Sample records for composite drill pipe

  1. Composite drill pipe and method for forming same

    DOEpatents

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

    2012-10-16

    A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

  2. Tribological characterization of the drill pipe tool joints reconditioned by using welding technologies

    NASA Astrophysics Data System (ADS)

    Caltaru, M.; Badicioiu, M.; Ripeanu, R. G.; Dinita, A.; Minescu, M.; Laudacescu, E.

    2018-01-01

    Drill pipe is a seamless steel pipe with upset ends fitted with special threaded ends that are known as tool joints. During drilling operations, the wall thickness of the drill pipe and the outside diameter of the tool joints will be gradually reduced due to wear. The present research work investigate the possibility of reconditioning the drill pipe tool joints by hardbanding with a new metal-cored coppered flux cored wire, Cr-Mo alloyed, using the gas metal active welding process, taking into considerations two different hardbanding technologies, consisting in: hardbanding drill pipe tool joints after removing the old hardbanding material and surface reconstruction with a compensation material (case A), and hardbanding tool joint drill pipe, without removing the old hardbanding material (case B). The present paper brings forward the experimental researches regarding the tribological characterization of the reconditioned drill pipe tool joint by performing macroscopic analyses, metallographic analyses, Vickers hardness measurement, chemical composition measurement and wear tests conducted on ball on disk friction couples, in order to certify the quality of the hardbanding obtained by different technological approaches, to validate the optimum technology.

  3. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ...)] Drill Pipe and Drill Collars From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of drill pipe and drill... defined the subject merchandise as steel drill pipe, and steel drill collars, whether or not conforming to...

  4. Composite drill pipe

    DOEpatents

    Leslie, James C [Fountain Valley, CA; Leslie, II, James C.; Heard, James [Huntington Beach, CA; Truong, Liem , Josephson; Marvin, Neubert [Huntington Beach, CA; Hans, [Anaheim, CA

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  5. 76 FR 11757 - Drill Pipe From the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... are finished drill pipe and drill collars without regard to the specific chemistry of the steel (i.e... included are unfinished drill collars (including all drill collar green tubes) and unfinished drill pipe (including drill pipe green tubes, which are tubes meeting the following description: seamless tubes with an...

  6. 76 FR 11758 - Drill Pipe From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-966] Drill Pipe From the People's... countervailing duty order on drill pipe from the People's Republic of China (PRC). DATES: Effective Date: March 3... producers and exporters of drill pipe from the PRC. See Drill Pipe from the People's Republic of China...

  7. 76 FR 11812 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-474 and 731-TA-1176 (Final)] Drill Pipe and Drill Collars From China Determinations On the basis of the record \\1\\ developed in the subject... imports of drill pipe and drill collars from China, provided for in subheadings 7304.22, 7304.23, and 8431...

  8. 75 FR 51014 - Drill Pipe From the People's Republic of China: Notice of Correction to the Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-965] Drill Pipe From the People's... determination of the investigation for drill pipe from the People's Republic of China (``PRC'') to interested parties. See Drill Pipe from the People's Republic of China: Preliminary Determination of Sales at Less...

  9. 76 FR 1971 - Drill Pipe From the People's Republic of China: Final Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Group). Xigang Seamless Steel Tube Co., Ltd. (Xigang) and Wuxi Seamless Pipe Co., Ltd. (WSP) were also.... (SPM), Jiangyin Liangda Drill Pipe Co., Ltd. (Liangda), Jiangyin Sanliang Steel Pipe Trading Co., Ltd... investigation are VAM Drilling USA, Inc., Texas Steel Conversion, Inc., Rotary Drilling Tools, TMK IPSCO, and...

  10. Conformable apparatus in a drill string

    DOEpatents

    Hall, David R [Provo, UT; Hall, Jr., H. Tracy; Pixton, David S [Lehi, UT; Fox, Joe [Spanish Fork, UT

    2007-08-28

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

  11. 78 FR 47275 - Drill Pipe From the People's Republic of China: Final Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-966] Drill Pipe From the People's... drill pipe from the People's Republic of China for the period March 3, 2011, through December 31, 2011. On April 5, 2013, we published the preliminary results of this review.\\1\\ \\1\\ See Drill Pipe from the...

  12. 75 FR 4345 - Drill Pipe from the People's Republic of China: Initiation of Countervailing Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-966] Drill Pipe from the People's... petition concerning imports of drill pipe from the People's Republic of China (PRC) filed in proper form by... Antidumping and Countervailing Duties: Drill Pipe from the People's Republic of China, dated December 31, 2009...

  13. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.

    PubMed

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-21

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  14. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    PubMed Central

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-01

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety. PMID:28117721

  15. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in the... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings 7304... Government of China.\\2\\ \\1\\ The record is defined in sec. 207.2(f) of the Commission's Rules of Practice and...

  16. Guided earth boring tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mc Donald, W.J.; Pittard, G.T.; Maurer, W.C.

    A controllable tool for drilling holes in the earth is described comprising a hollow elongated rigid supporting drill pipe having a forward end for entering the earth, means supporting the drill pipe for earth boring or piercing movement, including means for moving the drill pipe longitudinally for penetrating the earth, the drill pipe moving means being constructed to permit addition and removal of supporting drill pipe during earth penetrating operation, a boring mole supported on the forward end of the hollow low drill pipe comprising a cylindrical housing supported on and open to the forward end of the drill pipe,more » a first means on the front end for applying a boring force to the soil comprising an anvil having a striking surface inside the housing and a boring surface outside the housing, a second means comprising a reciprocally movable hammer positioned in the housing to apply a percussive force to the anvil striking surface for transmitting a percussive force to the boring force applying means, and means permitting introduction of air pressure supplied through the hollow pipe into the housing for operating the hammer and for discharging spent air from the housing to the hole being bored, and the tool being operable to penetrate the earth upon longitudinal movement of the drill rod by the longitudinal rod moving means and operation of the mole by reciprocal movement of the hammer.« less

  17. Drill pipe threaded nipple connection design development

    NASA Astrophysics Data System (ADS)

    Saruev, A. L.; Saruev, L. A.; Vasenin, S. S.

    2015-11-01

    The paper presents the analysis of the behavior of the drill pipe nipple connection under the additional load generated by power pulses. The strain wave propagation through the nipple thread connection of drill pipes to the bottomhole is studied in this paper. The improved design of the nipple thread connection is suggested using the obtained experimental and theoretical data. The suggested connection design allows not only the efficient transmission of strain wave energy to a drill bit but also the automation of making-up and breaking-out drill pipes.

  18. 75 FR 7233 - Drill Pipe From the People's Republic of China: Amendment to Initiation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-965] Drill Pipe From the People's... antidumping duty investigation of drill pipe from the People's Republic of China (``PRC''). The period of... Pipe from the People's Republic of China: Initiation of Antidumping Duty Investigations, 75 FR 4531...

  19. 75 FR 33245 - Drill Pipe From the People's Republic of China: Preliminary Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-966] Drill Pipe From the People's... pipe from the People's Republic of China (the PRC). For information on the estimated subsidy rates, see... petitioners.\\1\\ This investigation was initiated on January 20, 2010. See Drill Pipe From the People's...

  20. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  1. Use of Nitrocarburizing for Strengthening Threaded Joints of Drill Pipes from Medium-Carbon Alloy Steels

    NASA Astrophysics Data System (ADS)

    Priymak, E. Yu.; Stepanchukova, A. V.; Yakovleva, I. L.; Tereshchenko, N. A.

    2015-05-01

    Nitrocarburizing is tested at the Drill Equipment Plant for reinforcing threaded joints of drill pipes for units with retrievable core receiver (RCR). The effect of the nitrocarburizing on the mechanical properties of steels of different alloying systems is considered. Steels for the production of threaded joints of drill pipes are recommended.

  2. 76 FR 6762 - Drill Pipe From the People's Republic of China: Amended Final Determination of Critical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... the specific chemistry of the steel (i.e., carbon, stainless steel, or other alloy steel), and without... collar green tubes) and unfinished drill pipe (including drill pipe green tubes, which are tubes meeting...

  3. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  4. 75 FR 34974 - Drill Pipe From the People's Republic of China: Alignment of Final Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-966] Drill Pipe From the People's... duty investigation of drill pipe from the People's Republic of China (PRC) with the final determination....S. Department of Commerce, Room 4014, 14th Street and Constitution Avenue, NW., Washington, DC 20230...

  5. 77 FR 10722 - Drill Pipe From the People's Republic of China: Termination of Anti-Circumvention Inquiry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... response to a request from VAM Drilling U.S.A., Texas Steel Conversion Inc. and Rotary Drilling Tools... products covered by the orders are steel drill pipe, and steel drill collars, whether or not conforming to... drill collars without regard to the specific chemistry of the steel (i.e., carbon, stainless steel, or...

  6. 76 FR 1965 - Drill Pipe From the People's Republic of China: Final Determination of Sales at Less Than Fair...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Republic of China; Final Determinations; Notices #0;#0;Federal Register / Vol. 76, No. 7 / Tuesday, January...-570-965] Drill Pipe From the People's Republic of China: Final Determination of Sales at Less Than... investigation of drill pipe from the People's Republic of China (``PRC'').\\1\\ The period of investigation (``POI...

  7. CFD modelling of liquid-solid transport in the horizontal eccentric annuli

    NASA Astrophysics Data System (ADS)

    Sayindla, Sneha; Challabotla, Niranjan Reddy

    2017-11-01

    In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.

  8. 75 FR 877 - Drill Pipe From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping and... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings... Government of China. Unless the Department of Commerce extends the time for initiation pursuant to sections...

  9. Production Of Hydroxylated Fatty Acids In Genetically Modified Plants

    DOEpatents

    Hall, David R.; Fox, Joe

    2002-05-21

    An annular wire harness for use in drill pipe comprising two rings interconnected by one or more insulated conductors. The rings are positioned within annular grooves located within the tool joints and the conductors are fixed within grooves along the bore wall of the pipe. The rings may be recessed within annular grooves in order to permit refacing of the tool joint. The rings are provided with means for coupling a power and data signal from an adjacent pipe to the conductors in such a fashion that the signal may be transmitted along the drill pipe and along an entire drill string.

  10. Installation Of Service Connections For Sensors Or Transmitters In Buried Water Pipes

    DOEpatents

    Burnham, Alan K.; Cooper, John F.

    2006-02-21

    A system for installing warning units in a buried pipeline. A small hole is drilled in the ground to the pipeline. A collar is affixed to one of the pipes of the pipeline. A valve with an internal passage is connected to the collar. A hole is drilled in the pipe. A warning unit is installed in the pipe by moving the warning unit through the internal passage, the collar, and the hole in the pipe.

  11. Electrical transmission line diametrical retainer

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  12. Dust drift reduction effect of an air conveyor kit (dual-pipe deflector) mounted on different maize pneumatic drills.

    PubMed

    Manzone, Marco; Balsari, Paolo; Marucco, Paolo; Tamagnone, Mario

    2017-03-01

    All maize drills produce a fine dust due to the seed coating abrasions that occur inside the seeding element. The air stream generated by the fan of pneumatic drills - necessary to create a depression in the sowing element of the machine and to guarantee correct seed deposition - can blow away the solid particles detached from the seeds. In order to reduce this phenomenon, a coated maize seeds company (Syngenta®) has set up an ad hoc dual-pipe deflector kit that easily fits different pneumatic drills (also old drills). In this study, the efficiency of this kit and the influence of different drill types on the kit's performance in reducing environmental pollution were evaluated using three different pneumatic seed drill models. The research showed that a dual-pipe deflector installed on a drill in standard configuration did not change the seeder performance, and by using this kit on pneumatic drills, irrespective of their design, it is possible to reduce by up to 69% the amount of dust drift in comparison with the conventional machine set-up. The dual-pipe deflector, under the conditions employed in the present experiments, showed good performance with all types of maize pneumatic drill used. Irrespective of the seeder model on which it is mounted, it is able to obtain similar results, indicating its high operational versatility. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. 14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE (L TO R) LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  14. Internal coaxial cable seal system

    DOEpatents

    Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.

    2006-07-25

    The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  15. 75 FR 51004 - Drill Pipe From the People's Republic of China: Preliminary Determination of Sales at Less Than...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ....; Jiangsu Shuguang Huayang Drilling Tool Co., Ltd.; and Jiangyin Long-Bright Drill Pipe Manufacturing Co..., Ukraine, and Peru are countries comparable to the PRC in terms of economic development. See April 20, 2010... countries comparable to the PRC in terms of economic development. See Surrogate Country List. The sources of...

  16. 75 FR 49891 - Drill Pipe from the People's Republic of China: Notice of Preliminary Affirmative Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... non-API specifications, whether finished or unfinished (including green tubes suitable for drill pipe), without regard to the specific chemistry of the steel (i.e., carbon, stainless steel, or other alloy steel...

  17. 75 FR 8113 - Drill Pipe From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-474 and 731-TA-1176 (Preliminary)] Drill Pipe From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date: February 16, 2010. FOR...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, M.J.; Kramer, S.R.; Pittard, G.T.

    Jason Consultants International, Inc., under the sponsorship of the Gas Research Institute (GRI), has developed guidelines, procedures and software, which are described in this paper, for the installation of polyethylene gas pipe using guided horizontal drilling. Jason was aided in this development by two key subcontractors; Maurer Engineering who wrote the software and NICOR Technologies who reviewed the software and guidelines from a utility perspective. This program resulted in the development of commerically viable software for utilities, contractors, engineering firms, and others involved with the installation of pipes using guided horizontal drilling. The software is an interactive design tool thatmore » allows the user to enter ground elevation data, alignment information and pipe data. The software aides the engineer in designing a drill path and provides plan and profile views along with tabular data for pipe depth and surface profile. Finally, the software calculates installation loads and pipe stresses, compares these values against pipe manufacturer`s recommendations, and provides this information graphically and in tabular form. 5 refs., 18 figs., 2 tabs.« less

  19. Loaded Transducer Fpr Downhole Drilling Component

    DOEpatents

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  20. Loaded transducer for downhole drilling components

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  1. Study of a pipe-scanning robot for use in post-construction evaluation during horizontal directional drilling.

    DOT National Transportation Integrated Search

    2015-06-01

    Trenchless Technology has become an increasingly popular underground utility construction method, beginning in : the early 1900s with pipe jacking beneath railroad lines. One method, horizontal directional drilling (HDD), became : more common in the ...

  2. Well cementing in permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.N.

    1979-12-04

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of lignosulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition fro cementing in a permafrost region of a wellbore.« less

  3. Well cementing in permafrost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious materialmore » which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.« less

  4. The technology improvement and development of the new design-engineering principles of pilot bore directional drilling

    NASA Astrophysics Data System (ADS)

    Shadrina, A.; Saruev, L.; Vasenin, S.

    2016-09-01

    This paper addresses the effectiveness of impact energy use in pilot bore directional drilling at pipe driving. We establish and develop new design-engineering principles for this method. These principles are based on a drill string construction with a new nipple thread connection and a generator construction of strain waves transferred through the drill string. The experiment was conducted on a test bench. Strain measurement is used to estimate compression, tensile, shear and bending stresses in the drill string during the propagation of elastic waves. Finally, the main directions of pilot bore directional drilling improvement during pipe driving are determinated. The new engineering design, as components of the pilot bore directional drilling technology are presented.

  5. 75 FR 17902 - Drill Pipe from the People's Republic of China: Notice of Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-966] Drill Pipe from the People's... Investigation AGENCY: Import Administration, International Trade Administration, Department of Commerce... 3, Import Administration, International Trade Administration, U.S. Department of Commerce, 14th...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhleman, T.; Dempsey, P.

    Although reduced activity has left its mark on engineering budgets and many projects have been delayed, industry remains committed to research and development. This year's emphasis is offshore where new-generation semi-submersibles are under construction for Arctic waters and where equipment technology is reaching maturity. Improved tubulars such as new process-forged drill pipe, special alloy, corrosion-resistant pipe and new tool joint designs are finding eager markets both on and offshore. And back in the office, microcomputers, a curiosity a few years ago, are making significant advances in improving drilling and production operations. Specific examples of this new technology include: Two high-tech,more » high-risk floaters Hard rock sidewall coring tool New torque-resistant tool joint Two improved riser connection systems Breakthrough in drill pipe manufacturing Power-packed portable drilling computer.« less

  7. Transducer for downhole drilling components

    DOEpatents

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  8. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  9. 75 FR 4531 - Drill Pipe from the People's Republic of China: Initiation of Antidumping Duty Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... parties prior to the issuance of the preliminary determination. Comments on Product Characteristics for... physical characteristics of drill pipe to be reported in response to the Department's antidumping questionnaires. This information will be used to identify the key physical characteristics of the merchandise...

  10. Composite drill pipe and method for forming same

    DOEpatents

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem; Josephson, Marvin

    2014-04-15

    Metal inner and outer fittings configured, the inner fitting configured proximally with an external flange and projecting distally to form a cylindrical barrel and stepped down-in-diameter to form an abutment shoulder and then projecting further distally to form a radially inwardly angled and distally extending tapered inner sleeve. An outer sleeve defining a torque tube is configured with a cylindrical collar to fit over the barrel and is formed to be stepped up in diameter in alignment with the first abutment shoulder to then project distally forming a radially outwardly tapered and distally extending bonding surface to cooperate with the inner sleeve to cooperate with the inner sleeve in forming a annular diverging bonding cavity to receive the extremity of a composite pipe to abut against the abutment shoulders and to be bonded to the respective bonding surfaces by a bond.

  11. Repeatable reference for positioning sensors and transducers in drill pipe

    DOEpatents

    Hall, David R.; Fox, Joe; Pixton, David S.; Hall, Jr., H. Tracy

    2005-05-03

    A drill pipe having a box end having a tapered thread, and an internal shoulder and an external face for engagement with a drill pipe pin end having a tapered mating thread, and an external shoulder and an external face adapted for data acquisition or transmission. The relative dimensions of the box and pin ends are precisely controlled so that when the tool joint is made up, a repeatable reference plane is established for transmitting power and tuning downhole sensors, transducers, and means for sending and receiving data along the drill string. When the power or data acquisition and transmission means are located in the tool joint, the dimensions of the tool joint are further proportioned to compensate for the loss of cross-sectional area in order maintain the joints ability to sustain nominal makeup torque.

  12. 3D geological modelling of the Renard 2 kimberlite pipe, Québec, Canada: from exploration to extraction

    NASA Astrophysics Data System (ADS)

    Lépine, Isabelle; Farrow, Darrell

    2018-04-01

    The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a > 400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.

  13. An Internal Coaxil Cable Seal System

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-23

    The invention is a seal system for a coaxial cable more specifically an internal seal system placed within the coaxial cable and its constituent components. A series of seal stacks including flexible rigid rings and elastomeric rings are placed on load bearing members within the coaxial cable. The current invention is adapted to seal the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. During oil and gas exploration, a drill string can see a range of pressures and temperatures thus resulting in multiple combinations of temperature and pressure and increasing the difficulty of creating a robust seal for all combinations. The seal system can be used in a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  14. Design of a Bottom Impermeable Barrier in Conjunction with A contaminated Site Containment Structure.

    DTIC Science & Technology

    1994-05-01

    utilizes drill bits and tubing to cut through the soil. Unlike the auger method, a slurry mixture is used to keep the drill bit clean and assist in...is applied. In the sleeve pipe method, or also called tube -a-manchette, the sleeve pipe is installed in the grout hole, and sealed in place with a...acts as a one-way valve. allowing grout out of the pipe, but not back into the sleeve. A grouting tube with double packer is used to inject the grout

  15. 78 FR 69647 - Drill Pipe From the People's Republic of China: Notice of Court Decision Not in Harmony With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... drill pipe green tubes and the labor wage rate in the less-than-fair-value investigation. \\1\\ Downhole... Department revised the labor wage rate and applied the wage rate methodology from Labor Methodologies.\\4\\ On... States, 604 F.3d 1363, 1372 (Fed. Cir. 2010) (``Dorbest''); see also Antidumping Methodologies in...

  16. Abrasive wear of Hilong BoTN hardfacings

    NASA Astrophysics Data System (ADS)

    Fedorova, L.; Fedorov, S.; Sadovnikov, A.; Ivanova, Y.; Voronina, M.

    2018-02-01

    The spread of steels, which are used to produce locks of steel drill pipes, adversely affects their wear resistance, which, in combination with low hardness of HV 2400 ... 2800 MPa as well as of the thread of screw, results in low wear resistance and the need for their reconstruction at the pipe control shop. An efficient way of improving the quality of drill pipe jonts is to hard-face them by the outside diameter with wear-resistant materials (hardbanding). One of the companies engaged in the development of hardfacing materials and hardbanding is Hilong (China) with weld seams of the brand BoTn. According to the results of the studies the following conclusion can be made: hardfacing increases the durability of the hardware, contributing to an increase in wear resistance of locks of DP under the conditions of abrasive action of aggressive geological formations; the usage of DP without wear-resistant weld seams is impermissible, because their further operation, as part of the drill-stem, can lead to emergency consequences; application of the pipes with the hardfacing collars together with the collars without hardfacing, due to varying degree of wear of jonts in the drill-stem, is also impermissible.

