Sample records for composite anode material

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wu; Canfield, Nathan L.; Zhang, Ji-Guang

    Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein themore » anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.« less

  2. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  3. Silicon oxide based high capacity anode materials for lithium ion batteries

    DOEpatents

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  4. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  5. Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2006-01-01

    A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.

  6. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries.

    PubMed

    Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia

    2017-01-17

    The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group "-(CH₂)₅COOH", and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g -1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes.

  7. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility

    PubMed Central

    Zhao, Jie; Lee, Hyun-Wook; Sun, Jie; Yan, Kai; Liu, Yayuan; Liu, Wei; Lu, Zhenda; Lin, Dingchang; Zhou, Guangmin; Cui, Yi

    2016-01-01

    A common issue plaguing battery anodes is the large consumption of lithium in the initial cycle as a result of the formation of a solid electrolyte interphase followed by gradual loss in subsequent cycles. It presents a need for prelithiation to compensate for the loss. However, anode prelithiation faces the challenge of high chemical reactivity because of the low anode potential. Previous efforts have produced prelithiated Si nanoparticles with dry air stability, which cannot be stabilized under ambient air. Here, we developed a one-pot metallurgical process to synthesize LixSi/Li2O composites by using low-cost SiO or SiO2 as the starting material. The resulting composites consist of homogeneously dispersed LixSi nanodomains embedded in a highly crystalline Li2O matrix, providing the composite excellent stability even in ambient air with 40% relative humidity. The composites are readily mixed with various anode materials to achieve high first cycle Coulombic efficiency (CE) of >100% or serve as an excellent anode material by itself with stable cyclability and consistently high CEs (99.81% at the seventh cycle and ∼99.87% for subsequent cycles). Therefore, LixSi/Li2O composites achieved balanced reactivity and stability, promising a significant boost to lithium ion batteries. PMID:27313206

  8. Embedded Si/Graphene Composite Fabricated by Magnesium-Thermal Reduction as Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning

    2017-12-01

    Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g-1 at a current density of 50 mA·g-1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.

  9. FY-16 Technology Gap Study Technical Report: Analysis of Undissolved Anode Materials of Mark-IV Electrorefiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Tae-Sic; Vaden, DeeEarl; Westphal, Brian Robert

    2016-01-01

    The Experimental Breeder Reactor II (EBR-II) is a sodium cooled fast reactor developed at Argonne National Laboratory (ANL). The used fuels from the EBR-II are currently being treated in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL). The Mark IV (Mk-IV) electrorefiner (ER) is a unit process in the FCF, which is primarily assigned to treating the used driver fuels. The stainless steel anode baskets hold the chopped spent driver fuel segments. During electrorefining, the anode baskets are immersed into the electrolyte and the used fuel is dissolved electrochemically. Perforated sides and bottoms allow the flow ofmore » the electrolyte into and out of the anode baskets. The steel cathode is also immersed into the electrolyte and collects the reduced products. The active metal contents in the used fuel (e.g., Cs, Sr, lanthanides, Pu, etc.) reacts with uranium cations in the electrolyte and progressively reports to the electrolyte. Noble metals are mostly retained in the cladding hulls. Varying quantities of zirconium are retained in the cladding hulls depending on the operational conditions of the Mk-IV ER. The undissolved anode materials are removed from the anode baskets and stored for subsequent metal waste form processing. These undissolved materials typically include undissolved fuels, stainless steel cladding, and adhering electrolyte. A couple of hulls are retrieved for chemical analysis and used for estimating the composition of the entire undissolved anode materials. The mass balance attempt based on this practice of estimating the undissolved anode materials has been a challenge due to inherently high sampling errors associated with heterogeneous undissolved material compositions. Responding to the prescribed challenge, this report investigates chemical analysis data as a whole and finds noticeable trends in the compositions of undissolved anode material samples with respect to the mass of the whole undissolved anode materials. Based upon this discovery, an empirical model is proposed.« less

  10. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  11. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  12. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  13. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  14. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  15. Embedded Si/Graphene Composite Fabricated by Magnesium-Thermal Reduction as Anode Material for Lithium-Ion Batteries.

    PubMed

    Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning

    2017-12-16

    Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO 2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g -1 at a current density of 50 mA·g -1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.

  16. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries

    PubMed Central

    Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia

    2017-01-01

    The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group “–(CH2)5COOH”, and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g−1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes. PMID:28772432

  17. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  18. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability.

    PubMed

    Peng, Shengjie; Han, Xiaopeng; Li, Linlin; Zhu, Zhiqiang; Cheng, Fangyi; Srinivansan, Madhavi; Adams, Stefan; Ramakrishna, Seeram

    2016-03-09

    Exploitation of high-performance anode materials is essential but challenging to the development of sodium-ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g(-1) at 1 A g(-1) ), excellent rate capability (636 mAh g(-1) at 0.1 A g(-1) and 306 mAh g(-1) at 10 A g(-1)), and extraordinarily cycle stability (420 mAh g(-1) at 1 A g(-1) after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high-performance SIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Use of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3 materials in composite anodes for direct ethanol solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Xiao-Feng; Wang, S. R.; Wang, Z. R.; Hu, Q.; Sun, X. F.; Wen, T. L.; Wen, Z. Y.

    The perovskite system La 1- xSr xCr 1- yM yO 3- δ (M, Mn, Fe and V) has recently attracted much attention as a candidate material for the fabrication of solid oxide fuel cells (SOFCs) due to its stability in both H 2 and CH 4 atmospheres at temperatures up to 1000 °C. In this paper, we report the synthesis of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3 (LSCM) by solid-state reaction and its employment as an alternative anode material for anode-supported SOFCs. Because LSCM shows a greatly decreased electronic conductivity in a reducing atmosphere compared to that in air, we have fabricated Cu-LSCM-ScSZ (scandia-stabilized zirconia) composite anodes by tape-casting and a wet-impregnation method. Additionally, a composite structure (support anode, functional anode and electrolyte) structure with a layer of Cu-LSCM-YSZ (yttria-stabilized zirconia) on the supported anode surface has been manufactured by tape-casting and screen-printing. Single cells with these two kinds of anodes have been fabricated, and their performance characteristics using hydrogen and ethanol have been measured. In the operation period, no obvious carbon deposition was observed when these cells were operated on ethanol. These results demonstrate the stability of LSCM in an ethanol atmosphere and its potential utilization in anode-supported SOFCs.

  20. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization resistances. Ni-LDC (50 v% NO was selected to be the anode for the LSGM electrolyte with a thin LDC barrier layer. Finally, the performance of complete LSGM electrolyte-supported IT-SOFCs with the selected cathode (LSCF-LSGM) and anode (Ni-LDC) materials coupled with the LDC barrier layer was evaluated at 600--800°C. The simulated cell performance of the anode-supported cell based on LSGM electrolyte was promising.

  1. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOEpatents

    Neudecker, Bernd J.; Bates, John B.

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  2. Synthesis and electrochemical performance of mesoporous SiO{sub 2}–carbon nanofibers composite as anode materials for lithium secondary batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Yura; Choi, Jin-Yeong; Park, Heai-Ku

    Highlights: • Mesoporous SiO{sub 2}–carbon nanofibers composite synthesized on Ni foam without any binder. • This composite was directly applied as anode material of Li secondary batteries. • Showed the highest initial (2420 mAh/g) and discharging (2092 mAh/g) capacity. • This material achieved a retention rate of 86.4% after 30 cycles. - Abstract: In this study, carbon nanofibers (CNFs) and mesoporous SiO{sub 2}–carbon nanofibers composite were synthesized and applied as the anode materials in lithium secondary batteries. CNFs and mesoporous SiO{sub 2}–CNFs composite were grown via chemical vapor deposition method with iron-copper catalysts. Mesoporous SiO{sub 2} materials were prepared bymore » sol–gel method using tetraethylorthosilicate as the silica source and cetyltrimethylammoniumchloride as the template. Ethylene was used as the carbon source and passes into a quartz reactor of a tube furnace heated to 600 °C, and the temperature was maintained at 600 °C for 10 min to synthesize CNFs and mesoporous SiO{sub 2}–CNFs composite. The electrochemical characteristics of the as-prepared CNFs and mesoporous SiO{sub 2}–CNFs composite as the anode of lithium secondary batteries were investigated using a three-electrode cell. In particular, the mesoporous SiO{sub 2}–CNFs composites synthesized without binder after depositing mesoporous SiO{sub 2} on Ni foam showed the highest charging and discharging capacity and retention rate. The initial capacity (2420 mAh/g) of mesoporous SiO{sub 2}–CNFs composites decreased to 2092 mAh/g after 30 cycles at a retention rate of 86.4%.« less

  3. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    PubMed

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  4. 46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... installation of magnesium sacrificial anodes in cargo tanks utilized for the carriage of flammable or... analysis of the alloy composition shall be submitted for approval. The anode should be magnesium free and... consideration. (c) Sacrificial anodes using materials other than those having aluminum and/or magnesium in whole...

  5. 46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... installation of magnesium sacrificial anodes in cargo tanks utilized for the carriage of flammable or... analysis of the alloy composition shall be submitted for approval. The anode should be magnesium free and... consideration. (c) Sacrificial anodes using materials other than those having aluminum and/or magnesium in whole...

  6. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2010-10-12

    A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

  7. Newer polyanionic bio-composite anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Karuppiah, Saravanan; Vellingiri, Suganya; Nallathamby, Kalaiselvi

    2017-02-01

    NASICON frame work Na3V2(PO4)3 (NVP), wrapped by nitrogen and sulfur doped bio-carbon matrix derived from human hair (HHC) has been investigated for its anode behavior in SIBs. Basically, NVP is bestowed with a crystal structure of 3D open framework and a moderate theoretical capacity of 118 mAh g-1, which are the twin advantages and motivation behind the selection of this material. Prepared through a simple, scalable and facile method, the key problems associated with pristine NVP electrode material, such as inferior conductivity and severe volume change have been mitigated to a great extent through the formation of a composite containing HHC. Herein, HHC is a cheap and eco-friendly composite additive, obtained from a universal bio-waste, viz., human hair and hence NVP/HHC qualifies itself as a green composite. Interestingly, NVP/HHC-10 (in-situ) and NVP/HHC-20 (ex-situ) anodes show excellent electrochemical performance in terms of cycling stability up to 500 cycles and rate capability @ 2 A g-1, which are superior than similar category NVP anodes reported in the literature. Further, post cycling structure and morphology of NVP/HHC composite anodes evidence the appreciable stability bestowed with the select composition, which is found to get maintained upon extended cycles and even after rate capability test.

  8. Disordered anodes for Ni-metal rechargeable battery

    DOEpatents

    Young, Kwo-hsiung; Wang, Lixin; Mays, William C.

    2016-11-22

    An electrochemical cell is provided that includes a structurally and compositionally disordered electrochemically active alloy material as an anode active material with unexpected capacity against a nickel hydroxide based cathode active material. The disordered metal hydroxide alloy includes three or more transition metal elements and is formed in such a way so as to produce the necessary disorder in the overall system. When an anode active material includes nickel as a predominant, the resulting cells represent the first demonstration of a functional Ni/Ni cell.

  9. High capacity anode materials for lithium ion batteries

    DOEpatents

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  10. Microsized Porous SiOx@C Composites Synthesized through Aluminothermic Reduction from Rice Husks and Used as Anode for Lithium-Ion Batteries.

    PubMed

    Cui, Jinlong; Cui, Yongfu; Li, Shaohui; Sun, Hongliang; Wen, Zhongsheng; Sun, Juncai

    2016-11-09

    Microsized porous SiO x @C composites used as anode for lithium-ion batteries (LIBs) are synthesized from rice husks (RHs) through low-temperature (700 °C) aluminothermic reduction. The resulting SiO x @C composite shows mesoporous irregular particle morphology with a high specific surface area of 597.06 m 2 /g under the optimized reduction time. This porous SiO x @C composite is constructed by SiO x nanoparticles uniformly dispersed in the C matrix. When tested as anode material for LIBs, it displays considerable specific capacity (1230 mAh/g at a current density of 0.1 A/g) and excellent cyclic stability with capacity fading of less than 0.5% after 200 cycles at 0.8 A/g. The dramatic volume change for the Si anode during lithium-ion (Li + ) insertion and extraction can be successfully buffered because of the formation of Li 2 O and Li 4 SiO 4 during initial lithiation process and carbon coating layer on the surface of SiO x . The porous structure could also mitigate the volume change and mechanical strains and shorten the Li + diffusion path length. These characteristics improve the cyclic stability of the electrode. This low-cost and environment-friendly SiO x @C composite anode material exhibits great potential as an alternative for traditional graphite anodes.

  11. Graphene nanocomposites for electrochemical cell electrodes

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  12. Well-ordered mesoporous Fe2O3/C composites as high performance anode materials for sodium-ion batteries.

    PubMed

    Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng

    2017-04-11

    Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.

  13. Germanium and Tin Based Anode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Ji, Dongsheng

    The discovery of safe anode materials with high energy density for lithium-ion batteries has always been a significant topic. Group IV elements have been under intensive study for their high capability of alloying with lithium. Batteries with graphite and tin based anode material have already been applied in cell phones and vehicles. In order to apply group IV elements, their dramatic volume change during lithiation and delithiation processes is the key point to work on. Reducing the particle size is the most common method to buffer the volume expansion. This strategy has been applied on both germanium and tin based materials. Germanium based anode material has been made by two different synthesis methods. The amorphous Ge-C-Ti composite material was made by ball milling method and performed much better than other germanium alloy including Ge-Mg, Ge-Fe and Ge-Fe.Germanium sphere nano particles with diameter of around 50 nm have been made by solution method. After ball milled with graphite, the resulted product performed stable capacity over 500 mAh˙g-1 for more than 20 cycles. Ball milled graphite in the composite plays an important role of buffering volume change and stabilizing germanium. Sn-Fe alloy is one of the feasible solutions to stabilize tin. Sn 2Fe-C composite has been made by ball milling method. After optimizations of the ratio of precursors, reaction time, milling balls and electrolyte additives, the electrochemistry performance was improved. The anode performed 420 mAh˙ -1 at 1.0 mA/cm2 and maintained its structure after cycling at 2.0 mA/cm2. At 0.3 mA/cm2 cycling rate, the anode performed 978 mAh/cm3 after 500 cycles, which still exceeds the theoretical capacity of graphite.

  14. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode - Long term cycle life study, rate effect and charge sharing analysis

    NASA Astrophysics Data System (ADS)

    Shellikeri, A.; Yturriaga, S.; Zheng, J. S.; Cao, W.; Hagen, M.; Read, J. A.; Jow, T. R.; Zheng, J. P.

    2018-07-01

    Energy storage devices, which can combine the advantages of lithium-ion battery with that of electric double layer capacitor, are of prime interest. Recently, composite cathodes, which combine a battery material with capacitor material, have shown promise in enhancing life cycle and energy/power performances. Lithium-ion capacitor (LIC), with unique charge storage mechanism of combining a pre-lithiated battery anode with a capacitor cathode, is one such device which has the potential to synergistically incorporate the composite cathode to enhance capacity and cycle life. We report here a hybrid LIC consisting of a lithium iron phosphate (LiFePO4-LFP)/Activated Carbon composite cathode in combination with a hard carbon anode, by integrating the cycle life and capacity enhancing strategies of a dry method of electrode fabrication, anode pre-lithiation and a 3:1 anode to cathode capacity ratio, demonstrating a long cycle life, while elaborating on the charge sharing between the faradaic and non-faradaic mechanism in the battery and capacitor materials, respectively in the composite cathode. An excellent cell capacity retention of 94% (1000 cycles at 1C) and 92% (100,000 cycles at 60C) were demonstrated, while retaining 78% (over 6000 cycles at 2.7C) and 67% (over 70,000 cycles at 43C) of the LFP capacity in the composite cathode.

  15. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-01

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  16. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.

    PubMed

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-06

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  17. Nitrogen-doped carbon coated MnO nanopeapods as superior anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Chen, Lihui; Pan, Pei; Du, Jun; Fu, Zhengbing; Qin, Caiqin; Wang, Feng

    2017-11-01

    High performance nitrogen-doped carbon (NC) materials decorated with MnO hybrid (MnO@NC) composites with a nanopeapod appearance were synthesized by with a simple hydrothermal method and insuit-polymeric route. As an anode material for lithium ion batteries (LIBs), the nanopeapod structure of MnO@NC composites with internal void spaces exhibits good rate capability, high conductivity and excellent cycling stability. After 200 cycles, the nanopeapod composites yield a specific capacity of 775.4 mAh g-1 at 100 mA g-1 and a high-rate capacity of 559.7 mAh g-1 at 1000 mA g-1. The proposed synthesis of nanopeapod structure composites with an internal room is an efficient design with excellent electrode materials for rechargeable LIBs.

  18. Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode.

    PubMed

    Lee, Sang Ha; Park, Sengyoen; Kim, Min; Yoon, Dohyeon; Chanthad, Chalathorn; Cho, Misuk; Kim, Jaehoon; Park, Jong Hyeok; Lee, Youngkwan

    2016-08-18

    The silicon (Si)/graphene composite has been touted as one of the most promising anode materials for lithium ion batteries. However, the optimal fabrication method for this composite remains a challenge. Here, we developed a novel method using supercritical carbon dioxide (scCO2) to intercalate Si nanoparticles into graphene nanosheets. Silicon was modified with a thin layer of polyaniline, which assisted the dispersion of graphene sheets by introducing π-π interaction. Using scCO2, well-dispersed Si/graphene composite was successfully obtained in a short time under mild temperature. The composite showed high cycle performance (1,789 mAh/g after 250 cycles) and rate capability (1,690 mAh/g at a current density of 4,000 mA/g). This study provides a new approach for cost-effective and scalable preparation of a Si/graphene composite using scCO2 for a highly stable lithium battery anode material.

  19. Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode

    PubMed Central

    Lee, Sang Ha; Park, Sengyoen; Kim, Min; Yoon, Dohyeon; Chanthad, Chalathorn; Cho, Misuk; Kim, Jaehoon; Park, Jong Hyeok; Lee, Youngkwan

    2016-01-01

    The silicon (Si)/graphene composite has been touted as one of the most promising anode materials for lithium ion batteries. However, the optimal fabrication method for this composite remains a challenge. Here, we developed a novel method using supercritical carbon dioxide (scCO2) to intercalate Si nanoparticles into graphene nanosheets. Silicon was modified with a thin layer of polyaniline, which assisted the dispersion of graphene sheets by introducing π-π interaction. Using scCO2, well-dispersed Si/graphene composite was successfully obtained in a short time under mild temperature. The composite showed high cycle performance (1,789 mAh/g after 250 cycles) and rate capability (1,690 mAh/g at a current density of 4,000 mA/g). This study provides a new approach for cost-effective and scalable preparation of a Si/graphene composite using scCO2 for a highly stable lithium battery anode material. PMID:27535108

  20. Fuel cells with doped lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.

  1. Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, Yun-Sheng; Xie, Xiao-Lin; Rick, John; Chang, Feng-Chih; Hwang, Bing-Joe

    2014-02-01

    Si, when compared to conventional graphite, offers an order-of-magnitude improvement as a high capacity anode material for Li-ion batteries. Despite significant advances in nanostructured Si-based anodes, the formation of stable Si anodes remains a challenge, due to the significant volume changes that occur during lithiation and delithiation. Si/graphene composites, with graphene sheets and Si nanoparticles bound in a dispersion obtained by a self-assembly technique using non-covalent electrostatic attraction (following thermal processing to remove residual organic material) are used to prepare Si-based anodes for use in Li-ion batteries. A mesoporous structure, obtained by further thermal processing is able to accommodate large Si nanoparticle volume changes during cycling, thereby facilitating Li-ion diffusion within the electrode. Morphological analysis showed that Si nanoparticles are homogeneously distributed on the graphene sheets, which is thought to account for the excellent electrochemical performance of the resulting Si/graphene composite. A composite containing Si 67.3 wt% exhibits a greatly improved capacity and cycling stability in comparison with bare Si in combination with the thermal reduction of a simple mixture of graphene oxide and Si nanoparticles without electrostatic attraction (Si content = 64.6 wt%; capacity of 512 mAh g-1 in 40th cycle).

  2. Battery designs with high capacity anode materials and cathode materials

    DOEpatents

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  3. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  4. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    DOEpatents

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  5. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    PubMed

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.

    PubMed

    Fan, Jing-Min; Chen, Jia-Jia; Zhang, Qian; Chen, Bin-Bin; Zang, Jun; Zheng, Ming-Sen; Dong, Quan-Feng

    2015-06-08

    An composite comprising amorphous carbon nitride (ACN) and zinc oxide is derived from ZIF-8 by pyrolysis. The composite is a promising anode material for sodium-ion batteries. The nitrogen content of the ACN composite is as high as 20.4 %, and the bonding state of nitrogen is mostly pyridinic, as determined by X-ray photoelectron spectroscopy (XPS). The composite exhibits an excellent Na(+) storage performance with a reversible capacity of 430 mA h g(-1) and 146 mA h g(-1) at current densities of 83 mA g(-1) and 8.33 A g(-1) , respectively. A specific capacity of 175 mA h g(-1) was maintained after 2000 cycles at 1.67 A g(-1) , with only 0.016 % capacity degradation per cycle. Moreover, an accelerating rate calorimetry (ARC) test demonstrates the excellent thermal stability of the composite, with a low self heating rate and high onset temperature (210 °C). These results shows its promise as a candidate material for high-capacity, high-rate anodes for sodium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing

    2014-05-12

    Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of high-energy silicon-based anode materials for lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Yi, Ran

    The emerging markets of electric vehicles (EV) and hybrid electric vehicles (HEV) generate a tremendous demand for low-cost lithium-ion batteries (LIBs) with high energy and power densities, and long cycling life. The development of such LIBs requires development of low cost, high-energy-density cathode and anode materials. Conventional anode materials in commercial LIBs are primarily synthetic graphite-based materials with a capacity of ˜370 mAh/g. Improvements in anode performance, particularly in anode capacity, are essential to achieving high energy densities in LIBs for EV and HEV applications. This dissertation focuses on development of micro-sized silicon-carbon (Si-C) composites as anode materials for high energy and power densities LIBs. First, a new, low-cost, large-scale approach was developed to prepare a micro-sized Si-C composite with excellent performance as an anode material for LIBs. The composite shows a reversible capacity of 1459 mAh/g after 200 cycles at 1 A/g (97.8% capacity retention) and excellent high rate performance of 700 mAh/g at 12.8 A/g, and also has a high tap density of 0.78 g/cm3. The structure of the composite, micro-sized as a whole, features the interconnected nanoscale size of the Si building blocks and the uniform carbon filling, which enables the maximum utilization of silicon even when the micro-sized particles break into small pieces upon cycling. To understand the effects of key parameters in designing the micro-sized Si-C composites on their electrochemical performance and explore how to optimize them, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro-sized Si-C composites were investigated. It has been found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the 1st cycle coulombic efficiency (CE) and the rate capability. Corresponding reasons underneath electrochemical performance have been revealed by various characterizations. Combining both optimized Si building block size and carbon coating temperature, the resultant composite can sustain 600 cycles at 1.2 A/g with a fixed lithiation capacity of 1200 mAh/g, the best cycling performance with such a high capacity for micro-sized Si-based anodes. To further improve the the rate capability of Si-based anode materials, an effecitive method of facile boron doping was demonstrated. Boron-doped Si-C composite can deliver a high capacity of 575 mAh/g at 6.4 A/g without addition of any conductive additives, 80% higher than that of undoped composite. Compared to the obvious capacity fading of undoped Si-C composite, boron-doped Si-C composite maintains its capacity well upon long cycling at a high current density. Electrochemical impedance spectroscopy (EIS) measurement shows boron-doped Si-C composite has lower charge transfer resistance, which helps improve its rate capability. A novel micro-sized graphene/Si-C composite (G/Si-C) was then developed to translate the performance of such micro-sized Si-C composites from the material level to the electrode level aiming to achieve high areal capacities (mAh/cm2) besides gravimetric capacities (mAh/g). Owing to dual conductive networks both within single particles formed by carbon and between different particles formed by graphene, low electrical resistance can be maintained at high mass loading, which enables a high degree of material utilization. Areal capacity thus increases almost linearly with mass loading. As a result, G/Si-C exhibits a high areal capacity of 3.2 mAh/cm2 after 100 cycles with high coulombic efficiency (average 99.51% from 2nd to 100th cycle), comparable to that of commercial anodes. Finally, a micro-sized Si-based material (B-Si/SiO2/C) featuring high rate performance was developed via a facile route without use of toxic hydrofluoric acid. A Li-ion hybrid battery constructed of such a Si-based anode and a porous carbon cathode was demonstrated with both high power and energy densities. Boron-doping is employed to improve the rate capability of B-Si/SiO2/C. At a high current density of 6.4 A/g, B-Si/SiO 2/C delivers a capacity of 685 mAh/g, 2.4 times that of the undoped Si/SiO2/C. Benefiting from the high rate performance along with low working voltage, high capacity and good cycling stability of B-Si/SiO 2/C, the hybrid battery exhibits a high energy density of 128 Wh/kg at 1229 W/kg. Even when power density increases to the level of a conventional supercapacitor (9704 W/kg), 89 Wh/kg can be obtained, the highest values of any hybrid battery to date. Long cycling life (capacity retention of 70% after 6000 cycles) and low self-discharge rate (voltage retention of 82% after 50 hours) are also achieved.

  9. Porous graphene nanocages for battery applications

    DOEpatents

    Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.

    2017-03-07

    An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.

  10. Nanoporous TiNb2O7/C Composite Microspheres with Three-Dimensional Conductive Network for Long-Cycle-Life and High-Rate-Capability Anode Materials for Lithium-Ion Batteries.

    PubMed

    Zhu, Guozhen; Li, Qing; Zhao, Yunhao; Che, Renchao

    2017-11-29

    On the basis of the advantages of ideal cycling stability, high discharge voltage (1.65 V), and excellent reversibility, more and more attention has been focused on TiNb 2 O 7 (marked as TNO) as an anode material candidate for lithium-ion batteries. However, the poor electronic conductivity and low ionic diffusion rate intrinsically restrict its practical use. Herein, we first synthesize the TNO/C composite microspheres with three-dimensionally (marked as 3D) electro-conductive carbon network and abundant nanoporous structure by a simple spray-drying method. The microspheres are constructed by irregularly primary cubic nanoparticle units with size of 100-200 nm. The nanopores throughout the microspheres range from 1 to 50 nm. As an anode material, the prepared TNO/C composite microspheres demonstrate a prominent charge/discharge capacity of 323.2/326 mA h g -1 after 300 cycles at 0.25 C (1 C = 388 mA g -1 ) and 259.9/262.5 mA h g -1 after 1000 long cycles at a high current density of 5 C, revealing the ideal reversible capacity and long cycling life. Meanwhile, the TNO/C composite microspheres present ideal rate performance, showing the discharge capacity of 120 mA h g -1 at 30 C after 10 cycles. The super electrochemical performance could be attributed to the 3D electro-conductive carbon network and nanoporous structure. The nanopores facilitate the permeation of electrolyte into the intercontacting regions of the anode materials. Carbon layers disperse uniformly throughout the 3D microspheres, effectively improving the electrical conductivity of the electrode. Hence, the prepared TNO/C composite microspheres have great potential to be used as an anode material for lithium-ion batteries.

  11. Rational Design of Si@SiO2/C Composites Using Sustainable Cellulose as a Carbon Resource for Anodes in Lithium-Ion Batteries.

    PubMed

    Shen, Dazhi; Huang, Chaofan; Gan, Lihui; Liu, Jian; Gong, Zhengliang; Long, Minnan

    2018-03-07

    In this work, we propose a novel and facile route for the rational design of Si@SiO 2 /C anode materials by using sustainable and environment-friendly cellulose as a carbon resource. To simultaneously obtain a SiO 2 layer and a carbon scaffold, a specially designed homogeneous cellulose solution and commercial Si nanopowder are used as the starting materials, and the cellulose/Si composite is directly assembled by an in situ regenerating method. Subsequently, Si@SiO 2 /C composite is obtained after carbonization. As expected, Si@SiO 2 is homogeneously encapsulated in the cellulose-derived carbon network. The obtained Si@SiO 2 /C composite shows a high reversible capacity of 1071 mA h g -1 at a current density of 420 mA g -1 and 70% capacity retention after 200 cycles. This novel, sustainable, and effective design is a promising approach to obtain high-performance and cost-effective composite anodes for practical applications.

  12. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  13. Fabrication of Ti substrate grain dependent C/TiO2 composites through carbothermal treatment of anodic TiO2.

    PubMed

    Rüdiger, Celine; Favaro, Marco; Valero-Vidal, Carlos; Calvillo, Laura; Bozzolo, Nathalie; Jacomet, Suzanne; Hejny, Clivia; Gregoratti, Luca; Amati, Matteo; Agnoli, Stefano; Granozzi, Gaetano; Kunze-Liebhäuser, Julia

    2016-04-07

    Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure. The chemical and structural properties of the composite on top of individual Ti substrate grains are examined by scanning photoelectron microscopy and micro-Raman spectroscopy. Through comparison of these data with electron backscatter diffraction, it is found that the amount of generated carbon and the grade of anodic film crystallinity correlate with the crystallographic orientation of the Ti substrate grains. On top of Ti grains with ∼(0001) orientations the anodic TiO2 exhibits the highest grade of crystallinity, and the composite contains the highest fraction of graphitic carbon compared to Ti grains with other orientations. This indirect effect of the Ti substrate grain orientation yields new insights into the activity of TiO2 towards the decomposition of carbon precursors.

  14. Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai

    2016-09-01

    Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less

  15. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.

    PubMed

    Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming; Liu, Yuzi; Yang, Yong; Ma, Tianyuan; Ren, Yang; Zuo, Xiaobing; Wu, Xue-Hang; Zhang, Xiaoyi; Amine, Khalil

    2016-06-08

    Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.

  16. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery

    NASA Astrophysics Data System (ADS)

    Zhou, Shuai; Zhou, Yu; Jiang, Wei; Guo, Huajun; Wang, Zhixing; Li, Xinhai

    2018-05-01

    Iron oxides are considered as attractive electrode materials because of their capability of lithium storage, but their poor conductivity and large volume expansion lead to unsatisfactory cycling stability. We designed and synthesized a novel Fe3O4 cluster microspheres/Graphene aerogels composite (Fe3O4/GAs), where Fe3O4 nanoparticles were assembled into cluster microspheres and then embedded in 3D graphene aerogels framework. In the spheres, the sufficient free space between Fe3O4 nanoparticles could accommodate the volume change during cycling process. Graphene aerogel works as flexible and conductive matrix, which can not only significantly increase the mechanical stress, but also further improve the storage properties. The Fe3O4/GAs composite as an anode material exhibits high reversible capability and excellent cyclic capacity for lithium ion batteries (LIBs). A reversible capability of 650 mAh g-1 after 500 cycles at a current density of 1 A g-1 can be maintained. The superior storage capabilities of the composites make them potential anode materials for LIBs.

  17. Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.

    PubMed

    Schalenbach, Maximilian; Zillgitt, Marcel; Maier, Wiebke; Stolten, Detlef

    2015-07-29

    The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents.

  18. SiLix-C Nanocomposites

    NASA Technical Reports Server (NTRS)

    Henry, Francois

    2015-01-01

    For this Phase II project, Superior Graphite Co., in collaboration with the Georgia Institute of Technology and Streamline Nanotechnologies, Inc., developed, explored the properties of, and demonstrated the enhanced capabilities of novel nanostructured SiLix-C anodes. These anodes can retain high capacity at a rapid 2-hour discharge rate and at 0 C when used in Li-ion batteries. In Phase I, these advanced anode materials had specific capacity in excess of 1,000 mAh/g, minimal irreversible capacity losses, and stable performance for 20 cycles at C/1. The goals in Phase II were to develop and apply a variety of novel nanomaterials, fine-tune the properties of composite particles at the nanoscale, optimize the composition of the anodes, and select appropriate binder and electrolytes. In order to achieve a breakthrough in power characteristics of Li-ion batteries, the team developed new nanostructured SiLix-C anode materials to offer up to 1,200 mAh/g at C/2 at 0 C.

  19. Centrifugal Spinning: An Alternative for Large Scale Production of Silicon-Carbon Composite Nanofibers for Lithium Ion Battery Anodes.

    PubMed

    Nava, Rocío; Cremar, Lee; Agubra, Victor; Sánchez, Jennifer; Alcoutlabi, Mataz; Lozano, Karen

    2016-11-02

    Composites made of silicon nanostructures in carbon matrixes are promising materials for anodes in Li ion batteries given the synergistic storage capacity of silicon combined with the chemical stability and electrical conductivity of carbonaceous materials. This work presents the development of Si/C composite fine fiber mats produced by carbonization of poly(vinyl alcohol) (PVA)/Si composites. PVA has a high carbon content (ca. 54.5%) and, being water-soluble, it promotes the development of environmentally friendly materials. Si nanoparticles were dispersed in PVA solutions and transformed into fine fibers using a centrifugal spinning technique given its potential for large scale production. The Si/PVA fibers mats were then subjected to dehydration by exposing them to sulfuric acid vapor. The dehydration improved the thermal and chemical stability of the PVA matrix, allowing further carbonization at 800 °C. The resulting Si/C composite fibers produced binder-free anodes for lithium ion batteries that delivered specific discharge and charge capacities of 952 mA h g -1 and 862 mA g -1 , respectively, with a Columbic efficiency of 99% after 50 cycles.

  20. A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell

    NASA Astrophysics Data System (ADS)

    Sui, Dong; Xie, Yuqing; Zhao, Weimin; Zhang, Hongtao; Zhou, Ying; Qin, Xiting; Ma, Yanfeng; Yang, Yong; Chen, Yongsheng

    2018-04-01

    Si is a promising anode material for lithium-ion batteries, but suffers from sophisticated engineering structures and complex fabrication processes that pose challenges for commercial application. Herein, a ternary Si/graphite/pyrolytic carbon (SiGC) anode material with a structure of crystal core and amorphous shell using low-cost raw materials is developed. In this ternary SiGC composite, Si component exists as nanoparticles and is spread on the surface of the core graphite flakes while the sucrose-derived pyrolytic carbon further covers the graphite/Si components as the amorphous shell. With this structure, Si together with the graphite contributes to the high specific capacity of this Si ternary material. Also the graphite serves as the supporting and conducting matrix and the amorphous shell carbon could accommodate the volume change effect of Si, reinforces the integrity of the composite architecture, and prevents the graphite and Si from direct exposing to the electrolyte. The optimized ternary SiGC composite displays high reversible specific capacity of 818 mAh g-1 at 0.1 A g-1, initial Coulombic efficiency (CE) over 80%, and excellent cycling stability at 0.5 A g-1 with 83.6% capacity retention (∼610 mAh g-1) after 300 cycles.

  1. TiO₂ Nanobelt@Co₉S₈ Composites as Promising Anode Materials for Lithium and Sodium Ion Batteries.

    PubMed

    Zhou, Yanli; Zhu, Qian; Tian, Jian; Jiang, Fuyi

    2017-09-02

    TiO₂ anodes have attracted great attention due to their good cycling stability for lithium ion batteries and sodium ion batteries (LIBs and SIBs). Unfortunately, the low specific capacity and poor conductivity limit their practical application. The mixed phase TiO₂ nanobelt (anatase and TiO₂-B) based Co₉S₈ composites have been synthesized via the solvothermal reaction and subsequent calcination. During the formation process of hierarchical composites, glucose between TiO₂ nanobelts and Co₉S₈ serves as a linker to increase the nucleation and growth of sulfides on the surface of TiO₂ nanobelts. As anode materials for LIBs and SIBs, the composites combine the advantages of TiO₂ nanobelts with those of Co₉S₈ nanomaterials. The reversible specific capacity of TiO₂ nanobelt@Co₉S₈ composites is up to 889 and 387 mAh·g -1 at 0.1 A·g -1 after 100 cycles, respectively. The cooperation of excellent cycling stability of TiO₂ nanobelts and high capacities of Co₉S₈ nanoparticles leads to the good electrochemical performances of TiO₂ nanobelt@Co₉S₈ composites.

  2. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    PubMed

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-06-01

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  3. Facile synthesis of one-dimensional hollow Sb2O3@TiO2 composites as anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomin; Cheng, Yong; Li, Qian; Chang, Limin; Wang, Limin

    2018-06-01

    Metallic Sb is deemed as a promising anode material for lithium ion batteries (LIBs) due to its flat voltage platform and high security. Nevertheless, the limited capacity restricts its large-scale application. Therefore, a simple and effective method to explore novel antimony trioxide with high capacity used as anode material for LIBs is imperative. In this work, we report a facile and efficient strategy to fabricate 1D hollow Sb2O3@TiO2 composites by using the Kirkendall effect. When used as an anode material for LIBs, the optimal Sb2O3@TiO2 composite displays a high reversible discharge capacity of 593 mAh g-1 at a current density of 100 mA g-1 after 100 cycles and a relatively superior discharge capacity of 439 mAh g-1 at a current density of 500 mA g-1 even after 600 cycles. In addition, a reversible discharge capacity of 334 mAh g-1 can also be obtained even at a current density of 2000 mA g-1. The excellent cycling stability and rate performance of the Sb2O3@TiO2 composite can be attributed to the synergistic effect of TiO2 shell and hollow structure of Sb2O3, both of which can effectively buffer the volume expansion and maintain the integrity of the electrode during the repeated charge-discharge cycles.

  4. One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Rupeng; Wang, Yu; Jia, Mengqiu; Xu, Junjie; Pan, Erzhuang

    2018-04-01

    Committed to research high-performance sodium-ion batteries(SIBs) and lithium-ion batteries(LIBs) anode materials is attractive but challenging. Among the many promising anode materials, sulfides are considered as promising available anode material. In this paper, we successfully synthesized uniformly dispersed ZnS quantum dots (QDs) with sub-10-nm-scale on graphene nanosheets via a facile hydrothermal method. The prepared ZnS/graphene composites was studied as a dual anode for sodium-ion and lithium-ion batteries. Tested against SIBs, the nanocomposites exhibits an impressive specific capacity of 491 mAh/g at 100 mA/g after 100 cycles. Tested against LIBs, the nanocomposites delivers a superior specific capacity of 759 mAh/g at 100 mA/g after 100 cycles. This excellent performance is mainly due to the fact that graphene can improve the conductivity of the composites and effectively prevent the agglomeration and pulverization of ZnS quantum dots during cycling. Meanwhile, ZnS quantum dots with sub-10-nm-scale may also shorten diffuse path and reduce migration barrier, which is in favor of the full utilization of the active material and the improvement of the stability of the structure

  5. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    NASA Astrophysics Data System (ADS)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  6. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, J.E.

    1985-05-20

    Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  7. Next Generation Anodes for Lithium-Ion Batteries: Thermodynamic Understanding and Abuse Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenton, Kyle R.; Allcorn, Eric; Nagasubramanian, Ganesan

    The objectives of this report are as follows: elucidate degradation mechanisms, decomposition products, and abuse response for next generation silicon based anodes; and Understand the contribution of various materials properties and cell build parameters towards thermal runaway enthalpies. Quantify the contributions from particle size, composition, state of charge (SOC), electrolyte to active materials ratio, etc.

  8. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials.

    PubMed

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-21

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.

  9. Carbon/tin oxide composite electrodes for improved lithium-ion batteries

    DOE PAGES

    Li, Yunchao; Levine, Alan M.; Zhang, Jinshui; ...

