled device
NASA Astrophysics Data System (ADS)
Liu, Hong
1992-07-01
This research was aimed at investigating the potential of developing an optically coupled charge-coupled device (CCD) imaging system for some digital fluoroscopic applications. The viability of this concept for fluoroscopic imaging was studied with respect to image intensifier-television (II-TV) techniques. The anticipated advantages of the optically coupled CCD, compared with II-TV, include higher contrast sensitivity, larger dynamic range, moderate spatial resolution and clinically acceptable dose. Following an investigation of some theoretical and practical issues concerning the optical coupling efficiency between the intensifying screen and the CCD imager, mathematical methods were developed to relate the signal, signal-to-noise ratio, and x-ray quantum efficiency of the optically coupled CCD imaging chain. The spatial resolution of the system was also analyzed. Using an ultra-sensitive CCD, as well as improved scintillating and optical coupling techniques, we built a laboratory system for experiments. We conducted measurements of the modulation transfer function (MTF), contrast sensitivity, contrast-detail detectability and detector contrast. The results suggest that the lesion detectability of our sub-optimal system was comparable to that of a screen-film technique under the same radiation dose, and was significantly better than II-TV fluoroscopy. Potential clinical applications of our system include mammography, pre-operational localization, pediatric chest radiography, and single tracer autoradiography. Images of selected phantoms, pathological specimens and small animals were acquired to demonstrate the radiologic quality attainable for such procedures. We conclude that developing an x-ray quantum limited, pseudo-real time, digital fluoroscopic imaging system (for some applications) without an II appears to be theoretically and technically feasible. The successful development of optically coupled CCD fluoroscopy has the potential for improving the quality
Phase-response curves of coupled oscillators.
Ko, Tae-Wook; Ermentrout, G Bard
2009-01-01
Many real oscillators are coupled to other oscillators, and the coupling can affect the response of the oscillators to stimuli. We investigate phase-response curves (PRCs) of coupled oscillators. The PRCs for two weakly coupled phase-locked oscillators are analytically obtained in terms of the PRC for uncoupled oscillators and the coupling function of the system. Through simulation and analytic methods, the PRCs for globally coupled oscillators are also discussed.
Electrical coupling in multi-array charge coupled devices
NASA Astrophysics Data System (ADS)
Singh, Parul; Sakarvadiya, Vishal; Dubey, Neeraj; Kirkire, Shweta; Thapa, Nitesh; Banerjee, Arup
2016-05-01
Silicon based charge coupled device (CCD) performances have improved immensely over the years. Scientific community across the globe target challenging remote sensing applications with CCD as optical imaging detector. Over the years, both pixel count (from few hundreds to few tens of thousands) and line readout rate (from few kHz to few tens of kHz) have increased considerably. Pixels are readout using a large number of output ports driven up to few tens of MHz Moreover, for multi-spectral applications, same Si die contains multiple arrays sharing input stimuli. This is usually done to optimize package pin count. Si die as well as package level layout of clock and bias lines become critical for closely spaced multi-array devices. The inter-array separation may go down to few hundreds of microns when filter coating is laid on top of the die. Die level layout becomes quite critical for devices with such architecture. The inter-array (consecutive arrays) separation is optimized to reduce optical coupling / stray light in devices integrated multi-band strip filter. Layout constraints along with shared bias/clock lines are known to produce electrical cross-talk or coupling. Effect of this (within one array or between two arrays) cross-talk is more pronounced in systems having low noise floor. Video signal dependent coupling in a multi-port system becomes quite complex and leads to a relatively noisier system (post correction). The paper presents results of simulations and tests (pre and post correction) addressing this type of electrical coupling. The paper presents cause, impact and possible remedial measures to minimize such coupling in a multi-array, multi-port TDI CCD from 1.3% to below 0.06%.
Spin-orbit-coupled superconductivity.
Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T
2014-06-25
Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < T(c), the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.
Systemic couple therapy for dysthymia.
Montesano, Adrián; Feixas, Guillem; Muñoz, Dámaris; Compañ, Victoria
2014-03-01
We examined the effect of Systemic Couple Therapy on a patient diagnosed with dysthymic disorder and her partner. Marge and Peter, a middle-aged married couple, showed significant and meaningful changes in their pattern of interaction over the course of the therapy and, by the end of it, Marge no longer met the diagnostic criteria for dysthymic disorder. Her scores on the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and Beck Depression Inventory, Second Edition (BDI-II) were in the clinical range before treatment and in the nonclinical one at the end of therapy. Although scores on Dyadic Adjustment Scale showed different patterns, both members reported significant improvement. The analysis of change in the alliance-related behaviors throughout the process concurred with change in couple's pattern of interaction. Treatment effects were maintained at 12-month follow-up. Highlights in the therapy process showed the importance of relational mechanisms of change, such as broadening the therapeutic focus into the couple's pattern of interaction, reducing expressed emotion and resentment, as well as increasing positive exchanges. The results of this evidence-based case study should prompt further investigation of couple therapy for dysthymia disorder. Randomized clinical trial design is needed to reach an evidence-based treatment status.
Mechanochemical coupling in eukaryotic flagella.
Omoto, C K
1989-03-21
Quantitative analyses of ATP hydrolysis coupled to movement of eukaryotic flagella is important for understanding the relationship between ATP hydrolysis and movement. The difference in ATPase activity between intact motile axonemes (that is the cytoskeletal core of flagella) and homogenized or immotile axonemes has been assumed to be coupled to movement. However, recent findings on rates of steps in the dynein ATPase cycle and the effect of interaction with microtubules on those steps call for reassessment of movement-coupled ATPase. From these studies, it is clear that dynein ATPase activity is not as tightly coupled to interaction with microtubules as myosin ATPase activity is coupled to interaction with actin. The method by which axonemal movement is inhibited will critically affect the interpretation of difference in ATPase activity. If the homogenization or similar methods uncouple dynein, the difference in ATPase activity is not a useful measurement. Greater understanding of the relationship between dynein kinetics and axonemal movement may be obtained by use of conditions and substrates with known effects at specific steps in the dynein mechanochemical cycle and quantitating their effects on movement.
Strongly Coupled Nanotube Electromechanical Resonators.
Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping
2016-09-14
Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.
Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald
2012-05-01
This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.
Multiobjective synchronization of coupled systems
NASA Astrophysics Data System (ADS)
Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an
2011-06-01
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.
Heterogeneous, weakly coupled map lattices
NASA Astrophysics Data System (ADS)
Sotelo Herrera, M.^{a.} Dolores; San Martín, Jesús; Porter, Mason A.
2016-07-01
Coupled map lattices (CMLs) are often used to study emergent phenomena in nature. It is typically assumed (unrealistically) that each component is described by the same map, and it is important to relax this assumption. In this paper, we characterize periodic orbits and the laminar regime of type-I intermittency in heterogeneous weakly coupled map lattices (HWCMLs). We show that the period of a cycle in an HWCML is preserved for arbitrarily small coupling strengths even when an associated uncoupled oscillator would experience a period-doubling cascade. Our results characterize periodic orbits both near and far from saddle-node bifurcations, and we thereby provide a key step for examining the bifurcation structure of heterogeneous CMLs.
Planar slot coupled microwave hybrid
Petter, Jeffrey K.
1991-01-01
A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.
Coupling Functions Enable Secure Communications
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta
2014-01-01
Secure encryption is an essential feature of modern communications, but rapid progress in illicit decryption brings a continuing need for new schemes that are harder and harder to break. Inspired by the time-varying nature of the cardiorespiratory interaction, here we introduce a new class of secure communications that is highly resistant to conventional attacks. Unlike all earlier encryption procedures, this cipher makes use of the coupling functions between interacting dynamical systems. It results in an unbounded number of encryption key possibilities, allows the transmission or reception of more than one signal simultaneously, and is robust against external noise. Thus, the information signals are encrypted as the time variations of linearly independent coupling functions. Using predetermined forms of coupling function, we apply Bayesian inference on the receiver side to detect and separate the information signals while simultaneously eliminating the effect of external noise. The scheme is highly modular and is readily extendable to support different communications applications within the same general framework.
Plasmonic Antenna Coupling for QWIPs
NASA Technical Reports Server (NTRS)
Hong, John
2007-01-01
In a proposed scheme for coupling light into a quantum-well infrared photodetector (QWIP), an antenna or an array of antennas made of a suitable metal would be fabricated on the face of what would otherwise be a standard QWIP. This or any such coupling scheme is required to effect polarization conversion: Light incident perpendicularly to the face is necessarily polarized in the plane of the face, whereas, as a matter of fundamental electrodynamics and related quantum selection rules, light must have a non-zero component of perpendicular polarization in order to be absorbed in the photodetection process. In a prior coupling scheme, gratings in the form of surface corrugations diffract normally gles, thereby imparting some perpendicular polarization. Unfortunately, the corrugation- fabrication process increases the overall nonuniformity of a large QWIP array. The proposed scheme is an alternative to the use of surface corrugations.
Marital Dissolution Among Interracial Couples.
Zhang, Yuanting; Van Hook, Jennifer
2009-02-01
Increases in interracial marriage have been interpreted as reflecting reduced social distance among racial and ethnic groups, but little is known about the stability of interracial marriages. Using six panels of Survey of Income and Program Participation (N = 23,139 married couples), we found that interracial marriages are less stable than endogamous marriages, but these findings did not hold up consistently. After controlling for couple characteristics, the risk of divorce or separation among interracial couples was similar to the more-divorce-prone origin group. Although marital dissolution was found to be strongly associated with race/ethnicity, the results failed to provide evidence that interracial marriage is associated with an elevated risk of marital dissolution.
Standard model with gravity couplings
NASA Astrophysics Data System (ADS)
Chang, Lay Nam; Soo, Chopin
1996-05-01
In this paper we examine the coupling of matter fields to gravity within the framework of the standard model of particle physics. The coupling is described in terms of Weyl fermions of a definite chirality, and employs only (anti-)self-dual or left-handed spin connection fields. We review the general framework for introducing the coupling using these fields, and show that conditions ensuring the cancellation of perturbative chiral gauge anomalies are not disturbed. We also explore a global anomaly associated with the theory, and argue that its removal requires that the number of fundamental fermions in the theory must be multiples of 16. In addition, we investigate the behavior of the theory under discrete transformations P, C, and T, and discuss possible violations of these discrete symmetries, including CPT, in the presence of instantons and the Adler-Bell-Jackiw anomaly.
Neurovascular coupling: a parallel implementation
Dormanns, Katharina; Brown, Richard G.; David, Tim
2015-01-01
A numerical model of neurovascular coupling (NVC) is presented based on neuronal activity coupled to vasodilation/contraction models via the astrocytic mediated perivascular K+ and the smooth muscle cell (SMC) Ca2+ pathway termed a neurovascular unit (NVU). Luminal agonists acting on P2Y receptors on the endothelial cell (EC) surface provide a flux of inositol trisphosphate (IP3) into the endothelial cytosol. This concentration of IP3 is transported via gap junctions between EC and SMC providing a source of sarcoplasmic derived Ca2+ in the SMC. The model is able to relate a neuronal input signal to the corresponding vessel reaction (contraction or dilation). A tissue slice consisting of blocks, each of which contain an NVU is connected to a space filling H-tree, simulating a perfusing arterial tree (vasculature) The model couples the NVUs to the vascular tree via a stretch mediated Ca2+ channel on both the EC and SMC. The SMC is induced to oscillate by increasing an agonist flux in the EC and hence increased IP3 induced Ca2+ from the SMC stores with the resulting calcium-induced calcium release (CICR) oscillation inhibiting NVC thereby relating blood flow to vessel contraction and dilation following neuronal activation. The coupling between the vasculature and the set of NVUs is relatively weak for the case with agonist induced where only the Ca2+ in cells inside the activated area becomes oscillatory however, the radii of vessels both inside and outside the activated area oscillate (albeit small for those outside). In addition the oscillation profile differs between coupled and decoupled states with the time required to refill the cytosol with decreasing Ca2+ and increasing frequency with coupling. The solution algorithm is shown to have excellent weak and strong scaling. Results have been generated for tissue slices containing up to 4096 blocks. PMID:26441619
Cable coupling lightning transient qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.
Coupled Reactions "versus" Connected Reactions: Coupling Concepts with Terms
ERIC Educational Resources Information Center
Aledo, Juan Carlos
2007-01-01
A hallmark of living matter is its ability to extract and transform energy from the environment. Not surprisingly, biology students are required to take thermodynamics. The necessity of coupling exergonic reactions to endergonic processes is easily grasped by most undergraduate students. However, when addressing the thermodynamic concept of…
Dark coupling and gauge invariance
Gavela, M.B.; Honorez, L. Lopez; Rigolin, S. E-mail: llopezho@ulb.ac.be E-mail: stefano.rigolin@pd.infn.it
2010-11-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Hydromechanical coupling in geologic processes
Neuzil, C.E.
2003-01-01
Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex
Semiclassical theory of coupled lasers
Shakir, S.A.; Chow, W.W.
1984-06-01
A semiclassical theory is developed for a coupled-resonator phased laser array. This theory, which is based on an expansion of the laser field in terms of the composite-resonator modes, is valid for all values of coupling and for any number of lasers in the array. The derivation of the composite resonator modes is presented. We found that an expansion of the laser field in terms of these modes leads to laser-amplitude and -frequency-determining equations that have a similar form to those of a multimode single-resonator laser.
Symmetries of coupled harmonic oscillators
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.
1993-01-01
It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).
Coupled opto-electronic oscillator
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor); Maleki, Lute (Inventor)
1999-01-01
A coupled opto-electronic oscillator that directly couples a laser oscillation with an electronic oscillation to simultaneously achieve a stable RF oscillation at a high frequency and ultra-short optical pulsation by mode locking with a high repetition rate and stability. Single-mode selection can be achieved even with a very long opto-electronic loop. A multimode laser can be used to pump the electronic oscillation, resulting in a high operation efficiency. The optical and the RF oscillations are correlated to each other.
Novel coupling scheme to control dynamics of coupled discrete systems
NASA Astrophysics Data System (ADS)
Shekatkar, Snehal M.; Ambika, G.
2015-08-01
We present a new coupling scheme to control spatio-temporal patterns and chimeras on 1-d and 2-d lattices and random networks of discrete dynamical systems. The scheme involves coupling with an external lattice or network of damped systems. When the system network and external network are set in a feedback loop, the system network can be controlled to a homogeneous steady state or synchronized periodic state with suppression of the chaotic dynamics of the individual units. The control scheme has the advantage that its design does not require any prior information about the system dynamics or its parameters and works effectively for a range of parameters of the control network. We analyze the stability of the controlled steady state or amplitude death state of lattices using the theory of circulant matrices and Routh-Hurwitz criterion for discrete systems and this helps to isolate regions of effective control in the relevant parameter planes. The conditions thus obtained are found to agree well with those obtained from direct numerical simulations in the specific context of lattices with logistic map and Henon map as on-site system dynamics. We show how chimera states developed in an experimentally realizable 2-d lattice can be controlled using this scheme. We propose this mechanism can provide a phenomenological model for the control of spatio-temporal patterns in coupled neurons due to non-synaptic coupling with the extra cellular medium. We extend the control scheme to regulate dynamics on random networks and adapt the master stability function method to analyze the stability of the controlled state for various topologies and coupling strengths.
Research on the Treatment of Couple Distress
ERIC Educational Resources Information Center
Lebow, Jay L.; Chambers, Anthony L.; Christensen, Andrew; Johnson, Susan M.
2012-01-01
This article reviews the research on couple therapy over the last decade. The research shows that couple therapy positively impacts 70% of couples receiving treatment. The effectiveness rates of couple therapy are comparable to the effectiveness rates of individual therapies and vastly superior to control groups not receiving treatment. The…
Dual-Career Couples in Higher Education.
ERIC Educational Resources Information Center
Weishaar, Marjorie; And Others
1984-01-01
Surveyed 45 dual-career couples to identify conflicts and solutions of professinals pursuing academic careers and bearing family responsibilities. Compared males and females, couples with children and those without, couples under 40 years of age and older couples, and this sample with one from business and industry. (Author/JAC)
Behavior Analysis of Forgiveness in Couples Therapy
ERIC Educational Resources Information Center
Cordova, James; Cautilli, Joseph; Simon, Corrina; Sabag, Robin Axelrod
2006-01-01
Behavioral couples' therapy has a long history of success with couples and is an empirically validated treatment for marital discord (Task Force on Promotion and Dissemination of Psychological Procedures, 1995). However, only about 50% of all couples in treatment experience long-term change (2 years). One of the founders of behavioral couples'…
NASA Astrophysics Data System (ADS)
Benhenda, S.; Guglielmacci, J. M.; Gillet, M.; Pech, T.
1986-03-01
Nickel films are deposited on thick copper substrate by electron beam evaporation, sputtering and electrodeposition. The film structure is characterized by Transmission Electron Microscopy. The diffusion of Cu through Ni films is investigated by Auger electron spectroscopy using the method of "the first arrival". The diffusion anneals are performed between 300 and 450°C. It appears that grain boundary diffusion occurs in these bimetallic couples. Diffusion coefficients are determined (for vacuum deposited films D0=4.9×10 -5 cm 2s-1, Q=25.7 kcal mol -1 and for electroplated films D0=2.4×10 -9 cm 2s-1, Q=17.4 kcal mol -1. Electroplated Ni films show more effective barrier diffusion for Cu than in the case of vacuum deposited films. This is mainly due to larger grain size.
Inductively coupled helium plasma torch
Montaser, Akbar; Chan, Shi-Kit; Van Hoven, Raymond L.
1989-01-01
An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.
A strongly coupled anyon material
NASA Astrophysics Data System (ADS)
Brattan, Daniel K.
2015-11-01
We use alternative quantisation of the D3-D5 system to explore properties of a strongly coupled anyon material at finite density and temperature. We study the transport properties of the material and find both diffusion and massive holographic zero sound modes. By studying the anyon number conductivity we also find evidence for the anyonic analogue of the metal-insulator transition.
Isocurvature constraints on portal couplings
NASA Astrophysics Data System (ADS)
Kainulainen, Kimmo; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo; Vaskonen, Ville
2016-06-01
We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We then use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: mDM/GeV lesssim 0.2λs3/8 (H*/1011 GeV)‑3/2. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.
Perovskite catalysts for oxidative coupling
Campbell, K.D.
1991-06-25
Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
Perovskite catalysts for oxidative coupling
Campbell, Kenneth D.
1991-01-01
Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1985-01-01
Outputs of two magnetrons added coherently in scheme based on resonant waveguide coupling and injection phase locking. In addition, filaments are turned off after starting. Overall effect is relatively-inexpensive, lowpower, noisy magnetrons generate clean carrier signals of higher power that ordinarily require more expensive klystrons.
Solving Nonlinear Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
Coupled Array of Superconducting Nanowires
NASA Astrophysics Data System (ADS)
Ursache, Andrei
2005-03-01
We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.
Procedural Concerns in Couple Counseling.
ERIC Educational Resources Information Center
Atwood, Joan D.; Meyer, George
This document presents a theoretical approach to couple counseling, a systemic approach which views each spouse as having a personal and relationship history that transcends the present marital one. It notes that this approach views a person's life style along two dimensions: the first dimension examines the person's relational experiences at the…
Marital Dissolution among Interracial Couples
ERIC Educational Resources Information Center
Zhang, Yuanting; Van Hook, Jennifer
2009-01-01
Increases in interracial marriage have been interpreted as reflecting reduced social distance among racial and ethnic groups, but little is known about the stability of interracial marriages. Using six panels of Survey of Income and Program Participation (N = 23,139 married couples), we found that interracial marriages are less stable than…
Dynamics of coupled thalamocortical modules.
Drover, Jonathan D; Schiff, Nicholas D; Victor, Jonathan D
2010-06-01
We develop a model of thalamocortical dynamics using a shared population of thalamic neurons to couple distant cortical regions. Behavior of the model is determined as a function of the connection strengths with shared and unshared populations in the thalamus, either within a relay nucleus or the reticular nucleus. When the coupling is via the reticular nucleus, we locate solutions of the model where distant cortical regions maintain the same activity level, and regions where one region maintains an elevated activity level, suppressing activity in the other. We locate and investigate a region where both types of solutions exist and are stable, yielding a mechanism for spontaneous changes in global activity patterns. Power spectra and coherence are computed, and marked differences in the coherence are found between the two kinds of modes. When, on the other hand, the coupling is via a shared relay nuclei, the features seen with the reticular coupling are absent. These considerations suggest a role for the reticular nucleus in modulating long distance cortical communication.
Sexual Interaction in Nonclinical Couples.
ERIC Educational Resources Information Center
Woody, Jane D.; D'Souza, Henry J.
1997-01-01
Reports on the sexual functioning and interaction of 58 nonclinical heterosexual couples as measured by the Sexual Interaction System Scale (SISS). On all five SISS factors, the nonclinical sample scored significantly better than persons in therapy for sexual dysfunction; they also reported satisfactory relationship adjustment and high levels of…
Couples Therapy: An Adlerian Perspective.
ERIC Educational Resources Information Center
Kern, Roy M.; And Others
This book provides therapists with a theoretical base from which to view the dynamics of couples' relationships and the therapeutic process. The book's eight chapters are organized into three parts: "Adlerian Theory and Process"; "Therapeutic Interventions"; and "Special Issues in Marital Therapy." Chapter 1, Adlerian Marital Therapy: History,…
Magnetically coupled system for mixing
Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul
2015-09-22
The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.
Magnetically coupled system for mixing
Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul
2014-04-01
The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.
Chaos suppression through asymmetric coupling
NASA Astrophysics Data System (ADS)
Bragard, J.; Vidal, G.; Mancini, H.; Mendoza, C.; Boccaletti, S.
2007-12-01
We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.
Circuit Model for Capacitive Coupling in Inductively Coupled Plasmas
NASA Astrophysics Data System (ADS)
Watanabe, M.; Shaw, D. M.; Collins, G. J.; Sugai, H.
1998-10-01
A crude circuit model has been developed to illustrate and account for capacitive coupling between the rf coil and the bulk plasma in a stove top inductively coupled plasma source. The circuit model is composed of three levels of capacitance: the dielectric window capacitance, sheath capacitance contiguous to the dielectric window, and the chamber to ground sheath capacitance. The model is verified by quantitative comparison with the measured rf plasma potential in the bulk plasma body, plasma feedstock gas (argon) pressures below 2 mTorr. At higher pressures above 5 mTorr, the measured results diverge from the circuit model due to the transition from a spatially uniform electron density throughout the bulk plasma at pressures less than 2 mTorr to a less spatially uniform electron density at pressures above 5 mTorr.
Convectively coupled Kelvin waves in CMIP5 coupled climate models
NASA Astrophysics Data System (ADS)
Wang, Lu; Li, Tim
2016-04-01
This study provided a quantitative evaluation of convectively coupled Kelvin waves (CCKWs) over the Indian Ocean and the Pacific Ocean simulated by 20 coupled climate models that participated in Coupled Model Intercomparison Project phase 5. The two leading empirical orthogonal function (EOF) modes of filtered daily precipitation anomalies are used to represent the eastward propagating CCKWs in both observations and simulations. The eigenvectors and eigenvalues of the EOF modes represent the spatial patterns and intensity of CCKWs respectively, and the lead-lag relationship between the two EOF principle components describe the phase propagation of CCKWs. A non-dimensional metric was designed in consideration of all the three factors (i.e., pattern, amplitude and phase propagation) for evaluation. The relative rankings of the models based on the skill scores calculated by the metric are conducted for the Indian Ocean and the Pacific Ocean, respectively. Two models (NorESM1-M and MPI-ESM-LR) are ranked among the best 20 % for both the regions. Three models (inmcm4, MRI-CGCM3 and HadGEM2-ES) are ranked among the worst 20 % for both the regions. While the observed CCKW amplitude is greater north of the equator in the Pacific, some models overestimate the CCKW ampliutde in the Southern Hemisphere. This bias is related to the mean state precipitation bias along the south Pacific convergence zone.
Effect of mixed coupling on relay-coupled Rössler and Lorenz oscillators.
Sharma, Amit; Shrimali, Manish Dev; Aihara, K
2014-12-01
The complete synchronization between the outermost oscillators using the mixed coupling in relay coupled systems is studied. Mixed coupling has two types of coupling functions: coupling between similar or dissimilar variables. We examine the complete synchronization in relay-coupled systems by the largest transverse Lyapunov exponent and synchronization error. We show numerically for Rössler and Lorenz oscillators that the combination of these two types of coupling functions is able to decrease the critical coupling strength for complete synchronization as well as it also suppress oscillations for larger coupling strength.
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Neilson, David; Senatore, Gaetano
2009-05-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas
Coupling Dynamics in Aircraft: A Historical Perspective
NASA Technical Reports Server (NTRS)
Day, Richard E.
1997-01-01
Coupling dynamics can produce either adverse or beneficial stability and controllability, depending on the characteristics of the aircraft. This report presents archival anecdotes and analyses of coupling problems experienced by the X-series, Century series, and Space Shuttle aircraft. The three catastrophic sequential coupling modes of the X-2 airplane and the two simultaneous unstable modes of the X-15 and Space Shuttle aircraft are discussed. In addition, the most complex of the coupling interactions, inertia roll coupling, is discussed for the X-2, X-3, F-100A, and YF-102 aircraft. The mechanics of gyroscopics, centrifugal effect, and resonance in coupling dynamics are described. The coupling modes discussed are interacting multiple degrees of freedom of inertial and aerodynamic forces and moments. The aircraft are assumed to be rigid bodies. Structural couplings are not addressed. Various solutions for coupling instabilities are discussed.
Synchronization in chaotic oscillators by cyclic coupling
NASA Astrophysics Data System (ADS)
Olusola, O. I.; Njah, A. N.; Dana, S. K.
2013-07-01
We introduce a type of cyclic coupling to investigate synchronization of chaotic oscillators. We derive analytical solutions of the critical coupling for stable synchronization under the cyclic coupling for the Rössler system and the Lorenz oscillator as paradigmatic illustration. Based on the master stability function (MSF) approach, the analytical results on critical coupling are verified numerically. An enhancing effect in terms of lowering the critical coupling or enlarging the synchronization window in a critical coupling space is noticed. The cyclic coupling is also applied in other models, Hindmarsh-Rose model, Sprott system, Chen system and forced Duffing system to confirm the enhancing effect. The cyclic coupling allows tuning of two coupling constants in reverse directions when an optimal control of synchronization is feasible.
Advances in HIV Prevention for Serodiscordant Couples
Muessig, Kathryn E.; Cohen, Myron S.
2014-01-01
Serodiscordant couples play an important role in maintaining the global HIV epidemic. This review summarizes biobehavioral and biomedical HIV prevention options for serodiscordant couples focusing on advances in 2013 and 2014, including World Health Organization guidelines and best-evidence for couples counseling, couples-based interventions, and the use of antiviral agents for prevention. In the past few years marked advances have been made in HIV prevention for serodiscordant couples and numerous ongoing studies are continuously expanding HIV prevention tools, especially in the area of pre-exposure prophylaxis. Uptake and adherence to antiviral therapy remains a key challenge. Additional research is needed to develop evidence-based interventions for couples, and especially for male-male couples. Randomized trials have demonstrated the prevention benefits of antiretroviral-based approaches among serodiscordant couples; however, residual transmission observed in recognized serodiscordant couples represents an important and resolvable challenge in HIV prevention. PMID:25145645
NASA Astrophysics Data System (ADS)
Zhou, Xiao-Hong; E, Ideguchi; T, Kishida; M, Ishihara; H, Tsuchida; Y, Gono; T, Morikawa; M, Shibata; H, Watanabe; M, Miyake; T, Tsutsumi; S, Motomura; S, Mitarai
2000-04-01
The high-spin states of 143Nd have been studied in the 130Te(18O, 5n)143Nd reaction at a beam energy of 80 MeV using techniques of in-beam γ-ray spectroscopy. Measurements of γ - γ - t coincidences, γ-ray angular distributions, and γ-ray linear polarizations were performed. A level scheme of 143Nd with spin and parity assignments up to 53/2+ is proposed. While a weak coupling model can explain the level structure up to the Jπ=39/2- state, this model can not reproduce the higher-lying states. Additionally, a new low-lying non-yrast level sequence in 143Nd was observed in the present work, which can be well described by the weak coupling of an i13/2 neutron to the 142Nd core nucleus.
Rod coupling with mounted guide
Bair, M.L.