  17. The behavior of enclosed-type connection of drill pipes during percussive drilling

    NASA Astrophysics Data System (ADS)

    Shadrina, A.; Saruev, L.

    2015-11-01

    Percussion drilling is the efficient method to drill small holes (≥ 70 mm) in medium- hard and harder rocks. The existing types of drill strings for geological explorations are not intended for strain wave energy transfer. The description of the improved design of the drill string having enclosed-type nipple connections is given in this paper presents. This nipple connection is designed to be used in drilling small exploration wells with formation sampling. Experimental findings prove the effectiveness of the enclosed nipple connection in relation to the load distribution in operation. The paper presents research results of the connection behavior under quasistatic loading (compression-tension). Loop diagrams are constructed and analyzed in force-displacement coordinates. Research results are obtained for shear stresses occurred in the nipple connection. A mechanism of shear stress distribution is described for the wave strain propagation over the connecting element. It is shown that in the course of operation the drill pipe tightening reduces the shear stress three times.

  18. 30 CFR 250.1625 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...

  19. 30 CFR 250.1625 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...

  20. 30 CFR 250.1625 - Blowout preventer system testing, records, and drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...

  1. Accuracy improvements of gyro-based measurement-while-drilling surveying instruments by a laser testing method

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhao, Jianhui; Li, Fan

    2009-07-01

    Gyroscope used as surveying sensor in the oil industry has been proposed as a good technique for measurement-whiledrilling (MWD) to provide real-time monitoring of the position and the orientation of the bottom hole assembly (BHA).However, drifts in the measurements provided by gyroscope might be prohibitive for the long-term utilization of the sensor. Some usual methods such as zero velocity update procedure (ZUPT) introduced to limit these drifts seem to be time-consuming and with limited effect. This study explored an in-drilling dynamic -alignment (IDA) method for MWD which utilizes gyroscope. During a directional drilling process, there are some minutes in the rotary drilling mode when the drill bit combined with drill pipe are rotated about the spin axis in a certain speed. This speed can be measured and used to determine and limit some drifts of the gyroscope which pay great effort to the deterioration in the long-term performance. A novel laser assembly is designed on the wellhead to count the rotating cycles of the drill pipe. With this provided angular velocity of the drill pipe, drifts of gyroscope measurements are translated into another form that can be easy tested and compensated. That allows better and faster alignment and limited drifts during the navigation process both of which can reduce long-term navigation errors, thus improving the overall accuracy in INS-based MWD system. This article concretely explores the novel device on the wellhead designed to test the rotation of the drill pipe. It is based on laser testing which is simple and not expensive by adding a laser emitter to the existing drilling equipment. Theoretical simulations and analytical approximations exploring the IDA idea have shown improvement in the accuracy of overall navigation and reduction in the time required to achieve convergence. Gyroscope accuracy along the axis is mainly improved. It is suggested to use the IDA idea in the rotary mode for alignment. Several other practical aspects of implementing this approach are evaluated and compared.

  2. Practical calibration of design data to technical capabilities of horizontal directional drilling rig

    NASA Astrophysics Data System (ADS)

    Toropov, S. Yu; Toropov, V. S.

    2018-05-01

    In order to design more accurately trenchless pipeline passages, a technique has been developed for calculating the passage profile, based on specific parameters of the horizontal directional drilling rig, including the range of possible drilling angles and a list of compatible drill pipe sets. The algorithm for calculating the parameters of the trenchless passage profile is shown in the paper. This algorithm is based on taking into account the features of HDD technology, namely, three different stages of production. The authors take into account that the passage profile is formed at the first stage of passage construction, that is, when drilling a pilot well. The algorithm involves calculating the profile by taking into account parameters of the drill pipes used and angles of their deviation relative to each other during the pilot drilling. This approach allows us to unambiguously calibrate the designed profile for the HDD rig capabilities and the auxiliary and navigation equipment used in the construction process.

  3. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Bruce; Nancy Porter; George Ritter

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.« less

  4. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.« less

  5. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.« less

  6. USSR Report: Earth Sciences. No. 26

    DTIC Science & Technology

    1983-06-07

    supplied with an automated drill rig with a great load- lifting capacity, screws for self-movement, and also an automated anchorless system for holding...is compensated by the Archimedes force acting from the direction of the denser subcrustal matter — the substrate. A disrup- tion of this equilibrium...held on the lower end of a column of drilling pipes [7] which can be rotated by means of a drive pipe [8] imparted a torque by the rotor. In

  7. 30 CFR 250.441 - What are the requirements for a surface BOP stack?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...? (a) When you drill with a surface BOP stack, you must install the BOP system before drilling below... with blind-shear rams. The blind-shear rams must be capable of shearing the drill pipe that is in the...

  8. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  9. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  10. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  11. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforcedmore » composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.« less

  12. Extensional-wave stopband broadening across the joint of pipes of different thickness.

    PubMed

    Su, Yuanda; Tang, Xiaoming; Liu, Yukai; Xu, Song; Zhuang, Chunxi

    2015-11-01

    The stopband of pipe extensional waves is an interesting natural phenomenon. This study demonstrates an important extension of this phenomenon. That is, the stopband can be effectively broadened by transmitting the waves across the joint of pipes of different thickness. The theoretical and experimental results reveal the detailed process of stopband forming along the pipe and the band broadening across the pipe joint. The result can be utilized to provide a method for logging while drilling acoustic isolation design.

  13. Data transmission element for downhole drilling components

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  14. Overhead drilling: Comparing three bases for aligning a drilling jig to vertical

    PubMed Central

    Rempel, David; Star, Demetra; Barr, Alan; Janowitz, Ira

    2010-01-01

    Problem Drilling overhead into concrete or metal ceilings is a strenuous task done by construction workers to hang ductwork, piping, and electrical equipment. The task is associated with upper body pain and musculoskeletal disorders. Previously, we described a field usability evaluation of a foot lever and inverted drill press intervention devices that were compared to the usual method for overhead drilling. Both interventions were rated as inferior to the usual method based on poor setup time and mobility. Method Three new interventions, which differed on the design used for aligning the drilling column to vertical, were compared to the usual method for overhead drilling by commercial construction workers (n=16). Results The usual method was associated with the highest levels of regional body fatigue and the poorest usability ratings when compared to the three interventions. Conclusion Overall, the ‘Collar Base’ intervention design received the best usability ratings. Impact on Industry Intervention designs developed for overhead drilling may reduce shoulder fatigue and prevent subsequent musculoskeletal disorders. These designs may also be useful for other overhead work such as lifting and supporting materials (e.g., piping, ducts) that are installed near the ceiling. Workplace health and safety interventions may require multiple rounds of field-testing prior to achieving acceptable usability ratings by the end users. PMID:20630276

  15. Fishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, G.

    1984-09-01

    Two classifications of fishing jobs are discussed: open hole and cased hole. When there is no casing in the area of the fish, it is called open hole fishing. When the fish is inside the casing, it is called cased hole fishing. The article lists various things that can become a fish-stuck drill pipe, including: broken drill pipe, drill collars, bit, bit cones, hand tools dropped in the well, sanded up or mud stuck tubing, packers become stuck, and much more. It is suggested that on a fishing job, all parties involved should cooperate with each other, and that fishingmore » tool people obtain all the information concerning the well. That way they can select the right tools and methods to clean out the well as quickly as possible.« less

  16. Biased insert for installing data transmission components in downhole drilling pipe

    DOEpatents

    Hall, David R [Provo, UT; Briscoe, Michael A [Lehi, UT; Garner, Kory K [Payson, UT; Wilde, Tyson J [Spanish Fork, UT

    2007-04-10

    An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.

  17. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  18. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fluid. You must circulate a volume of drilling fluid equal to the annular volume with the drill pipe... fluid volume needed to fill the hole. Both sets of numbers must be posted near the driller's station... warrant. Your tests must conform to industry-accepted practices and include density, viscosity, and gel...

  19. Coso: Example of a Complex Geothermal Reservoir.

    DTIC Science & Technology

    1985-09-01

    regarding the structural setting, origin, and internal structure of this energy resource. Because of accelerating exploration and development drilling that is... drilling targets and productivity estimates that can be tested as the resource is developed. Like virtually all resources, Coso will be drilled and tested...73 47. Idealized Cross Section Through Red Mountain Type of Pipe ................... 74 48. Results of Drilling Wells 75-7, 75A-7, 75B-7, 15-8, and

  20. 30 CFR 250.416 - What must I include in the diverter and BOP descriptions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.416 What must I include in the diverter... the blind-shear rams installed in the BOP stack are capable of shearing any drill pipe (including...

  1. 30 CFR 250.416 - What must I include in the diverter and BOP descriptions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.416 What must I include in... documentation that show the blind-shear rams installed in the BOP stack are capable of shearing any drill pipe...

  2. 30 CFR 250.416 - What must I include in the diverter and BOP descriptions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.416 What must I include in the diverter... the blind-shear rams installed in the BOP stack are capable of shearing any drill pipe (including...

  3. 30 CFR 250.416 - What must I include in the diverter and BOP descriptions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.416 What must I include in the diverter and BOP descriptions? You must... rams installed in the BOP stack (both surface and subsea stacks) are capable of shearing the drill pipe...

  4. 30 CFR 250.416 - What must I include in the diverter and BOP descriptions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.416 What must I include in the diverter... the blind-shear rams installed in the BOP stack are capable of shearing any drill pipe in the hole...

  5. Downhole pipe selection for acoustic telemetry

    DOEpatents

    Drumheller, Douglas S.

    1995-01-01

    A system for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver.

  6. Downhole pipe selection for acoustic telemetry

    DOEpatents

    Drumheller, D.S.

    1995-12-19

    A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

  7. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...

  8. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...

  9. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...

  10. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...

  11. 46 CFR 58.60-7 - Industrial systems: Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...

  12. Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.

    NASA Astrophysics Data System (ADS)

    Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.

    2003-12-01

    The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.

  13. Improvement of Liquefiable Foundation Conditions Beneath Existing Structures.

    DTIC Science & Technology

    1985-08-01

    filter zones, and drains. Drilling fluids can cause hydraulic fracturing . These hazards can lead to to piping and hvdraulic fracturing Compression . 7...with results of piping and hydraulic fracturing (Continued) * Site conditions have been classified into three cases; Case 1 is for beneath -d...which could lead to piping and hydraulic fracturing Soil Reinforcement 16. Vibro-replacement See methods 2 and 3 stone and sand columns applicable to

  14. An assessment of the mechanical stability of wells offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, J.P.; Ottesen, S.

    In 1991 lost time due to stuck pipe related drilling problems accounted for approximately 18% of total drilling time in Mobil Producing Nigeria Ultd.`s (MPN) offshore operations. The primary cause of stuck pipe was identified as mechanical wellbore instability. This paper presents an assessment of the mechanical stability of MPN`s wells offshore Nigeria. The objectives of the study were to: (1) determine the magnitude of the in-situ principal stresses and material properties of the troublesome Intra-Biafra and Qua Iboe shale sequences; (2) quantify the drilling fluid densities required to drill mechanically stable wells through these formations; (3) review and recommendmore » well planning and operational parameters which aid in minimizing wellbore stability-related drilling problems. The well-bore stability assessment was carried out with the aid of a 3-dimensional wellbore stability model using field derived data from the study area to corroborate the results. The collection and analysis of drilling data (borehole geometry and density logs, pore pressure, leak-off tests, local geology and other relevant well records) to determine the magnitude of the in-situ principal stresses, together with compressive strength tests on formation cores are discussed. Minimum safe drilling fluid densities to promote wellbore stability as a function of well geometry and depth are presented for the most troublesome shales drilled in the study area. Implementation of the results reduced wellbore stability related problems and associated trouble time to less than 5% in 1992.« less

  15. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    NASA Astrophysics Data System (ADS)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-12-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  16. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  17. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  18. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  19. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  20. 46 CFR 56.01-1 - Scope (replaces 100.1).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Scope (replaces 100.1). 56.01-1 Section 56.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... operation of the vessel. (c) Piping for industrial systems on mobile offshore drilling units need not fully...

  1. Degradation of titanium drillpipe from corrosion and wear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferg, T.E.; Aldrich, C.S.; Craig, B.D.

    1993-06-01

    Drilling deeper than 35,000 ft is limited by the extreme hook loads of steel drillpipe and temperature constraints of aluminum drillpipe. Titanium Alloys Ti-6Al-4V and Beta C have been proposed for use in drillpipe for wells deeper than 35,000 ft because of their high strength/weight ratios, superior high-temperature corrosion resistance, and thermal stability. Their suitability in drilling environments, however, has not been evaluated. To determine the corrosion and wear characteristics of two types of titanium-alloy drillpipe under dogleg conditions, a test cell was constructed to test titanium drillpipe joints in contact with API Spec. 5CT Grade P-110 casing in differentmore » drilling muds. Titanium-alloy pipe and Grade P-110 casing wear rates were measured, and tests showed that both titanium-alloy pipes exhibited much greater wear than did steel drillpipe in water-based mud under the same conditions. Test data showed that the total wear rate of Alloys Ti-6Al-4V and Beta C in a drilling environment is a combination of mechanical wear and corrosion.« less

  2. Numerical modeling of interaction in the dynamic system "gas-structure" with harmonic motion of the piston in the variable section pipe

    NASA Astrophysics Data System (ADS)

    Butymova, L. N.; Modorskii, V. Ya.; Petrov, V. Yu.

    2016-10-01

    The Helmholtz resonator is an instrument to create low-frequency natural oscillations whose wavelength is substantially larger than the dimensions of the resonator itself. Some modern insulating materials are a set of Helmholtz resonators made in the form of a multilayer composite structure with a layer of cells between the carrier layers. The cells have an outlet hole drilled in the support layer. Improving effectiveness of such structures in terms of noise reduction is an urgent task [1 - 7]. It is found that the resonator with a throat of higher surface roughness damps noise more effectively.

  3. Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document.more » The scope of work required to implement the recommended closure alternatives is summarized below. CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. CAS 12-60-01, Drilling/Welding Shop Outfalls, contains no COCs above action levels. No further action is required for this site; however, as a BMP, three drain pipe openings will be sealed with grout.« less

  4. An automated tool joint inspection device for the drill string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.

    1983-02-01

    This paper discusses the development of an automated tool joint inspection device (i.e., the Fatigue Crack Detector), which is capable of detecting defects in the threaded region of drill pipe and drill collars. On the basis of inspection tests conducted at a research test facility and at drilling rig sites, this device is capable of detecting both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system employs an electromagnetic flux-leakage principle and has several advantages over the conventional method of magnetic particle inspection.

  5. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... well is shut in and secured. (b) When coming out of the hole with drill pipe or a workover string, the... string and drill collars that may be pulled prior to filling the hole and the equivalent well-control... fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine...

  6. 75 FR 31425 - Drill Pipe from the People's Republic of China: Postponement of Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ..., as amended (``the Act'').\\1\\ \\1\\ Due to the extended closure of the Government between February 5 and... Government Closure During the Recent Snowstorm, available at http://ia.ita.doc.gov/download/administrative... Conversion, Inc., Rotary Drilling Tools, TMK IPSCO, and the United Steel, Paper and Forestry, Rubber...

  7. 78 FR 59972 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... at the start of the POI and that, during the POI, the participation of Chinese suppliers in the U.S... suppliers of Chinese product in the U.S. market has evolved and grown over the period in ways that indicate further expansion is imminent,' and the related conclusion that `the fact that suppliers of Chinese...

  8. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    NASA Astrophysics Data System (ADS)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  9. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread.

    PubMed

    Dong, Zhixu; Sun, Xingwei; Chen, Changzheng; Sun, Mengnan

    2018-04-13

    The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor's measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved.

  10. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread

    PubMed Central

    Sun, Xingwei; Chen, Changzheng; Sun, Mengnan

    2018-01-01

    The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved. PMID:29652836

  11. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2005-09-20

    A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  12. Downhole tool

    DOEpatents

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  13. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    NASA Astrophysics Data System (ADS)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  14. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOEpatents

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  15. 76 FR 50173 - Drill Pipe From the People's Republic of China: Initiation of Anti-circumvention Inquiry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... that the friction welding of the pipe to the tool joint occurs in the UAE instead of the PRC. The... merchandise before the assembly performed by Almansoori/Hilong in the UAE, which consists of friction welding... Petitioners argue that for the purposes of section 781(b)(1)(C) of the Act, the process of friction welding...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavignet, A.A.; Sobey, I.J.

    At present, drilling of highly deviated wells is complicated by the possibility of the formation of a thick bed of cuttings at low flow rates. The bed of cuttings can cause large torque loads on drill pipe and can fall back around the bit resulting in a stuck bit. Previous investigators have made experimental observations which show that bed formation is characterized by a relatively rapid increase in bed thickness as either the flow rate is lowered past some critical value, or as the deviation from the vertical increases. The authors present a simple model which explains these observations. Themore » model shows that the bed thickness is controlled by the interfacial stress caused by the different velocities of the mud and the cuttings layer. The results confirm previous observations that bed formation is relatively insensitive to mud rheology. Eccentricity of the drill pipe in the hole is an important factor. The model is used to determine critical flow rate needed to prevent the formation of a thick bed of cuttings and the inclination, hole size and rate of penetration are varied.« less

  17. Critical Evaluation of State-of-the-Art In Situ Thermal Treatment Technologies for DNAPL Source Zone Treatment

    DTIC Science & Technology

    2010-01-01

    from steel pipe , copper plate for heating distinct zones and sheet pile. Sheet pile electrodes allow for quick installation with little to no drilling...as electrodes. Electrodes constructed using Thermal Remediation Services - Electrical Resistance Heating ER-0314 18 Appendix B steel pipe are...who authored state- of-the-art descriptions for the most common in-situ thermal technologies currently employed:  Electrical Resistance Heating

  18. Microwave/Sonic Apparatus Measures Flow and Density in Pipe

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.

    2004-01-01

    An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.

  19. RF transmission line and drill/pipe string switching technology for down-hole telemetry

    DOEpatents

    Clark, David D [Santa Fe, NM; Coates, Don M [Santa Fe, NM

    2007-08-14

    A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.

  20. Differential Impedance Obstacle Detection Sensor (DIOD) - Phase 2

    DOT National Transportation Integrated Search

    2006-11-01

    To minimize excavations and public inconvenience, utilities often use horizontal directional drilling (HDD) to create underground pathways for the installation of pipes, cables, and other utility lines. While HDD provides efficiency improvements over...

  1. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  2. Gas-Recovery System

    DOEpatents

    Heckman, R. A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  3. Gas-recovery system

    DOEpatents

    Heckman, R.A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  4. Tidal control on gas flux from the Precambrian continental bedrock revealed by gas monitoring at the Outokumpu Deep Drill Hole, Finland

    NASA Astrophysics Data System (ADS)

    Kietäväinen, Riikka; Ahonen, Lasse; Wiersberg, Thomas; Korhonen, Kimmo; Pullinen, Arto

    2017-04-01

    Deep groundwaters within Precambrian shields are characteristically enriched in non-atmospheric gases. High concentrations of methane are frequently observed especially in graphite bearing metasedimentary rocks and accumulation of hydrogen and noble gases due to water-rock interaction and radioactive decay within the U, Th and K containing bedrock takes place. These gases can migrate not only through fractures and faults, but also through tunnels and boreholes, thereby potentially mobilizing hazardous compounds for example from underground nuclear waste repositories. Better understanding on fluid migration may also provide tools to monitor changes in bedrock properties such as fracture density or deterioration and failure of engineered barriers. In order to study gas migration mechanisms and variations with time, we conducted a gas monitoring campaign in eastern Finland within the Precambrian Fennoscandian Shield. At the study site, the Outokumpu Deep Drill Hole (2516 m), spontaneous bubbling of gases at the well head has been on-going since the drilling was completed in 2005, i.e. over a decade. The drill hole is open below 39 m. In the experiment an inflatable packer was placed 15 cm above the water table inside the collar (Ø 32.4 cm), gas from below the packer was collected and the gas flow in the pipe line carefully assisted by pumping (130 ml/min). Composition of gas was monitored on-line for one month using a quadrupole mass spectrometer (QMS) with measurement interval of one minute. Changes in the hydraulic head and in situ temperature were simultaneously recorded with two pressure sensors which were placed 1 m apart from each other below the packer such that they remained above and below the water table. In addition, data was compared with atmospheric pressure data and theoretical effect of Earth tides at the study site. Methane was the dominant gas emanating from the bedrock, however, relative gas composition fluctuated with time. Subsurface derived gases i.e. methane, hydrogen and helium peaked at the same time and temperature within the drill hole remained constant indicating that solubility fractionation could be ruled out. The longest frequency phenomenon of ca. 14 days and daily variation in gas composition which occurred in periods of approximately 12 and 24 hours were clearly correlated with the Earth tides, i.e. dilatation and contraction of the Earth due to gravitational fields of the Moon and Sun such that the non-atmospheric gases peaked during tidal gravitation minima. Earth tides were also reflected in the hydraulic head which, unlike gas composition, closely followed changes in the atmospheric pressure. Thus, dilatation of bedrock porosity and fractures can be more clearly seen in the gas data than changes in the hydraulic head or water table.