    2018-05-17

    Tin and tin oxide-based electrodes are promising high-capacity anodes for lithium-ion batteries. However, poor capacity retention is the major issue with these materials due to the large volumetric expansion that occurs when lithium is alloyed with tin during lithiation and delithiation process. Here, a method to prepare a low-cost, scalable carbon and tin(II) oxide composite anode is reported. The composite material was prepared by ball milling of carbon recovered from used tire powders with 25 wt% tin(II) oxide to form lithium-ion battery anode. With the impact of energy from the ball milling, tin oxide powders were uniformly distributed inside themore » pores of waste-tire-derived carbon. During lithiation and delithiation, the carbon matrix can effectively absorb the volume expansion caused by tin, thereby minimizing pulverization and capacity fade of the electrodes. In conclusion, the as-synthesized anode yielded a capacity of 690 mAh g –1 after 300 cycles at a current density of 40 mA g –1 with a stable battery performance.« less

  10. Carbon/tin oxide composite electrodes for improved lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunchao; Levine, Alan M.; Zhang, Jinshui

    Tin and tin oxide-based electrodes are promising high-capacity anodes for lithium-ion batteries. However, poor capacity retention is the major issue with these materials due to the large volumetric expansion that occurs when lithium is alloyed with tin during lithiation and delithiation process. Here, a method to prepare a low-cost, scalable carbon and tin(II) oxide composite anode is reported. The composite material was prepared by ball milling of carbon recovered from used tire powders with 25 wt% tin(II) oxide to form lithium-ion battery anode. With the impact of energy from the ball milling, tin oxide powders were uniformly distributed inside themore » pores of waste-tire-derived carbon. During lithiation and delithiation, the carbon matrix can effectively absorb the volume expansion caused by tin, thereby minimizing pulverization and capacity fade of the electrodes. In conclusion, the as-synthesized anode yielded a capacity of 690 mAh g –1 after 300 cycles at a current density of 40 mA g –1 with a stable battery performance.« less

  11. Synthesis and Performance of Tungsten Disulfide/Carbon (WS2/C) Composite as Anode Material

    NASA Astrophysics Data System (ADS)

    Yuan, Zhengyong; Jiang, Qiang; Feng, Chuanqi; Chen, Xiao; Guo, Zaiping

    2018-01-01

    The precursors of an amorphous WS2/C composite were synthesized by a simple hydrothermal method using Na2WO4·2H2O and CH3CSNH2 as raw materials, polyethylene glycol as dispersant, and glucose as the carbon source. The as-synthesized precursors were further annealed at a low temperature in flowing argon to obtain the final materials (WS2/C composite). The structure and morphology of the WS2/C composite were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical properties were tested by galvanostatic charge/discharge testing and alternating current (AC) impedance measurements. The results show that the as-prepared amorphous WS2/C composite features both high specific capacity and good cycling performance at room temperature within the potential window from 3.0 V to 0.01 V (versus Li+/Li) at current density of 100 mAg-1. The achieved initial discharge capacity was 1080 mAhg-1, and 786 mAhg-1 was retained after 170 cycles. Furthermore, the amorphous WS2/C composite exhibited a lower charge/discharge plateau than bare WS2, which is more beneficial for use as an anode. The cyclic voltammetry and AC impedance testing further confirmed the change in the plateau and the decrease in the charge transfer resistance in the WS2/C composite. The chemical formation process and the electrochemical mechanism of the WS2/C composite are also presented. The amorphous WS2/C composite can be used as a new anode material for future applications.

  12. High Performance Arcjet Engines

    NASA Technical Reports Server (NTRS)

    Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich

    1994-01-01

    This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.

  13. High performance arcjet engines

    NASA Astrophysics Data System (ADS)

    Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich

    1994-10-01

    This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.

  14. Hybrid phosphorene/graphene nanocomposite as an anode material for Na-ion batteries: a first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, Linxia; Jiang, Zhiqiang; Li, Wei; Gu, Xiao; Huang, Li

    2017-04-01

    The potential application of the hybrid phosphorene/graphene (P/G) composites as an anode material in Na-ion batteries (NIBs) has been explored based on first-principles calculations. The calculated elastic constants reveal that the P/G has an ultrahigh stiffness, which can effectively suppress the undesirable structural deformation during the sodiation and desodiation cycles. Na atoms can strongly bind with the phosphorene single-layer (SP), double-layer (DP), and their composites with graphene (SP/G, DP/G, G/DP/G), and can even cause a sliding between the layers when the DP/G accommodate more Na atoms. The migration of Na in P/G is anisotropic with the minimum energy path along the zigzag channel. The low diffusion barriers of only about several tens of meV ensure the high mobility of Na within the layers, and thus lead to rapid charge/discharge capacity of P/G. The electronic structures show that the hybrid P/G becomes metallic with the Na incorporation, which contributes to the good electric conductivity in P/G. We further demonstrate that the average open circuit voltage (OCV) of DP/G is 0.53 V, which is comparable to other anode materials. These results suggest that P/G composites hold great potential to be a good anode material in NIBs.

  15. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, J.P.; Young, J.E.

    1983-10-12

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

  16. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu

    2014-10-01

    La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.

  17. Tunneled Mesoporous Carbon Nanofibers with Embedded ZnO Nanoparticles for Ultrafast Lithium Storage.

    PubMed

    An, Geon-Hyoung; Lee, Do-Young; Ahn, Hyo-Jin

    2017-04-12

    Carbon and metal oxide composites have received considerable attention as anode materials for Li-ion batteries (LIBs) owing to their excellent cycling stability and high specific capacity based on the chemical and physical stability of carbon and the high theoretical specific capacity of metal oxides. However, efforts to obtain ultrafast cycling stability in carbon and metal oxide composites at high current density for practical applications still face important challenges because of the longer Li-ion diffusion pathway, which leads to poor ultrafast performance during cycling. Here, tunneled mesoporous carbon nanofibers with embedded ZnO nanoparticles (TMCNF/ZnO) are synthesized by electrospinning, carbonization, and postcalcination. The optimized TMCNF/ZnO shows improved electrochemical performance, delivering outstanding ultrafast cycling stability, indicating a higher specific capacity than previously reported ZnO-based anode materials in LIBs. Therefore, the unique architecture of TMCNF/ZnO has potential for use as an anode material in ultrafast LIBs.

  18. Regular Arrays of Germanium Nanoparticles Assisted by Thermoset Polymer Composites for High Capacity Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Jo, Gyuha; Park, Moon Jeong

    2012-02-01

    In recent years Li-batteries have attracted significant interests for a variety of applications such as portable electronics and electric vehicle (EV) batteries due to their high energy densities. Key challenges in advancing the technology lie in specific energy density, the long term cycle properties, and durability at elevated temperature. In present study, we were motivated to prepare high capacity Li-battery by creating regular arrays of germanium nanoparticles (GeNPs, 1600 mAh/g) to replace commercial graphite anode (370 mAh/g). Thermoset polymers were employed to prepare GeNPs/polymer composites with tunable NP loadings and spacings, followed by carbonization process to prepare GeNPs/carbon composite anode material. Due to the large volume change of GeNPs with charge/discharge cycles, the regular arrays of GeNPs are turned out to be a crucial parameter in obtaining enhanced cyclability. The GeNPs/carbon anode materials were cycle tested in a half cell configuration using Lithium foil as a counter electrode and lithium salt doped PS-PEO block copolymers as electrolytes. High capacity and rate capability were achieved, which demonstrate the role of nano-sized and regularly-arrayed anode active materials in obtaining the improved battery performance.

  19. Next Generation Anodes for Lithium Ion Batteries: Thermodynamic Understanding and Abuse Performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenton, Kyle R.; Allcorn, Eric; Nagasubramanian, Ganesan

    The objectives of this project are to elucidate degradation mechanisms, decomposition products, and abuse response for next generation silicon based anodes; and understand the contribution of various materials properties and cell build parameters towards thermal runaway enthalpies. Quantify the contributions from various cell parameters such as particle size, composition, state of charge (SOC), electrolyte to active materials ratio, etc.

  20. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the catalyst by increasing electrical connectivity between catalyst particles. However, the relatively low density of carbon results in thick catalyst layers that impede the mass transport of methanol to the catalytic sites. Also, the electrical conductivity of carbon is less than 1/300th of typical metals. Furthermore, the polymer-electrolyte membrane material is acidic and most metals are not chemically stable in contact with it. Finally, a material that conducts electrons (but not protons) does not contribute to the needed transport of protons produced in the electro-oxidation reaction.

  1. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, Roger B.; Dusek, Joseph T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.

  2. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, R.B.; Dusek, J.T.

    1983-10-12

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.

  3. Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries.

    PubMed

    Qu, Bin; Sun, Yue; Liu, Lianlian; Li, Chunyan; Yu, Changjian; Zhang, Xitian; Chen, Yujin

    2017-02-20

    Coupling ultrasmall Fe 2 O 3 particles (~4.0 nm) with the MoS 2 nanosheets is achieved by a facile method for high-performance anode material for Li-ion battery. MoS 2 nanosheets in the composite can serve as scaffolds, efficiently buffering the large volume change of Fe 2 O 3 during charge/discharge process, whereas the ultrasmall Fe 2 O 3 nanoparticles mainly provide the specific capacity. Due to bigger surface area and larger pore volume as well as strong coupling between Fe 2 O 3 particles and MoS 2 nanosheets, the composite exhibits superior electrochemical properties to MoS 2 , Fe 2 O 3 and the physical mixture Fe 2 O 3 +MoS 2 . Typically, after 140 cycles the reversible capacity of the composite does not decay, but increases from 829 mA h g -1 to 864 mA h g -1 at a high current density of 2 A g -1 . Thus, the present facile strategy could open a way for development of cost-efficient anode material with high-performance for large-scale energy conversion and storage systems.

  4. Magnesium Hydride Nanoparticles Self-Assembled on Graphene as Anode Material for High-Performance Lithium-Ion Batteries.

    PubMed

    Zhang, Baoping; Xia, Guanglin; Sun, Dalin; Fang, Fang; Yu, Xuebin

    2018-04-24

    MgH 2 nanoparticles (NPs) uniformly anchored on graphene (GR) are fabricated based on a bottom-up self-assembly strategy as anode materials for lithium-ion batteries (LIBs). Monodisperse MgH 2 NPs with an average particle size of ∼13.8 nm are self-assembled on the flexible GR, forming interleaved MgH 2 /GR (GMH) composite architectures. Such nanoarchitecture could effectively constrain the aggregation of active materials, buffer the strain of volume changes, and facilitate the electron/lithium ion transfer of the whole electrode, leading to a significant enhancement of the lithium storage capacity of the GMH composite. Furthermore, the performances of GMH composite as anode materials for LIBs are enabled largely through robust interfacial interactions with poly(methyl methacrylate) (PMMA) binder, which plays multifunctional roles in forming a favorable solid-electrolyte interphase (SEI) film, alleviating the volume expansion and detachment of active materials, and maintaining the structural integrity of the whole electrode. As a result, these synergistic effects endow the obtained GMH composite with a significantly enhanced reversible capacity and cyclability as well as a good rate capability. The GMH composite with 50 wt % MgH 2 delivers a high reversible capacity of 946 mA h g -1 at 100 mA g -1 after 100 cycles and a capacity of 395 mAh g -1 at a high current density of 2000 mA g -1 after 1000 cycles.

  5. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, C.F. Jr.; Strachan, D.M.; Henager, C.H. Jr.

    Cermet anodes were evaluated as nonconsumable substitutes for carbon anodes using a pilot-scale reduction cell at the Reynolds Manufacturing Technology Laboratory. After pilot cell testing, tile anodes were subjected to extensive materials characterization and physical properties measurements at the Pacific Northwest Laboratory. Significant changes in the composition of the cermet anodes were observed including the growth of a reaction layer and penetration of electrolyte deep into the cermet matrix. Fracture strength and toughness were measured as a function of temperature and the ductile-brittle transition wasreduced by 500C following pilot cell testing. These results imply difficulties with anode material and controlmore » of operating conditions in the pilot cell, and suggest that additional development work be performed before the cermet anodes are used in commercial reduction cells. The results also highlight specific fabrication and operational considerations that should be addressed in future testing.« less

  7. Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries.

    PubMed

    Zhou, Yanli; Wang, Qi; Zhu, Xiaotao; Jiang, Fuyi

    2018-02-28

    The three-dimensional (3D) SnS decorated carbon nano-networks (SnS@C) were synthesized via a facile two-step method of freeze-drying combined with post-heat treatment. The lithium and sodium storage performances of above composites acting as anode materials were investigated. As anode materials for lithium ion batteries, a high reversible capacity of 780 mAh·g -1 for SnS@C composites can be obtained at 100 mA·g -1 after 100 cycles. Even cycled at a high current density of 2 A·g -1 , the reversible capacity of this composite can be maintained at 610 mAh·g -1 after 1000 cycles. The initial charge capacity for sodium ion batteries can reach 333 mAh·g -1 , and it retains a reversible capacity of 186 mAh·g -1 at 100 mA·g -1 after 100 cycles. The good lithium or sodium storage performances are likely attributed to the synergistic effects of the conductive carbon nano-networks and small SnS nanoparticles.

  8. Method of fabricating a monolithic core for a solid oxide fuela cell

    DOEpatents

    Zwick, S.A.; Ackerman, J.P.

    1983-10-12

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002 to 0.01 cm thick; and the cathode and anode materials are only 0.002 to 0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.

  9. Method of fabricating a monolithic core for a solid oxide fuel cell

    DOEpatents

    Zwick, Stanley A.; Ackerman, John P.

    1985-01-01

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.

  10. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead compositemore » material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.« less

  11. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.

    PubMed

    Dash, Ranjan; Pannala, Sreekanth

    2016-06-17

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si-carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs.

  12. Progress in Metal-Supported Axial-Injection Plasma Sprayed Solid Oxide Fuel Cells Using Nanostructured NiO-Y0.15Zr0.85O1.925 Dry Powder Anode Feedstock

    NASA Astrophysics Data System (ADS)

    Metcalfe, C.; Harris, J.; Kuhn, J.; Marr, M.; Kesler, O.

    2013-06-01

    A composite NiO-Y0.15Zr0.85O1.925 (YSZ) agglomerated feedstock having nanoscale NiO and YSZ primary particles was used to fabricate anodes having sub-micrometer structure. These anodes were incorporated into two different metal-supported SOFC architectures, which differ in the order of electrode deposition. The composition of the composite Ni-YSZ anodes is controllable by selection of the agglomerate size fraction and standoff distance, while the porosity is controllable by selection of agglomerate size fraction and addition of a sacrificial pore-forming material. A bi-layer anode was fabricated having a total porosity of 33% for the diffusion layer and 23% porosity for the functional layer. A power density of 630 mW/cm2 was obtained at 750 °C in humidified H2 with cells having the bi-layer anode deposited on the metal support. Cells having the cathode deposited on the metal support showed poor performance due to a significant number of vertical cracks through the electrolyte, allowing excessive gas cross-over between the anode and the cathode compartments.

  13. Stable silicon/3D porous N-doped graphene composite for lithium-ion battery anodes with self-assembly

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofu; Wen, Guangwu; Song, Yan

    2018-04-01

    We fabricate a novel 3D N-doped graphene/silicon composite for lithium-ion battery anodes, with Si nanoparticles uniformly dispersed and thoroughly embedded in the N-doped graphene matrix. The favorable structure of the composite results in a BET surface area and an average mesopore diameter of 189.2 m2 g-1 and 3.82 nm, respectively. The composite delivers reversible capacities as high as 1132 mA h g-1 after 100 cycles under a current of 5 A g-1 and 1017 mA h g-1 after 200 cycles at 1 A g-1, and exhibits an improved rate capability. The present approach shows promise for the preparation of other high-performance anode materials for lithium-ion batteries.

  14. Materiais a base de oxidos com estrutura do tipo perovskite e compositos como anodos de PCES: Propriedades Funcionais e Comportamento Eletroquimico em Celulas com Eletrolitos Solidos a Base de Galatos e Silicatos

    NASA Astrophysics Data System (ADS)

    Kolotygin, Vladislav

    This work was focused on the analysis of transport, thermomechanical and electrochemical properties of a series of perovskite-like oxide materials and composites for potential applications as anodes of intermediate-temperature solid oxide fuel cells (SOFCs) with lanthanum gallate and silicate solid electrolytes. The primary attention was centered on A(Mn,Nb)O3-delta (A = Sr, Ca) and (La,Sr)(Mn,Ti)O3-based systems, lanthanum chromite substituted with acceptor-type and variable-valence cations, and various Ni-containing cermets. Emphasis was given to phase stability of the materials, their crystal structure, microstructure of porous electrode layers and dense ceramics, electronic conductivity, Seebeck coefficient, oxygen permeability, thermal and chemical induced expansion, and anodic overpotentials of the electrodes deposited onto (La,Sr)(Ga,Mg)O3- and La10(Si,Al)6O27-based electrolyte membranes. In selected cases, roles of oxygen diffusivity, states of the transition metal cations relevant for the electronic transport, catalytically active additives and doped ceria protective interlayers introduced in the model electrochemical cells were assessed. The correlations between transport properties of the electrode materials and electrochemical behavior of porous electrodes showed that the principal factors governing anode performance include, in particular, electronic conduction of the anode compositions and cation interdiffusion between the electrodes and solid electrolytes. The latter is critically important for the silicatebased electrolyte membranes, leading to substantially worse anode properties compared to the electrochemical cells with lanthanum gallate solid electrolyte. The results made it possible to select several anode compositions exhibiting lower area-specific electrode resistivity compared to known analogues, such as (La,Sr)(Cr,Mn)O3-delta.

  15. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.

    PubMed

    Cui, Li-Feng; Hu, Liangbing; Choi, Jang Wook; Cui, Yi

    2010-07-27

    Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of approximately 30 Ohm/sq. It shows a high specific charge storage capacity (approximately 2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers approximately 10 times improvement in specific capacity compared with widely used graphite/copper anode sheets.

  16. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  17. Controlled thermal sintering of a metal-metal oxide-carbon ternary composite with a multi-scale hollow nanostructure for use as an anode material in Li-ion batteries.

    PubMed

    Kim, Hwan Jin; Zhang, Kan; Choi, Jae-Man; Song, Min Sang; Park, Jong Hyeok

    2014-03-11

    We report a synthetic scheme for preparing a SnO2-Sn-carbon triad inverse opal porous material using the controlled sintering of Sn precursor-infiltrated polystyrene (PS) nanobead films. Because the uniform PS nanobead film, which can be converted into carbon via a sintering step, uptakes the precursor solution, the carbon can be uniformly distributed throughout the Sn-based anode material. Moreover, the partial carbonization of the PS nanobeads under a controlled Ar/oxygen environment not only produces a composite material with an inverse opal-like porous nanostructure but also converts the Sn precursor/PS into a SnO2-Sn-C triad electrode.

  18. (abstract) Effect of Electrolyte Composition on Carbon Electrode Performance

    NASA Technical Reports Server (NTRS)

    Huang, C-K.; Surampudi, S.; Shen, D. H.; Halpert, G.

    1993-01-01

    Rechargeable lithium cells containing lithium foil anodes are reported to have limited cycle life (at 100% DOD) performance and safety problems. These limitations are understood to be due to the high reactivity of elemental Li with the electrolyte and the formation of high surface area Li during cycling. To mitigate these problems, several lithium alloys and lithium intercalation compounds are being investigated as alternate lithium anode materials. Li(sub x)C has been identified as a promising lithium anode material due to its low equivalent weight, low voltage vs. Li, and improved stability towards various electrolytes. In this paper, we report the results of our studies on the electrolyte evaluation for the Li(sub x)C anode.

  19. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-02-01

    In this study, we synthesized a carbon coated Mn-Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g-1 after 200 cycles at a current density of 100 mA g-1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  20. The Anode Challenge for Lithium-Ion Batteries: A Mechanochemically Synthesized Sn-Fe-C Composite Anode Surpasses Graphitic Carbon

    DOE PAGES

    Dong, Zhixin; Zhang, Ruibo; Ji, Dongsheng; ...

    2016-02-04

    Carbon-based anodes are the key limiting factor in increasing the volumetric capacity of lithium-ion batteries. Tin-based composites are one alternative approach. Nanosized Sn–Fe–C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g –1 and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantlymore » exceeds that of carbon. In conclusion, it also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc –1 over 140 cycles at the 1 C rate.« less

  1. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    NASA Astrophysics Data System (ADS)

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-01

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented.

  2. Nanocontainers made of Various Materials with Tunable Shape and Size

    NASA Astrophysics Data System (ADS)

    Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing

    2013-07-01

    Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications.

  3. Nanocontainers made of Various Materials with Tunable Shape and Size

    PubMed Central

    Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing

    2013-01-01

    Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications. PMID:23867836

  4. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.

    PubMed

    Ren, Jian-Guo; Wang, Chundong; Wu, Qi-Hui; Liu, Xiang; Yang, Yang; He, Lifang; Zhang, Wenjun

    2014-03-21

    Toward the increasing demands of portable energy storage and electric vehicle applications, silicon has been emerging as a promising anode material for lithium-ion batteries (LIBs) owing to its high specific capacity. However, serious pulverization of bulk silicon during cycling limits its cycle life. Herein, we report a novel hierarchical Si nanowire (Si NW)-reduced graphene oxide (rGO) composite fabricated using a solvothermal method followed by a chemical vapor deposition process. In the composite, the uniform-sized [111]-oriented Si NWs are well dispersed on the rGO surface and in between rGO sheets. The flexible rGO enables us to maintain the structural integrity and to provide a continuous conductive network of the electrode, which results in over 100 cycles serving as an anode in half cells at a high lithium storage capacity of 2300 mA h g(-1). Due to its [111] growth direction and the large contact area with rGO, the Si NWs in the composite show substantially enhanced reaction kinetics compared with other Si NWs or Si particles.

  5. Facile Synthesis of Carbon-Coated Spinel Li4Ti5O12/Rutile-TiO2 Composites as an Improved Anode Material in Full Lithium-Ion Batteries with LiFePO4@N-Doped Carbon Cathode.

    PubMed

    Wang, Ping; Zhang, Geng; Cheng, Jian; You, Ya; Li, Yong-Ke; Ding, Cong; Gu, Jiang-Jiang; Zheng, Xin-Sheng; Zhang, Chao-Feng; Cao, Fei-Fei

    2017-02-22

    The spinel Li 4 Ti 5 O 12 /rutile-TiO 2 @carbon (LTO-RTO@C) composites were fabricated via a hydrothermal method combined with calcination treatment employing glucose as carbon source. The carbon coating layer and the in situ formed rutile-TiO 2 can effectively enhance the electric conductivity and provide quick Li + diffusion pathways for Li 4 Ti 5 O 12 . When used as an anode material for lithium-ion batteries, the rate capability and cycling stability of LTO-RTO@C composites were improved in comparison with those of pure Li 4 Ti 5 O 12 or Li 4 Ti 5 O 12 /rutile-TiO 2 . Moreover, the potential of approximately 1.8 V rechargeable full lithium-ion batteries has been achieved by utilizing an LTO-RTO@C anode and a LiFePO 4 @N-doped carbon cathode.

  6. A carbon fiber-ZnS nanocomposite for dual application as an efficient cold cathode as well as a luminescent anode for display technology

    NASA Astrophysics Data System (ADS)

    Jha, Arunava; Sarkar, Sudipta Kumar; Sen, Dipayan; Chattopadhyay, K. K.

    2015-01-01

    In the current work we present a simple technique to develop a carbon nanofiber (CNF)/zinc sulfide (ZnS) composite material for excellent FED application. CNFs and ZnS microspheres were synthesized by following a simple thermal chemical vapor deposition and hydrothermal procedure, respectively. A rigorous chemical mixture of CNF and ZnS was prepared to produce the CNF-ZnS composite material. The cathodo-luminescence intensity of the composite improved immensely compared to pure ZnS, also the composite material showed better field emission than pure CNFs. For pure CNF the turn-on field was found to be 2.1 V μm-1 whereas for the CNF-ZnS composite it reduced to a value of 1.72 V μm-1. Altogether the composite happened to be an ideal element for both the anode and cathode of a FED system. Furthermore, simulation of our CNF-ZnS composite system using the finite element modeling method also ensured the betterment of field emission from CNF after surface attachment of ZnS nanoclusters.

  7. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Dufficy, Martin Kyle

    Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing ≤ 20 wt% tin result in small tin (metallic and tin oxide) particles (≤ 15 nm) within the composite-CNF matrix, which yield long cycle-lives; large reversible capacities of ˜ 600 mAh g-1 are observed at 0.2-C rates, while capacities of ˜ 400 mAh g-1 (double the capacity of CNFs) are observed after hundreds of cycles at 2-C rates. The second method comprises an approach to enhance the cycle life of silicon anodes. Many researchers believe that Si is the future anode material of LIBs, and Si is capable of providing a much needed boost in overall cell performance. Silicon has the highest known charge capacity at ˜ 3579 mAh g-1, nearly an order of magnitude larger than graphite (372 mAh g-1). In attempt to realize the entire capacity of Si anodes, we use binding agents to prolong cycle life. Binding agents enhance capacity retention via favorable interactions with cell components such as active materials and electrolytes. In this study, we introduce galactomannans (specifically, guar) as viable, inexpensive, biopolymer binders for Si electrodes. In attempt to elucidate the role of the binder in Si electrodes, we study guar-electrode and -electrolyte interactions that lead to electrochemical performance enhancements. We recognize that there are deficiencies in guar-silicon systems, which we address in our following approach. Notably, we develop a guar-derived binder to increase the strength and conductivity of Si-based electrodes by crosslinking guar and carbon black dispersions. The crosslinked binders, in effect, enhance electrode adhesion and hinder electrode cracking by self-healing. This study monitors gelation via rheological methods and assesses effects of crosslinking density on physical and electrochemical properties. Lastly, we consider a vacancy-induced manganese vanadate as high-capacity, high-power anodes for LIBs. Rather than assessing nanoparticles, we tailored molecular structure to enhance electrochemical performances. X-ray diffraction studies enable us to suggest a Li-insertion mechanism, where Li travels through large channels created by defects in the crystal structure. The ensuing manganese vanadate structure produces a stable framework that results in stable cycling of hundreds of cycles.

  8. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  9. Colloidal Synthesis of Silicon-Carbon Composite Material for Lithium-Ion Batteries.

    PubMed

    Su, Haiping; Barragan, Alejandro A; Geng, Linxiao; Long, Donghui; Ling, Licheng; Bozhilov, Krassimir N; Mangolini, Lorenzo; Guo, Juchen

    2017-08-28

    We report colloidal routes to synthesize silicon@carbon composites for the first time. Surface-functionalized Si nanoparticles (SiNPs) dissolved in styrene and hexadecane are used as the dispersed phase in oil-in-water emulsions, from which yolk-shell and dual-shell hollow SiNPs@C composites are produced via polymerization and subsequent carbonization. As anode materials for Li-ion batteries, the SiNPs@C composites demonstrate excellent cycling stability and rate performance, which is ascribed to the uniform distribution of SiNPs within the carbon hosts. The Li-ion anodes composed of 46 wt % of dual-shell SiNPs@C, 46 wt % of graphite, 5 wt % of acetylene black, and 3 wt % of carboxymethyl cellulose with an areal loading higher than 3 mg cm -2 achieve an overall specific capacity higher than 600 mAh g -1 , which is an improvement of more than 100 % compared to the pure graphite anode. These new colloidal routes present a promising general method to produce viable Si-C composites for Li-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.

    PubMed

    Dirican, Mahmut; Lu, Yao; Ge, Yeqian; Yildiz, Ozkan; Zhang, Xiangwu

    2015-08-26

    Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).

  11. Silicon/Carbon Anodes with One-Dimensional Pore Structure for Lithium-Ion Batteries

    DTIC Science & Technology

    2012-02-28

    REPORT Silicon/Carbon Anodes with One-Dimensional Pore Structure for Lithium - Ion Batteries 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: A series of...Dimensional Pore Structure for Lithium - Ion Batteries Report Title ABSTRACT A series of composite electrode materials have been synthesized and...1 Silicon/Carbon Anodes with One-Dimensional Pore Structure for Lithium - Ion Batteries Grant # W911NF1110231 Annual Progress report June

  12. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    PubMed Central

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  13. All ceramic structure for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  14. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  15. Electrochemistry of lunar rocks

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  16. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries

    PubMed Central

    Dash, Ranjan; Pannala, Sreekanth

    2016-01-01

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si–carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs. PMID:27311811

  17. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery.

    PubMed

    Wang, Lei; Wang, Dong; Dong, Zhihui; Zhang, Fengxing; Jin, Jian

    2013-04-10

    From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO2 composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO2-based electrode materials. RGO/SnO2 composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO2 composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.

  18. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  19. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  20. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    PubMed

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Features of electrophoretic deposition process of nanostructured electrode materials for planar Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Melkozyorova, N. A.; Zinkevich, K. G.; Lebedev, E. A.; Alekseyev, A. V.; Gromov, D. G.; Kitsyuk, E. P.; Ryazanov, R. M.; Sysa, A. V.

    2017-11-01

    The features of electrophoretic deposition process of composite LiCoO2-based cathode and Si-based anode materials were researched. The influence of the deposition process parameters on the structure and composition of the deposit was revealed. The possibility of a local deposition of composites on a planar lithium-ion battery structure was demonstrated.

  2. Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae

    2018-01-01

    SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.

  3. Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage

    NASA Astrophysics Data System (ADS)

    Qi, Wen; Zhao, Haihua; Wu, Ying; Zeng, Hong; Tao, Tao; Chen, Chao; Kuang, Chunjiang; Zhou, Shaoxiong; Huang, Yunhui

    2017-02-01

    Recently, metal phosphides have been investigated as potential anode materials because of higher specific capacity compared with those of carbonaceous materials. However, the rapid capacity fade upon cycling leads to poor durability and short cycle life, which cannot meet the need of lithium-ion batteries with high energy density. Herein, we report a layer-structured GeP3/C nanocomposite anode material with high performance prepared by a facial and large-scale ball milling method via in-situ mechanical reaction. The P-O-C bonds are formed in the composite, leading to close contact between GeP3 and carbon. As a result, the GeP3/C anode displays excellent lithium storage performance with a high reversible capacity up to 1109 mA h g-1 after 130 cycles at a current density of 0.1 A g-1. Even at high current densities of 2 and 5 A g-1, the reversible capacities are still as high as 590 and 425 mA h g-1, respectively. This suggests that the GeP3/C composite is promising to achieve high-energy lithium-ion batteries and the mechanical milling is an efficient method to fabricate such composite electrode materials especially for large-scale application.

  4. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  5. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    NASA Technical Reports Server (NTRS)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  6. Mechanochemically Reduced SiO2 by Ti Incorporation as Lithium Storage Materials.

    PubMed

    Kim, Kyungbae; Moon, Janghyuk; Lee, Jaewoo; Yu, Ji-Sang; Cho, Maenghyo; Cho, Kyeongjae; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun

    2015-09-21

    This study presents a simple and effective method of reducing amorphous silica (a-SiO2 ) with Ti metal through high-energy mechanical milling for improving its reactivity when used as an anode material in lithium-ion batteries. Through thermodynamic calculations, it is determined that Ti metal can easily take oxygen atoms from a-SiO2 by forming a thermodynamically stable SiO2-x /TiOx composite, meaning that electrochemically inactive a-SiO2 is partially reduced by the addition of Ti metal powder during milling. This mechanically reduced SiO2-x /TiOx composite anode exhibits a greatly improved electrochemical reactivity, with a reversible capacity of more than 700 mAh g(-1) and excellent cycle performance over 100 cycles. Furthermore, an enhancement in the mechanical and thermal stability of the composite during cycling can be mainly attributed to the in situ formation of the SiO2-x /TiOx phase. These findings provide new insight into the rational design of robust, high-capacity, Si-based anode materials, as well as their reaction mechanism. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lei, Danni; Zhang, Guanhua; Li, Qiuhong; Lu, Bingan; Wang, Taihong

    2013-05-01

    SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of composites between metal oxides and graphene nanomaterials, possessing promising applications in catalysis, sensing, supercapacitors and fuel cells.SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of composites between metal oxides and graphene nanomaterials, possessing promising applications in catalysis, sensing, supercapacitors and fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00467h

  8. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.A. Christini; R.K. Dawless; S.P. Ray

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase andmore » Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.« less

  9. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    PubMed Central

    Mardare, Andrei Ionut; Ludwig, Alfred; Savan, Alan; Hassel, Achim Walter

    2014-01-01

    A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven. PMID:27877648

  10. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode

    NASA Astrophysics Data System (ADS)

    Eom, KwangSup; Joshi, Tapesh; Bordes, Arnaud; Do, Inhwan; Fuller, Thomas F.

    2014-03-01

    In this study, a Si-graphene composite, which is composed of nano Si particles and nano-sized multi-layer graphene particles, and micro-sized multi-layer graphene plate conductor, was used as the anode for Li-ion battery. The Si-graphene electrode showed the high capacity and stable cyclability at charge/discharge rate of C/2 in half cell tests. Nickel cobalt aluminum material (NCA) was used as a cathode in the full cell to evaluate the practicality of the new Si-graphene material. Although the Si-graphene anode has more capacity than the NCA cathode in this designed full cell, the Si-graphene anode had a greater effect on the full-cell performance due to its large initial irreversible capacity loss and continuous SEI formation during cycling. When fluoro-ethylene carbonate was added to the electrolyte, the cyclability of the full cell was much improved due to less SEI formation, which was confirmed by the decreases in the 1st irreversible capacity loss, overpotential for the 1st lithiation, and the resistance of the SEI.

  11. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by suspension plasma spraying with axial feedstock injection

    NASA Astrophysics Data System (ADS)

    Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera

    2013-12-01

    Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.

  12. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Liu, Dai-Huo; Wang, Ying-Ying; Hou, Bao-Hua; Zhang, Jing-Ping; Wang, Rong-Shun; Wu, Xing-Long

    2016-03-01

    Dual-carbon enhanced Si-based composite (Si/C/G) has been prepared via employing the widely distributed, low-cost and environmentally friendly Diatomite mineral as silicon raw material. The preparation processes are very simple, non-toxic and easy to scale up. Electrochemical tests as anode material for lithium ion batteries (LIBs) demonstrate that this Si/C/G composite exhibits much improved Li-storage properties in terms of superior high-rate capabilities and excellent cycle stability compared to the pristine Si material as well as both single-carbon modified composites. Specifically for the Si/C/G composite, it can still deliver a high specific capacity of about 470 mAh g-1 at an ultrahigh current density of 5 A g-1, and exhibit a high capacity of 938 mAh g-1 at 0.1 A g-1 with excellent capacity retention in the following 300 cycles. The significantly enhanced Li-storage properties should be attributed to the co-existence of both highly conductive graphite and amorphous carbon in the Si/C/G composite. While the former can enhance the electrical conductivity of the obtained composite, the latter acts as the adhesives to connect the porous Si particulates and conductive graphite flakes to form robust and stable conductive network.

  13. Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.

    PubMed

    Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang

    2017-08-25

    A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.

    PubMed

    Sun, Xuejiao; Shao, Changzhen; Zhang, Feng; Li, Yi; Wu, Qi-Hui; Yang, Yonggang

    2018-01-01

    The development of high energy lithium-ion batteries (LIBs) has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g -1 after 250 cycles at a current density of 0.1 A g -1 . It is interesting that a high discharge capacity of 540.1 mAh g -1 was achieved after 500 cycles at an even higher current density of 0.3 A g -1 , which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

  15. Ultrasmall TiO2-Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries.

    PubMed

    Liu, Yao; Liu, Jingyuan; Bin, Duan; Hou, Mengyan; Tamirat, Andebet Gedamu; Wang, Yonggang; Xia, Yongyao

    2018-05-02

    Because of the low cost and abundant nature of the sodium element, sodium-ion batteries (SIBs) are attracting extensive attention, and a variety of SIB cathode materials have been discovered. However, the lack of high-performance anode materials is a major challenge of SIBs. Herein, we have synthesized ultrasmall TiO 2 -nanoparticle-coated reduced graphene oxide (TiO 2 @RGO) composites by using a one-pot hydrolysis method, which are then investigated as anode materials for SIBs. The morphology of TiO 2 @RGO has been characterized using transmission electron microscopy, indicating that the TiO 2 nanospheres uniformly grow on the surface of the RGO nanosheet. As-prepared TiO 2 @RGO composites exhibited a promising electrochemical performance in terms of cycling stability and rate capability, especially the initial cycle Coulombic efficiency of 60.7%, which is higher than that in previous reports. The kinetics of the electrode reaction has been investigated by cyclic voltammetry. The results indicate that the sodium-ion intercalation/extraction behavior is not controlled by the semiinfinite diffusion process, which gives rise to an outstanding rate performance. In addition, the electrochemical performance of TiO 2 @RGO composites in full cells, coupled with carbon-coated Na 3 V 2 (PO 4 ) 3 as the positive material, has been investigated. The discharge specific capacity was up to 117.2 mAh g -1 , and it remained at 84.6 mAh g -1 after 500 cycles under a current density of 2 A g -1 , which shows excellent cycling stability.

  16. Carbon and graphene double protection strategy to improve the SnO(x) electrode performance anodes for lithium-ion batteries.

    PubMed

    Zhu, Jian; Lei, Danni; Zhang, Guanhua; Li, Qiuhong; Lu, Bingan; Wang, Taihong

    2013-06-21

    SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of composites between metal oxides and graphene nanomaterials, possessing promising applications in catalysis, sensing, supercapacitors and fuel cells.

  17. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Yuan, Guanghui; Xiang, Jiming; Jin, Huafeng; Wu, Lizhou; Jin, Yanzi; Zhao, Yan

    2018-01-10

    A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG), is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g -1 after 200 cycles at 100 mA g -1 . Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li⁺ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  18. Constructing inorganic/polymer microsphere composite as lithium ion battery anode material

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Dong, Hui; Xu, Yunlong; Luo, Lei; Zhao, Chongjun; Wang, Di; Li, Haoran; Liu, Dong

    2018-03-01

    Spinel Li4Ti5O12 (LTO) holds great potential used as lithium ion battery(LIB) anode material for various hybrid, plug-in, and pure electrical vehicle applications. However, the low intrinsic conductivity and much underused capacity pose serious obstacles in practice for its wider and deeper utilization. Here we demonstrate a facile approach by which an LTO/Si/cyclized-polyacrylonitrile (PAN) inorganic/polymer composite is designed and implemented in attempt to tackle both challenges. Our results show that an optimal Si amount is needed in the composite so as to fully promote underused LTO capacity in a stable state while cyclized PAN not only improves conductivity, reaction kinetics and charge transfer resistance of the electrode through its turbostratic transition, but to much extent acts as a resilient binder to offset volumetric expansion caused by Si. The optimized composite exhibits admirable capacity and cycling performance during long-term operation.

  19. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Simões, Mário; Surace, Yuri; Yoon, Songhak; Battaglia, Corsin; Pokrant, Simone; Weidenkaff, Anke

    2015-09-01

    Vanadium manganese oxides with Mn content up to 33 at% were synthesized by a low temperature hydrothermal route allowing for the preparation of both anodic and cathodic materials for Li-ion batteries. Low amounts of manganese (below 13 at%) lead to the formation of elongated particles of layered hydrated vanadium oxides with manganese and water intercalated between the V2O5 slabs, while for higher Mn content of 33 at%, monoclinic MnV2O6 is formed. Former materials are suitable for high energy cathodes while the latter one is an anodic compound. The material containing 10 at% Mn has the composition Mn0.2V2O5·0.9H2O and shows the best cathodic activity with 20% capacity improvement over V2O5·0.5H2O. Lithiated MnV2O6 with Li5MnV2O6 composition prepared electrochemically was evaluated for the first time as anode in a full-cell against Mn0.2V2O5·0.9H2O cathode. An initial capacity ca. 300 A h kg-1 was measured with this battery corresponding to more than 500 Wh kg-1. These results confirm the prospect of using Li5MnV2O6 anodes in lithium-ion batteries as well as high-capacity layered hydrated vanadium oxides cathodes such as V2O5·0.5H2O and Mn0.2V2O5·0.9H2O.

  20. Synthesis, characterization and mechanical properties of NiO - GDC20 (Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) nano composite anode for solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, M. Narsimha, E-mail: mnreddy57@gmail.com; Rao, P. Vijaya Bhaskar; Sharma, R. K.

    2016-05-06

    In the present research work, X (NiO) +1-X(Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) where X = 30,40 and 45 wt% Nano Composite Anodes are synthesized for low temperature operating solid oxide fuel cells (SOFC). NiO and Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (GDC20) are synthesized by sol-gel citrate method and the nanopowders of NiO, GDC20 were calcined from 650 °c to 750 °c. For anode materials, pelletized the nanocomposites of X(NiO)+ (1-X) GDC20 (X = 30,40,45 wt.%) and sintered at 1200 °c. systematic study of atomic structure, purity, phase and structural parameters such as Lattice parameters, crystallite size of as-synthesized nanopowders and anode materialsmore » were carried out by XRD and SEM. For mechanical strength, Vickers micro-hardness of anode composites were estimated and observed that micro-hardness of composites were increasing with NiO wt.% and the density of sintered samples, which is varying from 4.35 to 5.54 Gpa at 500g load.« less

  1. Lanthanum doped strontium titanate - ceria anodes: deconvolution of impedance spectra and relationship with composition and microstructure

    NASA Astrophysics Data System (ADS)

    Burnat, Dariusz; Nasdaurk, Gunnar; Holzer, Lorenz; Kopecki, Michal; Heel, Andre

    2018-05-01

    Electrochemical performance of ceramic (Ni-free) SOFC anodes based on La0.2Sr0.7TiO3-δ (LST) and Gd0.1Ce0.9O1.95-δ (CGO) is thoroughly investigated. Microstructures and compositions are systematically varied around the percolation thresholds of both phases by modification of phase volume fractions, particle size distributions and firing temperature. Differential impedance spectroscopy was performed while varying gas composition, electrical potential and operating temperature, which allows determining four distinct electrode processes. Significant anode impedances are measured at low frequencies, which in contrast to the literature cannot be linked with gas concentration impedance. The dominant low frequency process (∼1 Hz) is attributed to the chemical capacitance. Combined EIS and microstructure investigations show that the chemical capacitance correlates inversely with the available surface area of CGO, indicating CGO surface reactions as the kinetic limitation for the dominant anode process and for the associated chemical capacitance. In anodes with a fine-grained microstructure this limitation is significantly smaller, which results in an impressive power output as high as 0.34 Wcm-2. The anodes show high redox stability by not only withstanding 30 isothermal redox cycles, but even improving the performance. Hence, compared to conventional Ni-cermet anodes the new LST-CGO material represents an interesting alternative with much improved redox-stability.