1987-05-26
This patent describes a well sucker rod string, in a well bore, the combination comprising: an axially elongated coupling section having threads at axially opposite ends thereof for coupling to and between successive sucker rods in the rod string, to transmit string loading. The section has first and second exposed surfaces adjacent an end of the section, and a third surface located between the first and second exposed surfaces; a rod guide consisting of molded plastic material extending about and bonded to the section third surface to project outwardly therefrom for engagement with the well bore during up and down stroking of the string; and one annular groove sunk in the section between the first and third surfaces, and another annular groove sunk in the section between the second and third surfaces. The depth of the one groove is less than about 15% of the radius of the section at the first surface.
Superlattices with coupled degenerated spectrum
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2016-04-01
Two new analytical results are given which are of great help to understand superlattices with coupled modes. The first is an explicit relation for the transfer matrices in terms of Schur functions and Chebyshev polynomials. The second is a condition which generalizes the old well-known Floquet-Bloch trace condition to determine the spectrum. These improvements allow a fast computation of scattering amplitudes without obscuring the calculation with complicated numerical methods. As the energy grows, the eigenvalues degeneracy determines two types of transmission gaps. It is shown that these results could make it possible to design in greater detail the energy spectrum, for the very interesting case including modes coupling and degeneracy. They keep the understanding on the same footing as that of the traditional basic uncoupled problem considered at the beginning of the study of superlattices, like the Kroning-Penning model, or by Floquet-Bloch's theorem, or later by Esaki for heterostructures.
Matrix Formalism of Synchrobetatron Coupling
Huang, Xiaobiao; /SLAC
2006-10-06
In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and the Courant-Snyder functions. The closed orbit changes due to finite energy gains at rf cavities and radiation energy losses were also studied by the 5 x 5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.
Couple resilience to economic pressure.
Conger, R D; Rueter, M A; Elder, G H
1999-01-01
Over 400 married couples participated in a 3-year prospective study of economic pressure and marital relations. The research (a) empirically evaluated the family stress model of economic stress influences on marital distress and (b) extended the model to include specific interactional characteristics of spouses hypothesized to protect against economic pressure. Findings provided support for the basic mediational model, which proposes that economic pressure increases risk for emotional distress, which, in turn, increases risk for marital conflict and subsequent marital distress. Regarding resilience to economic stress, high marital support reduced the association between economic pressure and emotional distress. In addition, effective couple problem solving reduced the adverse influence of marital conflict on marital distress. Overall, the findings provided substantial support for the extended family stress model.
Three pion nucleon coupling constants
NASA Astrophysics Data System (ADS)
Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.
2016-08-01
There exist four pion nucleon coupling constants, fπ0pp, - fπ0nn, fπ+pn/2 and fπ-np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.
Nickel-Catalyzed Reductive Couplings.
Wang, Xuan; Dai, Yijing; Gong, Hegui
2016-08-01
The Ni-catalyzed reductive coupling of alkyl/aryl with other electrophiles has evolved to be an important protocol for the construction of C-C bonds. This chapter first emphasizes the recent progress on the Ni-catalyzed alkylation, arylation/vinylation, and acylation of alkyl electrophiles. A brief overview of CO2 fixation is also addressed. The chemoselectivity between the electrophiles and the reactivity of the alkyl substrates will be detailed on the basis of different Ni-catalyzed conditions and mechanistic perspective. The asymmetric formation of C(sp(3))-C(sp(2)) bonds arising from activated alkyl halides is next depicted followed by allylic carbonylation. Finally, the coupling of aryl halides with other C(sp(2))-electrophiles is detailed at the end of this chapter. PMID:27573395
Three pion nucleon coupling constants
NASA Astrophysics Data System (ADS)
Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.
2016-08-01
There exist four pion nucleon coupling constants, fπ0pp, ‑ fπ0nn, fπ+pn/2 and fπ‑np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.
MODIFIED BALL AND SOCKET COUPLING
Kalen, D.D.
1961-05-23
A ball and socket coupling arrangement is described in which the male and female members may be engaged or disengaged without visual aid. The female member has an internal spherical seat through which slots are provided to accommodate appropriately arranged and shaped ribs in the ball member. After engagement of the members, one or both are rotated to lock them together to prevent accidental disengagement. (AEC)
Modified Ball and Socket Coupling
Conley, Jr, W. R.; Pitman, R. W.
1961-05-23
A ball and socket coupling arrangement is given in which the male and female members may be engaged or disengaged without visual aid. The female member has an internal spherical seat through which slots are provided to accommodate appropriately arranged and shaped ribs in the male ball member. After engagement of the members, one or both are rotated to lock them together to prevent accidental disengagement.
Fluctuations in strongly coupled cosmologies
Bonometto, Silvio A.; Mainini, Roberto E-mail: mainini@mib.infn.it
2014-03-01
In the early Universe, a dual component made of coupled CDM and a scalar field Φ, if their coupling β > (3){sup 1/2}/2, owns an attractor solution, making them a stationary fraction of cosmic energy during the radiation dominated era. Along the attractor, both such components expand ∝a{sup −4} and have early density parameters Ω{sub d} = 1/(4β{sup 2}) and Ω{sub c} = 2 Ω{sub d} (field and CDM, respectively). In a previous paper it was shown that, if a further component, expanding ∝a{sup −3}, breaks such stationary expansion at z ∼ 3–5 × 10{sup 3}, cosmic components gradually acquire densities consistent with observations. This paper, first of all, considers the case that this component is warm. However, its main topic is the analysis of fluctuation evolution: out of horizon modes are then determined; their entry into horizon is numerically evaluated as well as the dependence of Meszaros effect on the coupling β; finally, we compute: (i) transfer function and linear spectral function; (ii) CMB C{sub l} spectra. Both are close to standard ΛCDM models; in particular, the former one can be so down to a scale smaller than Milky Way, in spite of its main DM component being made of particles of mass < 1 keV. The previously coupled CDM component, whose present density parameter is O(10{sup −3}), exhibits wider fluctuations δρ/ρ, but approximately β-independent δρ values. We discuss how lower scale features of these cosmologies might ease quite a few problems that ΛCDM does not easily solve.
Conduction-coupled Tesla transformer.
Reed, J L
2015-03-01
A proof-of-principle Tesla transformer circuit is introduced. The new transformer exhibits the high voltage-high power output signal of shock-excited transformers. The circuit, with specification of proper circuit element values, is capable of obtaining extreme oscillatory voltages. The primary and secondary portions of the circuit communicate solely by conduction. The destructive arcing between the primary and secondary inductors in electromagnetically coupled transformers is ubiquitous. Flashover is eliminated in the new transformer as the high-voltage inductors do not interpenetrate and so do not possess an annular volume of electric field. The inductors are remote from one another. The high voltage secondary inductor is isolated in space, except for a base feed conductor, and obtains earth by its self-capacitance to the surroundings. Governing equations, for the ideal case of no damping, are developed from first principles. Experimental, theoretical, and circuit simulator data are presented for the new transformer. Commercial high-temperature superconductors are discussed as a means to eliminate the counter-intuitive damping due to small primary inductances in both the electromagnetic-coupled and new conduction-coupled transformers.
Luque, A. |
1993-11-01
Efficiencies of more than 33% have been achieved today in the photovoltaic conversion of solar energy into electricity. Part of this achievement is due to a effective coupling of sunlight to the solar cell. In particular three aspects of light-cell coupling are studied here: (a) the achievement of high irradiance on the cell; that is, the study of concentration; (b) the increase of the absorption in the cell and (c) the matching of the sun spectrum to the cell, with the use of several cells or thermo-photovoltaic devices. Finally, the ultimate limits of the efficiency of solar cells, and photovoltaic devices in general, are studied. It is found that efficiencies in the range of 85% (depending on the spectrum of the sun) are theoretically possible. Also the conditions for thermodynamically reversible operation are analyzed. Some laboratory results are presented and the role of the light-cell coupling in the achievement of this high efficiency is stressed. 70 refs., 30 figs., 6 tabs.
Pair extended coupled cluster doubles
Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.
2015-06-07
The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.
HEMP internal coupling phenomenology study
Kunz, K.S.; Hudson, H.G.; Breakall, J.K.; King, R.J.; Ziolkowski, R.; Madsen, N.; Peterson, J.; Pennock, S.T.
1985-09-01
This report documents a task sponsored by DNA to unravel the electromagnetic coupling problem associated with the interaction of the high altitude electromagnetic pulse HEMP) with typical aerospace systems. A bottom up approach to this task has been selected. In this approach, tools are developed for measuring and predicting the responses of simple test systems; from these measurements and predictions phenomenological understanding of the coupling mechanisms may be obtained and the tools may be verified. The construction and the experimental characterization of a test system embodying the fundamental features of an interior coupling problem, is discussed. Experimental, computational and analytical tools has been applied to this test system. Experimental measurements have revealed a pronounced modal interior response which has been closely replicated with the time domain three dimensional finite difference code G3DXL3. The persistence of these modes has been established analytically with an N-series analysis. Focusing and reflection effects as well as hot spot formation have been examined with the N-series analysis and with a time domain two-dimensional finite element code GEM2D.
System for connecting fluid couplings
NASA Technical Reports Server (NTRS)
Cody, Joseph C. (Inventor); Matthews, Paul R. (Inventor)
1990-01-01
A system for mating fluid transfer couplings is constructed having a male connector which is provided with a pair of opposed rollers mounted to an exterior region thereof. A male half of a fluid transfer coupling is rotatably supported in an opening in an end of the connector and is equipped with an outwardly extending forward portion. The forward portion locks into an engagement and locking region of a female half of the fluid transfer coupling, with female half being rotatably supported in a receptacle. The receptacle has an opening aligned with locking region, with this opening having a pair of concentric, annularly disposed ramps extending around an interior portion of opening. These ramps are inclined toward the interior of the receptacle and are provided with slots through which rollers of the connector pass. After the connector is inserted into the receptacle (engaging forward portion into engagement region), relative rotation between the connector and receptacle causes the rollers to traverse ramps until the rollers abut and are gripped by retainers. This axially forces the forward portion into locked, sealed engagement with the engagement region.
Conformal inflation coupled to matter
Brax, Philippe
2014-05-01
We formulate new conformal models of inflation and dark energy which generalise the Higgs-Dilaton scenario. We embed these models in unimodular gravity whose effect is to break scale invariance in the late time Universe. In the early Universe, inflation occurs close to a maximum of both the scalar potential and the scalar coupling to the Ricci scalar in the Jordan frame. At late times, the dilaton, which decouples from the dynamics during inflation, receives a potential term from unimodular gravity and leads to the acceleration of the Universe. We address two central issues in this scenario. First we show that the Damour-Polyalov mechanism, when non-relativistic matter is present prior to the start of inflation, sets the initial conditions for inflation at the maximum of the scalar potential. We then show that conformal invariance implies that matter particles are not coupled to the dilaton in the late Universe at the classical level. When fermions acquire masses at low energy, scale invariance is broken and quantum corrections induce a coupling between the dilaton and matter which is still small enough to evade the gravitational constraints in the solar system.
A definition of the coupled-product for multivariate coupled-exponentials
NASA Astrophysics Data System (ADS)
Nelson, Kenric P.
2015-03-01
The coupled-product and coupled-exponential of the generalized calculus of nonextensive statistical mechanics are defined for multivariate functions. The nonlinear statistical coupling is indexed such that κd = κ / 1 + dκ, where d is the dimension of the argument of the multivariate coupled-exponential. The coupled-Gaussian distribution is defined such that the argument of the coupled-exponential depends on the coupled-moments but not the coupling parameter. The multivariate version of the coupled-product is defined such that the output dimensions are the sum of the input dimensions. This enables construction of the multivariate coupled-Gaussian from univariate coupled-Gaussians. The resulting construction forms a model of coupling between distributions, generalizing the product of independent Gaussians.
Etude par spectroscopie de Coulomb de points quantiques lateraux individuels et couples
NASA Astrophysics Data System (ADS)
Pioro-Ladriere, Michel
Des points quantiques contenant un nombre discret et variable d'electrons sont formes dans un gaz bi-dimensionnel d'electrons a l'aide de grilles metalliques. Le transport electrique, le blocage de spin et la detection de charge sont employes comme outils spectroscopiques permettant de sonder les proprietes de ces nanostructures. Ces techniques permettent aussi de controler exactement le nombres d'electrons confines dans des points quantiques individuels et couples en utilisant un patron de grille judicieux. Une technique de refroidissement en tension est developpee afin de minimiser les effets parasites du bruit telegraphique. Ce type de bruit de charge deteriore la stabilite des nanostructures laterales par l'activation d'un minuscule courant de fuite entre les grilles et le gaz bi-dimensionnel. Un modele expliquant le role du refroidissement en tension sur le courant de fuite est presente. L'activation du courant de fuite est confirmee par detection de charge. Les effets des interactions entre les electrons pieges dans un point quantique sont ensuite etudies dans un regime ou il est possible de comparer les resulats experimentaux avec ceux obtenus par diagonalisation exacte. L'etude demontre que la phase associee au facteur de remplissage nu = 2 est instable au-dessus d'un nombre critique d'electrons. Cette instabilite est confirmee experimentalement par blocage de spin. On demontre aussi l'existence d'etats correles dans le regime des renversements de spin, associe au passage de la phase nu = 2 a nu = 1. Les etats correles sont identifies par spectroscopie en transport non lineaire. Cette caracterisation du diagramme de phase de points individuels permet de coupler deux points quantiques configures a nu = 2. Pour ce regime, la nanostructure se comporte comme un systeme a deux niveaux pouvant contenir entre un et quatre electrons de valence et ce, meme si le nombre total d'electrons est plus eleve. Les degres de liberte de charge et de spin des deux points
DC coupled Doppler radar physiological monitor.
Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga
2011-01-01
One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.
DC coupled Doppler radar physiological monitor.
Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga
2011-01-01
One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation. PMID:22254704
The Challenges to Coupling Dynamic Geospatial Models
Goldstein, N
2006-06-23
Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.
Congruence Couple Therapy for Pathological Gambling
ERIC Educational Resources Information Center
Lee, Bonnie K.
2009-01-01
Couple therapy models for pathological gambling are limited. Congruence Couple Therapy is an integrative, humanistic, systems model that addresses intrapsychic, interpersonal, intergenerational, and universal-spiritual disconnections of pathological gamblers and their spouses to shift towards congruence. Specifically, CCT's theoretical…
Low-loss coupling to dielectric resonators
NASA Astrophysics Data System (ADS)
Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.; Hefner, B. B., Jr.
1991-07-01
A compilation is presented of experimental observations and arguments concerning the use of dielectric resonators in applications requiring both tight coupling (beta greater than 10) and high unloaded Q, such as low loss bandpass filters. The microstrip coupled dielectric resonator is the primary focus, but an alternative coupling technique is discussed and comparatively evaluated. It is concluded that coupling factors as large as 65 are achievable.
Coupling apparatus for a metal vapor laser
Ball, Don G.; Miller, John L.
1993-01-01
Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.
Coupled perturbed modes and internal solitary waves.
Higham, C J; Tindle, C T
2003-05-01
Coupled perturbed mode theory combines conventional coupled modes and perturbation theory. The theory is used to directly calculate mode coupling in a range-dependent shallow water problem involving propagation through continental shelf internal solitary waves. The solitary waves considered are thermocline depressions, separating well-mixed upper and lower layers. The method is fast and accurate. Results highlight mode coupling associated with internal solitary waves, and mode capture or loss to and from the discrete mode spectrum.
Cation-Coupled Bicarbonate Transporters
Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung
2016-01-01
Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855
Coupled dual loop absorption heat pump
Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.
1985-01-01
A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.
Best Practice in Couple Relationship Education
ERIC Educational Resources Information Center
Halford, W. Kim; Markman, Howard J.; Kling, Galena H.; Stanley, Scott M.
2003-01-01
Relationship education is widely available to couples and is intended to reduce the prevalence of relationship distress, divorce, and the associated personal and social costs. To realize the potential benefits of couple relationship education, it needs to be evidence-based, offered in ways that attract couples at high-risk for relationship…
Coping Processes of Couples Experiencing Infertility
ERIC Educational Resources Information Center
Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.
2006-01-01
This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…
Teaching Couples Counseling: An Integrative Model
ERIC Educational Resources Information Center
Long, Lynn L.; Burnett, Judith A.
2005-01-01
Traditionally, training in couples counseling has not received equal status as other counseling modalities. Recently, there is renewed interest in specific training for couples counseling as more emphasis is placed on the stability of couple relationships as an important factor for helping families and children function in a society of frequent…
Sexual Agreements among Gay Male Couples
Hoff, Colleen H.; Beougher, Sean C.
2009-01-01
Many gay male couples make agreements about whether or not to permit sex with outside partners, yet little is known about the development and maintenance of these agreements, their impact on relationships, and whether they are an effective HIV prevention strategy. Using semi-structured, qualitative interviews, 39 gay male couples were asked about their sexual agreements and about other relationship dynamics that might affect their agreements. Analysis revealed a wide range of agreement types, all of which are presented along a continuum rather than as discrete categories. For couples with open agreements, most placed rules or conditions limiting when, where, how often, and with whom outside sex was permitted. Although motivations for having agreements varied, HIV prevention did not rank as a primary factor for any couple. Most couples had congruous agreements; however, a small number reported discrepancies which may increase HIV transmission risk. How couples handled breaks in their agreements also varied, depending on what condition was broken, whether it was disclosed, and the partner's reaction. Additional results include differences in agreement type and motivations for having an agreement based on couple serostatus. Overall, agreements benefited couples by providing boundaries for the relationship, supporting a non-heteronormative identity, and fulfilling the sexual needs of the couple. Future prevention efforts involving gay couples must address the range of agreement types and the meanings couples ascribe to them, in addition to tempering safety messages with the relationship issues that are important to and faced by gay couples. PMID:18686027
Magnetically Coupled Magnet-Spring Oscillators
ERIC Educational Resources Information Center
Donoso, G.; Ladera, C. L.; Martin, P.
2010-01-01
A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…
Couple Conflict and Rope-a-Dope.
ERIC Educational Resources Information Center
Downing, Jerry; Harrison, Tom
1993-01-01
Draws analogy between Muhammad Ali's boxing technique of "rope-a-dope" and behavioral patterns frequently occurring in couple conflicts. Presents basics of Ali's technique as similar to fighting patterns of many couples. Suggests that this behavior may lead to physical violence. Describes use of analogy in working with couples. Presents strategies…
Coupled waves at fracture intersections
NASA Astrophysics Data System (ADS)
Abell, B.; Pyrak-Nolte, L. J.
2014-12-01
Fracture intersections play a crucial role in the hydraulic connectivity of flow paths in rock, yet no current techniques exist for characterizing the conditions of an intersection. We demonstrate experimentally and theoretically that elastic waves propagated along fracture intersections are affected by the amount of contact among the blocks forming an intersection. Surface fractures and fracture intersections can be viewed as wedges (corners) coupled through the points of contact along the intersection. An eigenvalue secular equation was derived using displacement discontinuity theory along with the solution for a wedge wave. The velocity and motion of intersection waves are a function of the frequency, material impedance, and specific stiffness of the intersection. For an intersection, several modes are present that represent the coupling between different sets of the wedges and exhibit wave speeds between a single wedge mode and the bulk S wave. A surface fracture supports only one mode of propagation with speeds that range from the single wedge wave to that of the Rayleigh wave. Experiments were performed on intersections made from two or four aluminum samples (0.29 x 0.076 x 0.076 m) to detect intersection waves. Measurements were made under uniaxial and biaxial loading conditions to change the contact area along an intersection. At low loads both the surface fracture and intersection excite wedge waves because the stress between the wedges was not sufficiently high to couple the wedges. As the external load was increased, the wave coupled the wedges and propagated as a Rayleigh wave for the surface fracture, or as a bulk S wave for the intersection. These results indicate that the specific stiffness of the fracture intersection can be estimated based upon the velocity of the wave propagating along the intersection or surface fracture. Using this estimation the flow path(s) along or through the fracture intersection or surface fracture can be characterized and
Structure & Coupling of Semiotic Sets
NASA Astrophysics Data System (ADS)
Orsucci, Franco; Giuliani, Alessandro; Zbilut, Joseph
2004-12-01
We investigated the informational structure of written texts (also in the form of speech transcriptions) using Recurrence Quantification Analysis (RQA). RQA technique provides a quantitative description of text sequences at the orthographic level in terms of structuring, and may be useful for a variety of linguistics-related studies. We used RQA to measure differences in linguistic samples from different subjects. They were divided in subgroups based on personality and culture differences. We used RQA and KRQA (Cross Recurrence) to measure the coupling and synchronization during the conversation (semiotic interaction) of different subjects. We discuss results both for the improvement of methodology and some general implications for neurocognitive science.
Closed inductively coupled plasma cell
Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.
1990-01-01
A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.
Closed inductively coupled plasma cell
Manning, T.J.; Palmer, B.A.; Hof, D.E.
1990-11-06
A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.
Vertically coupled dipolar exciton molecules
NASA Astrophysics Data System (ADS)
Cohen, Kobi; Khodas, Maxim; Laikhtman, Boris; Santos, Paulo V.; Rapaport, Ronen
2016-06-01
While the interaction potential between two dipoles residing in a single plane is repulsive, in a system of two vertically adjacent layers of dipoles it changes from repulsive interaction in the long range to attractive interaction in the short range. Here we show that for dipolar excitons in semiconductor heterostructures, such a potential may give rise to bound states if two such excitons are excited in two separate layers, leading to the formation of vertically coupled dipolar exciton molecules. Our calculations prove the existence of such bound states and predict their binding energy as a function of the layers separation as well as their thermal distributions. We show that these molecules should be observed in realistic systems such as semiconductor coupled quantum well structures and the more recent van der Waals bound heterostructures. Formation of such molecules can lead to new effects such as a collective dipolar drag between layers and new forms of multiparticle correlations, as well as to the study of dipolar molecular dynamics in a controlled system.
NASA Astrophysics Data System (ADS)
Edwards, J. A.
1981-08-01
The object of the research work was to demonstrate that a water source heat pump could be used with an earth-coupled heat exchanger which was buried in an absorption field of a domestic sewage disposal system to provide the heating and cooling requirements for residential use in an energy efficient fashion. The system consists of a 3 ton heat pump (nominal rating of 34,000 Btu/hr), a closed-loop heat exchanger which was fabricated from 200 feet of 2 inch diameter cast iron soil pipe, and a calorimeter house which had heat transmission characteristics similar to a 100 sq ft house. The earth-coupled heat exchanger was connected to the water side heat exchanger of the heat pump. Water was circulated through the heat exchanger coil in the earth and through the water side heat exchanger of the heat pump. The earth served as the energy source (for heating) or sink (for cooling) for the heat pump.
Averaging of globally coupled oscillators
NASA Astrophysics Data System (ADS)
Swift, James W.; Strogatz, Steven H.; Wiesenfeld, Kurt
1992-03-01
We study a specific system of symmetrically coupled oscillators using the method of averaging. The equations describe a series array of Josephson junctions. We concentrate on the dynamics near the splay-phase state (also known as the antiphase state, ponies on a merry-go-round, or rotating wave). We calculate the Floquet exponents of the splay-phase periodic orbit in the weak-coupling limit, and find that all of the Floquet exponents are purely imaginary; in fact, all the Floquet exponents are zero except for a single complex conjugate pair. Thus, nested two-tori of doubly periodic solutions surround the splay-phase state in the linearized averaged equations. We numerically integrate the original system, and find startling agreement with the averaging results on two counts: The observed ratio of frequencies is very close to the prediction, and the solutions of the full equations appear to be either periodic or doubly periodic, as they are in the averaged equations. Such behavior is quite surprising from the point of view of generic dynamical systems theory-one expects higher-dimensional tori and chaotic solutions. We show that the functional form of the equations, and not just their symmetry, is responsible for this nongeneric behavior.
Booster's coupled bunch damper upgrade
William A. Pellico and D. W. Wildman
2003-08-14
A new narrowband active damping system for longitudinal coupled bunch (CB) modes in the Fermilab Booster has recently been installed and tested. In the past, the Booster active damper system consisted of four independent front-ends. The summed output was distributed to the 18, h=84 RF accelerating cavities via the RF fan-out system. There were several problems using the normal fan-out system to deliver the longitudinal feedback RF. The high power RF amplifiers normally operate from 37 MHz to 53 MHz whereas the dampers operate around 83MHz. Daily variations in the tuning of the RF stations created tuning problems for the longitudinal damper system. The solution was to build a dedicated narrowband, Q {approx} 10, 83MHz cavity powered with a new 3.5kW solid-state amplifier. The cavity was installed in June 2002 and testing of the amplifier and damper front-end began in August 2002. A significant improvement has been made in both operational stability and high intensity beam damping. At present there are five CB modes being damped and a sixth mode module is being built. The new damper hardware is described and data showing the suppression of the coupled-bunch motion at high intensity is presented.
Coupling Electromagnetism to Global Charge
NASA Astrophysics Data System (ADS)
Guendelman, E. I.
2013-12-01
It is shown that an alternative to the standard scalar quantum electrodynamics (QED) is possible. In this new version, there is only global gauge invariance as far as the charged scalar fields are concerned, although local gauge invariance is kept for the electromagnetic field. The electromagnetic coupling has the form jμ(Aμ +∂μB) where B is an auxiliary field and the current jμ is Aμ independent, so that no "sea gull terms" are introduced. As a consequence of the absence of sea gulls, it is seen that no Klein paradox appears in the presence of a strong square well potential. In a model of this kind, spontaneous breaking of symmetry does not lead to photon mass generation, instead the Goldstone boson becomes a massless source for the electromagnetic field. When spontaneous symmetry breaking takes place infrared questions concerning the theory and generalizations to global vector QED are discussed. In this framework, Q-Balls and other nontopological solitons that owe their existence to a global U(1) symmetry can be coupled to electromagnetism and could represent multiply charged particles now in search in the large hadron collider (LHC). Furthermore, we give an example where an "Emergent" Global Scalar QED can appear from an axion-photon system in an external magnetic field. Finally, formulations of Global Scalar QED that allow perturbative expansions without sea gulls are developed.
Proton-Coupled Electron Transfer
Weinberg, Dave; Gagliardi, Christopher J.; Hull, Jonathan F; Murphy, Christine Fecenko; Kent, Caleb A.; Westlake, Brittany C.; Paul, Amit; Ess, Daniel H; McCafferty, Dewey Granville; Meyer, Thomas J
2012-07-11
Proton-Coupled Electron Transfer (PCET) describes reactions in which there is a change in both electron and proton content between reactants and products. It originates from the influence of changes in electron content on acid-base properties and provides a molecular-level basis for energy transduction between proton transfer and electron transfer. Coupled electron-proton transfer or EPT is defined as an elementary step in which electrons and protons transfer from different orbitals on the donor to different orbitals on the acceptor. There is (usually) a clear distinction between EPT and H-atom transfer (HAT) or hydride transfer, in which the transferring electrons and proton come from the same bond. Hybrid mechanisms exist in which the elementary steps are different for the reaction partners. EPT pathways such as PhO•/PhOH exchange have much in common with HAT pathways in that electronic coupling is significant, comparable to the reorganization energy with H{sub DA} ~ λ. Multiple-Site Electron-Proton Transfer (MS-EPT) is an elementary step in which an electron-proton donor transfers electrons and protons to different acceptors, or an electron-proton acceptor accepts electrons and protons from different donors. It exploits the long-range nature of electron transfer while providing for the short-range nature of proton transfer. A variety of EPT pathways exist, creating a taxonomy based on what is transferred, e.g., 1e^{-}/2H^{+} MS-EPT. PCET achieves “redox potential leveling” between sequential couples and the buildup of multiple redox equivalents, which is of importance in multielectron catalysis. There are many examples of PCET and pH-dependent redox behavior in metal complexes, in organic and biological molecules, in excited states, and on surfaces. Changes in pH can be used to induce electron transfer through films and over long distances in molecules. Changes in pH, induced by local electron transfer, create pH gradients and a driving
PREFACE: Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.
2006-04-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within
Synchronization regimes in conjugate coupled chaotic oscillators.
Karnatak, Rajat; Ramaswamy, Ram; Prasad, Awadhesh
2009-09-01
Nonlinear oscillators that are mutually coupled via dissimilar (or conjugate) variables display distinct regimes of synchronous behavior. In identical chaotic oscillators diffusively coupled in this manner, complete synchronization occurs only by chaos suppression when the coupled subsystems drive each other into a regime of periodic dynamics. Furthermore, the coupling does not vanish but acts as an "internal" drive. When the oscillators are mismatched, phase synchronization occurs, while in a master slave configuration, generalized synchrony results. These effects are demonstrated in a system of coupled chaotic Rossler oscillators.
Studies in upper and lower atmosphere coupling
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Rice, C. J.; Sharp, L. R.