  5. Innovative workover/drilling rigs to utilize hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noran, D.

    1975-09-29

    While Western Gear Corp., Everett, Wash., is currently building 2 models of a hydraulic workover/drilling rig (one offshore and the other a trailer-mounted land rig), Bender Co., Bakersfield, Calif., already has an all-hydraulic servicing/drilling rig undergoing tests. The rigs are similar in that they eliminate the traveling block, crown block, draw works, chains, and sprockets found on the conventional rig. The major design innovation on the Western Gear model is the 260,000-lb-capacity hoisting system in which 2 hydraulic rams are anchored to the rig floor and carry all the pipe weight, thus eliminating the danger of the derrick's being pulledmore » in. Other changes involve the tripping system, a power swivel/elevator, and the control valves. Maintenance and labor cost reductions are expected to be substantial. The Bender Co. rig has a single-section mast that is a lever-lift-type derrick which serves as a guide for the rams and a support for the pipe-racking platform. Hoisting capacity depends on the number and size of the lifting rods (which support the crown sheaves) and the hydraulic pressure applied. Manufacturing and operating costs are expected to be less than for conventional rigs.« less

  6. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    NASA Astrophysics Data System (ADS)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  7. Automated Cutting And Drilling Of Composite Parts

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1993-01-01

    Proposed automated system precisely cuts and drills large, odd-shaped parts made of composite materials. System conceived for manufacturing lightweight composite parts to replace heavier parts in Space Shuttle. Also useful in making large composite parts for other applications. Includes robot locating part to be machined, positions cutter, and positions drill. Gantry-type robot best suited for task.

  8. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang

    2015-03-01

    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  9. Drilling of CFRP and GFRP composite laminates using one shot solid carbide step drill K44

    NASA Astrophysics Data System (ADS)

    Nagaraja, R.; Rangaswamy, T.

    2018-04-01

    Drilling is a very common machining operation to install fasteners for assembly of laminates Drilling of Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP) composite laminate materials are different from that of convention materials that causes excessive tool wear and edge delamination. This paper reports on the tool geometry, cutting speed and feed rate. In this work two composite materials CFRP-G926 and Glass-7781 composite materials of varying thickness are drilled to investigate the effect of feed rate, and cutting speed. The study mainly focused on drilling laminates specimen of varying thickness 9 mm, 9.6 mm and 12 mm by using a single shot solid carbide step drill K44. The drilling is performed from lower to higher feed rate and cutting speed to investigate the hole quality, bottom top edge delamination, fiber breakages and local cracks. The work performed shows that a proper combination of tool geometry, cutting speed and feed rate can help to reduce the occurrence of delamination.

  10. Shallow borehole array for measuring fluxes of reduced trace gases in Greenland as an analogue for volatile emission on Mars

    NASA Astrophysics Data System (ADS)

    Pratt, L. M.

    2011-12-01

    Planetary exploration of Mars is rapidly advancing with high-resolution data from orbiting and landed instruments upending the image of a monotonously arid red planet and raising interest in the search for evidence of past or present Martian life. The plausibility of biotic influences on release and sequestration of water and other volatile molecules on Mars remains a highly contentious topic. Despite this uncertainty, treating volatile emissions as potential atmospheric biomarkers is prudent for planetary protection and is critical for refinement of exploration strategies aimed at life detection on Mars. Using deeply eroded Paleoproterozoic bedrock in southwestern Greenland as an analogue for Mars, a team of scientists from Indiana University, Princeton University, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Honey Bee Robotics is participating in a three-year field campaign to analyze seasonal and diurnal variation in concentration and isotopic composition of methane, ethane, and hydrogen sulfide in bedrock boreholes (0.5 to 2 m depth) and soil pipe wells (1 to 1.5 m depth) intersecting permafrost environments across a study site of about 1 km2. Open-path laser spectroscopy (OPLS) will be used from a fixed platform coupled to a roving reflector in order to map out gas emissions from a variety of bedrock and vegetated terrains in periglacial settings. OPLS mapping will be used to target sites for seasonal and diurnal monitoring surface fluxes of reduced gases. Bedrock boreholes will be drilled percussively and soil pipe-wells will be inserted by hand. Each borehole or well will have one fiber optic line and two capillary lines installed by hand through an inert screw-compression seal. The capillary lines will be used to transfer gas into detection instruments at the surface and the fiber optic line will allow transfer of data from temperature and pressure sensors to data loggers. The field campaign will culminate with an integrated drill-packer-optic-capillary system as a technology demonstration of semi-autonomous drilling for planetary exploration. Carbon and hydrogen isotopic compositions for methane and ethane will be determined in the field using Integrated Cavity Output Spectroscopy and Cavity Ring Down Spectroscopy. Continuous permafrost is present at the study site down to 300 m depth with temperatures dropping to -3 degrees C at a depth of about 4 meters, providing a relatively shallow and pristine setting for an instrumented study of reduced trace gases in soil, fractured bedrock, and groundwater constituting the active layer.

  11. Multi-response parametric optimization in drilling of bamboo/Kevlar fiber reinforced sandwich composite

    NASA Astrophysics Data System (ADS)

    Singh, Thingujam Jackson; Samanta, Sutanu

    2016-09-01

    In the present work an attempt was made towards parametric optimization of drilling bamboo/Kevlar K29 fiber reinforced sandwich composite to minimize the delamination occurred during the drilling process and also to maximize the tensile strength of the drilled composite. The spindle speed and the feed rate of the drilling operation are taken as the input parameters. The influence of these parameters on delamination and tensile strength of the drilled composite studied and analysed using Taguchi GRA and ANOVA technique. The results show that both the response parameters i.e. delamination and tensile strength are more influenced by feed rate than spindle speed. The percentage contribution of feed rate and spindle speed on response parameters are 13.88% and 81.74% respectively.

  12. Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona

    USGS Publications Warehouse

    Wenrich, K.J.; Aumente-Modreski, R. M.

    1994-01-01

    Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This degree of anomalousness, named the "correlation value", was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe. Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes. ?? 1994.

  13. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  14. Considerations, constraints and strategies for drilling on Mars

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2006-04-01

    The effect of the environmental conditions on Mars - low temperature, low pressure, the uncertainty in the nature of the formations to be penetrated and the possibility of encountering ice - imply that a successful drilling system will have to be able to cope with a wide range of conditions. Systems using continuous drill pipe or wireline both offer attractive features and disadvantages, and the preferred choice may depend on the target depth. The drill bit will have to cope with a range of terrain, and we offer some suggestions for making a bit that will be able to drill in both hard and soft formations, and also be able to resist choking if it encounters ice or ice-bound materials. Since it will not be possible to use a liquid to remove the drilled cuttings on Mars, the cuttings removal system will probably use some form of auger, although it may be possible to use continuous or intermittent gas blasts. The sublimation of ice resulting from the heat of drilling in ice-containing formations may help in removing the cuttings, particularly as they are expected to be very fine as a result of the low power available for drilling. Drilling into ice bound soils was also found to be akin to drilling into ice-bound sandstones.

  15. Logging-while-coring method and apparatus

    DOEpatents

    Goldberg, David S.; Myers, Gregory J.

    2007-11-13

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  16. Logging-while-coring method and apparatus

    DOEpatents

    Goldberg, David S.; Myers, Gregory J.

    2007-01-30

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  17. Lock For Valve Stem

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Guirguis, Kamal S.

    1991-01-01

    Simple, cheap device locks valve stem so its setting cannot be changed by unauthorized people. Device covers valve stem; cover locked in place with standard padlock. Valve lock made of PVC pipe and packing band. Shears, drill or punch, and forming rod only tools needed.

  18. The costs of delay in infrastructure investments: A comparison of 2001 and 2014 household water supply coping costs in the Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Gurung, Yogendra; Zhao, Jane; Kumar KC, Bal; Wu, Xun; Suwal, Bhim; Whittington, Dale

    2017-08-01

    In 2001, we conducted a survey of 1500 randomly sampled households in Kathmandu to determine the costs people were incurring to cope with Kathmandu's poor quality, unreliable piped water supply system. From 2001 until 2014, there was little additional public investment in the municipal water supply system. In the summer of 2014, we attempted to reinterview all 1500 households in our 2001 sample to determine how they had managed to deal with the growing water shortage and the deteriorating condition of the piped water infrastructure in Kathmandu and to compare their coping costs in 2014 with those we first estimated in 2001. Average household coping costs more than doubled in real terms over the period from 2001 to 2014, from US5 to US12 per month (measured in 2014 prices). The composition of household coping costs changed from 2001 to 2014, as households responded to the deteriorating condition of the piped water infrastructure by drilling more private wells, purchasing water from both tanker truck and bottled water vendors, and installing more storage tanks. These investments and expenditures resulted in a decline in the time households spend collecting water from outside the home. Our analysis suggests that the significant increase in coping costs between 2001 and 2014 may provide an opportunity for the municipal water utility to substantially increase water tariffs if the quantity and quality of piped services can be improved. However, the capital investments made by some households in private wells, pumping and treatment systems, and storage tanks in response to the delay in infrastructure investment may lock them into current patterns of water use, at least in the short run, and thus make it difficult to predict how they would respond to tariff increases for improved piped water services.

  19. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results indicate a large amount of scatter is associated with this test method. Due to the large amount of scatter present in the leaking pipe evaluations (energy release rate tests), a new laboratory specimen was created to evaluate mixed mode debonding of composite over-wrapped piping. The laboratory specimen results are much more conservative than the leaking pipe evaluations. The laboratory specimen results, however, agree quite favorably to a closed form solution developed in this Dissertation, as well as to energy release rate calculations performed by two different finite element analysis methods, the Modified Crack Closure Integral and the change in compliance method.

  20. Finite Element Analysis of Drilling of Carbon Fibre Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Isbilir, Ozden; Ghassemieh, Elaheh

    2012-06-01

    Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling.

  1. Volume requirements for aerated mud drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, B.; Rajtar, J.M.

    1995-09-01

    Aerated mud drilling has been recognized as having many advantages over conventional mud drilling, such ass higher penetration rate, less formation damage, minimized lost circulation, and lower drilling cost. In some areas, the use of aerated mud as a circulating medium for drilling oil and gas wells is becoming an attractive practice. Maintaining an optimum combination of liquid and air flow rates is important in aerated drilling operations. However, most drilling operators are unclear on what constitutes the ``optimum combination of the liquid and air flow rates.`` Guo et al. presented a mathematical approach to determining the flowing bottomhole pressuremore » (BHP) for aerated mud drilling. This paper addresses the use of Guo et al.`s mathematical model to determine liquid and air volume requirements considering wellbore stability, pipe sticking, and formation damage as well as the cuttings-carry capacity of the aerated mud. For a formation-damage-prevention point of view, the liquid fraction in the fluid stream should e as low as possible. However, a sufficient mud flow rate is always required to make the hole stable and to maintain the cuttings-carrying capacity of the aerated mud without injecting much air volume. This paper provides a simple approach to determining the liquid and air volume requirements for aerated mud drilling.« less

  2. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  3. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  4. Corrosion of Advanced Steels: Challenges in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Mishra, Brajendra; Apelian, Diran

    Drill pipe steels are in contact with CO2 and H2S environments, depending on the oil and gas field. These steels have to be resistant to various in-service conditions including aggressive environments containing CO2, H2S, O2, and chlorides, in addition to static and dynamic mechanical stresses. In this respect stress corrosion cracking susceptibility of two grades of drill pipe steel in CO2 environment have been studied simulating the bottom hole oil and gas well conditions. SSRT results show that SCC susceptibility or loss of ductility changes with temperature and increasing temperature increases the loss of ductility. No FeCO3 is observed below 100 °C, and density of FeCO3 is higher in grip section than gauge length and this is due to strain disturbance of growth of iron carbonate crystals. Material selection for down hole in CO2 containing environments needs has been reviewed and probability of SCC occurrence in higher temperatures has been included.

  5. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  6. Concealed basalt-matrix diatremes with Cu-Au-Ag-(Mo)-mineralized xenoliths, Santa Cruz Porphyry Cu-(Mo) System, Pinal County, Arizona

    USGS Publications Warehouse

    Vikre, Peter; Graybeal, Frederick T.; Koutz, Fleetwood R.

    2014-01-01

    The Santa Cruz porphyry Cu-(Mo) system near Casa Grande, Arizona, includes the Sacaton mine deposits and at least five other concealed, mineralized fault blocks with an estimated minimum resource of 1.5 Gt @ 0.6% Cu. The Late Cretaceous-Paleocene system has been dismembered and rotated by Tertiary extension, partially eroded, and covered by Tertiary-Quaternary basin-fill deposits. The mine and mineralized fault blocks, which form an 11 km (~7 miles) by 1.6 km (~1 mile) NE-SW–trending alignment, represent either pieces of one large deposit, several deposits, or pieces of several deposits. The southwestern part of the known system is penetrated by three or more diatremes that consist of heterolithic breccia pipes with basalt and clastic matrices, and subannular tuff ring and maar-fill sedimentary deposits associated with vents. The tephra and maar-fill deposits, which are covered by ~485 to 910 m (~1,600–3,000 ft) of basin fill, lie on a mid-Tertiary erosion surface of Middle Proterozoic granite and Late Cretaceous porphyry, which compose most xenoliths in pipes and are the host rocks of the system. Some igneous xenoliths in the pipes contain bornite-chalcopyrite-covellite assemblages with hypogene grades >1 wt % Cu, 0.01 ounces per ton (oz/t) Au, 0.5 oz/t Ag, and small amounts of Mo (<0.01 wt %). These xenoliths were derived from mineralized rocks that have not been encountered in drill holes, and attest to additional, possibly higher-grade deposits within or subjacent to the known system.The geometry, stratigraphy, and temporal relationships of pipes and tephras, interpreted from drill hole spacing and intercepts, multigenerational breccias and matrices, reequilibrated and partially decomposed sulfide-oxide mineral assemblages, melted xenoliths, and breccia matrix compositions show that the diatremes formed in repeated stages. Initial pulses of basalt magma fractured granite, porphyry, and other crustal rocks during intrusion, transported multi-sized fragments of these rocks upward, and partially melted small fragments. Rapid decompression of magma induced catastrophic devolatilization that ruptured overlying rocks to the surface, and generated fragment-volatile suspensions that abraded conduits into near-vertical cylindrical structures. Fragments entrained in suspensions were milled and sorted, and ejected as basal surge, pyroclastic deposits, and airfall tephra that built tuff rings around vents and filled vent depressions. Comminuted m- to mm-sized fragments of wall rocks in magma and suspensions that remained in conduits solidified as heterolithic breccias. Subsequent pulses of basalt magma ascended through the same conduits, brecciated older heterolithic breccias, devolatilized, and quenched, leaving two or more generations of nested and mingled heterolithic breccias and internal zones of fluidized fragments. Tephra and maar-fill deposits from later eruptions are composed of more hydrous and oxidized minerals than earlier tephras, reflecting a higher proportion of water in transport fluid which, based on fluid inclusion populations in mineralized xenoliths, was saline water and CO2. The large vertical extent (~600 m; ~2,000 ft) of basalt matrix in pipes, near-paleosurface matrix vesiculation, and plastically deformed basalt lapilli indicates that diatreme eruptions were predominantly phreatic.Diatreme xenoliths represent crustal stratigraphy and, as in the Santa Cruz system, provide evidence of concealed mineral resources that can guide exploration drilling through cover. Vectors to the source of bornite-dominant xenoliths containing >1% Cu and significant Au and Ag could be determined by refinement of breccia pipe geometries, by reassembly of mineralized fault blocks using modal, chemical, and temporal characteristics of hydrothermal mineral assemblages and fluid inclusions, and by paleodrainage analysis.

  7. Design and development of solid carbide step drill K34 for machining of CFRP and GFRP composite laminates

    NASA Astrophysics Data System (ADS)

    Rangaswamy, T.; Nagaraja, R.

    2018-04-01

    The Study focused on design and development of solid carbide step drill K34 to drill holes on composite materials such as Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP). The step drill K34 replaces step wise drilling of diameter 6.5mm and 9 mm holes that reduces the setup time, cutting speed, feed rate cost, delamination and increase the production rate. Several researchers have analyzed the effect of drilling process on various fiber reinforced plastic composites by carrying out using conventional tools and machinery. However, this process operation can lead to different kind of damages such as delamination, fiber pullout, and local cracks. To avoid the problems encountered at the time of drilling, suitable tool material and geometry is essential. This paper deals with the design and development of K34 Carbide step drill used to drill holes on CFRP and GFRP laminates. An Experimental study carried out to investigate the tool geometry, feed rate and cutting speed that avoids delamination and fiber breakage.

  8. Investigation on the Effect of Drill Geometry and Pilot Holes on Thrust Force and Burr Height When Drilling an Aluminium/PE Sandwich Material

    PubMed Central

    Rezende, Bruna Aparecida; Silveira, Michele L.; Vieira, Luciano M. G.; Abrão, Alexandre M.; de Faria, Paulo Eustáquio; Rubio, Juan C. Campos

    2016-01-01

    Composite materials are widely employed in the naval, aerospace and transportation industries owing to the combination of being lightweight and having a high modulus of elasticity, strength and stiffness. Drilling is an operation generally used in composite materials to assemble the final product. Damages such as the burr at the drill entrance and exit, geometric deviations and delamination are typically found in composites subjected to drilling. Drills with special geometries and pilot holes are alternatives used to improve hole quality as well as to increase tool life. The present study is focused on the drilling of a sandwich composite material (two external aluminum plates bound to a polyethylene core). In order to minimize thrust force and burr height, the influence of drill geometry, the pilot hole and the cutting parameters was assessed. Thrust force and burr height values were collected and used to perform an analysis of variance. The results indicated that the tool and the cutting speed were the parameters with more weight on the thrust force and for burr height they were the tool and the interaction between tool and feed. The results indicated that drilling with a pilot hole of Ø4 mm exhibited the best performance with regard to thrust force but facilitated plastic deformation, thus leading to the elevation of burr height, while the lowest burr height was obtained using the Brad and Spur drill geometry. PMID:28773895

  9. Investigation on the Effect of Drill Geometry and Pilot Holes on Thrust Force and Burr Height When Drilling an Aluminium/PE Sandwich Material.

    PubMed

    Rezende, Bruna Aparecida; Silveira, Michele L; Vieira, Luciano M G; Abrão, Alexandre M; Faria, Paulo Eustáquio de; Rubio, Juan C Campos

    2016-09-13

    Composite materials are widely employed in the naval, aerospace and transportation industries owing to the combination of being lightweight and having a high modulus of elasticity, strength and stiffness. Drilling is an operation generally used in composite materials to assemble the final product. Damages such as the burr at the drill entrance and exit, geometric deviations and delamination are typically found in composites subjected to drilling. Drills with special geometries and pilot holes are alternatives used to improve hole quality as well as to increase tool life. The present study is focused on the drilling of a sandwich composite material (two external aluminum plates bound to a polyethylene core). In order to minimize thrust force and burr height, the influence of drill geometry, the pilot hole and the cutting parameters was assessed. Thrust force and burr height values were collected and used to perform an analysis of variance. The results indicated that the tool and the cutting speed were the parameters with more weight on the thrust force and for burr height they were the tool and the interaction between tool and feed. The results indicated that drilling with a pilot hole of Ø4 mm exhibited the best performance with regard to thrust force but facilitated plastic deformation, thus leading to the elevation of burr height, while the lowest burr height was obtained using the Brad and Spur drill geometry.

  10. Friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes

    NASA Astrophysics Data System (ADS)

    Deng, Jianxin; Yan, Pei; Wu, Ze

    2012-11-01

    MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.

  11. Apparatus and method for in Situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1999-09-28

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  12. Apparatus for in situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1998-06-16

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  13. Controversy over drill pipe, tubular goods heats up as US increases import duties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    U.S.makers of oil country tubular goods (OCTG) and line pipe accused foreign manufacturers of dumping goods in the country, and the U.S. Department of Commerce International Trade Administration (ITA) agreed with them. The ITA then slapped duties on foreign manufacturers. The manufacturers appealed the decision and the U.S. International Trade Commission upheld the ITA ruling and reinforced it by saying the actions by foreign manufacturers hurt U.S. OCTG makers. Many groups oppose the tariff. This paper describes this controversy and describes some of the impacts on various industries.