  2. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    NASA Technical Reports Server (NTRS)

    Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent

    2010-01-01

    When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.

  3. Carbon dioxide electrolysis with solid oxide electrolyte cells for oxygen recovery in life support systems

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.; Cusick, Robert J.

    1988-01-01

    The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.

  4. Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode.

    PubMed

    Wei, Xiujuan; Tang, Chunjuan; Wang, Xuanpeng; Zhou, Liang; Wei, Qiulong; Yan, Mengyu; Sheng, Jinzhi; Hu, Ping; Wang, Bolun; Mai, Liqiang

    2015-12-09

    Hierarchical copper silicate hydrate hollow spheres-reduced graphene oxide (RGO) composite is successfully fabricated by a facile hydrothermal method using silica as in situ sacrificing template. The electrochemical performance of the composite as lithium-ion battery anode was studied for the first time. Benefiting from the synergistic effect of the hierarchical hollow structure and conductive RGO matrix, the composite exhibits excellent long-life performance and rate capability. A capacity of 890 mAh/g is achieved after 200 cycles at 200 mA/g and a capacity of 429 mAh/g is retained after 800 cycles at 1000 mA/g. The results indicate that the strategy of combining hierarchical hollow structures with conductive RGO holds the potential in addressing the volume expansion issue of high capacity anode materials.

  5. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    NASA Astrophysics Data System (ADS)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  6. Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes.

    PubMed

    Abel, Paul R; Chockla, Aaron M; Lin, Yong-Mao; Holmberg, Vincent C; Harris, Justin T; Korgel, Brian A; Heller, Adam; Mullins, C Buddie

    2013-03-26

    Both silicon and germanium are leading candidates to replace the carbon anode of lithium ions batteries. Silicon is attractive because of its high lithium storage capacity while germanium, a superior electronic and ionic conductor, can support much higher charge/discharge rates. Here we investigate the electronic, electrochemical and optical properties of Si(1-x)Gex thin films with x = 0, 0.25, 0.5, 0.75, and 1. Glancing angle deposition provided amorphous films of reproducible nanostructure and porosity. The film's composition and physical properties were investigated by X-ray photoelectron spectroscopy, four-point probe conductivity, Raman, and UV-vis absorption spectroscopy. The films were assembled into coin cells to test their electrochemical properties as a lithium-ion battery anode material. The cells were cycled at various C-rates to determine the upper limits for high rate performance. Adjusting the composition in the Si(1-x)Gex system demonstrates a trade-off between rate capability and specific capacity. We show that high-capacity silicon anodes and high-rate germanium anodes are merely the two extremes; the composition of Si(1-x)Gex alloys provides a new parameter to use in electrode optimization.

  7. Micro-tube biotemplate synthesis of Fe3O4/C composite as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Du, Jun; Ding, Yu; Guo, Liangui; Wang, Li; Fu, Zhengbing; Qin, Caiqin; Wang, Feng; Tao, Xinyong

    2017-12-01

    Kapok fibres were used as micro-tube biotemplate and bio-carbon source to synthesise Fe3O4/C composites, which were then utilised as anode materials. Fe3O4 nanoparticles were grown uniformly onto the external surface and internal channel of kapok carbon fibres. The flexibility, high specific surface area and electronic conduction of kapok fibres can buffer the volume expansion as well as inhibit the aggregation of Fe3O4 nanoparticles. Thus, the electrical integrity and structural of the Fe3O4/C composites electrode during lithiation/delithiation processes. The Fe3O4/C composites electrode delivers a high reversible capacity of 596 mA h g-1 after 100 cycles and an ultra-high coulombic efficiency approaching 100%. The high electrochemical performance of the Fe3O4/C composites can be caused by the synergistic effect of the Fe3O4 nanoparticles and the structure of kapok carbon fibres.

  8. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications

    PubMed Central

    Ferré-Borrull, Josep; Pallarès, Josep; Macías, Gerard; Marsal, Lluis F.

    2014-01-01

    Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-depth pore modulation by continuous changes in the anodization conditions. Ex situ methods permit a greater versatility in the pore geometry, while in situ methods are simpler and adequate for repeated cycles. As an example of ex situ methods, we analyze the effect of changing drastically one of the anodization parameters (anodization voltage, electrolyte composition or concentration). We also introduce in situ methods to obtain distributed Bragg reflectors or rugate filters in nanoporous anodic alumina with cyclic anodization voltage or current. This nanopore engineering permits us to propose new applications in the field of biosensing: using the unique reflectance or photoluminescence properties of the material to obtain photonic barcodes, applying a gold-coated double-layer nanoporous alumina to design a self-referencing protein sensor or giving a proof-of-concept of the refractive index sensing capabilities of nanoporous rugate filters. PMID:28788127

  9. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.

    PubMed

    Jackson, Everett D; Prieto, Amy L

    2016-11-09

    Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.

  10. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    PubMed

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrochemical Performance Estimation of Anodized AZ31B Magnesium Alloy as Function of Change in the Current Density

    NASA Astrophysics Data System (ADS)

    Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.

    2017-08-01

    The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.

  12. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor

    DOEpatents

    Dhooge, Patrick M.

    1987-10-13

    A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

  13. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    NASA Astrophysics Data System (ADS)

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-10-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions.

  14. Evaluation of selected thermal control coatings for long-life space structures

    NASA Technical Reports Server (NTRS)

    Teichman, Louis A.; Slemp, Wayne S.; Witte, William G., Jr.

    1992-01-01

    Graphite-reinforced resin matrix composites are being considered for spacecraft structural applications because of their light weight, high stiffness, and lower thermal expansion. Thin protective coatings with stable optical properties and the proper ratio of solar absorption (alpha sub s) to thermal emittance (epsilon) minimize orbital thermal extremes and protect these materials against space environment degradation. Sputtered coatings applied directly to graphite/epoxy composite surfaces and anodized coatings applied to thin aluminum foil were studied for use both as an atomic oxygen barrier and as thermal control coatings. Additional effort was made to develop nickel-based coatings which could be applied directly to composites. These coating systems were selected because their inherent tenacity made them potentially more reliable than commercial white paints for long-life space missions. Results indicate that anodized aluminum foil coatings are suitable for tubular and flat composite structures on large platforms in low Earth orbit. Anodized foil provides protection against some elements of the natural space environment (atomic oxygen, ultraviolet, and particulate radiation) and offers a broad range of tailored alpha sub s/epsilon. The foil is readily available and can be produced in large quantities, while the anodizing process is a routine commercial technique.

  15. Sn4+x P3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability.

    PubMed

    Li, Weijie; Chou, Shu-Lei; Wang, Jia-Zhao; Kim, Jung Ho; Liu, Hua-Kun; Dou, Shi-Xue

    2014-06-25

    Sn4+x P3 @ amorphous Sn-P composites are a promising cheap anode material for sodium-ion batteries with high capacity (502 mA h g(-1) at a current density of 100 mA g(-1)), long cycling stability (92.6% capacity retention up to 100 cycles), and high rate capability (165 mA h g(-1) at the 10C rate). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing

    NASA Astrophysics Data System (ADS)

    Xiang, Lian; Park, Sang-Shik

    2016-12-01

    Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.

  17. Development of Plasma-Sprayed Molybdenum Carbide-Based Anode Layers with Various Metal Oxides for SOFC

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Ahmed, R.; Katikaneni, S. P.; Souentie, S.; Goosen, M. F. A.

    2015-12-01

    Air plasma-sprayed (APS) coatings provide an ability to deposit a range of novel fuel cell materials at competitive costs. This work develops three separate types of composite anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS process parameters on Hastelloy®X for application in intermediate temperature proton-conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) was used to prepare three separate composite feedstock powders to fabricate three different anodes. Each of the modified composition anode feedstock powders included a stoichiometric weight ratio of 0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, nanoindentation, and conductivity. We report herein that three optimized anode layers of thicknesses between 200 and 300 µm and porosity as high as 20% for Mo-Mo2C/Al2O3 (250-µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-Mo2C/ZrO2 (220-µm thick), controllable by a selection of the APS process parameters with no addition of sacrificial pore-forming material. The nanohardness results indicate the upper layers of the coatings have higher values than the subsurface layers in coatings with some effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.

  18. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries.

    PubMed

    Wu, Yang; Wei, Yang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2013-02-13

    A uniform Fe(3)O(4) sheath is magnetron sputtered onto aligned carbon nanotube (CNT) scaffolds that are directly drawn from CNT arrays. The Fe(3)O(4)-CNT composite electrode, with the size of Fe(3)O(4) confined to 5-7 nm, exhibits a high reversible capacity over 800 mAh g(-1) based on the total electrode mass, remarkable capacity retention, as well as high rate capability. The excellent performance is attributable to the superior electrical conductivity of CNTs, the uniform loading of Fe(3)O(4) sheath, and the structural retention of the composite anode on cycling. As Fe(3)O(4) is inexpensive and environmentally friendly, and the synthesis of Fe(3)O(4)-CNT is free of chemical wastes, this composite anode material holds considerable promise for high-performance lithium ion batteries.

  19. Development of inorganic composite material based TiO2 for environmental application

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, Sayekti; Handono Ramelan, Ari; Pramono, Edi; Purnawan, Candra; Anjani, Velina; Estianingsih, Puji; Rinawati, Ludfiaastu; Fadli, Khusnan

    2016-02-01

    Syntheses of various materials, for green energy nanotechnology applications have special attention to develop emerging areas, such as environmental as well as energy materials. Various approaches for preparing nanostructured photocatalysts, such as titanium dioxide, nickel oxide, lead oxide and their composites, was introduced. The use of nanomaterials as photocatalysts water detoxification by visible light photocatalyst of an inorganic composite as well as dye-sensitized photoreduction was also discussed. The enhancement of selective photocatalyst system was gain by the use of photocatalyst composite materials and applied potential bias on the system. The photoelectrocatalytic degradation of rhodamine B (RB) and Remazol Yellow FG (RY) as water contaminant using the thin film of modified TiO2 as the electrode was investigated via a series of potentials, and various pH. The result showed that the anodic potential bias influenced the degradation rate of water contaminant and exhibited better performance by the positive anodic bias was applied. The pH conditions influence the active dye structure whereas it will interact with inorganic semiconductor photocatalyst. Using dye- sensitized TiO2 system (DSTs), we have applied this system to build water decolorization as a novelty environmental remediation system.

  20. The Weinstein conjecture with multiplicities on spherizations

    NASA Astrophysics Data System (ADS)

    Hertzberg, Benjamin J.

    2011-07-01

    Si-based anodes have recently received considerable attention for use in Li-ion batteries, due to their extremely high specific capacity---an order of magnitude beyond that offered by conventional graphite anode materials. However, during the lithiation process, Si-based anodes undergo extreme increases in volume, potentially by more than 300 %. The stresses produced within the electrode by these volume changes can damage the electrode binder, the active Si particles and the solid electrolyte interphase (SEI), causing the electrode to rapidly fail and lose capacity. These problems can be overcome by producing new anode materials incorporating both Si and C, which may offer a favorable combination of the best properties of both materials, and which can be designed with internal porosity, thereby buffering the high strains produced during battery charge and discharge with minimal overall volume changes. However, in order to develop useful anode materials, we must gain a thorough understanding of the structural, microstructural and chemical changes occurring within the electrode during the lithiation and delithiation process, and we must develop new processes for synthesizing composite anode particles which can survive the extreme strains produced during lithium intercalation of Si and exhibit no volume changes in spite of the volume changes in Si. In this work we have developed several novel synthesis processes for producing internally porous Si-C nanocomposite anode materials for Li-ion batteries. These nanocomposites possess excellent specific capacity, Coulombic efficiency, cycle lifetime, and rate capability. We have also investigated the influence of a range of different parameters on the electrochemical performance of these materials, including pore size and shape, carbon and silicon film thickness and microstructure, and binder chemistry.

  1. Composition-Graded MoWSx Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry.

    PubMed

    Tan, Shu Min; Pumera, Martin

    2017-12-06

    Among transition metal dichalcogenide (TMD)-based composites, TMD/graphene-related material and bichalcogen TMD composites have been widely studied for application toward energy production via the hydrogen evolution reaction (HER). However, scarcely any literature explored the possibility of bimetallic TMD hybrids as HER electrocatalysts. The use of harmful chemicals and harsh preparation conditions in conventional syntheses also detracts from the objective of sustainable energy production. Herein, we present the conservational alternative synthesis of MoWS x via one-step bipolar electrochemical deposition. Through bipolar electrochemistry, the simultaneous fabrication of composition-graded MoWS x hybrids, i.e., sulfur-deficient Mo x W (1-x) S 2 and Mo x W (1-x) S 3 (MoWS x /BPE cathodic and MoWS x /BPE anodic , respectively) under cathodic and anodic overpotentials, was achieved. The best-performing MoWS x /BPE cathodic and MoWS x /BPE anodic materials exhibited Tafel slopes of 45.7 and 50.5 mV dec -1 , together with corresponding HER overpotentials of 315 and 278 mV at -10 mA cm -2 . The remarkable HER activities of the composite materials were attributed to their small particle sizes, as well as the near-unity value of their surface Mo/W ratios, which resulted in increased exposed HER-active sites and differing active sites for the concurrent adsorption of protons and desorption of hydrogen gas. The excellent electrocatalytic performances achieved via the novel methodology adopted here encourage the empowerment of electrochemical deposition as the foremost fabrication approach toward functional electrocatalysts for sustainable energy generation.

  2. Coated/Sandwiched rGO/CoSx Composites Derived from Metal-Organic Frameworks/GO as Advanced Anode Materials for Lithium-Ion Batteries.

    PubMed

    Yin, Dongming; Huang, Gang; Zhang, Feifei; Qin, Yuling; Na, Zhaolin; Wu, Yaoming; Wang, Limin

    2016-01-22

    Rational composite materials made from transition metal sulfides and reduced graphene oxide (rGO) are highly desirable for designing high-performance lithium-ion batteries (LIBs). Here, rGO-coated or sandwiched CoSx composites are fabricated through facile thermal sulfurization of metal-organic framework/GO precursors. By scrupulously changing the proportion of Co(2+) and organic ligands and the solvent of the reaction system, we can tune the forms of GO as either a coating or a supporting layer. Upon testing as anode materials for LIBs, the as-prepared CoSx -rGO-CoSx and rGO@CoSx composites demonstrate brilliant electrochemical performances such as high initial specific capacities of 1248 and 1320 mA h g(-1) , respectively, at a current density of 100 mA g(-1) , and stable cycling abilities of 670 and 613 mA h g(-1) , respectively, after 100 charge/discharge cycles, as well as superior rate capabilities. The excellent electrical conductivity and porous structure of the CoSx /rGO composites can promote Li(+) transfer and mitigate internal stress during the charge/discharge process, thus significantly improving the electrochemical performance of electrode materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode.

    PubMed

    Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin

    2017-01-11

    Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.

  4. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.

    PubMed

    Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei

    2016-02-14

    Binary metal sulfides, especially NiCo2S4, hold great promise as anode materials for high-performance lithium-ion batteries because of their excellent electronic conductivity and high capacity compared to mono-metal sulfides and oxides. Here, NiCo2S4 nanotube arrays are successfully grown on flexible nitrogen-doped carbon foam (NDCF) substrates with robust adhesion via a facile surfactant-assisted hydrothermal route and the subsequent sulfurization treatment. The obtained NiCo2S4/NDCF composites show unique three-dimensional architectures, in which NiCo2S4 nanotubes of ∼5 μm in length and 100 nm in width are uniformly grown on the NDCF skeletons to form arrays. When used directly as integrated anodes for lithium-ion batteries without any conductive additives and binders, the NiCo2S4/NDCF composites exhibit a high reversible capacity of 1721 mA h g(-1) at a high current density of 500 mA g(-1), enhanced cycling performance with the capacity maintained at 1182 mA h g(-1) after 100 cycles, and a remarkable rate capability. The excellent lithium storage performances of the composites could be attributed to the unique material composition, a rationally designed hollow nanostructure and an integrated smart architecture, which offer fast electron transport and ion diffusion, enhanced material/-electrolyte contact area and facile accommodation of strains during the lithium insertion and extraction process.

  5. Graphene/Fe3 O4 Nanocomposites as Efficient Anodes to Boost the Lifetime and Current Output of Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Gai, Pan-Pan; Guo, Dan; Jiang, Li-Ping; Zhang, Qichun; Zhang, Jian-Rong; Zhu, Jun-Jie

    2017-02-01

    The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe 3 O 4 (G/Fe 3 O 4 ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe 3 O 4 with high affinity and their growth could be supported by Fe 3 O 4 , the bacterial cells attached quickly onto the anode surface and their long-term activity improved. As a result, MFCs with reduced startup time and improved stability were obtained. Additionally, the introduction of graphene not only provided a large surface area for bacterial attachment, but also offered high electrical conductivity to facilitate extracellular electron transfer (EET). The results showed that the current and power densities of a G/Fe 3 O 4 anode were much higher than those of each individual component as an anode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Zn-Ge-Sb glass composite mixed with Ba2+ ions: a high capacity anode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Ravuri, Balaji Rao; Gandi, Suman; Chinta, Srinivasa Rao

    2018-06-01

    (100-x)(0.7[0.625ZnO-0.375GeO2]-0.3Sb2O3)-xBaO (x = 0, 2, 4 and 6 mol%, labeled as ZGSB x ) glass anode samples are synthesized using a high-energy ball-milling method and employed as anode material for Na-ion batteries. The results on microstructures (XRD, SEM) and electrochemical properties (constant current charge/discharge tests, CV and EIS) indicated that the optimum concentration of Ba2+ ions in the Zn-Ge-Sb glass anode network exhibits the pillaring effect, which would lead to increased electrical conductivity, minimize the volume changes, cracks and voids to boost up electrochemical performance. The ZGSB4 glass anode sample exhibits good capacity retention even after 20 cycles with 95% coulombic efficiency, which is a significant trend for a successful anode network. Electrochemical performance is considerably enhanced by reducing the cut-off voltage from 2 to 1.25 V due to the disassembly of amorphous intermediate domains, optimum volume changes and increased electrical conductivity in this ZGSB x glass network.

  7. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  8. Rational Design of 1-D Co3O4 Nanofibers@Low content Graphene Composite Anode for High Performance Li-Ion Batteries

    PubMed Central

    Cho, Su-Ho; Jung, Ji-Won; Kim, Chanhoon; Kim, Il-Doo

    2017-01-01

    Cobalt oxide that has high energy density, is the next-generation candidate as the anode material for LIBs. However, the practical use of Co3O4 as anode material has been hindered by limitations, especially, low electrical conductivity and pulverization from large volume change upon cycling. These features lead to hindrance to its electrochemical properties for lithium-ion batteries. To improve electrochemical properties, we synthesized one-dimensional (1-D) Co3O4 nanofibers (NFs) overed with reduced graphene oxide (rGO) sheets by electrostatic self-assembly (Co3O4 NFs@rGO). The flexible graphene oxide sheets not only prevent volume changes of active materials upon cycling as a clamping layer but also provide efficient electrical pathways by three-dimensional (3-D) network architecture. When applied as an anode for LIBs, the Co3O4 NFs@rGO exhibits superior electrochemical performance: (i) high reversible capacity (615 mAh g−1 and 92% capacity retention after 400 cycles at 4.0 A g−1) and (ii) excellent rate capability. Herein, we highlighted that the enhanced conversion reaction of the Co3O4 NFs@rGO is attributed to effective combination of 1-D nanostructure and low content of rGO (~3.5 wt%) in hybrid composite. PMID:28345589

  9. TiO2 anode materials for lithium-ion batteries with different morphology and additives

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ng, Yip Hang; Leung, Yu Hang; Liu, Fangzhou; Djurišic, Aleksandra B.; Xie, Mao Hai; Chan, Wai Kin

    2014-03-01

    Electrochemical performances of different TiO2 nanostructures, TiO2/CNT composite and TiO2 with titanium isopropoxide (TTIP) treatment anode were investigated. For different TiO2 nanostructures, we investigated vertically aligned TiO2 nanotubes on Ti foil and TiO2 nanotube-powders fabricated by rapid breakdown anodization technique. The morphology of the prepared samples was characterized by scanning probe microscopy (SEM). The electrochemical lithium storage abilities were studied by galvanostatic method. In addition, carbon nanotubes (CNT) additives and solution treatment process of TiO2 anode were investigated, and the results show that the additives and treatment could enhance the cycling performance of the TiO2 anode on lithium ion batteries.

  10. A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk-Shell Structured Nanomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Cuo; Tong, Xin; Ai, Yuanfei; Liu, De-Sheng; Yu, Peng; Wu, Jiang; Wang, Zhiming M.

    2018-09-01

    Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have received much attention in energy storage system. In particular, among the great efforts on enhancing the performance of LIBs and SIBs, yolk-shell (YS) structured materials have emerged as a promising strategy toward improving lithium and sodium storage. YS structures possess unique interior void space, large surface area and short diffusion distance, which can solve the problems of volume expansion and aggregation of anode materials, thus enhancing the performance of LIBs and SIBs. In this review, we present a brief overview of recent advances in the novel YS structures of spheres, polyhedrons and rods with controllable morphology and compositions. Enhanced electrochemical performance of LIBs and SIBs based on these novel YS structured anode materials was discussed in detail. [Figure not available: see fulltext.

  11. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang , Jing; Bao, Wurigumula; Ma, Lu

    2015-11-09

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide–nickel–graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stickmore » well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.« less

  12. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-07

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials

    NASA Astrophysics Data System (ADS)

    Lv, Zhisheng; Xie, Daohai; Li, Fusheng; Hu, Yun; Wei, Chaohai; Feng, Chunhua

    2014-01-01

    Here, we report that the microbial fuel cell (MFC) containing pseudo-capacitive anode materials such as polypyrrole (PPy)/9,10-anthraquinone-2-sulfonic acid sodium salt (AQS) composite films and RuO2 nanoparticles can function as a biocapacitor, able to store bioelectrons generated from microbial oxidation of substrate and release the accumulated charge upon requirement. Influences of the specific capacitance of the PPy/AQS- and RuO2-modified carbon felt anodes on the extent of accumulated charge are examined. Results show that increasing anode capacitance is responsible for the increases in the amount of electrons stored and released, and thereby leading to more energy stored and average power dissipated. The long-term charging-discharging tests indicate that the RuO2-modified biocapacitor with a specific capacitance of 3.74 F cm-2 exhibits 6% loss in the amount of released charge over 10 cycles for one-month operation, and 40% loss over 60 cycles for six-month operation. Our findings suggest that the MFC anode incorporating pseudo-capacitive materials shows potential for storing energy from waste organic matter and releasing in a short time of high power to the electronic device.

  15. Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycles

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Jiang, Bin; Guo, Jinxue; Xie, Yaping; Tang, Lin

    2014-12-01

    The major challenge to promote the commercialization of SnO2 anode materials is to construct unique structures and/or composites that could alleviate the volume effect and extend the lifespan. This study develops an efficient synthetic solution for the preparation of mesoporous SnO2 nanosheets, which involves an evaporation-induced selfassembly process and the following thermal treatment. Surfactant F127 is used as the soft template to form abundant cores. The as-prepared sample intrinsically inherits flexible sheet-like structure and porous features, as characterized with XRD, SEM, TEM and BET techniques. Based on these combining structural benefits, the sample is utilized as anode materials for lithium-ion batteries and exhibits excellent Li+ storage performance such as large and stable reversible capacity, good rate capability, and especially the outstanding durable cycling life of over 1000 cycles, which meets the demands of practical applications. The structural changes of SnO2 nanosheets are observed from the decomposed electrodes after different electrochemical cycles. Moreover, this synthesis strategy may offer an alternative and universal approach for synthesis of other transitional metal oxides or their binary composites as high-performance anode materials for lithium-ion batteries.

  16. Preparation of a Si/SiO2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries.

    PubMed

    Zeng, Lingxing; Liu, Renpin; Han, Lei; Luo, Fenqiang; Chen, Xi; Wang, Jianbiao; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2018-04-03

    In this work, an Si/SiO 2 -ordered-mesoporous carbon (Si/SiO 2 -OMC) nanocomposite was initially fabricated through a magnesiothermic reduction strategy by using a two-dimensional bicontinuous mesochannel of SiO 2 -OMC as a precursor, combined with an NaOH etching process, in which crystal Si/amorphous SiO 2 nanoparticles were encapsulated into the OMC matrix. Not only can such unique porous crystal Si/amorphous SiO 2 nanoparticles uniformly dispersed in the OMC matrix mitigate the volume change of active materials during the cycling process, but they can also improve electrical conductivity of Si/SiO 2 and facilitate the Li + /Na + diffusion. When applied as an anode for lithium-ion batteries (LIBs), the Si/SiO 2 -OMC composite displayed superior reversible capacity (958 mA h g -1 at 0.2 A g -1 after 100 cycles) and good cycling life (retaining a capacity of 459 mA h g -1 at 2 A g -1 after 1000 cycles). For sodium-ion batteries (SIBs), the composite maintained a high capacity of 423 mA h g -1 after 100 cycles at 0.05 A g -1 and an extremely stable reversible capacity of 190 mA h g -1 was retained even after 500 cycles at 1 A g -1 . This performance is one of the best long-term cycling properties of Si-based SIB anode materials. The Si/SiO 2 -OMC composites exhibited great potential as an alternative material for both lithium- and sodium-ion battery anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimization of Anodic Porous Alumina Fabricated from Commercial Aluminum Food Foils: A Statistical Approach

    PubMed Central

    Riccomagno, Eva; Shayganpour, Amirreza; Salerno, Marco

    2017-01-01

    Anodic porous alumina is a known material based on an old industry, yet with emerging applications in nanoscience and nanotechnology. This is promising, but the nanostructured alumina should be fabricated from inexpensive raw material. We fabricated porous alumina from commercial aluminum food plate in 0.4 M aqueous phosphoric acid, aiming to design an effective manufacturing protocol for the material used as nanoporous filler in dental restorative composites, an application demonstrated previously by our group. We identified the critical input parameters of anodization voltage, bath temperature and anodization time, and the main output parameters of pore diameter, pore spacing and oxide thickness. Scanning electron microscopy and grain analysis allowed us to assess the nanostructured material, and the statistical design of experiments was used to optimize its fabrication. We analyzed a preliminary dataset, designed a second dataset aimed at clarifying the correlations between input and output parameters, and ran a confirmation dataset. Anodization conditions close to 125 V, 20 °C, and 7 h were identified as the best for obtaining, in the shortest possible time, pore diameters and spacing of 100–150 nm and 150–275 nm respectively, and thickness of 6–8 µm, which are desirable for the selected application according to previously published results. Our analysis confirmed the linear dependence of pore size on anodization voltage and of thickness on anodization time. The importance of proper control on the experiment was highlighted, since batch effects emerge when the experimental conditions are not exactly reproduced. PMID:28772776

  18. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    PubMed Central

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-01-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions. PMID:27759108

  19. Modified Gold Electrode and Hollow Mn3O4 Nanoparticles as Electrode Materials for Microbial Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Dhungana, Pramod

    Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.

  20. Double-shelled silicon anode nanocomposite materials: A facile approach for stabilizing electrochemical performance via interface construction

    NASA Astrophysics Data System (ADS)

    Du, Lulu; Wen, Zhongsheng; Wang, Guanqin; Yang, Yan-E.

    2018-04-01

    The rapid capacity fading induced by volumetric changes is the main issue that hinders the widespread application of silicon anode materials. Thus, double-shelled silicon composite materials where lithium silicate was located between an Nb2O5 coating layer and a silicon active core were configured to overcome the chemical compatibility issues related to silicon and oxides. The proposed composites were prepared via a facile co-precipitation method combined with calcination. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated that a transition layer of lithium silicate was constructed successfully, which effectively hindered the thermal inter-diffusion between the silicon and oxide coating layers during heat treatment. The electrochemical performance of the double-shelled silicon composites was enhanced dramatically with a retained specific capacity of 1030 mAh g-1 after 200 cycles at a current density of 200 mA g-1 compared with 598 mAh g-1 for a core-shell Si@Nb2O5 composite that lacked the interface. The lithium silicate transition layer was shown to play an important role in maintaining the high electrochemical stability.

  1. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.

    PubMed

    Chen, Gen; Yan, Litao; Luo, Hongmei; Guo, Shaojun

    2016-09-01

    Rechargeable lithium-ion batteries (LIBs), as one of the most important electrochemical energy-storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon-nanomaterials-supported heterostructured anode materials; ii) conducting-polymer-coated electrode materials; iii) inorganic transition-metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high-performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bioinspired Carbon/SnO2 Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries.

    PubMed

    Li, Yao; Meng, Qing; Ma, Jun; Zhu, Chengling; Cui, Jingru; Chen, Zhixin; Guo, Zaiping; Zhang, Tao; Zhu, Shenmin; Zhang, Di

    2015-06-03

    A carbon/SnO2 composite (C-SnO2) with hierarchical photonic structure was fabricated from the templates of butterfly wings. We have investigated for the first time its application as the anode material for lithium-ion batteries. It was demonstrated to have high reversible capacities, good cycling stability, and excellent high-rate discharge performance, as shown by a capacitance of ∼572 mAh g(-1) after 100 cycles, 4.18 times that of commercial SnO2 powder (137 mAh g(-1)); a far better recovery capability of 94.3% was observed after a step-increase and sudden-recovery current. An obvious synergistic effect was found between the porous, hierarchically photonic microstructure and the presence of carbon; the synergy guarantees an effective flow of electrolyte and a short diffusion length of lithium ions, provides considerable buffering room, and prevents aggregation of SnO2 particles in the discharge/charge processes. This nature-inspired strategy points out a new direction for the fabrication of alternative anode materials.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming

    Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack–multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (~1700 mAh g–1 after 100 cycles atmore » 1.3 A g–1 based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.« less

  4. ZnSe Microsphere/Multiwalled Carbon Nanotube Composites as High-Rate and Long-Life Anodes for Sodium-Ion Batteries.

    PubMed

    Tang, Chunjuan; Wei, Xiujuan; Cai, Xinyin; An, Qinyou; Hu, Ping; Sheng, Jinzhi; Zhu, Jiexin; Chou, Shulei; Wu, Liming; Mai, Liqiang

    2018-06-13

    Sodium-ion batteries (SIBs) are considered as one of the most favorable alternative devices for sustainable development of modern society. However, it is still a big challenge to search for proper anode materials which have excellent cycling and rate performance. Here, zinc selenide microsphere and multiwalled carbon nanotube (ZnSe/MWCNT) composites are prepared via hydrothermal reaction and following grinding process. The performance of ZnSe/MWCNT composites as a SIB anode is studied for the first time. As a result, ZnSe/MWCNTs exhibit excellent rate capacity and superior cycling life. The capacity retains as high as 382 mA h g -1 after 180 cycles even at a current density of 0.5 A g -1 . The initial Coulombic efficiency of ZnSe/MWCNTs can reach 88% and nearby 100% in the following cycles. The superior electrochemical properties are attributed to continuous electron transport pathway, improved electrical conductivity, and excellent stress relaxation.

  5. Automotive assessment of carbon-silicon composite anodes and methods of fabrication

    NASA Astrophysics Data System (ADS)

    Karulkar, Mohan; Blaser, Rachel; Kudla, Bob

    2015-01-01

    To assess the potential of carbon silicon composite anodes for automotive applications, C-Si anodes were fabricated and certain improvements employed. The use of a PVDF buffer layer is demonstrated for the first time with a C-Si composite material. The buffer layer increases adhesion by 89%, and increases capacity by 50-80%. Also, a limited capacity range is employed to improve cycle life by up to 200%, and enable currents as high as 2 mA cm-1. The combined use of a buffer layer and limited capacity range has not been reported before. A model is also presented for comparing C-Si performance with real-world automotive targets from USABC, including energy density, power density, specific energy, and specific power. The analysis reveals a capacity penalty that arises from pairing C-Si with a traditional cathode (NCA), and which prevents the cell from meeting all targets. Scenarios are presented in which a higher-capacity cathode (250 mAh g-1) allows all targets to be hypothetically met.

  6. Performance evaluation of GDC-SrMoO4-YSZ SOFCs prepared with different pore formers

    NASA Astrophysics Data System (ADS)

    Hongxin, You; Lian, Peng; Xiaojuan, Wang; Cong, Zhao; Yajun, Guan; Tao, Yu; Lijun, Xu; Abuliti

    2018-04-01

    The paper aims to evaluate the performance of anodes prepared with different pore formers. Anodic precursor material SrMoO4 was prepared by hard template method. Gd0.2Ce0.8O1.9 (GDC) was introduced to the precursor to prepare composite anode material GDC-SrMoO4-YSZ by wet impregnation method. Cotton-fibers, graphite powder, flour and activated carbon fibers (ACF) were added as pore formers to the anode to prepare the corresponding solid oxide fuel cell (SOFC), respectively. The electrical performance testing was conducted under the methane environment at 800°C. The result showed that the single cell with 5wt% cotton-fibers as anode pore-former performed best with the maximum power density (464.49 mW.cm2). The cross section samples of the test cells indicated that the anode was left with a plenty of continuous long channels because of the burning of cotton-fibers. Thus, the influence of the amount of cotton-fibers (2wt%, 4wt%, 5wt%, 7wt%, 10wt%) of the anode on the performance of SOFC was tested and further analyzed by the scanning electron microscope (SEM). It was indicated that the optimum adding amount of cotton-fibers was 5wt%.

  7. Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability.

    PubMed

    Kennedy, Tadhg; Bezuidenhout, Michael; Palaniappan, Kumaranand; Stokes, Killian; Brandon, Michael; Ryan, Kevin M

    2015-07-28

    Here we report the rational design of a high-capacity Li-ion anode material comprising Ge nanowires with Si branches. The unique structure provides an electrode material with tunable properties, allowing the performance to be tailored for either high capacity or high rate capability by controlling the mass ratio of Si to Ge. The binder free Si-Ge branched nanowire heterostructures are grown directly from the current collector and exhibit high capacities of up to ∼1800 mAh/g. Rate capability testing revealed that increasing the Ge content within the material boosted the performance of the anode at fast cycling rates, whereas a higher Si content was optimal at slower rates of charge and discharge. Using ex-situ electron microscopy, Raman spectroscopy and energy dispersive X-ray spectroscopy mapping, the composition of the material is shown to be transient in nature, transforming from a heterostructure to a Si-Ge alloy as a consequence of repeated lithiation and delithiation.

  8. Novel strategy to improve the Li-storage performance of micro silicon anodes

    NASA Astrophysics Data System (ADS)

    Choi, Min-Jae; Xiao, Ying; Hwang, Jang-Yeon; Belharouak, Ilias; Sun, Yang-Kook

    2017-04-01

    Silicon (Si)-based materials have attracted significant research as an outstanding candidate for the anode material of lithium-ion batteries. However, the tremendous volume change and poor electron conductivity of bulk silicon result in inferior capacity retention and low Coulombic efficiency. Designing special Si with high energy density and good stability in a bulk electrode remains a significant challenge. In this work, we introduce an ingenious strategy to modify micro silicon by designing a porous structure, constructing nanoparticle blocks, and introducing carbon nanotubes as wedges. A disproportion reaction, coupled with a chemical etching process and a ball-milling reaction, are applied to generate the desired material. The as-prepared micro silicon material features porosity, small primary particles, and effective CNT-wedging, which combine to endow the resultant anode with a high reversible specific capacity of up to 2028.6 mAh g-1 after 100 cycles and excellent rate capability. The superior electrochemical performance is attributed to the unique architecture and optimized composition.

  9. New generation photoelectric converter structure optimization using nano-structured materials

    NASA Astrophysics Data System (ADS)

    Dronov, A.; Gavrilin, I.; Zheleznyakova, A.

    2014-12-01

    In present work the influence of anodizing process parameters on PAOT geometric parameters for optimizing and increasing ETA-cell efficiency was studied. During the calculations optimal geometrical parameters were obtained. Parameters such as anodizing current density, electrolyte composition and temperature, as well as the anodic oxidation process time were selected for this investigation. Using the optimized TiO2 photoelectrode layer with 3,6 μm porous layer thickness and pore diameter more than 80 nm the ETA-cell efficiency has been increased by 3 times comparing to not nanostructured TiO2 photoelectrode.

  10. A Facile Electrophoretic Deposition Route to the Fe3O4/CNTs/rGO Composite Electrode as a Binder-Free Anode for Lithium Ion Battery.

    PubMed

    Yang, Yang; Li, Jiaqi; Chen, Dingqiong; Zhao, Jinbao

    2016-10-12

    Fe 3 O 4 is regarded as an attractive anode material for lithium ion batteries (LIBs) due to its high theoretical capacity, natural abundance, and low cost. However, the poor cyclic performance resulting from the low conductivity and huge volume change during cycling impedes its application. Here we have developed a facile electrophoretic deposition route to fabricate the Fe 3 O 4 /CNTs (carbon nanotubes)/rGO (reduced graphene oxide) composite electrode, simultaneously achieving material synthesis and electrode assembling. Even without binders, the adhesion and mechanical firmness of the electrode are strong enough to be used for LIB anode. In this specific structure, Fe 3 O 4 nanoparticles (NPs) interconnected by CNTs are sandwiched by rGO layers to form a robust network with good conductivity. The resulting Fe 3 O 4 /CNTs/rGO composite electrode exhibits much improved electrochemical performance (high reversible capacity of 540 mAh g -1 at a very high current density of 10 A g -1 , and a remarkable capacity of 1080 mAh g -1 can be maintained after 450 cycles at 1 A g -1 ) compared with that of commercial Fe 3 O 4 NPs electrode.

  11. Facile Synthesis of SiO2@C Nanoparticles Anchored on MWNT as High-Performance Anode Materials for Li-ion Batteries.

    PubMed

    Zhao, Yan; Liu, Zhengjun; Zhang, Yongguang; Mentbayeva, Almagul; Wang, Xin; Maximov, M Yu; Liu, Baoxi; Bakenov, Zhumabay; Yin, Fuxing

    2017-12-01

    Carbon-coated silica nanoparticles anchored on multi-walled carbon nanotubes (SiO 2 @C/MWNT composite) were synthesized via a simple and facile sol-gel method followed by heat treatment. Scanning and transmission electron microscopy (SEM and TEM) studies confirmed densely anchoring the carbon-coated SiO 2 nanoparticles onto a flexible MWNT conductive network, which facilitated fast electron and lithium-ion transport and improved structural stability of the composite. As prepared, ternary composite anode showed superior cyclability and rate capability compared to a carbon-coated silica counterpart without MWNT (SiO 2 @C). The SiO 2 @C/MWNT composite exhibited a high reversible discharge capacity of 744 mAh g -1 at the second discharge cycle conducted at a current density of 100 mA g -1 as well as an excellent rate capability, delivering a capacity of 475 mAh g -1 even at 1000 mA g -1 . This enhanced electrochemical performance of SiO 2 @C/MWNT ternary composite anode was associated with its unique core-shell and networking structure and a strong mutual synergistic effect among the individual components.