1979-01-01
The theoretical and data-analytic work on upper and lower atmosphere coupling performed under a NASA Headquarters contract during the period April 1978 to March 1979 are summarized. As such, this report is primarily devoted to an overview of various studies published and to be published under this contract. Individual study reports are collected as exhibits. Work performed under the subject contract are in the following four areas of upper-lower atmosphere coupling: (1) Magnetosphere-ionosphere electrodynamic coupling in the aurora; (2) Troposphere-thermosphere coupling; (3) Ionosphere-neutral-atmosphere coupling; and (4) Planetary wave dynamics in the middle atmosphere.
Holomorphic Yukawa couplings in heterotic string theory
NASA Astrophysics Data System (ADS)
Blesneag, Stefan; Buchbinder, Evgeny I.; Candelas, Philip; Lukas, Andre
2016-01-01
We develop techniques, based on differential geometry, to compute holomorphic Yukawa couplings for heterotic line bundle models on Calabi-Yau manifolds defined as complete intersections in projective spaces. It is shown explicitly how these techniques relate to algebraic methods for computing holomorphic Yukawa couplings. We apply our methods to various examples and evaluate the holomorphic Yukawa couplings explicitly as functions of the complex structure moduli. It is shown that the rank of the Yukawa matrix can decrease at specific loci in complex structure moduli space. In particular, we compute the up Yukawa coupling and the singlet-Higgs-lepton trilinear coupling in the heterotic standard model described in ref. [32].
Phenomenology of electromagnetic coupling. Part II
King, R.J.; Ludwigsen, A.P.; Kunz, K.S.
1985-08-01
This report is the second of a planned series which summarize efforts at Lawrence Livermore National Laboratory relating to phenomenology studies of back door coupling from several MHz to 10's of GHz. These studies are pertinent to high altitude EMP (HEMP), enhanced HEMP and microwave coupling. Part I dealt with coupling through apertures into large free-standing cavities having, at most, one interior cable. An overview of the effort is given, and a summary of the effects observed in Part I. The main effort since Part I has been devoted to Facilities Development, development of an interior coupling decomposition model and coupling experiments. Projected future effort is discussed.
Strongly coupled stress waves in heterogeneous plates.
NASA Technical Reports Server (NTRS)
Wang, A. S. D.; Chou, P. C.; Rose, J. L.
1972-01-01
Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.
Distributed coupling high efficiency linear accelerator
Tantawi, Sami G.; Neilson, Jeffrey
2016-07-19
A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.
Couple Support Schemata in Couples with and without Spinal Cord Injury
ERIC Educational Resources Information Center
Gilad, Dvorit; Lavee, Yoav
2010-01-01
This article describes the cognitive schemata of couples' support relationships among 65 couples in which the husband had a long-term spinal cord injury and 65 couples without disability. The structure of the support relations schemata were examined by means of smallest-space analysis. Similarities between men and women in couples with and without…
Job Burnout and Couple Burnout in Dual-Earner Couples in the Sandwiched Generation
ERIC Educational Resources Information Center
Pines, Ayala Malach; Neal, Margaret B.; Hammer, Leslie B.; Icekson, Tamar
2011-01-01
We use existential theory as a framework to explore the levels of and relationship between job and couple burnout reported by dual-earner couples in the "sandwich generation" (i.e., couples caring both for children and aging parents) in a sample of such couples in Israel and the United States. This comparison enables an examination of the…
Reconstruction of the coupling architecture in an ensemble of coupled time-delay systems
NASA Astrophysics Data System (ADS)
Sysoev, I. V.; Ponomarenko, V. I.; Prokhorov, M. D.
2012-08-01
A method for reconstructing the coupling architecture and values in an ensemble of time-delay interacting systems with an arbitrary number of couplings between ensemble elements is proposed. This method is based on reconstruction of the model equations of ensemble elements and diagnostics of the coupling significance by successive trial exclusion or adding coupling coefficients to the model.
ERIC Educational Resources Information Center
Christensen, Andrew; Atkins, David C.; Berns, Sara; Wheeler, Jennifer; Baucom, Donald H.; Simpson, Lorelei E.
2004-01-01
A randomized clinical trial compared the effects of traditional behavioral couple therapy (TBCT) and integrative behavioral couple therapy (IBCT) on 134 seriously and chronically distressed married couples, stratified into moderately and severely distressed groups. Couples in IBCT made steady improvements in satisfaction throughout the course of…
Coupling regularizes individual units in noisy populations.
Ly, Cheng; Ermentrout, G Bard
2010-01-01
The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators. PMID:20365403
Coupling regularizes individual units in noisy populations
NASA Astrophysics Data System (ADS)
Ly, Cheng; Ermentrout, G. Bard
2010-01-01
The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.
Coupling regularizes individual units in noisy populations
Ly Cheng; Ermentrout, G. Bard
2010-01-15
The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.
Oil well sucker rod coupling assembly
Klyne, A.A.
1988-07-19
A coupling assembly for connecting and centralizing a pair of elongate threaded-end members is described comprising: a pair of steel box couplings; a steel shaft connected to and extending between the couplings. The shaft having a tubular cylindrical sleeve of resilient abrasion-resistant non-metallic material bonded thereto and covering its surface between the couplings to form an integral unit therewith. Each such coupling having a ring of resilient abrasion-resistant non-metallic material bonded to and substantially fully covering the coupling's end face which is adjacent to the shaft; and a tubular externally fluted centralizer body mounted on the shaft and encircling the latter. The centralizer body extending radially outwardly beyond the longitudinal surfaces of the couplings. The centralizer body being formed of resilient abrasion-resistant non-metallic material.
Designing the Dynamics of Globally Coupled Oscillators
NASA Astrophysics Data System (ADS)
Orosz, G.; Moehlis, J.; Ashwin, P.
2009-09-01
A method for designing cluster states with prescribed stability is presented for coupled phase oscillator systems with all-to-all coupling. We determine criteria for the coupling function that ensure the existence and stability of a large variety of clustered configurations. We show that such criteria can be satisfied by choosing Fourier coefficients of the coupling function. We demonstrate that using simple trigonometric and localized coupling functions one can realize arbitrary patterns of stable clusters and that the designed systems are capable of performing finite state computation. The design principles may be relevant when engineering complex dynamical behavior of coupled systems, e.g. the emergent dynamics of artificial neural networks, coupled chemical oscillators and robotic swarms.
Circuit electromechanics with single photon strong coupling
Xue, Zheng-Yuan Yang, Li-Na; Zhou, Jian
2015-07-13
In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.
Stochastic switching in delay-coupled oscillators.
D'Huys, Otti; Jüngling, Thomas; Kinzel, Wolfgang
2014-09-01
A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a nondelayed Langevin equation, which allows us to analytically compute the distribution of frequencies and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.
Bachman, Daniel; Tsay, Alan; Van, Vien
2015-07-27
We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients.
Coupled transport in rotor models
NASA Astrophysics Data System (ADS)
Iubini, S.; Lepri, S.; Livi, R.; Politi, A.
2016-08-01
Steady nonequilibrium states are investigated in a one-dimensional setup in the presence of two thermodynamic currents. Two paradigmatic nonlinear oscillators models are investigated: an XY chain and the discrete nonlinear Schrödinger equation. Their distinctive feature is that the relevant variable is an angle in both cases. We point out the importance of clearly distinguishing between energy and heat flux. In fact, even in the presence of a vanishing Seebeck coefficient, a coupling between (angular) momentum and energy arises, mediated by the unavoidable presence of a coherent energy flux. Such a contribution is the result of the ‘advection’ induced by the position-dependent angular velocity. As a result, in the XY model, the knowledge of the two diagonal elements of the Onsager matrix suffices to reconstruct its transport properties. The analysis of the nonequilibrium steady states finally allows to strengthen the connection between the two models.
A novel directly coupled gradostat
NASA Technical Reports Server (NTRS)
Wimpenny, J. W.; Earnshaw, R. G.; Gest, H.; Hayes, J. M.; Favinger, J. L.
1992-01-01
The original bidirectional compound chemostat (gradostat) described by Lovitt and Wimpenny has been simplified by making a more compact apparatus in which chemical gradients are established by diffusion between adjacent culture chambers. The experimental model (diffusion coupled (DC) gradostat) consisted of five chambers whose contents could be agitated by turbines rotating in the horizontal plane on a common shaft. Two biological experiments were designed to reveal the value of the DC gradostat. A methylotroph (Methylophilus methylotrophus) grown in a methanol gradient showed expected changes in cell viability as a function of position in the five vessel array. Cells of two species of photosynthetic bacteria (Rhodobacter capsulata and Rhodopseudomonas marina/agilis) with different salt sensitivities could be mixed and subsequently separated by the DC gradostat operating with a NaCl gradient of 0-3% w/v.
A novel directly coupled gradostat.
Wimpenny, J W; Earnshaw, R G; Gest, H; Hayes, J M; Favinger, J L
1992-10-01
The original bidirectional compound chemostat (gradostat) described by Lovitt and Wimpenny has been simplified by making a more compact apparatus in which chemical gradients are established by diffusion between adjacent culture chambers. The experimental model (diffusion coupled (DC) gradostat) consisted of five chambers whose contents could be agitated by turbines rotating in the horizontal plane on a common shaft. Two biological experiments were designed to reveal the value of the DC gradostat. A methylotroph (Methylophilus methylotrophus) grown in a methanol gradient showed expected changes in cell viability as a function of position in the five vessel array. Cells of two species of photosynthetic bacteria (Rhodobacter capsulata and Rhodopseudomonas marina/agilis) with different salt sensitivities could be mixed and subsequently separated by the DC gradostat operating with a NaCl gradient of 0-3% w/v. PMID:11540058
Viscoelastic coupling of nanoelectromechanical resonators.
Simonson, Robert Joseph; Staton, Alan W.
2009-09-01
This report summarizes work to date on a new collaboration between Sandia National Laboratories and the California Institute of Technology (Caltech) to utilize nanoelectromechanical resonators designed at Caltech as platforms to measure the mechanical properties of polymeric materials at length scales on the order of 10-50 nm. Caltech has succeeded in reproducibly building cantilever resonators having major dimensions on the order of 2-5 microns. These devices are fabricated in pairs, with free ends separated by reproducible gaps having dimensions on the order of 10-50 nm. By controlled placement of materials that bridge the very small gap between resonators, the mechanical devices become coupled through the test material, and the transmission of energy between the devices can be monitored. This should allow for measurements of viscoelastic properties of polymeric materials at high frequency over short distances. Our work to date has been directed toward establishing this measurement capability at Sandia.
Welding shield for coupling heaters
Menotti, James Louis
2010-03-09
Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.
Coupled Fluid Energy Solute Transport
1992-02-13
CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less
Line Coupling in Atmospheric Spectra
NASA Technical Reports Server (NTRS)
Tipping, R. H.
1996-01-01
The theoretical modeling of atmospheric spectra is important for a number of different applications: for instance, in the determination of minor atmospheric constituents such as ozone, carbon dioxide, CFC's etc.; in monitoring the temperature profile for climate studies; and in measuring the incoming and outgoing radiation to input into global climate models. In order to accomplish the above mentioned goal, one needs to know the spectral parameters characterizing the individual spectral lines (frequency, width, strength, and shape) as well as the physical parameters of the atmosphere (temperature, abundances, and pressure). When all these parameters are known, it is usually assumed that the resultant spectra and concomitant absorption coefficient can then be calculated by a superposition of individual profiles of appropriate frequency, strength and shape. However, this is not true if the lines are 'coupled'. Line coupling is a subtle effect that takes place when lines of a particular molecule overlap in frequency. In this case when the initial states and the final states of two transitions are connected by collisions, there is a quantum interference resulting in perturbed shapes. In general, this results in the narrowing of Q-branches (those in which the rotational quantum number does not change), and vibration-rotational R- and P branches (those in which the rotational quantum number changes by +/- 1), and in the spectral region beyond band heads (regions where the spectral lines pile up due to centrifugal distortion). Because these features and spectral regions are often those of interest in the determination of the abundances and pressure-temperature profiles, one must take this effect into account in atmospheric models.
Mendelsohn, Robert
2014-02-01
The author suggests that there are five types of couples seen in couple therapy. Based on the object relations of each, these are parasitic, symbiotic, narcissistic, sibling, and oedipal. Furthermore, each of these couple object-relations corresponds to the developmental level of a couple, and the couple's developmental level can be, and often is, of more primitive object relations than the actual developmental level of either member of the couple alone (that is, the couple is often greater than the sum of its parts; Mendelsohn, 2009). In addition, every couple-relationship is infused with projective identification (Mendelsohn, 2009), but each is also characterized by its own complex of character defenses, so that every couple-relationship presents with a particular of kind transference and a corresponding countertransference. Some of the theoretical and treatment implications of these transference and countertransference matrices are discussed.
Exchange coupling between laterally adjacent nanomagnets
NASA Astrophysics Data System (ADS)
Dey, H.; Csaba, G.; Bernstein, G. H.; Porod, W.
2016-09-01
We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing.
Joint used for coupling long heaters
Menottie, James Louis
2013-02-26
Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.
Antenna-coupled microcavities for terahertz emission
Madéo, J. Todorov, Y.; Sirtori, C.
2014-01-20
We have investigated the capacitive coupling between dipolar antennas and metal-dielectric-metal wire microcavities with strong sub-wavelength confinement in the terahertz region. The coupling appears in reflectivity measurements performed on arrays of antenna-coupled elements, which display asymmetric Fano lineshapes. The experimental data are compared to a temporal coupled-mode theory and finite elements electromagnetic simulations. We show that the Fano interferences correspond to coupling between a subradiant mode (microcavity) and a superradiant mode (antennas). This phenomenon allows one to enhance and control the radiative coupling of the strongly confined mode with the vacuum. These concepts are very useful for terahertz optoelectronic devices based on deep-sub-wavelength active regions.
COUPLING MEASUREMENT AND CORRECTION AT RHIC.
PILAT,F.; BEEBE-WANG,J.; FISCHER,W.; PTITSYN,V.; SATOGATA,T.
2002-06-02
Coupling correction at RHIC has been operationally achieved through a two-step process: using local triplet skew quadrupoles to compensate coupling corn rolled low-beta triplet quadrupoles, and minimizing the tune separation and residual coupling with orthogonal global skew quadrupole families. An application has been developed for global correction that allows skew quadrupole tuning and tune display with a choice of different tune measurement techniques, including tune-meter, Schottky and phase lock loop (PLL). Coupling effects have been analysed by using 1024-turn (TBT) information from the beam position monitor (BPM) system. These data allow the reconstruction of the off-diagonal terms of the transfer matrix, a measure of global coupling. At both injection and storage energies, coordination of tune meter kicks with TBT acquisition at 322 BPM's in each ring allows the measurement of local coupling at all BPM locations.
Non-backdriveable free wheeling coupling
NASA Technical Reports Server (NTRS)
Llewellin, William R. (Inventor)
1987-01-01
A rotary coupling for connecting a driven part to a source of rotary force is described. This device transmits rotary force in one direction only and disengages to permit the driven part to free wheel when the input member is stopped and precludes the backdriving of rotary force from output member to input member. The coupling includes an input member having a splined shaft, a coupling member connected to the splined shaft, and a coaxial output member. The coupling member and the output member having complementary sets of axially facing clutch teeth. Guides in the form of helical grooves on the coupling member and spring loaded followers acting with the guides affect the engagement and disengagement of the clutch teeth by moving the coupling member toward and away from output member, the followers and guides themselves disengaging to permit free wheeling of output member when input member is stopped.
Mode coupling in solar spicule oscillations
NASA Astrophysics Data System (ADS)
Fazel, Zahra
2016-01-01
In a real medium which has oscillations, the perturbations can cause an energy transfer between different modes. A perturbation, which is interpreted as an interaction between the modes, is inferred to be mode coupling. The mode coupling process in an inhomogeneous medium such as solar spicules may lead to the coupling of kink waves to local Alfvén waves. This coupling occurs in practically any conditions when there is smooth variation in density in the radial direction. This process is seen as the decay of transverse kink waves in the medium. To study the damping of kink waves due to mode coupling, a 2.5-dimensional numerical simulation of the initial wave is considered in spicules. The initial perturbation is assumed to be in a plane perpendicular to the spicule axis. The considered kink wave is a standing wave which shows an exponential damping in the inhomogeneous layer after the mode coupling occurs.
Synchronization of oscillators coupled through an environment
NASA Astrophysics Data System (ADS)
Katriel, Guy
2008-11-01
We study synchronization of oscillators that are indirectly coupled through their interaction with an environment. We give criteria for the stability or instability of a synchronized oscillation. Using these criteria we investigate synchronization of systems of oscillators which are weakly coupled, in the sense that the influence of the oscillators on the environment is weak. We prove that arbitrarily weak coupling will synchronize the oscillators, provided that this coupling is of the ‘right’ sign. We illustrate our general results by applications to a model of coupled GnRH neuron oscillators proposed by Khadra and Li [A. Khadra, Y.X. Li, A model for the pulsatile secretion of gonadotropin-releasing hormone from synchronized hypothalamic neurons, Biophys. J. 91 (2006) 74-83.], and to indirectly weakly-coupled λ- ω oscillators.
Fusco, Rachel A
2010-10-01
The number of interracial couples in the U.S. is growing, but they often receive little support. Although previous studies have explored the relationship between low social support and decreased relationship satisfaction in interracial couples, there are few studies on intimate partner violence (IPV) in these couples. To better understand IPV in interracial couples compared to monoracial couples, all police-reported IPV events across a municipality were examined. Odds ratios showed differences between interracial and ethnic minority monoracial couples. Interracial couples were more likely to have a history of prior IPV (OR = 2.60), engage in mutual assault (OR = 2.36), and result in perpetrator arrest (OR = 1.71) than ethnic minority monoracial couples. Victims of IPV in interracial couples were also more likely to be injured (OR = 1.37). There were no significant differences between the couples in terms of substance use or children present during the IPV event. Differences between IPV in interracial and White couples also emerged. Interracial couples were more likely to have children present (OR = 1.84), to have a prior report (OR = 1.98), to result in victim injury (OR = 1.73), and to result in perpetrator arrest than White couples (OR = 2.18). Interracial couples were more likely to engage in mutual assault than White couples (OR = 2.94). However, interracial couples were about 50% less likely than White couples to use drugs or alcohol before or during the IPV event. Research is needed to better understand the unique challenges and needs faced by interracial couples to help them sustain healthy partnerships.
Extended source model for diffusive coupling.
González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo
2016-01-01
Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources.
Universal Attractor for Inflation at Strong Coupling
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Linde, Andrei; Roest, Diederik
2014-01-01
We introduce a novel nonminimal coupling between gravity and the inflaton sector. Remarkably, for large values of this coupling all models asymptote to a universal attractor. This behavior is independent of the original scalar potential and generalizes the attractor in the φ4 theory with nonminimal coupling to gravity. The attractor is located in the "sweet spot" of parameter values that are preferred by Planck's recent results.
Hopfield model with self-coupling
NASA Astrophysics Data System (ADS)
Singh, Manoranjan P.
2001-11-01
We have studied analytically the retrieval performance of a Hopfield model in the presence of self-coupling in the synaptic matrix. We find, contrary to expectations from some earlier studies based on the counting of fixed points, that negative self-coupling causes deterioration in the retrieval performance of the network. On the other hand, it is possible to enhance the retrieval performance by having a positive self-coupling of appropriate magnitude.
Extended source model for diffusive coupling.
González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo
2016-01-01
Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources. PMID:26802012
A Magnetically Coupled Cryogenic Pump
NASA Technical Reports Server (NTRS)
Hatfield, Walter; Jumper, Kevin
2011-01-01
Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into
NASA Astrophysics Data System (ADS)
Takashima, Hideaki; Kitajima, Kazutaka; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji
2014-02-01
Toward complete coupling between propagating light (PL) and a single localized-surface-plasmon (LSP) nanostructure, we propose a tapered-fiber-coupled microspherical cavity system combining an Au-coated probe tip. This system possesses the unique characteristic of precise adjustability for the fiber-cavity coupling rate and the cavity-plasmon coupling rate, which is indispensable for achieving the critical coupling conditions. We successfully demonstrate the 93% PL coupling into the LSP antenna with an effective area of a 58 nm circle, exceeding the diffraction limit.
Vacuum coupling of rotating superconducting rotor
Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante
2003-12-02
A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.
Quintessence with quadratic coupling to dark matter
Boehmer, Christian G.; Chan, Nyein; Caldera-Cabral, Gabriela; Lazkoz, Ruth; Maartens, Roy
2010-04-15
We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.
The Los Alamos coupled climate model
Jones, P.W.; Malone, R.C.; Lai, C.A.
1998-12-31
To gain a full understanding of the Earth`s climate system, it is necessary to understand physical processes in the ocean, atmosphere, land and sea ice. In addition, interactions between components are very important and models which couple all of the components into a single coupled climate model are required. A climate model which couples ocean, sea ice, atmosphere and land components is described. The component models are run as autonomous processes coupled to a flux coupler through a flexible communications library. Performance considerations of the model are examined, particularly for running the model on distributed-shared-memory machine architectures.
Evaluation of coupling approaches for thermomechanical simulations
Novascone, S. R.; Spencer, B. W.; Hales, J. D.; Williamson, R. L.
2015-08-10
Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics,more » while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.« less
Evaluation of coupling approaches for thermomechanical simulations
Novascone, S. R.; Spencer, B. W.; Hales, J. D.; Williamson, R. L.
2015-08-10
Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics, while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.
Dynamic mode coupling in terahertz metamaterials
Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Tan, Siyu; Gu, Jianqiang; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Yan, Fengping; Han, Jiaguang; Zhang, Weili
2015-01-01
The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a dynamic mode coupling between resonators in a hybrid metal-semiconductor metamaterial comprised of metallic concentric rings that are physically connected with silicon bridges. The dielectric function of silicon can be instantaneously modified by photodoped carriers thus tailoring the coupling characteristics between the metallic resonators. Based on the experimental results, a theoretical model is developed, which shows that the optical responses depend on mode coupling that originates from the variation of the damping rate and coupling coefficient of the resonance modes. This particular scheme enables an in-depth understanding of the fundamental coupling mechanism and, therefore, the dynamic coupling enables functionalities and applications for designing on-demand reconfigurable metamaterial and plasmonic devices. PMID:26035057
Dynamic mode coupling in terahertz metamaterials.
Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Tan, Siyu; Gu, Jianqiang; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Yan, Fengping; Han, Jiaguang; Zhang, Weili
2015-06-02
The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a dynamic mode coupling between resonators in a hybrid metal-semiconductor metamaterial comprised of metallic concentric rings that are physically connected with silicon bridges. The dielectric function of silicon can be instantaneously modified by photodoped carriers thus tailoring the coupling characteristics between the metallic resonators. Based on the experimental results, a theoretical model is developed, which shows that the optical responses depend on mode coupling that originates from the variation of the damping rate and coupling coefficient of the resonance modes. This particular scheme enables an in-depth understanding of the fundamental coupling mechanism and, therefore, the dynamic coupling enables functionalities and applications for designing on-demand reconfigurable metamaterial and plasmonic devices.
Rotary Coupling Extends Life Of Hose
NASA Technical Reports Server (NTRS)
Benner, Steve; Costello, Frederick; Swanson, Theodore
1991-01-01
Oscillating rotary coupling enables hose to withstand bending oscillations without leakage. Intended for use where hose connects to stationary structure at one end and to oscillating structure on other end. Coupling, (a sun-and-planetary pulley system), eliminates fatigue stress at fixed end. Pulley coupling requires less hose than conventional helical-wrap couplings, and its weight, pressure drop, heat loss or gain, and fluid contents also less. Conceived for use on Space Station to transfer vapors across rotary joints to directional radiators for condensation or to transfer liquids to gimballed payloads for evaporation. On Earth, used to carry working fluids to and from evaporative solar collectors following path of Sun.
Environmental dependence of masses and coupling constants
Olive, Keith A.; Pospelov, Maxim
2008-02-15
We construct a class of scalar field models coupled to matter that lead to the dependence of masses and coupling constants on the ambient matter density. Such models predict a deviation of couplings measured on the Earth from values determined in low-density astrophysical environments, but do not necessarily require the evolution of coupling constants with the redshift in the recent cosmological past. Additional laboratory and astrophysical tests of {delta}{alpha} and {delta}(m{sub p}/m{sub e}) as functions of the ambient matter density are warranted.
Properties of strong coupled superconductors
NASA Astrophysics Data System (ADS)
Bulaevskii, L. N.; Dolgov, O. V.; Ptitsyn, M. O.
1987-07-01
By use of Eliashberg equations the system of electrons and phonons with the Einstein spectrum alpha (sub 2) (omega) F(omega) = lambda x omega/2 delta (omega - OMEGA) is studied. The orbital and paramagnetic upper critical magnetic fields are obtained in the case of strong electron-phonon coupling lambda including lambda is much greater than 1. For lambda much greater than 1 superconducting parameters at very low temperatures differ remarkably from that near T(sub c), the crossover takes place at a temperature corresponding to the phonon frequency omega. For lambda is greater than or approximately 4 at temperatures below about omega/3 the superconducting correlation length decreases giving the positive curvature in the temperature dependence of upper critical field. The obtained results favor the ratio delta(O)/T (sub c) to be proportional to the square root of lambda at lambda is greater than or approximately 4/6. The coefficients of GL functional are calculated. The absolute value of specific heat jump grows with lambda while its relative value drops. At lambda is greater than or approximately 4 the resistivity above T(sub c) increases linearly with temperature.
Coupled Neutron Transport for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.
2009-01-01
Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.
Subglottal coupling and vowel space
NASA Astrophysics Data System (ADS)
Chi, Xuemin; Sonderegger, Morgan
2001-05-01
A model of acoustic coupling between the oral and subglottal cavities predicts discontinuities in vowel formant prominences near resonances of the subglottal system. One discontinuity occurs near 1300-1500 Hz, suggesting the hypothesis that this is a quantal effect [K. N. Stevens, J. Phonetics 17, 3-46 (1989)] dividing speakers' front and back vowels. Recordings of English vowels (in /hVd/ environments) for several male and female speakers were made, while an accelerometer attached to the neck area was used to capture the subglottal waveform. Statistics on our subglottal resonance measurements are given and compared with prior work. Qualitative agreement is shown between the resonator model and diphthong data with time-varying F2 for several speakers. Comparison of the second vowel formant and second subglottal formant tracks across all speakers, analysis of the formant spaces spanned by each speaker's vowel data, and a survey of vowel formant data for a sample of the world's languages support the possibility that a speaker's second subglottal resonance divides front and back vowels. Possible implications for theories of vowel inventory structure [e.g., J. Lijencrants and B. Lindblom, Language 48, 839-862 (1972)] are discussed. [Work supported by NIH Grant DC00075.
Advanced screening of electrode couples
NASA Astrophysics Data System (ADS)
Giner, J. D.; Cahill, K.
1980-02-01
The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.
Energy coupling in catastrophic collisions
NASA Technical Reports Server (NTRS)
Holsapple, K. A.; Choe, K. Y.
1991-01-01
The prediction of events leading to the catastrophic collisions and disruption of solar system bodies is fraught with the same difficulties as are other theories of impact events; since one simply cannot perform experiments in the regime of interest. In the catastrophic collisions of asteroids that regime involves bodies of a few tons to hundred of kilometers in diameter, and velocities of several kilometers pre second. For hundred kilometer bodies, gravitational stresses dominate material fracture strengths, but those gravitational stresses are essentially absent for laboratory experiments. Only numerical simulations using hydrocodes can in principle analyze the true problems, but they have their own major uncertainties about the correctness of the physical models and properties. The question of the measure of the impactor and its energy coupling is investigated using numerical code calculations. The material model was that of a generic silicate rock, including high pressure melt and vapor phases, and includes material nonlinearity and dissipation via a Mie-Gruniesen model. A series of calculations with various size ratios and impact velocities are reported.
Advanced screening of electrode couples
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K.
1980-01-01
The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.
Phase transitions in physiologic coupling
Bartsch, Ronny P.; Schumann, Aicko Y.; Kantelhardt, Jan W.; Penzel, Thomas; Ivanov, Plamen Ch.