  14. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article.

  15. Effect of Cutting Parameters on Thrust Force and Surface Roughness in Drilling of Al-2219/B4C/Gr Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.

    2016-09-01

    In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.

  16. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    PubMed Central

    Díaz-Álvarez, José; Olmedo, Alvaro; Santiuste, Carlos; Miguélez, María Henar

    2014-01-01

    Carbon Fiber Reinforced Polymer (CFRPs) composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained. PMID:28788685

  17. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing.

    PubMed

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-04-27

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  18. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    PubMed Central

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-01-01

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445

  19. Force of resistance to pipeline pulling in plane and volumetrically curved wells

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.; Toropov, S. Yu; Toropov, E. S.

    2018-05-01

    A method has been developed for calculating the component of the pulling force of a pipeline, arising from the well curvature in one or several planes, with the assumption that the pipeline is ballasted by filling with water or otherwise until zero buoyancy in the drilling mud is reached. This paper shows that when calculating this force, one can neglect the effect of sections with zero curvature. In the other case, if buoyancy of the pipeline is other than zero, the resistance force in the curvilinear sections should be calculated taking into account the difference between the normal components of the buoyancy force and weight. In the paper, it is proved that without taking into account resistance forces from the viscosity of the drilling mud, if buoyancy of the pipeline is zero, the total resistance force is independent of the length of the pipe and is determined by the angle equal to the sum of the entry angle and the exit angle of the pipeline to the day surface. For the case of the well curvature in several planes, it is proposed to perform the calculation of such volumetrically curved well by the central angle of the well profile. Analytical dependences are obtained that allow calculating the pulling force for well profiles with a variable curvature radius, i.e. at different angles of deviation between the drill pipes along the well profile.

  20. Optimum Material Composition for Minimizing the Stress Intensity Factor of Edge Crack in Thick-Walled FGM Circular Pipes Under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Sekine, Hideki; Yoshida, Kimiaki

    This paper deals with the optimization problem of material composition for minimizing the stress intensity factor of radial edge crack in thick-walled functionally graded material (FGM) circular pipes under steady-state thermomechanical loading. Homogenizing the FGM circular pipes by simulating the inhomogeneity of thermal conductivity by a distribution of equivalent eigentemperature gradient and the inhomogeneity of Young's modulus and Poisson's ratio by a distribution of equivalent eigenstrain, we present an approximation method to obtain the stress intensity factor of radial edge crack in the FGM circular pipes. The optimum material composition for minimizing the stress intensity factor of radial edge crack is determined using a nonlinear mathematical programming method. Numerical results obtained for a thick-walled TiC/Al2O3 FGM circular pipe reveal that it is possible to decrease remarkably the stress intensity factor of radial edge crack by setting the optimum material composition profile.

  1. Planetary Drilling and Resources at the Moon and Mars

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  2. The Effects of an Unexpected Ceramic Coating Phase at the Head of a Pipe on Joining and Postprocessing of a Ceramic-Lined Composite Pipe

    NASA Astrophysics Data System (ADS)

    Mahmoodian, R.; Rahbari, R. G.; Hamdi, M.; Hassan, M. A.; Sparham, Mahdi

    2013-01-01

    Produced ceramic-lined steel pipe using the self-propagating high-temperature synthesis (SHS) method has found uses in many applications. A SHS-centrifugal machine was designed to produce a ceramic-lined steel pipe from ferric oxide and aluminum powder (thermite mixture) under high centrifugal acceleration. The obtained products are expected to be Al2O3 ceramic in the innermost layer and a Fe layer in a region between the outer steel pipes. In the present work, specific regions of a pipe was particularly observed to investigate the stuck (dead) spaces at the pipe head because of its importance in further processes (joining, welding, etc.) which may affect the quality of the next operations. In this article, the product's composition, phase separation, microhardness, and surface finish were studied on three zones of the pipe.

  3. Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development

    NASA Astrophysics Data System (ADS)

    Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.

    2009-05-01

    Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with <10% intruding, coherent kimberlite. Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have encountered a local hydrologically active fault. The explosions were inadequate in mechanical energy release (72% of a mine production blast) to eject material from the pipe, and the pipe may not have breached surface. The next stage of fragmentation is interpreted to have been an upward-moving collapse of the pre-conditioned hanging wall of a subterranean volcanic excavation. This would explain the mega-scale layering across the width of the breccia pipe. It must be questioned whether the preserved K08 architecture represents early pipe development in general, or is a special case of a late pipe geometry modification process. Previous literature describes sidewall and hanging wall caving processes elsewhere in the Venetia cluster and other kimberlites world wide. A requirement for emplacement models that include upward pipe growth processes is the availability of space (mass deficit at depth) into which the caving and/or dilating breccia can expand. It is possible that K08 might be connected to adjacent K02 at a depth somewhere below 400m, which would explain the presence of volcaniclastic kimberlite at depth within the K08 pipe. K08 is likely an incomplete ancillary sideward development to K02. The latest stage of brecciation is quantified through an observed evolution in the fractal dimension of the PSD. It is interpreted to be due to complex adjustments in volume in the pipe causing shearing and re-fragmentation of the breccia.

  4. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    PubMed

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Online gas monitoring and sampling during drilling of the INFLUINS borehole EF-FB 1/12 into the Thuringian Syncline, Germany

    NASA Astrophysics Data System (ADS)

    Görlitz, Marco; Abratis, Michael; Wiersberg, Thomas

    2014-05-01

    Online monitoring and sampling of drill mud gas (OLGA) was conducted during standard rotary drilling and core drilling of the INFLUINS borehole EF-FB 1/12 to gain information on the composition of gases and their distribution at depth within the Thuringian Syncline (Germany). The method can help to identify areas of enhanced permeability and/or porosity, open fractures, and other strata associated with gases at depth. The gas-loaded drill mud was continuously degassed in a modified gas-water separator, which was installed in the mud ditch in close distance to the drill mud outlet. The extracted gas phase was pumped in a nearby field laboratory for continuous on-line analysis. First information on the gas composition (H2, He, N2, O2, CO2, CH4, Ar, Kr) was available only few minutes after gas extraction. More than 40 gas samples were taken from the gas line during drilling and pumping tests for further laboratory studies. Enhanced concentration of methane, helium, hydrogen and carbon dioxide were detected in drill mud when the drill hole encountered gas-rich strata. Down to a depth of 620 m, the drill mud contained maximum concentration of 55 ppmv He, 1400 ppmv of CH4, 400 ppmv of hydrogen and 1.1 vol-% of CO2. The drilling mud gas composition is linked with the drilled strata. Buntsandstein and Muschelkalk show different formation gas composition and are therefore hydraulically separated. Except for helium, the overall abundance of formation gases in drilling mud is relatively low. We therefore consider the INFLUINS borehole to be dry. The correlation between hydrogen and helium and the relatively high helium abundance rules out any artificial origin of hydrogen and suggest a radiolytic origin of hydrogen. Values CH4/(C2H6/C3H8)

  6. 78 FR 20615 - Drill Pipe From the People's Republic of China: Preliminary Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... regarding benefit; and section 771(5A) of the Act regarding specificity. In making these findings, we have... Operations to Paul Piquado, Assistant Secretary for Import Administration, ``Decision Memorandum for... China'' (Preliminary Decision Memorandum), dated currently with this notice, and hereby adopted by this...

  7. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uppermost BOP; (2) A well-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and... the hole with drill pipe, the annulus shall be filled with well-control fluid before the change in...

  8. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., (2) A well-control fluid-volume measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and losses... the change in fluid level decreases the hydrostatic pressure 75 psi or every five stands of drill pipe...

  9. 40 CFR 112.11 - Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and... corrosion, such as with protective coatings or cathodic protection. (o) Adequately protect sub-marine piping...

  10. 40 CFR 112.11 - Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and... corrosion, such as with protective coatings or cathodic protection. (o) Adequately protect sub-marine piping...

  11. 40 CFR 112.11 - Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and... corrosion, such as with protective coatings or cathodic protection. (o) Adequately protect sub-marine piping...

  12. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.

  13. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Camarda, Charles J.; Glass, David E.

    1992-10-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the NASP vehicle uses cryogenic hydrogen to cool structural components and then burns this fuel in the combustor, hydrogen necessary for descent cooling only, when the vehicle is unpowered, is considered to be a weight penalty. Details of the design of the refractory-composite/heat-pipe-cooled wing leading edge are currently being investigated. Issues such as thermal contact resistance and thermal stress are also being investigated.

  14. Finite element analysis of drilling in carbon fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Roy, A.; Silberschmidt, V. V.

    2012-08-01

    Carbon fiber reinforced polymer composite (CFRP) laminates are attractive for many applications in the aerospace industry especially as aircraft structural components due to their superior properties. Usually drilling is an important final machining process for components made of composite laminates. In drilling of CFRP, it is an imperative task to determine the maximum critical thrust forces that trigger inter-laminar and intra-laminar damage modes owing to highly anisotropic fibrous media; and negotiate integrity of composite structures. In this paper, a 3D finite element (FE) model of drilling in CFRP composite laminate is developed, which accurately takes into account the dynamic characteristics involved in the process along with the accurate geometrical considerations. A user defined material model is developed to account for accurate though thickness response of composite laminates. The average critical thrust forces and torques obtained using FE analysis, for a set of machining parameters are found to be in good agreement with the experimental results from literature.

  15. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    NASA Astrophysics Data System (ADS)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at 30 and 60 meters from the drill site, suggests that reestablishment of the foraminiferal fauna likely commenced shortly after cessation of drilling activity.

  16. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong

    2015-12-01

    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  17. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  18. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  19. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  20. 78 FR 45505 - Certain Oil Country Tubular Goods from India, the Republic of Korea, the Republic of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... process based on the average import value of other ferrous waste and scrap using HTSUS subheadings 7204.41... products) or unfinished (including green tubes and limited service OCTG products), whether or not thread...; drill pipe; unattached couplings; and unattached thread protectors. The merchandise subject to the...

  1. Use of reagents to convert chrysotile and amosite asbestos used as insulation or protection for metal surfaces

    DOEpatents

    Sugama, Toshifumi; Petrakis, Leon

    2000-12-12

    A composition for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces. The composition comprises a combination of at least two multiple-functional group reagents, in which each reagent includes a Fluro acid component and a corrosion inhibiting compoment. A method for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces is also provided.

  2. Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.

    2007-01-01

    Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.

  3. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system.

    PubMed

    Douterelo, I; Husband, S; Boxall, J B

    2014-05-01

    This study investigates the influence of pipe characteristics on the bacteriological composition of material mobilised from a drinking water distribution system (DWDS) and the impact of biofilm removal on water quality. Hydrants in a single UK Distribution Management Area (DMA) with both polyethylene and cast iron pipe sections were subjected to incremental increases in flow to mobilise material from the pipe walls. Turbidity was monitored during these operations and water samples were collected for physico-chemical and bacteriological analysis. DNA was extracted from the material mobilised into the bulk water before and during flushing. Bacterial tag-encoded 454 pyrosequencing was then used to characterize the bacterial communities present in this material. Turbidity values were high in the samples from cast iron pipes. Iron, aluminium, manganese and phosphate concentrations were found to correlate to observed turbidity. The bacterial community composition of the material mobilised from the pipes was significantly different between plastic and cast iron pipe sections (p < 0.5). High relative abundances of Alphaproteobacteria (23.3%), Clostridia (10.3%) and Actinobacteria (10.3%) were detected in the material removed from plastic pipes. Sequences related to Alphaproteobacteria (22.8%), Bacilli (16.6%), and Gammaproteobacteria (1.4%) were predominant in the samples obtained from cast iron pipes. The highest species richness and diversity were found in the samples from material mobilised from plastic pipes. Spirochaeta spp., Methylobacterium spp. Clostridium spp. and Desulfobacterium spp., were the most represented genera in the material obtained prior to and during the flushing of the plastic pipes. In cast iron pipes a high relative abundance of bacteria able to utilise different iron and manganese compounds were found such as Lysinibacillus spp., Geobacillus spp. and Magnetobacterium spp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Optimisation of the geometry of the drill bit and process parameters for cutting hybrid composite/metal structures in new aircrafts

    NASA Astrophysics Data System (ADS)

    Isbilir, Ozden

    Owing to their desirable strength-to-weight characteristics, carbon fibre reinforced polymer composites have been favourite materials for structural applications in different industries such as aerospace, transport, sports and energy. They provide a weight reduction in whole structure and consequently decrease fuel consumption. The use of lightweight materials such as titanium and its alloys in modern aircrafts has also increased significantly in the last couple of decades. Titanium and its alloys offer high strength/weight ratio, high compressive and tensile strength at high temperatures, low density, excellent corrosion resistance, exceptional erosion resistance, superior fatigue resistance and relatively low modulus of elasticity. Although composite/metal hybrid structures are increasingly used in airframes nowadays, number of studies regarding drilling of composite/metal stacks is very limited. During drilling of multilayer materials different problems may arise due to very different attributes of these materials. Machining conditions of drilling such structures play an important role on tool wear, quality of holes and cost of machining.. The research work in this thesis is aimed to investigate drilling of CFRP/Ti6Al4V hybrid structure and to optimize process parameters and drill geometry. The research work consist complete experimental study including drilling tests, in-situ and post measurements and related analysis; and finite element analysis including fully 3-D finite element models. The experimental investigations focused on drilling outputs such as thrust force, torque, delamination, burr formation, surface roughness and tool wear. An algorithm was developed to analyse drilling induced delamination quantitatively based on the images. In the numerical analysis, novel 3-D finite element models of drilling of CFRP, Ti6Al4V and CFRP/Ti6Al4V hybrid structure were developed with the use of 3-D complex drill geometries. A user defined subroutine was developed to model material and failure behaviour of CFRP. The effects of process parameters on drilling outputs have been investigated and compared with the experimental results. The influences of drill bit geometries have been simulated in this study..

  5. Reusable high-temperature heat pipes and heat pipe panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Ransone, Philip O. (Inventor)

    1989-01-01

    A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.B.

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is causedmore » by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.« less

  7. Laboratory studies on biomachining of copper using Staphylococcus sp.

    PubMed

    Shikata, Shinji; Sreekumari, Kurissery R; Nandakumar, Kanavillil; Ozawa, Mazayoshi; Kikuchi, Yasushi

    2009-01-01

    The possibility of using bacteria to drill metallic surfaces has been demonstrated using Staphylococcus sp., a facultative anaerobic bacterium, isolated from corroded copper piping. The experiment involved exposure of copper coupons (25 mm x 15 mm x 3 mm) to a culture of Staphylococcus sp. for a maximum period of 7 days. Coupons exposed to sterile bacterial growth medium were used as controls. Exposed coupons were removed intermittently and observed microscopically for the extent of drilling. The total pit area and volume on these coupons were determined using image analysis. The results showed that both the biomachined area and volume increased with the duration of coupon exposure. In the drilling experiment, a copper thin film 2 microm thick was perforated by this bacterium within a period of 7 days. In conclusion, the results suggested that bacteria can be used as a tool for machining metallic surfaces.

  8. Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system

    NASA Astrophysics Data System (ADS)

    Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.

    2018-01-01

    To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.

  9. Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines

    NASA Astrophysics Data System (ADS)

    Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai

    2018-04-01

    In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.

  10. ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.

    The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. Furthermore, the drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, whilemore » the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This then allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. But, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.« less

  11. ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars

    DOE PAGES

    Jackson, R. S.; Wiens, R. C.; Vaniman, D. T.; ...

    2016-05-13

    The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. Furthermore, the drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, whilemore » the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This then allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. But, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.« less

  12. Quick-Connect, Self-Alining Latch

    NASA Technical Reports Server (NTRS)

    Burns, G. C.; Williams, E. J.

    1983-01-01

    Sturdy latch tolerates 10 degrees of angular mismatch in joining structural elements. Hexagonal passive plate nests in active plate, guided by capture plates and alinement keys and grooves. Center hole in both active and passive plates is 1 meter in diameter. Latch has possible uses a pipe joint, connector for parts of portable structures, and fitting for marine risers on offshore drilling rigs.

  13. Detection of Fatigue Crack in Basalt FRP Laminate Composite Pipe using Electrical Potential Change Method

    NASA Astrophysics Data System (ADS)

    Altabey, Wael A.; Noori, Mohammed

    2017-05-01

    Novel modulation electrical potential change (EPC) method for fatigue crack detection in a basalt fibre reinforced polymer (FRP) laminate composite pipe is carried out in this paper. The technique is applied to a laminate pipe with an embedded crack in three layers [0º/90º/0º]s. EPC is applied for evaluating the dielectric properties of basalt FRP pipe by using an electrical capacitance sensor (ECS) to discern damages in the pipe. Twelve electrodes are mounted on the outer surface of the pipe and the changes in the modulation dielectric properties of the piping system are analyzed to detect damages in the pipe. An embedded crack is created by a fatigue internal pressure test. The capacitance values, capacitance change and node potential distribution of ECS electrodes are calculated before and after crack initiates using a finite element method (FEM) by ANSYS and MATLAB, which are combined to simulate sensor characteristics and fatigue behaviour. The crack lengths of the basalt FRP are investigated for various number of cycles to failure for determining crack growth rate. Response surfaces are adopted as a tool for solving inverse problems to estimate crack lengths from the measured electric potential differences of all segments between electrodes to validate the FEM results. The results show that, the good convergence between the FEM and estimated results. Also the results of this study show that the electrical potential difference of the basalt FRP laminate increases during cyclic loading, caused by matrix cracking. The results indicate that the proposed method successfully provides fatigue crack detection for basalt FRP laminate composite pipes.

  14. Comparative analysis of numerical models of pipe handling equipment used in offshore drilling applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlus, Witold, E-mail: witold.p.pawlus@ieee.org; Ebbesen, Morten K.; Hansen, Michael R.

    Design of offshore drilling equipment is a task that involves not only analysis of strict machine specifications and safety requirements but also consideration of changeable weather conditions and harsh environment. These challenges call for a multidisciplinary approach and make the design process complex. Various modeling software products are currently available to aid design engineers in their effort to test and redesign equipment before it is manufactured. However, given the number of available modeling tools and methods, the choice of the proper modeling methodology becomes not obvious and – in some cases – troublesome. Therefore, we present a comparative analysis ofmore » two popular approaches used in modeling and simulation of mechanical systems: multibody and analytical modeling. A gripper arm of the offshore vertical pipe handling machine is selected as a case study for which both models are created. In contrast to some other works, the current paper shows verification of both systems by benchmarking their simulation results against each other. Such criteria as modeling effort and results accuracy are evaluated to assess which modeling strategy is the most suitable given its eventual application.« less

  15. Automation of cutting and drilling of composite components

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1991-01-01

    The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.

  16. Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems.

    PubMed

    Proctor, Caitlin R; Dai, Dongjuan; Edwards, Marc A; Pruden, Amy

    2017-10-04

    Several biotic and abiotic factors have been reported to influence the proliferation of microbes, including Legionella pneumophila, in hot water premise plumbing systems, but their combined effects have not been systematically evaluated. Here, we utilize simulated household water heaters to examine the effects of stepwise increases in temperature (32-53 °C), pipe material (copper vs. cross-linked polyethylene (PEX)), and influent assimilable organic carbon (0-700 μg/L) on opportunistic pathogen gene copy numbers and the microbiota composition, as determined by quantitative polymerase chain reaction and 16S rRNA gene amplicon sequencing. Temperature had an overarching influence on both the microbiota composition and L. pneumophila numbers. L. pneumophila peaked at 41 °C in the presence of PEX (1.58 × 10 5 gene copies/mL). At 53 °C, L. pneumophila was not detected. Several operational taxonomic units (OTUs) persisted across all conditions, accounting for 50% of the microbiota composition from 32 to 49 °C and 20% at 53 °C. Pipe material most strongly influenced microbiota composition at lower temperatures, driven by five to six OTUs enriched with each material. Copper pipes supported less L. pneumophila than PEX pipes (mean 2.5 log 10 lower) at temperatures ≤ 41 °C, but showed no difference in total bacterial numbers. Differences between pipe materials diminished with elevated temperature, probably resulting from decreased release of copper ions. At temperatures ≤ 45 °C, influent assimilable organic carbon correlated well with total bacterial numbers, but not with L. pneumophila numbers. At 53 °C, PEX pipes leached organic carbon, reducing the importance of dosed organic carbon. L. pneumophila numbers correlated with a Legionella OTU and a Methylophilus OTU identified by amplicon sequencing. Temperature was the most effective factor for the control of L. pneumophila, while microbiota composition shifted with each stepwise temperature increase. While copper pipe may also help shape the microbiota composition and limit L. pneumophila proliferation, its benefits might be constrained at higher temperatures. Influent assimilable organic carbon affected total bacterial numbers, but had minimal influence on opportunistic pathogen gene numbers or microbiota composition. These findings provide guidance among multiple control measures for the growth of opportunistic pathogens in hot water plumbing and insight into the mediating role of microbial ecological factors.