  12. Facile Synthesis of SiO2@C Nanoparticles Anchored on MWNT as High-Performance Anode Materials for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Zhengjun; Zhang, Yongguang; Mentbayeva, Almagul; Wang, Xin; Maximov, M. Yu.; Liu, Baoxi; Bakenov, Zhumabay; Yin, Fuxing

    2017-07-01

    Carbon-coated silica nanoparticles anchored on multi-walled carbon nanotubes (SiO2@C/MWNT composite) were synthesized via a simple and facile sol-gel method followed by heat treatment. Scanning and transmission electron microscopy (SEM and TEM) studies confirmed densely anchoring the carbon-coated SiO2 nanoparticles onto a flexible MWNT conductive network, which facilitated fast electron and lithium-ion transport and improved structural stability of the composite. As prepared, ternary composite anode showed superior cyclability and rate capability compared to a carbon-coated silica counterpart without MWNT (SiO2@C). The SiO2@C/MWNT composite exhibited a high reversible discharge capacity of 744 mAh g-1 at the second discharge cycle conducted at a current density of 100 mA g-1 as well as an excellent rate capability, delivering a capacity of 475 mAh g-1 even at 1000 mA g-1. This enhanced electrochemical performance of SiO2@C/MWNT ternary composite anode was associated with its unique core-shell and networking structure and a strong mutual synergistic effect among the individual components.

  13. In situ preparation of Fe3O4 in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yuewen; Hassan Siddique, Ahmad; Huang, Heran; Fang, Qile; Deng, Wei; Zhou, Xufeng; Lu, Huanming; Liu, Zhaoping

    2017-11-01

    A new conductive carbon hybrid combining both reduced graphene nanoscrolls and carbon nanotubes (rGNSs-CNTs) is prepared, and used to host Fe3O4 nanoparticles through an in situ synthesis method. As an anode material for LIBs, the obtained Fe3O4@rGNSs-CNTs shows good electrochemical performance. At a current density of 0.1 A g-1, the anode material shows a high reversible capacity of 1232.9 mAh g-1 after 100 cycles. Even at a current density of 1 A g-1, it still achieves a high reversible capacity of 812.3 mAh g-1 after 200 cycles. Comparing with bare Fe3O4 and Fe3O4/rGO composite anode materials without nanoscroll structure, Fe3O4@rGNSs-CNTs shows much better rate capability with a reversible capacity of 605.0 and 500.0 mAh g-1 at 3 and 5 A g-1, respectively. The excellent electrochemical performance of the Fe3O4@rGNSs-CNTs anode material can be ascribed to the hybrid structure of rGNSs-CNTs, and their strong interaction with Fe3O4 nanoparticles, which on one hand provides more pathways for lithium ions and electrons, on the other hand effectively relieves the volume change of Fe3O4 during the charge-discharge process.

  14. Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application

    NASA Astrophysics Data System (ADS)

    Panda, Manas Ranjan; Anish Raj, K.; Sarkar, Ananta; Bao, Qiaoliang; Mitra, Sagar

    2018-05-01

    2D layered materials are found to be promising anode materials for renewable energy storage devices like sodium and Li-ion batteries and have become attractive options due to their high specific capacity, abundance and low cost. In this work, we synthesized 2D MoTe2 layers embedded in reduced graphene oxide (rGO) anode material for sodium-ion battery applications. 2D MoTe2 was prepared by a solid-state reaction in vacuum at a temperature of 800 °C. The prepared composite material MoTe2/rGO showed excellent electrochemical performance against the sodium metal. The discharge capacity of MoTe2/rGO was observed to be 280 mAh g-1 at a current rate of 1.0 A g-1 for 100 cycles. rGO plays an important role in embedding the MoTe2 structure, thus improving the electrical and mechanical properties, leading to a superior cycling stability and excellent electrochemical performances of MoTe2 for sodium-ion battery applications.

  15. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode

    NASA Astrophysics Data System (ADS)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.

  16. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.

    PubMed

    Park, Gi Dae; Kang, Yun Chan

    2016-03-14

    A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodatesmore » volumetric expansion of silicon electrodes.« less

  18. Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Favors, Zachary; Ionescu, Robert; Ye, Rachel; Bay, Hamed Hosseini; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-03-01

    Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g-1. In particular, reversible Li storage capacities above 1500 mAh g-1 were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures.

  19. Monodisperse porous silicon spheres as anode materials for lithium ion batteries.

    PubMed

    Wang, Wei; Favors, Zachary; Ionescu, Robert; Ye, Rachel; Bay, Hamed Hosseini; Ozkan, Mihrimah; Ozkan, Cengiz S

    2015-03-05

    Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g(-1). In particular, reversible Li storage capacities above 1500 mAh g(-1) were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures.

  20. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Daniel, Claus; ...

    2016-04-09

    An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less

  1. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale arsenic particles that were synthesized on melt away carbon nanotubes by akalide reduction. The performance of these anodes proved sensitive to electrolyte composition, which was significantly improved by using fluorinated ethylene carbonate. Additionally, further gains in capacity retention can be made by limiting the loading voltage to 0.75 V vs lithium metal. The arsenic and melt away carbon nanotube composite was found to have excellent cycle life and capacity at high mass loading (80% arsenic) when the nanoparticles were directly synthesized on the melt away carbon nanotubes. Gallium arsenide is well known for its semiconducting properties, but its performance as in Li-ion battery anodes is first reported here. Gallium is a metal with a low melting point that has been touted as a possible self-healing material for lithium ion anodes. Alone, gallium proves to be unstable as a lithium ion battery anode, but when synthesized as gallium arsenide nanoparticles and mixed with melt away carbon nanotubes it can charge and discharge in a battery 100 times with approximately twice the capacity of graphite anodes. This first study of gallium arsenide shows dramatic cycle life improvements by using nanoscale rather that micron size gallium arsenide.

  2. Bioinspired Hierarchical Nanofibrous Silver-Nanoparticle/Anatase-Rutile-Titania Composite as an Anode Material for Lithium-Ion Batteries.

    PubMed

    Luo, Yan; Li, Jiao; Huang, Jianguo

    2016-11-29

    A new bioinspired hierarchical nanofibrous silver-nanoparticle/anatase-rutile-titania (Ag-NP/A-R-titania) composite was fabricated by employing a natural cellulose substance (e.g., commercial laboratory cellulose filter paper) as the structural scaffold template, which was composed of anatase-phase titania (A-titania) nanotubes with rutile-phase titania (R-titania) nanoneedles grown on the surfaces and further silver nanoparticles (AgNPs) immobilized thereon. As it was employed as an anode material for lithium-ion batteries (LIBs), high reversible capacity, enhanced rate performance, and excellent cycling stability were achieved as compared with those of the corresponding cellulose-substance-derived nanotubular A-titania, R-titania, heterogeneous anatase/rutile titania (A-R-titania) composite, and commercial P25 powder. This benefited from its unique porous cross-linked three-dimensional structure inherited from the initial cellulose substance scaffold, which enhances the sufficient electrode/electrolyte contact, relieves the severe volume change upon cycling, and improves the amount of lithium-ion storage; moreover, the high loading content of the silver component in the composite improves the electrical conductivity of the electrode. The structural integrity of the composite was maintained upon long-term charge/discharge cycling, indicating its significant stability.

  3. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail

    2014-11-12

    Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost, natural abundance of sodium. Here, we report a novel graphene nanosheets-wrapped phosphorus composite as an anode for high performance sodium-ion batteries though a facile ball-milling of red phosphorus and graphene nanosheets. Not only can the graphene nanosheets significantly improve the electrical conductivity, but they also serve as a buffer layer to accommodate the large volume change of phosphorus in the charge-discharge process. As a result, the graphene wrapped phosphorus composite anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700more » mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially extend to other electrode materials with unstable solid electrolyte interphases in sodium-ion batteries.« less

  4. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  5. Encapsulating micro-nano Si/SiO x into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang

    2015-01-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge–discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both asmore » binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.« less

  6. Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Vikram Babu, B.; Vijaya Babu, K.; Tewodros Aregai, G.; Seeta Devi, L.; Madhavi Latha, B.; Sushma Reddi, M.; Samatha, K.; Veeraiah, V.

    2018-06-01

    In this work we investigate Li4Ti5O12 (LTO) anode material synthesized by conventional solid state reaction method calcined at 850 °C for 16 h. Thermal analysis reveals the temperature dependence of the material properties. The phase composition, micro-morphology and elemental analysis of the compound are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectra (EDS) respectively. The results of XRD pattern possessed cubic spinel structure with space group Fd-3m. The morphological features of the powder sample are in the range of 1.1 μm. The EDS spectra confirm the constituent elemental composition of the sample. Electrical conductivity measurement at different frequencies and temperatures had been carried out; and at room temperature it is found to be 5.96 × 10-7 S/cm. Besides, for the different frequencies applied, the activation energies were calculated and obtained to be in the range of 0.2-0.4 eV.

  7. Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer

    DOEpatents

    Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram

    2016-08-23

    A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.

  8. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries

    PubMed Central

    Li, Haipeng; Liu, Zhengjun; Yang, Shuang; Zhao, Yan; Feng, Yuting; Zhang, Chengwei; Yin, Fuxing

    2017-01-01

    ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g−1 is manifested at the second cycle and a capacity of 664 mAh·g−1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g−1 even at a high current density of 1600 mA·g−1. These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode. PMID:28934141

  9. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Haipeng; Liu, Zhengjun; Yang, Shuang; Zhao, Yan; Feng, Yuting; Bakenov, Zhumabay; Zhang, Chengwei; Yin, Fuxing

    2017-09-21

    ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT) composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm) which deposited on the surface of NCNT. Transmission electron microscopy (TEM) reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs), exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g -1 is manifested at the second cycle and a capacity of 664 mAh·g -1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g -1 even at a high current density of 1600 mA·g -1 . These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode.

  10. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    DOE PAGES

    Song, Junhua; Yan, Pengfei; Luo, Langli; ...

    2017-09-04

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here in this paper, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb 2O 3 from carbon coated Sb 2O 3 nanoparticlesmore » can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~ 554 mAh g -1, good rate capability (315 mhA g-1 at 10 C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na 0.9[Cu0.22Fe 0.30Mn 0.48]O 2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~ 130 Wh kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0–4.0 V, ~ 1.5 times energy of full-cells with similar design using hard carbon anodes.« less

  11. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Yan, Pengfei; Luo, Langli

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb2O3 from carbon coated Sb2O3 nanoparticles can accommodate the Sb swelling upon sodiationmore » and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~554 mAh•g-1, good rate capability (315 mhA•g-1 at 10C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~130 Wh•kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0-4.0 V, ~1.5 times energy of full-cells with similar design using hard carbon anodes.« less

  12. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Yan, Pengfei; Luo, Langli

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here in this paper, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb 2O 3 from carbon coated Sb 2O 3 nanoparticlesmore » can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~ 554 mAh g -1, good rate capability (315 mhA g-1 at 10 C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na 0.9[Cu0.22Fe 0.30Mn 0.48]O 2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~ 130 Wh kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0–4.0 V, ~ 1.5 times energy of full-cells with similar design using hard carbon anodes.« less

  13. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian

    2016-09-01

    In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.

  14. Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Jeon, Sung Min; Song, Jong Jin; Kim, Sun-I.; Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-01-01

    Si-based anode composite materials have been studied to improve the performance and the durability of Li-ion secondary batteries in this study. Si-Ni-Al, Si-Ni-Cu and Si-Ni-Cu-Al base alloys were designed and rapidly solidified at the cooling rate of about 106 °C/sec by optimizing the melt spinning. The ribbons were characterized using FE-SEM equipped with EDS, X-ray diffractometer and HR-TEM. The thin ribbons of Si-Ni-Al alloy consisted of nano-sized Si particles and amorphous matrix, which was regarded as an ideal microstructure for the anode material. At the wheel side of the ribbon, 20-30 nm of Si particles were formed (Zone A); whereas at the air side relatively large Si particles were distributed (Zone B). The Si-Ni-Cu alloy showed coarser Si particles than the Si-Ni-Al alloy, and its matrix consisted of NiSi2, Cu3Si and amorphous structures. Finally, the microstructure of the Si-Ni-Cu-Al alloy strips was composed of coarse Si particles, CuNi, Al4Cu9, NiSi2, and unknown phases, and the size of those Si particles were too large to be used for the anode materials.

  15. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    PubMed

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  16. Metal-Organic Framework Derived Porous Hollow Co3O4/N-C Polyhedron Composite with Excellent Energy Storage Capability.

    PubMed

    Kang, Wenpei; Zhang, Yu; Fan, Lili; Zhang, Liangliang; Dai, Fangna; Wang, Rongming; Sun, Daofeng

    2017-03-29

    Metal-organic frameworks (MOFs) derived transition metal oxides exhibit enhanced performance in energy conversion and storage. In this work, porous hollow Co 3 O 4 with N-doped carbon coating (Co 3 O 4 /N-C) polyhedrons have been prepared using cobalt-based MOFs as a sacrificial template. Assembled from tiny nanoparticles and N-doped carbon coating, Co 3 O 4 /N-C composite shortens the diffusion length of Li + /Na + ions and possesses an enhanced conductivity. And the porous and hollow structure is also beneficial for tolerating volume changes in the galvanostatic discharge/charge cycles as lithium/sodium battery anode materials. As a result, it can exhibit impressive cycling and rating performance. At 1000 mA g -1 , the specific capacities maintaine stable values of ∼620 mAh g -1 within 2000 cycles as anodes in lithium ion battery, while the specific capacity keeps at 229 mAh g -1 within 150 cycles as sodium ion battery anode. Our work shows comparable cycling performance in lithium ion battery but even better high-rate cycling stability as sodium ion battery anode. Herein, we provide a facile method to construct high electrochemical performance oxide/N-C composite electrode using new MOFs as sacrificial template.

  17. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl

    2017-12-01

    For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.

  18. Performance of strontium- and magnesium-doped lanthanum gallate electrolyte with lanthanum-doped ceria as a buffer layer for IT-SOFCs

    NASA Astrophysics Data System (ADS)

    Lee, Dokyol; Han, Ju-Hyeong; Kim, Eun-Gu; Song, Rak-Hyun; Shin, Dong-Ryul

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 2.8 (LSGM8080) powder, showing the highest electrical conductivity among LSGMs of various compositions, is synthesized using the glycine nitrate process (GNP) and used as the electrolyte for an intermediate-temperature solid oxide fuel cell (IT-SOFC). The LDC (Ce 0.55La 0.45O 1.775) powder is synthesized by a solid-state reaction and employed as the material for a buffer layer to prevent the reaction between the anode and electrolyte materials. The LDC also serves as the skeleton material for the anode. An anode-supported single cell with an active area of 1 cm 2 is constructed for performance evaluation. A single-cell test is performed at 750 and 800 °C. The maximum power density of the cell 459 and 664 mW cm -2 at 750 and 800 °C, respectively.

  19. Biphase-Interface Enhanced Sodium Storage and Accelerated Charge Transfer: Flower-Like Anatase/Bronze TiO2/C as an Advanced Anode Material for Na-Ion Batteries.

    PubMed

    Chu, Chenxiao; Yang, Jing; Zhang, Qianqian; Wang, Nana; Niu, Feier; Xu, Xuena; Yang, Jian; Fan, Weiliu; Qian, Yitai

    2017-12-20

    Flower-like assembly of ultrathin nanosheets composed of anatase and bronze TiO 2 embedded in carbon is successfully synthesized by a simple solvothermal reaction, followed with a high-temperature annealing. As an anode material in sodium-ion batteries, this composite exhibits outstanding electrochemical performances. It delivers a reversible capacity of 120 mA h g -1 over 6000 cycles at 10 C. Even at 100 C, there is still a capacity of 104 mA h g -1 . Besides carbon matrix and hierarchical structure, abundant interfaces between anatase and bronze greatly enhance the performance by offering additional sites for reversible Na + storage and improving the charge-transfer kinetics. The interface enhancements are confirmed by discharge/charge profiles, rate performances, electrochemical impedance spectra, and first-principle calculations. These results offer a new pathway to upgrade the performances of anode materials in sodium-ion batteries.

  20. Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Feng, Jinkui; Zhang, Zhen; Ci, Lijie; Zhai, Wei; Ai, Qing; Xiong, Shenglin

    2015-08-01

    A novel one-pot chemical dealloying method has been developed to prepare nanocomposite of reduced graphene oxide (RGO) and silicon dendrite from cheap commercial Al-Si eutectic precursor. The RGO anchoring could act as both conductive agent and buffer layer for Si volume change in the application of lithium ion batteries (LIBs). The Si/RGO composites show an initial reversible capacity of 2280 mAh g-1, excellent capacity retention of 1942 mAh g-1 even after 100 cycles, and a high capacity of 1521 mAh g-1 even at the rate of 4000 mA g-1. Electrochemical impedance spectroscopy (EIS) measurement proved that Si/RGO composite has the lower charge transfer resistance. This work proposes an economic and facile method to prepare silicon based anode material for next generation LIBs with high energy density.

  1. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tianyue; Jia, Zhe; Lin, Na

    Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in themore » electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm 2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.« less

  2. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

    DOE PAGES

    Zheng, Tianyue; Jia, Zhe; Lin, Na; ...

    2017-11-29

    Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in themore » electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm 2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.« less

  3. Electroactive compositions with poly(arylene oxide) and stabilized lithium metal particles

    DOEpatents

    Zhang, Zhengcheng; Yuan, Shengwen; Amine, Khalil

    2015-05-12

    An electroactive composition includes an anodic material; a poly(arylene oxide); and stabilized lithium metal particles; where the stabilized lithium metal particles have a size less than about 200 .mu.m in diameter, are coated with a lithium salt, are present in an amount of about 0.1 wt % to about 5 wt %, and are dispersed throughout the composition. Lithium secondary batteries including the electroactive composition along with methods of making the electroactive composition are also discussed.

  4. The application of electrocoagulation for the conversion of MSWI fly ash into nonhazardous materials.

    PubMed

    Liao, Wing-Ping; Yang, Renbo; Kuo, Wei-Ting; Huang, Jui-Yuan

    2014-05-01

    This research investigated the electrocoagulation of municipal solid waste incineration (MSWI) fly ash at a liquid-to-solid ratio (L/S) of 20:1. The leachate that was obtained from this treatment was recovered for reutilization. Two different anodic electrodes were investigated, and two unit runs were conducted. In Unit I, the optimum anode was chosen, and in Unit II, the optimum anode and the recovered leachate were used to replace deionized water for repeating the same electrocoagulation experiments. The results indicate that the aluminum (Al) anode performed better than the iridium oxide (IrO2) anode. The electrocoagulation technique includes washing with water, changing the composition of the fly ash, and stabilizing the heavy metals in the ash. Washing with water can remove the soluble salts from fly ash, and the fly ash can be converted into Friedel's salt (3CaO·Al2O3·CaCl2·10H2O) under an uniform electric field and the sacrificial release of Al(+3) ions, which stabilizes the toxic heavy metals and brings the composition of the fly ash to within the regulatory limits of the toxicity characteristic leaching procedure (TCLP). Use of the Al anode to manage the MSWI fly ash and the leachate obtained from the electrocoagulation treatment is therefore feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  6. Conformal Surface Coatings to Enable High Volume Expansion Li-Ion Anode Materials

    DTIC Science & Technology

    2010-07-12

    the formation of a metastable amor - phous alloy, sustaining up to 4.4 Li+ per Si.[2] Transition metal oxides undergo a conversion reaction at lower...in Figure 1a. The ele - mental composition of the circular area labeled P1 was exam- ined using energy dispersive X-ray spectroscopy (EDS) to verify...electrodes were of a 70:10:20 composition active material (AM): acetylene black ( AB ): binder (PVDF) and subjected to 250 8C heat treatment. For

  7. Hybrid aerogel-derived Sn-Ni alloy immobilized within porous carbon/graphene dual matrices for high-performance lithium storage.

    PubMed

    Zhang, Hao; Zhang, Mengru; Zhang, Meiling; Zhang, Lin; Zhang, Anping; Zhou, Yiming; Wu, Ping; Tang, Yawen

    2017-09-01

    Nanoporous networks of tin-based alloys immobilized within carbon matrices possess unique structural and compositional superiorities toward lithium-storage, and are expected to manifest improved strain-accommodation and charge-transport capabilities and thus desirable anodic performance for advanced lithium-ion batteries (LIBs). Herein, a facile and scalable hybrid aerogel-derived thermal-autoreduction route has been developed for the construction of nanoporous network of SnNi alloy immobilized within carbon/graphene dual matrices (SnNi@C/G network). When applied as an anode material for LIBs, the SnNi@C/G network manifests desirable lithium-storage performances in terms of specific capacities, cycle life, and rate capability. The facile aerogel-derived route and desirable Li-storage performance of the SnNi@C/G network facilitate its practical application as a high-capacity, long-life, and high-rate anode material for advanced LIBs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structural and Electrical Properties of Lithium-Ion Rechargeable Battery Using the LiFePO4/Carbon Cathode Material.

    PubMed

    Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap

    2015-03-01

    LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials.

  9. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries.

    PubMed

    Reitz, Christian; Breitung, Ben; Schneider, Artur; Wang, Di; von der Lehr, Martin; Leichtweiss, Thomas; Janek, Jürgen; Hahn, Horst; Brezesinski, Torsten

    2016-04-27

    Nitrogen-rich carbon with both a turbostratic microstructure and meso/macroporosity was prepared by hard templating through pyrolysis of a tricyanomethanide-based ionic liquid in the voids of a silica monolith template. This multifunctional carbon not only is a promising anode candidate for long-life lithium-ion batteries but also shows favorable properties as anode and cathode host material owing to a high nitrogen content (>8% after carbonization at 900 °C). To demonstrate the latter, the hierarchical carbon was melt-infiltrated with sulfur as well as coated by atomic layer deposition (ALD) of anatase TiO2, both of which led to high-quality nanocomposites. TiO2 ALD increased the specific capacity of the carbon while maintaining high Coulombic efficiency and cycle life: the composite exhibited stable performance in lithium half-cells, with excellent recovery of low rate capacities after thousands of cycles at 5C. Lithium-sulfur batteries using the sulfur/carbon composite also showed good cyclability, with reversible capacities of ∼700 mA·h·g(-1) at C/5 and without obvious decay over several hundred cycles. The present results demonstrate that nitrogen-rich carbon with an interconnected multimodal pore structure is very versatile and can be used as both active and inactive electrode material in high-performance lithium-based batteries.

  10. Bouquet-Like Mn2SnO4 Nanocomposite Engineered with Graphene Sheets as an Advanced Lithium-Ion Battery Anode.

    PubMed

    Rehman, Wasif Ur; Xu, Youlong; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Li, Long

    2018-05-30

    Volume expansion is a major challenge associated with tin oxide (SnO x ), which causes poor cyclability in lithium-ion battery anode. Bare tin dioxide (SnO 2 ), tin dioxide with graphene sheets (SnO 2 @GS), and bouquet-like nanocomposite structure (Mn 2 SnO 4 @GS) are prepared via hydrothermal method followed by annealing. The obtained composite material presents a bouquet structure containing manganese and tin oxide nanoparticle network with graphene sheets. Benefiting from this porous nanostructure, in which graphene sheets provide high electronic pathways to enhance the electronic conductivity, uniformly distributed particles offer accelerated kinetic reaction with lithium ion and reduced volume deviation in the tin dioxide (SnO 2 ) particle during charge-discharge testing. As a consequence, ternary composite Mn 2 SnO 4 @GS showed a high rate performance and outstanding cyclability of anode material for lithium-ion batteries. The electrode achieved a specific capacity of about 1070 mA h g -1 at a current density of 400 mA g -1 after 200 cycles; meanwhile, the electrode still delivered a specific capacity of about 455 mA h g -1 at a high current density of 2500 mA g -1 . Ternary Mn 2 SnO 4 @GS material could facilitate fabrication of unique structure and conductive network as advanced lithium-ion battery.

  11. Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Cui, Dongming; Zheng, Zhong; Peng, Xue; Li, Teng; Sun, Tingting; Yuan, Liangjie

    2017-09-01

    The composite of fluorine-doped SnO2 anchored on reduced graphene oxide (F-SnO2/rGO) has been synthesized through a hydrothermal method. F-SnO2 particles with average size of 8 nm were uniformly anchored on the surfaces of rGO sheets and the resulting composite had a high loading of F-SnO2 (ca. 90%). Benefiting from the remarkably improved electrical conductivity and Li-ion diffusion in the electrode by F doping and rGO incorporation, the composite material exhibited high reversible capacity, excellent long-term cycling stability and superior rate capability. The electrode delivered a large reversible capacity of 1037 mAh g-1 after 150 cycles at 100 mA g-1 and high rate capacities of 860 and 770 mAh g-1 at 1 and 2 A g-1, respectively. Moreover, the electrode could maintain a high reversible capacities of 733 mAh g-1 even after 250 cycles at 500 mA g-1. The outstanding electrochemical performance of the as-synthesized composite make it a promising anode material for high-energy lithium ion batteries.

  12. Electrochemical properties of Sn/C nanoparticles fabricated by redox treatment and pulsed wire evaporation method

    NASA Astrophysics Data System (ADS)

    Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon; Cho, Kwon-Koo

    2017-09-01

    Tin (Sn) based anode materials are the most promising anode materials for lithium-ion batteries due to their high theoretical capacity corresponding to the formation of Li4.4Sn composition (Li4.4Sn, 994 mAh/g). However, the applications of tin based anodes to lithium-ion battery system are generally limited by a large volume change (>260%) during lithiation and delithiation cycle, which causes pulverize and poor cycling stability. In order to overcome this shortcoming, we fabricate a Sn/C nanoparticle with a yolk-shell structure (Sn/void/C) by using pulsed wire evaporation process and oxidation/reduction heat treatment. Sn nanoparticles are encapsulated by a conductive carbon layer with structural buffer that leaves enough room for expansion and contraction during lithium insertion/desertion. We expect that the yolk-shell structure has the ability to accommodate the volume changes of tin and leading to an improved cycle performance. The Sn/Void/C anode with yolk-shell structure shows a high specific capacity of 760 mAh/g after 50 cycles.

  13. Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning

    NASA Astrophysics Data System (ADS)

    Yang, Hai-tao; Liu, Huan-rong; Zhang, Yong-chun; Chen, Bu-ming; Guo, Zhong-cheng; Xu, Rui-dong

    2013-10-01

    An Al/Pb-0.3%Ag alloy composite anode was produced via composite casting. Its electrocatalytic activity for the oxygen evolution reaction and corrosion resistance was evaluated by anodic polarization curves and accelerated corrosion test, respectively. The microscopic morphologies of the anode section and anodic oxidation layer during accelerated corrosion test were obtained by scanning electron microscopy. It is found that the composite anode (hard anodizing) displays a more compact interfacial combination and a better adhesive strength than plating tin. Compared with industrial Pb-0.3%Ag anodes, the oxygen evolution overpotentials of Al/Pb-0.3%Ag alloy (hard anodizing) and Al/Pb-0.3%Ag alloy (plating tin) at 500 A·m-2 were lower by 57 and 14 mV, respectively. Furthermore, the corrosion rates of Pb-0.3%Ag alloy, Al/Pb-0.3%Ag alloy (hard anodizing), and Al/Pb-0.3%Ag alloy (plating tin) were 13.977, 9.487, and 11.824 g·m-2·h-1, respectively, in accelerated corrosion test for 8 h at 2000 A·m-2. The anodic oxidation layer of Al/Pb-0.3%Ag alloy (hard anodizing) is more compact than Pb-0.3%Ag alloy and Al/Pb-0.3%Ag alloy (plating tin) after the test.

  14. Metal hydride compositions and lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Kwo; Nei, Jean

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  15. High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Ha, Chung-Wan; Choi, Hae-Young; Shin, Heon-Cheol; Lee, Sang-Min

    2017-11-01

    The electrochemical comparison between Sb2S3 and its composite with carbon (Sb2S3/C) involved by sodium ion carrier are explained by enhanced kinetics, particularly with respect to improved interfacial conductivity by surface modulation by carbon. Sb2S3 and Sb2S3/C are synthesized by a high energy mechanical milling process. The successful synthesis of these materials is confirmed with X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). As an anode material for sodium ion batteries, Sb2S3 exhibits an initial sodiation/desodiation capacity of 1,021/523 mAh g-1 whereas the Sb2S3/C composite exhibits a higher reversible capacity (642 mAh g-1). Furthermore, the cycle performance and rate capability of the Sb2S3/C composite are estimated to be much better than those of Sb and Sb2S3. Electrochemical impedance spectroscopy analysis shows that the Sb2S3/C composite exhibited charge transfer resistance and surface film resistance much lower than Sb2S3. X-ray photoelectron spectroscopy analyses of both electrodes demonstrate that NaF layer on Sb2S3/C composite electrode leads to the better electrochemical performances. In order to clarify the electrochemical reaction mechanism, ex-situ XRD based on differential capacity plots and ex-situ HR-TEM analyses of the Sb2S3/C composite electrode are carried out and its reaction mechanism was established.

  16. Superior performance of nanoscaled Fe3O4 as anode material promoted by mosaicking into porous carbon framework

    NASA Astrophysics Data System (ADS)

    Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang

    2014-01-01

    A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.

  17. Ti n O2n-1-Coated Li4Ti5O12 Composite Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Xu, Wen; Liu, Wanying; Li, Xing; Zhong, Xiaoxi; Lin, Yuanhua

    2018-01-01

    In an effort to enhance the rate capability of Li4Ti5O12, the Ti n O2n-1-coated Li4Ti5O12 (Li4Ti5O12-Ti n O2n-1, 3 < n < 10) composite has been synthesized through a sol-gel process followed by heat treatment in H2 atmosphere. Compared with pure Li4Ti5O12, Li4Ti5O12-Ti n O2n-1 composite shows higher specific capacity, better rate capability and cycle stability. The initial discharge capacity of the Li4Ti5O12-Ti n O2n-1 composite electrode is 171.2 mAh g-1 at 0.2°C, and 103.8 mAh g-1 at 20°C. Moreover, the discharge capacity remains 79.5 mAh g-1 after 100 cycles at 20°C with a capacity loss of 23.4%. The improved rate capacity and cycling stability clarify the positive effects of Ti n O2n-1 coating layer in Li4Ti5O12-Ti n O2n-1 composite as an anode material for lithium ion batteries.

  18. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers.

    PubMed

    Schuerger, Andrew C; Richards, Jeffrey T; Hintze, Paul E; Kern, Roger G

    2005-08-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  19. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.

    2005-01-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  20. Sacrificing power for more cost-effective treatment: A techno-economic approach for engineering microbial fuel cells.

    PubMed

    Stoll, Zachary A; Ma, Zhaokun; Trivedi, Christopher B; Spear, John R; Xu, Pei

    2016-10-01

    Microbial fuel cells (MFCs) are a promising energy-positive wastewater treatment technology, however, the system's cost-effectiveness has been overlooked. In this study, two new anode materials - hard felt (HF) and carbon foam (CF) - were evaluated against the standard graphite brush (GB) to determine if using inexpensive materials with less than ideal properties can achieve more cost-effective treatment than high-cost, high-performing materials. Using domestic wastewater as the substrate, power densities for the GB, HF and CF-MFCs were 393, 339 and 291 mW m(-2) normalized by cathodic surface area, respectively. Higher power densities correlated with larger anodic surface areas and anodic current densities but not with electrical conductivity. Cyclic voltammetry revealed that redox systems used for extracellular electron transport in the GB, HF and CF-MFCs were similar (-0.143 ± 0.046, -0.158 ± 0.004 and -0.100 ± 0.014 V vs. Ag/AgCl) and that the electrochemical kinetics of the MFCs showed no correlation with their respective electrical conductivity. 16S rRNA sequencing showed the GB, HF and CF microbial community compositions were not statistically different while organic removal rates were nearly identical for all MFCs. The HF-MFC generated a power output to electrode cost (W $(-1)) 1.9 times greater than the GB-MFC, despite producing 14% less power and 15% less anodic current, while having 2.6 times less anodic surface area, 2.1 times larger charge transfer resistance and an electrical conductivity three orders of magnitude lower. The results demonstrate that inexpensive materials are capable of achieving more cost-effective treatment than high-performing materials despite generating lower power when treating real wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enhanced Electrochemical Performances of Bi2O3/rGO Nanocomposite via Chemical Bonding as Anode Materials for Lithium Ion Batteries.

    PubMed

    Deng, Zhuo; Liu, Tingting; Chen, Tao; Jiang, Jiaxiang; Yang, Wanli; Guo, Jun; Zhao, Jianqing; Wang, Haibo; Gao, Lijun

    2017-04-12

    Bismuth oxide/reduced graphene oxide (termed Bi 2 O 3 @rGO) nanocomposite has been facilely prepared by a solvothermal method via introducing chemical bonding that has been demonstrated by Raman and X-ray photoelectron spectroscopy spectra. Tremendous single-crystal Bi 2 O 3 nanoparticles with an average size of ∼5 nm are anchored and uniformly dispersed on rGO sheets. Such a nanostructure results in enhanced electrochemical reversibility and cycling stability of Bi 2 O 3 @rGO composite materials as anodes for lithium ion batteries in comparison with agglomerated bare Bi 2 O 3 nanoparticles. The Bi 2 O 3 @rGO anode material can deliver a high initial capacity of ∼900 mAh/g at 0.1C and shows excellent rate capability of ∼270 mAh/g at 10C rates (1C = 600 mA/g). After 100 electrochemical cycles at 1C, the Bi 2 O 3 @rGO anode material retains a capacity of 347.3 mAh/g with corresponding capacity retention of 79%, which is significantly better than that of bare Bi 2 O 3 material. The lithium ion diffusion coefficient during lithiation-delithiation of Bi 2 O 3 @rGO nanocomposite has been evaluated to be around ∼10 -15 -10 -16 cm 2 /S. This work demonstrates the effects of chemical bonding between Bi 2 O 3 nanoparticles and rGO substrate on enhanced electrochemical performances of Bi 2 O 3 @rGO nanocomposite, which can be used as a promising anode alterative for superior lithium ion batteries.

  2. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    PubMed

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    PubMed

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g -1 at 2 A g -1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g -1 at 1 A g -1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  4. Composite materials for the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V.; Tello, Hector M.

    1992-01-01

    The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation sensitivity of anodic coatings. This project was directed toward the effects of ultra-violet radiation on high emissivity anodic coatings. The work of both Evelyne Orndoff and Hector Tello is of interest to the Engineering Directorate at NASA/JSC and is also directed toward their research as Rice University graduate students.

  5. Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Fangfang; Bai, Jing; Feng, Jinkui; Xiong, Shenglin

    2015-10-01

    The relentless pursuit of new electrode materials for lithium ion batteries (LIBs) has been conducted for decades. Structures with either porous or nanostructure configurations have been confirmed as advantageous candidates for energy storage/conversion applications. The integration of the two features into one structure can provide another chance to improve the electroactivities. Recently, single-phased mixed metal oxides (MMOs) containing different metal cations, in particular, have confirmed high electrochemical activities because of their complex chemical composition, interfacial effects, and the synergic effects of the multiple metal species. In this review, we will focus on recent research advances of MMOs with porous architectures as anode materials in the matter of structural arrangement and compositional manipulation. Moreover, the application of self-supported MMO-based porous structures as LIB anodes is also explained herein. More importantly, investigations on the synthetic system and formation mechanism of porous MMOs will be highlighted. Some future trends for the innovative design of new electrode materials are also discussed in this review. The challenges and prospects will draw many researchers' attention.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Zhao, Jie; Lu, Zhenda

    Described here is a method for making an anode of a rechargeable battery, comprising incorporating a composition comprising Li xM into the anode, wherein M is a Group 14 element. Also described here is an anode comprising a composition comprising Li xM, wherein M is a Group 14 element, and a rechargeable battery comprising the anode.

  7. Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium Ion Batteries.

    PubMed

    Hassan, Fathy M; Hu, Qianqian; Fu, Jing; Batmaz, Rasim; Li, Jingde; Yu, Aiping; Xiao, Xingcheng; Chen, Zhongwei

    2017-06-21

    Tuned chalcogenide single crystals rooted in sulfur-doped graphene were prepared by high-temperature solution chemistry. We present a facile route to synthesize a rod-on-sheet-like nanohybrid as an active anode material and demonstrate its superior performance in lithium ion batteries (LIBs). This nanohybrid contains a nanoassembly of one-dimensional (1D) single-crystalline, orthorhombic SnS onto two-dimensional (2D) sulfur-doped graphene. The 1D nanoscaled SnS with the rodlike single-crystalline structure possesses improved transport properties compared to its 2D hexagonal platelike SnS 2 . Furthermore, we blend this hybrid chalcogenide with biodegradable polymer composite using water as a solvent. Upon drying, the electrodes were subjected to heating in vacuum at 150 °C to induce polymer condensation via formation of carboxylate groups to produce a mechanically robust anode. The LIB using the as-developed anode material can deliver a high volumetric capacity of ∼2350 mA h cm -3 and exhibit superior cycle stability over 1500 cycles as well as a high capacity retention of 85% at a 1 C rate. The excellent battery performance combined with the simplistic, scalable, and green chemistry approach renders this anode material as a very promising candidate for LIB applications.

  8. Composite electrodes for advanced electrochemical applications. Quarterly report for the period October 1, - December 31, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovach, Chris

    The electrochemical industry is one of the most highly energy intensive industries today. However, there have been no significant advances in the electrodes that these industries use. The dimensionally stable anode (DSA), which ELTECH introduced under a license agreement, has been the industry standard for the past twenty-five years. But, DSAs are nearing the end of their technological prevalence. The principal problems with DSAs include high capital and operating costs, and the proprietary nature of the technology. In addition, DSAs experience problems that include: contamination of the process solution by anode materials, failure when the electrocatalytic coating peels from underattack,more » generally low anode performance due to inherent limitations in operating current density, and short anode lifetime because of corrosion. The proposed innovation combines the low electrical resistance of copper with the corrosion resistance of electrically conductive diamond to achieve energy efficient, long-lifetime electrodes for electrochemistry. The proposed work will ultimately develop a composite electrode that consists of a copper substrate, a conductive diamond coating, and a catalytic precious metal coating. The scope of the current work includes preparation, testing, and evaluation of diamond-coated titanium electrodes.« less

  9. Composite electrodes for advanced electrochemical applications. Quarterly report for the period July 1 - September 30, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovach, Chris

    The electrochemical industry is one of the most highly energy-intensive industries today. However, there have been no significant advances in the electrodes that these industries use. The dimensionally stable anode (DSA), which ELTECH introduced under a license agreement, has been the industry standard for the past twenty-five years. But, DSAs are nearing the end of their technological prevalence. The principal problems with DSAs include high capital and operating cost, and the proprietary nature of the technology. In addition, DSAs experience problems that include contamination of the process solution by anode materials, failure when the electrocatalytic coating peels from under attack,more » generally low anode performance due to inherent limitations in operating current density, and short anode lifetime because of corrosion. The proposed innovation combines the low electrical resistance of copper with the corrosion resistance of electrically conductive diamond to achieve energy-efficient, long-lifetime electrodes for electrochemistry. The proposed work will ultimately develop a composite electrode that consists of a copper substrate, a conductive diamond coating, and a catalytic precious metal coating. The scope of the current work includes preparation, testing, and evaluation of diamond-coated titanium electrodes.« less

  10. Optimization of the electrochemical performance of a Ni/Ce0.9Gd0.1O2-δ-impregnated La0.57Sr0.15TiO3 anode in hydrogen

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Brüll, Annelise; Grimaud, Alexis; Fourcade, Sébastien; Mauvy, Fabrice; Zhao, Hui; Grenier, Jean-Claude; Bassat, Jean-Marc

    2014-09-01

    A-site deficient perovskite La0.57Sr0.15TiO3 (LSTO) materials are synthesized by a modified polyacrylamide gel route. X-ray diffraction pattern of LSTO indicates an orthorhombic structure. The thermal expansion coefficient of LSTO is 10.0 × 10-6 K-1 at 600 °C in 5%H2/Ar. LSTO shows an electrical conductivity of 2 S cm-1 at 600 °C in 3%H2O/H2. A new composite material, containing the porous LSTO backbone impregnated with small amounts of Ce0.9Gd0.1O2-δ (CGO) (3.4-8.3 wt.%) and Ni/Cu (2.0-6.3 wt.%), is investigated as an alternative anode for solid oxide fuel cells (SOFCs). Because of the substantial electro-catalytic activity of the fine and well-dispersed Ni particles on the surface of the ceramic framework, the polarization resistance of 6.3%Ni-8.3%CGO-LSTO anode reaches 0.73 Ω cm2 at 800 °C in 3%H2O/H2. In order to further improve the anodic performance, corn starch and carbon black are used as pore-formers to optimize the microstructure of anodes.