2012-01-01
Integrated physiological systems, such as the cardiac and the respiratory system, exhibit complex dynamics that are further influenced by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and the respiratory system adjust their rhythms, despite continuous fluctuations in their dynamics, we study the phase synchronization of heartbeat intervals and respiratory cycles. The nature of this interaction, its physiological and clinical relevance, and its relation to mechanisms of neural control is not well understood. We investigate whether and how cardiorespiratory phase synchronization (CRPS) responds to changes in physiological states and conditions. We find that the degree of CRPS in healthy subjects dramatically changes with sleep-stage transitions and exhibits a pronounced stratification pattern with a 400% increase from rapid eye movement sleep and wake, to light and deep sleep, indicating that sympatho-vagal balance strongly influences CRPS. For elderly subjects, we find that the overall degree of CRPS is reduced by approximately 40%, which has important clinical implications. However, the sleep-stage stratification pattern we uncover in CRPS does not break down with advanced age, and surprisingly, remains stable across subjects. Our results show that the difference in CRPS between sleep stages exceeds the difference between young and elderly, suggesting that sleep regulation has a significantly stronger effect on cardiorespiratory coupling than healthy aging. We demonstrate that CRPS and the traditionally studied respiratory sinus arrhythmia represent different aspects of the cardiorespiratory interaction, and that key physiologic variables, related to regulatory mechanisms of the cardiac and respiratory systems, which influence respiratory sinus arrhythmia, do not affect CRPS. PMID:22691492
High temperature pressure coupled ultrasonic waveguide
Caines, Michael J.
1983-01-01
A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.
When Couples Divorce: Issues for Counselors.
ERIC Educational Resources Information Center
Chambliss, Catherine
Couples counseling is about both saving and optimally ending relationships. Some of the factors affecting the counselor's role in couples therapy are addressed in this paper. It opens with a listing of the objectives of counseling, such as the need to remain neutral. Some of the societal influences on divorce rate are discussed, along with…
Vertical coupling between gap plasmon waveguides.
Hoffman, Galen B; Reano, Ronald M
2008-08-18
This work examines vertical coupling between gap plasmon waveguides for use in high confinement power transfer and power splitting applications at 1.55 microm free space wavelength. The supermode interference method is used to obtain key coupler performance parameters such as coupling length, extinction ratio, net coupled output power, radiated power, and reflected power as a function of waveguide center-to-center spacing, core refractive index, and gap width. The initial power distribution among the two coupler supermodes is obtained via the mode matching method for a single input waveguide feed. Excellent agreement with three-dimensional finite difference time domain simulations is observed for the case of square 50 nm gaps with core refractive indices of 2.50 and a center-to-center spacing of 112 nm. Local maxima in the net coupled output power are found to coincide with local minima in the coupling length. An increase in the core refractive index from 1.00 to 2.5 increases the local maximum net coupled output power from 6.4% to 49% but decreases the extinction ratio from 12.7 to 6.94. A sweep of the width of the core from 25 to 100 nm increases the net coupled output power from 43.7% to 52.0%, but increases the coupling length from 1.58 to 3.19 ???m and decreases the extinction ratio from 7.39 to 6.57.
Status of Professional Couples in Psychology
ERIC Educational Resources Information Center
Butler, Matilda; Paisley, William
1977-01-01
Biographic data from the 1958 and 1973 APA membership directories provide information on the status of professional couples in psychology. The "professional couple syndrome" is examined as well as myths surrounding explanations of the greater success of husbands. Husbands hold higher positions than their wives. (Author)
Optimal design of thermally coupled distillation columns
Duennebier, G.; Pantelides, C.C.
1999-01-01
This paper considers the optimal design of thermally coupled distillation columns and dividing wall columns using detailed column models and mathematical optimization. The column model used is capable of describing both conventional and thermally coupled columns, which allows comparisons of different structural alternatives to be made. Possible savings in both operating and capital costs of up to 30% are illustrated using two case studies.
Extra-safe tractor-trailer coupling
NASA Technical Reports Server (NTRS)
Albrecht, W. P.; Sparks, R. H.
1979-01-01
Built-in safety mechanism for tractor-trailer "fifth-wheel" coupling keeps rig together in case kingpin failure. Modified coupling utilizes all standard components, such as two wear plates, kingpin, and kingpin latch. It is modified by adding semicircular lip to top wear plate, matching semicircular slot to bottom wear plate, and two latching stop mechanisms.
Narcissism and Intimacy: Treating the Wounded Couple.
ERIC Educational Resources Information Center
Solomon, Marion F.
1994-01-01
Couples whose early wounds cause narcissistic and borderline defenses may benefit from treatment with a psychodynamically oriented couples therapist. This article presents a treatment method that helps partners become attuned to each other's underlying injuries and vulnerabilities. The goal is to rebuild damaged structures of the self and to…
Mutual coupling between rectangular microstrip patch antennas
NASA Technical Reports Server (NTRS)
Huynh, Tan; Lee, Kai-Fong; Chebolu, Siva R.; Lee, R. Q.
1992-01-01
The paper presents a comprehensive study of the mutual coupling between two rectangular microstrip patch antennas. The cavity model is employed to give numerical results for both mutual impedance and mutual coupling parameters for the E-plane, H-plane, diagonal, and perpendicular orientations. The effects of substrate thickness, substrate permittivity, and feed positions are discussed.
Sex and Intimacy among Infertile Couples.
ERIC Educational Resources Information Center
Greil, Arthur; And Others
Infertility is a widespread health problem in the United States, affecting anywhere from 10 to 15 percent and perhaps even a greater percentage of U.S. couples. Infertility can have far-reaching effects on life satisfaction, well-being, and psychological adjustment. This paper presents an analysis of sex and intimacy among infertile couples based…
The Bushido Matrix for Couple Communication
ERIC Educational Resources Information Center
Li, Chi-Sing; Lin, Yu-Fen; Ginsburg, Phil; Eckstein, Daniel
2012-01-01
The concept of Japanese Bushido and its seven virtues were introduced by the authors in this article for the practice and application of couple communication. The Bushido Matrix Worksheet (BMW) was created for enhancing couple's awareness and understanding of each other's values and experiences. An activity and a case study to demonstrate the use…
Nonverbal Communication of Couples in Conflict.
ERIC Educational Resources Information Center
Lochman, John E.; Allen, George
1981-01-01
Examined the rates, contextual meanings, and attributional meanings of nonverbal behavior occurring during role-played conflict between dating couples. Eighty couples reported perceptions of their own behaviors and their partners' behaviors and were observed by trained raters. The nonverbal channel was used significantly more by females than by…
Synchronization of coupled Boolean phase oscillators.
Rosin, David P; Rontani, Damien; Gauthier, Daniel J
2014-04-01
We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni- and bidirectional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of the large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.
Mate Selection among Married and Cohabiting Couples.
ERIC Educational Resources Information Center
Blackwell, Debra L.; Lichter, Daniel T.
2000-01-01
Examines comparative patterns of educational and racial assortative mating or homogany among married and cohabiting couples, and evaluates whether women and men trade in socioeconomic status and racial caste prestige. Lists several findings, including married/cohabiting couples are highly homogenous with respect to race and education. Suggests…
The Seismic Coupling of Subduction Zones Revisited
NASA Astrophysics Data System (ADS)
Scholz, C.; Campos, J.
2012-04-01
The nature of seismic coupling for many of the world's subduction zones has been reevaluated. Geodetic estimates of seismic coupling obtained from GPS measurements of upper plate deformation during the interseismic period are summarized. We compared those with new estimates of seismic coupling obtained from seismological data. The results show that with a few notable exceptions the results using the two methods agree to within about 10%. The seismological estimates have been greatly improved over those made 20-30 years ago because of an abundance of paleoseismological data that greatly extend the temporal record of great subduction earthquakes and by the occurrence, in the intervening years, of an unusual number of great and giant earthquakes that have filled in some of the most critical holes in the seismic record. The data also, again with a few notable exceptions, support the frictional instability theory of seismic coupling, and in particular, the test of that theory made by Scholz and Campos [1995]. Overall, the results support their prediction that high coupling occurs for subduction zones subjected to high normal forces with a switch to low coupling occurring fairly abruptly as the normal force decreases below a critical value. There is also considerable variation of coupling within individual subduction zones. Earthquake asperities correlate with areas of high coupling and hence have a semblance of permanence, but the rupture zones and asperity distributions of great earthquakes may differ greatly between seismic cycles because of differences in the phase of seismic flux accumulation.
The seismic coupling of subduction zones revisited
NASA Astrophysics Data System (ADS)
Scholz, Christopher H.; Campos, Jaime
2012-05-01
The nature of seismic coupling for many of the world's subduction zones has been reevaluated. Geodetic estimates of seismic coupling obtained from GPS measurements of upper plate deformation during the interseismic period are summarized. We compared those with new estimates of seismic coupling obtained from seismological data. The results show that with a few notable exceptions the two methods agree to within about 10%. The seismological estimates have been greatly improved over those made 20-30 years ago because of an abundance of paleoseismological data that greatly extend the temporal record of great subduction earthquakes and by the occurrence, in the intervening years, of an unusual number of great and giant earthquakes that have filled in some of the most critical holes in the seismic record. The data also, again with a few notable exceptions, support the frictional instability theory of seismic coupling, and in particular, the test of that theory made by Scholz and Campos (1995). Overall, the results support their prediction that high coupling occurs for subduction zones subjected to high normal forces with a switch to low coupling occurring fairly abruptly as the normal force decreases below a critical value. There is also considerable variation of coupling within individual subduction zones. Earthquake asperities correlate with areas of high coupling and hence have a semblance of permanence, but the rupture zones and asperity distributions of great earthquakes may differ greatly between seismic cycles because of differences in the phase of seismic flux accumulation.
Optical emission from coupled surface plasmons
NASA Technical Reports Server (NTRS)
Gruhlke, R. W.; Holland, W. R.; Hall, D. G.
1987-01-01
Surface plasmons on opposite sides of a thin metal film surrounded by identical dielectrics interact to form coupled surface plasmons (CSP's). Corrugation of the metal film permits interaction of the CSP's with the radiation field. This paper reports the observation of optical emission from CSP's excited by the near-field coupling of molecules adjacent to a corrugated thin metal film embedded in photoresist.
Quick-disconnect coupling/filter
NASA Technical Reports Server (NTRS)
Jankowski, F.
1977-01-01
Two-part coupling system for hose lines combines both connection and filter in one fitting. Flared fittings make coupling less prone to leakage, and reduced number of components speeds operation. These features may make coupler useful with liquid-bulk carriers, where materials (e.g., milk, cooking oil, and liquid sugar) must be transferred quickly from vehicle to storage facility.
Couples with dementia: Positioning the 'we'.
Hydén, Lars-Christer; Nilsson, Elin
2015-11-01
The aim of this article is to investigate how spouses in couples with dementia position themselves in relation to each other by analysing their use of pronouns, especially the we. The study uses joint interviews with 11 couples. Based on a quantitative analysis of pronoun use, it is argued that the pronoun we is used by all the spouses; however, it is used less frequently by the spouses with dementia in comparison with healthy spouses. A qualitative analysis of the use of the pronoun we shows that the spouses position, experience and consider themselves as a couple and that they position and experience themselves as individuals in relation to the couple. One of the challenges for couples with dementia is to be able to retain a we in face of the progression of the dementia disease. By positioning themselves in various ways, the spouses establish and negotiate quite a complex and emotionally charged web of relationships.
Fluid Coupling in a Discrete Cochlear Model
NASA Astrophysics Data System (ADS)
Elliott, S. J.; Lineton, B.; Ni, G.
2011-11-01
The interaction between the basilar membrane, BM, dynamics and the fluid coupling in the cochlea can be formulated using a discrete model by assuming that the BM is divided into a number of longitudinal elements. The form of the fluid coupling can then be understood by dividing it into a far field component, due to plane wave acoustic coupling, and a near field component, due to higher order evanescent acoustic modes. The effects of non-uniformity and asymmetry in the cross-sectional areas of the fluid chambers can also be accounted for within this formulation. The discrete model is used to calculate the effect on the coupled BM response of a short cochlear implant, which reduces the volume of one of the fluid chambers over about half its length. The passive response of the coupled cochlea at lower frequencies is shown to be almost unaffected by this change in volume.
Discernment Counseling for "Mixed-Agenda" Couples.
Doherty, William J; Harris, Steven M; Wilde, Jason L
2016-04-01
This article describes discernment counseling, an approach to working with couples where one partner is leaning toward divorce and the other wants to preserve the relationship and work on it in couples therapy. These "mixed-agenda" couples are common in clinical practice but have been neglected in the literature. The goal of discernment counseling is clarity and confidence regarding the next steps for the relationship, based on a deeper understanding of each partner's contributions. Sessions emphasize individual conversations with each partner. An analysis of 100 consecutive cases found that about half of the couples chose to start couples therapy in order to reconcile, with most of the rest choosing the divorce path. Longer term follow-up information is also presented.
Highly damped kinematic coupling for precision instruments
Hale, Layton C.; Jensen, Steven A.
2001-01-01
A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.
Discernment Counseling for "Mixed-Agenda" Couples.
Doherty, William J; Harris, Steven M; Wilde, Jason L
2016-04-01
This article describes discernment counseling, an approach to working with couples where one partner is leaning toward divorce and the other wants to preserve the relationship and work on it in couples therapy. These "mixed-agenda" couples are common in clinical practice but have been neglected in the literature. The goal of discernment counseling is clarity and confidence regarding the next steps for the relationship, based on a deeper understanding of each partner's contributions. Sessions emphasize individual conversations with each partner. An analysis of 100 consecutive cases found that about half of the couples chose to start couples therapy in order to reconcile, with most of the rest choosing the divorce path. Longer term follow-up information is also presented. PMID:26189438
Coherence Phenomena in Coupled Optical Resonators
NASA Technical Reports Server (NTRS)
Smith, David D.
2007-01-01
Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.
Micro-fluid exchange coupling apparatus
NASA Technical Reports Server (NTRS)
Johnson, J. E., Jr.; Swartz, P. F. (Inventor)
1980-01-01
In a macro-fluid exchange, a hollow needle, such as a syringe needle, is provided for penetrating the fluid conduit of the animal. The syringe needle is coupled to a plenum chamber having an inlet and outlet port. The plenum chamber is coupled to the syringe needle via the intermediary of a standard quick disconnect coupling fitting. The plenum chamber is carried at the end of a drive rod which is coupled to a micrometer drive head. The micrometer drive head is slidably and pivotably coupled to a pedestal for adjusting the height and angle of inclination of the needle relative to a reference base support. The needle is positioned adjacent to the incised trachea or a blood vessel of a small animal and the micrometer drive head is operated for penetrating the fluid conduit of the animal.
Instabilities of geared couplings: Theory and practice
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Mondy, R. E.; Murphy, R. C.
1982-01-01
The use of couplings for high speed turbocompressors or pumps is essential to transmit power from the driver. Typical couplings are either of the lubricated gear or dry diaphragm type design. Gear couplings have been the standard design for many years and recent advances in power and speed requirements have pushed the standard design criteria to the limit. Recent test stand and field data on continuous lube gear type couplings have forced a closer examination of design tolerances and concepts to avoid operational instabilities. Two types of mechanical instabilities are reviewed in this paper: (1) entrapped fluid, and (2) gear mesh instability resulting in spacer throw-out onset. Test stand results of these types of instabilities and other directly related problems are presented together with criteria for proper coupling design to avoid these conditions. An additional test case discussed shows the importance of proper material selection and processing and what can happen to an otherwise good design.
Are Gay and Lesbian Cohabiting Couples Really Different from Heterosexual Married Couples?
ERIC Educational Resources Information Center
Kurdek, Lawrence A.
2004-01-01
Both partners from gay and lesbian cohabiting couples without children were compared longitudinally with both partners from heterosexual married couples with children (N at first assessment = 80, 53, and 80 couples, respectively) on variables from 5 domains indicative of relationship health. For 50% of the comparisons, gay and lesbian partners did…
Grandes déformations et comportements extrêmes
NASA Astrophysics Data System (ADS)
Frémond, Michel
2009-01-01
Large deformations of a solid are investigated. We use a polar decomposition of gradient matrix F=RW ( R is rotation matrix, W is stretch matrix). Large deformations of solids involve local spacial interactions either in an extension or in a rotation. Because local interactions are well described by spacial gradient, matrix W intervene for extensions and matrix grad R intervene for rotations. Thus the free energy depends on W and on grad R. Moreover, free energy takes into account the local impenetrability condition. Reactions to this impenetrability condition are important in constitutive laws. Within our parti-pris, self contact and extreme behaviours like the flattening (for example, structure flattened by a power hammer evolving from dimension 3 to dimension 2) are accounted for. To cite this article: M. Frémond, C. R. Mecanique 337 (2009).
FOREWORD: Imaging from coupled physics Imaging from coupled physics
NASA Astrophysics Data System (ADS)
Arridge, S. R.; Scherzer, O.
2012-08-01
Due to the increased demand for tomographic imaging in applied sciences, such as medicine, biology and nondestructive testing, the field has expanded enormously in the past few decades. The common task of tomography is to image the interior of three-dimensional objects from indirect measurement data. In practical realizations, the specimen to be investigated is exposed to probing fields. A variety of these, such as acoustic, electromagnetic or thermal radiation, amongst others, have been advocated in the literature. In all cases, the field is measured after interaction with internal mechanisms of attenuation and/or scattering and images are reconstructed using inverse problems techniques, representing spatial maps of the parameters of these perturbation mechanisms. In the majority of these imaging modalities, either the useful contrast is of low resolution, or high resolution images are obtained with limited contrast or quantitative discriminatory ability. In the last decade, an alternative phenomenon has become of increasing interest, although its origins can be traced much further back; see Widlak and Scherzer [1], Kuchment and Steinhaur [2], and Seo et al [3] in this issue for references to this historical context. Rather than using the same physical field for probing and measurement, with a contrast caused by perturbation, these methods exploit the generation of a secondary physical field which can be measured in addition to, or without, the often dominating effect of the primary probe field. These techniques are variously called 'hybrid imaging' or 'multimodality imaging'. However, in this article and special section we suggest the term 'imaging from coupled physics' (ICP) to more clearly distinguish this methodology from those that simply measure several types of data simultaneously. The key idea is that contrast induced by one type of radiation is read by another kind, so that both high resolution and high contrast are obtained simultaneously. As with all
Miyazaki, J; Kinoshita, S
2006-11-01
A coupling function that describes the interaction between self-sustained oscillators in a phase equation is derived and applied experimentally to Belousov-Zhabotinsky (BZ) oscillators. It is demonstrated that the synchronous behavior of coupled BZ reactors is explained extremely well in terms of the coupling function thus obtained. This method does not require comprehensive knowledge of either the oscillation mechanism or the interaction among the oscillators, both of these being often difficult to elucidate in an actual system. These facts enable us to accurately analyze the weakly coupled entrainment phenomenon through the direct measurement of the coupling function.
Li, Peng-Bo; Li, Hong-Rong; Li, Fu-Li
2016-01-01
We investigate the electromechanical coupling between a nanomechanical resonator and two parametrically coupled superconducting coplanar waveguide cavities that are driven by a two-mode squeezed microwave source. We show that, with the selective coupling of the resonator to the cavity Bogoliubov modes, the radiation-pressure type coupling can be greatly enhanced by several orders of magnitude, enabling the single photon strong coupling to be reached. This allows the investigation of a number of interesting phenomena such as photon blockade effects and the generation of nonclassical quantum states with electromechanical systems. PMID:26753744
Gil-Santos, Eduardo; Ramos, Daniel; Pini, Valerio; Calleja, Montserrat; Tamayo, Javier
2011-03-21
Vibration localization in coupled nanomechanical resonators has emerged as a promising concept for ultrasensitive mass sensing. It possesses intrinsic common mode rejection and the mass sensitivity can be enhanced with no need of extreme miniaturization of the devices. In this work, we have experimentally studied the role of the separation between cantilevers that are elastically coupled by an overhang. The results show that the coupling constant exponentially decays with the separation. In consistency with the theoretical expectations, the mass sensitivity is inversely proportional to the coupling constant. Finite element simulations show that the coupling constant can be exponentially reduced by increasing the ratio of the cantilever separation to the overhang length.
NASA Astrophysics Data System (ADS)
Rubin, Jonathan J.; Rubin, Jonathan E.; Ermentrout, G. Bard
2013-05-01
Many physical and biological oscillators are coupled indirectly through a slowly evolving dynamic medium. We present a perturbation method that shows that slow dynamics of a coupling medium is effectively equivalent to weak coupling of oscillators. Our methods first apply the theory of averaging to obtain a periodic solution to a single system and then exploit small fluctuations around the mean to analyze coupling between systems. We use this method to explain the spike-to-spike asynchrony seen in a model for bursting neurons coupled through extracellular potassium and to explore synchronization in a model for quorum sensing.
Vicinal coupling constants and protein dynamics.
Hoch, J C; Dobson, C M; Karplus, M
1985-07-16
The effects of motional averaging on the analysis of vicinal spin-spin coupling constants derived from proton NMR studies of proteins have been examined. Trajectories obtained from molecular dynamics simulations of bovine pancreatic trypsin inhibitor and of hen egg white lysozyme were used in conjunction with an expression for the dependence of the coupling constant on the intervening dihedral angle to calculate the time-dependent behavior of the coupling constants. Despite large fluctuations, the time-average values of the coupling constants are not far from those computed for the average structure in the cases where fluctuations occur about a single potential well. The calculated differences show a high correlation with the variation in the magnitude of the fluctuations of individual dihedral angles. For the cases where fluctuations involve multiple sites, large differences are found between the time-average values and the average structure values for the coupling constants. Comparison of the simulation results with the experimental trends suggests that side chains with more than one position are more common in proteins than is inferred from X-ray results. It is concluded that for the main chain, motional effects do not introduce significant errors where vicinal coupling constants are used in structure determinations; however, for side chains, the motional average can alter deductions about the structure. Accurately measured coupling constants are shown to provide information concerning the magnitude of dihedral angle fluctuations.
Improved fluid-structure coupling. [BWR
McMaster, W.H.; Gong, E.Y.; Landram, C.S.
1981-01-01
In the computer code PELE-IC, an incompressible Eulerian hydrodynamic algorithm was coupled to a Lagrangian finite element shell algorithm for the analysis of pressure suppression in boiling water reactors. This effort also required the development of a free surface algorithm capable of handling expanding gas bubbles. These algorithms have been improved to strengthen the coupling and to add the capability for following the more complex free surfaces resulting from steam condensation. These improvements have also permitted more economical 2D calculations and have made it feasible to develop a 3D version. A compressible option using the acoustic approximation has also been added, furthering the usefulness of the code. The coupling improvements were made in three areas which are identified as (1) preferential coupling, (2) merged cell coupling, and (3) free surface-structure coupling, and are described. These algorithms have been additionally implemented in a three dimensional version of the code called PELE3D. This version has a free surface capability to follow expanding and contracting bubbles and is coupled to a curved rigid surface.
Energy harvesting with coupled magnetostrictive resonators
NASA Astrophysics Data System (ADS)
Naik, Suketu; Phipps, Alex; In, Visarath; Cavaroc, Peyton; Matus-Vargas, Antonio; Palacios, Antonio; Gonzalez-Hernandez, H. G.
2014-03-01
We report the investigation of an energy harvesting system composed of coupled resonators with the magnetostrictive material Galfenol (FeGa). A coupled system of meso-scale (1-10 cm) cantilever beams for harvesting vibration energy is described for powering and aiding the performance of low-power wireless sensor nodes. Galfenol is chosen in this work for its durability, compared to the brittleness often encountered with piezoelectric materials, and high magnetomechanical coupling. A lumped model, which captures both the mechanical and electrical behavior of the individual transducers, is first developed. The values of the lumped element parameters are then derived empirically from fabricated beams in order to compare the model to experimental measurements. The governing equations of the coupled system lead to a system of differential equations with all-to-all coupling between transducers. An analysis of the system equations reveals different patterns of collective oscillations. Among the many different patterns, a synchronous state appears to yield the maximum energy that can be harvested by the system. Experiments on coupled system shows that the coupled system exhibits synchronization and an increment in the output power. Discussion of the required power converters is also included.
Laser array having mutually coupled resonators
Sziklas, E.A.; Palma, G.E.
1987-07-21
A laser system is described having at least two independently pumped unstable laser resonators. Each has a feedback region in which optical radiation resonates, an output region. Output radiation exists from the feedback region and an output coupling means for coupling out a main beam from the region in which laser extracted radiation extracted from a first one of at least two unstable laser resonators is coupled unidirectionally into at least one other of the unstable laser resonators. The extracted radiation from the first unstable laser resonator influences at least one other unstable laser resonator. The improvement comprises a system in which each of the resonators is mutually and substantially symmetrically, bidirectionally coupled to at least one other unstable resonator, through extraction means for extracting at least one coupling portion of the output radiation. A coupling radiation power and transporting means transports at least one coupling portion of the output radiation that is mode-matched to an adjoint mode. At least one other unstable laser resonator into at least one corresponding output region of the other one of at least two unstable laser resonators produce a laser system having a scaled-up laser output.
Hygrothermally stable laminated composites with optimal coupling
NASA Astrophysics Data System (ADS)
Haynes, Robert Andrew
This work begins by establishing the necessary and sufficient conditions for hygrothermal stability of composite laminates. An investigation is performed into the range of coupling achievable from within all hygrothermally stable families. The minimum number of plies required to create an asymmetric hygrothermally stable stacking sequence is found to be five. Next, a rigorous and general approach for determining designs corresponding to optimal levels of coupling is established through the use of a constrained optimization procedure. Couplings investigated include extension-twist, bend-twist, extension-bend, shear-twist, and anticlastic. For extension-twist and bend-twist coupling, specimens from five- through ten-ply laminates are manufactured and tested to demonstrate hygrothermal stability and achievable levels of coupling. Nonlinear models and finite element analysis are developed, and predictions are verified through comparison with test results. Sensitivity analyses are performed to demonstrate the robustness of the hygrothermal stability and couplings to deviations in ply angle, typical of manufacturing tolerances. Comparisons are made with current state-of-the-art suboptimal layups, and significant increases in coupling over previously known levels are demonstrated.
RNA structure and scalar coupling constants
Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.
1994-12-01
Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.
The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling
Zhang, Yi-Cai; Song, Shu-Wei; Liu, Wu-Ming
2014-01-01
The confinement induced resonance provides an indispensable tool for the realization of the low-dimensional strongly interacting quantum system. Here, we investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling substantially changes the confinement-induced resonance position. We give a proposal to realize confinement induced resonance through increasing Raman coupling strength in experiments. PMID:24862314
RF power coupling for the CSNS DTL
NASA Astrophysics Data System (ADS)
Liu, Hua-Chang; Peng, Jun; Yin, Xue-Jun; Ouyang, Hua-Fu; Fu, Shi-Nian
2011-01-01
The China Spallation Neutron Source (CSNS) drift tube linac (DTL) consists of four tanks and each tank is fed by a 2.5 MW klystron. Accurate predication of RF coupling between the RF cavity and ports is very important for DTL RF coupler design. An iris-type coupler is chosen to couple the RF power to the DTL accelerating cavity. The physical design of the DTL coupler and the calculations of RF coupling between the cavity and coupler are carried out. The results from the numerical simulations are in excellent agreement with the analytical results.
Synchronous Behavior of Two Coupled Biological Neurons
Elson, R.C.; Selverston, A.I.; Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D.; Selverston, A.I.; Huerta, R.; Abarbanel, H.D.
1998-12-01
We report experimental studies of synchronization phenomena in a pair of biological neurons that interact through naturally occurring, electrical coupling. When these neurons generate irregular bursts of spikes, the natural coupling synchronizes slow oscillations of membrane potential, but not the fast spikes. By adding artificial electrical coupling we studied transitions between synchrony and asynchrony in both slow oscillations and fast spikes. We discuss the dynamics of bursting and synchronization in living neurons with distributed functional morphology. {copyright} {ital 1998} {ital The American Physical Society}
Small neutrino masses and gauge coupling unification
NASA Astrophysics Data System (ADS)
Boucenna, Sofiane M.; Fonseca, Renato M.; González-Canales, Félix; Valle, José W. F.
2015-02-01
The physics responsible for gauge coupling unification may also induce small neutrino masses. We propose a novel gauge-mediated radiative seesaw mechanism for calculable neutrino masses. These arise from quantum corrections mediated by new S U (3 )C⊗S U (3 )L⊗U (1 )X (3-3-1) gauge bosons and the physics driving gauge coupling unification. Gauge couplings unify for a 3-3-1 scale in the TeV range, making the model directly testable at the LHC.
Chimeras in networks with purely local coupling
NASA Astrophysics Data System (ADS)
Laing, Carlo R.
2015-11-01
Chimera states in spatially extended networks of oscillators have some oscillators synchronized while the remainder are asynchronous. These states have primarily been studied in networks with nonlocal coupling, and more recently in networks with global coupling. Here, we present three networks with only local coupling (diffusive, to nearest neighbors) which are numerically found to support chimera states. One of the networks is analyzed using a self-consistency argument in the continuum limit, and this is used to find the boundaries of existence of a chimera state in parameter space.
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
Radiative corrections due to enhanced Yukawa couplings
Griest, K.; Sher, M.