  17. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.

    PubMed

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-02-07

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials.

  18. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites

    PubMed Central

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-01-01

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials. PMID:29414839

  19. Effects of specialized drill bits on hole defects of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xu, Jinyang; Chen, Ming

    2018-05-01

    Drilling is a conventional machining process widely applied to carbon fiber reinforced plastics (CFRP) for the riveting and fastening purposes in the aerospace and automotive industries. However, the machining mechanism of CFRP composites differ significantly from that of homogeneous metal alloys owing to their prominent anisotropy and heterogeneity. Serious hole defects such as fiber pullout, matrix debonding and delamination are generally produced during the hole-making process, resulting in the poor machined surface quality, low fatigue durability or even the part rejections. In order to minimize the defects especially the delamination damage in composites drilling, specialized drill bits are often a primary choice being widely adopted in a real production. This paper aims to study the effects of two drills differing in geometrical characteristics during the drilling of CFRP laminates. A number of drilling experiments were carried out with the aim to evaluate the drilling performance of different drill bits. A scanning electron microscope (SEM) was used to observe the drilled surfaces to study the surface roughness. A high frequency scanning acoustic microscope (SAM) was applied to characterize the drilled hole morphologies with a particular focus on the delamination damage occurring in the CFRP laminates. The obtained results indicate that the fiber orientation relative to the cutting direction is a key factor affecting hole morphology and hole wall defects can be reduced by utilizing specialized drill geometries. Moreover, the dagger drill was confirmed outperforming the brad spur drill from the aspect of reducing drilling-induced delamination.

  20. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.

  1. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.

  2. Delamination measurement of a laminates composite panel due to hole punching based on the focus variation technique

    NASA Astrophysics Data System (ADS)

    Abdullah, A. B.; Zain, M. S. M.; Abdullah, M. S.; Samad, Z.

    2017-07-01

    Structural materials, such as composite panels, must be assembled, and such panels are typically constructed via the insertion of a fastener through a drilled hole. The main problem encountered in drilling is delamination, which affects assembly strength. The cost of drilling is also high because of the severe wear on drill bits. The main goal of this research is to develop a new punching method as an alternative to drilling during hole preparation. In this study, the main objective is to investigate the effect of different puncher profiles on the quality of holes punched into carbon fiber reinforcement polymer (CFRP) composite panels. Six types of puncher profiles were fabricated with minimum die clearance (1%), and two quality aspects, namely, incomplete shearing and delamination factor, were measured. The conical puncher incurred the least defects in terms of delamination and yielded an acceptable amount of incomplete shearing in comparison with the other punchers.

  3. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    NASA Astrophysics Data System (ADS)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  4. Dental hard tissue drilling by longitudinally excited CO2 laser

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2017-07-01

    We developed a longitudinally excited CO2 laser with a long optical cavity and investigated the drilling characteristics of dental hard tissue. The CO2 laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 13 mm, a pulse power supply, a step-up transformer, a storage capacitance, a spark gap, and a long optical cavity with a cavity length of 175 cm. The CO2 laser produced a short pulse that had a spike pulse with the width of 337 ns and the energy of 1.9 mJ, a pulse tail with the length of 180 μs and the energy of 37.6 mJ, and a doughnut-like beam. In the investigation, a sample was a natural drying human tooth (enamel and dentine). In a processing system, a ZnSe focusing lens with the focal length of 50 mm was used and the location of the focal plane was that of the sample surface. In 1 pulse irradiation, the drilling characteristics depended on the fluence was investigated. In the enamel and dentin drilling, the drilling depth increased with the fluence. The 1 pulse irradiation with the fluence of 21.5 J/cm2 produced the depth of 79.3 μm in the enamel drilling, and the depth of 152.7 μm in the dentin drilling. The short-pulse CO2 laser produced a deeper drilling depth at a lower fluence than long-pulse CO2 lasers in dental hard tissue processing.

  5. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  6. Method for machining holes in composite materials

    NASA Technical Reports Server (NTRS)

    Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)

    1987-01-01

    A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

  7. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    PubMed

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  8. Lay-Up and Consolidation of a Composite Pipe by In Situ Ultrasonic Welding of a Thermoplastic Matrix Composite Tape.

    PubMed

    Dell'Anna, Riccardo; Lionetto, Francesca; Montagna, Francesco; Maffezzoli, Alfonso

    2018-05-11

    In this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties.

  9. Lay-Up and Consolidation of a Composite Pipe by In Situ Ultrasonic Welding of a Thermoplastic Matrix Composite Tape

    PubMed Central

    Dell’Anna, Riccardo; Montagna, Francesco

    2018-01-01

    In this work, the potential of preformed thermoplastic matrix composite tapes for the manufacturing of composite pipes by filament winding assisted by in situ ultrasonic welding was evaluated. Unidirectional tapes of E-glass-reinforcedamorphous poly (ethylene terephthalate) were laid up and consolidated in a filament winding machine that was modified with a set-up enabling ultrasonic welding. The obtained composite specimens were characterized by means of morphological and dynamic mechanical analysis as well as void content evaluation, in order to correlate welding parameters to composite properties. PMID:29751693

  10. Precision hole punching on composite fiber reinforced polymer panels

    NASA Astrophysics Data System (ADS)

    Abdullah, A. B.; Zain, M. S. M.; Chan, H. Y.; Samad, Z.

    2017-12-01

    Structural materials, such as composite panels, can only be assembled, and in most cases through the use of fasteners, which are fitted into the drilled holes. However, drilling is costly and time consuming, thus affecting productivity. This research aims to develop an alternative method to drilling. In this paper, the precision of the holes was measured and the effects of the die clearance to the areas around the holes were evaluated. Measurement and evaluation were performed based on the profile of the holes constructed using Alicona IFM, a 3D surface measurement technique. Results showed that punching is a potential alternative to drilling but still requires improvements.

  11. Inductive shearing of drilling pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  12. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes

    EPA Science Inventory

    The stability of iron corrosion products and the bacterial composition of biofilm in drinking water distribution systems (DWDS) could have great impact on the water safety at the consumer ends. In this work, pipe loops were setup to investigate the transformation characteristics ...

  13. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  14. Heat pipe development

    NASA Technical Reports Server (NTRS)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  15. Method for noninvasive determination of acoustic properties of fluids inside pipes

    DOEpatents

    None

    2016-08-02

    A method for determining the composition of fluids flowing through pipes from noninvasive measurements of acoustic properties of the fluid is described. The method includes exciting a first transducer located on the external surface of the pipe through which the fluid under investigation is flowing, to generate an ultrasound chirp signal, as opposed to conventional pulses. The chirp signal is received by a second transducer disposed on the external surface of the pipe opposing the location of the first transducer, from which the transit time through the fluid is determined and the sound speed of the ultrasound in the fluid is calculated. The composition of a fluid is calculated from the sound speed therein. The fluid density may also be derived from measurements of sound attenuation. Several signal processing approaches are described for extracting the transit time information from the data with the effects of the pipe wall having been subtracted.

  16. Repairing pipes on the fly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    When piping develops leaks, the natural instinct is to shut the process down, purge the lines and call in maintenance crews to make the repairs. There is, however, an alternative: on-the-fly repairs. Through the use of specialized tools, equipment and technicians, shut-off valves can be installed and leaks repaired without interrupting production. The split sleeve offers one of the simpler approaches to on-the-fly repairs. Two half cylinders with inside diameter slightly larger than the outside diameter slightly larger than the outside diameter of the pipe to be repaired are slipped over the latter some distance form the leak and looselymore » bolted together. The cylinder is then slid over the leaking area and the bolts tightened. Gaskets inside the half cylinders provide the needed seal between the pipe and the cylinder. Installing a shut-off valve in an operating pipeline requires much more specialized equipment and skills than does repairing a leak with a split sleeve. A device available from International Piping Services Co. allows a trained crew to isolate a section of pipe, drill out the isolated portion, install a blocking valve and then remove the isolation system--all while continuing to operate the pipeline at temperatures to 700 F and pressures to 700 psi. But Herb Porter, CEO of Ipsco, cautions that unlike the repairing leaks with a split sleeve, installing a blocking valve on-the-fly always demands the services of a highly trained crew.« less

  17. Monitoring underground water leakage pattern by ground penetrating radar (GPR) using 800 MHz antenna frequency

    NASA Astrophysics Data System (ADS)

    Amran, T. S. T.; Ismail, M. P.; Ahmad, M. R.; Amin, M. S. M.; Ismail, M. A.; Sani, S.; Masenwat, N. A.; Basri, N. S. M.

    2018-01-01

    Water is the most treasure natural resources, however, a huge amount of water are lost during its distribution that leads to water leakage problem. The leaks meant the waste of money and created more economic loss to treat and fix the damaged pipe. Researchers and engineers have put tremendous attempts and effort, to solve the water leakage problem especially in water leakage of buried pipeline. An advanced technology of ground penetrating radar (GPR) has been established as one of the non-destructive testing (NDT) method to detect the underground water pipe leaking. This paper focuses on the ability of GPR in water utility field especially on detection of water leaks in the underground pipeline distribution. A series of laboratory experiments were carried out using 800-MHz antenna, where the performance of GPR on detecting underground pipeline and locating water leakage was investigated and validated. A prototype to recreate water-leaking system was constructed using a 4-inch PVC pipe. Different diameter of holes, i.e. ¼ inch, ½ inch, and ¾ inch, were drilled into the pipe to simulate the water leaking. The PVC pipe was buried at the depth of 60 cm into the test bed that was filled with dry sand. 15 litres of water was injected into the PVC pipe. The water leakage patterns in term of radargram data were gathered. The effectiveness of the GPR in locating the underground water leakage was ascertained, after the results were collected and verified.

  18. Reeled pipelay cost reduction using workboat-based installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, J.G.; El Laithy, W.F.; Rothberg, R.H.

    1995-11-01

    Coiled ``tubing`` is a rapidly growing pipeline technology. because this technology is relatively new, cost can vary significantly depending on deployment strategies and installation techniques. Up until recently coiled pipe was used primarily by service companies for coiled tubing workovers. As the technology expanded the industry began using coiled tubing for other applications such as drilling, coring, logging, well cleanout operations and artificial lift. With the recent advent of larger sizes, three and one half inches, it was now possible to consider using coiled tubing as pipelines. The coiled pipe was proving to be a low cost, time saving, economicmore » alternative to conventional welded pipe for flowlines. Coiled pipe applications have been used in 4 to 100 feet of water in the Gulf of Mexico area and the installation techniques have varied significantly. Considerable engineering work has been done in preparation for GUPCO`s first dynamic lay installation for a subsea well tie-in on Ramadan 22. Subsequently GUPCO installed the worlds longest known coiled pipeline on SB 367. This paper will cover the significant findings of that engineering work and present actual field case histories on Egypt`s first two coiled pipeline projects.« less

  19. Design Considerations for Lightweight Space Radiators Based on Fabrication and Test Experience with a Carbon-Carbon Composite Prototype Heat Pipe

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1998-01-01

    This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and Proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The proto-type heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/m2 can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micro-meteoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.

  20. Design Considerations for Lightweight Space Radiators Based on Fabrication and Test Experience With a Carbon-Carbon Composite Prototype Heat Pipe. Revised

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2002-01-01

    This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The prototype heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/sq m can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micrometeoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.

  1. Geothermal observation wells, Mt. Hood, Oregon. Final report, October 4, 1977-July 9, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, W.F.; Meyer, H.J.

    1979-11-01

    Exploration drilling operations were conducted which included the deepening of an existing hole, designated as Old Maid Flat No. 1, from 1850 ft (564 m) to 4002 (1220 m) on the western approaches to Mt. Hood and the drilling of three new holes ranging from 940 ft (287 m) to 1340 ft (409 m). The Clear Fork hole, located in Old Maid Flat, was drilled to 1320 ft (402 m). The Zigzag hole was drilled to 940 ft (287 m) at the southwestern base of Mt. Hood in the Zigzag River valley. The remaining hole was drilled on the Timberlinemore » Lodge grounds which is on the south flank of Mt. Hood at an elevation of about 6000 ft (1829 m) above sea level. The deepening project designated as Old Maid Flat No. 1 encountered a maximum bottom hole temperature of about 180/sup 0/F (82/sup 0/C) and is to this date the deepest exploratory hole in the Mt. Hood vicinity. No significant drilling problems were encountered. The Clear Fork and Zigzag River holes were completed without significant problems. The Timberline Lodge hole encountered severe drilling conditions, including unconsolidated formations. Two strings of tools were left in the hole from structural collapse of the hole. The hole was scheduled as a 2000 ft (610 m) test. Drilling did not proceed beyond 1350 ft (412 m) and due to junk it was unobstructed to a depth of 838 ft (255 m). Observation pipe was installed to 735 ft (224 m) due to further disintegration of the hole. The work was prematurely terminated due to weather conditions.« less

  2. Shear Ram Verification Test Protocol (VTP) Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, Roy A.; Braun, Joseph C.

    A blowout preventer (BOP) is a critical component used on subsea oil and gas wells during drilling, completion, and workover operations on the U. S. outer continental shelf (OCS). The purpose of the BOP is to seal oil and gas wells, and in the case of an emergency well-control event, to prevent the uncontrolled release of hydrocarbons. One of the most important components of the BOP is the hydraulically operated blind shear ram (BSR) that shears drilling-related components, such as drill pipes, casings, tubings, and wire-related tools that may have been placed in the well. In addition to shearing thesemore » components, the BSR must form a seal to keep hydrocarbons within the well bore, even when under the highest well-fluid pressures expected. The purpose of this document is for Argonne National Laboratory (ANL) to provide an independent view, based on current regulations, and best practices for testing and confirming the operability and suitability of BSRs under realistic (or actual) well conditions.« less

  3. Towngas Lantau link beach approach, Hong Kong and China Gas Co. Ltd.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callnon, D.P.; Bertolucci, L.

    1997-07-01

    Horizontal directional drilling (HDD) laid dual, 12-in. OD, natural gas pipelines beneath a critical sea wall on Lantau island, Hong Kong New Territories. This was part of a 30-mile gas pipeline crossing under the South China Sea associated with the Towngas Lantau construction project for Hong Kong`s new Chep Lap Kok International Airport. During a twenty-one day project, Cherrington Corp. drilled and forward-reamed two, 20-in., 1,294-ft. holes to pull back the twin pipelines. The project was completed during typhoon weather, strong currents and logistical problems associated with operation in a remote uninhabited area. The successful installation of the twin gasmore » lines was the result of proper hole design, high-quality surveying techniques and innovative directional drilling methods. Each hole exited approximately 90-ft. from the pre-installed product pipe in the sea floor trench. A 20-in. reamer with bull-nose and rear stabilizer was used to open both holes from 9 to 20-inches.« less

  4. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggington, W.J.; Stevens, P.M.; John, C.J.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selectedmore » for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.« less

  5. Economic and statistical analysis of time limitations for spotting fluids and fishing operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, P.S.; Brinkmann, P.E.; Taneja, P.K.

    1984-05-01

    This paper reviews the statistics of ''Spotting Fluids'' to free stuck drill pipe as well as the economics and statistics of drill string fishing operations. Data were taken from Mobil Oil Exploration and Producing Southeast Inc.'s (MOEPSI) records from 1970-1981. Only those events which occur after a drill string becomes stuck are discussed. The data collected were categorized as Directional Wells and Straight Wells. Bar diagrams are presented to show the Success Ratio vs. Soaking Time for each of the two categories. An analysis was made to identify the elapsed time limit to place the spotting fluid for maximum probabilitymore » of success. Also determined was the statistical minimum soaking time and the maximum soaking time. For determining the time limit for fishing operations, the following criteria were used: 1. The Risked ''Economic Breakeven Analysis'' concept was developed based on the work of Harrison. 2. Statistical Probability of Success based on MOEPSI's records from 1970-1981.« less

  6. Update on the Chemical Composition Of Crystalline, Smectite, and Amorphous Components for Rocknest Soil and John Klein and Cumberland Mudstone Drill Fines at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Vaniman, D. T.; Bish, D. L.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Downs, R. T.; Rampe, E. B.; hide

    2015-01-01

    We have previously calculated the chemical compositions of the X-ray-diffraction (XRD) amorphous component of three solid samples (Rocknest (RN) soil, John Klein (JK) drill fines, and Cumberland (CB) drill fines) using major-element chemistry (APXS), volatile-element chemistry (SAM), and crystalline- phase mineralogy (CheMin) obtained by the Curiosity rover as a part of the ongoing Mars Science Laboratory mission in Gale Crater. According to CheMin analysis, the RN and the JK and CB samples are mineralogically distinct in that RN has no detectable clay minerals and both JK and CB have significant concentrations of high-Fe saponite. The chemical composition of the XRD amorphous component is the composition remaining after mathematical removal of the compositions of crystalline components, including phyllosilicates if present. Subsequent to, we have improved the unit cell parameters for Fe-forsterite, augite, and pigeonite, resulting in revised chemical compositions for the XRD-derived crystalline component (excluding clay minerals). We update here the calculated compositions of amorphous components using these revised mineral compositions.

  7. A composite lithology log while drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, E.; Sutcliffe, B.; Franks, A.

    A new method for producing a computerized composite lithology log (CLL) while drilling by integrating MWD (measurement while drilling) and surface data is described. The CLL integrates three types of data (MWD mechanical, MWD geophysical, and surface cuttings) acquired during drilling, in three time stages: (1) Real Time. MWD drilling mechanical data including the rate of penetration and the downhole torque. This stage would provide bed boundaries and some inferred lithology. This would assist the driller with immediate drilling decisions and determine formation tops for coring, casing point, and correlation. (2) MWD Time. Recomputation of the above by adding MWDmore » geophysical data (gamma-ray, resistivity, neutron-density). This stage would upgrade the lithology inference, and give higher resolution of bed boundaries. (3) Lag Time. Detailed analysis of surface cuttings to confirm the inferred lithologies. This last input will result in a high-quality CLL with accurate lithologies and bed boundaries. The log will serve the geologist as well as the driller, petrophysicist, and reservoir engineer. It will form the basis for more comprehensive formation evaluation while drilling by adding hydrocarbon and MWD log data.« less

  8. Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles

    NASA Astrophysics Data System (ADS)

    Bég, O. Anwar; Espinoza, D. E. Sanchez; Kadir, Ali; Shamshuddin, MD.; Sohail, Ayesha

    2018-04-01

    An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of nano-particles into working drilling fluids may resolve a number of issues including borehole instability, lost circulation, torque and drag, pipe sticking problems, bit balling and reduction in drilling speed. The aim of this article is, therefore, to evaluate the rheological characteristics and lubricity of different nano-particles in water-based mud, with the potential to reduce costs via a decrease in drag and torque during the construction of highly deviated and ERD wells. Extensive results are presented for percentage in torque variation and coefficient of friction before and after aging. Rheology is evaluated via apparent viscosity, plastic viscosity and gel strength variation before and after aging for water-based muds (WBM). Results are included for silica and titanium nano-particles at different concentrations. These properties were measured before and after aging the mud samples at 80 °C during 16 h at static conditions. The best performance was shown with titanium nano-particles at a concentration of 0.60% (w/w) before aging.

  9. Study on the influence of parameters of medical drill on bone drilling temperature

    NASA Astrophysics Data System (ADS)

    XU, Xianchun; Hu, Yahui; Han, Jingwang; Yue, Lin; Jiang, Wangbiao

    2018-03-01

    During surgical interventions, the temperature generated during cortical bone drilling can affect the activity of bone material, which may lead to necrosis. In this paper, with the purpose of reducing the temperature during cortical bone drilling, the influence of the parameters of medical drill were analyzed. The finite element model of the drilling process was established based on the parametric design of the dril. The relationship between the drill bit diameter, the point angle, and the helix angle to the drilling temperature was studied by the center composite experiment. The results showed that the drilling temperature is increased with the increase of drill diameter, vertex angle and helix angle in the range of certain research.

  10. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    PubMed

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.

  11. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.

    PubMed

    Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim

    2014-01-01

    Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due to mixing. In situ thermogenic gas production at depths shallower 2000 mbsf is unlikely based on in situ temperature estimations between 81°C and 85°C and a cumulative time-temperature index of 0.23. In conclusion, the onboard SciGas data acquisition helps to provide a preliminary, qualitative evaluation of the gas composition, the in situ temperature and the possibility of gas migration.