  11. Synthesis and electrochemical properties of Fe3O4@MOF core-shell microspheres as an anode for lithium ion battery application

    NASA Astrophysics Data System (ADS)

    Sun, Xuemin; Gao, Ge; Yan, Dongwei; Feng, Chuanqi

    2017-05-01

    The Fe3O4@MOF composite with a microspheric core and a porous metal-organic framework (MOF HKUST-1) shell has been successfully synthesized utilizing a versatile Layer-by-Layer (LBL) assembly method. The structure was identified by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The Fe3O4@MOF composite exhibited outstanding electrochemical properties when it was used as an anode material for lithium ion batteries (LIBs). After 100 discharge-charge cycles at a current density of 100 mA g-1, the reversible capacity of Fe3O4@MOF could maintain ∼1002 mAh g-1, which was much higher than that of the bare Fe3O4 counterpart (696 mAh g-1). Moreover, load the current density as high as 2 A g-1 (after 70 cycles at the current density step increased from 0.1 to 2 A g-1), it still delivered a reversible capacity of ∼429 mAh g-1. The results demonstrate that the cycling stability of Fe3O4 as an anode could be significantly improved by coating Cu3(1,3,5-benzenetricarboxylate)2 (HKUST-1). This strategy may offer new route to prepare other composite materials using different particles and suitable Metal-organic frameworks (MOFs) for LIBs application.

  12. Synthesis of Olive-Like Nitrogen-Doped Carbon with Embedded Ge Nanoparticles for Ultrahigh Stable Lithium Battery Anodes.

    PubMed

    Ma, Xiaomei; Zhou, Yongning; Chen, Min; Wu, Limin

    2017-05-01

    The development of environment-friendly and high-performance carbon materials for energy applications has remained a great challenge. Here, a novel and facile method for synthesis of olive-like nitrogen-doped carbon embedded with germanium (Ge) nanoparticles using widespread and nontoxic dopamine as carbon and nitrogen precursors is demonstrated, especially by understanding the tendency of pure GeO 2 nanoparticles forming ellipsoidal aggregation, and the chelating reaction of the catechol structure in dopamine with metal ions. The as-synthesized Ge/N-C composites show an olive-like porous carbon structure with a loading weight of as high as 68.5% Ge nanoparticles. A lithium ion battery using Ge/N-C as the anode shows 1042 mAh g -1 charge capacity after 2000 cycles (125 d) charge/discharge at C/2 (1C = 1600 mA g -1 ) with a capacity maintaining efficiency of 99.6%, significantly exceeding those of the previously reported Ge/C-based anode materials. This prominent cyclic charge/discharge performance of the Ge/N-C anode is attributed to the well-dispersed Ge nanoparticles in graphitic N-doped carbon matrix, which facilitates high rates (0.5-15 C) of charge/discharge and increases the anode structure integrity. The synthesis strategy presented here may be a very promising approach to prepare a series of active nanoparticle-carbon hybrid materials with nitrogen doping for more and important applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Boosting the power performance of multilayer graphene as lithium-ion battery anode via unconventional doping with in-situ formed Fe nanoparticles

    PubMed Central

    Raccichini, Rinaldo; Varzi, Alberto; Chakravadhanula, Venkata Sai Kiran; Kübel, Christian; Passerini, Stefano

    2016-01-01

    Graphene is extensively investigated and promoted as a viable replacement for graphite, the state-of-the-art material for lithium-ion battery (LIB) anodes, although no clear evidence is available about improvements in terms of cycling stability, delithiation voltage and volumetric capacity. Here we report the microwave-assisted synthesis of a novel graphene-based material in ionic liquid (i.e., carved multilayer graphene with nested Fe3O4 nanoparticles), together with its extensive characterization via several physical and chemical techniques. When such a composite material is used as LIB anode, the carved paths traced by the Fe3O4 nanoparticles, and the unconverted metallic iron formed in-situ upon the 1st lithiation, result in enhanced rate capability and, especially at high specific currents (i.e., 5 A g−1), remarkable cycling stability (99% of specific capacity retention after 180 cycles), low average delithiation voltage (0.244 V) and a substantially increased volumetric capacity with respect to commercial graphite (58.8 Ah L−1 vs. 9.6 Ah L−1). PMID:27026069

  14. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries

    PubMed Central

    Chen, Yu Ming; Yu, Xin Yao; Li, Zhen; Paik, Ungyu; Lou, Xiong Wen (David)

    2016-01-01

    Molybdenum disulfide (MoS2), a typical two-dimensional material, is a promising anode material for lithium-ion batteries because it has three times the theoretical capacity of graphite. The main challenges associated with MoS2 anodes are the structural degradation and the low rate capability caused by the low intrinsic electric conductivity and large strain upon cycling. Here, we design hierarchical MoS2 tubular structures internally wired by carbon nanotubes (CNTs) to tackle these problems. These porous MoS2 tubular structures are constructed from building blocks of ultrathin nanosheets, which are believed to benefit the electrochemical reactions. Benefiting from the unique structural and compositional characteristics, these CNT-wired MoS2 tubular structures deliver a very high specific capacity of ~1320 mAh g−1 at a current density of 0.1 A g−1, exceptional rate capability, and an ultralong cycle life of up to 1000 cycles. This work may inspire new ideas for constructing high-performance electrodes for electrochemical energy storage. PMID:27453938

  15. Processing silicon microparticles recycled from wafer waste via Rapid Thermal Process for lithium-ion battery anode materials

    NASA Astrophysics Data System (ADS)

    Tan, Hui-Gee; Duh, Jenq-Gong

    2016-12-01

    A vast quantity of waste sludge is generated during the silicon wafers slicing process in semiconductor and photovoltaic industries. Turning the waste powder into high-value products is of strategic importance for industrial processes. The purified Si microparticles (Si-MP) are recycled by a simple and fast procedure, Rapid Thermal Process (RTP). A prominent anodic material of Si-MP/Carbon composite with porous structure is obtained via in-spaced carbonization of water-soluble binder sodium carboxymethyl cellulose during RTP. This strategy provides buffer space, which is constructed by carbon porous continuous conductive framework throughout the entire electrode, to resist local stress and intense volume variation. In addition, a sufficiently electrochemically stable solid-electrolyte interphase layer is accomplished with the coating of SiOx film and amorphous carbon on the surface of Si-MP. Under these circumstances, the enhanced electrodes achieve a first cycle efficiency of approximately 80% and a reversible charge capacity of 800 mAhg-1 over 100 cycles at 0.5 Ag-1 with good retention. Through a green and simple procedure, a remarkable Si-MP embedded carbon-matrix with porous structure is established to achieve commercially high performance Si-MP/C composite anodes and also to resolve the issues of waste disposal.

  16. Solution-grown silicon nanowires for lithium-ion battery anodes.

    PubMed

    Chan, Candace K; Patel, Reken N; O'Connell, Michael J; Korgel, Brian A; Cui, Yi

    2010-03-23

    Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires using the pyrolysis of sugar was found to be crucial for making good electronic contact to the material. Using multiwalled carbon nanotubes as the conducting additive was found to be more effective for obtaining good cycling behavior than using amorphous carbon. Reversible capacities of 1500 mAh/g were observed for 30 cycles.

  17. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF.

  18. A Nanostructured Composites Thermal Switch Controls Internal and External Short Circuit in Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    McDonald, Robert C.; VanBlarcom, Shelly L.; Kwasnik, Katherine E.

    2013-01-01

    A document discusses a thin layer of composite material, made from nano scale particles of nickel and Teflon, placed within a battery cell as a layer within the anode and/or the cathode. There it conducts electrons at room temperature, then switches to an insulator at an elevated temperature to prevent thermal runaway caused by internal short circuits. The material layer controls excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect

  19. Self-assembly of novel hierarchical flowers-like Sn3O4 decorated on 2D graphene nanosheets hybrid as high-performance anode materials for LIBs

    NASA Astrophysics Data System (ADS)

    Chen, Xuefang; Huang, Ying; Li, Tianpeng; Wei, Chao; Yan, Jing; Feng, Xuansheng

    2017-05-01

    Novel hierarchical flower-like Sn3O4 assembled by thin Sn3O4 nanosheets, as a kind of mixed-valence tin oxide, decorated on two-dimensional graphene nanosheets has been synthesized via a hydrothermal route and a step solution deoxidization technique. More importantly, as the anode materials for lithium ion batteries, the flower-like Sn3O4/graphene composite has not been investigated in detail. Noticeably, the nanosheets stemming from flower-like Sn3O4 and graphene have been linked together to form a specials three dimensional structure, possessing high active surface area and large enough inner spaces, which is benefit to the diffusion of liquid electrolyte into the electrode materials. In addition, the special structure could provide sufficient free volume to buffer the volume expansion appeared in the process of discharging and charging. The as-prepared flowers-like Sn3O4/graphene displayed excellent electrochemical performance with high capacity and good cycling stability as anode materials for lithium ion batteries. The discharge capacity is 1727 mAh/g in the first cycle at the current density of 60 mA/g. The obtained reversible capacity is 631mAh/g with a coulomb efficiency of 97.04% after 50 cycles. With its better electrochemical properties, the as-prepared flowers-like Sn3O4/graphene has the potential to be the next generation materials as an environmentally benign, abundant, cheap anode materials for lithium ion batteries.

  20. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Xuan; Zhao, Wei; Wang, Hong; Qi, Xiujun; Xing, Zheng; Zhuang, Quanchao; Ju, Zhicheng

    2018-02-01

    Potassium-ion batteries are attracting great attention as a promising alternative to lithium-ion batteries due to the abundance and low price of potassium. Herein, the phosphorus/carbon composite, obtained by a simple ball-milling of 20 wt% commercial red phosphorus and 80 wt% graphite, is studied as a novel anode for potassium-ion batteries. Considering the high theoretical specific capacity of phosphorus and formation of stable phosphorus-carbon bond, which can alleviate the volume expansion efficiently, the phosphorus/carbon composite exhibits a high charge capacity of 323.5 mA h g-1 after 50 cycles at a current density of 50 mA g-1 with moderate rate capability and cycling stability. By the X-ray diffraction analysis, the alloying-dealloying mechanism of phosphorus is proposed to form a KP phase. Meanwhile, prepotassiation treatment is conducted to improve the low initial coulomb efficiency.

  1. Compositionally-graded silicon-copper helical arrays as anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Polat, Deniz B.; Keles, Ozgul; Amine, Khalil

    2016-02-01

    Restrictions in silicon based anodes have been the subject of many researches for years. As an innovative approach, we have adopted ion assisted deposition technique to glancing angle deposition method and have used compositionally-graded structuring. A unique helical shaped gradient film has been produced in which the Cu/Si atomic ratio decreases from the bottom to the top of the coating. With such a unique film (high surface area) more spaces have been created promoting mechanical integrity and reaction between active materials (silicon) with lithium ions. The highly adherent film is formed as a result of ion assisted deposition process and the gradual change in Cu/Si atomic ratio diverts stress through the helices. To compare the performance of the SiCu electrode, a pure Si film is deposited in the same experimental condition. Galvanostatic test results show that although the film with pure Si helices fails after 30th cycles, the compositionally graded anode exhibits a capacity of 1228 mAh g-1 at the 100th cycles with 99.5% coulombic efficiencies when cycled at 100 mA g-1, and delivers 815 mAh g-1 when cycled with a rate of 400 mA g-1.

  2. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H.

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry testmore » were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.« less

  3. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode.

    PubMed

    Beznosov, Sergei N; Veluri, Pavan S; Pyatibratov, Mikhail G; Chatterjee, Abhijit; MacFarlane, Douglas R; Fedorov, Oleg V; Mitra, Sagar

    2015-01-13

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  4. Flagellar filament bio-templated inorganic oxide materials – towards an efficient lithium battery anode

    PubMed Central

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; MacFarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g−1 after 50 cycles and with high rate capability, delivering 770 mAh g−1 at 5 A g−1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future. PMID:25583370

  5. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode

    NASA Astrophysics Data System (ADS)

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; Macfarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g-1 after 50 cycles and with high rate capability, delivering 770 mAh g-1 at 5 A g-1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  6. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.

    PubMed

    Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia

    2017-05-10

    Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g -1 over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g -1 over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.

  7. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.

    PubMed

    Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E

    2013-09-28

    Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.

  8. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries.

    PubMed

    Dong, Yucheng; Ma, Ruguang; Hu, Mingjun; Cheng, Hua; Yang, Qingdan; Li, Yang Yang; Zapien, Juan Antonio

    2013-05-21

    We present a high-yield and low cost thermal evaporation-induced anhydrous strategy to prepare hybrid materials of Fe3O4 nanoparticles and graphene as an advanced anode for high-performance lithium ion batteries. The ~10-20 nm Fe3O4 nanoparticles are densely anchored on conducting graphene sheets and act as spacers to keep the adjacent sheets separated. The Fe3O4-graphene composite displays a superior battery performance with high retained capacity of 868 mA h g(-1) up to 100 cycles at a current density of 200 mA g(-1), and 539 mA h g(-1) up to 200 cycles when cycling at 1000 mA g(-1), high Coulombic efficiency (above 99% after 200 cycles), good rate capability, and excellent cyclic stability. The simple approach offers a promising route to prepare anode materials for practical fabrication of lithium ion batteries.

  9. Electrochemical performance of potassium-doped wüstite nanoparticles supported on graphene as an anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jung, Dong-Won; Jeong, Jae-Hoon; Han, Sang-Wook; Oh, Eun-Suok

    2016-05-01

    A graphene composite with potassium-doped FeO nanoparticles (K-FeO/graphene) is synthesized by the thermal diffusion of potassium into Fe2O3/graphene using polyol reduction. This is applied as anode material in lithium ion batteries in order to enhance the electrochemical performance of conventional iron oxides (hematite or magnetite). Rhombohedral Fe2O3 crystals are transformed into face-centered cubic FeO crystals, which show a broad d-spacing (5.2 Å) between their (111) crystal planes, by the calcination of potassium-added Fe2O3/graphene. Because of its structural characteristics, the K-FeO/graphene composite demonstrates an excellent discharge capacity of 1776 mA h g-1 at the 50th cycle at a current of 100 mA h g-1 with stable capacity retention. Even with the very high current density of 18.56 A g-1, its capacity remains at 851 mA h g-1 after 800 cycles.

  10. A nanoporous metal recuperated MnO2 anode for lithium ion batteries.

    PubMed

    Guo, Xianwei; Han, Jiuhui; Zhang, Ling; Liu, Pan; Hirata, Akihiko; Chen, Luyang; Fujita, Takeshi; Chen, Mingwei

    2015-10-07

    Lithium-ion batteries (LIBs) have been intensively studied to meet the increased demands for the high energy density of portable electronics and electric vehicles. The low specific capacity of the conventional graphite based anodes is one of the key factors that limit the capacity of LIBs. Transition metal oxides, such as NiO, MnO2 and Fe3O4, are known to be promising anode materials that are expected to improve the specific capacities of LIBs for several times. However, the poor electrical conductivity of these oxides significantly restricts the lithium ion storage and charge/discharge rate. Here we report that dealloyed nanoporous metals can realize the intrinsic lithium storage performance of the oxides by forming oxide/metal composites. Without any organic binder, conductive additive and additional current collector, the hybrid electrodes can be directly used as anodes and show highly reversible specific capacity with high-rate capability and long cyclic stability.

  11. Synthesis and characterisation of Co-Co(OH)2 composite anode material on Cu current collector for energy storage devices

    NASA Astrophysics Data System (ADS)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2017-04-01

    A Co-Co(OH)2 modified electrode on inexpensive Cu substrate was synthesized at room temperature and demonstrated to be a promising anode material for energy storage devices. A modified Co film was obtained potentiostatically and was then potentiodynamically treated with KOH solution to form Co(OH)2. Co-Co(OH)2 coatings were obtained and were dominated by Co(OH)2 at the oxidized side, whereas Co dominant Co-Co(OH)2 occurred at the reduced side (-1.1 V). As OH- ions were able to diffuse into (out of) the film during oxidation (reduction) and did not react with the Cu current collector, the Co-Co(OH)2 electrode can be used as an anode material in energy storage devices. Although the specific capacitance of the electrodes varied depending on thickness, the redox reaction between the modified electrode and KOH electrolyte remained the same consisting of a surface-controlled and diffusion-controlled mechanism which had a desirable fast charge and discharge property. Capacity values remained constant after 250 cycles as the film evolved. Overall capacity retention was 84% for the film after 450 scans. A specific capacitance of 549 F g-1 was obtained for the Co-Co(OH)2 composite electrode in 6 M KOH at a scan rate of 5 mV s-1 and 73% of capacitance was retained when the scan rate was increased to 100 mV s-1.

  12. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery.

    PubMed

    Iqbal, Shahid; Bahadur, Ali; Saeed, Aamer; Zhou, Kebin; Shoaib, Muhammad; Waqas, Muhammad

    2017-09-15

    Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg -1 , a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag -1 , low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC. Copyright © 2017. Published by Elsevier Inc.

  13. Formation of Hierarchical Cu-Doped CoSe2 Microboxes via Sequential Ion Exchange for High-Performance Sodium-Ion Batteries.

    PubMed

    Fang, Yongjin; Yu, Xin-Yao; Lou, Xiong Wen David

    2018-04-06

    Electrode materials based on electrochemical conversion reactions have received considerable interest for high capacity anodes of sodium-ion batteries. However, their practical application is greatly hindered by the poor rate capability and rapid capacity fading. Tuning the structure at nanoscale and increasing the conductivity of these anode materials are two effective strategies to address these issues. Herein, a two-step ion-exchange method is developed to synthesize hierarchical Cu-doped CoSe 2 microboxes assembled by ultrathin nanosheets using Co-Co Prussian blue analogue microcubes as the starting material. Benefitting from the structural and compositional advantages, these Cu-doped CoSe 2 microboxes with improved conductivity exhibit enhanced sodium storage properties in terms of good rate capability and excellent cycling performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    DOEpatents

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  15. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode.

    PubMed

    Evanoff, Kara; Benson, Jim; Schauer, Mark; Kovalenko, Igor; Lashmore, David; Ready, W Jud; Yushin, Gleb

    2012-11-27

    Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. State of the art battery electrode fabrication techniques are not conducive to the development of multifunctional materials due to their inherently low strength and conductivities. Here, we present a scalable method utilizing carbon nanotube (CNT) nonwoven fabric-based technology to develop flexible, electrochemically stable (∼494 mAh·g(-1) for 150 cycles) battery anodes that can be produced on an industrial scale and demonstrate specific strength higher than that of titanium, copper, and even a structural steel. Similar methods can be utilized for the formation of various cathode and anode composites with tunable strength and energy and power densities.

  16. Anode macrostructures influence electricity generation in microbial fuel cells for wastewater treatment.

    PubMed

    Ishii, Yoshikazu; Miyahara, Morio; Watanabe, Kazuya

    2017-01-01

    Microbial fuel cells (MFCs) are devices that exploit microbes for generating electricity from organic substrates, including waste biomass and wastewater pollutants. MFCs have the potential to treat wastewater and simultaneously generate electricity. The present study examined how anode macrostructure influences wastewater treatment, electricity generation and microbial communities in MFCs. Cassette-electrode MFCs were equipped with graphite-felt anodes with three different macrostructures, flat-plate (FP), vertical-fin (VF), and horizontal-fin (HF) structures (these were composed of a same amount of graphite felt), and were continuously supplied with artificial wastewater containing starch as the major organic constituent. Polarization analyses revealed that MFCs equipped with VF and HF anodes generated 33% and 21% higher volumetric power densities, respectively, than that of MFCs equipped with FP anodes. Organics were also more efficiently removed from wastewater in MFCs with VF and HF anodes compared to reactors containing FP anodes. In addition, pyrosequencing of PCR-amplified 16S rRNA gene fragments from microbial samples collected from the anodes showed that the presence of fins also affected the bacterial compositions in anode biofilms. Taken together, the findings presented here suggest that the modification of anodes with fins improves organics removal and electricity generation in MFCs. The optimization of anode macrostructure therefore appears to be a promising strategy for improving MFC performance without additional material costs. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    NASA Astrophysics Data System (ADS)

    Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.

    2013-05-01

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase.

  18. Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries.

    PubMed

    Liu, Hao; Hu, Liangbin; Meng, Ying Shirley; Li, Quan

    2013-11-07

    A configuration of three-dimensional Ni-Si nanocable array anodes is proposed to overcome the severe volume change problem of Si during the charging-discharging process. In the fabrication process, a simple and low cost electrodeposition is employed to deposit Si instead of the common expansive vapor phase deposition methods. The optimum composite nanocable array electrode achieves a high specific capacity ~1900 mA h g(-1) at 0.05 C. After 100 cycles at 0.5 C, 88% of the initial capacity (~1300 mA h g(-1)) remains, suggesting its good capacity retention ability. The high performance of the composite nanocable electrode is attributed to its excellent adhesion of the active material on the three-dimensional current collector and short ionic/electronic transport pathways during cycling.

  19. Increasing the Thermal Stability of Aluminum Titanate for Solid Oxide Fuel Cell Anodes

    NASA Technical Reports Server (NTRS)

    Bender, Jeffrey B.

    2004-01-01

    Solid-oxide fuel cells (SOFCs) show great potential as a power source for future space exploration missions. Because SOFCs operate at temperatures significantly higher than other types of fuel cells, they can reach overall efficiencies of up to 60% and are able to utilize fossil fuels. The SOFC team at GRC is leading NASA's effort to develop a solid oxide fuel cell with a power density high enough to be used for aeronautics and space applications, which is approximately ten times higher than ground transport targets. layers must be able to operate as a single unit at temperatures upwards of 900'C for at least 40,000 hours with less than ten percent degradation. One key challenge to meeting this goal arises from the thermal expansion mismatch between different layers. The amount a material expands upon heating is expressed by its coefficient of thermal expansion (CTE). If the CTEs of adjacent layers are substantially different, thermal stresses will arise during the cell's fabrication and operation. These stresses, accompanied by thermal cycling, can fracture and destroy the cell. While this is not an issue at the electrolyte-cathode interface, it is a major concern at the electrolyte-anode interface, especially in high power anode-supported systems. electrolyte are nearly identical. Conventionally, this has been accomplished by varying the composition of the anode to match the CTE of the yittria-stabilized zirconia (YSZ) electrolyte (approx.10.8x10(exp -6/degC). A Ni/YSZ composite is typically used as a base material for the anode due to its excellent electrochemical properties, but its CTE is about 13.4x10(exp -6/degC). One potential way to lower the CTE of this anode is to add a small percentage of polycrystalline Al2TiO5, with a CTE of 0.68x10(exp -6/degC, to the Ni/YSZ base. However, Al2TiO5 is thermally unstable and loses its effectiveness as it decomposes to Al2O3 and TiO2 between 750 C and 1280 C. be used as additives to increase the thermal stability of Al2TiO5 in SOFC operating conditions without adversely affecting the electrochemical properties of the SOFC anode. Three candidate materials were chosen through an extensive literature review: MgO, Fe2O3, and ZrTiO4. Although all three have been shown to prevent Al2TiO5 decomposition under various conditions, their effectiveness in the temperature range and atmosphere of the SOFC has not yet been evaluated. Several batches of Al2TiO5 with varying amounts of additives were prepared, exposed to reducing and oxidizing atmospheres at elevated temperatures, and the resulting decomposition of Al2TiO5 was measured. The most promising additives were further evaluated with the goal of ultimately preparing low CTE anodes that are chemically compatible to current systems. Adding minor constituents to stabilize Al2TiO5 could ultimately preserve its low CTE for the life of the fuel cell and improve the cell's long-term performance without a drop in anode conductivity. Further, these low CTE filler additions could allow the use of new sulfur tolerant anode materials, improving the viability of SOFCs for future aeronautics and space applications. Every SOFC consists of a cathode and an anode separated by an electrolyte, These three One way to avoid this problem is to design the cell such that the CTEs of the anode and The objective of this summer research project was to evaluate several materials that could

  20. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater

    NASA Astrophysics Data System (ADS)

    Wu, Shijia; He, Weihua; Yang, Wulin; Ye, Yaoli; Huang, Xia; Logan, Bruce E.

    2017-07-01

    Microbial fuel cells (MFCs) need to have a compact architecture, but power generation using low strength domestic wastewater is unstable for closely-spaced electrode designs using thin anodes (flat mesh or small diameter graphite fiber brushes) due to oxygen crossover from the cathode. A composite anode configuration was developed to improve performance, by joining the mesh and brushes together, with the mesh used to block oxygen crossover to the brushes, and the brushes used to stabilize mesh potentials. In small, fed-batch MFCs (28 mL), the composite anode produced 20% higher power densities than MFCs using only brushes, and 150% power densities compared to carbon mesh anodes. In continuous flow tests at short hydraulic retention times (HRTs, 2 or 4 h) using larger MFCs (100 mL), composite anodes had stable performance, while brush anode MFCs exhibited power overshoot in polarization tests. Both configurations exhibited power overshoot at a longer HRT of 8 h due to lower effluent CODs. The use of composite anodes reduced biomass growth on the cathode (1.9 ± 0.2 mg) compared to only brushes (3.1 ± 0.3 mg), and increased coulombic efficiencies, demonstrating that they successfully reduced oxygen contamination of the anode and the bio-fouling of cathode.

  1. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    NASA Astrophysics Data System (ADS)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit exceptional electrochemical performance owing to the high conductivity of carbon and effective restriction of polysulfides and polyselenides in carbon matrix, which avoids shuttle reaction.

  2. Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Guo, Can; Zhu, Yuxuan; He, Jiapeng; Wang, Hongqiang

    2018-06-01

    Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g-1 at 100 mA g-1 and a high discharge capacity of 344 mAh g-1 at 10 A g-1, demonstrating superior rate performance. After 100 cycles at 100 mA g-1, the discharge capacity remained at 609.5 mAh g-1, indicating the excellent cycling stability of the FeS2/rGO electrode.

  3. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.

    PubMed

    Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng

    2018-04-03

    The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.

  4. Amorphous titania/carbon composite electrode materials

    DOEpatents

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.

    2017-05-09

    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  5. Formation and characterization of ZnS/CdS nanocomposite materials into porous silicon

    NASA Astrophysics Data System (ADS)

    Xue, Tao; Lv, Xiao-yi; Jia, Zhen-hong; Hou, Jun-wei; Jian, Ji-kang

    2008-11-01

    ZnS/CdS were deposited by chemical vapor deposition (CVD) technique on porous silicon substrates formed by electrochemical anodization of n-type (100) silicon wafer. The optical properties of ZnS/CdS porous silicon composite materials are studied. The results showed that new luminescence characteristics such as strong and stable visible-light emissions with different colors were observed from the ZnS/CdS-PS nanocomposite materials at room temperature.

  6. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  7. Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes.

    PubMed

    Kim, Nahyeon; Park, Hyejeong; Yoon, Naeun; Lee, Jung Kyoo

    2018-04-24

    For the practical use of high-capacity silicon anodes in high-energy lithium-based batteries, key issues arising from the large volume change of silicon during cycling must be addressed by the facile structural design of silicon. Herein, we discuss the zeolite-templated magnesiothermic reduction synthesis of mesoporous silicon (mpSi) (mpSi-Y, -B, and -Z derived from commercial zeolite Y, Beta, and ZSM-5, respectively) microparticles having large pore volume (0.4-0.5 cm 3 /g), wide open pore size (19-31 nm), and small primary silicon particles (20-35 nm). With these appealing mpSi particle structural features, a series of mpSi/C composites exhibit outstanding performance including excellent cycling stabilities for 500 cycles, high specific and volumetric capacities (1100-1700 mAh g -1 and 640-1000 mAh cm -3 at 100 mA g -1 ), high Coulombic efficiencies (approximately 100%), and remarkable rate capabilities, whereas conventional silicon nanoparticles (SiNP)/C demonstrate limited cycle life. These enhanced electrochemical responses of mpSi/C composites are further manifested by low impedance build-up, high Li ion diffusion rate, and small electrode thickness changes after cycling compared with those of SiNP/C composite. In addition to the outstanding electrochemical properties, the low-cost materials and high-yield processing make the mpSi/C composites attractive candidates for high-performance and high-energy Li-ion battery anodes.

  8. Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode

    NASA Astrophysics Data System (ADS)

    He, Hanna; Zhang, Qi; Wang, Haiyan; Zhang, Hehe; Li, Jiadong; Peng, Zhiguang; Tang, Yougen; Shao, Minhua

    2017-06-01

    Inferior electronic conductivity and sluggish sodium ion diffusion are still two big challenges for TiO2 anode material for Na ion batteries (SIBs). Herein, we synthesize TiO2/C composites by the pyrolysis of MIL-125(Ti) precursor and successfully introduce defects to TiO2/C composite by a simple magnesium reduction. The as-prepared defect-rich TiO2-δ/C composite shows mooncake-shaped morphology consisting of TiO2-δ nanocrystals with an average particle size of 5 nm well dispersed in the carbon matrix. When used as a SIBs anode, the defect-rich TiO2-δ/C composite exhibits a high reversible capacity of 330.2 mAh g-1 at 50 mA g-1 at the voltage range of 0.001-3.0 V and long-term cycling stability with negligible decay after 5000 cycles. Compared with other four TiO2/C samples, the electrochemical performance of defect-rich TiO2-δ/C is highly improved, which may benefit from the enhanced electronic/ionic conductivities owing to the defect-rich features, high surface area rendering shortened electronic and ionic diffusion path, and the suppress of the TiO2 crystal aggregation during sodiation and desodiation process by the carbon matrix.

  9. Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Han, Jinzhi; Qin, Jian; Guo, Lichao; Qin, Kaiqiang; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Fang; Ma, Liying; He, Chunnian

    2018-01-01

    Poor intrinsic conductivity and huge volume expansion during charge/discharge process greatly limit the development of Ge-based ternary oxide as anode material for both lithium-ion batteries and sodium-ion batteries. To alleviate these issues, an ideal strategy is developed to achieve active particle nanocrystallization and composite with conductive carbon materials, simultaneously. Therefore, ultrasmall Fe2GeO4 nanodots (∼4.6 nm) uniformly and tightly anchored on 3D interconnected N-doped ultrathin carbon nanosheets (3D Fe2GeO4/N-CNSs) were constructed via one-step high temperature calcination process. This unique hybrid nanostructure can not only effectively enhance electron conductivity but also restrict the aggregation and volume fluctuation of Fe2GeO4 during the charge/discharge process. As a result, the 3D Fe2GeO4/N-CNSs electrode exhibited excellent electrochemical performances for both lithium-ion and sodium-ion battery anodes. When utilized for lithium-ion battery anode, the electrode delivered a highly reversible specific capacity (1280 mA h g-1 at 0.4 A g-1 after 180 cycles). It is the first time that Fe2GeO4 was applied for sodium-ion battery anode, which showed a remarkable rate capability (350 mA h g-1 at 0.1 A g-1 and 180 mA h g-1 at 22.8 A g-1), and ultralong cycling stability (∼86% reversible capacity retention after 6000 cycles).

  10. Anode composite for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    An anode composite useful for a molten carbonate fuel cell comprised of a porous sintered metallic anode component having a porous bubble pressure barrier integrally sintered to one face thereof, said barrier being comprised of metal coated ceramic particles sintered together and to said anode by means of said metal coating, said metal coating enveloping said ceramic particle and being selected from the group consisting of nickel, copper and alloys thereof, the median pore size of the barrier being significantly smaller than that of the anode.

  11. Non-selective rapid electro-oxidation of persistent, refractory VOCs in industrial wastewater using a highly catalytic and dimensionally stable IrPd/Ti composite electrode.

    PubMed

    Cho, Wan-Cheol; Poo, Kyung-Min; Mohamed, Hend Omar; Kim, Tae-Nam; Kim, Yul-Seong; Hwang, Moon Hyun; Jung, Do-Won; Chae, Kyu-Jung

    2018-05-11

    Volatile organic compounds (VOCs) are highly toxic contaminants commonly dissolved in industrial wastewater. Therefore, treatment of VOC-containing wastewater requires a robust and rapid reaction because liquid VOCs can become volatile secondary pollutants. In this study, electro-oxidation with catalytic composite dimensionally stable anodes (DSAs)-a promising process for degrading organic pollutants-was applied to remove various VOCs (chloroform, benzene, toluene, and trichloroethylene). Excellent treatment efficiency of VOCs was demonstrated. To evaluate the VOC removal rate of each DSA, a titanium plate, a frequently used substratum, was coated with four different highly electrocatalytic composite materials (platinum group metals), Ir, IrPt, IrRu, and IrPd. Ir was used as a base catalyst to maintain the electrochemical stability of the anode. Current density and electrolyte concentration were evaluated over various ranges (20-45 mA/cm 2 and 0.01-0.15 mol/L as NaCl, respectively) to determine the optimum operating condition. Results indicated that chloroform was the most refractory VOC tested due to its robust chemical bond strength. Moreover, the optimum current density and electrolyte concentration were 25 mA/cm 2 and 0.05 M, respectively, representing the most cost-effective condition. Four DSAs were examined (Ir/Ti, IrPt/Ti, IrRu/Ti, and IrPd/Ti). The IrPd/Ti anode was the most suitable for treatment of VOCs presenting the highest chloroform removal performance of 78.8%, energy consumption of 0.38 kWh per unit mass (g) of oxidized chloroform, and the least volatilized fraction of 4.4%. IrPd/Ti was the most suitable anode material for VOC treatment because of its unique structure, high wettability, and high surface area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, David M.; Pearse, Alexander J.; Kim, Nam S.

    Major advances in thin-film solid-state batteries (TFSSBs) may capitalize on 3D structuring using high-aspect-ratio substrates such as nanoscale pits, pores, trenches, flexible polymers, and textiles. This will require conformal processes such as atomic layer deposition (ALD) for every active functional component of the battery. In this paper, we explore the deposition and electrochemical properties of SnO 2, SnN y, and SnO xN y thin films as TFSSB anode materials, grown by ALD using tetrakisdimethylamido(tin), H 2O, and N 2 plasma as precursors. By controlling the dose ratio between H 2O and N 2, the N–O fraction can be tuned betweenmore » 0% N and 95% N. The electrochemical properties of these materials were tested across a composition range varying from pure SnO 2, to SnON intermediates, and pure SnNy. In TFSSBs, the SnNy anodes are found to be more stable during cycling than the SnO 2 or SnO xN y films, with an initial reversible capacity beyond that of Li–Sn alloying, retaining 75% of their capacity over 200 cycles compared to only 50% for SnO 2. Lastly, the performance of the SnO xN y anodes indicates that SnN y anodes should not be negatively impacted by small levels of O contamination.« less

  13. Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries

    DOE PAGES

    Stewart, David M.; Pearse, Alexander J.; Kim, Nam S.; ...

    2018-03-30

    Major advances in thin-film solid-state batteries (TFSSBs) may capitalize on 3D structuring using high-aspect-ratio substrates such as nanoscale pits, pores, trenches, flexible polymers, and textiles. This will require conformal processes such as atomic layer deposition (ALD) for every active functional component of the battery. In this paper, we explore the deposition and electrochemical properties of SnO 2, SnN y, and SnO xN y thin films as TFSSB anode materials, grown by ALD using tetrakisdimethylamido(tin), H 2O, and N 2 plasma as precursors. By controlling the dose ratio between H 2O and N 2, the N–O fraction can be tuned betweenmore » 0% N and 95% N. The electrochemical properties of these materials were tested across a composition range varying from pure SnO 2, to SnON intermediates, and pure SnNy. In TFSSBs, the SnNy anodes are found to be more stable during cycling than the SnO 2 or SnO xN y films, with an initial reversible capacity beyond that of Li–Sn alloying, retaining 75% of their capacity over 200 cycles compared to only 50% for SnO 2. Lastly, the performance of the SnO xN y anodes indicates that SnN y anodes should not be negatively impacted by small levels of O contamination.« less

  14. The optimization of CMC concentration as graphite binder on the anode of LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Hidayat, S.; Cahyono, T.; Mindara, J. Y.; Riveli, N.; Alamsyah, W.; Rahayu, I.

    2017-05-01

    Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and a longer lifetime compared to similar rechargeable battery systems. Graphite is commonly used as anode material in the Lithium-ion batteries, because of its excellent electrochemical characteristics and low cost fabrication. In this paper, we reported the optimization of the concentration of the CMC (carboxymethyl cellulose), that acts as the binder for graphite anode. Based on our experimental results, the best composition of graphite : C : CMC is 90 : 8 : 2 in weight %. Anode with such composition has, based on SEM measurement, a relatively good surface morphology, while it also has relatively high conductivity, about 2.68 S/cm. The result of cyclic voltammogram with a scan rate of 10 mV/s in the voltage range of 0 to 1 Volt, shows the peak of reduction voltage at 0.85 Volts and the peak voltage of oxidation is at -1.5 Volt. The performance of the battery system with LiFePO4 set as the cathode, shows that the working voltage is about 2.67 Volts at 1 mA current-loading, with the efficiency around 47%.

  15. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    PubMed Central

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  16. Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.

    PubMed

    Madian, Mahmoud; Ummethala, Raghunandan; Naga, Ahmed Osama Abo El; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-06-20

    TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO₂/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO₂ and TiO₂/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li⁺ ion diffusivity, promoting a strongly favored lithium insertion into the TiO₂/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  17. Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage

    DOEpatents

    Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve

    2017-06-06

    A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.

  18. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    NASA Astrophysics Data System (ADS)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which presents opportunities for the new kinds of ex situ and in situ experiments performed in this thesis. Ex situ experiments involved reducing powder samples at SOFC operating temperatures under hydrogen gas and characterizing them via electron microscopy and X-ray diffraction (XRD). For the in situ experiments, powders were heated, then reduced at temperature, and catalyst exsolution was observed in real-time. Pechini-synthesized cerium oxide substituted with 2-5 mol% Pd was studied using in situ X-ray heating experiments at Argonne National Laboratory's Advanced Photon Source. In these experiments, the powder was subjected to several cycles of reduction and oxidation at 800°C, and Pd metal formation was confirmed through the appearance of Pd peaks in the X-ray spectra. Next, Fe- and Ru-substituted lanthanum strontium chromite (LSCrFeRu14) synthesized by solid state reaction was characterized with ex situ and in situ microscopy. Transmission electron microscopy (TEM) in situ heating experiments were conducted to observe Ru nanoparticle evolution under the reducing conditions of the TEM vacuum chamber. LSCrFeRu14 was heated to 750°C and observed over ˜ 90 min at temperature during which time nanoparticle formation, coarsening, and di?usion were observed. Experiments on both materials sought to understand the conditions and timing of nanoparticle formation in the anode, which is not necessarily apparent from electrochemical data. Reducing the operating temperature of SOFCs from the current state-of-the-art range of 700-800°C to ≤ 650°C has many advantages, among them increased long-term stability, reduced balance of plant costs, fewer interconnect/seal material issues, and decreased start-up times. In order to maintain good performance at reduced temperature, these intermediate temperature SOFCs require new materials including highly active alternatives to micron-scale Ni-YSZ composite anodes. The present work focuses on the development of IT-SOFCs with Sr0.8La 0.2TiO3 (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.

  19. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, driedmore » and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.« less

  20. Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.

    PubMed

    Yang, X; Wang, J Y; Pan, H Y

    2009-02-01

    Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.

  1. Corrosion behavior of high-nickel and chromium alloys in natural Baltic seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birn, J.; Janik-Czachor, M.; Wolowik, A.

    Effect of Cl{sup {minus}} ion concentration (O M sodium chloride [NaCl] to 2 M NaCl) and temperature (25 C to 75 C) on stability of the passive state of high-Ni and Cr alloys: NI-1 ({approximately} 16% Mo), CR-2 ({approximately} 6.2% Mo), and NI-3 (3.5% Mo) were investigated in acidic and neutral electrolytes in strictly controlled electrochemical conditions. The anodic behavior of the alloys appeared to depend mostly upon Mo content in the alloy. Thus, the NI-1 was the most stable alloy under the applied experimental conditions. The other alloys were also quite resistant, undergoing pitting only at elevated temperatures, atmore » high anodic potentials, and at a chloride concentration not lower than 1 M. In natural Baltic seawater, these alloys did not exhibit any tendency to pitting, in qualitative agreement with the accelerated electrochemical tests. Complementary microscopic and surface analytical (AES) investigations were carried out to correlate the anodic and corrosion behavior of these materials with their composition and structure, and the composition of the passivating films formed at their surfaces.« less

  2. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g-1.