1986-04-01
In models with more than one Higgs doublet, a 40-GeV t quark can have an extremely large Yukawa coupling. This coupling can influence, through radiative corrections, precision measurements of the W-to-Z mass ratio and the lepton-pair polarization asymmetry in Z decays. We calculate the size of these corrections, and find that they can only be experimentally significant if the enhancement of the coupling is greater than 5. The corrections are unique in that they involve neither drastically new physics nor very heavy particles.
Microwave fidelity studies by varying antenna coupling
NASA Astrophysics Data System (ADS)
Köber, B.; Kuhl, U.; Stöckmann, H.-J.; Gorin, T.; Savin, D. V.; Seligman, T. H.
2010-09-01
The fidelity decay in a microwave billiard is considered, where the coupling to an attached antenna is varied. The resulting quantity, coupling fidelity, is experimentally studied for three different terminators of the varied antenna: a hard-wall reflection, an open wall reflection, and a 50Ω load, corresponding to a totally open channel. The model description in terms of an effective Hamiltonian with a complex coupling constant is given. Quantitative agreement is found with the theory obtained from a modified VWZ approach [J. J. M. Verbaarschot , Phys. Rep. 129, 367 (1985)10.1016/0370-1573(85)90070-5].
The Determination of the Strong Coupling Constant
NASA Astrophysics Data System (ADS)
Dissertori, Günther
2016-10-01
The strong coupling constant is one of the fundamental parameters of the Standard Theory of particle physics. In this review I will briefly summarise the theoretical framework, within which the strong coupling constant is defined and how it is connected to measurable observables. Then I will give an historical overview of its experimental determinations and discuss the current status and world average value. Among the many different techniques used to determine this coupling constant in the context of quantum chromodynamics, I will focus in particular on a number of measurements carried out at the Large Electron-Positron Collider (LEP) and the Large Hadron Collider (LHC) at CERN.
Interlayer exchange coupling across a ferroelectric barrier.
Zhuravlev, M Ye; Vedyayev, A V; Tsymbal, E Y
2010-09-01
A new magnetoelectric effect is predicted originating from the interlayer exchange coupling between two ferromagnetic layers separated by an ultrathin ferroelectric barrier. It is demonstrated that ferroelectric polarization switching driven by an external electric field leads to a sizable change in the interlayer exchange coupling. The effect occurs in asymmetric ferromagnet/ferroelectric/ferromagnet junctions due to a change in the electrostatic potential profile across the junction affecting the interlayer coupling. The predicted phenomenon indicates the possibility of switching the magnetic configuration by reversing the polarization of the ferroelectric barrier layer. PMID:21403276
Computer Simulations of Coupled Piano Strings
NASA Astrophysics Data System (ADS)
Albert, Destiny L.
1997-03-01
The behavior of coupled piano strings is studied by using a finite difference scheme. The coupling of the strings produce motion in two transverse directions, parallel and perpendicular to the soundboard. The sound induced shows two decay rates, a rapid decay followed by a slow decay. These effects are in agreement with experimental results. (Weinreich, Gabriel. "The Coupled Motion of Piano Strings." Scientific American. January 1979) . Our simulations suggest that the motion of the end supports contributes to the elliptical motion of the strings. Furthermore, multiple strings contribute to the quality of the sound produced by a piano.
Asynchronous response of coupled pacemaker neurons
Dodla, Ramana; Wilson, Charles J.
2009-01-01
We study a network model of two conductance-based pacemaker neurons of differing natural frequency, coupled with either mutual excitation or inhibition, and receiving shared random inhibitory synaptic input. The networks may phase-lock spike-to-spike for strong mutual coupling. But the shared input can desynchronize the locked spike-pairs by selectively eliminating the lagging spike or modulating its timing with respect to the leading spike depending on their separation time window. Such loss of synchrony is also found in a large network of sparsely coupled heterogeneous spiking neurons receiving shared input. PMID:19257636
Earthquakes with non--double-couple mechanisms.
Frohlich, C
1994-05-01
Seismological observations confirm that the pattern of seismic waves from some earthquakes cannot be produced by slip along a planar fault surface. More than one physical mechanism is required to explain the observed varieties of these non-double-couple earthquakes. The simplest explanation is that some earthquakes are complex, with stress released on two or more suitably oriented, nonparallel fault surfaces. However, some shallow earthquakes in volcanic and geothermal areas require other explanations. Current research focuses on whether fault complexity explains most observed non-double-couple earthquakes and to what extent ordinary earthquakes have non-double-couple components.
Shear viscosity from effective couplings of gravitons
Cai Ronggen; Nie Zhangyu; Sun Yawen
2008-12-15
We calculate the shear viscosity of field theories with gravity duals using Kubo formula by calculating the Green function of dual transverse gravitons and confirm that the value of the shear viscosity is fully determined by the effective coupling of transverse gravitons on the horizon. We calculate the effective coupling of transverse gravitons for Einstein and Gauss-Bonnet gravities coupled with matter fields, respectively. Then we apply the resulting formula to the case of AdS Gauss-Bonnet gravity with F{sup 4} term corrections of Maxwell field and discuss the effect of F{sup 4} terms on the ratio of the shear viscosity to entropy density.
Ultrasonic transducer with laminated coupling wedge
Karplus, Henry H. B.
1976-08-03
An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.
Coupling single emitters to quantum plasmonic circuits
NASA Astrophysics Data System (ADS)
Huck, Alexander; Andersen, Ulrik L.
2016-09-01
In recent years, the controlled coupling of single-photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic nonlinearity on a nanoscaled platform. In this article, we will review the recent progress on coupling single emitters to nanowires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale and for the study of fundamental physics in the ultrastrong coupling regime.
Chimeras in networks with purely local coupling.
Laing, Carlo R
2015-11-01
Chimera states in spatially extended networks of oscillators have some oscillators synchronized while the remainder are asynchronous. These states have primarily been studied in networks with nonlocal coupling, and more recently in networks with global coupling. Here, we present three networks with only local coupling (diffusive, to nearest neighbors) which are numerically found to support chimera states. One of the networks is analyzed using a self-consistency argument in the continuum limit, and this is used to find the boundaries of existence of a chimera state in parameter space.
Earthquake-Ionosphere Coupling Processes
NASA Astrophysics Data System (ADS)
Kamogawa, Masashi
an ionospheric phenomenon attributed to tsunami, termed tsunamigenic ionospheric hole (TIH) [Kakinami and Kamogwa et al., GRL, 2012]. After the TEC depression accompanying a monoperiodic variation with approximately 4-minute period as an acoustic resonance between the ionosphere and the solid earth, the TIH gradually recovered. In addition, geomagnetic pulsations with the periods of 150, 180 and 210 seconds were observed on the ground in Japan approximately 5 minutes after the mainshock. Since the variation with the period of 180 seconds was simultaneously detected at the magnetic conjugate of points of Japan, namely Australia, field aligned currents along the magnetic field line were excited. The field aligned currents might be excited due to E and F region dynamo current caused by acoustic waves originating from the tsunami. This result implies that a large earthquake generates seismogenic field aligned currents. Furthermore, monoperiodical geomagnetic oscillation pointing to the epicenter of which velocity corresponds to Rayleigh waves occurs. This may occur due to seismogenic arc-current in E region. Removing such magnetic oscillations from the observed data, clear tsunami dynamo effect was found. This result implies that a large EQ generates seismogenic field aligned currents, seismogenic arc-current and tsunami dynamo current which disturb geomagnetic field. Thus, we found the complex coupling process between a large EQ and an ionosphere from the results of Tohoku EQ.
NASA Astrophysics Data System (ADS)
Regnier, Damien; Grenier, Christophe; Davy, Philippe; Benabderrahmane, Hakim
2010-05-01
Boreal regions have been subject to recent and intensive studies within the field of the impact of climate change. A vast number of the modeling approaches correspond to large scale modeling firstly oriented to thermal field and permafrost evolution. We consider the evolution of smaller scale units of the landscape, in particular here the river-valley unit. In cold environments, we know that some rivers have at their bottoms a talik or a non frozen zone. Such systems have been poorly studied until now should it be as such or in relation with their surroundings, as major thermal conductors potentially impacting a larger portion of a region. The present work is part of a more global study implying the Lena river (Siberia) evolution under climate change in collaboration with the IDES laboratory (Interaction et Dynamique des Environnements de Surface at Orsay University, see e.g. Costard and Gautier, 2007) where the study of the system involves a threefold approach including in situ field work (near Yakutsk), experimental modeling (in a cold room at Orsay University) and numerical modeling. The river-valley system is a case where thermal evolution is coupled with water flow (hydrology and hydrogeology in the talik). The thermal field is impacted by and modifies the water flow conditions when freezing. We first present the development of our numerical simulation procedure. A novel 2D-3D simulation approach was developed in the Cast3M code (www-cast3m.cea.fr/cast3m) with a mixed hybrid finite element approach. It couples Darcy equations for flow (permeability depending on temperature) with heat transfer equations (conductive, advective and phase change process) with a Picard iterations algorithm for coupling. Then we present the validation of the code against 1D analytical solutions (Stefan problem) and 2D cases issued from the literature (McKenzie et al. 2007, Bense et al. 2009). We finally study by means of numeric simulations the installation of permafrost in an
Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.
ERIC Educational Resources Information Center
Venanzi, Thomas J.
1982-01-01
Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…
Cosmological constraints on coupled dark energy
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Li, Hang; Wu, Yabo; Lu, Jianbo
2016-10-01
The coupled dark energy model provides a possible approach to mitigate the coincidence problem of cosmological standard model. Here, the coupling term is assumed as bar Q = 3Hξxbar rhox, which is related to the interaction rate and energy density of dark energy. We derive the background and perturbation evolution equations for several coupled models. Then, we test these models by currently available cosmic observations which include cosmic microwave background radiation from Planck 2015, baryon acoustic oscillation, type Ia supernovae, fσ8(z) data points from redshift-space distortions, and weak gravitational lensing. The constraint results tell us there is no evidence of interaction at 2σ level, it is very hard to distinguish different coupled models from other ones.
Harvesting excitons through plasmonic strong coupling
NASA Astrophysics Data System (ADS)
Gonzalez-Ballestero, Carlos; Feist, Johannes; Moreno, Esteban; Garcia-Vidal, Francisco J.
2015-09-01
Exciton harvesting is demonstrated in an ensemble of quantum emitters coupled to localized surface plasmons. When the interaction between emitters and the dipole mode of a metallic nanosphere reaches the strong-coupling regime, the exciton conductance is greatly increased. The spatial map of the conductance matches the plasmon field intensity profile, which indicates that transport properties can be tuned by adequately tailoring the field of the plasmonic resonance. Under strong coupling, we find that pure dephasing can have detrimental or beneficial effects on the conductance, depending on the effective number of participating emitters. Finally, we show that the exciton transport in the strong-coupling regime occurs on an ultrafast time scale given by the inverse Rabi splitting (˜10 fs), which is orders of magnitude faster than transport through direct hopping between the emitters.
Screening of redox couples and electrode materials
NASA Technical Reports Server (NTRS)
Giner, J.; Swette, L.; Cahill, K.
1976-01-01
Electrochemical parameters of selected redox couples that might be potentially promising for application in bulk energy storage systems were investigated. This was carried out in two phases: a broad investigation of the basic characteristics and behavior of various redox couples, followed by a more limited investigation of their electrochemical performance in a redox flow reactor configuration. In the first phase of the program, eight redox couples were evaluated under a variety of conditions in terms of their exchange current densities as measured by the rotating disk electrode procedure. The second phase of the program involved the testing of four couples in a redox reactor under flow conditions with a varity of electrode materials and structures.
Integral dependent spin couplings in CI calculations
NASA Technical Reports Server (NTRS)
Iberle, K.; Davidson, E. R.
1982-01-01
Although the number of ways to combine Slater determinants to form spin eigenfunctions increases rapidly with the number of open shells, most of these spin couplings will make only a small contribution to a given state, provided the spin coupling is chosen judiciously. The technique of limiting calculations to the interacting subspace pioneered by Bunge (1970) was employed by Munch and Davidson (1975) to the vanadium atom. The use of an interacting space looses its advantage in more complex cases. However, the problem can always be reduced to only one interacting spin coupling by making the coefficients integral dependent. The present investigation is concerned with the performance of integral dependent interacting couplings, taking into account the results of three test calculations.
Air Coupled Acoustic Thermography (acat) Inspection Technique
NASA Astrophysics Data System (ADS)
Zalameda, J. N.; Winfree, W. P.; Yost, W. T.
2008-02-01
The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of +/-6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.
Flow noise source-resonator coupling
Pollack, M.L.
1997-11-01
This paper investigates the coupling mechanism between flow noise sources and acoustic resonators. Analytical solutions are developed for the classical cases of monopole and dipole types of flow noise sources. The effectiveness of the coupling between the acoustic resonator and the noise source is shown to be dependent on the type of noise source as well as its location on the acoustic pressure mode shape. For a monopole source, the maximum coupling occurs when the noise source is most intense near an acoustic pressure antinode (i.e., location of maximum acoustic pressure). A numerical study with the impedance method demonstrates this effect. A dipole source couples most effectively when located near an acoustic pressure node.
Information Filtering on Coupled Social Networks
Nie, Da-Cheng; Zhang, Zi-Ke; Zhou, Jun-Lin; Fu, Yan; Zhang, Kui
2014-01-01
In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks. PMID:25003525
Ultrafast Beam Switching Using Coupled VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Goorjian, Peter
2001-01-01
We propose a new approach to performing ultrafast beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The strategy is demonstrated by numerical simulation, showing a beam switching of 10 deg at 42 GHz.
Multiple Rabi Splittings under Ultrastrong Vibrational Coupling
NASA Astrophysics Data System (ADS)
George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W.
2016-10-01
From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.
Toroid Joining Gun For Fittings And Couplings
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.
1992-01-01
Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.
[Coupling and communication between bone cells].
Nakashima, Tomoki
2014-06-01
Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Coupling has been understood as a balanced induction of osteoblastic bone formation in response to osteoclastic bone resorption. An imbalance of this coupling is often linked to various bone diseases. TGF-β and IGF released from bone matrix during osteoclastic bone resorption are the favored candidates as classical coupling factor. Recently, several reports suggest that osteoclast-derived molecules/cytokines (clastokine) mediate directional signaling between osteoblasts and osteoclasts into the bone microenvironment. Thus, the elucidation of the regulatory mechanisms involved in bone cell communication and coupling is critical for a deeper understanding of the skeletal system in health and disease.
Discrete impulses in ephaptically coupled nerve fibers.
Maïna, I; Tabi, C B; Ekobena Fouda, H P; Mohamadou, A; Kofané, T C
2015-04-01
We exclusively analyze the condition for modulated waves to emerge in two ephaptically coupled nerve fibers. Through the multiple scale expansion, it is shown that a set of coupled cable-like Hodgkin-Huxley equations can be reduced to a single differential-difference nonlinear equation. The standard approach of linear stability analysis of a plane wave is used to predict regions of parameters where nonlinear structures can be observed. Instability features are shown to be importantly controlled not only by the ephaptic coupling parameter, but also by the discreteness parameter. Numerical simulations, to verify our analytical predictions, are performed, and we explore the longtime dynamics of slightly perturbed plane waves in the coupled nerve fibers. On initially exciting only one fiber, quasi-perfect interneuronal communication is discussed along with the possibility of recruiting damaged or non-myelinated nerve fibers, by myelinated ones, into conduction.
Multi-level coupled cluster theory
Myhre, Rolf H.; Koch, Henrik; Sánchez de Merás, Alfredo M. J.
2014-12-14
We present a general formalism where different levels of coupled cluster theory can be applied to different parts of the molecular system. The system is partitioned into subsystems by Cholesky decomposition of the one-electron Hartree-Fock density matrix. In this way the system can be divided across chemical bonds without discontinuities arising. The coupled cluster wave function is defined in terms of cluster operators for each part and these are determined from a set of coupled equations. The total wave function fulfills the Pauli-principle across all borders and levels of electron correlation. We develop the associated response theory for this multi-level coupled cluster theory and present proof of principle applications. The formalism is an essential tool in order to obtain size-intensive complexity in the calculation of local molecular properties.
Induced Transparency and Absorption in Coupled Microresonators
NASA Technical Reports Server (NTRS)
Smith, David D.; Chang, Hongrok
2004-01-01
We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.
Coupled Coils, Magnets and Lenz's Law
ERIC Educational Resources Information Center
Thompson, Frank
2010-01-01
Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)
An Interview with a Married Couple
ERIC Educational Resources Information Center
Little, William
1975-01-01
Presents a counseling session with a couple who are considering divorce. Then, using critique and commentary at the end of the case study, attempts to get at some of the issues, theories and techniques of marriage counseling. (EJT)
Transitory behaviors in diffusively coupled nonlinear oscillators.
Tadokoro, Satoru; Yamaguti, Yutaka; Fujii, Hiroshi; Tsuda, Ichiro
2011-03-01
We study collective behaviors of diffusively coupled oscillators which exhibit out-of-phase synchrony for the case of weakly interacting two oscillators. In large populations of such oscillators interacting via one-dimensionally nearest neighbor couplings, there appear various collective behaviors depending on the coupling strength, regardless of the number of oscillators. Among others, we focus on an intermittent behavior consisting of the all-synchronized state, a weakly chaotic state and some sorts of metachronal waves. Here, a metachronal wave means a wave with orderly phase shifts of oscillations. Such phase shifts are produced by the dephasing interaction which produces the out-of-phase synchronized states in two coupled oscillators. We also show that the abovementioned intermittent behavior can be interpreted as in-out intermittency where two saddles on an invariant subspace, the all-synchronized state and one of the metachronal waves play an important role.
Experimental studies of weakly coupled superconductors (Review)
NASA Astrophysics Data System (ADS)
Dmitrenko, I. M.
2004-07-01
A review is given of the main experimental results obtained in research on weakly coupled superconductors after 1964 at the Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkov (ILTPE).
Effective multi-Higgs couplings to gluons
NASA Astrophysics Data System (ADS)
Spira, Michael
2016-10-01
Standard-Model Higgs bosons are dominantly produced via the gluon-fusion mechanism gg → H at the LHC, i.e. in a loop-mediated process with top loops providing the dominant contribution. For the measured Higgs boson mass of ˜ 125 GeV the limit of heavy top quarks provides a reliable approximation as long as the relative QCD corrections are scaled with the full mass-dependent LO cross section. In this limit the Higgs coupling to gluons can be described by an effective Lagrangian. The same approach can also be applied to the coupling of more than one Higgs boson to gluons. We will derive the effective Lagrangian for multi-Higgs couplings to gluons up to N4LO thus extending previous results for more than one Higgs boson. Moreover we discuss gluonic Higgs couplings up to NNLO, if several heavy quarks contribute.
Tensor coupling effect on relativistic symmetries
NASA Astrophysics Data System (ADS)
Chen, ShouWan; Li, DongPeng; Guo, JianYou
2016-08-01
The similarity renormalization group is used to transform the Dirac Hamiltonian with tensor coupling into a diagonal form. The upper (lower) diagonal element becomes a Schr¨odinger-like operator with the tensor component separated from the original Hamiltonian. Based on the operator, the tensor effect of the relativistic symmetries is explored with a focus on the single-particle energy contributed by the tensor coupling. The results show that the tensor coupling destroying (improving) the spin (pseudospin) symmetry is mainly attributed to the coupling of the spin-orbit and the tensor term, which plays an opposite role in the single-particle energy for the (pseudo-) spin-aligned and spin-unaligned states and has an important influence on the shell structure and its evolution.
Entanglement Detection in Coupled Particle Plasmons
NASA Astrophysics Data System (ADS)
del Pino, Javier; Feist, Johannes; García-Vidal, F. J.; García-Ripoll, Juan Jose
2014-05-01
When in close contact, plasmonic resonances interact and become strongly correlated. In this work we develop a quantum mechanical model for an array of coupled particle plasmons. This model predicts that when the coupling strength between plasmons approaches or surpasses the local dissipation, a sizable amount of entanglement is stored in the collective modes of the array. We also prove that entanglement manifests itself in far-field images of the plasmonic modes, through the statistics of the quadratures of the field, in what constitutes a novel family of entanglement witnesses. Finally, we estimate the amount of entanglement, the coupling strength and the correlation properties for a system that consists of two or more coupled nanospheres of silver, showing evidence that our predictions could be tested using present-day state-of-the-art technology.
Air Coupled Acoustic Thermography (ACAT) Inspection Technique
NASA Technical Reports Server (NTRS)
Zalameda, Joseph; Winfree, William P.; Yost, William T.
2007-01-01
The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.
Kairania, Robert; Gray, Ronald H; Kiwanuka, Noah; Makumbi, Fredrick; Sewankambo, Nelson K; Serwadda, David; Nalugoda, Fred; Kigozi, Godfrey; Semanda, John; Wawer, Maria J
2010-09-01
Disclosure of HIV sero-positive results among HIV-discordant couples in sub-Saharan Africa is generally low. We describe a facilitated couple counselling approach to enhance disclosure among HIV-discordant couples. Using unique identifiers, 293 HIV-discordant couples were identified through retrospective linkage of married or cohabiting consenting adults individually enrolled into a cohort study and into two randomised trials of male circumcision in Rakai, Uganda. HIV-discordant couples and a random sample of HIV-infected concordant and HIV-negative concordant couples (to mask HIV status) were invited to sensitisation meetings to discuss the benefits of disclosure and couple counselling. HIV-infected partners were subsequently contacted to encourage HIV disclosure to their HIV-uninfected partners. If the index positive partner agreed, the counsellor facilitated the disclosure of HIV results, and provided ongoing support. The proportion of disclosure was determined. Eighty-one per cent of HIV-positive partners in discordant relationships disclosed their status to their HIV-uninfected partners in the presence of the counsellor. The rates of disclosure were 81.3% in male HIV-positive and 80.2% in female HIV-positive discordant couples. Disclosure did not vary by age, education or occupation. In summary, disclosure of HIV-positive results in discordant couples using facilitated couple counselling approach is high, but requires a stepwise process of sensitisation and agreement by the infected partner.
Optimizing Vibrational Coordinates To Modulate Intermode Coupling.
Zimmerman, Paul M; Smereka, Peter
2016-04-12
The choice of coordinate system strongly affects the convergence properties of vibrational structure computations. Two methods for efficient generation of improved vibrational coordinates are presented and justified by analysis of a model anharmonic two-mode Hessian and numerical computations on polyatomic molecules. To produce optimal coordinates, metrics which quantify off-diagonal couplings over a grid of Hessian matrices are minimized through unitary rotations of the vibrational basis. The first proposed metric minimizes the total squared off-diagonal coupling, and the second minimizes the total squared change in off-diagonal coupling. In this procedure certain anharmonic modes tend to localize, for example X-H stretches. The proposed methods do not rely on prior fitting of the potential energy, vibrational structure computations, or localization metrics, so they are unique from previous vibrational coordinate generation algorithms and are generally applicable to polyatomic molecules. Fitting the potential to the approximate n-mode representation in the optimized bases for all-trans polyenes shows that off-diagonal anharmonic couplings are substantially reduced by the new choices of coordinate system. Convergence of vibrational energies is examined in detail for ethylene, and it is shown that coupling-optimized modes converge in vibrational configuration interaction computations to within 1 cm(-1) using only 3-mode couplings, where normal modes require 4-mode couplings for convergence. Comparison of the vibrational configuration interaction convergence with respect to excitation level for the two proposed metrics shows that minimization of the total off-diagonal coupling is most effective for low-cost vibrational structure computations.
Cross-coupling reaction with lithium methyltriolborate.
Yamamoto, Yasunori; Ikizakura, Kazuya; Ito, Hajime; Miyaura, Norio
2012-12-28
We newly developed lithium methyltriolborate as an air-stable white solid that is convenient to handle. The good performance of this triolborate for metal-catalyzed bond-forming reactions was demonstrated in palladium-catalyzed cross-coupling reactions with haloarenes. Cross-coupling reaction of [MeB(OCH₂)₃CCH₃]Li with aryl halides occurred in the presence of Pd(OAc)₂/RuPhos complex in refluxing MeOH/H₂O and the absence of bases.
Long period coupling terms for Lagrange's equations
NASA Technical Reports Server (NTRS)
1976-01-01
A generalization of that portion of the work of Berger, which deals with the long period coupling effect of certain pairs of zonal harmonics. Long period terms arising from the short short period coupling of zonal harmonics are derived for Lagrange's equations. The formulation is general so that the results are valid for any pairs of zonal harmonics. Formulas are given to generate the various functions and integrals needed for the results given. Checks have been made against the work of Kozai.
Coupled map networks as communication schemes
NASA Astrophysics Data System (ADS)
García, P.; Parravano, A.; Cosenza, M. G.; Jiménez, J.; Marcano, A.
2002-04-01
Networks of chaotic coupled maps are considered as string and language generators. It is shown that such networks can be used as encrypting systems where the cipher text contains information about the evolution of the network and also about the way to select the plain text symbols from the string associated with the network evolution. The secret key provides the network parameters, such as the coupling strengths.
Electroweak Baryogenesis with Anomalous Higgs Couplings
NASA Astrophysics Data System (ADS)
Kobakhidze, Archil; Wu, Lei; Yue, Jason
2016-07-01
In non-linear realisation of the electroweak gauge symmetry, the LHC Higgs boson can be assumed to be a singlet under SU(2)L ⊗ U(1)Y. In such scenario, the Standard Model particle content can be kept but new sets of couplings are allowed. We identify a range of anomalous Higgs cubic and the 𝒞𝒫-violating Higgs-top quark couplings that leads to first order phase transition and successful baryogenesis at the electroweak scale.
Kinetic Characterization of Strongly Coupled Systems
Knapek, C. A.; Ivlev, A. V.; Klumov, B. A.; Morfill, G. E.; Samsonov, D.
2007-01-05
We propose a simple method to determine the local coupling strength {gamma} experimentally, by linking the individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of {gamma} and temperature at individual particle resolution. We employ numerical simulations to test this new method, and discuss the implications to characterize strongly coupled systems.
Charge-coupled device image sensor study
NASA Technical Reports Server (NTRS)
1973-01-01
The design specifications and predicted performance characteristics of a Charge-Coupled Device Area Imager and a Charge-Coupled Device Linear Imager are presented. The Imagers recommended are intended for use in space-borne imaging systems and therefore would meet the requirements for the intended application. A unique overlapping metal electrode structure and a buried channel structure are described. Reasons for the particular imager designs are discussed.
Isolation Mounting for Charge-Coupled Devices
NASA Technical Reports Server (NTRS)
Goss, W. C.; Salomon, P. M.
1985-01-01
CCD's suspended by wires under tension. Remote thermoelectric cooling of charge coupled device allows vibration isolating mounting of CCD assembly alone, without having to suspend entire mass and bulk of thermoelectric module. Mounting hardware simple and light. Developed for charge-coupled devices (CCD's) in infrared telescope support adaptable to sensors in variety of environments, e.g., sensors in nuclear reactors, engine exhausts and plasma chambers.
Coupled heterocellular arrays in the brain.
Fróes, M M; Menezes, J R L
2002-11-01
Gap junctions are transcellular pathways that enable a dynamic metabolic coupling and a selective exchange of biological signaling mediators. Throughout the course of the brain development these intercellular channels are assembled into regionally and temporally defined patterns. The present review summarizes the possibilities of heterocellular gap junctional pairing in the brain parenchyma, involving glial cells, neurons and neural precursors as well as it highlights on the meaningfulness of these coupled arrays to the concept of brain functional compartments.
Intermittent chaotic chimeras for coupled rotators.
Olmi, Simona; Martens, Erik A; Thutupalli, Shashi; Torcini, Alessandro
2015-09-01
Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between laminar and turbulent phases. These states have finite lifetimes diverging as a power law with N and m. Lyapunov analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled dissipative systems.
Probing anomalous gauge boson couplings at LEP
Dawson, S.; Valencia, G.
1994-12-31
We bound anomalous gauge boson couplings using LEP data for the Z {yields} {bar {integral}}{integral} partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII.
Dynamics of strongly-coupled spiking neurons.