  12. Earth boring apparatus with multiple welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, J.B.; Crews, S.T.

    1981-06-16

    A box tool joint member of generally tubular configuration is adapted for securement by welding to one end of a steel tube to form a drill pipe. The box tool joint member comprises a body having a cylindrical outer periphery, an internally threaded socket at one end of the body, and a weld neck of smaller outer diameter than the body adjacent to the other end of the body. A tapered transition piece connecting the neck with the adjacent end of the body provides an elevator shoulder. A correlative pin tool joint member is welded to the opposite end ofmore » the tube to complete the drill pipe. The box tool joint member has an annular band of hard facing over the outer periphery of the transition piece and extending down over the adjacent part of the weld neck and up around the adjacent part of the body. The hard facing is corrosion resistant and has a smooth finished surface. Underneath the hard facing and extending beyond both ends of the hard facing is an annular butter layer of non-hardenable steel. The tool joint member is hardened and tempered after the butter layer is welded into a body groove and before the hard facing is welded on .The butter layer is grooved before the hard facing is welded on.« less

  13. Calibration Shots Recorded for the Salton Seismic Imaging Project, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Murphy, J. M.; Rymer, M. J.; Fuis, G. S.; Stock, J. M.; Goldman, M.; Sickler, R. R.; Miller, S. A.; Criley, C. J.; Ricketts, J. W.; Hole, J. A.

    2009-12-01

    The Salton Seismic Imaging Project (SSIP) is a collaborative venture between the U.S. Geological Survey, California Institute of Technology, and Virginia Polytechnic Institute and State University, to acquire seismic reflection/wide angle refraction data, and currently is scheduled for data acquisition in 2010. The purpose of the project is to get a detailed subsurface 3-D image of the structure of the Salton Trough (including both the Coachella and Imperial Valleys) that can be used for earthquake hazards analysis, geothermal studies, and studies of the transition from ocean-ocean to continent-continent plate-boundary. In June 2009, a series of calibration shots were detonated in the southern Imperial Valley with specific goals in mind. First, these shots were used to measure peak particle velocity and acceleration at various distances from the shots. Second, the shots were used to calibrate the propagation of energy through sediments of the Imperial Valley. Third, the shots were used to test the effects of seismic energy on buried clay drainage pipes, which are abundant throughout the irrigated parts of the Salton Trough. Fourth, we tested the ODEX drilling technique, which uses a down-hole casing hammer for a tight casing fit. Information obtained from the calibration shots will be used for final planning of the main project. The shots were located in an unused field adjacent to Hwy 7, about 6 km north of the U.S. /Mexican border (about 18 km southeast of El Centro). Three closely spaced shot points (16 meters apart) were aligned N-S and drilled to 21-m, 23.5-m, and 27-m depth. The holes were filled with 23-kg, 68-kg, and 123-kg of ammonium-nitrate explosive, respectively. Four instrument types were used to record the seismic energy - six RefTek RT130 6-channel recorders with a 3-component accelerometer and a 3-component 2-Hz velocity sensor, seven RefTek RT130 3-channel recorders with a 3-component 4.5-Hz velocity sensor, 35 Texans with a vertical component 4.5-Hz velocity sensor, and a 60-channel cabled array with 40-Hz sensors. Irrigation districts in both the Coachella Valley and Imperial Valley use clay drainage pipes buried beneath fields to remove irrigation water and prevent ponding. To determine the effect of seismic energy on the drain pipes, we exposed sections of pipe several meters long with a backhoe at distances of 7-15 meters from the shot holes, and, after each shot, visually inspected the pipes. Our shots produced no pipe damage.

  14. GHGfrack: An Open-Source Model for Estimating Greenhouse Gas Emissions from Combustion of Fuel during Drilling and Hydraulic Fracturing.

    PubMed

    Vafi, Kourosh; Brandt, Adam

    2016-07-19

    This paper introduces GHGfrack, an open-source engineering-based model that estimates energy consumption and associated GHG emissions from drilling and hydraulic fracturing operations. We describe verification and calibration of GHGfrack against field data for energy and fuel consumption. We run GHGfrack using data from 6927 wells in Eagle Ford and 4431 wells in Bakken oil fields. The average estimated energy consumption in Eagle Ford wells using lateral hole diameters of 8 (3)/4 and 6 (1)/8 in. are 2.25 and 2.73 TJ/well, respectively. The average estimated energy consumption in Bakken wells using hole diameters of 6 in. for horizontal section is 2.16 TJ/well. We estimate average greenhouse gas (GHG) emissions of 419 and 510 tonne of equivalent CO2 per well (tonne of CO2 eq/well) for the two aforementioned assumed geometries in Eagle Ford, respectively, and 417 tonne of CO2 eq/well for the case of Bakken. These estimates are limited only to GHG emissions from combustion of diesel fuel to supply energy only for rotation of drill string, drilling mud circulation, and fracturing pumps. Sensitivity analysis of the model shows that the top three key variables in driving energy intensity in drilling are the lateral hole diameter, drill pipe internal diameter, and mud flow rate. In hydraulic fracturing, the top three are lateral casing diameter, fracturing fluid volume, and length of the lateral.

  15. Firefighting and Emergency Response Study of Advanced Composites Aircraft. Objective 3: Penetrating and Overhauling Wreckage

    DTIC Science & Technology

    2011-10-01

    through 0.25-in composite in about 23 s. The blade can be used with a standard handheld drill so no special equipment is needed. A firefighter was able...coated reciprocating and circular saw blades, and a drill motor with a diamond coated hole saw to use in responding to emergencies involving...American made blade of that size was not found. The hole saw measured 6 in outside diameter and could drill to a depth of 1 ⅜ in. The hole saw had a ½ in

  16. Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.

  17. Determination of principal stress in birefringent composites by hole-drilling method

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    1981-01-01

    The application of transmission photoelasticity to stress analysis of composite materials is discussed.The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are described which verify the theoretical predicitons. The limitations of the method are discussed and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.

  18. The defectiveness of measurement data in the inclinometer mesurement in the insertion-type aperture and an introduction about the crrection

    NASA Astrophysics Data System (ADS)

    Homma, H.; Fujisawa, K.; Chiba, S.; Ootsuka, Y.; Higuchi, K.; Suganuma, T.

    2010-12-01

    Since 1975, the insertion type borehole inclinometer has been used to measure an underground lateral deformation in the civil engineering works field in Japan. The borehole inclinometer is used for a lot of landslide investigations as an effective measuring instrument to judge the slide surface position and the rate of slip. On the other hand, it became popular to be able to gather cores at 100% collection rate by the core-pack-tube method having been developed in the drilling survey. As a result, because the grasp accuracy of geological features had improved greatly, it became clear there was a case where the measurement data of the borehole inclinometer did not obviously show the displacement of the ground. As a result,to correct data even if the method of setting up the guide pipe is examined so as not to generate defective data , some engineers where such the realities were understood have been examining it about the correction method. Therefore, there is a case where there is no standards united about the methods of measuring the insertion type borehole inclinometer, and defective data is used still as a result of the observation though the ratio of defective data has decreased. The Pubic Works Research Institute landslide team and three private company companies of Japan did a joint research from these on the generation of defective data between fiscal year 2008 and fiscal year 2009 to prevent it. And, they made the manual that brought the matter to do an appropriate borehole inclinometer (Insertion type borehole inclinometer measurement manual on the landslide ground). In various experiments executed by a joint research, to prevent defective data being generated, it has been understood that the installation of the guide pipe is most important. The following two problems occur if a defective installation of the guide pipe is caused. (1)S shape data in graph (2)Disorder of flat direction of displacement (1) Because filling work at the time of the guide pipe setting is not enough, a gap occurs between a drill hole and a guide pipe. The grout material of the cement system is used standard in Japan. However, the landslide mass flows out easily in general because there are a lot of cracks in addition to low the groundwater level. Therefore we work on filling with paccar, and it is necessary to let a guide pipe and the ground. (2)The direction of the displacement that data shows is different from the direction of the movement of the actual ground. In this data, the product of the guide pipe twists, and both of the twist when setting it up are causes of generation. However, it is almost impossible to prevent this. Therefore, the twist is corrected measuring the azimuth of the guide tube with a simple type borehole camera. The insertion type clinometer in the aperture is a measure used in many landslide, but a guide pipe and revision of certain setting of the ground and the torsion of the guide pipe are necessary to get right data. And, this manual may be useful internationally.

  19. New Era of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.

    2014-12-01

    The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.

  20. A composite lithology log while drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, E.; Sutcliffe, B.; Franks, A.

    A new method for producing a computerized composite lithology log (CLL) while drilling by integrating MWD (measurement while drilling) and surface data is described. At present, lithology logs are produced at the well site by mud loggers. They provide basic description and relative amounts of lithologies. Major difficulties are encountered in relating the cuttings to their original formations due to mixing in the drilling mud while transporting to the surface, sloughing shales, flawed sampling, etc. This results in a poor control on the stratigraphic sequence and on the depth of formation boundaries. A composite log can be produced after drillingmore » this additional inputs such as wireline, petrography, and paleontology. This process is labor intensive and expensive. The CLL integrates three types of data (MWD mechanical, MWD geophysical, and surface cuttings) acquired during drilling, in three time stages: (1) Real Time. MWD drilling mechanical data including the rate of penetration and the downhole torque. This stage would provide bed boundaries and some inferred lithology. This would assist the driller with immediate drilling decisions and determine formation tops for coring, casing point, and correlation. (2) MWD Time. Recomputation of the above by adding MWD geophysical data (gamma-ray, resistivity, neutron-density). This stage would upgrade the lithology inference, and give higher resolution to bed boundaries, (3) Lag Time. Detailed analysis of surface cuttings to confirm the inferred lithologies. This last input results in a high-quality CLL with accurate lithologies and bed boundaries.« less

  1. Drill/borescope System for the Mars Polar Pathfinder

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Wood, S. E.; Vasavada, A. R.

    1993-01-01

    The primary goals of the Mars Polar Pathfinder (MPP) Discovery Mission are to characterize the composition and structure of Mars' north polar ice cap, and to determine whether a climate record may be preserved in layers of ice and dust. The MPP would land as close as possible to the geographic north pole of Mars and use a set of instruments similar to those used by glaciologists to study polar ice caps on Earth: a radar sounder, a drill/borescope system, and a thermal probe. The drill/borescope system will drill approximately 50 cm into the surface and image the sides of the hole at 10 micron resolution for compositional and stratigraphic analysis. Several uncertainties have guided the development of this instrument, and they are discussed.

  2. Geology and geochemistry of the Mammoth breccia pipe, Copper Creek mining district, southeastern Arizona: Evidence for a magmatic-hydrothermal origin

    USGS Publications Warehouse

    Anderson, E.D.; Atkinson, William W.; Marsh, T.; Iriondo, A.

    2009-01-01

    The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead-silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/ 39Ar dates suggest a minimum age of 61.5??0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0??0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1-2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4-35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375??C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469??25??C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2??? to 13.4??? and -60??? to -39???, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe. ?? Springer-Verlag 2008.

  3. Hydraulics calculation in drilling simulator

    NASA Astrophysics Data System (ADS)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  4. Application of Formation Testing While Drilling (GeoTap) for acquiring formation pressure data from the Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real time. The GeoTap tester obtains direct pore-pressure measurements as the well is being drilled, with accuracy and precision comparable to that of wireline testers. The GeoTap service can eliminate the time, risk, and cost associated with running pipe-conveyed wireline test tools. It also measures annular and bore pressure while drilling, providing accurate, continuous, real-time hydrostatic pressure, and equivalent circulating density (ECD) information. This aids in determining and maintaining optimal mud weight, reduces formation damage, increases the rate of penetration, and increases operational safety. GeoTap benefits can be improvement of formation evaluation, real-time fluid gradients and fluid mobility (permeability/viscosity indicator), identification of fluid contact points, determination of reservoir connectivity/compartmentalization and depletion, increase safety of operation, determination of optimal mud weight and manage of ECD. We can also continuously monitor wellbore stability for assessments in order to reduce formation damage which in turns will help to increase drilling effectiveness (determine precise overbalance for maximizing ROP and continuously monitor hole-cleaning effectiveness with pressure-while-drilling, while reducing formation damage due to swab/surge). Save time and money by reducing rig down time associated with wireline testing. GeoTap Tool capable of performing more than 150 pressure tests per run and optional orientation of pressure measurement is available (top, right, bottom or left). GeoTap testing has been completed with encouraging results in many wells up to circa 3000m deep. Data has been acquired successfully both in a "Drill-Test-Drill' mode and a "Post-Drill-Test" mode. GeoTap tests have spanned wide ranges of borehole temperature, pressure, mobility as well as formation permeability and overbalance conditions. GeoTap tests in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic have proved that a logging while drilling approach can be successfully employed to acquire formation pressure data in open hole (which is also very useful for fluid gradient analysis, oil water and gas oil contacts delineation/identification).

  5. Manufacturing Methods for Cutting, Machining and Drilling Composites. Volume 1. Composites Machining Handbook

    DTIC Science & Technology

    1978-08-01

    12°±30’ 1180±2° OPTIONAL .0005 IN./IN. BACK TAPER 015 RAD LIPS TO BE WITHIN .002 OF TRUE ANGULAR POSITION NOTES: 1. LAND WIDTH: 28% ± .005... horoscope and dye-penetrant requirements. 79 PHASE 1 PHASE II PHASE III PHASE IV CUTTING DRILLING MACHINING NONDESTRUCTIVE EVALUATION METHOD MATERIAL

  6. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.

  7. Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom; Reid, Robert S.

    1998-01-01

    The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of a full size, leading-edge-shaped heat pipe. The heat pipe had a 'D-shaped' cross section and was fabricated from arc cast Mo-4lRe. An artery was included in the wick. Several issues were resolved with the fabrication of the sharp leading edge radius heat pipe. The heat pipe was tested in a vacuum chamber at Los Alamos National Laboratory using induction heating and was started up from the frozen state several times. However, design temperatures and heat fluxes were not obtained due to premature failure of the heat pipe resulting from electrical discharge between the induction heating apparatus and the heat pipe. Though a testing anomaly caused premature failure of the heat pipe, successful startup and operation of the heat pipe was demonstrated.

  8. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  9. Special Features of Induction Annealing of Friction Stir Welded Joints of Medium-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Priymak, E. Yu.; Stepanchukova, A. V.; Bashirova, E. V.; Fot, A. P.; Firsova, N. V.

    2018-01-01

    Welded joints of medium-alloy steels XJY750 and 40KhN2MA are studied in the initial condition and after different variants of annealing. Special features of the phase transformations occurring in the welded steels are determined. Optimum modes of annealing are recommended for the studied welded joints of drill pipes, which provide a high level of mechanical properties including the case of impact loading.

  10. Selection of pipe repair methods.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of this research is to provide pipeline operators with testing procedures and : results of the performance of composite pipe repair methods and ultimately, improve their : selection and installation, and reduce the risks associated with...

  11. Supervisory control of drilling of composite materials

    NASA Astrophysics Data System (ADS)

    Ozaki, Motoyoshi

    Composite materials have attractive features, such as high ratios of strength-to-weight and stiffness-to-weight. However, they are easily damaged when they are machined. A typical damage is delamination, which can occur when fiber reinforced composite laminates are drilled. The objective of this research is to study the drilling processes of carbon fiber reinforced laminates, and to develop and test a supervisory control strategy for their delamination-free drilling. Characterization of thrust force and torque is achieved through constant feedrate drilling experiments. The average values of thrust force and torque during the full engagement of the drill are utilized to obtain the Shaw's equations' parameters. The thrust force profile just before exit is given special attention. The Hocheng-Dharan equations, which give conservative values of delamination at the entrance and at the exit, are modified to express the influence of one lamina thickness explicitly. They are utilized not only for the characterization of thrust force but also for the determination of the thrust force reference for force control. In the design of the controllers of thrust force and torque, both thrust force and torque are assumed to be proportional to FPHR (Feed Per Half Revolution). A discrete-time dynamic model is established for the case when the time interval for a half revolution of the drill is divided by the sampling time, and the model is extended to the case of general spindle speeds. PI controllers are designed for the dynamic models of thrust force and torque. Root-locus techniques are used in the analysis. The phases of the drilling process are introduced and the control strategy at each phase is explained. The supervisory controller chooses not only the best control strategy for each phase, but also the reference value and the controller gain that are suitable at each drill position. Drilling experiments are conducted to show the usefulness of the concepts introduced in this dissertation, and to give an example of installing the control parameters, which were derived from data obtained in this research, on the supervisory controller. Efficient Delamination-free drilling is given special emphasis in the experiments.

  12. Drilling Holes in Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Daniels, J. G.; Ledbetter, Frank E., III; Penn, B. G.; White, W. L.

    1986-01-01

    Slurry of silicon carbide powder in water fed onto bit while drilling. Slurry contains about 60 percent silicon carbide by weight. Slurry recirculated by low-power pump. With slurry, dull tools cut as fast as, or faster than, sharp ones. Holes drilled rapidly and efficiently regardless of ply orientation; whether unidirectional, quasi-isotropic symmetrical, or cross-ply.

  13. Determination of calibration constants for the hole-drilling residual stress measurement technique applied to orthotropic composites. II - Experimental evaluations

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Prabhakaran, R.; Tompkins, S.

    1987-01-01

    The first step in the extension of the semidestructive hole-drilling technique for residual stress measurement to orthotropic composite materials is the determination of the three calibration constants. Attention is presently given to an experimental determination of these calibration constants for a highly orthotropic, unidirectionally-reinforced graphite fiber-reinforced polyimide composite. A comparison of the measured values with theoretically obtained ones shows agreement to be good, in view of the many possible sources of experimental variation.

  14. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  15. Oceanic Basement Probed

    ERIC Educational Resources Information Center

    Cann, J. R.; Moore, David G.

    1978-01-01

    Summarizes findings of the deep sea drilling project at Scripps Institute of Oceanology. Results of Atlantic and Pacific Ocean drillings in terms of the composition and properties of the sea floor are discussed. (CP)

  16. Accurate Pointing by Curiosity

    NASA Image and Video Library

    2013-04-12

    NASA Curiosity Mars rover targeted the laser of the ChemCam instrument with remarkable accuracy for assessing the composition of the wall of a drilled hole and tailings that resulted from the drilling.

  17. Experience with flexible pipe in sour service environment: A case study (the Arabian Gulf)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Maslamani, M.J.

    The suitability of a flexible pipe was evaluated on a trial basis for a lift gas line in a sour oil field in the State of Qatar, in the Arabian Gulf. Flexible pipes have been successfully used in the oil and gas industries for transportation of methanol, benzene and gas condensates in wet sweet environment at temperatures of up to 80 C. However, there is little or no information available as to its corrosion resistance in sour service wells containing 6% CO{sub 2} with 3% mole H{sub 2}S and at moderate temperatures. The present experience with a flexible pipe inmore » the gas field of Qatar has shown that under sour service conditions, the layered, composite material can suffer severe degradation leading to failure. A detailed inspection and failure analysis of the flexible pipe forms the basis of this paper. The failure demonstrates the significant effects of stress level, environmental aggressiveness, and localized hard zones in promoting Sulfide Stress Cracking (SSC). Permeability of this sour gas through the composite layer of the flexible pipe resulted in varying degree of sulfide attack and hydrogen embrittlement depending on the susceptibility of the multi layered material.« less

  18. Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.

    2012-01-01

    Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.

  19. Drag reduction of alumina nanofluid in spiral pipe with turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Yanuar, Mau, Sealtial; Waskito, Kurniawan T.; Putra, Okky A.; Hanif, Rifqi

    2017-03-01

    This study was conducted to investigate the effects of nanofluid flows through the spiral pipe on drag reduction in turbulent flow conditions. Al2O3 nanoparticles dispersed into pure water at ratio of 100 ppm, 200 ppm and 300 ppm as well as the duration of the mixing time 30 minutes, 60 minutes and 120 minutes. A circular pipe used as a comparison to spiral pipe and both are mounted horizontally. Spiral pipe ratio is P/Di 10.8 and the inner diameter of circular pipe is 3 mm. Mixing time and composition ratio of nanoparticle in basic fluid influence drag reduction results. Nanofluid flows through the test pipe with Reynolds number between 4.0 × 103 to 2.0 × 104 showed high drag reduction occurred in the spiral pipe is 38%.

  20. Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development

    NASA Technical Reports Server (NTRS)

    Jakupca, Ian; Burke, Kenneth A.

    2003-01-01

    The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.

  1. Hydraulic drill string breakdown and bleed off unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeringue, F.J. Jr.

    1987-02-17

    An apparatus is described for use within an oil well rig for decoupling a tubing string into pipe segments comprising, in combination: rotary tong means for applying an unthreading torque to a first, upper pipe segment within the tubing string; torque resisting means for securing a second, lower pipe segment within the tubing string against the unthreading torque; containing means, intermediate the rotary tong means and the torque resisting means, enclosing a threaded joint of the tubing string, adapted for containing pressurized gases, liquids, and particulates, released from the threaded joint upon the decoupling; fluid communicating means for allowing fluidmore » communication between the containing means and a receiving point adapted for receiving the pressurized gases, liquids, and particulates; means for moving the rotary tong means, the torque resisting means and the containing means between a closed, engaging position with the tubing string and an open position; and means for horizontally moving the rotary tong means, the torque resisting means and the containing means between a position adjacent the tubing string and a position away from the tubing string.« less

  2. Reconstruction of in-situ porosity and porewater compositions of low-permeability crystalline rocks: Magnitude of artefacts induced by drilling and sample recovery

    NASA Astrophysics Data System (ADS)

    Meier, D. B.; Waber, H. N.; Gimmi, T.; Eichinger, F.; Diamond, L. W.