    PubMed

    Kim, Dongheun; Li, Nan; Sheehan, Chris J; Yoo, Jinkyoung

    2018-04-26

    Si/Ge core/shell nanowire heterostructures have been expected to provide high energy and power densities for lithium ion battery anodes due to the large capacity of Si and the high electrical and ionic conductivities of Ge. Although the battery anode performances of Si/Ge core/shell nanowire heterostructures have been characterized, the degradation of Si/Ge core/shell nanowire heterostructures has not been thoroughly investigated. Here we report the compositional and structural changes of the Si/Ge core/shell nanowire heterostructure over cycling of lithiation and delithiation at different charging rates. The Si/Ge core/shell nanowire heterostructure holds the core and shell structure at a charging rate of 0.8 A g-1 up to 50 cycles. On the other hand, compositional intermixing and loss of Si occur at a charging rate of 20 A g-1 within 50 cycles. The operation condition-dependent degradation provides a new aspect of materials research for the development of high performance lithium ion battery anodes with a long cycle life.

  3. EASY SYNTHESIS OF Li4Ti5O12/C MICROSPHERES CONTAINING NANOPARTICLES AS ANODE MATERIAL FOR HIGH-RATE Li-ION BATTERIES

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaodong; Dong, Lina; Dong, Chenchu

    2014-01-01

    A microspherical Li4Ti5O12/C composite composed of interconnected nanoparticles with BP-2000 carbon black as carbon source is synthesized for use as an anode material in high-power lithium-ion batteries. The composite is prepared through precursor pretreatment including pre-sintering, ball-milling, and spray-drying. The structure, size and surface morphology of the as-prepared particles are investigated by X-ray diffraction and scanning electron microscopy. Results show that the obtained material has a microspherical morphology consisting of nanosized prime particles with compact structure. The precursor pretreatment effectively reduced the agglomeration of the prime particles caused by high temperature sintering and led to a more uniform distribution of BP-2000 on the surface of prime particles generating highly efficient conductive network. The specific capacity of the electrode at 20 C rate is 131 mAh g-1 and the loss of capacity is less than 2% after the 60 variation cycles (from 1 C to 20 C and back to 1 C). This excellent performance is attributed to the effective conductive network between the prime particles and the reduction of the lithium-ion diffusion pathway.

  4. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE PAGES

    Wang, Deli; Wang, Jie; He, Huan; ...

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of Co xFe 3–xO 4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, wemore » directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  5. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    PubMed

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell.

    PubMed

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong

    2016-12-01

    The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang

    2015-02-01

    A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries. Electronic supplementary information (ESI) available: XRD pattern, XPS spectrum, CV curves, TEM and SEM images, and table. See DOI: 10.1039/c4nr06771a

  8. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries

    PubMed Central

    Ko, Minseong; Chae, Sujong; Cho, Jaephil

    2015-01-01

    Si has been considered as a promising alternative anode for next-generation Li-ion batteries (LIBs) because of its high theoretical energy density, relatively low working potential, and abundance in nature. However, Si anodes exhibit rapid capacity decay and an increase in the internal resistance, which are caused by the large volume changes upon Li insertion and extraction. This unfortunately limits their practical applications. Therefore, managing the total volume change remains a critical challenge for effectively alleviating the mechanical fractures and instability of solid-electrolyte-interphase products. In this regard, we review the recent progress in volume-change-accommodating Si electrodes and investigate their ingenious structures with significant improvements in the battery performance, including size-controlled materials, patterned thin films, porous structures, shape-preserving shell designs, and graphene composites. These representative approaches potentially overcome the large morphologic changes in the volume of Si anodes by securing the strain relaxation and structural integrity in the entire electrode. Finally, we propose perspectives and future challenges to realize the practical application of Si anodes in LIB systems. PMID:27525208

  9. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter.

    PubMed

    Ashuri, Maziar; He, Qianran; Shaw, Leon L

    2016-01-07

    Silicon has attracted huge attention in the last decade because it has a theoretical capacity ∼10 times that of graphite. However, the practical application of Si is hindered by three major challenges: large volume expansion during cycling (∼300%), low electrical conductivity, and instability of the SEI layer caused by repeated volume changes of the Si material. Significant research efforts have been devoted to addressing these challenges, and significant breakthroughs have been made particularly in the last two years (2014 and 2015). In this review, we have focused on the principles of Si material design, novel synthesis methods to achieve such structural designs, and the synthesis-structure-performance relationships to enhance the properties of Si anodes. To provide a systematic overview of the Si material design strategies, we have grouped the design strategies into several categories: (i) particle-based structures (containing nanoparticles, solid core-shell structures, hollow core-shell structures, and yolk-shell structures), (ii) porous Si designs, (iii) nanowires, nanotubes and nanofibers, (iv) Si-based composites, and (v) unusual designs. Finally, our personal perspectives on outlook are offered with an aim to stimulate further discussion and ideas on the rational design of durable and high performance Si anodes for the next generation Li-ion batteries in the near future.

  10. A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Shen, Tong; Guo, Ting; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2018-04-01

    Si/C composites are currently the most commercially viable next-generation lithium-ion battery anode materials due to their high specific capacity. However, there are still many obstacles need to be overcome such as short cycle life and poor conductivity. In this work, we design and successfully synthesis an excellent durable double-conductive core-shell structure p-Si-Ag/C composites. Interestingly, this well-designed structure offers remarkable conductivity (both internal and external) due to the introduction of silver particles and carbon layer. The carbon layer acts as a protective layer to maintain the integrity of the structure as well as avoids the direct contact of silicon with electrolyte. As a result, the durable double-conductive core-shell structure p-Si-Ag/C composites exhibit outstanding cycling stability of roughly 1000 mAh g-1 after 200 cycles at a current density of 0.2 A g-1 and retain 765 mAh g-1 even at a high current density of 2 A g-1, indicating a great improvement in electrochemical performance compared with traditional silicon electrode. Our research results provide a novel pathway for production of high-performance Si-based anodes to extending the cycle life and specific capacity of commercial lithium ion batteries.

  11. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    PubMed

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  12. High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes

    PubMed Central

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978

  13. Iron-antimony-based hybrid oxides as high-performance anodes for lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Loi; Kim, Doo Soo; Hur, Jaehyun; Park, Min Sang; Yoon, Sukeun; Kim, Il Tae

    2018-06-01

    We report a facile approach to synthesize Fe-Sb-based hybrid oxides nanocomposites consisting of Sb, Sb2O3, and Fe3O4 for use as new anode materials for lithium-ion batteries. The composites are synthesized via galvanic replacement between Fe3+ and Sb at high temperature in triethylene glycol medium. The phase, morphology, and composition changes of the composites involved in the various stages of the replacement reaction are characterized using X-ray diffractometry, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy. The as-prepared composites have different compositions with very small particle sizes (<< 10 nm). The FexSbyOz-18 h composite, for instance, exhibits high capacity, better cyclic stability, and rate performance than other composites, with a highly stable specific capacity of 434 mAh g-1 at 500 cycles. The excellent electrochemical performance can be ascribed to the high interfacial contact area between the nanocomposite and electrolyte, stable structure of the composites owing to a mixture of inactive phases generated by the conversion reaction between Li+ and oxide metal-whose structure serves as an electron conductor, inhibits agglomeration of Sb particles, and acts as an effective buffer against volume change of Sb during cycling-and high Li+ diffusion ability.

  14. Nitrogen-doped carbon coated silicon derived from a facile strategy with enhanced performance for lithium storage

    NASA Astrophysics Data System (ADS)

    Zeng, Lingxing; Liu, Renpin; Qiu, Heyuan; Chen, Xi; Huang, Xiaoxia; Xiong, Peixun; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2016-07-01

    Silicon-based nanostructures are receiving intense interest in lithium-ion batteries (LIBs) because they have ultrahigh lithium ion storage ability. However, the fast capacity fading induced by the considerably tremendous volume changes of Si anode during the Li-ion intercalation processes as well as the low intrinsic electric conductivity have hindered its deployment. Herein, we initially developed an effective technique to synthesize the core-shell Si/nitrogen-doped carbon (Si/N-C), composite by combining in situ interfacial polymerization and decorate with melamine, followed by carbonization. When used as anode material for LIBs, the Si/N-C composite delivered a notable reversible capacity (1084 mAh g-1 at 0.2 A g-1 for 50 cycles) and high rate capability (495 mAh g-1 at 1 A g-1).

  15. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  16. Li-Ion Localization and Energetics as a Function of Anode Structure.

    PubMed

    McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J

    2017-03-01

    In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.

  17. High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Self, Ethan C.; Naguib, Michael; Ruther, Rose E.

    Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g -1 (3,500 mA h gmore » $$-1\\atop{Si}$$) at 0.1 C and 489 mAh g -1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm -2 and 750 mA h cm -3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO 2-based cathode has a high specific energy density of 270 Wh kg -1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiO x surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats« less

  18. High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats

    DOE PAGES

    Self, Ethan C.; Naguib, Michael; Ruther, Rose E.; ...

    2017-03-24

    Here, freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (~0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1,484 mA h g -1 (3,500 mA h gmore » $$-1\\atop{Si}$$) at 0.1 C and 489 mAh g -1 at 1 C and good cycling stability (e.g., 73% capacity retention over 50 cycles). Post-mortem analysis of the fiber mats shows that the overall electrode structure is preserved during cycling. Whereas many nanostructured Si anodes are hindered by their low active material loadings and densities, thick, densely packed Si/C/PAA fiber mat anodes reported here have high areal and volumetric capacities (e.g., 4.5 mA h cm -2 and 750 mA h cm -3, respectively). A full cell containing an electrospun Si/C/PAA anode and electrospun LiCoO 2-based cathode has a high specific energy density of 270 Wh kg -1. The excellent performance of the electrospun Si/C/PAA fiber mat anodes is attributed to the: (i) PAA binder which interacts with the SiO x surface of Si nanoparticles and (ii) high material loading, high fiber volume fraction, and welded interfiber contacts of the electrospun mats« less

  19. Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Xiaodong; Zhang, Zhian; Du, Ke; Lai, Yanqing; Fang, Jing; Li, Jie

    2016-10-01

    In this paper, we propose a facile strategy to synthesize the porous structure TiO2@C composites through a two-step method, in which the precursor of MIL-125(Ti) was firstly prepared by solvent thermal method and then calcined under inert atmosphere. When employed as anodes for Na ion batteries, TiO2@C composites can exhibit a superior cyclability with a reversible sodium storage capacity of 148 mAh g-1 at the current density 0.5 A g-1 after 500 cycles and an excellent rate performance with a capacity of 88.9 mAh g-1 even the current reached to 2.5 A g-1 due to the dispersion of anatase TiO2 throughout amorphous carbon matrix and the synergistic effect between the anatase TiO2 nanocrystals and carbon matrix, which can availably enhance the electric conductivity and alleviate the volumetric variation of TiO2 during the insertion/extraction process of Na+.

  20. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    PubMed

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.

  1. Conductive Polymer Binder-Enabled SiO–Sn xCo yC z Anode for High-Energy Lithium-Ion Batteries

    DOE PAGES

    Zhao, Hui; Fu, Yanbao; Ling, Min; ...

    2016-05-10

    In this paper, a SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm 2 is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. Finally, bymore » achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.« less

  2. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  3. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

    PubMed

    Bhuvaneswari, Subramani; Pratheeksha, Parakandy Muzhikara; Anandan, Srinivasan; Rangappa, Dinesh; Gopalan, Raghavan; Rao, Tata Narasinga

    2014-03-21

    Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

  4. Performance of intermediate temperature (600-800 °C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B.

    The solid electrolyte chosen for this investigation was La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSGM). To select appropriate electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600 and 800 °C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported solid oxide fuel cells (SOFCs) were fabricated with La 0.6Sr 0.4Co 0.8Fe 0.2O 3-La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSCF-LSGM) composite cathode and nickel-Ce 0.6La 0.4O 2 (Ni-LDC) composite anode having a barrier layer of Ce 0.6La 0.4O 2 (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performances of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600 and 800 °C.

  5. Effective regeneration of anode material recycled from scrapped Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Li, Xuelei; Song, Dawei; Miao, Yanli; Song, Jishun; Zhang, Lianqi

    2018-06-01

    Recycling high-valuable metal elements (such as Li, Ni, Co, Al and Cu elements) from scrapped lithium ion batteries can bring significant economic benefits. However, recycling and reusing anode material has not yet attracted wide attention up to now, due to the lower added-value than the above valuable metal materials and the difficulties in regenerating process. In this paper, a novel regeneration process with significant green advance is proposed to regenerate anode material recycled from scrapped Li-ion batteries for the first time. After regenerated, most acetylene black (AB) and all the styrene butadiene rubber (SBR), carboxymethylcellulose sodium (CMC) in recycled anode material are removed, and the surface of anode material is coated with pyrolytic carbon from phenolic resin again. Finally, the regenerated anode material (graphite with coating layer, residual AB and a little CMC pyrolysis product) is obtained. As expected, all the technical indexs of regenerated anode material exceed that of a midrange graphite with the same type, and partial technical indexs are even closed to that of the unused graphite. The results indicate the effective regeneration of anode material recycled from scrapped Li-ion batteries is really achieved.

  6. Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery

    DTIC Science & Technology

    2012-06-01

    dry room with controlled moisture content. Composite 3 films on nickel foam were used as working cathodes along with lithium metal as anode and the...cathode formulation [6,7,8,9,10], efficient oxygen reduction catalysts [11,12], electrolyte compositions [13,14], effect of moisture [15], etc...specimens. Structure and purity of these materials were performed by powder X-ray diffraction (XRD) on a Rigaku D/MAX-2250 diffractometer fitted with CuKα

  7. Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres

    NASA Astrophysics Data System (ADS)

    Li, Mingqi; Zeng, Ying; Ren, Yurong; Zeng, Chunmei; Gu, Jingwei; Feng, Xiaofang; He, Hongyan

    2015-08-01

    Nonstoichiometric SiOx is a kind of very attractive anode material for high-energy lithium-ion batteries because of a high specific capacity and facile synthesis. However, the poor electrical conductivity and unstable electrode structure of SiOx severely limit its electrochemical performance as anode in lithium-ion batteries. In this work, highly durable sugar apple-shaped SiOx@C nanocomposite spheres are fabricated to achieve significantly improved electrochemical performance. The composite is synthesized by homogenous one-pot synthesis, using ethyltriethoxysilanes (EtSi(OEt)3) and resorcinol/formaldehyde (RF) as starting materials. The morphology, composition and structure of the composite are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis (EA) and X-ray photoelectron spectroscopy (XPS). At a current density of 50 mA g-1, the sugar apple-shaped SiOx@C spheres exhibit a stable discharge capacity of about 630 mAh g-1 calculated on the total mass of both SiOx and C. At a current density of 100 mA g-1, a stable discharge capacity of about 550 mAh g-1 is obtained and the capacity has been kept up to 400 cycles. The excellent cycling performance is attributed to the homogeneous dispersion of SiOx in disordered carbon at the nanometer scale and the unique structure of the composite.

  8. Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery.

    PubMed

    Wang, Junyong; Deng, Qinglin; Li, Mengjiao; Wu, Cong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2018-08-03

    To overcome inferior rate capability and cycle stability of MnO-based anode materials for lithium-ion batteries (LIBs), we reported a novel 3D porous MnO@GS/CNT composite, consisting of MnO nanoparticles homogeneously distributed on the conductive interconnected framework based on 2D graphene sheets (GS) and 1D carbon nanotubes (CNTs). The distinctive architecture offers highly interpenetrated network along with efficient porous channels for fast electron transfer and ionic diffusion as well as abundant stress buffer space to accommodate the volume expansion of the MnO nanoparticles. The MnO@GS/CNT anode exhibits an ultrahigh capacity of 1115 mAh g -1 at 0.2 A g -1 after 150 cycles and outstanding rate capacity of 306 mAh g -1 at 10.0 A g -1 . Moreover, a stable capacity of 405 mAh g -1 after 3200 cycles can still be achieved, even at a large current density of 5.0 A g -1 . When coupled with LiMn 2 O 4 (LMO) cathode, the LMO [Formula: see text] MnO@GS/CNT full cell characterizes an excellent cycling stability and rate capability, indicating the promising application of MnO@GS/CNT anode in the next-generation LIBs.

  9. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Benoved, Nir; Kesler, O.

    Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.

  10. Facile solid-state synthesis of Ni@C nanosheet-assembled hierarchical network for high-performance lithium storage

    NASA Astrophysics Data System (ADS)

    Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming

    2017-08-01

    Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.

  11. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

    PubMed

    Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin

    2014-11-26

    Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.

  12. Hydrogen sulfide-powered solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts comprising Co-Mo-S admixed with up to 10% Ag powder were found to have excellent performance and longevity, as well as improved electrical contact when compared with Pt/M-Mo-S anode systems. The highest current density of 450 mA/cm2 and power density of 115 mW/cm2 were achieved with an anode that consisted of 95% (Co-Mo-S) and 5% Ag.

  13. Fracture surface analysis in composite and titanium bonding

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1985-01-01

    To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.

  14. Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries.

    PubMed

    Zhong, Xiongwu; Wu, Ying; Zeng, Sifan; Yu, Yan

    2018-02-12

    Sodium-ion batteries (SIBs) have attracted much attention for application in large-scale grid energy storage owing to the abundance and low cost of sodium sources. However, low energy density and poor cycling life hinder practical application of SIBs. Recently, substantial efforts have been made to develop electrode materials to push forward large-scale practical applications. Carbon materials can be directly used as anode materials, and they show excellent sodium storage performance. Additionally, designing and constructing carbon hybrid materials is an effective strategy to obtain high-performance anodes for SIBs. In this review, we summarize recent research progress on carbon and carbon hybrid materials as anodes for SIBs. Nanostructural design to enhance the sodium storage performance of anode materials is discussed, and we offer some insight into the potential directions of and future high-performance anode materials for SIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes.

    PubMed

    Jin, Yuqiang; Yuan, Haocheng; Lan, Jin-Le; Yu, Yunhua; Lin, Yuan-Hua; Yang, Xiaoping

    2017-09-14

    High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials (e.g. 20%-30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g -1 at 100 mA g -1 after 200 cycles) and high rate performance (242 mA h g -1 at 1 A g -1 ) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g -1 and outstanding cycling performance (186 mA h g -1 at 50 mA g -1 after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs.

  16. Multi-slice nanostructured WS2@rGO with enhanced Li-ion battery performance and a comprehensive mechanistic investigation.

    PubMed

    Li, Honglin; Yu, Ke; Fu, Hao; Guo, Bangjun; Lei, Xiang; Zhu, Ziqiang

    2015-11-28

    A thin nanoslice structured WS2@reduced graphene oxide (rGO) composite was successfully fabricated by a facile hydrothermal synthesis method. The layered structure and morphology of the composite were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The WS2@rGO composite structure demonstrated significantly enhanced rate capability performance in comparison with pristine WS2 when used as an anode material for lithium-ion batteries (LIBs). The composite demonstrated a capacity of 565 mA h g(-1) after 100 cycles when cycled at 0.1 A g(-1) and it could still deliver a stable capacity of about 337 mA h g(-1) at 2 A g(-1). Electrochemical impedance spectroscopy (EIS) measurement showed that the synergistic effect between WS2 and rGO could remarkably reduce the contact resistance and improve the corresponding electrochemical performances. In order to analyze and interpret the corresponding results from a theoretically sound perspective, first principles calculations was further performed to investigate the corresponding inner mechanisms of pristine WS2 and WS2@graphene composite. The nudged elastic band (NEB) method was used to investigate the diffusion properties of Li in the different structures. Molecular dynamics (MD) simulation and Young's modulus calculation were further employed to explore the stability and mechanical properties of the two structures for the first time. These new perspectives pave the way for the design and fabrication of graphene-TMDs based composites as the next generation of LIB anode materials with high power density and cycling stability.

  17. Analysis of Cadmium in Undissolved Anode Materials of Mark-IV Electrorefiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tae-Sic Yoo; Guy L. Fredrickson; DeeEarl Vaden

    2013-10-01

    The Mark-IV electrorefiner (Mk-IV ER) contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolved anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussionsmore » are given to explain the prescribed correlation.« less

  18. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Zeng, Yan; Wang, Liyuan; Li, Nan; Chen, Cheng; Li, Cuiyu; Li, Jing; Lv, Hanming; Kuang, Liyun; Tian, Xu

    2017-07-01

    Elemental phosphorus (P) is extensively explored as promising anode candidates due to its abundance, low-cost and high theoretical specific capacity. However, it is of great challenge for P-based materials as practical high-energy-density and long-cycling anodes for its large volume expansion and low conductibility. Here, we significantly improve both cycling and rate performance of red P by cladding the nanoconfined P film on interconnected multi-walled carbon nanotube networks (P-MWCNTs composite) via facile wet ball-milling. The red P-MWCNTs anode presents a superior high reversible capacity of 1396.6 mAh g-1 on the basis of P-MWCNTs composite weight at 50 mA g-1 with capacity retention reaching at ∼90% over 50 cycles. Even at 1000 mA g-1, it still maintains remarkable specific reversible capacity of 934.0 mAh g-1. This markedly enhanced performance is ascribed to synergistic advantages of this unique structure: Intimate contacts between nanosized red P and entangled MWCNTs not only shorten the transmission routes of ions through MWCNTs toward red P, but also motivate the access with electrolyte to open structures of P film. Besides, the confined nanosized P film moderate volume expansions effectively and the entangled MWCNTs networks acted as conductive channels activate high ionic/electronic conductivity of the whole electrodes.

  19. Li3PO4 Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery.

    PubMed

    Sun, Chuan-Fu; Hu, Junkai; Wang, Peng; Cheng, Xi-Yuan; Lee, Sang Bok; Wang, YuHuang

    2016-09-14

    Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.

  20. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    PubMed

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  1. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    PubMed Central

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  2. Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp

    PubMed Central

    2018-01-01

    By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiCp/Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time. PMID:29682145

  3. Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp.

    PubMed

    Wang, Bin; Qu, Shengguan; Li, Xiaoqiang

    2018-01-01

    By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiC p /Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time.

  4. Thin film deposition by electric and magnetic crossed-field diode sputtering. [Patent application

    DOEpatents

    Welch, K.M.

    1975-04-04

    Applying a coating of titanium nitride to a klystron window by means of a cross-field diode sputtering array is described. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent to a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate, and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thickness. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multifactoring under operating conditions of the components.

  5. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    PubMed

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization.

  6. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries

    PubMed Central

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization. PMID:25114651

  7. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    NASA Astrophysics Data System (ADS)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  8. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoshuai; Shi, Zhuanzhuan; Zou, Long; Li, Chang Ming; Qiao, Yan

    2018-02-01

    A three dimensional (3D) porous nickel oxide (NiO)/graphene composite is developed through one-pot hydrothermal synthesis with a biopolymer-pectin for tailoring the porous structure. The introduction of pectin makes the NiO grow into nanoflakes-assembled micro spheres that insert in the graphene layers rather than just deposit on the surface of graphene nanosheets as nanoparticles. As the increase of pectin ratio, the size and the amount of NiO micro spheres are both increased, which resulting a 3D hierarchical porous structure. With the optimized pectin concentration, the obtained NiO/graphene nanocomposite anode possesses good electrocatalytic capability and delivers maximum power density of 3.632 Wm-2 in Shewanella putrefaciens CN32 microbial fuel cells (MFCs). This work provides a new way to develop low cost, high performance anode materials for MFCs.

  9. Electric papers of graphene-coated Co₃O₄ fibers for high-performance lithium-ion batteries.

    PubMed

    Yang, Xiaoling; Fan, Kaicai; Zhu, Yihua; Shen, Jianhua; Jiang, Xin; Zhao, Peng; Luan, Shaorong; Li, Chunzhong

    2013-02-01

    A facile strategy to synthesize the novel composite paper of graphene nanosheets (GNS) coated Co(3)O(4) fibers is reported as an advanced anode material for high-performance lithium-ion batteries (LIBs). The GNS were able to deposit onto Co(3)O(4) fibers and form the coating via electrostatic interactions. The unique hybrid paper is evaluated as an anode electrode for LIBs, and it exhibits a very large reversible capacity (∼840 mA h g(-1) after 40 cycles), excellent cyclic stability and good rate capacity. The substantially excellent electrochemical performance of the graphene/Co(3)O(4) composite paper is the result from its unique features. Notably, the flexible structure of graphenic scaffold and the strong interaction between graphene and Co(3)O(4) fibers are beneficial for providing excellent electronic conductivity, short transportation length for lithium ions, and elastomeric space to accommodate volume varies upon Li(+) insertion/extraction.

  10. Thin film integrated capacitors with sputtered-anodized niobium pentoxide dielectric for decoupling applications

    NASA Astrophysics Data System (ADS)

    Jacob, Susan

    Electronics system miniaturization is a major driver for high-k materials. High-k materials in capacitors allow for high capacitance, enabling system miniaturization. Ta2O5 (k˜24) has been the dominant high-k material in the electronic industry for decoupling capacitors, filter capacitors, etc. In order to facilitate further system miniaturization, this project has investigated thin film integrated capacitors with Nb2O5 dielectric. Nb2O 5 has k˜41 and is a potential candidate for replacing Ta2O5. But, the presence of suboxides (NbO2 and NbO) in the dielectric deteriorates the electrical properties (leakage current, thermal instability of capacitance, etc.). Also, the high oxygen solubility of niobium results in oxygen diffusion from the dielectric to niobium metal, if any is present. The major purpose of this project was to check the ability of NbN as a diffusion barrier and fabricate thermally stable niobium capacitors. As a first step to produce niobium capacitors, the material characterizations of reactively sputtered Nb2O5 and NbN were done. Thickness and film composition, and crystal structures of the sputtered films were obtained and the deposition parameters for the desired stoichiometry were found. Also, anodized Nb2O5 was characterized for its stoichiometry and thickness. To study the effect of nitrides on capacitance and thermal stability, Ta2O5 capacitors were initially fabricated with and without TaN. The results showed that the nitride does not affect the capacitance, and that capacitors with TaN are stable up to 150°C. In the next step, niobium capacitors were first fabricated with anodized dielectric and the oxygen diffusion issues associated with capacitor processing were studied. Reactively sputtered Nb2O5 was anodized to form complete Nb2O5 (with few oxygen vacancies) and NbN was used to sandwich the dielectric. The capacitor fabrication was not successful due to the difficulties in anodizing the sputtered dielectric. Another method, anodizing reactively sputtered Nb2O5 and a thin layer of sputtered niobium metal yielded high yield (99%) capacitors. Capacitors were fabricated with and without NbN and the results showed 93% decrease in leakage for a capacitor with ˜2000 A dielectric when NbN was present in the structure. These capacitors could withstand 20 V and showed 2.7 muA leakage current at 5 V. These results were obtained after thermal storage at 100°C and 150°C in air for 168 hours at each temperature. Two set of experiments were performed using Ta2O5 dielectric: one to determine the effect of anodization end point on the thickness (capacitance) and the second to determine the effect of boiling the dielectric on functional yield. The anodization end point experiment showed that the final current of anodization along with the anodizing voltage determines the anodic oxide thickness. The lower the current, the thicker the films produced by anodization. Therefore, it was important to specify the final current along with the anodization voltage for oxide growth rate. The capacitors formed with boiled wafers showed better functional yield 3 out of 5 times compared with the unboiled wafer. Niobium anodization was studied for the Nb--->Nb 2O5 conversion ratio and the effect of anodization bath temperature on the oxide film; a color chart was prepared for thicknesses ranging from 1900 A - 5000 A. The niobium metal to oxide conversion ratio was found to change with temperature.

  11. Thermionic energy converters

    DOEpatents

    Monroe, Jr., James E.

    1977-08-09

    A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.

  12. Facile preparation of a zinc-based alloy composite as a novel anode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Thanh; Bae, Joonwon; Kim, Ji Hyeon; Son, Hyung Bin; Kim, Il Tae; Hur, Jaehyun

    2018-01-01

    We report a new Zn-based nanocomposite anode material (Zn-Ti-C) for lithium-ion batteries synthesized by thermal treatment and a high energy mechanical milling process. X-ray diffraction and high-resolution transmission electron microscopy revealed the formation of active Zn nanoparticles finely dispersed in the hybrid titanium carbide (TiC) and carbon matrix. Electrochemical analyses show that the formation of the TiC and carbon buffer matrix significantly contributed to the improved performance of the Zn-based electrode by mitigating the volume changes of the Zn nanoparticles during the charge/discharge processes. Furthermore, we optimized the stoichiometric ratio of Zn and Ti in terms of specific capacity, cycling performance, and rate capability in the presence of carbon. The material with a 2:1 atomic ratio (ZnTi(2:1)-C) exhibited the best cycle life, with a gravimetric capacity of 363.6 mAh g-1 and a volumetric capacity of 472.7 mAh cm-3 after 300 charge/discharge cycles (78.1% retention). At this ratio, Zn-Ti-C consistently showed the best rate capability measurements up to 3000 mA g-1 (85% of its capacity at 100 mA g-1). Therefore, our Zn-Ti-C composite is a promising alternative negative electrode material for lithium-ion batteries.

  13. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  14. Type I clathrates as novel silicon anodes: An electrochemical and structural investigation

    DOE PAGES

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.; ...

    2015-05-05

    In this study, silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. Here we present an electrochemical evaluation of type I silicon clathrates based on Ba 8Al ySi 46-y for the anode material in lithium-ion batteries. Post-cycling characterization with NMR and XRD show no discernible structural or volume changes even after electrochemical insertion of 44 Li into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from larger volume changes. The lithiation/delithiation processes are proposed to occur in single phase reactions at approximately 0.2more » and 0.4 V vs. Li/Li +, respectively, distinct from other diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g -1 at a 5 mA g -1 rate were observed for silicon clathrate with composition Ba 8Al 8.54S i37.46, corresponding to Li:Si of 1.18:1. The results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.« less

  15. Type I clathrates as novel silicon anodes: An electrochemical and structural investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.

    In this study, silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. Here we present an electrochemical evaluation of type I silicon clathrates based on Ba 8Al ySi 46-y for the anode material in lithium-ion batteries. Post-cycling characterization with NMR and XRD show no discernible structural or volume changes even after electrochemical insertion of 44 Li into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from larger volume changes. The lithiation/delithiation processes are proposed to occur in single phase reactions at approximately 0.2more » and 0.4 V vs. Li/Li +, respectively, distinct from other diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g -1 at a 5 mA g -1 rate were observed for silicon clathrate with composition Ba 8Al 8.54S i37.46, corresponding to Li:Si of 1.18:1. The results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.« less

  16. An in situ carbonization-replication method to synthesize mesostructured WO3/C composite as nonprecious-metal anode catalyst in PEMFC.

    PubMed

    Cui, Xiangzhi; Hua, Zile; Wei, Chenyang; Shu, Zhu; Zhang, Liangxia; Chen, Hangrong; Shi, Jianlin

    2013-02-01

    A meostructured WO(3)/C composite with crystalline framework and high electric conductivity has been synthesized by a new in situ carbonization-replication route using the block copolymer (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) present in situ in the pore channels of mesoporous silica template as carbon source. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetry differential thermal analysis, and N(2) adsorption techniques were adopted for the structural characterization. Cyclic voltammetry, chronoamperometry, and single-cell test for hydrogen electrochemical oxidation were adopted to characterize the electrochemical activities of the mesoporous WO(3)/C composite. The carbon content and consequent electric conductivity of these high-surface-area (108-130 m(2) g(-1)) mesostructured WO(3)/C composite materials can be tuned by variation of the duration of heat treatment, and the composites exhibited high and stable electrochemical catalytic activity. The single-cell test results indicated that the mesostructured WO(3)/C composites showed clear electrochemical catalytic activity toward hydrogen oxidation at 25 °C, which makes them potential non-precious-metal anode catalysts in proton exchange membrane fuel cell. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors.

    PubMed

    Yu, Peng; Cao, Gejin; Yi, Sha; Zhang, Xiong; Li, Chen; Sun, Xianzhong; Wang, Kai; Ma, Yanwei

    2018-03-29

    Two-dimensional (2D) MXenes have a very good application prospect in the field of electrochemical energy storage due to their metallic conductivity, high volumetric capacity, mechanical and thermal stability. Herein, we report the preparation of titanium carbide (Ti3C2Tx)/carbon nanotube (CNT) flexible self-supporting composite films by vacuum filtration. The CNTs can effectively prevent Ti3C2Tx from stacking and improve the electrochemical performance. The as-fabricated Ti3C2Tx/CNT film shows a high reversible capacity of 489 mA h g-1 at a current density of 50 mA g-1 together with good cycling performance. The full-cell lithium-ion capacitor (LIC) is assembled using the Ti3C2Tx/CNT film as the anode and activated carbon as the cathode. The LIC exhibits a high energy density of 67 Wh kg-1 (based on the total weight of the anode and the cathode), and a good capacity retention of 81.3% after 5000 cycles. These results suggest that Ti3C2Tx-CNT films are promising as anode materials for lithium ion capacitors.

  18. Highly Porous FeS/Carbon Fibers Derived from Fe-Carrageenan Biomass: High-capacity and Durable Anodes for Sodium-Ion Batteries.

    PubMed

    Li, Daohao; Sun, Yuanyuan; Chen, Shuai; Yao, Jiuyong; Zhang, Yuhui; Xia, Yanzhi; Yang, Dongjiang

    2018-05-08

    The nanostructured metal sulfides have been reported as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities but have suffered from the unsatisfactory electronic conductivity and poor structural stability during a charge/discharge process, thus limiting their applications. Herein, the one-dimensional (1D) porous FeS/carbon fibers (FeS/CFs) micro/nanostructures are fabricated through facile pyrolysis of double-helix-structured Fe-carrageenan fibers. The FeS nanoparticles are in situ formed by interacting with sulfur-containing group of natural material ι-carrageenan and uniformly embedded in the unique 1D porous carbon fibrous matrix, significantly enhancing the sodium-ion storage performance. The obtained FeS/CFs with optimized sodium storage performance benefits from the appropriate carbon content (20.9 wt %). The composite exhibits high capacity and excellent cycling stability (283 mAh g -1 at current density of 1 A g -1 after 400 cycles) and rate performance (247 mAh g -1 at 5 A g -1 ). This work provides a simple strategy to construct 1D porous FeS/CFs micro/nanostructures as high-performance anode materials for SIBs via a unique sustainable and environmentally friendly way.

  19. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  20. Tire-derived carbon composite anodes for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yunchao; Paranthaman, M. Parans; Akato, Kokouvi; Naskar, Amit K.; Levine, Alan M.; Lee, Richard J.; Kim, Sang-Ok; Zhang, Jinshui; Dai, Sheng; Manthiram, Arumugam

    2016-06-01

    Hard-carbon materials are considered as one of the most promising anodes for the emerging sodium-ion batteries. Here, we report a low-cost, scalable waste tire-derived carbon as an anode for sodium-ion batteries (SIBs). Tire-derived carbons obtained by pyrolyzing acid-treated tire at 1100 °C, 1400 °C and 1600 °C show capacities of 179, 185 and 203 mAh g-1, respectively, after 100 cycles at a current density of 20 mA g-1 in sodium-ion batteries with good electrochemical stability. The portion of the low-voltage plateau region in the charge-discharge curves increases as the heat-treatment temperature increases. The low-voltage plateau is beneficial to enhance the energy density of the full cell. This study provides a new pathway for inexpensive, environmentally benign and value-added waste tire-derived products towards large-scale energy storage applications.

  1. Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi

    2016-09-01

    Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).

  2. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.

    PubMed

    Roh, Sung-Hee; Kim, Sun-Il

    2012-05-01

    A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy using the catalytic reaction of microorganisms. We investigated the performance of mediator-less MFC with carbon nanotubes (CNTs)/graphite felt composite electrodes. The addition of CNTs to a graphite felt electrode increases the specific surface area of the electrode and enhances the charge transfer capability so as to cause considerable improvement of the electrochemical activity for the anode reaction in a MFC. The performance of the MFC using CNTs/graphite felt electrode has been compared against a plain graphite felt electrode based MFC. A CNTs/graphite felt electrode showed as high as 15% increase in the power density (252 mW/m2) compared to graphite felt electrode (214 mW/m2). The CNTs/graphite felt anode therefore offers good prospects for application in MFCs.

  3. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage

    NASA Astrophysics Data System (ADS)

    Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua

    2014-11-01

    Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04819a

  4. Facile Synthesis of A 3D Flower-Like Mesoporous Ni@C Composite Material for High-Energy Aqueous Asymmetric Supercapacitors.

    PubMed

    Liu, Song; An, Cuihua; Zang, Lei; Chang, Xiaoya; Guo, Huinan; Jiao, Lifang; Wang, Yijing

    2018-04-16

    A 3D flower-like mesoporous Ni@C composite material has been synthesized by using a facile and economical one-pot hydrothermal method. This unique 3D flower-like Ni@C composite, which exhibited a high surface area (522.4 m 2  g -1 ), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g -1 at 2 A g -1 ) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg -1 at a power density of 750 W kg -1 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A dendrite-suppressing composite ion conductor from aramid nanofibres

    NASA Astrophysics Data System (ADS)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.

    2015-01-01

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  6. Mathematical modeling of a primary zinc/air battery

    NASA Technical Reports Server (NTRS)

    Mao, Z.; White, R. E.

    1992-01-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  7. Non-consumable anode and lining for aluminum electrolytic reduction cell

    DOEpatents

    Beck, Theodore R.; Brooks, Richard J.

    1994-01-01

    An oxidation resistant, non-consumable anode, for use in the electrolytic reduction of alumina to aluminum, has a composition comprising copper, nickel and iron. The anode is part of an electrolytic reduction cell comprising a vessel having an interior lined with metal which has the same composition as the anode. The electrolyte is preferably composed of a eutectic of AlF.sub.3 and either (a) NaF or (b) primarily NaF with some of the NaF replaced by an equivalent molar amount of KF or KF and LiF.

  8. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  9. Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes.

    PubMed

    Zhang, Yaguang; Du, Ning; Chen, Yifan; Lin, Yangfan; Jiang, Jinwei; He, Yuanhong; Lei, Yu; Yang, Deren

    2018-03-28

    Si/C composite is one of the most promising candidate materials for next-generation lithium-ion battery anodes. Herein, we demonstrate the novel structure of carbon cages encapsulating porous Si synthesized by the reaction between magnesium silicide (Mg 2 Si) and carbon dioxide (CO 2 ) and subsequent acid washing. Benefitting from the in situ deposition through magnesiothermic reduction of CO 2 , the carbon cage seals the inner Si completely and shows higher graphitization than that obtained from the decomposition of acetylene. After removing MgO, pores are created, which can accommodate the volume change of the Si anode during the charge/discharge process. As the anode material for lithium-ion batteries, the porous Si/C electrode shows a charge capacity of ∼1124 mA h g -1 after 100 cycles with 86.4% capacity retention at the current density of 0.4 A g -1 . When the current density increases to 1.6 and 3.2 A g -1 , the capacity can still be maintained at ∼860 and ∼460 mA h g -1 , respectively. The prominent cycling and rate performance is contributed by the built-in space for Si expansion, static carbon cages that prevent penetration of electrolyte and stabilize the solid electrolyte interface (SEI) outside, and fast charge transport by the novel structure.

  10. Composite Li metal anode with vertical graphene host for high performance Li-S batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Liu, S. F.; Wang, X. L.; Zhong, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Efficient and stable operation of a lithium metal anode has become the enabling factor for next-generation high energy density storage system. Here, vertical graphene (VG) arrays are used as the scaffold structure for high performance Li metal batteries. The melt infusion method is employed to encapsulate Li inside the VG scaffold structure, and the lithiophilic Si layer is coated onto the array surface by magnetron sputtering to assist this melt-infusion process. The porous scaffold structure can control the volume expansion and inhibit the formation of dendritic lithium significantly, leading to the excellent electrochemical performance of the Li composite anode. In addition, the Li-S full batteries with the composite anode display enhanced cycling reversibility.

  11. Highly efficient lithium composite anode with hydrophobic molten salt in seawater

    NASA Astrophysics Data System (ADS)

    Zhang, Yancheng; Urquidi-Macdonald, Mirna

    A lithium composite anode (lithium/1-butyl-3-methyl-imidazoleum hexafluorophosphate (BMI +PF 6-)/4-VLZ) for primary lithium/seawater semi-fuel-cells is proposed to reduce lithium-water parasitic reaction and, hence, increase the lithium anodic efficiency up to 100%. The lithium composite anode was activated when in contact with artificial seawater (3% NaCl solution) and the output was a stable anodic current density at 0.2 mA/cm 2, which lasted about 10 h under potentiostatic polarization at +0.5 V versus open circuit potential (OCP); the anodic efficiency was indirectly measured to be 100%. With time, a small traces of water diffused through the hydrophobic molten salt, BMI +PF 6-, reached the lithium interface and formed a double layer film (LiH/LiOH). Accordingly, the current density decreased and the anodic efficiency was estimated to be 90%. The hypothesis of small traces of water penetrating the molten salt and reaching the lithium anode—after several hours of operation—is supported by the collected experimental current density and hydrogen evolution, electrochemical impedance spectrum analysis, and non-mechanistic interface film modeling of lithium/BMI +PF 6-.