Bressloff, P C; Coombes, S
2000-01-01
We present a dynamical theory of integrate-and-fire neurons with strong synaptic coupling. We show how phase-locked states that are stable in the weak coupling regime can destabilize as the coupling is increased, leading to states characterized by spatiotemporal variations in the interspike intervals (ISIs). The dynamics is compared with that of a corresponding network of analog neurons in which the outputs of the neurons are taken to be mean firing rates. A fundamental result is that for slow interactions, there is good agreement between the two models (on an appropriately defined timescale). Various examples of desynchronization in the strong coupling regime are presented. First, a globally coupled network of identical neurons with strong inhibitory coupling is shown to exhibit oscillator death in which some of the neurons suppress the activity of others. However, the stability of the synchronous state persists for very large networks and fast synapses. Second, an asymmetric network with a mixture of excitation and inhibition is shown to exhibit periodic bursting patterns. Finally, a one-dimensional network of neurons with long-range interactions is shown to desynchronize to a state with a spatially periodic pattern of mean firing rates across the network. This is modulated by deterministic fluctuations of the instantaneous firing rate whose size is an increasing function of the speed of synaptic response. PMID:10636934
Multimode Strong Coupling in Circuit QED
NASA Astrophysics Data System (ADS)
Sundaresan, Neereja; Liu, Yanbing; Sadri, Darius; Szocs, Laszlo; Underwood, Devin; Malekakhlagh, Moein; Tureci, Hakan; Houck, Andrew
We present experimental and theoretical studies in the multimode strong coupling (MMSC) regime of cavity quantum electrodynamics (QED). In MMSC, a single atom is simultaneously coupled to a large, but discrete, number of cavity harmonics, with atom-mode coupling strengths comparable to the free spectral range (FSR). This regime is readily accessible in circuit QED, by strongly coupling a transmon qubit to a low fundamental frequency microwave cavity. We present some key results from our original experiment (PRX 5, 021035, 2015), in which a transmon qubit, resonant with the 75th harmonic of a 90 MHz cavity, reached qubit-mode coupling strengths exceeding 30MHz. When this system is coherently driven, we observed complex multimode fluorescence, with the notable formation of ultra-narrow linewidths. To better understand these unique features of multimode resonance fluorescence we developed a quantum formalism, which attributes the spectral linewidth narrowing to the correlated spontaneous emission of doubly dressed states. Finally we will share preliminary experimental results from our continuing study of MMSC, this time from a system where qubit-mode coupling strengths approach and even exceed the FSR.
Rapid roll inflation with conformal coupling
Kofman, Lev; Mukohyama, Shinji
2008-02-15
Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1-100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S{sup 3} of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.
Unstable resonator with reduced output coupling.
Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Grünewald, Karin Maria; Handke, Jürgen
2012-06-20
The properties of a laser beam coupled out of a standard unstable laser resonator are heavily dependent on the chosen resonator magnification. A higher magnification results in a higher output coupling and a better beam quality. But in some configurations, an unstable resonator with a low output coupling in combination with a good beam quality is desirable. In order to reduce the output coupling for a particular resonator, magnification fractions of the outcoupled radiation are reflected back into the cavity. In the confocal case, the output mirror consists of a spherical inner section with a high reflectivity and a flat outer section with a partial reflectivity coating. With the application of the unstable resonator with reduced output coupling (URROC), magnification and output coupling can be adjusted independently from each other and it is possible to get a good beam quality and a high power extraction for lasers with a large low gain medium. The feasibility of this resonator design is examined numerically and experimentally with the help of a chemical oxygen iodine laser. PMID:22722301
Coupling Schemes in Terahertz Planar Metamaterials
Roy Chowdhury, Dibakar; Singh, Ranjan; Taylor, Antoinette J.; Chen, Hou-Tong; Zhang, Weili; Azad, Abul K.
2012-01-01
We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive ( LC ) resonance, depending on the position of the split gap. The inductive coupling is enhanced by decreasing the inter resonator distance resulting in strong blue shifts of the LC resonance. We observe the LC resonance tuning only when the split-ring resonators are in close proximity of each other; otherwise, they appear to be uncoupled. Conversely, the higher-ordermore » resonances are sensitive to the smallest change in the inter particle distance or split-ring resonator orientation and undergo tremendous resonance line reshaping giving rise to a sharp subradiant resonance mode which produces hot spots useful for sensing applications. Most of the coupling schemes in a metamaterial are based on a near-field effect, though there also exists a mechanism to couple the resonators through the excitation of lowest-order lattice mode which facilitates the long-range radiative or diffractive coupling in the split-ring resonator plane leading to resonance line narrowing of the fundamental as well as the higher order resonance modes.« less
Ordering design tasks based on coupling strengths
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Bloebaum, Christina L.
1994-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.
Ordering Design Tasks Based on Coupling Strengths
NASA Technical Reports Server (NTRS)
Rogers, J. L.; Bloebaum, C. L.
1994-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.
Ketamine alters oscillatory coupling in the hippocampus
Caixeta, Fábio V.; Cornélio, Alianda M.; Scheffer-Teixeira, Robson; Ribeiro, Sidarta; Tort, Adriano B. L.
2013-01-01
Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling. PMID:23907109
Flux qubit ultrastrongly coupled to two resonators
NASA Astrophysics Data System (ADS)
Baust, A.; Hoffmann, E.; Haeberlein, M.; Schwarz, M. J.; Eder, P.; Goetz, J.; Wulschner, F.; Xie, E.; Zhong, L.; Fedorov, K.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.
2015-03-01
Circuit quantum electrodynamics has not only become a versatile toolbox for quantum information processing, but is also a powerful platform for the investigation of light-matter interaction. The coupling strength between microwave resonators and qubits acting as artificial atoms can be tuned over several orders of magnitude and can even reach the regime of ultrastrong coupling.We present spectroscopic data of a flux qubit coupled galvanically to the signal lines of two coplanar stripline resonators. We discuss the complex mode spectrum and show that the coupling strength between the qubit and one resonant mode reaches 15% of the respective mode frequency. Noticably, the high coupling strength is reached solely by the geometric layout of the qubit without utilizing additional coupling elements such as Josephson junctions. Our data exhibit a pronounced Bloch-Siegert shift and therefore represent an experimental evidence for the breakdown of the Jaynes-Cummings model. This work is supported by the DFG via SFB 631, and EU projects CCQED and PROMISCE.
MEASUREMENT OF LINEAR COUPLING RESONANCE IN RHIC.
BAI,M.PILAT,F.SATOGATA,T.TOMAS,R.
2002-05-12
Linear coupling is one of the factors that determine beam lifetime in RHIC. The traditional method of measuring the minimum tune separation requires a tune scan and can't be done parasitically or during the acceleration ramp. A new technique of using ac dipoles to measure linear coupling resonance has been developed at RHIC. This method measures the degree of coupling by comparing the amplitude of the horizontal coherent excitation with the amplitude of the vertical coherent excitation if the beam is excited by the vertical AC dipole and vice versa. One advantage of this method is that it can be done without changing tunes from the normal machine working points. In principle, this method can also localize the coupling source by mapping out the coupling driving terms throughout the ring. This is very useful for local decoupling the interaction regions in RHIC. A beam experiment of measuring linear coupling has been performed in RHIC during its 2003 run, and the analysis of the experimental data is discussed in this paper.
Antenna-coupled infrared focal plane array
NASA Astrophysics Data System (ADS)
Gonzalez, Francisco Javier
In this dissertation a new type of infrared focal plane array (IR FPA) was investigated, consisting of antenna-coupled microbolometers fabricated using electron-beam lithography. Four different antenna designs were experimentally demonstrated at 10-micron wavelength: dipole, bowtie, square-spiral, and log-periodic. The main differences between these antenna types were their bandwidth, collection area, angular reception pattern, and polarization. To provide pixel collection areas commensurate with typical IR FPA requirements, two configurations were investigated: a two-dimensional serpentine interconnection of individual IR antennas, and a Fresnel-zone-plate (FZP) coupled to a single-element antenna. Optimum spacing conditions for the two-dimensional interconnect were developed. Increased sensitivity was demonstrated using a FZP-coupled design. In general, it was found that the configuration of the antenna substrate material was critical for optimization of sensitivity. The best results were obtained using thin membranes of silicon nitride to enhance the thermal isolation of the antenna-coupled bolometers. In addition, choice of the bolometer material was also important, with the best results obtained using vanadium oxide. Using optimum choices for all parameters, normalized sensitivity (D*) values in the range of mid 108 [cm Hz /W] were demonstrated for antenna-coupled IR sensors, and directions for further improvements were identified. Successful integration of antenna-coupled pixels with commercial readout integrated circuits was also demonstrated.
Amplitude-phase coupling drives chimera states in globally coupled laser networks.
Böhm, Fabian; Zakharova, Anna; Schöll, Eckehard; Lüdge, Kathy
2015-04-01
For a globally coupled network of semiconductor lasers with delayed optical feedback, we demonstrate the existence of chimera states. The domains of coherence and incoherence that are typical for chimera states are found to exist for the amplitude, phase, and inversion of the coupled lasers. These chimera states defy several of the previously established existence criteria. While chimera states in phase oscillators generally demand nonlocal coupling, large system sizes, and specially prepared initial conditions, we find chimera states that are stable for global coupling in a network of only four coupled lasers for random initial conditions. The existence is linked to a regime of multistability between the synchronous steady state and asynchronous periodic solutions. We show that amplitude-phase coupling, a concept common in different fields, is necessary for the formation of the chimera states.
Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
Liu, Wenjing; Lee, Bumsu; Naylor, Carl H; Ee, Ho-Seok; Park, Joohee; Johnson, A T Charlie; Agarwal, Ritesh
2016-02-10
We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons, localized surface plasmon resonances (LSPRs) of individual silver nanodisks and plasmonic lattice resonances of the nanodisk array. We show that the exciton-plasmon coupling strength, polariton composition, and dispersion can be effectively engineered by tuning the geometry of the plasmonic lattice, which makes the system promising for realizing novel two-dimensional plasmonic polaritonic devices.
Finite-size scaling in globally coupled phase oscillators with a general coupling scheme
NASA Astrophysics Data System (ADS)
Nishikawa, Isao; Iwayama, Koji; Tanaka, Gouhei; Horita, Takehiko; Aihara, Kazuyuki
2014-02-01
We investigate the critical exponent of correlation size, related to synchronization transition, in globally coupled nonidentical phase oscillators. The critical exponent has so far been identified for sinusoidal coupling, but has not been fully studied for other coupling schemes. Herein, for a general coupling function including a negative second harmonic term in addition to the sinusoidal term, we numerically estimate the critical exponent of the correlation size, denoted by ν _+, in a synchronized regime of the system by employing a non-conventional statistical quantity. First, we confirm that the estimated value of ν _+ is approximately 5/2 for the sinusoidal coupling case, which is consistent with the well known theoretical result. Second, we show that the value of ν _+ increases with an increase in the strength of the second harmonic term. Our result means that the universality of a critical exponent can break down in the globally coupled phase oscillators.
Diaphragm eliminates leakage in cryogenic fluid duct coupling
NASA Technical Reports Server (NTRS)
1965-01-01
Duct coupling with nickel steel diaphragm of low thermal expansivity is leakproof when used with cryogenic fluids. The diaphragm, located between the two flanges of the coupling, reduces axial shrinkage at the coupling flanges to a minimum.
Deck the Halls. Animated Displays: Coupled Mechanical Oscillators.
ERIC Educational Resources Information Center
Pizzo, Joe, Ed.
1992-01-01
Describes a set of displays on the theme of coupled mechanical oscillators. Displays encompass three common demonstrations: (1) a coupled pair of identical pendulums; (2) a multiple-pendulum resonance demonstration; and (3) a Wilberforce coupled oscillator. (MDH)
Gay male couples' attitudes toward using couples-based voluntary HIV counseling and testing.
Mitchell, Jason W
2014-01-01
Many men who have sex with men acquire HIV from their primary male partners while in a relationship. Studies with gay couples have demonstrated that relationship characteristics and testing behaviors are important to examine for HIV prevention. Recently, couples-based voluntary HIV counseling and testing (CVCT) has become available to male couples throughout the U.S. However, HIV-negative couples' attitudes toward using CVCT and how their relationship characteristics may affect their use of CVCT remain largely unknown. This information is particularly relevant for organizations that offer CVCT. To assess couples' attitudes, and associated factors toward using CVCT, a cross-sectional study design was used with a novel Internet-based recruitment method to collect dyadic data from a national sample of 275 HIV-negative gay couples. Multivariate multilevel modeling was used to identify factors associated with differences between and within couples about their attitudes towards using CVCT. Findings revealed that couples were "somewhat" to "very likely" to use CVCT. More positive attitudes toward using CVCT were associated with couples who had higher levels of relationship satisfaction and commitment toward their sexual agreement and among those who had at least one partner having had sex outside of the relationship. Less positive attitude toward using CVCT was associated with couples who had higher levels of trust toward their partners being dependable. Differences within couples, including age between partners, whether sex had occurred outside of the relationship, and value toward a sexual agreement also affected their attitudes toward using CVCT. Providing additional testing methods may help HIV-negative gay couples better manage their HIV risk. PMID:24213623
Gay male couples' attitudes toward using couples-based voluntary HIV counseling and testing.
Mitchell, Jason W
2014-01-01
Many men who have sex with men acquire HIV from their primary male partners while in a relationship. Studies with gay couples have demonstrated that relationship characteristics and testing behaviors are important to examine for HIV prevention. Recently, couples-based voluntary HIV counseling and testing (CVCT) has become available to male couples throughout the U.S. However, HIV-negative couples' attitudes toward using CVCT and how their relationship characteristics may affect their use of CVCT remain largely unknown. This information is particularly relevant for organizations that offer CVCT. To assess couples' attitudes, and associated factors toward using CVCT, a cross-sectional study design was used with a novel Internet-based recruitment method to collect dyadic data from a national sample of 275 HIV-negative gay couples. Multivariate multilevel modeling was used to identify factors associated with differences between and within couples about their attitudes towards using CVCT. Findings revealed that couples were "somewhat" to "very likely" to use CVCT. More positive attitudes toward using CVCT were associated with couples who had higher levels of relationship satisfaction and commitment toward their sexual agreement and among those who had at least one partner having had sex outside of the relationship. Less positive attitude toward using CVCT was associated with couples who had higher levels of trust toward their partners being dependable. Differences within couples, including age between partners, whether sex had occurred outside of the relationship, and value toward a sexual agreement also affected their attitudes toward using CVCT. Providing additional testing methods may help HIV-negative gay couples better manage their HIV risk.
Modeling partially coupled objects with smooth particle hydrodynamics
Wingate, C.A.
1996-10-01
A very simple phenomenological model is presented to model objects that are partially coupled (i.e. welded or bonded) where usually the coupled interface is weaker than the bulk material. The model works by letting objects fully interact in compression and having the objects only partially interact in tension. A disconnect factor is provided to adjust the tensile interaction to simulate coupling strengths. Three cases of an example impact calculation are shown-no coupling, full coupling and partial coupling.
Stability regions for synchronized τ-periodic orbits of coupled maps with coupling delay τ
NASA Astrophysics Data System (ADS)
Karabacak, Özkan; Alikoç, Baran; Atay, Fatihcan M.
2016-09-01
Motivated by the chaos suppression methods based on stabilizing an unstable periodic orbit, we study the stability of synchronized periodic orbits of coupled map systems when the period of the orbit is the same as the delay in the information transmission between coupled units. We show that the stability region of a synchronized periodic orbit is determined by the Floquet multiplier of the periodic orbit for the uncoupled map, the coupling constant, the smallest and the largest Laplacian eigenvalue of the adjacency matrix. We prove that the stabilization of an unstable τ-periodic orbit via coupling with delay τ is possible only when the Floquet multiplier of the orbit is negative and the connection structure is not bipartite. For a given coupling structure, it is possible to find the values of the coupling strength that stabilizes unstable periodic orbits. The most suitable connection topology for stabilization is found to be the all-to-all coupling. On the other hand, a negative coupling constant may lead to destabilization of τ-periodic orbits that are stable for the uncoupled map. We provide examples of coupled logistic maps demonstrating the stabilization and destabilization of synchronized τ-periodic orbits as well as chaos suppression via stabilization of a synchronized τ-periodic orbit.
Coupling of dust acoustic and shear mode through velocity shear in a strongly coupled dusty plasma
Garai, S. Janaki, M. S.; Chakrabarti, N.
2015-07-15
In the strongly coupled limit, the generalized hydrodynamic model shows that a dusty plasma, acquiring significant rigidity, is able to support a “shear” like mode. It is being demonstrated here that in presence of velocity shear gradient, this shear like mode gets coupled with the dust acoustic mode which is generated by the compressibility effect of the dust fluid due to the finite temperatures of the dust, electron, and ion fluids. In the local analysis, the dispersion relation shows that velocity shear gradient not only couples the two modes but is also responsible for the instabilities of that coupled mode which is confirmed by nonlocal analysis with numerical techniques.
The redox switch/redox coupling hypothesis.
Cerdán, Sebastián; Rodrigues, Tiago B; Sierra, Alejandra; Benito, Marina; Fonseca, Luis L; Fonseca, Carla P; García-Martín, María L
2006-01-01
We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles
Metal-Catalyzed Cross-Coupling Reactions for Indoles
NASA Astrophysics Data System (ADS)
Li, Jie Jack; Gribble, Gordon W.
Metal-catalyzed cross-coupling reactions for indoles are reviewed. Palladium-catalyzed cross-coupling reactions are the most widely explored and applied of all metal-catalyzed cross-coupling reactions. Applications of Kumada coupling, Negishi coupling, Suzuki coupling, Stille coupling, Sonogashira reaction, the Heck reaction, carbonylation, and C-N bond formation reactions in indoles are summarized. In addition, other transition metal-catalyzed cross-coupling reactions using copper, rhodium, iron, and nickel in indole synthesis are also discussed.
Wear simulation of sucker rod couplings
Schumacher, W.J. )
1991-09-01
This paper reports that sucker rod strings are devices used to actuate pumps located at the bottom of oil wells. The individual rods are connected together by threaded couplings. Since the couplings have a larger diameter than the rods, they sometimes contact the inside diameter of the tubing during the up and down pumping cycle. Usually, this is not problem unless buckling occurs in the downstroke; however, this can lead to accelerated wear of the coupling and tubing. In nonvertical wells (offset, deviated, or slanted), the contact is more severe and rapid wear takes place. Couplings are more easily replaced during shutdowns; it is very important to minimize wear to tubing since it is virtually impossible to replace. TRIBONIC 20, an iron-based alloy containing approximately 13% Mn, 5% Si, 5.5% Cr, and 5% Ni, was laboratory evaluated to determine whether or not it could solve the sucker rod coupling-production tubing wear problem. The alloy demonstrated outstanding wear resistance both to itself and in protecting type 1019 steel.
Electroweak baryogenesis with anomalous Higgs couplings
NASA Astrophysics Data System (ADS)
Kobakhidze, Archil; Wu, Lei; Yue, Jason
2016-04-01
We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the `symmetric' phase and are suppressed in the `broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomalous couplings can be further constrained from the LHC Run 2 data and be probed at high luminosity LHC and beyond.
Coupling analysis of transient cardiovascular dynamics.
Müller, Andreas; Riedl, Maik; Penzel, Thomas; Bonnemeier, Hendrik; Kurths, Jürgen; Wessel, Niels
2013-04-01
The analysis of effects from coupling in and between systems is important in data-driven investigations as practiced in many scientific fields. It allows deeper insights into the mechanisms of interaction emerging among individual smaller systems when forming complex systems as in the human circulatory system. For systems featuring various regimes, usually only the epochs before and after a transition between different regimes are analyzed, although relevant information might be hidden within these transitions. Transient behavior of cardiovascular variables may emerge, on the one hand, from the recovery of the system after a severe disturbance or, on the other hand, from adaptive behavior throughout changes of states. It contains important information about the processes involved and the relations between state variables such as heart rate, blood pressure, and respiration. Therefore, we apply an ensemble approach to extend the method of symbolic coupling traces to time-variant coupling analysis. These new ensemble symbolic coupling traces are capable of determining coupling direction, strength, and time offset τ from transient dynamics in multivariate cardiovascular data. We use this method to analyze data recorded during an orthostatic test to reveal a transient structure that cannot be detected by classic methods.
Status report on SHARP coupling framework.
Caceres, A.; Tautges, T. J.; Lottes, J.; Fischer, P.; Rabiti, C.; Smith, M. A.; Siegel, A.; Yang, W. S.; Palmiotti, G.
2008-05-30
This report presents the software engineering effort under way at ANL towards a comprehensive integrated computational framework (SHARP) for high fidelity simulations of sodium cooled fast reactors. The primary objective of this framework is to provide accurate and flexible analysis tools to nuclear reactor designers by simulating multiphysics phenomena happening in complex reactor geometries. Ideally, the coupling among different physics modules (such as neutronics, thermal-hydraulics, and structural mechanics) needs to be tight to preserve the accuracy achieved in each module. However, fast reactor cores in steady state mode represent a special case where weak coupling between neutronics and thermal-hydraulics is usually adequate. Our framework design allows for both options. Another requirement for SHARP framework has been to implement various coupling algorithms that are parallel and scalable to large scale since nuclear reactor core simulations are among the most memory and computationally intensive, requiring the use of leadership-class petascale platforms. This report details our progress toward achieving these goals. Specifically, we demonstrate coupling independently developed parallel codes in a manner that does not compromise performance or portability, while minimizing the impact on individual developers. This year, our focus has been on developing a lightweight and loosely coupled framework targeted at UNIC (our neutronics code) and Nek (our thermal hydraulics code). However, the framework design is not limited to just using these two codes.
Interlimb coupling strength scales with movement amplitude.
Peper, C Lieke E; de Boer, Betteco J; de Poel, Harjo J; Beek, Peter J
2008-05-23
The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.
Electronically-implemented coupled logistic maps
NASA Astrophysics Data System (ADS)
L'Her, Alexandre; Amil, Pablo; Rubido, Nicolás; Marti, Arturo C.; Cabeza, Cecilia
2016-03-01
The logistic map is a paradigmatic dynamical system originally conceived to model the discrete-time demographic growth of a population, which shockingly, shows that discrete chaos can emerge from trivial low-dimensional non-linear dynamics. In this work, we design and characterize a simple, low-cost, easy-to-handle, electronic implementation of the logistic map. In particular, our implementation allows for straightforward circuit-modifications to behave as different one-dimensional discrete-time systems. Also, we design a coupling block in order to address the behavior of two coupled maps, although, our design is unrestricted to the discrete-time system implementation and it can be generalized to handle coupling between many dynamical systems, as in a complex system. Our findings show that the isolated and coupled maps' behavior has a remarkable agreement between the experiments and the simulations, even when fine-tuning the parameters with a resolution of ~10-3. We support these conclusions by comparing the Lyapunov exponents, periodicity of the orbits, and phase portraits of the numerical and experimental data for a wide range of coupling strengths and map's parameters.
A stable snow-atmosphere coupled mode
NASA Astrophysics Data System (ADS)
Zhao, Liang; Zhu, Yuxiang; Liu, Haiwen; Liu, Zhongfang; Liu, Yanju; Li, Xiuping; Chen, Zhou
2016-10-01
Snow is both an important lower boundary forcing of the atmosphere and a response to atmospheric forcing in the extratropics. It is still unclear whether a stable snow-atmosphere coupled mode exists in the extratropics, like the ENSO in the tropics. Using Sliding Correlation analysis over Any Window, the present study quantitatively evaluates the stability of coupling relationships between the major modes of winter snow over the Northern Hemisphere and the winter atmospheric Arctic Oscillation (AO), the Antarctic Oscillation (AAO) and the Siberian High over the period 1872-2010, and discusses their possible relationships for different seasons. Results show that the first mode of the winter snow cover fraction and the winter AO together constitute a stable snow-atmosphere coupled mode, the SNAO. The coupled mode is stronger during recent decades than before. The snow anomaly over Europe is one key factor of the SNAO mode due to the high stability there, and the polar vortex anomaly in the atmosphere is its other key factor. The continuity of signals in the SNAO between autumn and winter is weaker than that between winter and spring. The second winter snow mode is generally stably correlated with the winter AAO and was more stable before the 1970s. The AAO signal with boreal snow has a strong continuity in seasonal transition. Generally, through these coupled modes, snow and atmosphere can interact in the same season or between different seasons: autumn snow can influence the winter atmosphere; the winter atmosphere can influence spring snow.
Chaos induced by coupling between Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Botha, A. E.
2015-02-01
It is found that, in a stack of intrinsic Josephson junctions in layered high temperature superconductors under external electromagnetic radiation, the chaotic features are triggered by interjunction coupling, i.e., the coupling between different junctions in the stack. While the radiation is well known to produce chaotic effects in the single junction, the effect of interjunction coupling is fundamentally different and it can lead to the onset of chaos via a different route to that of the single junction. A precise numerical study of the phase dynamics of intrinsic Josephson junctions, as described by the CCJJ+DC model, is performed. We demonstrate the charging of superconducting layers, in a bias current interval corresponding to a Shapiro step subharmonic, due to the creation of a longitudinal plasma wave along the stack of junctions. With increase in radiation amplitude chaotic behavior sets in. The chaotic features of the coupled Josephson junctions are analyzed by calculations of the Lyapunov exponents. We compare results for a stack of junctions to the case of a single junction and prove that the observed chaos is induced by the coupling between the junctions. The use of Shapiro step subharmonics may allow longitudinal plasma waves to be excited at low radiation power.
Perturbative Critical Behavior from Spacetime Dependent Couplings
Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo
2012-08-03
We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-{epsilon} Wilson-Fisher fixed point. Rather than considering 4-{epsilon} dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form {lambda}x{sup {kappa}}{mu}{sup {kappa}}, with a small parameter {kappa} playing a role analogous to {epsilon}. We show, in {phi}{sup 4} theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling {lambda}{sub *}(x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional {phi}{sup 6} theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.
Imperfect chimera states for coupled pendula.
Kapitaniak, Tomasz; Kuzma, Patrycja; Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri
2014-01-01
The phenomenon of chimera states in the systems of coupled, identical oscillators has attracted a great deal of recent theoretical and experimental interest. In such a state, different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Here, considering the coupled pendula, we find another pattern, the so-called imperfect chimera state, which is characterized by a certain number of oscillators which escape from the synchronized chimera's cluster or behave differently than most of uncorrelated pendula. The escaped elements oscillate with different average frequencies (Poincare rotation number). We show that imperfect chimera can be realized in simple experiments with mechanical oscillators, namely Huygens clock. The mathematical model of our experiment shows that the observed chimera states are controlled by elementary dynamical equations derived from Newton's laws that are ubiquitous in many physical and engineering systems.
All-fibre components using periodic coupling
NASA Astrophysics Data System (ADS)
Youngquist, R. C.; Brooks, J. L.; Risk, W. P.; Kino, G. S.; Shaw, H. J.
1985-10-01
The paper presents a new class of all-fiber devices based upon periodic coupling principles. The two basic devices which are described are a birefringent fiber polarization coupler and a two-mode fiber transverse mode coupler. Both devices consist of a ridged plate which is used to periodically stress a fiber with a periodicity equal to the beat length of the modes to be coupled. This periodic stress has been shown to result in almost complete power transfer for both the devices described. These 'in-line couplers' have been shown to have several applications, e.g., amplitude modulators, notch filters, polarizers, mixers, etc. One of the most important results of the work in this area was the development of an all-fiber frequency shifter based upon the principles of periodic coupling. More work needs to be done in the design and engineering of these devices, and there is still room for new ideas and approaches.
Discrete photonics resonator in coupled waveguide arrays.
Plougonven, Nadia Belabas; Minot, Christophe; Bouwmans, Géraud; Levenson, Ariel; Moison, Jean-Marie
2014-05-19
We demonstrate both theoretically and experimentally that discrete diffraction resonance can be designed, fabricated, and successfully probed in functionalized - guidonic - coupled waveguide arrays. We evidence that double-barrier patterning of the coupling creates wavelength-independent angular tunnel resonance in the transmitted and the reflected intensity of light beams freely propagating in the plane of the array. Transmission peaks obtained are associated with resonant excitation of the engineered array bound supermodes of the functionalized array, in agreement with accurate and practical numerical modeling based on extended coupled-mode theory. The linear operation of the guidonic resonant tunneling double barrier makes up an original resonator for discrete photonics, suitable for all-optical control of light.
Coupling output of multichannel high power microwaves
Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Yang Jianhua; Jin Zhenxing; Yin Yi; Wu Dapeng; Zhu Jun; Ren Heming; Yang Jie
2010-12-15
The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.
Predicting synchrony in heterogeneous pulse coupled oscillators.
Talathi, Sachin S; Hwang, Dong-Uk; Miliotis, Abraham; Carney, Paul R; Ditto, William L
2009-08-01
Pulse coupled oscillators (PCOs) represent an ubiquitous model for a number of physical and biological systems. Phase response curves (PRCs) provide a general mathematical framework to analyze patterns of synchrony generated within these models. A general theoretical approach to account for the nonlinear contributions from higher-order PRCs in the generation of synchronous patterns by the PCOs is still lacking. Here, by considering a prototypical example of a PCO network, i.e., two synaptically coupled neurons, we present a general theory that extends beyond the weak-coupling approximation, to account for higher-order PRC corrections in the derivation of an approximate discrete map, the stable fixed point of which can predict the domain of 1:1 phase locked synchronous states generated by the PCO network.