    2015-12-01

    Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.

  3. Reconstruction of in-situ porosity and porewater compositions of low-permeability crystalline rocks: Magnitude of artefacts induced by drilling and sample recovery.

    PubMed

    Meier, D B; Waber, H N; Gimmi, T; Eichinger, F; Diamond, L W

    2015-12-01

    Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kg water, compared to 0.5 mg/kg water in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Light as a key driver of freshwater biofouling surface roughness in an experimental hydrocanal pipe rig.

    PubMed

    Ravizza, Matilde; Giosio, Dean; Henderson, Alan; Hovenden, Mark; Hudson, Monica; Salleh, Sazlina; Sargison, Jane; Shaw, Jennifer L; Walker, Jessica; Hallegraeff, Gustaaf

    2016-07-01

    Biofouling in canals and pipelines used for hydroelectric power generation decreases the flow capacity of conduits. A pipeline rig was designed consisting of test sections of varying substrata (PVC, painted steel) and light levels (transparent, frosted, opaque). Stalk-forming diatoms were abundant in both the frosted and transparent PVC pipes but negligible in the painted steel and opaque PVC pipes. Fungi were slightly more abundant in the painted steel pipe but equally present in all the other pipes while bacterial diversity was similar in all pipes. Photosynthetically functional biofouling (mainly diatoms) was able to develop in near darkness. Different biological fouling compositions generated differing friction factors. The highest friction factor was observed in the transparent pipe (densest diatom fouling), the lowest peak friction for the opaque PVC pipe (lowest fouling biomass), and with the painted steel pipe (high fouling biomass, but composed of fungal and bacterial crusts) being intermediate between the opaque and frosted PVC pipes.

  5. Geochemical monitoring of drilling fluids; A powerful tool to forecast and detect formation waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuataz, F.D.; Brach, M.; Criaud, A.

    1990-06-01

    This paper describes a method based on the difference between the chemical compositions of formation and drilling fluids for analyzing drilling mud to forecast fluid-producing zones. The method was successfully applied in three boreholes in crystalline rocks in France. Subsequent geophysical logs and hydraulic tests confirmed the occurrence of flowing fractures.

  6. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    PubMed

    Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.

  7. An approach to derive some simple empirical equations to calibrate nuclear and acoustic well logging tools.

    PubMed

    Mohammad Al Alfy, Ibrahim

    2018-01-01

    A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pulsed Nd:YAG laser beam drilling: A review

    NASA Astrophysics Data System (ADS)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  9. Isotope compositions of C and O of magmatic calcites from the Udachnaya-East pipe kimberlite, Yakutia

    NASA Astrophysics Data System (ADS)

    Tomilenko, A. A.; Dublyansky, Yu. V.; Kuzmin, D. V.; Sobolev, N. V.

    2017-07-01

    It has been demonstrated for the first time that the isotopic compositions of carbon (δ13C) in magmatic calcites from the Udachnaya-East pipe kimberlite groundmass varies from-2.5 to-1.0‰ (V-PDB), while those of oxygen (δ18O) range from 15.0 to 18.2‰ (V-SMOW). The obtained results imply that during the terminal late magmatic and postmagmatic stages of the kimberlite pipe formation, the carbonates in the kimberlite groundmass became successively heavier isotopically, which indicates the hybrid nature of the carbonate component of the kimberlite: it was formed with contributions from mantle and sedimentary marine sources.

  10. Method and apparatus for injecting particulate media into the ground

    DOEpatents

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  12. Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Ziomek-Moroz; J.A. Hawk; R. Thodla

    2012-05-06

    The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -},more » HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.« less

  13. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs.

    PubMed Central

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E

    1994-01-01

    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions. PMID:7529705

  14. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs.

    PubMed

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E

    1994-10-01

    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions.

  15. Determination of calibration constants for the hole-drilling residual stress measurement technique applied to orthotropic composites. I - Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Prabhakaran, R.; Tompkins, S.

    1987-01-01

    The hole-drilling technique for the measurement of residual stresses using electrical resistance strain gages has been widely used for isotropic materials and has been adopted by the ASTM as a standard method. For thin isotropic plates, with a hole drilled through the thickness, the idealized hole-drilling calibration constants are obtained by making use of the well-known Kirsch's solution. In this paper, an analogous attempt is made to theoretically determine the three idealized hole-drilling calibration constants for thin orthotropic materials by employing Savin's (1961) complex stress function approach.

  16. Fundamental mechanisms of failure in polyethylene gas pipes. Final report, January 1, 1992-December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.; Lu, X.

    1996-07-30

    The reseach objectives were: to provide a fundamental understanding of the primary long term failure process which occurs in gas pipe systems, notably slow crack growth (SCG)s; to develop methods for the accelerated testing of the resistance of polyethylene piping systems to SCG; to obtain experimental results on current materials being used or considered for use by the gas industry; and to measure the effects on SCG of processing variables in the production of pipe and fittings and compositional variables in the production of resin.

  17. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  18. Drilling fluid containing a copolymer filtration control agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, J. M.

    1985-10-15

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: a (meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and N, N-dialkyl (meth) acrylamide. The copolymer may be cross-linked with N,N'-methylenebisacrylamide or other appropriate cross-linking agent.

  19. Fixture For Drilling And Tapping A Curved Workpiece

    NASA Technical Reports Server (NTRS)

    Espinosa, P. S.; Lockyer, R. T.

    1992-01-01

    Simple fixture guides drilling and tapping of holes in prescribed locations and orientations on workpiece having curved surface. Tool conceived for use in reworking complexly curved helicopter blades made of composite materials. Fixture is block of rigid foam with epoxy filler, custom-fitted to surface contour, containing bushings and sleeves at drilling and tapping sites. Bushings changed, so taps and drills of various sizes accommodated. In use, fixture secured to surface by hold-down bolts extending through sleeves and into threads in substrate.

  20. Drilled Hole and ChemCam Marks at Cumberland

    NASA Image and Video Library

    2013-06-05

    The Chemistry and Camera ChemCam instrument on NASA Mars rover Curiosity was used to check the composition of gray tailings from the hole in rock target Cumberland that the rover drilled on May 19, 2013.

  1. Elemental composition of airborne dust in the Shale Shaker House during an offshore drilling operation.

    PubMed

    Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H

    1991-12-01

    During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud.

  2. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    PubMed Central

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  3. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    PubMed

    Ji, Pan; Parks, Jeffrey; Edwards, Marc A; Pruden, Amy

    2015-01-01

    A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing). To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe) were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10) had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.

  4. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    PubMed

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this might have on drinking water quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome

    PubMed Central

    Ji, Pan; Parks, Jeffrey; Edwards, Marc A.; Pruden, Amy

    2015-01-01

    A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing). To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe) were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO4 2- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9–10) had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome. PMID:26495985

  6. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)

    PubMed Central

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

  7. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331).

    PubMed

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.

  8. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust

    NASA Astrophysics Data System (ADS)

    Fiorentini, Marco L.; LaFlamme, Crystal; Denyszyn, Steven; Mole, David; Maas, Roland; Locmelis, Marek; Caruso, Stefano; Bui, Thi-Hao

    2018-02-01

    Mafic and ultramafic magmas that intrude into the lower crust can preserve evidence for metal and sulfur transfer from the lithospheric mantle into the lower continental crust. Here we focus on a series of ultramafic, alkaline pipes in the Ivrea Zone (NW Italy), which exposes deeply buried (6-11 kbar), migmatitic metasedimentary rocks intruded by voluminous basaltic magmas of the Mafic Complex, a major crustal underplating event precisely dated via U/Pb CA-IDTIMS on zircon at 286.8 ± 0.4 Ma. The ultramafic pipes postdate the Mafic Complex and from 100 to 300 m wide cumulate-rich conduits. They are hydrated and carbonated, have unusually high incompatible element concentrations and contain blebby and semi-massive Ni-Cu-PGE sulfide mineralisation. The sulfides occur as coarse intergranular nodules (>10 mm) and as small intragranular blebs (<1 mm) hosted in olivine, and have homogeneous, mantle-like δ34S (+1.35 ± 0.25‰). This homogeneity suggests that the pipes reached sulfide supersaturation without addition of crustal sulfur, and that the δ34S signature is representative of the continental lithospheric mantle. One of the pipes, the 249 Ma Valmaggia pipe, carries a very distinctive Sr-Nd-Hf-Pb isotopic composition in its core (87Sr/86Sr 0.70250, εNd-18, εHf-18, 206Pb/204Pb 16.0, 207Pb/204Pb 15.16, 208Pb/204Pb 35.87), very different from the margin of this pipe and from other pipes that have higher 87Sr/86Sr, εNd and 206Pb/204Pb. The unusual isotopic composition of the Valmaggia pipe requires a source with long-term (2500-1500 million years) U-, Th- and Rb-depletion and LREE enrichment. Such compositions are found in Late Archean/Early Proterozoic granulites and lower crustal xenoliths. We suggest that the unusual isotopic composition of the Valmaggia pipe reflects contamination of the mantle source of the pipe with a crustal component that is neither represented in the local Paleozoic crust nor in the isotopically anomalous hydrated mantle inferred as the source of the large-volume mafic underplate that formed the Mafic Complex. During post-collisional gravitational collapse of the Variscan Orogen, this source produced the alkaline, metal (Ni, Cu, PGE)- and volatile (H2O, CO2, S)-rich mafic-ultramafic magma that formed the deep-crustal intrusion at Valmaggia. U/Pb dating of other chemically and geologically comparable pipes in the area shows that this process was active over at least 40 Ma. The Ivrea pipes illustrate how the lower continental crust can be fertilised with mantle-derived metals and volatiles, which are available for later remobilisation into upper-crustal ore systems. World-class mineral deposits along the margins of lithospheric blocks may thus be the result of both favourable crustal architecture (focussing of magmas and fluids) and localised volatile and metal enrichment of the lower crust related to mantle-derived hydrous metasomatism.

  9. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants

    NASA Astrophysics Data System (ADS)

    Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James

    2017-05-01

    Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.

  10. Distribution of radioactive isotopes in rock and ore of Arkhangelskaya pipe from the Arkhangelsk diamond province

    NASA Astrophysics Data System (ADS)

    Kiselev, G. P.; Yakovlev, E. Yu.; Druzhinin, S. V.; Galkin, A. S.

    2017-09-01

    The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.

  11. Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Smith, M. R.; Papike, J. J.; Simon, S. B.

    1984-01-01

    Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.

  12. Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laul, J.C.; Smith, M.R.

    1984-11-15

    Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.

  13. Syn- and post-eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia, Russia, and implications for the emplacement of South African-style kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Kurszlaukis, S.; Mahotkin, I.; Rotman, A. Y.; Kolesnikov, G. V.; Makovchuk, I. V.

    2009-11-01

    The Yubileinaya kimberlite pipe, with a surface area of 59 ha, is one of the largest pipes in the Yakutian kimberlite province. The Devonian pipe was emplaced under structural control into Lower Paleozoic karstic limestone. The pipe complex consists of several smaller precursor pipes which are cut by the large, round Main pipe. While the precursor pipes show many features typical for root zones, Main pipe is younger, cuts into the precursor pipes and exposes well-bedded volcaniclastic sediments. The maximum estimated erosion since emplacement is 250 m. Open pit mapping of a 180 m thick kimberlite sequence documents the waning phases of the volcanic activity in the kimberlite pipe and the onset of its crater infill by resedimentation. Three volcanic lithofacies types can be differentiated. The deepest and oldest facies type is a massive volcaniclastic rock ("AKB") only accessible in drill core. It is equivalent to Tuffisitic Kimberlite in South African pipes and thought to be related to the main volcanic phase which was characterized by violent explosions. The overlying lithofacies type comprises primary and resedimented volcaniclastic sediments as well as rock avalanche deposits sourced from the exposed maar crater collar. It represents the onset of sedimentation onto the crater floor during the waning phase of volcanic eruptions, where primary pyroclastic deposition was contemporaneous with resedimentation from the tephra wall and the widening maar crater. Ongoing volcanic activity is also testified by the presence of a vertical feeder conduit marking the area of the last volcanic eruption clouds piercing through the diatreme. This feeder conduit is overlain by the third and youngest lithofacies type which consists mainly of resedimented volcaniclastic material and lake beds. During the sedimentation of this facies, primary volcanic activity was only minor and finally absent and resedimentation processes dominated the crater infill. The Yubileinaya pipe complex exposes root zones, contact breccias as well as diatreme and crater infill sediments. It has all features typical of large South African-style pipes and much can be learned from Yubileinaya about the emplacement sequence and behaviour of these pipes. Emplacement of the pipe occurred over an extended time span with intermittent phases of volcanic quiescence and consolidation. The AKB reveals little direct evidence of what sort of emplacement process was dominant during the main period of volcanic activity. There is neither textural evidence that violent degassing of a juvenile gas phase has caused pipe excavation, nor that external water was present during the main phase of volcanic eruptions. However, there is clear evidence in rock textures that meteoric surface water was present during crater infill. Base surge deposits forming part of the bedded crater infill sequence indicate that water was present in the eruption clouds and, hence, the root zone of the pipe. There is no reason to assume that groundwater did not also have access to the ascending magma during the main phase of volcanic activity that excavated the pipe and formed the AKB.

  14. Issues in offshore platform research - Part 1: Semi-submersibles

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Kim, Tae-Wan; Sha, O. P.; Misra, S. C.

    2010-09-01

    Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor) or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

  15. Occupational Fatalities Resulting from Falls in the Oil and Gas Extraction Industry, United States, 2005-2014.

    PubMed

    Mason, Krystal L; Retzer, Kyla D; Hill, Ryan; Lincoln, Jennifer M

    2017-04-28

    During 2003-2013, fatality rates for oil and gas extraction workers decreased for all causes of death except those associated with fall events, which increased 2% annually during 2003-2013 (1). To better understand risk factors for these events, CDC examined fatal fall events in the oil and gas extraction industry during 2005-2014 using data from case investigations conducted by the Occupational Safety and Health Administration (OSHA). Sixty-three fatal falls were identified, accounting for 15% of all fatal events. Among fatal falls, 33 (52%) workers fell from a height of >30 feet (9 meters), and 22 (35%) fell from the derrick board, the elevated work platform located in the derrick (structure used to support machinery on a drilling rig). Fall fatalities occurred most frequently when drilling rigs were being assembled or disassembled at the well site (rigging up or rigging down) (14; 22%) or when workers were removing or inserting drill pipe into the wellbore (14; 22%). Measures that target derrickmen and workers engaged in assembling and disassembling drilling rigs (rigging up and down) could reduce falls in this industry. Companies should annually update their fall protection plans and ensure effective fall prevention programs are in place for workers at highest risk for falls, including providing trainings on proper use, fit, and inspection of personal protective equipment.

  16. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  17. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.

  18. Effects of the Terra Nova offshore oil development on benthic macro-invertebrates over 10 years of development drilling on the Grand Banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    Paine, Michael D.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Pocklington, Patricia; Crowley, Roger D.; Williams, Urban P.; Gregory Janes, G.

    2014-12-01

    This paper describes effects of drilling with water and synthetic-based drilling muds on benthic macro-invertebrates over 10 years at the Terra Nova offshore oil development. As such, the paper provides insight on the effects of relatively new synthetic-based drilling muds (SBMs), and makes an important contribution to our understanding of the long-term chronic effects of drilling on benthic communities. The Terra Nova Field is located approximately 350 km offshore on the Grand Banks of Newfoundland (Canada). Sediment and invertebrate samples were collected in 1997 (baseline) prior to drilling, and subsequently in 2000, 2001, 2002, 2004, 2006, 2008 and 2010. Approximately 50 stations were sampled in each year at distances of less than 1 to approximately 20 km from drill centres. Summary benthic invertebrate community measures examined were total abundance, biomass, richness, diversity and multivariate measures of community composition based on non-Metric Dimensional Scaling (nMDS). Decreases in abundance, biomass and richness were noted at one station located nearest (0.14 km) to a drill centre in some environmental effects monitoring (EEM) years. These decreases coincided with higher levels of tracers of drill muds in sediments (barium and >C10-C21 hydrocarbons). Abundances of selected individual taxa were also examined to help interpret responses when project-related effects on summary measures occurred. Enrichment effects on some tolerant taxa (e.g., the polychaete family Phyllodocidae and the bivalve family Tellinidae) and decreased abundances of sensitive taxa (e.g., the polychaete families Orbiniidae and Paraonidae) were detected to within approximately 1-2 km from discharge source. Lagged responses three to five years after drilling started were noted for Phyllodocidae and Tellinidae, suggesting chronic or indirect effects. Overall, results of benthic community analyses at Terra Nova indicate that effects on summary measures of community composition were spatially limited but, as seen elsewhere, some taxa were more sensitive to drilling discharges.

  19. Metagenome Analyses of Corroded Concrete Wastewater Pipe Biofilms Reveals a Complex Microbial System

    EPA Science Inventory

    Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Taxonomic and functio...

  20. Applications of Materials Selection For Joining Composite/Alloy Piping Systems

    NASA Technical Reports Server (NTRS)

    Crosby, Karen E.; Smith, Brett H.; Mensah, Patrick F.; Stubblefield, Michael A.

    2001-01-01

    A study in collaboration between investigators at Southern University and Louisiana State University in Baton Rouge, Louisiana and NASA/MSFC is examining materials for modeling and analysis of heat-activated thermal coupling for joining composite to composite/alloy structures. The short-term objectives of this research are to develop a method for joining composite or alloy structures, as well as to study the effects of thermal stress on composite-to-alloy joints. This investigation will result in the selection of a suitable metallic alloy. Al-Li alloys have potential for this purpose in aerospace applications due to their excellent strength-to-weight ratio. The study of Al-Li and other alloys is of significant importance to this and other aerospace as well as offshore related interests. Further research will incorporate the use of computer aided design and rapid prototype hardware for conceptual design and verification of a potential composite piping delivery system.

  1. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  2. Extending the Performance of Net Shape Molded Fiber Reinforced Polymer Composite Valves for Use in Internal Combustion Engines

    DTIC Science & Technology

    2007-06-01

    management has been of increasingly significant importance. The combination of conventional materials and heat pipes have been applied in designs to take...chemical heat exchangers 87. In another spacecraft application, a carbon fiber face sheets with aluminum heat pipes embedded in an aluminum honeycomb...core were developed to replace an older all aluminum design. The heat pipes use ammonia as the working fluid. The new design improved thermal performance

  3. Design and Analysis of Boiler Pressure Vessels based on IBR codes

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Kanimozhi, B.

    2017-05-01

    Pressure vessels components are widely used in the thermal and nuclear power plants for generating steam using the philosophy of heat transfer. In Thermal power plant, Coal is burnt inside the boiler furnace for generating the heat. The amount of heat produced through the combustion of pulverized coal is used in changing the phase transfer (i.e. Water into Super-Heated Steam) in the Pressure Parts Component. Pressure vessels are designed as per the Standards and Codes of the country, where the boiler is to be installed. One of the Standards followed in designing Pressure Parts is ASME (American Society of Mechanical Engineers). The mandatory requirements of ASME code must be satisfied by the manufacturer. In our project case, A Shell/pipe which has been manufactured using ASME code has an issue during the drilling of hole. The Actual Size of the drilled holes must be, as per the drawing, but due to error, the size has been differentiate from approved design calculation (i.e. the diameter size has been exceeded). In order to rectify this error, we have included an additional reinforcement pad to the drilled and modified the design of header in accordance with the code requirements.

  4. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    PubMed

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ries Bunte Breccia revisited: Indications for the presence of water in Itzing and Otting drill cores and implications for the emplacement process

    NASA Astrophysics Data System (ADS)

    Pietrek, Alexa; Kenkmann, Thomas

    2016-07-01

    We reassessed two drill cores of the Bunte Breccia deposits of the Ries crater, Germany. The objectives of our study were the documentation of evidence for water in the Bunte Breccia, the evaluation of how that water influenced the emplacement processes, and from which preimpact water reservoir it was derived. The Bunte Breccia in both cores can be structured into a basal layer composed mainly of local substrate material, overlain by texturally and compositionally diverse, crater-derived breccia units. The basal layer is composed of the youngest sediments (Tertiary clays and Upper Jurassic limestone) and has a razor-sharp boundary to the upper breccia units, which are composed of older rocks of Upper Jurassic to Upper Triassic age. Sparse material exchange occurred between the basal layer and the rest of the Bunte Breccia. Fluids predominantly came from the Tertiary and the Upper Triassic sandstone formation. In the basal layer, Tertiary clays were subjected to intense, ductile deformation, indicating saturation with water. This suggests that water was mixed into the matrix, creating a fluidized basal layer with a strong shear localization. In the upper units, Upper Triassic sandstones are intensely deformed by granular flow. The texture requires that the rocks were disaggregated into granular sand. Vaporization of pore water probably aided fragmentation of these rocks. In the Otting core, hot suevite (T > 600 °C) covered the Bunte Breccia shortly after its emplacement. Vertically oriented gas escape pipes in suevite partly emanate directly at the contact to the Bunte Breccia. They indicate that the Bunte Breccia contained a substantial amount of water in the upper part that was vaporized and escaped through these vents.