  12. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.

    PubMed

    Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam

    2018-02-21

    The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.

  13. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge

    NASA Astrophysics Data System (ADS)

    Hou, Guangmei; Ren, Xiaohua; Ma, Xiaoxin; Zhang, Le; Zhai, Wei; Ai, Qing; Xu, Xiaoyan; Zhang, Lin; Si, Pengchao; Feng, Jinkui; Ding, Fei; Ci, Lijie

    2018-05-01

    Lithium metal is considered as the ultimate anode material for high-energy Li battery systems. However, the commercial application of lithium anode is impeded by issues with safety and low coulombic efficiency induced by Li dendrite growth. Herein, a free-standing three-dimensional nitrogen-enriched graphitic carbon sponge with a high nitrogen content is proposed as a multifunctional current collect for Lithium accommodation. The abundant lithiophilic N-containing functional groups are served as preferred nucleation sites to guide a uniform Li deposition. In addition, the nitrogen-enriched graphitic carbon sponge with a high specific surface area can effectively reduce the local current density. As a result of the synergistic effect, the nitrogen-enriched graphitic carbon sponge electrode realizes a long-term stable cycling without dendrites formation. Notably, the as-obtained composite electrode can deliver an ultra-high specific capacity of ∼3175 mA h g-1. The nitrogen-enriched graphitic carbon sponge might provide innovative insights to design a superior matrix for dendrite-free Li anode.

  14. Coralloid-like Nanostructured c-nSi/SiOx@Cy Anodes for High Performance Lithium Ion Battery.

    PubMed

    Zhuang, Xianhuan; Song, Pingan; Chen, Guorong; Shi, Liyi; Wu, Yuan; Tao, Xinyong; Liu, Hongjiang; Zhang, Dengsong

    2017-08-30

    Balancing the size of the primary Si unit and void space is considered to be an effective approach for developing high performance silicon-based anode materials and is vital to create a lithium ion battery with high energy density. We herein have demonstrated the facile fabrication of coralloid-like nanostructured silicon composites (c-nSi/SiO x @Cy) via sulfuric acid etching the Al 60 Si 40 alloy, followed by a surface growth carbon layer approach. The HRTEM images of pristine and cycled c-nSi/SiO x @Cy show that abundant nanoscale internal pores and the continuous conductive carbon layer effectively avoid the pulverization and agglomeration of Si units during multiple cycles. It is interesting that the c-nSi/SiO x @C 4.0 anode exhibits a high initial Coulombic efficiency of 85.53%, and typical specific capacity of over 850 mAh g -1 after deep 500 cycles at a current density of 1 A g -1 . This work offers a facile strategy to create silicon-based anodes consisting of highly dispersed primary nano-Si units.

  15. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries

    PubMed Central

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-01-01

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency. PMID:27646853

  16. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Liu, Yanguo; Arandiyan, Hamidreza; Yang, Hongping; Bai, Lu; Mujtaba, Jawayria; Wang, Qingguo; Liu, Shanghe; Sun, Hongyu

    2016-12-01

    Uniform Fe3O4 microflowers assembled with porous nanoplates were successfully synthesized by a solvothermal method and subsequent annealing process. The structural and compositional analysis of the Fe3O4 microflowers were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The Bruauer-Emmett-Teller (BET) specific surface area was calculated by the nitrogen isotherm curve and pore size distribution of Fe3O4 microflowers was determined by the Barret-Joyner-Halenda (BJH) method. When evaluated as anode material for lithium-ion batteries, the as-prepared Fe3O4 microflowers electrodes delivered superior capacity, better cycling stability and rate capability than that of Fe3O4 microspheres electrodes. The improved electrochemical performance was attributed to the microscale flowerlike architecture and the porous sheet structural nature.

  17. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  18. Influence of Ga/Hg Ratio on Phase Constituents and Electrochemical Performance of Mg-Hg-Ga Anode Materials

    NASA Astrophysics Data System (ADS)

    Wang, Libo; Li, Peijie; He, Liangju

    2017-09-01

    This study investigated the impacts of Mg-Hg-Ga alloys of various Ga/Hg ratios on phase constituents and electrochemical performance. The relationship between composition and phase constituents of the casting alloys were investigated by SEM and XRD Potentiodynamic polarization curves and the galvanostatic curves of the alloys in 3.5wt% NaCl solution were obtained. With a Ga/Hg ratio greater than 0.97, the second phase changes from Mg3Hg to Mg5Ga2, and the normal eutectic becomes a divorced eutectic. Additionally, corrosion is inhibited and passivation appears with an increase in the Ga/Hg ratio increase. With a starting Ga/Hg ratio of less than 0.68, the discharge process becomes steadier and discharge time simultaneiously increases with the Ga/Hg ratio. Mg-Hg-Ga alloys with a 0.68 Ga/Hg ratio are suitable as the anode material for seawater batteries.

  19. Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation.

    PubMed

    Ali, Imran; Kim, Jong-Oh

    2018-09-01

    TiO 2 nanotubes (TNTs) were synthesized on a Ti sheet using the electrochemical anodization method. Bismuth (Bi) was coupled on the anodized TNTs via hydrothermal process. We verified the effect of different Bi concentrations on the photocatalytic properties of Bi-TNT composites. The obtained samples were characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-Vis diffuse reflectance spectra, and photoluminescence spectra. The Bi-TNT photocatalysts exhibited higher activities by factors of 6.6 and 3.6 toward chromium reduction and methylene blue degradation, respectively, under visible light than the pure TNTs. The Bi-TNT material was recycled to examine the stability of the catalyst. The quantum efficiency of the photocatalytic system was calculated, and the synergistic effects of bismuth modification were discussed. The Bi-TNT composites were observed to be promising for separation of photoinduced e - and h + by decreasing charge recombination, and helped the formation of the hydroxyl radicals, h + , and superoxides used in the photocatalytic process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network.

    PubMed

    Wang, Min; Yang, Zhenzhong; Li, Weihan; Gu, Lin; Yu, Yan

    2016-05-01

    Carbonaceous materials have attracted immense interest as anode materials for Na-ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na-storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O-dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g(-1) at 100 mA g(-1) after 100 cycles and retaining a capacity of 240 mAh g(-1) at 2 A g(-1) after 2000 cycles. The NOC composite with 3D well-defined porosity and N,O-dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O-dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating

    DOE PAGES

    Minnici, Krysten; Kwon, Yo Han; Huie, Matthew M.; ...

    2017-12-06

    Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work showed that introduction of poly [3-(potassium-4-butanoate) thiophene] (PPBT) as a binder component coupled with a polyethylene glycol (PEG) surface coating on magnetite (Fe 3O 4) nanoparticles enhanced electron and ion transport in the high capacity anode system. Here, the impact of Fe 3O 4 crystallite size (10 nm vs. 20 nm) and surface chemistry were explored to evaluate their effects on interfacial interactions within the composite PEG/PPBT based electrodes and resultant battery performance. The Fe 3O 4 synthesis methods inevitablymore » lead to differences in surface chemistry. For instance, the Fe 3O 4 particles synthesized using ammonium hydroxide appeared more dispersed, and afforded improved rate capability performance. Notably, chemical interactions between the active nanoparticles and PPBT binder were only seen with particles synthesized using triethylamine. Capacity retention and cycling performance were unaffected. Thus, this study provides fundamental insights into the significant impact of active material synthesis on the design and fabrication of composite battery electrodes.« less

  2. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    NASA Astrophysics Data System (ADS)

    Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.

    2016-11-01

    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g-1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g-1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.

  3. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    PubMed Central

    Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.

    2016-01-01

    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g−1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g−1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications. PMID:27898104

  4. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes.

    PubMed

    Loveridge, M J; Lain, M J; Johnson, I D; Roberts, A; Beattie, S D; Dashwood, R; Darr, J A; Bhagat, R

    2016-11-29

    Lithium iron phosphate, LiFePO 4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g -1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g -1 for over 1 50 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.

  5. High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnici, Krysten; Kwon, Yo Han; Huie, Matthew M.

    Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work showed that introduction of poly [3-(potassium-4-butanoate) thiophene] (PPBT) as a binder component coupled with a polyethylene glycol (PEG) surface coating on magnetite (Fe 3O 4) nanoparticles enhanced electron and ion transport in the high capacity anode system. Here, the impact of Fe 3O 4 crystallite size (10 nm vs. 20 nm) and surface chemistry were explored to evaluate their effects on interfacial interactions within the composite PEG/PPBT based electrodes and resultant battery performance. The Fe 3O 4 synthesis methods inevitablymore » lead to differences in surface chemistry. For instance, the Fe 3O 4 particles synthesized using ammonium hydroxide appeared more dispersed, and afforded improved rate capability performance. Notably, chemical interactions between the active nanoparticles and PPBT binder were only seen with particles synthesized using triethylamine. Capacity retention and cycling performance were unaffected. Thus, this study provides fundamental insights into the significant impact of active material synthesis on the design and fabrication of composite battery electrodes.« less

  6. SnS2 /Sb2 S3 Heterostructures Anchored on Reduced Graphene Oxide Nanosheets with Superior Rate Capability for Sodium-Ion Batteries.

    PubMed

    Wang, Shijian; Liu, Shuaishuai; Li, Xuemei; Li, Cong; Zang, Rui; Man, Zengming; Wu, Yuhan; Li, Pengxin; Wang, Guoxiu

    2018-03-12

    Tin disulfide, as a promising high-capacity anode material for sodium-ion batteries, exhibits high theoretical capacity but poor practical electrochemical properties due to its low electrical conductivity. Constructing heterostructures has been considered to be an effective approach to enhance charge transfer and ion-diffusion kinetics. In this work, composites of SnS 2 /Sb 2 S 3 heterostructures with reduced graphene oxide nanosheets were synthesized by a facile one-pot hydrothermal method. When applied as anode material in sodium-ion batteries, the composite showed a high reversible capacity of 642 mA h g -1 at a current density of 0.2 A g -1 and good cyclic stability without capacity loss in 100 cycles. In particular, SnS 2 /Sb 2 S 3 heterostructures exhibited outstanding rate performance with capacities of 593 and 567 mA h g -1 at high current densities of 2 and 4 A g -1 , respectively, which could be ascribed to the dramatically improved Na + diffusion kinetics and electrical conductivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    PubMed

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  8. Highly efficient phosphorescent organic light-emitting diode with a nanometer-thick Ni silicide/polycrystalline p-Si composite anode.

    PubMed

    Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H

    2010-07-19

    A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.

  9. Analysis of cadmium in undissolved anode materials of Mark-IV electro-refiner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Tae-Sic; Fredrickson, G.L.; Vaden, D.

    2013-07-01

    The Mark-IV electro-refiner (Mk-IV ER) is a unit process in the FCF (Fuel Conditioning Facility), which is primarily assigned to treating the used driver fuels. Mk-IV ER contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolvedmore » anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation. (authors)« less

  10. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  11. Electrochemical Studies of Graphene-like materials Synthesized by the Thermolyzed Asphalt Reaction

    NASA Astrophysics Data System (ADS)

    Xie, Yuqun

    Developing a facile and cost effective synthetic method for producing graphene materials has been an attractive research topic in several disciplines. Chapter 3 demenstrates sheets of multilayered graphene-like paper materials more than 10 cm2 in area were synthesized in the "Thermolyzed Asphalt Reaction (TAR)". TAR is processed within open containers at 650 °C under atmospheric pressure without the need to exclude oxygen, which is the lowest reported temperature for chemical vapor deposition of graphene-based materials. It was found that multilayered graphene-like materials can be grown on amorphous substrates without catalysts. In chapter 4, further studies of the TAR mechanism have allowed sulfur to be identified as an important co-factor in multilayer graphene-like materials formation. Graphene-like material was produced from simple precursors such as elemental sulfur and cyclohexanol. A proposed scheme illustrates sulfur's role in the growth of graphene-like material based on thermogravimetric analyses. We hypothesize that elemental sulfur is involved with the dehydration/dehydrogenation and eventual crosslinking of cyclohexanol between 100-140 °C. In the range of 240-400 °C further dehydrogenation steps occur yielding an unidentified intermediate with a sharp Raman peak at 1450 cm-1 At 550 °C graphene-like Raman D and G bands appear along with the 1450 cm band of the intermediate. At 600 °C and higher temperatures, the intermediate peak is lost with only bands characteristic of graphene-like material being seen in the spectrum of the material synthesized from the University of Idaho Thermolyzed Asphalt Reaction (GUITAR). Sulfur as a key co-factor for GUITAR synthesis is reinforced by results found with other hydrocarbons. Other organics succeeded or failed in GUITAR formation based on melting and boiling considerations. The failure of the compounds with a boiling point below -89°C, melting point above 300°C is reasoned with the volatility of the dehydration products and lacking of sulfur cross-linking in solid state. Chapter 5 established GUITAR as a suitable material for dimensionally stable anodes (DSAs) because of its remarkable anodic stability revealed by electrochemical characterization. Cyclic voltammetric evaluation of GUITAR with Ru(NH3)63+/2+ and Fe(CN)6 3-/4- redox couples suggests that GUITAR enables faster electron transfer than chemical vapor deposition (CVD) grown graphene and highly ordered pyrolytic graphite (HOPG), even though GUITAR shares a common morphological phenomenon with HOPG, namely an atomically flat basal plane. At a current density of 200 muAcm -2, the anodic limit of GUITAR is 2.7 V vs SHE in 1MH2SO 4, GUITAR as a new material for DSAs was reinforced by its performance on methylene blue degradation, the normalized methylene blue degradation rate constant obtained with GUITAR was 10 times higher than that of boron doped dimond anode. In chapter 6, GUITAR formed on the surface of silica nanosprings composites was employed as the electrode material for an ultracapacitor. A 2.35 nm thin graphene film on the silica nanosprings surface offered a straight electron path through the high surface area of the silica nanosprings. Additionally, the high porosity of the silica nanosprings backbone enables facile electrolyte access to the graphene surface, resulting in the maxmum surface area utilization of a graphene-like films coated silica nanosprings composite electrode. The specific capacitance of 337 F g-1 was obtained in a concentrated H2SO4 electrolyte with a scan rate of 0.01 Vs -1. Nearly perfect capacitive behavior was observed with symmetric static charge /discharge curves at various current rates. A low equivalent series resistance (0.4 O) was measured with graphenelike silica nanosprings composites configured as an ultracapacitor. Superior electrochemical performance of graphene-like silica nanosprings composites as the electrode of an ultracapacitor was achieved when compared to ultracapacitors based on reduced graphene oxide and carbon nano-tubes.

  12. Composite anode for lithium ion batteries

    DOEpatents

    de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.

    2018-03-06

    A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.

  13. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    PubMed Central

    2010-01-01

    Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674

  14. Compositional control of continuously graded anode functional layer

    NASA Astrophysics Data System (ADS)

    McCoppin, J.; Barney, I.; Mukhopadhyay, S.; Miller, R.; Reitz, T.; Young, D.

    2012-10-01

    In this work, solid oxide fuel cells (SOFC's) are fabricated with linear-compositionally graded anode functional layers (CGAFL) using a computer-controlled compound aerosol deposition (CCAD) system. Cells with different CGAFL thicknesses (30 um and 50 um) are prepared with a continuous compositionally graded interface deposited between the electrolyte and anode support current collecting regions. The compositional profile was characterized using energy dispersive X-ray spectroscopic mapping. An analytical model of the compound aerosol deposition was developed. The model predicted compositional profiles for both samples that closely matched the measured profiles, suggesting that aerosol-based deposition methods are capable of creating functional gradation on length scales suitable for solid oxide fuel cell structures. The electrochemical performances of the two cells are analyzed using electrochemical impedance spectroscopy (EIS).

  15. Chemical Evolution in Silicon–Graphite Composite Anodes Investigated by Vibrational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruther, Rose E.; Hays, Kevin A.; An, Seong Jin

    Silicon–graphite composites are under development for the next generation of high-capacity lithium-ion anodes, and vibrational spectroscopy is a powerful tool to identify the different mechanisms that contribute to performance loss. With alloy anodes, the underlying causes of cell failure are significantly different in half-cells with lithium metal counter electrodes compared to full cells with standard cathodes. However, most studies which take advantage of vibrational spectroscopy have only examined half-cells. In this work, a combination of FTIR and Raman spectroscopy describes several factors that lead to degradation in full pouch cells with LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) cathodes. The spectroscopicmore » signatures evolve after longer term cycling compared to the initial formation cycles. Several side-reactions that consume lithium ions have clear FTIR signatures, and comparison to a library of reference compounds facilitates identification. Raman microspectroscopy combined with mapping shows that the composite anodes are not homogeneous but segregate into graphite-rich and silicon-rich phases. Lithiation does not proceed uniformly either. A basis analysis of Raman maps identifies electrochemically inactive regions of the anodes. In conclusion, the spectroscopic results presented here emphasize the importance of improving electrode processing and SEI stability to enable practical composite anodes with high silicon loadings.« less

  16. Chemical Evolution in Silicon–Graphite Composite Anodes Investigated by Vibrational Spectroscopy

    DOE PAGES

    Ruther, Rose E.; Hays, Kevin A.; An, Seong Jin; ...

    2018-05-24

    Silicon–graphite composites are under development for the next generation of high-capacity lithium-ion anodes, and vibrational spectroscopy is a powerful tool to identify the different mechanisms that contribute to performance loss. With alloy anodes, the underlying causes of cell failure are significantly different in half-cells with lithium metal counter electrodes compared to full cells with standard cathodes. However, most studies which take advantage of vibrational spectroscopy have only examined half-cells. In this work, a combination of FTIR and Raman spectroscopy describes several factors that lead to degradation in full pouch cells with LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) cathodes. The spectroscopicmore » signatures evolve after longer term cycling compared to the initial formation cycles. Several side-reactions that consume lithium ions have clear FTIR signatures, and comparison to a library of reference compounds facilitates identification. Raman microspectroscopy combined with mapping shows that the composite anodes are not homogeneous but segregate into graphite-rich and silicon-rich phases. Lithiation does not proceed uniformly either. A basis analysis of Raman maps identifies electrochemically inactive regions of the anodes. In conclusion, the spectroscopic results presented here emphasize the importance of improving electrode processing and SEI stability to enable practical composite anodes with high silicon loadings.« less

  17. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOEpatents

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  18. Thin film deposition by electric and magnetic crossed-field diode sputtering

    DOEpatents

    Welch, Kimo M.

    1977-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  19. Titanium nitride thin films for minimizing multipactoring

    DOEpatents

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  20. Thin film deposition by electric and magnetic crossed-field diode sputtering

    DOEpatents

    Welch, Kimo M.

    1980-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  1. Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Tian, Yang; Zhang, Zhengxi; Yang, Li; Hirano, Shin-ichi

    2015-09-01

    Tin dioxide/carbon composites is an important class of promising candidates for anode materials with superior electrochemical performance and thus have attracted extensive attention. Herein, a tube-in-tube nanostructure, denoted as CNT@void@SnO2@C, has been fabricated by a facile and novel strategy. The possible formation mechanism is also discussed and determined by TEM, XRD and XPS characterizations. As a promising anode material for lithium-ion batteries, the CNT@void@SnO2@C exhibits superior lithium storage properties, delivering a reversible capacity of 702.5 mAh g-1 at 200 mA g-1 even after 350 cycles. The excellent performances should be benefited from the peculiar tube-in-tube nanostructure, in which SnO2 located between CNT and outermost carbon coating layers can sure the structural integrity and high conductivity during long-term cycling, and one-dimensional void space formed between the inner CNT and outer SnO2@C nanotubes, in particular, can provide larger free space for alleviating the huge volume variation of SnO2 and accommodating the stress formed during repeated discharge/charge process.

  2. New Anode Material for Rechargeable Li-ION Cells

    NASA Technical Reports Server (NTRS)

    Huang, C. -K.; Smart, M.; Halpert, G.; Surampudi, S.; Wolfenstine, J.

    1995-01-01

    Carbon materials, such as graphite, cokes, pitch and PAN fibers, are being evaluated in lithium batteries as alternate anode materials with some degree of success. There is an effort to look for other non-carbon anode materials which have larger Li capacity, higher rate capability, smaller first charge capacity loss and better mechanical stability during cycling. A Li-Mg-Si material is evaluated.

  3. Metallic anodes for next generation secondary batteries.

    PubMed

    Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk; Kim, Jae-Hun; Park, Cheol-Min; Sohn, Hun-Joon

    2013-12-07

    Li-air(O2) and Li-S batteries have gained much attention recently and most relevant research has aimed to improve the electrochemical performance of air(O2) or sulfur cathode materials. However, many technical problems associated with the Li metal anode have yet to be overcome. This review mainly focuses on the electrochemical behaviors and technical issues related to metallic Li anode materials as well as other metallic anode materials such as alkali (Na) and alkaline earth (Mg) metals, including Zn and Al when these metal anodes were employed for various types of secondary batteries.

  4. Anodic composite deposition of RuO2/reduced graphene oxide/carbon nanotube for advanced supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Chi-Chang; Wang, Chia-Wei; Chang, Kuo-Hsin; Chen, Ming-Guan

    2015-07-01

    Anodic composite deposition is demonstrated to be a unique method for fabricating a ternary ruthenium dioxide/reduced graphene oxide/carbon nanotube (RuO2 · xH2O/rGO/CNT, denoted as RGC) nanocomposite onto Ti as an advanced electrode material for supercapacitors. The rGO/CNT composite in RGCs acts as a conductive backbone to facilitate the electron transport between current collector and RuO2 · xH2O nanoparticles (NPs), revealed by the high total specific capacitance (CS,T = 808 F g-1) of RGC without annealing. The contact resistance among RuO2 · xH2O NPs is improved by low-temperature annealing at 150 °C (RGC-150), which renders slight sintering and enhances the specific capacitance of RuO2 · xH2O to achieve 1200 F g-1. The desirable nanocomposite microstructure of RGC-150 builds up the smooth pathways of both protons and electrons to access the active oxy-ruthenium species. This nanocomposite exhibits an extremely high CS,T of 973 F g-1 at 25 mV s-1 (much higher than 435 F g-1 of an annealed RuO2 · xH2O deposit) and good capacitance retention (60.5% with scan rate varying from 5 to 500 mV s-1), revealing an advanced electrode material for high-performance supercapacitors.

  5. Anodic composite deposition of RuO₂/reduced graphene oxide/carbon nanotube for advanced supercapacitors.

    PubMed

    Hu, Chi-Chang; Wang, Chia-Wei; Chang, Kuo-Hsin; Chen, Ming-Guan

    2015-07-10

    Anodic composite deposition is demonstrated to be a unique method for fabricating a ternary ruthenium dioxide/reduced graphene oxide/carbon nanotube (RuO2 xH2O/rGO/CNT, denoted as RGC) nanocomposite onto Ti as an advanced electrode material for supercapacitors. The rGO/CNT composite in RGCs acts as a conductive backbone to facilitate the electron transport between current collector and RuO2 xH2O nanoparticles (NPs), revealed by the high total specific capacitance (C(S,T) = 808 F g(-1)) of RGC without annealing. The contact resistance among RuO2 xH2O NPs is improved by low-temperature annealing at 150 °C (RGC-150), which renders slight sintering and enhances the specific capacitance of RuO2 xH2O to achieve 1200 F g(-1). The desirable nanocomposite microstructure of RGC-150 builds up the smooth pathways of both protons and electrons to access the active oxy-ruthenium species. This nanocomposite exhibits an extremely high C(S,T) of 973 F g(-1) at 25 mV s(-1) (much higher than 435 F g(-1) of an annealed RuO2 xH2O deposit) and good capacitance retention (60.5% with scan rate varying from 5 to 500 mV s(-1)), revealing an advanced electrode material for high-performance supercapacitors.

  6. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  7. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Shun; Wang, Mengya; Luo, Yan; Huang, Jianguo

    2016-07-13

    A bioinspired hierarchical nanofibrous Fe3O4-TiO2-carbon composite was fabricated by employing natural cellulose substance (e.g., filter paper) as both the scaffold and the carbon source and showed improved electrochemical performances when it is employed as an anode material for lithium-ion batteries. FeOOH nanoparticles were first grown uniformly onto the surface of the titania thin-layer precoated cellulose nanofibers, and thereafter, the as-prepared FeOOH-TiO2-cellulose composite was calcined and carbonized in argon atmosphere at 500 °C for 6 h to produce the Fe3O4-TiO2-carbon composite. The resultant composite possesses a hierarchical structure that was faithfully inherited from the initial cellulose substance, which was composed of titania-coated carbon fibers with corncob-like shaped Fe3O4 nanoparticles immobilized on the surfaces. The diameter of the composite nanofiber is ca. 100-200 nm, and the diameter of the Fe3O4 nanoparticle is about 30 nm, which is coated with an ultrathin carbon layer with a thickness about 3 nm. This composite displayed superior lithium-ion storage performance. It showed a first-cycle discharge capacity of 1340 mAh/g, delivering a stable reversible capacity of ca. 525 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g, and the efficiency is as high as ca. 95% of the theoretical value. This is much higher than those of the commercial Fe3O4 powder (160 mAh/g) and the Fe3O4-carbon counter material (310 mAh/g). It was demonstrated that the thin titania precoating layer (thickness ca. 3-5 nm) is necessary for the high content loading of the Fe3O4 nanoparticles onto the carbon nanofibers. Owing to the unique three-dimensional porous network structure of the carbon-fiber scaffold, together with the ultrathin outer carbon-coating layer, the composite showed significantly improved cycling stability and rate capability.

  8. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell

    NASA Astrophysics Data System (ADS)

    Shobukawa, Hitoshi; Alvarado, Judith; Yang, Yangyuchen; Meng, Ying Shirley

    2017-08-01

    Lithium ion batteries (LIBs) containing silicon (Si) as a negative electrode have gained much attention recently because they deliver high energy density. However, the commercialization of LIBs with Si anode is limited due to the unstable electrochemical performance associated with expansion and contraction during electrochemical cycling. This study investigates the electrochemical performance and degradation mechanism of a full cell containing Si composite anode and LiFePO4 (lithium iron phosphate (LFP)) cathode. Enhanced electrochemical cycling performance is observed when the full cell is cycled with fluoroethylene carbonate (FEC) additive compared to the standard electrolyte. To understand the improvement in the electrochemical performance, x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) are used. Based on the electrochemical behavior, FEC improves the reversibility of lithium ion diffusion into the solid electrolyte interphase (SEI) on the Si composite anode. Moreover, XPS analysis demonstrates that the SEI composition generated from the addition of FEC consists of a large amount of LiF and less carbonate species, which leads to better capacity retention over 40 cycles. The effective SEI successively yields more stable capacity retention and enhances the reversibility of lithium ion diffusion through the interphase of the Si anode, even at higher discharge rate. This study contributes to a basic comprehension of electrochemical performance and SEI formation of LIB full cells with a high loading Si composite anode.

  9. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application

    DOE PAGES

    Zhao, Hui; Du, Allen; Ling, Min; ...

    2016-05-10

    The state-of-the-art graphite anode containing a small portion of silicon represents a promising way of applying high-capacity alloy anode in the next generation high energy density lithium-ion batteries. The conductive polymeric binders developed for Si anodes proved to be an effective binder for this graphite/nanoSi composite electrode. Without any acetylene black conductive additives in the electrode, a high areal capacity of above 2.5 mAh/cm 2 is achieved during long-term cycling over 100 cycles. Finally, this conductive polymer-enabled graphite/nanoSi composite electrode exhibits high specific capacity and high 1 st cycle efficiency, which is a significant progress toward commercial application of Simore » anodes.« less

  10. Anode materials for electrochemical waste destruction

    NASA Technical Reports Server (NTRS)

    Molton, Peter M.; Clarke, Clayton

    1990-01-01

    Electrochemical Oxidation (ECO) offers promise as a low-temperature, atmospheric pressure method for safe destruction of hazardous organic chemical wastes in water. Anode materials tend to suffer corrosion in the intensely oxidizing environment of the ECO cell. There is a need for cheaper, more resistant materials. In this experiment, a system is described for testing anode materials, with examples of several common anodes such as stainless steel, graphite, and platinized titanium. The ECO system is simple and safe to operate and the experiment can easily be expanded in scope to study the effects of different solutions, temperatures, and organic materials.

  11. Silicon Whisker and Carbon Nanofiber Composite Anode

    NASA Technical Reports Server (NTRS)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  12. Solid State Li-ion Batteries

    DTIC Science & Technology

    2013-10-23

    sulfur (FeS + S) cathode (26). The pairing of a lithium free FeS + S cathode and a lithium free STN anode presents an easily overcome obstacle. Our...upon the combined mass of both the composite anode and cathode. To realize this full cell, we pair an iron sulfide and sulfur composite cathode with a...capacity reported to date. To utilize both a lithium free anode and cathode, we adopt a pre-lithiation technique involving stabilized lithium metal

  13. Development of Carbon and Sulphur Tolerant Anodes of Solid Oxide Fuel Cells

    DTIC Science & Technology

    2010-01-14

    LSCM/YSZ) composite anode is investigated in detail for the direct utilization of ethanol and methane (the main component of natural gas) in SOFCs...Impregnation of Pd nanoparticles significantly promotes the electrocatalytic activity of LSCM/YSZ composite anodes for the ethanol and methane... electrooxidation reaction. At 800°C, the electrode polarization resistance for the methane oxidation is reduced by a factor of 3 after impregnation of 0.10

  14. Anode materials for lithium-ion batteries

    DOEpatents

    Manthiram, Arumugam; Applestone, Danielle; Yoon, Sukeun

    2017-03-21

    The current disclosure relates to an anode material with the general formula M.sub.ySb-M'O.sub.x--C, where M and M' are metals and M'O.sub.x--C forms a matrix containing M.sub.ySb. It also relates to an anode material with the general formula M.sub.ySn-M'C.sub.x--C, where M and M' are metals and M'C.sub.x--C forms a matrix containing M.sub.ySn. It further relates to an anode material with the general formula Mo.sub.3Sb.sub.7--C, where --C forms a matrix containing Mo.sub.3Sb.sub.7. The disclosure also relates to an anode material with the general formula M.sub.ySb-M'C.sub.x--C, where M and M' are metals and M'C.sub.x--C forms a matrix containing M.sub.ySb. Other embodiments of this disclosure relate to anodes or rechargeable batteries containing these materials as well as methods of making these materials using ball-milling techniques and furnace heating.

  15. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.

    PubMed

    Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan

    2018-02-01

    Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration.

    PubMed

    Agostini, Marco; Lim, Du Hyun; Sadd, Matthew; Fasciani, Chiara; Navarra, Maria Assunta; Panero, Stefania; Brutti, Sergio; Matic, Aleksandar; Scrosati, Bruno

    2017-09-11

    Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium-sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g -1 ) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur-carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect.

    PubMed

    Li, Shuoyu; Liu, Yuyi; Guo, Peisheng; Wang, Chengxin

    2017-09-13

    Transition metal oxide nanoparticles capsuled in amorphous carbon nanotubes (ACNTs) are attractive anode materials of lithium-ion batteries (LIBs). Here, we first designed a fast and universal method with a hydromechanics conception which is called Marangoni flow to fabricate transition bimetal oxides (TBOs) in the ACNT composite with a better electrochemistry performance. Marangoni flows can produce a liquid column with several centimeters of height in a tube with one side immersed in the liquid. The key point to induce a Marangoni flow is to make a gradient of the surface tension between the surface and the inside of the solution. With our research, we control the gradient of the surface tension by controlling the viscosity of a solution. To show how our method could be generally used, we synthesize two anode materials such as (a) CoFe 2 O 4 @ACNTs, and (b) NiFe 2 O 4 @ACNTs. All of these have a similar morphology which is ∼20 μm length with a diameter of 80-100 nm for the ACNTs, and the particles (inside the ACNTs) are smaller than 5 nm. In particular, there are amorphous carbons between the nanoparticles. All of the composite materials showed an outstanding electrochemistry performance which includes a high capacity and cycling stability so that after 600 cycles the capacity changed by less than 3%.

  18. Graphene composites as anode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, M.; Kovacevic, R.

    2013-03-01

    Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant electronic companies, therefore, compete in developing more efficient hardware such as batteries used inside the small metallic or polymeric frame. One of the most important materials in the production lines is the lithium-based batteries which is so famous for its ability in recharging as many times as a user needs. However, this is not an indication of being long lasted, as many of the electronic devices are frequently being used for a long time. The performance, chemistry, safety and above all cost of the lithium ion batteries should be considered when the design of the compounds are at the top concern of the engineers. To increase the efficiency of the batteries a combination of graphene and nanoparticles is recently introduced and it has shown to have enormous technological effect in enhancing the durability of the batteries. However, due to very high electronic conductivity, these materials can be thought of as preparing the anode electrode in the lithiumion battery. In this paper, the various approaches to characterize different types of graphene/nanoparticles and the process of preparing the anode for the lithium-ion batteries as well as their electrical properties are discussed.

  19. Template-free fabrication of graphene-wrapped mesoporous ZnMn2O4 nanorings as anode materials for lithium-ion batteries.

    PubMed

    Zhou, Weiwei; Wang, Dong; Zhao, Limin; Ding, Chunyan; Jia, Xingtao; Du, Yu; Wen, Guangwu; Wang, Huatao

    2017-06-16

    We rationally designed a facile two-step approach to synthesize ZnMn 2 O 4 @G composite anode material for lithium-ion batteries (LIBs), involving a template-free fabrication of ZnMn 2 O 4 nanorings and subsequent coating of graphene sheets. Notably, it is the first time that ring-like ZnMn 2 O 4 nanostructure is reported. Moreover, our system has been demonstrated to be quite powerful in producing ZnMn 2 O 4 nanorings regardless of the types of Zn and Mn-containing metal salts reactants. The well-known inside-out Ostwald ripening process is tentatively proposed to clarify the formation mechanism of the hollow nanorings. When evaluated as anode material for LIBs, the resulting ZnMn 2 O 4 @G hybrid displays significantly improved lithium-storage performance with high specific capacity, good rate capability, and excellent cyclability. After 500 cycles, the ZnMn 2 O 4 @G hybrid can still deliver a reversible capacity of 958 mAh g -1 at a current density of 200 mA g -1 , much higher than the theoretical capacity of 784 mAh g -1 for pure ZnMn 2 O 4 . The outstanding electrochemical performance should be reasonably ascribed to the synergistic interaction between hollow and porous ZnMn 2 O 4 nanorings and the three-dimensional interconnected graphene sheets.

  20. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu

    2015-06-01

    Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.

  1. Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Xinge; Ohara, Satoshi; Maric, Radenka; Mukai, Kazuo; Fukui, Takehisa; Yoshida, Hiroyuki; Nishimura, Masayoshi; Inagaki, Toru; Miura, Kazuhiro

    The polarization properties and microstructure of Ni-SDC (samaria-doped ceria) cermet anodes prepared from spray pyrolysis (SP) composite powder, and element interface diffusion between the anode and a La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM) electrolyte are investigated as a function of anode sintering temperature. The anode sintered at 1250°C displays minimum anode polarization (with anode ohmic loss), while the anode prepared at 1300°C has the best electrochemical overpotential, viz., 27 mV at 300 mA cm -2 operating at 800°C. The anode ohmic loss gradually increases with increase in the sintering temperature at levels below 1300°C, and sharply increases at 1350°C. Electron micrographs show a clear grain growth at sintering temperatures higher than 1300°C. The anode microstructure appears to be optimized at 1300°C, in which nickel particles form a network with well-connected SDC particles finely distributed over the surfaces of the nickel particles. The anode sintered at 1350°C has severe grain growth and an apparent interface diffusion of nickel from the anode to the electrolyte. The nickel interface diffusion is assumed to be the main reason for the increment in ohmic loss, and the resulting loss in anode performance. The findings suggest that sintering Ni-SDC composite powder near 1250°C is the best method to prepare the anode on a LSGM electrolyte.

  2. Fabrication of Cu2 O-based Materials for Lithium-Ion Batteries.

    PubMed

    Zhang, Li; Li, Qinyuan; Xue, Huaiguo; Pang, Huan

    2018-05-25

    The improvement of the performance of advanced batteries has played a key role in the energy research community since its inception. Therefore, it is necessary to explore high-performance materials for applications in advanced batteries. Among the variety of materials applied in batteries, much research has been dedicated to examine cuprous oxide materials as working electrodes in lithium cells to check their suitability as anodes for Li-ion cells and this has revealed great working capacities because of their specific characteristics (polymorphic forms, controllable structure, high cycling capacity, etc.). Thus, cuprous oxide and its composites will be fully introduced in this Review for their applications in advanced batteries. It is believed that, in the future, both the study and the impact of cuprous oxide and its composites will be much more profound and lasting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polyoxometalate flow battery

    DOEpatents

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  4. Nanocomposite anode materials for sodium-ion batteries

    DOEpatents

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  5. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  6. Osmium isotopic tracing of atmospheric emissions from an aluminum smelter

    NASA Astrophysics Data System (ADS)

    Gogot, Julien; Poirier, André; Boullemant, Amiel

    2015-09-01

    We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.

  7. Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage

    NASA Astrophysics Data System (ADS)

    Wang, Jie; He, Huan; Wu, Zexing; Liang, Jianing; Han, Lili; Xin, Huolin L.; Guo, Xuyun; Zhu, Ye; Wang, Deli

    2018-07-01

    Transitions metal sulfides/oxides have been considered as promising anode candidates for next generation lithium-ion batteries (LIBs) due to high theoretical capacities. However, the large volume change during lithiation/delithiation process and poor electronic conductivity often result in a poor charging/discharging performance. Herein, we design a flower-like FeS/Fe2O3 composite via a simple "solvothermal-oxidation" method, in which the Fe2O3 is most distributed on the surface of the flower. The unique porous structure and synergistic effect between FeS and Fe2O3 not only accommodate the large volume expansion, but also facilitate Li ion and electron transport. The Fe2O3 shell effectively reduce the dissolution of Li2Sx during discharge/charge process. When serving as the anode material in lithium ion battery, FeS/Fe2O3 exhibits superior specific capacity, rate capacity and cycling stability compared with pure FeS and Fe2O3.

  8. Transformation of sludge Si to nano-Si/SiOx structure by oxygen inward diffusion as precursor for high performance anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hua, Qiqi; Dai, Dongyang; Zhang, Chengzhi; Han, Fei; Lv, Tiezheng; Li, Xiaoshan; Wang, Shijie; Zhu, Rui; Liao, Haojie; Zhang, Shiguo

    2018-05-01

    Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiOx structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (˜ 1250 mAh/g for 500 cycles), by void space originally left by the SiOx accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications.

  9. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  10. Using Copper Nanoparticle Additive to Improve the Performance of Silicon Anodes in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Bachand, Gabrielle

    In the foreseeable future, global energy demand is expected to rapidly increase as a result of the swelling population and higher standards of living. Current energy generation and transportation methods predominantly involve the combustion of non-renewable fossil fuels, and greenhouse gas emissions from these processes have been shown to contribute to global climate change and to be detrimental to human and environmental health. To satisfy future energy needs and to reduce greenhouse gas emissions, the advancement of renewable energy generation and electric vehicles is important. The proliferation of intermittent renewable energy sources (such as solar and wind) and electric vehicles depends upon reliable, high-capacity energy storage to serve the practical needs of society. The present-day lithium-ion battery offers excellent qualities for this purpose; however, improvements in the capacity and cost-effectiveness of these batteries are needed for further growth. As an anode material, silicon has exceptionally high theoretical capacity and is an earth-abundant, low-cost option. However, silicon also suffers from poor conductivity and long-term stability, prompting many studies to investigate the use of additive materials to mitigate these issues. This thesis focuses on the improvement of silicon anode performance by using a nanoparticulate copper additive to increase material conductivity and an inexpensive, industry-compatible anode fabrication process. Three main fabrication processes were explored using differing materials and heat treatment techniques for comparison. Anodes were tested using CR2032 type coin cells. The final anodes with the most-improved characteristics were fabricated using a high-temperature heating step for the anode material, and an additional batch was formed to test the viability of the copper additive functioning as a full substitute for carbon black, which is the traditional choice of conductive additive for electrode materials. Anodes materials were characterized using a variety of techniques including scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectrometry (ICP-OES), Raman spectroscopy, and X-ray diffraction (XRD) to evaluate surface qualities and material content. Electrochemical techniques including electrochemical impedance spectroscopy (EIS) and charge/discharge cycling were also used to determine the conductivity and functional behavior of the anode materials. Anodes from the final experimental study achieved initial capacities of 309 mA/g and 957 mA/g for the silicon-only control and silicon with copper additive anodes, respectively, demonstrating an over 300% increase in specific capacity. Si-Cu (NC) anodes also showed superior performance over control anodes with an initial capacity of 775 mA/g. For all three anodes, high efficiencies of over 96% were achieved for the testing duration of 100 cycles and reached near or over 99% in final cycles. Results also show a significant decrease in the resistance of anodes with copper additive, contributing to the improved performance of these anodes.