Cosmology of bigravity with doubly coupled matter
Comelli, D.; Crisostomi, M.; Koyama, K.; Pilo, L.; Tasinato, G.
2015-04-20
We study cosmology in the bigravity formulation of the dRGT model where matter couples to both metrics. At linear order in perturbation theory two mass scales emerge: an hard one from the dRGT potential, and an environmental dependent one from the coupling of bigravity with matter. At early time, the dynamics is dictated by the second mass scale which is of order of the Hubble scale. The set of gauge invariant perturbations that couples to matter follow closely the same behaviour as in GR. The remaining perturbations show no issue in the scalar sector, while problems arise in the tensor and vector sectors. During radiation domination, a tensor mode grows power-like at super-horizon scales. More dangerously, the only propagating vector mode features an exponential instability on sub-horizon scales. We discuss the consequences of such instabilities and speculate on possible ways to deal with them.
The smallest chimera state for coupled pendula
Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri; Kapitaniak, Tomasz
2016-01-01
Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems. PMID:27713483
Bicritical scaling behavior in unidirectionally coupled oscillators.
Kim, S Y; Lim, W
2001-03-01
We study the scaling behavior of period doublings in a system of two unidirectionally coupled parametrically forced pendulums near a bicritical point where two critical lines of period-doubling transition to chaos in both subsystems meet. When crossing a bicritical point, a hyperchaotic attractor with two positive Lyapunov exponents appears, i.e., a transition to hyperchaos occurs. Varying the control parameters of the two subsystems, the unidirectionally coupled parametrically forced pendulums exhibit multiple period-doubling transitions to hyperchaos. For each transition to hyperchaos, using both a "residue-matching" renormalization group method and a direct numerical method, we make an analysis of the bicritical scaling behavior. It is thus found that the second response subsystem exhibits a new type of non-Feigenbaum scaling behavior, while the first drive subsystem is in the usual Feigenbaum critical state. The universality of the bicriticality is also examined for several different types of unidirectional couplings.
Gq-Coupled Receptors in Autoimmunity
Zhang, Lu; Shi, Guixiu
2016-01-01
Heterotrimeric G proteins can be divided into Gi, Gs, Gq/11, and G12/13 subfamilies according to their α subunits. The main function of G proteins is transducing signals from G protein coupled receptors (GPCRs), a family of seven transmembrane receptors. In recent years, studies have demonstrated that GPCRs interact with Gq, a member of the Gq/11 subfamily of G proteins. This interaction facilitates the vital role of this family of proteins in immune regulation and autoimmunity, particularly for Gαq, which is considered the functional α subunit of Gq protein. Therefore, understanding the mechanisms through which Gq-coupled receptors control autoreactive lymphocytes is critical and may provide insights into the treatment of autoimmune disorders. In this review, we summarize recent advances in studies of the role of Gq-coupled receptors in autoimmunity, with a focus on their pathologic role and downstream signaling. PMID:26885533
Antenna-coupled microwave kinetic inductance detectors
NASA Astrophysics Data System (ADS)
Day, P. K.; Leduc, H. G.; Goldin, A.; Vayonakis, T.; Mazin, B. A.; Kumar, S.; Gao, J.; Zmuidzinas, J.
2006-04-01
We report on the development of Microwave Kinetic Inductance Detectors (MKIDs) coupled to planar antennas for millimeter/submillimeter wavelengths. The MKID is a relatively new type of superconducting photon detector which is applicable from millimeter-wave frequencies to X-rays. Photons are absorbed in a superconductor, producing quasiparticle excitations, which change the surface reactance (kinetic inductance) of the superconductor. The changes in kinetic inductance are monitored using microwave high-Q thin-film superconducting resonators. Because the MKID is particularly amenable to frequency-domain multiplexing, with likely detector multiplexing factors of ˜103 or more per cryogenic amplifier, these detectors are well suited for use in large arrays. We have fabricated MKIDs coupled to submillimeter slot-array antennas using microstrip lines and have detected power from a thermal radiation source. We discuss the potential of antenna-coupled MKID arrays for ground and space-based millimeter/submillimeter imaging.
Coupled-cavity drift-tube linac
Billen, J.H.
1996-11-26
A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.
Negative coupled inductors for polyphase choppers
NASA Technical Reports Server (NTRS)
Jamieson, Robert S. (Inventor)
1984-01-01
A technique for negatively coupling the outputs of polyphase choppers is disclosed, wherein the output inductance of each phase is divided into two windings, and each winding is negatively coupled to a corresponding winding of a neighboring phase. In a preferred embodiment for a three-phase chopper circuit, the output inductance of phase A is divided into windings 100 and 102, the output inductance of phase B is divided into windings 110 and 112, and the output inductance of phase C is divided into windings 120 and 122. Pairs of windings 100 and 110, 112 and 120, and 102 and 122 are respectively disposed in transformers arranged for negatively coupling the windings of each pair.
Long distance coupling of resonant exchange qubits
NASA Astrophysics Data System (ADS)
Russ, Maximilian; Burkard, Guido
2015-11-01
We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iswap gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter.
Long distance coupling of resonant exchange qubits
NASA Astrophysics Data System (ADS)
Russ, Maximilian; Burkard, Guido
We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength gr in a Jaynes Cummings Hamiltonian, and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP-gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter. Funded by ARO through Grant No. W911NF-15-1-0149.
Dynamics of weakly coupled parametrically forced oscillators
NASA Astrophysics Data System (ADS)
Salgado Sánchez, P.; Porter, J.; Tinao, I.; Laverón-Simavilla, A.
2016-08-01
The dynamics of two weakly coupled parametric oscillators are studied in the neighborhood of the primary subharmonic instability. The nature of both primary and secondary instabilities depends in a critical way on the permutation symmetries, if any, that remain after coupling is considered, and this depends on the relative phases of the parametric forcing terms. Detailed bifurcation sets, revealing a complex series of transitions organized in part by Bogdanov-Takens points, are calculated for representative sets of parameters. In the particular case of out-of-phase forcing the predictions of the coupled oscillator model are compared with direct numerical simulations and with recent experiments on modulated cross waves. Both the initial Hopf bifurcation and the subsequent saddle-node heteroclinic bifurcation are confirmed.
Cosmology of bigravity with doubly coupled matter
NASA Astrophysics Data System (ADS)
Comelli, D.; Crisostomi, M.; Koyama, K.; Pilo, L.; Tasinato, G.
2015-04-01
We study cosmology in the bigravity formulation of the dRGT model where matter couples to both metrics. At linear order in perturbation theory two mass scales emerge: an hard one from the dRGT potential, and an environmental dependent one from the coupling of bigravity with matter. At early time, the dynamics is dictated by the second mass scale which is of order of the Hubble scale. The set of gauge invariant perturbations that couples to matter follow closely the same behaviour as in GR . The remaining perturbations show no issue in the scalar sector, while problems arise in the tensor and vector sectors. During radiation domination, a tensor mode grows power-like at super-horizon scales. More dangerously, the only propagating vector mode features an exponential instability on sub-horizon scales. We discuss the consequences of such instabilities and speculate on possible ways to deal with them.
Playing with fermion couplings in Higgsless models
Casalbuoni, R.; De Curtis, S.; Dolce, D.; Dominici, D.
2005-04-01
We discuss the fermion couplings in a four dimensional SU(2) linear moose model by allowing for direct couplings between the left-handed fermions on the boundary and the gauge fields in the internal sites. This is realized by means of a product of nonlinear {sigma}-model scalar fields which, in the continuum limit, is equivalent to a Wilson line. The effect of these new nonlocal couplings is a contribution to the {epsilon}{sub 3} parameter which can be of opposite sign with respect to the one coming from the gauge fields along the string. Therefore, with some fine-tuning, it is possible to satisfy the constraints from the electroweak data.
Formalization of Embodied Sensorimotor Coupling System
NASA Astrophysics Data System (ADS)
Nakajima, Kohei
2008-10-01
Theoretical conception of an active behavior of the system is one of the most challengeable topics in complex systems research. Recently, especially in the fields of robotics and artificial intelligence, there broadly exists the study to understand the interface between the system and its environment by creating an autonomous agent that carries a sensorimotor coupling. In this paper, an embodied sensorimotor coupling system is discussed. Applying a generative pointer, the system is formalized to contain an intrinsic discrepancy induced by heterarichical duality in a flow construction by using category theory. In the system, the body plays a positive role as a dynamical mediator, or interface, between two conflicting layers, a relational layers and a constituent layers. As a result, it induces a structural change of the system itself. Implementing the construction to a Braitenberg type vehicle, we observed dynamical changes of system parameters and its behavior revealed various motion patterns compared with the conventional sensorimotor coupling system.
Universal Entanglement Crossover of Coupled Quantum Wires
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert
2014-03-01
We consider the entanglement between two one-dimensional quantum wires (Luttinger liquids) coupled by tunneling through a quantum impurity. The physics of the system involves a crossover between weak and strong coupling regimes characterized by an energy scale TB, and methods of conformal field theory therefore cannot be applied. The evolution of the entanglement in this crossover has led to many numerical studies, but has remained little understood, analytically or even qualitatively. We argue in this Letter that the correct universal scaling form of the entanglement entropy S (for an arbitrary interval of length L containing the impurity) is ∂S/∂ ln L=f(LTB). In the special case where the coupling to the impurity can be refermionized, we show how the universal function f(LTB) can be obtained analytically using recent results on form factors of twist fields and a defect massless-scattering formalism. Our results are carefully checked against numerical simulations.
The smallest chimera state for coupled pendula
NASA Astrophysics Data System (ADS)
Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri; Kapitaniak, Tomasz
2016-10-01
Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems.
Treating alcohol problems with couple therapy.
McCrady, Barbara S
2012-05-01
Couple therapy for treating alcohol use disorders (AUDs) results in less drinking and greater relationship stability and satisfaction in both men and women with AUDs. The theoretical tenets, treatment methods, and research evidence for Alcohol Behavioral Couple Therapy (ABCT) are summarized. The application of ABCT is illustrated through the treatment of a 42-year-old woman with an AUD and her 56-year-old husband. During 12 sessions over a 6-month period, the woman attained abstinence from alcohol and learned cognitive and behavioral coping skills to deal with drinking antecedents. Her husband learned to support her abstinence by stopping drinking himself, helping her cope with drinking urges, and reinforcing her successes. The couple increased positive pleasurable activities that did not involve alcohol and improved their communication skills. Challenges in the treatment included her ambivalence about abstaining, their complicated work and travel schedules, and other life stressors. PMID:22504611
Ferroelectric polarization in antiferromagnetically coupled ferromagnetic film
NASA Astrophysics Data System (ADS)
Gareeva, Z. V.; Mazhitova, F. A.; Doroshenko, R. A.
2016-09-01
We report the influence of interface antiferromagnetic coupling on magnetoelectric properties of ferromagnetic bi-layers. Electric polarization arising at magnetic ingomogeneity in bi-layered ferromagnetic structure with antiferromagnetic coupling at interface in applied magnetic field has been explored. Diagrams representing dependences of electric polarization on magnetic field P(H) have been constructed for two magnetic field geometries (in-plane and out-of plane fields). It has been found out that P(H) dependences demonstrate non-monotonic behavior. Peculiarities of polarization in an in-plane-oriented magnetic field have been explained by magnetization processes. It has been shown that a variety of magnetic configurations of Bloch, Neel and mixed Bloch-Neel types can be realized in antiferromagnetically coupled film due to cubic anisotropy contribution. In the area of Bloch magnetic configuration electric polarization vanishes. The critical values of magnetic fields suppressing polarization have been estimated.
Coupling output of multichannel high power microwaves
NASA Astrophysics Data System (ADS)
Li, Guolin; Shu, Ting; Yuan, Chengwei; Zhang, Jun; Yang, Jianhua; Jin, Zhenxing; Yin, Yi; Wu, Dapeng; Zhu, Jun; Ren, Heming; Yang, Jie
2010-12-01
The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.
Spatial resolution effect of light coupling structures
Li, Juntao; Li, Kezheng; Schuster, Christian; Su, Rongbin; Wang, Xuehua; Borges, Ben-Hur V.; Krauss, Thomas F.; Martins, Emiliano R.
2015-01-01
The coupling of light between free space and thin film semiconductors is an essential requirement of modern optoelectronic technology. For monochromatic and single mode devices, high performance grating couplers have been developed that are well understood. For broadband and multimode devices, however, more complex structures, here referred to as “coupling surfaces”, are required, which are often difficult to realise technologically. We identify general design rules based on the Fourier properties of the coupling surface and show how they can be used to determine the spatial resolution required for the coupler’s fabrication. To our knowledge, this question has not been previously addressed, but it is important for the understanding of diffractive nanostructures and their technological realisation. We exemplify our insights with solar cells and UV photodetectors, where high-performance nanostructures that can be realised cost-effectively are essential. PMID:26678574
Vehicle systems: coupled and interactive dynamics analysis
NASA Astrophysics Data System (ADS)
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
Nonperturbative enhancement of superloop at strong coupling
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2016-10-01
We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value of the 't Hooft coupling in planar maximally supersymmetric Yang-Mills theory. We complement recent studies of this observable within the context of the Pentagon Operator Product Expansion, via the dual superWilson loop description, by studying effects of multiple scalar exchanges that accompany (or not) massive flux-tube excitations. Due to the fact that holes have a very small, nonperturbatively generated mass mh which is exponentially suppressed in the 't Hooft coupling, their exchanges must be resummed in the ultraviolet limit, τ ≪ 1 /mh. This procedure yields a contribution to the expectation value of the superloop which enters on equal footing with the classical area - a phenomenon which was earlier observed for MHV amplitudes. In all components, the near-massless scalar exchanges factorize from the ones of massive particles, at leading order in strong coupling.
Complex mode dynamics of coupled wave oscillators.
Alexander, T J; Yan, D; Kevrekidis, P G
2013-12-01
We explore how nonlinear coherent waves localized in a few wells of a periodic potential can act analogously to a chain of coupled oscillators. We identify the small-amplitude oscillation modes of these "coupled wave oscillators" and find that they can be extended into the large amplitude regime, where some "ring" for long times. We also reveal the appearance of complex behavior such as the breakdown of Josephson-like oscillations, the destabilization of fundamental oscillation modes, and the emergence of chaotic oscillations for large amplitude excitations. We show that the dynamics may be accurately described by a discrete model with nearest-neighbor coupling, in which the lattice oscillators bear an effective mass.
Dynamical robustness of coupled heterogeneous oscillators.
Tanaka, Gouhei; Morino, Kai; Daido, Hiroaki; Aihara, Kazuyuki
2014-05-01
We study tolerance of dynamic behavior in networks of coupled heterogeneous oscillators to deterioration of the individual oscillator components. As the deterioration proceeds with reduction in dynamic behavior of the oscillators, an order parameter evaluating the level of global oscillation decreases and then vanishes at a certain critical point. We present a method to analytically derive a general formula for this critical point and an approximate formula for the order parameter in the vicinity of the critical point in networks of coupled Stuart-Landau oscillators. Using the critical point as a measure for dynamical robustness of oscillator networks, we show that the more heterogeneous the oscillator components are, the more robust the oscillatory behavior of the network is to the component deterioration. This property is confirmed also in networks of Morris-Lecar neuron models coupled through electrical synapses. Our approach could provide a useful framework for theoretically understanding the role of population heterogeneity in robustness of biological networks.
Mode coupling in spin torque oscillators
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Zhou, Yan; Li, Dong; Heinonen, Olle
2016-09-01
A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau-Lifshitz-Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.
Dynamics of weakly coupled parametrically forced oscillators.
Salgado Sánchez, P; Porter, J; Tinao, I; Laverón-Simavilla, A
2016-08-01
The dynamics of two weakly coupled parametric oscillators are studied in the neighborhood of the primary subharmonic instability. The nature of both primary and secondary instabilities depends in a critical way on the permutation symmetries, if any, that remain after coupling is considered, and this depends on the relative phases of the parametric forcing terms. Detailed bifurcation sets, revealing a complex series of transitions organized in part by Bogdanov-Takens points, are calculated for representative sets of parameters. In the particular case of out-of-phase forcing the predictions of the coupled oscillator model are compared with direct numerical simulations and with recent experiments on modulated cross waves. Both the initial Hopf bifurcation and the subsequent saddle-node heteroclinic bifurcation are confirmed.
Phase Diffusion in Unequally Noisy Coupled Oscillators.
Amro, Rami M; Lindner, Benjamin; Neiman, Alexander B
2015-07-17
We consider the dynamics of two directionally coupled unequally noisy oscillators, the first oscillator being noisier than the second oscillator. We derive analytically the phase diffusion coefficient of both oscillators in a heterogeneous setup (different frequencies, coupling coefficients, and intrinsic noise intensities) and show that the phase coherence of the second oscillator depends in a nonmonotonic fashion on the noise intensity of the first oscillator: as the first oscillator becomes less coherent, i.e., worse, the second one becomes more coherent, i.e., better. This surprising effect is related to the statistics of the first oscillator which provides a source of noise for the second oscillator, that is non-Gaussian, bounded, and possesses a finite bandwidth. We verify that the effect is robust by numerical simulations of two coupled FitzHugh-Nagumo models.
Wave coupling of atmosphere-ionosphere system
NASA Astrophysics Data System (ADS)
Goncharenko, L. P.
2011-12-01
The dynamic coupling of atmosphere-ionosphere system is a complex interdisciplinary problem. Current thinking suggests that the upward propagation of internal atmospheric waves (planetary waves, tides, gravity waves) from the lower atmosphere is an essential source of energy and momentum for the thermosphere and embedded ionosphere. Studies over the last decade presented fascinating experimental and modeling evidence of global coupling from the troposphere to mesosphere, thermosphere and ionosphere. They were enabled by unprecedented availability of satellite data, in particularly from TIMED, MLS, CHAMP, and GRACE, focused experimental campaigns from ground-based instruments, and major advances in global coupling models. This paper will summarize several developments over the past decade, including non-migrating structures in the ionosphere and thermosphere, advances in studies of gravity waves and planetary waves, and their implications for better understanding of ITM. The paper will also identify questions that need to be answered in the future, and outline promising topics of future development.
Oscillatory exchange coupling in all compound superlattice
NASA Astrophysics Data System (ADS)
Orozco, Antonio
2000-03-01
Oscillatory exchange coupling was observed in TiN/Fe_3O4 superlattices [1], similar to that found in metallic superlattices, with a coupling strength almost an order of magnitude stronger. In addition, a unique positive magnetoresistance effect is also seen. The dynamics of carriers in the modulated structures, responsible for the exchage coupling and the magnetotransport, are strongly influenced by the band structure matching and the available Fermi surface states [2]. The carriers quantum confinement effects, enhanced by the half metallicity of the magnetic layers, provides a physical picture for understanding these observations [1] A. Orozco et al., Phys. Rev. Lett. 83 (1999) 1680 [2] P. Bruno, Phys. Rev. B 52 (1995) 411
Coupled-cavity drift-tube linac
Billen, James H.
1996-01-01
A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.
Coupling between plate vibration and acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin
1992-01-01
A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.
NASA Astrophysics Data System (ADS)
Li, Qian-Shu; Shi, Jian-Cheng
2007-01-01
Two unidirectional coupled brusselator systems, subject to common and uncorrelated multiplicative noise, are investigated, respectively. It can be found that, the parameter heterogeneity effect may be destroyed above critical coupling strength. Synchronization occurs between subsystems subjected to common noise, but cannot achieve by means of uncorrelated noise.
Desgrées-du-Loû, Annabel; Orne-Gliemann, Joanna
2008-11-01
In Africa, a large proportion of HIV infections occur within stable relationships, either because of prior infection of one of the partners or because of infidelity. In five African countries at least two-thirds of couples with at least one HIV-positive partner were HIV serodiscordant; in half of them, the woman was the HIV-positive partner. Hence, there is an urgent need to define strategies to prevent HIV transmission within couple relationships. HIV counselling and testing have largely been organised on an individual and sex-specific basis, for pregnant women in programmes for prevention of mother-to-child transmission of HIV and in STI consultations and recently male circumcision for men. A couple-centred approach to HIV counselling and testing would facilitate communication about HIV status and adoption of preventive behaviours within couples. This paper reviews what is known about HIV serodiscordance in heterosexual couples in sub-Saharan Africa and what has been published about couple-centred initiatives for HIV counselling and testing since the early 1990s. Despite positive outcomes, couple-oriented programmes have not been implemented on a large scale. In order to stimulate and strengthen HIV prevention efforts, increased attention is required to promote prevention and testing and counselling for couples in stable relationships.
The Relationship between Career and Couple Burnout: Implications for Career and Couple Counseling.
ERIC Educational Resources Information Center
Pines, Ayala Malach; Nunes, Renato
2003-01-01
This article argues that people's choice of work and love is related to similar unresolved childhood issues and that career burnout and couple burnout are related to failure in the existential quest aimed at solving these issues. The existence of a relationship between career burnout and couple burnout is demonstrated by several clinical examples.…
Rose, Dorian K; Winstein, Carolee J
2013-01-01
Interlimb coordination obtained through temporal and spatial coupling is a significant feature of human motor control. To understand the robustness of this capability the authors introduced a method to quantify interlimb coordination strength and compare individuals with asymmetric effector ability poststroke to nondisabled controls. Quantitative analyses determined the relative strength of interlimb coupling with an asymmetric obstacle avoidance task. Participants performed bimanual discrete, multijoint aiming movements in the frontal plane with a vertical barrier positioned midway to the target for one limb. To quantify coupling strength between limbs and groups, we regressed individual participant nonbarrier limb movement time or maximum vertical displacement separately, on barrier limb performance. Temporal and spatial interlimb coupling strength varied across participants in both groups. Barrier limb performance predicted nonbarrier limb behavior; however, interlimb coupling was significantly stronger for the nondisabled compared to the stroke group. In the stroke group, deficits in interlimb coordination affected spatial coupling more than temporal coupling. The decreased coupling strength detected, even in the presence of mild hemiparesis, demonstrates the measure's sensitivity. The authors propose this metric as a powerful assessment of the effectiveness of rehabilitation interventions and to monitor the recovery of bimanual coordination poststroke.
NASA Technical Reports Server (NTRS)
Lawandy, N. M.; Lee, Kayee
1987-01-01
A linear stability analysis of two Lorenz lasers coupled by their electric fields has been performed, and it is shown that the bad cavity condition becomes a function of coupling and that a good cavity instability may occur if the injected fields are inverted before injection. In addition, it is shown that the symmetrically coupled Lorenz system is isomorphic to the original Lorenz system with new parameters. The stability analysis also predicts a lowering of the second laser threshold with coupling for both the chaotic and self-pulsing regimes. Numerical integration of the equations is in agreement with these predictions and has revealed a coupling induced transition from self-pulsing to chaotic behavior. The classification of the behavior of the coupled system in the parameter space of the coupling constants has been investigated and shows that the results of symmetric coupling allow enough of a margin for an experimental test of the theory. This would allow experimentalists to observe the actual Lorenz instability at excitations as low as 4-5 times above threshold.
Behaviorally-based couple therapies reduce emotional arousal during couple conflict
Baucom, Brian R.; Sheng, Elisa; Christensen, Andrew; Georgiou, Panayiotis G.; Narayanan, Shrikanth S.; Atkins, David C.
2015-01-01
Emotional arousal during relationship conflict is a major target for intervention in couple therapies. The current study examines changes in conflict-related emotional arousal in 104 couples that participated in a randomized clinical trial of two behaviorally-based couple therapies. Emotional arousal is measured using mean fundamental frequency of spouse’s speech, and changes in emotional arousal from pre- to post-therapy are examined using multilevel models. Overall emotional arousal, the rate of increase in emotional arousal at the beginning of conflict, and the duration of emotional arousal declined for all couples. Reductions in overall arousal were stronger for TBCT wives than for IBCT wives but not significantly different for IBCT and TBCT husbands. Reductions in the rate of initial arousal were larger for TBCT couples than IBCT couples. Reductions in duration were larger for IBCT couples than TBCT couples. These findings suggest that both therapies can reduce emotional arousal, but that the two therapies create different kinds of change in emotional arousal. PMID:26183021
ERIC Educational Resources Information Center
Kurdek, Lawrence A.
1994-01-01
Examined data on frequency with which relationship conflict is experienced in specific content areas and relationship satisfaction for both partners of 75 gay, 51 lesbian, and 108 heterosexual couples who lived together without children. Couple scores fell into six clusters that represented areas of conflict regarding power, social issues,…
Mathematical and algorithmic issues in multiphysics coupling.
Gai, Xiuli; Stone, Charles Michael; Wheeler, Mary Fanett
2004-06-01
The modeling of fluid/structure interaction is of growing importance in both energy and environmental applications. Because of the inherent complexity, these problems must be simulated on parallel machines in order to achieve high resolution. The purpose of this research was to investigate techniques for coupling flow and geomechanics in porous media that are suitable for parallel computation. In particular, our main objective was to develop an iterative technique which can be as accurate as a fully coupled model but which allows for robust and efficient coupling of existing complex models (software). A parallel linear elastic module was developed which was coupled to a three phase three-component black oil model in IPARS (Integrated Parallel Accurate Reservoir Simulator). An iterative de-coupling technique was introduced at each time step. The resulting nonlinear iteration involved solving for displacements and flow sequentially. Rock compressibility was used in the flow model to account for the effect of deformation on the pore volume. Convergence was achieved when the mass balance for each component satisfied a given tolerance. This approach was validated by comparison with a fully coupled approach implemented in the British PetroledAmoco ACRES simulator. Another objective of this work was to develop an efficient parallel solver for the elasticity equations. A preconditioned conjugate gradient solver was implemented to solve the algebraic system arising from tensor product linear Galerkin approximations for the displacements. Three preconditioners were developed: LSOR (line successive over-relaxation), block Jacobi, and agglomeration multi-grid. The latter approach involved coarsening the 3D system to 2D and using LSOR as a smoother that is followed by applying geometric multi-grid with SOR (successive over-relaxation) as a smoother. Preliminary tests on a 64-node Beowulf cluster at CSM indicate that the agglomeration multi-grid approach is robust and efficient.
Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
NASA Astrophysics Data System (ADS)
Li-li, Tian; Yang, Chen; Jian-long, Liu; Kai, Guo; Ke-ya, Zhou; Yang, Gao; Shu-tian, Liu
2016-07-01
According to the electromagnetic field distributions, there exist two kinds of coupled spoof surface plasmon polaritons (SSPPs), the symmetric and anti-symmetric modes, in the three-dimensional (3D) subwavelength spoof–insulator–spoof (SIS) waveguide. We study the dispersion and excitation of the two kinds of coupled SSPPs supported by the 3D SIS waveguide. The evolution of the dispersion with the thickness and gap width of the waveguide is numerically investigated, and we give a theoretical analysis according to the coupling mechanism. Specially, based on the coupling mechanism, we design a zipper structure, through which the excitation and propagation of the anti-symmetric coupled modes can be realized effectively. Project supported by the National Basic Research Program of China (Grant No. 2013CBA01702) and the National Natural Science Foundation of China (Grant Nos. 61377016, 61575055, 10974039, 61307072, 61308017, and 61405056).
Uncertain destination dynamics of delay coupled systems
NASA Astrophysics Data System (ADS)
Pal, Santinath; Poria, Swarup
2015-03-01
Certain dynamical systems exhibit sensitivity to initial conditions in which the asymptotic state is selected from multiple possible states. The associated uncertain destination dynamics can be analyzed by an appropriate reduction of the full system to a subsystem that explicitly yields the dynamics [1]. These types of systems are known as multistable systems. In this paper, a scheme for designing delay coupled multistable systems is proposed. The scheme considers delay coupled Lorenz-Stenflo systems. The scheme is based on Lyapunov's stability theorem. Numerical simulation results are presented to show the effectiveness of the proposed scheme.
Reentrant transition in coupled noisy oscillators
NASA Astrophysics Data System (ADS)
Kobayashi, Yasuaki; Kori, Hiroshi
2015-01-01
We report on a synchronization-breaking instability observed in a noisy oscillator unidirectionally coupled to a pacemaker. Using a phase oscillator model, we find that, as the coupling strength is increased, the noisy oscillator lags behind the pacemaker more frequently and the phase slip rate increases, which may not be observed in averaged phase models such as the Kuramoto model. Investigation of the corresponding Fokker-Planck equation enables us to obtain the reentrant transition line between the synchronized state and the phase slip state. We verify our theory using the Brusselator model, suggesting that this reentrant transition can be found in a wide range of limit cycle oscillators.
Reentrant transition in coupled noisy oscillators.