  11. Electrolyte for batteries with regenerative solid electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  12. Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive

    PubMed Central

    Li, Zuohua; Cui, Yanhui; Chen, Jun; Deng, Lianlin

    2016-01-01

    Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,Mn)3O4 spinel was synthesized and anchored on reduced graphene oxide (rGO) nanosheets using a facile and single hydrothermal step with H2O2 as additive, no further additional calcination required. Analysis showed that this method gives a mixed spinel, i.e. (Co,Mn)3O4, having 2+ and 3+ Co and Mn ions in both the octahedral and tetrahedral sites of the spinel structure, with a nanocubic morphology roughly 20 nm in size. The nanocubes are bound onto the rGO nanosheet uniformly in a single hydrothermal process, then the as-prepared (Co,Mn)3O4/rGO composite was characterized as the anode materials for Li-ion battery (LIB). It can deliver 1130.6 mAh g-1 at current density of 100 mA g-1 with 98% of coulombic efficiency after 140 cycles. At 1000 mA g-1, the capacity can still maintain 750 mAh g-1, demonstrating excellent rate capabilities. Therefore, the one-step process is a facile and promising method to fabricate metal oxide/rGO composite materials for energy storage applications. PMID:27788161

  13. Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive.

    PubMed

    Li, Zuohua; Cui, Yanhui; Chen, Jun; Deng, Lianlin; Wu, Junwei

    2016-01-01

    Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,Mn)3O4 spinel was synthesized and anchored on reduced graphene oxide (rGO) nanosheets using a facile and single hydrothermal step with H2O2 as additive, no further additional calcination required. Analysis showed that this method gives a mixed spinel, i.e. (Co,Mn)3O4, having 2+ and 3+ Co and Mn ions in both the octahedral and tetrahedral sites of the spinel structure, with a nanocubic morphology roughly 20 nm in size. The nanocubes are bound onto the rGO nanosheet uniformly in a single hydrothermal process, then the as-prepared (Co,Mn)3O4/rGO composite was characterized as the anode materials for Li-ion battery (LIB). It can deliver 1130.6 mAh g-1 at current density of 100 mA g-1 with 98% of coulombic efficiency after 140 cycles. At 1000 mA g-1, the capacity can still maintain 750 mAh g-1, demonstrating excellent rate capabilities. Therefore, the one-step process is a facile and promising method to fabricate metal oxide/rGO composite materials for energy storage applications.

  14. MultiLayer solid electrolyte for lithium thin film batteries

    DOEpatents

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  15. Carbons for lithium batteries prepared using sepiolite as an inorganic template

    DOEpatents

    Sandi, Giselle; Winans, Randall E.; Gregar, K. Carrado

    2000-01-01

    A method of preparing an anode material using sepiolite clay having channel-like interstices in its lattice structure. Carbonaceous material is deposited in the channel-like interstices of the sepiolite clay and then the sepiolite clay is removed leaving the carbonaceous material. The carbonaceous material is formed into an anode. The anode is combined with suitable cathode and electrolyte materials to form a battery of the lithium-ion type.

  16. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE PAGES

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.; ...

    2017-05-03

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  17. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  18. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.

    PubMed

    Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan

    2014-01-15

    A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli. © 2013 Elsevier B.V. All rights reserved.

  19. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  20. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application.

    PubMed

    Slaughter, Gymama; Stevens, Brian

    2015-11-16

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 mW/ cm² in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm², respectively.

  1. Energy & mass-charge distribution peculiarities of ion emitted from penning source

    NASA Astrophysics Data System (ADS)

    Mamedov, N. V.; Kolodko, D. V.; Sorokin, I. A.; Kanshin, I. A.; Sinelnikov, D. N.

    2017-05-01

    The optimization of hydrogen Penning sources used, in particular, in plasma chemical processing of materials and DLC deposition, is still very important. Investigations of mass-charge composition of these ion source emitted beams are particular relevant for miniature linear accelerators (neutron flux generators) nowadays. The Penning ion source energy and mass-charge ion distributions are presented. The relation between the discharge current abrupt jumps with increasing plasma density in the discharge center and increasing potential whipping (up to 50% of the anode voltage) is shown. Also the energy spectra in the discharge different modes as the pressure and anode potential functions are presented. It has been revealed that the atomic hydrogen ion concentration is about 5-10%, and it weakly depends on the pressure and the discharge current (in the investigated range from 1 to 10 mTorr and from 50 to 1000 μA) and increases with the anode voltage (up 1 to 3,5 kV).

  2. Tire-derived carbon composite anodes for sodium-ion batteries

    DOE PAGES

    Li, Yunchao; Paranthaman, M. Parans; Akato, Kokouvi; ...

    2016-04-04

    We report that hard-carbon materials are considered as one of the most promising anodes for the emerging sodium-ion batteries. Here, we report a low-cost, scalable waste tire-derived carbon as an anode for sodium-ion batteries (SIBs). The tire-derived carbons obtained by pyrolyzing the acid-treated tire at 1100 °C, 1400 °C and 1600 °C show capacities of 179, 185 and 203 mAh g -1, respectively, after 100 cycles at a current density of 20 mA g -1 in sodium-ion batteries with good electrochemical stability. The portion of the low-voltage plateau region in the charge-discharge curves increases as the heat-treatment temperature increases. Themore » low-voltage plateau is beneficial to enhance the energy density of the full cell. However, this plateau suffers rapid capacity fade at higher current densities. This study provides a new pathway for inexpensive, environmentally benign and value-added waste tire-derived products towards large-scale energy storage applications.« less

  3. Three-dimensional graphene foam supported Fe₃O₄ lithium battery anodes with long cycle life and high rate capability.

    PubMed

    Luo, Jingshan; Liu, Jilei; Zeng, Zhiyuan; Ng, Chi Fan; Ma, Lingjie; Zhang, Hua; Lin, Jianyi; Shen, Zexiang; Fan, Hong Jin

    2013-01-01

    Fe3O4 has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up strategy assisted by atomic layer deposition to graft bicontinuous mesoporous nanostructure Fe3O4 onto three-dimensional graphene foams and directly use the composite as the lithium ion battery anode. This electrode exhibits high reversible capacity and fast charging and discharging capability. A high capacity of 785 mAh/g is achieved at 1C rate and is maintained without decay up to 500 cycles. Moreover, the rate of up to 60C is also demonstrated, rendering a fast discharge potential. To our knowledge, this is the best reported rate performance for Fe3O4 in lithium ion battery to date.

  4. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    NASA Astrophysics Data System (ADS)

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-01

    The effect of partial substitution of alkaline earth (AE) ions, Sr2+ and Ca2+, for the rare earth (RE) ions, La3+, Ce3+, Pr3+, and Sm3+, on the physical properties of REVO4 compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO4-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H2 fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode.

  5. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang

    2016-01-01

    Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance. Electronic supplementary information (ESI) available: Models and energetics of Li adsorption/intercalation onto MoS2 sheets, details of the phase diagram calculations, schematic illustration for the structural evolution of lithiated MoS2 nanosheets, AIMD trajectories for lithiated silicene/MoS2/silicene composites, and movies for recording the AIMD simulation results. See DOI: 10.1039/c5nr07909h

  6. Compositionally Dependent Nonlinear Optical Bandgap Behavior of Mixed Anodic Oxides in Niobium-Titanium System.

    PubMed

    Bleckenwegner, Petra; Mardare, Cezarina Cela; Cobet, Christoph; Kollender, Jan Philipp; Hassel, Achim Walter; Mardare, Andrei Ionut

    2017-02-13

    Optical bandgap mapping of Nb-Ti mixed oxides anodically grown on a thin film parent metallic combinatorial library was performed via variable angle spectroscopic ellipsometry (VASE). A wide Nb-Ti compositional spread ranging from Nb-90 at.% Ti to Nb-15 at.% Ti deposited by cosputtering was used for this purpose. The Nb-Ti library was stepwise anodized at potentials up to 10 V SHE, and the anodic oxides optical properties were mapped along the Nb-Ti library with 2 at.% resolution. The surface dissimilarities along the Nb-Ti compositional gradient were minimized by tuning the deposition parameters, thus allowing a description of the mixed Nb-Ti oxides based on a single Tauc-Lorentz oscillator for data fitting. Mapping of the Nb-Ti oxides optical bandgap along the entire compositional spread showed a clear deviation from the linear model based on mixing individual Nb and Ti electronegativities proportional to their atomic fractions. This is attributed to the strong amorphization and an in-depth compositional gradient of the mixed oxides. A systematic optical bandgap decrease toward values as low as 2.0 eV was identified at approximately 50 at.% Nb. Mixing of Nb 2 O 5 and TiO 2 with both amorphous and crystalline phases is concluded, whereas the possibility of complex Nb a Ti b O y oxide formation during anodization is unlikely.

  7. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-09-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  8. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries.

    PubMed

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S; Ozkan, Mihrimah

    2015-09-29

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  9. Development and understanding of La0.85Sr0.15Cr1-xNixO3-δ anodes for La5.6WO11.4-δ-based Proton Conducting Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Solís, Cecilia; Navarrete, Laura; Balaguer, María; Serra, José M.

    2014-07-01

    Porous electrodes based on the system La0.85Sr0.15Cr1-xNixO3-δ (x = 0.1 and 0.2) have been investigated as anodes for proton conducting solid oxide fuel cells based on the La5.6WO11.4-δ (LWO) electrolyte material. The microstructure of the anodes was optimized by varying both the starting powder morphology and the final anode sintering temperature. Two different electrode thicknesses were studied, i.e. 15 and 30 μm. The importance of the catalytic role of Ni was also studied by using different concentrations of Ni (10% and 20%) in the chromite and by tuning the Ni particle sizes through the control of the reduction temperature. Additionally, a ceramic-ceramic (cer-cer) composite electrode comprising a physical mixture of the optimized chromite and LWO phase was also considered. Finally, a kinetics study and modeling based on Langmuir-Hinshelwood mechanism was carried out in order to quantitatively describe the rate of dissociative adsorption of H2 on the Ni particles spread on the chromite surface.

  10. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and uncoupled coupons were immersed in various electrolytes, exposed to a humidity chamber, and exposed at outdoor test sites. Results showed that the corrosion rates of the CF-AMCs increased, while those of the 4340 steel decreased after being coupled together, in most cases. Crevice corrosion was also observed in these exposure experiments. Zero resistance ammeter (ZRA) experiments were conducted to record the galvanic-corrosion rates and potentials of the couples. The CF-AMCs were found to serve as anodes, while the steel was cathodic, in most test conditions. Galvanic performance predicted by polarization experiments was in close agreement with the ZRA results. Key words. Aluminum, metal-matrix composites, alumina fiber, pitting corrosion, galvanic corrosion.

  11. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuandong; Liu, Kewei; Zhu, Yu

    Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less

  12. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    DOE PAGES

    Sun, Yuandong; Liu, Kewei; Zhu, Yu

    2017-07-31

    Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less

  13. An ultrastable anode for long-life room-temperature sodium-ion batteries.

    PubMed

    Yu, Haijun; Ren, Yang; Xiao, Dongdong; Guo, Shaohua; Zhu, Yanbei; Qian, Yumin; Gu, Lin; Zhou, Haoshen

    2014-08-18

    Sodium-ion batteries are important alternative energy storage devices that have recently come again into focus for the development of large-scale energy storage devices because sodium is an abundant and low-cost material. However, the development of electrode materials with long-term stability has remained a great challenge. A novel negative-electrode material, a P2-type layered oxide with the chemical composition Na(2/3)Co(1/3)Ti(2/3)O2, exhibits outstanding cycle stability (ca. 84.84 % capacity retention for 3000 cycles, very small decrease in the volume (0.046 %) after 500 cycles), good rate capability (ca. 41 % capacity retention at a discharge/charge rate of 10 C), and a usable reversible capacity of about 90 mAh g(-1) with a safe average storage voltage of approximately 0.7 V in the sodium half-cell. This P2-type layered oxide is a promising anode material for sodium-ion batteries with a long cycle life and should greatly promote the development of room-temperature sodium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Adhesive bonded structural repair. II - Surface preparation procedures, tools, equipment and facilities

    NASA Astrophysics Data System (ADS)

    Wegman, Raymond F.; Tullos, Thomas R.

    1993-10-01

    A development status report is presented on the surface preparation procedures, tools, equipment, and facilities used in adhesively-bonded repair of aerospace and similar high-performance structures. These methods extend to both metallic and polymeric surfaces. Attention is given to the phos-anodize containment system, paint removal processes, tools for cutting composite prepreg and fabric materials, autoclaves, curing ovens, vacuum bagging, and controlled atmospheres.

  15. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.

  16. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode

    NASA Astrophysics Data System (ADS)

    Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.

    2017-12-01

    A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.

  17. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.

    PubMed

    Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S

    2015-08-25

    We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.

  18. Performance of a single layer fuel cell based on a mixed proton-electron conducting composite

    NASA Astrophysics Data System (ADS)

    Zagórski, Krzysztof; Wachowski, Sebastian; Szymczewska, Dagmara; Mielewczyk-Gryń, Aleksandra; Jasiński, Piotr; Gazda, Maria

    2017-06-01

    Many of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting oxides - Li2O, NiO, and ZnO. Structural and electrical properties of the composite, related to its fuel cell performance are investigated. The single layer fuel cell shows a maximum OCV of 0.83 V and a peak power density of 3.86 mW cm-2 at 600 °C. Activation and mass transport losses are identified as the major limiting factor for efficiency and power output.

  19. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    DOE PAGES

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; ...

    2018-03-04

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less

  20. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less

  1. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    NASA Astrophysics Data System (ADS)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin

    2018-04-01

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Sookyung; Li, Xiaolin; Zheng, Jianming

    With the ever increasing demands on Li-ion batteries with higher energy densities, alternative anode with higher reversible capacity is required to replace the conventional graphite anode. Here, we demonstrate a cost-effective hydrothermal-carbonization approach to prepare the hard carbon coated nano-Si/graphite (HC-nSi/G) composite as a high performance anode for Li-ion batteries. In this hierarchical structured composite, the hard carbon coating layer not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of silicon during charge/discharge processes. The HC-nSi/G composite electrode shows excellent electrochemical performances including a high specific capacity of 878.6 mAh g-1 based on themore » total weight of composite, good rate performance and a decent cycling stability, which is promising for practical applications.« less

  3. Surface Modification of Silicon Nanoparticles by an "Ink" Layer for Advanced Lithium Ion Batteries.

    PubMed

    Wu, Fang; Wang, Hao; Shi, Jiayuan; Yan, Zongkai; Song, Shipai; Peng, Bangheng; Zhang, Xiaokun; Xiang, Yong

    2018-06-13

    Owing to its high specific capacity, silicon is considered as a promising anode material for lithium ion batteries (LIBs). However, the synthesis strategies for previous silicon-based anode materials with a delicate hierarchical structure are complicated or hazardous. Here, Prussian blue analogues (PBAs), widely used in ink, are deposited on the silicon nanoparticle surface (PBAs@Si-450) to modify silicon nanoparticles with transition metal atoms and a N-doped carbon layer. A facile and green synthesis procedure of PBAs@Si-450 nanocomposites was carried out in a coprecipitation process, combined with a thermal treatment process at 450 °C. As-prepared PBAs@Si-450 delivers a reversible charge capacity of 725.02 mAh g -1 at 0.42 A g -1 after 200 cycles. Moreover, this PBAs@Si-450 composite exhibits an exceptional rate performance of ∼1203 and 263 mAh g -1 at current densities of 0.42 and 14 A g -1 , respectively, and fully recovered to 1136 mAh g -1 with the current density returning to 0.42 A g -1 . Such a novel architecture of PBAs@Si-450 via a facile fabrication process represents a promising candidate with a high-performance silicon-based anode for LIBs.

  4. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Williford, Ralph E.; Viswanathan, Vilayanur V.; Zhang, Ji-Guang

    The entropy changes (Δ S) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). A thermal model based on the fundamental properties of individual electrodes was used to obtain transient and equilibrium temperature distributions of Li-ion batteries. The results from theoretical simulations were compared with results obtained in experimental measurements. We found that the detailed shape of the entropy curves strongly depends on the manufacturer of the materials even for the same nominal compositions. LiCoO 2 has a much larger entropy change than LiNi xCo yMn zO 2. This means that LiNi xCo yMn zO 2 is much more thermodynamically stable than LiCoO 2). The temperatures around the positive terminal of a prismatic battery are consistently higher than those at the negative terminal, due to differences in the thermal conductivities of the different terminal connectors. When all other simulation parameters are the same, simulations that use a battery-averaged entropy tend to overestimate the predicted temperatures when compared with simulations that use individual entropies for the anode and the cathode, due to computational averaging.

  5. Trends in reactivity of electrodeposited 3d transition metals on gold revealed by operando soft x-ray absorption spectroscopy during water splitting

    NASA Astrophysics Data System (ADS)

    Velasco-Vélez, J. J.; Jones, Travis E.; Pfeifer, Verena; Dong, Chung-Li; Chen, Yu-Xun; Chen, Chieh-Ming; Chen, Hsin-Yu; Lu, Ying-Rui; Chen, Jin-Ming; Schlögl, R.; Knop-Gericke, A.; Chuang, C.-H.

    2017-01-01

    We activated gold electrodes for their use as electrocatalyst for water splitting by electrodepositing Cu, Ni and Co. A combination of operando x-ray absorption spectroscopy and potentiometric control under aqueous conditions revealed the trends in reactivity yielded by these electrodes, which are directly associated with the cross- and overpotentials as well as the occupancy of the 3d orbitals. It was found that under anodic polarization the materials electrodeposited on gold suffer from a lack of stability, while under cathodic polarization they exhibit stable behavior. The observed activity is strongly related to the lack of stability shown by these composites under anodic polarization revealing a dynamic process ruled by corrosion. By operando x-ray absorption, we established that the overall enhancement of the activity for the oxygen evolution reaction is directly attributable to the cross-potential and corrosion process of the electrodeposited materials. It is associated with the high potential deposition, which is the origin of the incipient oxidation-corrosion resistance of the lattice. We conclude that the observed trends in the total current are directly associated with the loss of oxygen in the metal-oxide lattice and the subsequent dissolution of metallic ions in the electrolyte under anodic polarization.

  6. Effect of milling methods on performance of Ni-Y 2O 3-stabilized ZrO 2 anode for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cho, Hyoup Je; Choi, Gyeong Man

    A Ni-YSZ (Y 2O 3-stabilized ZrO 2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni-YSZ/YSZ/Ni-YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements. Pellets made by using high-energy milled NiO-YSZ powders have much smaller particle sizes and a more uniform distribution of Ni particles than pellets made from ball-milled powder, and thus the polarization resistance of the electrode is also smaller. The maximum power density of the anode-supported cell prepared by using the high-energy milled powder is ∼850 mW cm -2 at 800 °C compared with ∼500 mW cm -2 for the cell with ball-milled powder. Thus, high-energy milling is found to be more effective in reducing particle size and obtaining a uniform distribution of Ni particles.

  7. Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy

    PubMed Central

    Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641

  8. Theoretical Studies in Enhancing the Efficiency of Cathode and Anode Materials in PEMFC (Proton Exchange Membrane Fuel Cells)

    DTIC Science & Technology

    2011-03-04

    efficiency of cathode and anode materials in PEMFC (Proton Exchange Membrane Fuel Cells) 5a. CONTRACT NUMBER FA23861014012 5b. GRANT NUMBER 5c. PROGRAM...Rev. 8-98) Prescribed by ANSI Std Z39-18 Theoretical studies in enhancing the efficiency of cathode and anode materials in PEMFC (Proton Exchange

  9. Advanced Nanostructured Anode Materials for Sodium-Ion Batteries.

    PubMed

    Wang, Qidi; Zhao, Chenglong; Lu, Yaxiang; Li, Yunming; Zheng, Yuheng; Qi, Yuruo; Rong, Xiaohui; Jiang, Liwei; Qi, Xinguo; Shao, Yuanjun; Pan, Du; Li, Baohua; Hu, Yong-Sheng; Chen, Liquan

    2017-11-01

    Sodium-ion batteries (NIBs), due to the advantages of low cost and relatively high safety, have attracted widespread attention all over the world, making them a promising candidate for large-scale energy storage systems. However, the inherent lower energy density to lithium-ion batteries is the issue that should be further investigated and optimized. Toward the grid-level energy storage applications, designing and discovering appropriate anode materials for NIBs are of great concern. Although many efforts on the improvements and innovations are achieved, several challenges still limit the current requirements of the large-scale application, including low energy/power densities, moderate cycle performance, and the low initial Coulombic efficiency. Advanced nanostructured strategies for anode materials can significantly improve ion or electron transport kinetic performance enhancing the electrochemical properties of battery systems. Herein, this Review intends to provide a comprehensive summary on the progress of nanostructured anode materials for NIBs, where representative examples and corresponding storage mechanisms are discussed. Meanwhile, the potential directions to obtain high-performance anode materials of NIBs are also proposed, which provide references for the further development of advanced anode materials for NIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  11. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.

    PubMed

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-03-30

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm(-2)) delivers a charge capacity of ∼588 mAh g(-1)electrode (∼393 mAh cm(-3)electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries.

  12. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  13. Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.

    PubMed

    Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng

    2015-11-21

    A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.

  14. Cavity-type hypersonic phononic crystals

    NASA Astrophysics Data System (ADS)

    Sato, A.; Pennec, Y.; Yanagishita, T.; Masuda, H.; Knoll, W.; Djafari-Rouhani, B.; Fytas, G.

    2012-11-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.

  15. Emission spectrometric arcing procedure with minimal effect of chemical form of sample. [performed on refractory metal matrix composites

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1975-01-01

    Matrix effects related to the chemical form of analyzed materials were studied. An arc in argon was used which was buffered with silver chloride. The effect of chemical form was minimal for a variety of metals, oxides, and carbides representing the most refractory compounds and thermally stable metal-containing molecules. Only four of the most refractory materials known showed significant emission depressions due to incomplete volatilization in the arc system. These results are discussed in terms of vapor pressures of the solid materials placed on the anodes and dissociation reactions of the molecules in the gaseous environment.

  16. Nitrogen-doped carbon decorated Cu2NiSnS4 microflowers as superior anode materials for long-life lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, Pei; Chen, Lihui; Ding, Yu; Du, Jun; Feng, Chuanqi; Fu, Zhengbin; Qin, Caiqin; Wang, Feng

    2018-05-01

    Nitrogen-doped carbon (NC) decorated Cu2NiSnS4 (CNTS) microflower composites (NC@CNTS) were fabricated through a facile solvothermal and pyrrole polymerization with further annealing treatment. The NC@CNTS composites possessed a three-dimension (3D) microflower-like hierarchical structure. The unique microflower structure of NC@CNTS composites exhibited remarkable electrochemical performance as electrode materials for long life lithium ion batteries. The as-prepared composites had a stable and reversible capacity that reached 943 mA h g-1 after 160 cycles at a current rate of 0.1 A g-1. It showed satisfactory cycle stability and rate capability even at 2 A g-1, and specific capacity stabilized at 288 mA g-1 after 1000 cycles. The present facile and cost-effective strategy can be applied for the synthesis of other transition metal sulfide nanomaterials for energy storage and conversion applications.

  17. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems.

    PubMed

    Kokko, Marika; Epple, Stefanie; Gescher, Johannes; Kerzenmacher, Sven

    2018-06-01

    Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Corrosion control of cement-matrix and aluminum-matrix composites

    NASA Astrophysics Data System (ADS)

    Hou, Jiangyuan

    Corrosion control of composite materials, particularly aluminum-matrix and cement-matrix composites, was addressed by surface treatment, composite formulation and cathodic protection. Surface treatment methods studied include anodization in the case of aluminum-matrix composites and oxidation treatment (using water) in the case of steel rebar for reinforcing concrete. The effects of reinforcement species (aluminum nitride (AIN) versus silicon carbide (SiC) particles) in the aluminum-matrix composites and of admixtures (carbon fibers, silica fume, latex and methylcellulose) in concrete on the corrosion resistance of composites were addressed. Moreover, the effect of admixtures in concrete and of admixtures in mortar overlay (as anode on concrete) on the efficiency of cathodic protection of steel reinforced concrete was studied. For SiC particle filled aluminum, anodization was performed successfully in an acid electrolyte, as for most aluminum alloys. However, for AlN particle filled aluminum, anodization needs to be performed in an alkaline (0.7 N NaOH) electrolyte instead. The concentration of NaOH in the electrolyte was critical. It was found that both silica fume and latex improved the corrosion resistance of rebar in concrete in both Ca(OH)sb2 and NaCl solutions, mainly because these admixtures decreased the water absorptivity. Silica fume was more effective than latex. Methylcellulose improved the corrosion resistance of rebar in concrete a little in Ca(OH)sb2 solution. Carbon fibers decreased the corrosion resistance of rebar in concrete, but this effect could be made up for by either silica fume or latex, such that silica fume was more effective than latex. Surface treatment in the form of water immersion for two days was found to improve the corrosion resistance of rebar in concrete. This treatment resulted in a thin uniform layer of black iron oxide (containing Fesp{2+}) on the entire rebar surface except on the cross-sectional surface. Prior to the treatment, the surface was non-uniform due to rusting. Sand blasting also made the surface uniform, but is an expensive process, compared to the water immersion method. For cathodic protection of steel rebar reinforced concrete, mortar overlay containing carbon fibers and latex needed 11% less driving voltage to protect the rebar in concrete than plain mortar overlay. However, multiple titanium electrical contacts were necessary, whether the overlay contained carbon fibers or not. For the same overlay (containing carbon fibers and latex), admixtures in the concrete also made a significant difference on the effect of cathodic protection; concrete with carbon fibers and silica fume needed 18% less driving voltage than plain concrete and 28% less than concrete containing silica fume.

  19. Surface Morphology and Tooth Adhesion of a Novel Nanostructured Dental Restorative Composite

    PubMed Central

    Salerno, Marco; Loria, Patrizia; Matarazzo, Giunio; Tomè, Francesco; Diaspro, Alberto; Eggenhöffner, Roberto

    2016-01-01

    Recently, a novel dental restorative composite based on nanostructured micro-fillers of anodic porous alumina has been proposed. While its bulk properties are promising thanks to decreased aging and drug delivery capabilities, its surface properties are still unknown. Here we investigated the surface morphology and the adhesion to tooth dentin of this composite as prepared. For comparison, we used two commercial composites: Tetric EVO Flow (Ivoclar) and Enamel HRi Plus (Micerium). The surface morphology was characterized by atomic force microscopy and the adhesion strength by tensile tests. The experimental composite is rougher than the commercial composites, with root mean square roughness of ~549 nm against 170–511 nm, and presents an adhesion strength of ~15 MPa against 19–21 MPa. These results show at the same time some proximity to the commercial composites, but also the need for optimization of the experimental material formulation. PMID:28773327

  20. Development of Ambient Temperature Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Huang, C. K.; Ratnakumar, B. V.; Surampudi, S.; Halpert, G.

    1994-01-01

    Four types of materials have been evaluated as anodes for Li-ion cell fabrication. Among the materials evaluated, graphite and magnasium silicide were identified to be suitable candidate anode materials.

  1. Zinc composite anode for batteries with solid electrolyte

    NASA Astrophysics Data System (ADS)

    Tedjar, F.; Melki, T.; Zerroual, L.

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn 2+ electrode ( e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased.

  2. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less

  3. Conductive ceramic composition and method of preparation

    DOEpatents

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  4. Conductive ceramic composition and method of preparation

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1991-01-01

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

  5. Thermal control materials on EOIM-3

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Linton, Roger C.; Kamenetzky, Rachel R.; Vaughn, Jason A.

    1995-01-01

    Thermal control paints, anodized aluminum, and beta cloth samples were flown on STS-46 as part of the Evaluation of Oxygen Interaction with Materials Experiment (EOIM-3). The thermal control paints flown on EOIM-3 include ceramic and polyurethane-based paints. Passively exposed samples are compared to actively heated samples and controlled exposure samples. Optical property measurements of absorptivity, emissivity, and spectrofluorescence are presented for each paint. Several variations of anodized aluminum, including chromic acid anodize, sulfuric acid anodize, and boric/sulfuric acid anodize were flown on the actively heated trays and the passive exposure trays. The post-flight optical properties are within tolerances for these materials. Also flown were two samples of yellow anodized aluminum. The yellow anodized aluminum samples darkened noticeably. Samples of aluminized and unaluminized beta cloth, a fiberglass woven mat impregnated with TFE Teflon, were flown with passive exposure to the space environment. Data from this part of the experiment is correlated to observations from LDEF and erosion of the Teflon thin film samples also flown on EOIM-3 and LDEF.

  6. Evaluation of Carbon Anodes for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, C-K.; Surampudi, S.; Attia, A.; Halpert, G.

    1993-01-01

    Both liquid phase intercalation technique and electrochemical intercalation technique were examined for the Li-carbon material preparation. The electrochemical techniques include a intermittent discharge method and a two step method. These two electrochemical techniques can ensure to achieve the maximum reversible Li capacity for common commercially available carbon materials. The carbon materials evaluated by the intercalacation method includes: pitch coke, petroleum cole, PAN fiber and graphite materials. Their reversible Li capacity were determined and compared. In this paper, we also demonstrate the importance of EPDM binder composition in the carbon electrode. Our results indicated that it can impact the Li intercalation and de-intercalation capacity in carbon materials. Finally, two possibilities that may help explain the capacity degradation during practical cell cycling were proposed.

  7. Low temperature selective absorber research

    NASA Astrophysics Data System (ADS)

    Herzenberg, S. A.; Silberglitt, R.

    1982-04-01

    Research carried out since 1979 on selective absorbers is surveyed, with particular attention given to the low-temperature coatings seen as promising for flat plate and evacuated tube applications. The most thoroughly investigated absorber is black chrome, which is highly selective and is the most durable low-temperature absorber. It is believed that other materials, because of their low cost and lower content of strategic materials, may eventually supplant black chrome. Among these candidates are chemically converted black nickel; anodically oxidized nickel, zinc, and copper composites; and nickel or other low-cost multilayer coatings. In reviewing medium and high-temperature research, black chrome, multilayer coatings and black cobalt are seen as best medium-temperature candidates. For high temperatures, an Al2O3/Pt-Al203 multilayer composite or the zirconium diboride coating is preferred.

  8. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy

    PubMed Central

    Su, Qingmei; Wang, Shixin; Yao, Libing; Li, Haojie; Du, Gaohui; Ye, Huiqun; Fang, Yunzhang

    2016-01-01

    A family of mixed transition–metal oxides (MTMOs) has great potential for applications as anodes for lithium ion batteries (LIBs). However, the reaction mechanism of MTMOs anodes during lithiation/delithiation is remain unclear. Here, the lithiation/delithiation processes of ZnFe2O4 nanoparticles are observed dynamically using in situ transmission electron microscopy (TEM). Our results suggest that during the first lithiation process the ZnFe2O4 nanoparticles undergo a conversion process and generate a composite structure of 1–3 nm Fe and Zn nanograins within Li2O matrix. During the delithiation process, volume contraction and the conversion of Zn and Fe take place with the disappearance of Li2O, followed by the complete conversion to Fe2O3 and ZnO not the original phase ZnFe2O4. The following cycles are dominated by the full reversible phase conversion between Zn, Fe and ZnO, Fe2O3. The Fe valence evolution during cycles evidenced by electron energy–loss spectroscopy (EELS) techniques also exhibit the reversible conversion between Fe and Fe2O3 after the first lithiation, agreeing well with the in situ TEM results. Such in situ TEM observations provide valuable phenomenological insights into electrochemical reaction of MTMOs, which may help to optimize the composition of anode materials for further improved electrochemical performance. PMID:27306189

  9. From chemistry to mechanics: bulk modulus evolution of Li-Si and Li-Sn alloys via the metallic electronegativity scale.

    PubMed

    Li, Keyan; Xie, Hui; Liu, Jun; Ma, Zengsheng; Zhou, Yichun; Xue, Dongfeng

    2013-10-28

    Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an important physical parameter to characterize the mechanical performance of Li-Si and Li-Sn alloys as anode materials for Li-ion batteries. The bulk modulus of binary alloys is linearly proportional to the combination of average metallic EN and atomic density of alloys. We calculated the bulk moduli of Li-Si and Li-Sn alloys with different Li concentrations, which can agree well with the reported data. The bulk modulus of Li-Si and Li-Sn alloys decreases with increasing Li concentration, leading to the elastic softening of the alloys, which is essentially caused by the decreased strength of constituent chemical bonds in alloys from the viewpoint of EN. This work provides a deep understanding of mechanical failure of Si and Sn anodes for Li-ion batteries, and permits the prediction of the composition dependent bulk modulus of various lithiated alloys on the basis of chemical formula, metallic EN and cell volume (or alloy density), with no structural details required.

  10. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes.

    PubMed

    Li, Wenyue; Tang, Yongbing; Kang, Wenpei; Zhang, Zhenyu; Yang, Xia; Zhu, Yu; Zhang, Wenjun; Lee, Chun-Sing

    2015-03-18

    Due to its high theoretical capacity and low lithium insertion voltage plateau, silicon has been considered one of the most promising anodes for high energy and high power density lithium ion batteries (LIBs). However, its rapid capacity degradation, mainly caused by huge volume changes during lithium insertion/extraction processes, remains a significant challenge to its practical application. Engineering Si anodes with abundant free spaces and stabilizing them by incorporating carbon materials has been found to be effective to address the above problems. Using sodium chloride (NaCl) as a template, bubble sheet-like carbon film supported core-shell Si/C composites are prepared for the first time by a facile magnesium thermal reduction/glucose carbonization process. The capacity retention achieves up to 93.6% (about 1018 mAh g(-1)) after 200 cycles at 1 A g(-1). The good performance is attributed to synergistic effects of the conductive carbon film and the hollow structure of the core-shell nanospheres, which provide an ideal conductive matrix and buffer spaces for respectively electron transfer and Si expansion during lithiation process. This unique structure decreases the charge transfer resistance and suppresses the cracking/pulverization of Si, leading to the enhanced cycling performance of bubble sheet-like composite. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermal cycling and electrochemical characteristics of solid oxide fuel cell supported on stainless steel with a new 3-phase composite anode

    NASA Astrophysics Data System (ADS)

    Dayaghi, Amir Masoud; Kim, Kun Joong; Kim, Sun Jae; Kim, Sunwoong; Bae, Hongyeul; Choi, Gyeong Man

    2017-06-01

    We report design, fabrication method, and fast thermal-cycling ability of solid oxide fuel cells (SOFCs) that use stainless steel (STS) as a support, and a new 3-phase anode. La and Ni co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-d, LSTN), replaces some of the Ni in conventional Ni-yttria stabilized zirconia (YSZ) anode; the resultant LSTN-YSZ-Ni 3-phase-composite anode is tested as a new reduction (or decomposition)-resistant anode of STS-supported SOFCs that can be co-fired with STS. A multi-layered cell with YSZ electrolyte (thickness ∼5 μm), composite anode, STS-cermet contact-layer, and STS support is designed, then fabricated by tape casting, lamination, and co-firing at 1250 °C in reducing atmosphere. The maximum power density (MPD) is 325 mW cm-2 at 650 °C; this is one of the highest among STS-supported cells fabricated by co-firing. The cell also shows stable open-circuit voltage and Ohmic resistance during 100 rapid thermal cycles between 170 and 600 °C. STS support minimizes stress and avoids cracking of electrolyte during rapid thermal cycling. The excellent MPD and stability during thermal cycles, and promising characteristics of SOFC as a power source for vehicle or mobile devices that requires rapid thermal cycles, are attributed to the new design of the cell with new anode structure.

  12. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  13. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  14. Investigation of anodic and chemical oxides grown on p-type InP with applications to surface passivation for n(+)-p solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Goradia, Manju; Goradia, Chandra; Jenkins, Phillip; Jayne, Douglas; Weinberg, Irving

    1991-01-01

    Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data.

  15. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, A., E-mail: aipush@mail.ru

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B{sub r} external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction inmore » the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°.« less

  16. Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.

    PubMed

    Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit

    2011-04-01

    A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Glassy Metal Alloy Nanofiber Anodes Employing Graphene Wrapping Layer: Toward Ultralong-Cycle-Life Lithium-Ion Batteries.

    PubMed

    Jung, Ji-Won; Ryu, Won-Hee; Shin, Jungwoo; Park, Kyusung; Kim, Il-Doo

    2015-07-28

    Amorphous silicon (a-Si) has been intensively explored as one of the most attractive candidates for high-capacity and long-cycle-life anode in Li-ion batteries (LIBs) primarily because of its reduced volume expansion characteristic (∼280%) compared to crystalline Si anodes (∼400%) after full Li(+) insertion. Here, we report one-dimensional (1-D) electrospun Si-based metallic glass alloy nanofibers (NFs) with an optimized composition of Si60Sn12Ce18Fe5Al3Ti2. On the basis of careful compositional tailoring of Si alloy NFs, we found that Ce plays the most important role as a glass former in the formation of the metallic glass alloy. Moreover, Si-based metallic glass alloy NFs were wrapped by reduced graphene oxide sheets (specifically Si60Sn12Ce18Fe5Al3Ti2 NFs@rGO), which can prevent the direct exposure of a-Si alloy NFs to the liquid electrolyte and stabilize the solid-electrolyte interphase (SEI) layers on the surfaces of rGO sheets while facilitating electron transport. The metallic glass nanofibers exhibited superior electrochemical cell performance as an anode: (i) Si60Sn12Ce18Fe5Al3Ti2 NFs show a high specific capacity of 1017 mAh g(-1) up to 400 cycles at 0.05C with negligible capacity loss as well as superior cycling performance (nearly 99.9% capacity retention even after 2000 cycles at 0.5C); (ii) Si60Sn12Ce18Fe5Al3Ti2 NFs@rGO reveals outstanding rate behavior (569.77 mAh g(-1) after 2000 cycles at 0.5C and a reversible capacity of around 370 mAh g(-1) at 4C). We demonstrate the potential suitability of multicomponent a-Si alloy NFs as a long-cycling anode material.

  18. Enhanced electrochemical performance of a LTO/carbon nanotubes/graphene composite as an anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Aijia; Li, Wen; Zhang, Lihui; Liu, Zhenfa

    2017-09-01

    A Li4Ti5O12/carbon nanotubes/graphene composite has been successfully prepared by a solid-state method. For comparison, pure LTO and Li4Ti5O12/graphene composite were also synthesized using the same method. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to confirm the structure and morphology. The results reveal that LTO particles are well dispersed and wrapped in the graphene sheets with cross-linked carbon nanotubes. The electrochemical results show that the Li4Ti5O12/carbon nanotubes/graphene composite exhibits the best rate capacity, which lead to a charge capacity of 169.0, 168.5, 167.1, 153.2, 144.5, 131.5 mAh g-1 at 0.2, 0.5, 1, 3, 5 and 10 C, respectively between 1 and 3 V (1 C = 160 mAh g-1). The synergistic effect of graphene and carbon nanotubes constructing 3D networks could enhance the electronic conductivity of Li4Ti5O12/carbon nanotubes/graphene composite.

  19. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  20. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-01

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries.A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. Electronic supplementary information (ESI) available: Infrared spectrogram (IR) of glucose treated MWCNT; TEM images of MWCNT@a-C treated by different concentrations of glucose; SEM and TEM images of the intermediate product obtained from the solvothermal reaction between thiourea and Co(Ac)2; EDS spectrum of MWCNT@a-C@Co9S8 composites; SEM and TEM images of MWCNT@Co9S8 nanocomposites obtained without the hydrothermal treatment by glucose; SEM and TEM images of Co9S8 nanoparticles; Galvanostatic discharge-charge profiles and cycling performance of MWCNT@a-C; TEM images of the anode material at different state of charge (SOC) and depth of discharge (DOD); the comparison of cycling performances of reported cobalt sulfide nanocomposites. See DOI: 10.1039/c4nr07143c

Top