Kobayashi, Yasuaki; Kori, Hiroshi
2015-01-01
We report on a synchronization-breaking instability observed in a noisy oscillator unidirectionally coupled to a pacemaker. Using a phase oscillator model, we find that, as the coupling strength is increased, the noisy oscillator lags behind the pacemaker more frequently and the phase slip rate increases, which may not be observed in averaged phase models such as the Kuramoto model. Investigation of the corresponding Fokker-Planck equation enables us to obtain the reentrant transition line between the synchronized state and the phase slip state. We verify our theory using the Brusselator model, suggesting that this reentrant transition can be found in a wide range of limit cycle oscillators. PMID:25679676
Coupling and quality factors in RFID
NASA Astrophysics Data System (ADS)
Cole, Peter H.
2001-11-01
The performance of a wide variety of RFID systems depends critically on: how efficiently energy is coupled to and from an electronically coded label; on how effectively it is used within the label; and sometimes on how effectively it is transformed from one form to another within the label. The paper considers the definition of appropriate coupling factors and quality factors which describe these processes, and their role in regulating system performance in the near and far fields of both linear and non-linear process based technologies. Calculations allowing feasibility estimates of some new process combinations on which some RFID systems may be based are presented.
The multilevel CC3 coupled cluster model
NASA Astrophysics Data System (ADS)
Myhre, Rolf H.; Koch, Henrik
2016-07-01
We present an efficient implementation of the closed shell multilevel coupled cluster method where coupled cluster singles and doubles (CCSD) is used for the inactive orbital space and CCSD with perturbative triples (CC3) is employed for the smaller active orbital space. Using Cholesky orbitals, the active space can be spatially localized and the computational cost is greatly reduced compared to full CC3 while retaining the accuracy of CC3 excitation energies. For the small organic molecules considered we achieve up to two orders of magnitude reduction in the computational requirements.
Consistent matter couplings for Plebanski gravity
NASA Astrophysics Data System (ADS)
Tennie, Felix; Wohlfarth, Mattias N. R.
2010-11-01
We develop a scheme for the minimal coupling of all standard types of tensor and spinor field matter to Plebanski gravity. This theory is a geometric reformulation of vacuum general relativity in terms of two-form frames and connection one-forms, and provides a covariant basis for various quantization approaches. Using the spinor formalism we prove the consistency of the newly proposed matter coupling by demonstrating the full equivalence of Plebanski gravity plus matter to Einstein-Cartan gravity. As a by-product we also show the consistency of some previous suggestions for matter actions.
Nucleosynthesis and the variation of fundamental couplings
Mueller, Christian M.; Schaefer, Gregor; Wetterich, Christof
2004-10-15
We determine the influence of a variation of the fundamental 'constants' on the predicted helium abundance in Big Bang Nucleosynthesis. The analytic estimate is performed in two parts: the first step determines the dependence of the helium abundance on the nuclear physics parameters, while the second step relates those parameters to the fundamental couplings of particle physics. This procedure can incorporate in a flexible way the time variation of several couplings within a grand unified theory while keeping the nuclear physics computation separate from any GUT model dependence.
Fractional diffusion equations coupled by reaction terms
NASA Astrophysics Data System (ADS)
Lenzi, E. K.; Menechini Neto, R.; Tateishi, A. A.; Lenzi, M. K.; Ribeiro, H. V.
2016-09-01
We investigate the behavior for a set of fractional reaction-diffusion equations that extend the usual ones by the presence of spatial fractional derivatives of distributed order in the diffusive term. These equations are coupled via the reaction terms which may represent reversible or irreversible processes. For these equations, we find exact solutions and show that the spreading of the distributions is asymptotically governed by the same the long-tailed distribution. Furthermore, we observe that the coupling introduced by reaction terms creates an interplay between different diffusive regimes leading us to a rich class of behaviors related to anomalous diffusion.
Edge Mode Coupling within a Plasmonic Nanoparticle
2016-01-01
The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations. Our results provide simple guidelines for the interpretation and the design of plasmonic mode spectra. PMID:27427962
Period variability of coupled noisy oscillators
NASA Astrophysics Data System (ADS)
Mori, Fumito; Kori, Hiroshi
2013-03-01
Period variability, quantified by the standard deviation (SD) of the cycle-to-cycle period, is investigated for noisy phase oscillators. We define the checkpoint phase as the beginning or end point of one oscillation cycle and derive an expression for the SD as a function of this phase. We find that the SD is dependent on the checkpoint phase only when oscillators are coupled. The applicability of our theory is verified using a realistic model. Our work clarifies the relationship between period variability and synchronization from which valuable information regarding coupling can be inferred.
Exceptional points in coupled dissipative dynamical systems.
Ryu, Jung-Wan; Son, Woo-Sik; Hwang, Dong-Uk; Lee, Soo-Young; Kim, Sang Wook
2015-05-01
We study the transient behavior in coupled dissipative dynamical systems based on the linear analysis around the steady state. We find that the transient time is minimized at a specific set of system parameters and show that at this parameter set, two eigenvalues and two eigenvectors of the Jacobian matrix coalesce at the same time; this degenerate point is called the exceptional point. For the case of coupled limit-cycle oscillators, we investigate the transient behavior into the amplitude death state, and clarify that the exceptional point is associated with a critical point of frequency locking, as well as the transition of the envelope oscillation.
Vortices in magnetically coupled superconducting layered systems
Mints, Roman G.; Kogan, Vladimir G.; Clem, John R.
2000-01-01
Pancake vortices in stacks of thin superconducting films or layers are considered. It is stressed that in the absence of Josephson coupling topological restrictions upon possible configurations of vortices are removed and various examples of structures forbidden in bulk superconductors are given. In particular, it is shown that vortices may skip surface layers in samples of less than a certain size R{sub c} which might be macroscopic. The Josephson coupling suppresses R{sub c} estimates. (c) 2000 The American Physical Society.
Towards NMHV amplitudes at strong coupling
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2016-10-01
Pentagon Operator Product Expansion provides a non-perturbative framework for analysis of scattering amplitudes in planar maximally supersymmetric gauge theory building up on their duality to null polygonal superWilson loop and integrability. In this paper, we construct a systematic expansion for the main ingredients of the formalism, i.e., pentagons, at large 't Hooft coupling as a power series in its inverse value. The calculations are tested against relations provided by the so-called Descent Equation which mixes transitions at different perturbative orders. We use leading order results to have a first glimpse into the structure of scattering amplitude at NMHV level at strong coupling.
Cavity-Assisted Spin Orbit Coupling
NASA Astrophysics Data System (ADS)
Zhu, Chuanzhou; Dong, Lin; Pu, Han
We consider a single ultracold atom trapped inside a single-mode optical cavity, where a two-photon Raman process induces an effective coupling between atom's pseudo-spin and external center-of-mass (COM) motion. Without the COM motion, this system is described by the Jaynes-Cummings (JC) model. We show how the atomic COM motion dramatically modifies the predictions based on the JC model. We also investigated the situation when cavity pumping and decay are taken into account. We take a quantum Master equation approach to study this open system and again show how the cavity-induced spin-orbit coupling affects the properties of the system.
Coupling the inflaton to an expanding aether
Donnelly, William; Jacobson, Ted
2010-09-15
We consider a Lorentz-violating theory of inflation consisting of Einstein-aether theory with a scalar inflaton coupled bilinearly to the expansion of the aether. We determine the conditions for linearized stability, positive energy, and vanishing of preferred-frame post-Newtonian parameters, and find that all these conditions can be met. In homogeneous and isotropic cosmology, the inflaton-aether expansion coupling leads to a driving force on the inflaton that is proportional to the Hubble parameter. This force affects the slow-roll dynamics, but still allows for a natural end to inflation.
Exclusive window onto Higgs Yukawa couplings.
Kagan, Alexander L; Perez, Gilad; Petriello, Frank; Soreq, Yotam; Stoynev, Stoyan; Zupan, Jure
2015-03-13
We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h→MV, where M denotes a vector meson and V indicates either γ, W or Z. We calculate the branching ratios for these processes in both the standard model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines. PMID:25815924
Coupled lasers: phase versus chaos synchronization.
Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I
2013-10-15
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.
Covariant harmonic oscillators and coupled harmonic oscillators
NASA Technical Reports Server (NTRS)
Han, Daesoo; Kim, Young S.; Noz, Marilyn E.
1995-01-01
It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.
Susceptibility of large populations of coupled oscillators.
Daido, Hiroaki
2015-01-01
It is an important and interesting problem to elucidate how the degree of phase order in a large population of coupled oscillators responds to a synchronizing periodic force from the outside. Here this problem is studied analytically as well as numerically by introducing the concept of susceptibility for globally coupled phase oscillators with either nonrandom or random interactions. It is shown that the susceptibility diverges at the critical point in the nonrandom case with Widom's equality satisfied, while it exhibits a cusp in the most random case.
Vibration control using nonlinear damped coupling
NASA Astrophysics Data System (ADS)
Ghandchi Tehrani, Maryam; Gattulli, Vincenzo
2016-09-01
In this paper, a dynamical system, which consists of two linear mechanical oscillators, coupled with a nonlinear damping device is considered. First, the dynamic equations are derived, then, an analytical method such as harmonic balance method, is applied to obtain the response to a harmonic base excitation. The response of the system depends on the excitation characteristics. A parametric study is carried out based on different base excitation amplitudes, frequencies, and different nonlinear damping values and the response of the system is fully described. For validation, time domain simulations are carried out to obtain the nonlinear response of the coupled system.
Conditional rotations of heteronuclear coupled spins
NASA Astrophysics Data System (ADS)
O'Donnell, Lauren F.; Ridge, Clark D.; Walls, Jamie D.
2015-01-01
We present a new pulse sequence that conditionally excites I spin magnetization only in the presence of a nonzero heteronuclear coupling to an S spin. The pulse sequence, referred to as the reverse INEPT pathway selective pulse or RIPSP, generates a pure I spin rotation by an angle that depends upon the heteronuclear coupling constant in In S spin systems. Experimental demonstrations are shown in 13C labeled chloroform, dichloromethane, and toluene samples and in unlabeled 2,3-dibromopropionic acid and brucine samples.
Magnetically Coupled Adjustable Speed Drive Systems
Chvala, William D.; Winiarski, David W.
2002-08-18
Adjustable speed drive (ASD) technologies have the ability to precisely control motor sytems output and produce a numbr of benefits including energy and demand savings. This report examines the performance and cost effectiveness of a specific class of ASDs called magnetically-coupled adjustable speed drives (MC-ASD) which use the strength of a magnetic field to control the amount of torque transferred between motor and drive shaft. The MagnaDrive Adjustable Speed Coupling System uses fixed rare-earth magnets and varies the distance between rotating plates in the assembly. the PAYBACK Variable Speed Drive uses an electromagnet to control the speed of the drive
A lattice chiral theory with multifermion couplings
NASA Astrophysics Data System (ADS)
Xue, She-Sheng
1996-02-01
Analyzing an SUL(2) ⊗ UR(1) chiral theory with multifermion couplings on a lattice, we find a possible region in the phase space of multifermion couplings, where no spontaneous symmetry breaking occurs, doublers are decoupled as massive Dirac fermions consistently with the SUL(2) ⊗ UR(1) chiral symmetry, the “spectator” fermion ψR( x) is free mode, whereas the normal mode of ψLi( x) is plausibly speculated to be chiral in the continuum limit. This is not in agreement with the general belief of the definite failure of theories so constructed.
Coupling system to a microsphere cavity
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir (Inventor); Maleki, Lute (Inventor); Yao, Steve (Inventor); Wu, Chi (Inventor)
2002-01-01
A system of coupling optical energy in a waveguide mode, into a resonator that operates in a whispering gallery mode. A first part of the operation uses a fiber in its waveguide mode to couple information into a resonator e.g. a microsphere. The fiber is cleaved at an angle .PHI. which causes total internal reflection within the fiber. The energy in the fiber then forms an evanescent field and a microsphere is placed in the area of the evanescent field. If the microsphere resonance is resonant with energy in the fiber, then the information in the fiber is effectively transferred to the microsphere.
Coupled-channel scattering on a torus
Guo, Peng; Dudek, Jozef Jon; Edwards, Robert G.; Szczepaniak, Adam Pawel
2013-07-01
Based on the Hamiltonian formalism approach, a generalized Luscher's formula for two particle scattering in both the elastic and coupled-channel cases in moving frames is derived from a relativistic Lippmann-Schwinger equation. Some strategies for extracting scattering amplitudes for a coupled-channel system from the discrete finite-volume spectrum are discussed and illustrated with a toy model of two-channel resonant scattering. This formalism will, in the near future, be used to extract information about hadron scattering from lattice QCD computations.
Exclusive window onto Higgs Yukawa couplings.
Kagan, Alexander L; Perez, Gilad; Petriello, Frank; Soreq, Yotam; Stoynev, Stoyan; Zupan, Jure
2015-03-13
We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h→MV, where M denotes a vector meson and V indicates either γ, W or Z. We calculate the branching ratios for these processes in both the standard model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines.
Processes of Change in Self-Directed Couple Relationship Education
ERIC Educational Resources Information Center
Wilson, Keithia L.; Halford, W. Kim
2008-01-01
The current study examined the learning processes involved in professionally supported self-directed couple relationship education (CRE). Fifty-nine couples completed Couple CARE, a systematic, self-directed CRE program designed in flexible delivery mode to be completed at home. Couples watched a DVD introducing key relationship ideas and skills…
Nonlinear interaction of meta-atoms through optical coupling
Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A.; Powell, D. A.; Shadrivov, I. V.; Kivshar, Yu. S.; Lapine, M.; McPhedran, R. C.
2014-01-06
We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.
Plasma transport theory spanning weak to strong coupling
Daligault, Jérôme; Baalrud, Scott D.
2015-06-29
We describe some of the most striking characteristics of particle transport in strongly coupled plasmas across a wide range of Coulomb coupling strength. We then discuss the effective potential theory, which is an approximation that was recently developed to extend conventional weakly coupled plasma transport theory into the strongly coupled regime in a manner that is practical to evaluate efficiently.
30 CFR 56.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen intake coupling. 56.7806 Section 56.7806... Piercing Rotary Jet Piercing § 56.7806 Oxygen intake coupling. The oxygen intake coupling on jet-piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 56.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen intake coupling. 56.7806 Section 56.7806... Piercing Rotary Jet Piercing § 56.7806 Oxygen intake coupling. The oxygen intake coupling on jet-piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 57.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen intake coupling. 57.7806 Section 57.7806... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7806 Oxygen intake coupling. The oxygen intake coupling on jet piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 57.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Oxygen intake coupling. 57.7806 Section 57.7806... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7806 Oxygen intake coupling. The oxygen intake coupling on jet piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 56.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Oxygen intake coupling. 56.7806 Section 56.7806... Piercing Rotary Jet Piercing § 56.7806 Oxygen intake coupling. The oxygen intake coupling on jet-piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 57.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Oxygen intake coupling. 57.7806 Section 57.7806... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7806 Oxygen intake coupling. The oxygen intake coupling on jet piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 57.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen intake coupling. 57.7806 Section 57.7806... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7806 Oxygen intake coupling. The oxygen intake coupling on jet piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 56.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Oxygen intake coupling. 56.7806 Section 56.7806... Piercing Rotary Jet Piercing § 56.7806 Oxygen intake coupling. The oxygen intake coupling on jet-piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 56.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen intake coupling. 56.7806 Section 56.7806... Piercing Rotary Jet Piercing § 56.7806 Oxygen intake coupling. The oxygen intake coupling on jet-piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
30 CFR 57.7806 - Oxygen intake coupling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Oxygen intake coupling. 57.7806 Section 57.7806... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7806 Oxygen intake coupling. The oxygen intake coupling on jet piercing drills shall be constructed so that only the oxygen hose can be coupled to it....
Anisotropy in inflation with non-minimal coupling
Chen, Bin; Jin, Zhuang-wei E-mail: jinzw@pku.edu.cn
2014-09-01
We study a new anisotropic inflation model, with an inflaton field nonminimally coupled with the gravity and a vector field. We find that the anisotropic attractor solution exists not only in the weak curvature coupling limit, but more interestingly in the strong curvature coupling limit as well. We show that in the strong curvature coupling limit, the contribution from the anisotropy is greatly suppressed.
Do Couple-Based Interventions Make a Difference for Couples Affected by Cancer?: A Systematic Review
2012-01-01
Background With the growing recognition that patients and partners react to a cancer diagnosis as an interdependent system and increasing evidence that psychosocial interventions can be beneficial to both patients and partners, there has been a recent increase in the attention given to interventions that target couples. The aim of this systematic review was to identify existing couple-based interventions for patients with cancer and their partners and explore the efficacy of these interventions (including whether there is added value to target the couple versus individuals), the content and delivery of couple-based interventions, and to identify the key elements of couple-based interventions that promote improvement in adjustment to cancer diagnosis. Method A systematic review of the cancer literature was performed to identify experimental and quasi-experimental couple-based interventions published between 1990 and 2011. To be considered for this review, studies had to test the efficacy of a psychosocial intervention for couples affected by cancer. Studies were excluded if they were published in a language other than English or French, focused on pharmacological, exercise, or dietary components combined with psychosocial components, or did not assess the impact of the intervention on psychological distress (e.g., depression, anxiety) or quality of life. Data were extracted using a standardised data collection form, and were analysed independently by three reviewers. Results Of the 709 articles screened, 23 were included in this review. Couple-based interventions were most efficacious in improving couple communication, psychological distress, and relationship functioning. Interventions had a limited impact on physical distress and social adjustment. Most interventions focused on improving communication and increasing understanding of the cancer diagnosis within couples. Interventions were most often delivered by masters-level nurses or clinical psychologists
Determination of a coupling function in multicoupled oscillators.
Miyazaki, Jun; Kinoshita, Shuichi
2006-05-19
A new method to determine a coupling function in a phase model is theoretically derived for coupled self-sustained oscillators and applied to Belousov-Zhabotinsky (BZ) oscillators. The synchronous behavior of two coupled BZ reactors is explained extremely well in terms of the coupling function thus obtained. This method is expected to be applicable to weakly coupled multioscillator systems, in which mutual coupling among nearly identical oscillators occurs in a similar manner. The importance of higher-order harmonic terms involved in the coupling function is also discussed.
Ten organising principles for coupling in multiphysics and multiscale models.
Larson, J. W.; Mathematics and Computer Science; Australian National Univ.; Univ. of Chicago
2009-01-01
Computational science faces new challenges posed by multiphysics and multiscale, or more generally put, coupled models. These systems are composites formed from separate subsystem models that interact via data exchanges. These data dependencies pose a coupling problem, and on distributed-memory computers, a parallel coupling problem. This paper presents a definition of terms and a set of organizing principles for the coupling and parallel coupling problems. It is meant as a first step towards creating a theory of coupled models. These principles are then employed in a case study of a coupled climate model and offer remarkable insight into its structure.
Engaged Couples' Reactions to a Marriage Contract.
ERIC Educational Resources Information Center
Fisher, C. Daniel
This article describes the reactions of a small sample of college students from a Northeastern, private nonsectarian university to a marriage contract that was designed by a couple on this campus. The major reasons for writing the contract included apprehension about the pre-marital socialization system in our society, concerns regarding marital…
Sex Roles among Married and Unmarried Couples.
ERIC Educational Resources Information Center
Kotkin, Mark
1983-01-01
An investigation of sex roles among married and cohabitating couples showed: (1) that male career success, male career precedence, the decision to marry, and conventional allocation of household tasks are all concomitant and (2) that marriage crystallizes sex roles and behaviorally solidifies male career precedence, facilitating the husband's…
Collaborative Treatment for the Psychosomatic Couple
ERIC Educational Resources Information Center
Thoburn, John; Hoffman-Robinson, Gwynith; Shelly, Lauren J.; Sayre, George
2009-01-01
This article reflects on the conceptualization and treatment strategies associated with a systems perspective of the somatic couple. It is suggested that resistance to change, nurturance of the somatic patient by his or her partner, and rigid role taking serve to promote relationship stability and individual pseudopower at the cost of patient…
Inductively coupled wireless RF coil arrays.
Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J
2015-04-01
As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. PMID:25523607
Dual-Career Couples and Academic Science.
ERIC Educational Resources Information Center
Weiler, Susan C.; Yancey, Paul H.
1992-01-01
Describes the major challenges of accommodating dual-career couples in academic science and some of the current responses to those challenges from institutions of higher learning. Discusses prevailing perceptions concerning household responsibility, the science work ethic, job procurement, continued discrimination against women, and future…
Nonlinear coupling in the human motor system
Chen, C.C.; Kilner, J.M.; Friston, K.J.; Kiebel, S. J.; Jolly, R.K.; Ward, N. S.
2010-01-01
The synchronous discharge of neuronal assemblies is thought to facilitate communication between areas within distributed networks in the human brain. This oscillatory activity is especially interesting, given the pathological modulation of specific frequencies in diseases affecting the motor system. Many studies investigating oscillatory activity have focussed on same frequency, or linear, coupling between areas of a network. In this study, our aim was to establish a functional architecture in the human motor system responsible for induced responses as measured in normal subjects with magnetoencephalography. Specifically, we looked for evidence for additional nonlinear (between-frequency) coupling among neuronal sources and, in particular, whether nonlinearities were found predominantly in connections within areas (intrinsic), between areas (extrinsic) or both. We modelled the event-related modulation of spectral responses during a simple hand-grip using dynamic casual modelling. We compared models with and without nonlinear connections under conditions of symmetric and asymmetric interhemispheric connectivity. Bayesian model comparison suggested that the task-dependent motor network was asymmetric during right hand movements. Furthermore, it revealed very strong evidence for nonlinear coupling between sources in this distributed network, but interactions among frequencies within a source appeared linear in nature. Our results provide empirical evidence for nonlinear coupling among distributed neuronal sources in the motor system and that these play an important role in modulating spectral responses under normal conditions. PMID:20573886
Discovering Semantic Patterns in Bibliographically Coupled Documents.
ERIC Educational Resources Information Center
Qin, Jian
1999-01-01
An example of semantic pattern analysis, based on keywords selected from documents grouped by bibliographical coupling, is used to demonstrate the methodological aspects of knowledge discovery in bibliographic databases. Frequency distribution patterns suggest the existence of a common intellectual base with a wide range of specialties and…
A Sexual Enhancement Program for Elderly Couples
ERIC Educational Resources Information Center
Rowland, Kay F.; Haynes, Stephen N.
1978-01-01
This study examined effects of a group sexual enhancement program for elderly couples. The three two-week phases, pretreatment with no therapist contact, education on human sexual functioning in aging people, and communication exercises-sexual techniques, were methods to improve communication and increase enjoyment of sexual contact. (Author)
Thawing in a coupled quintessence model
NASA Astrophysics Data System (ADS)
Honardoost, M.; Sadjadi, H. Mohseni; Sepangi, H. R.
2016-10-01
We consider the thawing model in the framework of coupled quintessence model. The effective potential has Z_2 symmetry which is broken spontaneously when the dark matter density becomes less than a critical value leading the quintessence equation of state parameter to deviate from -1. Conditions required for this procedure are obtained and analytical solution for the equation of state parameter is derived.
Spin-lattice coupling in iron jarosite
Buurma, A.J.C.; Handayani, I.P.; Mufti, N.; Blake, G.R.; Loosdrecht, P.H.M. van; Palstra, T.T.M.
2012-11-15
We have studied the magnetoelectric coupling of the frustrated triangular antiferromagnet iron jarosite using Raman spectroscopy, dielectric measurements and specific heat. Temperature dependent capacitance measurements show an anomaly in the dielectric constant at T{sub N}. Specific heat data indicate the presence of a low frequency Einstein mode at low temperature. Raman spectroscopy confirms the presence of a new mode below T{sub N} that can be attributed to folding of the Brillouin zone. This mode shifts and sharpens below T{sub N}. We evaluate the strength of the magnetoelectric coupling using the symmetry unrestricted biquadratic magnetoelectric terms in the free energy. - Graphical abstract: Sketch of two connected triangles formed by Fe{sup 3+} spins (red arrows) in the hexagonal basal plane of potassium iron jarosite. An applied magnetic field (H) below the antiferromagnetic ordering temperature induces shifts of the hydroxy ligands, giving rise to local electrical dipole moments (blue arrows). These electric displacements cancel out in pairwise fashion by symmetry. Ligand shifts are confined to the plane and shown by shadowing. Highlights: Black-Right-Pointing-Pointer Evidence has been found for spin-lattice coupling in iron jarosite. Black-Right-Pointing-Pointer A new optical Raman mode appears below T{sub N} and shifts with temperature. Black-Right-Pointing-Pointer The magnetodielectric coupling is mediated by superexchange. Black-Right-Pointing-Pointer Symmetry of Kagome magnetic lattice causes local electrical dipole moments to cancel.
Analytical model of internally coupled ears.
Vossen, Christine; Christensen-Dalsgaard, Jakob; van Hemmen, J Leo
2010-08-01
Lizards and many birds possess a specialized hearing mechanism: internally coupled ears where the tympanic membranes connect through a large mouth cavity so that the vibrations of the tympanic membranes influence each other. This coupling enhances the phase differences and creates amplitude differences in the tympanic membrane vibrations. Both cues show strong directionality. The work presented herein sets out the derivation of a three dimensional analytical model of internally coupled ears that allows for calculation of a complete vibration profile of the membranes. The analytical model additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry.
Control of Coupling Phenomena in Magnetic Nanostructures
NASA Astrophysics Data System (ADS)
Sun, Wei-Yang
The search for non-volatile, non-dissipative computing devices (memory and logic) beyond current transistor technology has encouraged the scientific community to develop new nanoscale magnetic control mechanisms. In the present work, the control of magnets by magnetoelastic anisotropy is investigated within the context of nanoscale magnetoelectric composite systems. These magnetoelectric composites are artificial multiferroic materials which exhibit both a coexistence and coupling of ferromagnetic and ferroelectric ordering. This device architecture provides a route to control magnetism with electric fields via the application of mechanical stress. In the present work, magnetization behavior under mechanical stress of various magnetically coupled systems is investigated using both advanced computer simulations and experimental work. The application of voltage-controlled strain is shown to influence dipole coupled nanomagnet arrays and antiferromagnetic-ferromagnetic (AFM-FM) spontaneous exchange bias systems, which present pathways to engineered systems. Furthermore, the repeatable nature of these experiments presents unambiguous deterministic voltage control for both dipole-coupled systems and spontaneous exchange bias systems. The experimental results are confirmed by multiple characterization techniques, including superconducting quantum interference device magnetometry (SQUID) and magneto optic Kerr effect magnetometry (MOKE). This work thus provides significant evidence of the viability of magnetoelastic anisotropy as a means to control magnetoelectric heterostructures in future computing devices.
Coupling of cardiac and locomotor rhythms.
Kirby, R L; Nugent, S T; Marlow, R W; MacLeod, D A; Marble, A E
1989-01-01
The pressure within exercising skeletal muscle rises and falls rhythmically during normal human locomotion, the peak pressure reaching levels that intermittently impede blood flow to the exercising muscle. Speculating that a reciprocal relationship between the timing of peak intramuscular and pulsatile arterial pressures should optimize blood flow through muscle and minimize cardiac load, we tested the hypothesis that heart rate becomes entrained with walking and running cadence at some locomotion speeds, by means of electrocardiography and an accelerometer to provide signals reflecting heart rate and cadence, respectively. In 18 of 25 subjects, 1:1 coupling of heart and step rates was present at one or more speeds on a motorized treadmill, generally at moderate to high exercise intensities. To determine how exercise specific this phenomenon is, and to refute the competing hypothesis that coupling is due to vertical accelerations of the heart during locomotion, we had 12 other subjects cycle on an electronically braked bicycle ergometer. Coupling was found between heart rate and pedaling frequency in 10 of them. Cardiac-locomotor coupling appears to be a normal physiological phenomenon, and its identification provides a fresh perspective from which to study endurance.
A Couples Group of Medical Students
ERIC Educational Resources Information Center
Porter, Kenneth; And Others
1976-01-01
An experiment at the Albert Einstein College of Medicine with a short-term medical student couples' workshop designed to foster increased sensitivity between medical students and their partners resulted in recommendation that such workshops be offered to medical students. (JT)
Dental applications for silane coupling agents.
Nihei, Tomotaro
2016-01-01
Silane coupling agents alter the properties of material surfaces, which are modified by means of an organic functional group of specific silanes. This review describes the use of hydrophobic silane compounds for surface modification of silica-based and other materials. (J Oral Sci 58, 151-155, 2016). PMID:27349534
Ultrafast Directional Beam Switching in Coupled VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Goorjian, Peter
2001-01-01
We propose a new approach to performing ultrafast directional beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 microns in diameter placed about 1 micron apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degrees.