  6. Drilling Damage in Composite Material

    PubMed Central

    Durão, Luís Miguel P.; Tavares, João Manuel R.S.; de Albuquerque, Victor Hugo C.; Marques, Jorge Filipe S.; Andrade, Oscar N.G.

    2014-01-01

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability. PMID:28788650

  7. Drilling Damage in Composite Material.

    PubMed

    Durão, Luís Miguel P; Tavares, João Manuel R S; de Albuquerque, Victor Hugo C; Marques, Jorge Filipe S; Andrade, Oscar N G

    2014-05-14

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results-bearing test and delamination onset test-and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  8. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...

  9. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...

  10. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...

  11. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...

  12. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method of...

  13. Geochemical exploration for mineralized breccia pipes in northern Arizona, U.S.A.

    USGS Publications Warehouse

    Wenrich, K.J.

    1986-01-01

    Thousands of solution-collapse breccia pipe crop out in the canyons and on the plateaus of northern Arizona. Over 80 of these are known to contain U or Cu mineralized rock. The high-grade U ore associated with potentially economic concentrations of Ag, Pb, Zn, Cu, Co and Ni in some of these pipes has continued to stimulate mining and exploration activity in northern Arizona, despite periods of depressed U prices. Large expanses of northern Arizona are comprised of undissected high plateaus; recognition of pipes in these areas is particularly important because mining access to the plateaus is far better than to the canyons. The small size of the pipes, generally less than 600 ft (200 m) in diameter, and limited rock outcrop on the plateaus, compounds the recognition problem. Although the breccia pipes, which bottom in the Mississippian Redwall Limestone, are occasionally exposed on the plateaus as circular features, so are unmineralized near-surface collapse features that bottom in the Permian Kaibab and Toroweap Formations. The distinction between these two classes of circular features is critical during exploration for this unique type of U deposit. Various geochemical and geophysical exploration methods have been tested over these classes of collapse features. Because of the small size of the deposits, and the low-level geochemical signatures in the overlying rock that are rarely dispersed for distances in excess of several hundred feet, most reconnaissance geochemical surveys, such as hydrogeochemistry or stream sediment, will not delineete mineralized pipes. Several types of detailed geochemical surveys made over collapse features, located through examination of aerial photographs and later field mapping, have been successful at delineating collapse features from the surrounding host rock: (1) Rock geochemistry commonly shows low level Ag, As, Ba, Co, Cu, Ni, Pb, Se and Zn anomalies over mineralized breccia pipes; (2) Soil surveys appear to have the greatest potential for distinguishing mineralized breccia pipes from the surrounding terrane. Although the soil anomalies are only twice the background concentrations for most anomalous elements, traverses made over collapse features show consistent enrichment inside of the feature as compared to outside; (3) B. Cereus surveys over a known mineralized pipe show significantly more anomalous samples collected from within the ring fracture than from outside of the breccia pipe; (4) Helium soil-gas surveys were made over 7 collapse features with discouraging results from 5 of the 7 features. Geophysical surveys indicate that scaler audio-magnetotelluric (AMT) and E-field telluric profile data show diagnostic conductivity differences over mineralized pipes as compared to the surrounding terrane. These surveys, coupled with the geochemical surveys conducted as detailed studies over features mapped by field and aerial photograph examination, can be a significant asset in the selection of potential breccia pipes for drilling. ?? 1986.

  14. Hole Quality Assessment in Drilling of Glass Microballoon/Epoxy Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Ashrith, H. S.; Doddamani, Mrityunjay; Gaitonde, Vinayak; Gupta, Nikhil

    2018-05-01

    Syntactic foams reinforced with glass microballoons are used as alternatives for conventional materials in structural application of aircrafts and automobiles due to their unique properties such as light weight, high compressive strength, and low moisture absorption. Drilling is the most commonly used process of making holes for assembling structural components. In the present investigation, grey relation analysis (GRA) is used to optimize cutting speed, feed, drill diameter, and filler content to minimize cylindricity, circularity error, and damage factor. Experiments based on full factorial design are conducted using a vertical computer numerical control machine and tungsten carbide twist drills. GRA reveals that a combination of lower cutting speed, filler content, and drill diameter produces a good quality hole at optimum intermediate feed in drilling syntactic foams composites. GRA also shows that the drill diameter has a significant effect on the hole quality. Furthermore, damage on the hole exit side is analyzed using a scanning electron microscope.

  15. Mobile Offshore Drilling Unit (MODU) Ocean Ranger, O.N. 615641, Capsizing and Sinking in the Atlantic Ocean, on 15 February 1982 with Multiple Loss of Life.

    DTIC Science & Technology

    1983-05-20

    features of off-load and on-load release gears. Model tests in a wave tank have shown this system to reliably provide automatic release of the boat. It...similar to the lifeboats. The approved release hook system automatically releases the raft when the hook is aet during lowering and the raft becomes...the severe storm; the lack of written casualty control procedures; the inadequate ballast system pump and piping design and arrangement for dewatering

  16. Trials of flexible pipe in sour service reveal degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Maslamani, M.J.

    Field trials on flexible pipe offshore Qatar have shown that, under sour conditions, the layered, composite material can suffer severe degradation leading to failure. The failure demonstrates the significant effects of stress level, environmental aggressiveness, and localized hard zones in promoting sulfide stress cracking. Permeability of the sour gas through the composite layer of the flexible pipe resulted in varying degrees of sulfide attack and hydrogen embrittlement, depending on the susceptibility of the multilayered material. In the trials, the material was used as a gas-lift line in a sour-oil field in the Arabian Gulf. Flexible pipes have been used successfullymore » for transporting methanol, benzene, and gas condensates in wet sweet environments at temperatures of up to 80 C. Little or no information, however, has been available as to its corrosion resistance in sour-service wells containing 6% CO{sub 2} with 3% H{sub 2}S partial pressures and at moderate temperatures. The paper discusses an underwater survey to evaluate the damage, visual inspection, mechanical tests, metallographic exam, and trial results.« less

  17. Using polycrystalline diamond-veined drills on silicon carbide particulate-reinforced aluminium castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, C.

    1993-12-31

    Using several combinations of speeds and feeds, a series of 6.37-mm diameter holes were drilled through a 19-mm thick plate of DURALCAN F3S.20S-T6 (A359/SiC/20p-T6). Every 50th hole was drilled in a gage block to measure the following: torque, thrust, drill flank wear, hole diameter, hole roundness, and hole surface finish. Maximum tool life was attained using feed rates of 0.25 mm/revolution. Speed had little effect on tool forces or life. Under optimum conditions, PCD-veined drills can produce over 6000 diameters of through holes in this type of composite with tolerances of 0.01 mm and flank wear of only 0.1 mm.

  18. Searching for Organics During the Robotic Mars Analog Rio Tinto Drilling Experiment: Ground Truth and Contamination Issues

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Stoker, C. R.; Marte Project Science Team

    2007-03-01

    The Mars Analog Rio Tinto Experiment (MARTE) performed a simulation of a Mars drilling experiment at the Rio Tinto (Spain). Ground-truth and contamination issues during the distribution of bulk organics and their CN isotopic composition in hematite and go

  19. Cost analysis of ground-water supplies in the North Atlantic region, 1970

    USGS Publications Warehouse

    Cederstrom, Dagfin John

    1973-01-01

    The cost of municipal and industrial ground water (or, more specifically, large supplies of ground water) at the wellhead in the North Atlantic Region in 1970 generally ranged from 1.5 to 5 cents per thousand gallons. Water from crystalline rocks and shale is relatively expensive. Water from sandstone is less so. Costs of water from sands and gravels in glaciated areas and from Coastal Plain sediments range from moderate to very low. In carbonate rocks costs range from low to fairly high. The cost of ground water at the wellhead is low in areas of productive aquifers, but owing to the cost of connecting pipe, costs increase significantly in multiple-well fields. In the North Atlantic Region, development of small to moderate supplies of ground water may offer favorable cost alternatives to planners, but large supplies of ground water for delivery to one point cannot generally be developed inexpensively. Well fields in the less productive aquifers may be limited by costs to 1 or 2 million gallons a day, but in the more favorable aquifers development of several tens of millions of gallons a day may be practicable and inexpensive. Cost evaluations presented cannot be applied to any one specific well or specific site because yields of wells in any one place will depend on the local geologic and hydrologic conditions; however, with such cost adjustments as may be necessary, the methodology presented should have wide applicability. Data given show the cost of water at the wellhead based on the average yield of several wells. The cost of water delivered by a well field includes costs of connecting pipe and of wells that have the yields and spacings specified. Cost of transport of water from the well field to point of consumption and possible cost of treatment are not evaluated. In the methodology employed, costs of drilling and testing, pumping equipment, engineering for the well field, amortization at 5% percent interest, maintenance, and cost of power are considered. The report includes an analysis of test drilling costs leading to a production well field. The discussion shows that test drilling is a relatively low cost item and that more than a minimum of test holes in a previously unexplored area is, above all, simple insurance in keeping down costs and may easily result in final lower costs for the system. Use of the jet drill for testing is considered short sighted and may result in higher total costs and possibly failure to discover good aquifers. Economic development of ground water supplies will depend on obtaining qualified hydrologic and engineering advice, on carrying out adequate test drilling, and on utilizing high-quality (at times, more costly) material.

  20. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    NASA Astrophysics Data System (ADS)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  1. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    NASA Astrophysics Data System (ADS)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  2. Method for producing micro heat panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Peterson, George P. (Inventor); Rummler, Donald R. (Inventor)

    1997-01-01

    Flat or curved micro heat pipe panels are fabricated by arranging essentially parallel filaments in the shape of the desired panel. The configuration of the filaments corresponds to the desired configuration of the tubes that will constitute the heat pipes. A thermally conductive material is then deposited on and around the filaments to fill in the desired shape of the panel. The filaments are then removed, leaving tubular passageways of the desired configuration and surface texture in the material. The tubes are then filled with a working fluid and sealed. Composite micro heat pipe laminates are formed by layering individual micro heat pipe panels and bonding them to each other to form a single structure. The layering sequence of the micro heat pipe panels can be tailored to transport heat preferentially in specific directions as desired for a particular application.

  3. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    NASA Astrophysics Data System (ADS)

    Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan

    2016-12-01

    Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  4. Impacts on seafloor geology of drilling disturbance in shallow waters.

    PubMed

    Corrêa, Iran C S; Toldo, Elírio E; Toledo, Felipe A L

    2010-08-01

    This paper describes the effects of drilling disturbance on the seafloor of the upper continental slope of the Campos Basin, Brazil, as a result of the project Environmental Monitoring of Offshore Drilling for Petroleum Exploration--MAPEM. Field sampling was carried out surrounding wells, operated by the company PETROBRAS, to compare sediment properties of the seafloor, including grain-size distribution, total organic carbon, and clay mineral composition, prior to drilling with samples obtained 3 and 22 months after drilling. The sampling grid used had 74 stations, 68 of which were located along 7 radials from the well up to a distance of 500 m. The other 6 stations were used as reference, and were located 2,500 m from the well. The results show no significant sedimentological variation in the area affected by drilling activity. The observed sedimentological changes include a fining of grain size, increase in total organic carbon, an increase in gibbsite, illite, and smectite, and a decrease in kaolinite after drilling took place.

  5. Composition of primary fluid and melt inclusions in regenerated olivines from hypabyssal kimberlites of the Malokuonapskaya pipe (Yakutia)

    NASA Astrophysics Data System (ADS)

    Tomilenko, A. A.; Kuzmin, D. V.; Bulbak, T. A.; Timina, T. Yu.; Sobolev, N. V.

    2015-11-01

    The primary fluid and melt inclusions in regenerated zonal crystals of olivine from kimberlites of the Malokuonapskaya pipe were first examined by means of microthermometry, optic and scanning electron microscopy, and Raman spectroscopy. The high-pressure genesis of homogenous central parts of the olivines was revealed, probably under intense metasomatism at early hypogene stages with subsequent regeneration in the kimberlitic melt. The olivine crystals were regenerated from silicate-carbonate melts at about 1100°C. The composition of the kimberlitic melt was changed by way of an increase in the calcium content.

  6. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  7. Flexible ultrasonic transducers for structural health monitoring of metals and composites

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Wu, K.-T.; Shih, J.-L.; Jen, C.-K.; Kruger, S. E.

    2010-03-01

    Flexible ultrasonic transducers (FUTs) which have the on-site installation capability are presented for the non-destructive evaluation (NDE) and structural health monitoring (SHM) purposes. These FUTs consist of 75 μm thick titanium membrane, thick (> 70 μm) thick piezoelectric lead-zirconate-titanate (PZT) composite (PZT-c) films and thin (< 5 μm) thick top electrodes. The PZT-c films are made by a sol-gel spray technique. Such FUT has been glued onto a steel pipe of 101 mm in diameter and 4.5 mm in wall thickness and operated up to 200°C. The glue served as high temperature ultrasonic couplant between the FUT and the external surface of the pipe. The estimated pipe thickness measurement accuracy at 200°C is 34 μm. FUTs also were glued onto the end edge of 2 mm thick aluminum (Al) plates to generate and receive predominantly symmetrical and shear-horizontal (SH) plate acoustic waves (PAWs) to detect simulated line defects at temperature up to 100°C. FUTs glued onto a graphite/epoxy (Gr/Ep) composite are also used for the detection of artificial disbonds. An induction type non-contact method for the evaluation of Al plates and Gr/Ep composites using FUTs is also demonstrated.

  8. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  9. Melt in the impact breccias from the Eyreville drill cores, Chesapeake Bay impact structure, USA

    NASA Astrophysics Data System (ADS)

    Bartosova, Katerina; Hecht, Lutz; Koeberl, Christian; Libowitzky, Eugen; Reimold, Wolf Uwe

    2011-03-01

    The center of the 35.3 Ma Chesapeake Bay impact structure (85 km diameter) was drilled during 2005/2006 in an ICDP-0USGS drilling project. The Eyreville drill cores include polymict impact breccias and associated rocks (1397-01551 m depth). Tens of melt particles from these impactites were studied by optical and electron microscopy, electron microprobe, and microRaman spectroscopy, and classified into six groups: m1—clear or brownish melt, m2—brownish melt altered to phyllosilicates, m3—colorless silica melt, m4—melt with pyroxene and plagioclase crystallites, m5—dark brown melt, and m6—melt with globular texture. These melt types have partly overlapping major element abundances, and large compositional variations due to the presence of schlieren, poorly mixed melt phases, partly digested clasts, and variable crystallization and alteration. The different melt types also vary in their abundance with depth in the drill core. Based on the chemical data, mixing calculations were performed to determine possible precursors of these melt particles. The calculations suggest that most melt types formed mainly from the thick sedimentary section of the target sequence (mainly the Potomac Formation), but an additional crystalline basement (schist/gneiss) precursor is likely for the most abundant melt types m2 and m5. Sedimentary rocks with compositions similar to those of the melt particles are present among the Eyreville core samples. Therefore, sedimentary target rocks were the main precursor of the Eyreville melt particles. However, the composition of the melt particles is not only the result of the precursor composition but also the result of changes during melting and solidification, as well as postimpact alteration, which must also be considered. The variability of the melt particle compositions reflects the variety of target rocks and indicates that there was no uniform melt source. Original heterogeneities, resulting from melting of different target rocks, may be preserved in impactites of some large impact structures that formed in volatile-rich targets, because no large melt body exists, in which homogenization would have taken place.

  10. Application of Nuclear Well Logging Techniques to Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Albats, P.; Groves, J.; Schweitzer, J.; Tombrello, T.

    1992-01-01

    The use of neutron and gamma ray measurements for the analysis of material composition has become well established in the last 40 years. Schlumberger has pioneered the use of this technology for logging wells drilled to produce oil and gas, and for this purpose has developed neutron generators that allow measurements to be made in deep (5000 m) boreholes under adverse conditions. We also make ruggedized neutron and gamma ray detector packages that can be used to make reliable measurements on the drill collar of a rotating drill string while the well is being drilled, where the conditions are severe. Modern nuclear methods used in logging measure rock formation parameters like bulk density and porosity, fluid composition, and element abundances by weight including hydrogen concentration. The measurements are made with high precision and accuracy. These devices (well logging sondes) share many of the design criteria required for remote sensing in space; they must be small, light, rugged, and able to perform reliably under adverse conditions. We see a role for the adaptation of this technology to lunar or planetary resource assessment missions.

  11. The replacement of alkyl-phenol ethoxylates to improve the environment acceptability of drilling fluid additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getliff, J.M.; James, S.G.

    1996-12-31

    Alkyl-phenol ethoxylates (APEO) are a class of surfactants which have been used widely in the drilling fluid industry. The popularity of these surfactants is based on their cost effectiveness, availability and the range of hydrophilic-lipophilic balance values obtainable. Studies have shown that APEOs exhibit oestrogenic effects, and can cause sterility in some male aquatic species. This may have subsequent human consequences and such problems have lead to a banning of their use in some countries and agreements to phase out their use e.g. PARCOM recommendation 92/8. The use of APEOs as additives in detergents, lubricants and stuck-pipe release agents formore » drilling fluid applications is discussed. The effectiveness of products formulated with APEOs are directly compared with alternative products which are non-persistent and less damaging to aquatic species. Lubricity measurements using standard and in-house designed equipment and washing tests to compare the efficiency of surfactants are explained and product performance results presented. The results show that alternatives to products containing APEOs are available and that in some cases they show a better technical performance. In addition to the improved environmental acceptability of the base chemicals, the better performance enables lower concentrations to be used, hence reducing the environmental impact even further.« less

  12. Geopressure modeling from petrophysical data: An example from East Kalimantan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkommer, M.A.

    1994-07-01

    Localized models of abnormal formation pressure (geopressure) are important economic and safety tools frequently used for well planning and drilling operations. Simplified computer-based procedures have been developed that permit these models to be developed more rapidly and with greater accuracy. These techniques are broadly applicable to basins throughout the world where abnormal formation pressures occur. An example from the Attaka field of East Kalimantan, southeast Asia, shows how geopressure models are developed. Using petrophysical and engineering data, empirical correlations between observed pressure and petrophysical logs can be created by computer-assisted data-fitting techniques. These correlations serve as the basis for modelsmore » of the geopressure. By performing repeated analyses on wells at various locations, contour maps on the top of abnormal geopressure can be created. Methods that are simple in their development and application make the task of geopressure estimation less formidable to the geologist and petroleum engineer. Further, more accurate estimates can significantly improve drilling speeds while reducing the incidence of stuck pipe, kicks, and blowouts. In general, geopressure estimates are used in all phases of drilling operations: To develop mud plans and specify equipment ratings, to assist in the recognition of geopressured formations and determination of mud weights, and to improve predictions at offset locations and geologically comparable areas.« less

  13. Aquifer thermal energy storage - A feasibility study for large scale demonstration

    NASA Astrophysics Data System (ADS)

    Skinner, W. V.; Supkow, D. J.

    Engineering procedures necessary for aquifer thermal energy storage (ATES), based on studies of the Magothy Aquifer on Long Island, NY, are presented, with chilled winter water pumped into the aquifer and reclaimed in summer months for air conditioning. The choice of aquifer involves necessary volume, flow rate, efficiency of thermal recovery, and avoidance of conflict with other users; utilization depends on choice of appropriate piping, heat exchangers, and well construction to prevent degradation of the aquifer. The methods employed to probe the Magothy for suitability are described, including drilling an asymmetric well cluster for observation, and 48 hr pumping and 8 hr recovery. Transmissivity was found to vary from 8,000 to 29,000 sq ft/day. A doublet well was then drilled and water withdrawn, chilled, and returned. Later withdrawal indicated a 46% thermal recovery, with computer models projecting 80% with additional cycling. The study verified the feasibility of ATES, which can be expanded with additional demand.

  14. New roles of LWD and wireline logging in scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Sanada, Y.; Kido, Y. N.; Moe, K.; Aoike, K.

    2014-12-01

    D/V Chikyu implemented by CDEX/JAMSTEC joined IODP from 2007. Various LWD (Logging While Drilling) and wireline logging have been carried out in many expeditions and for various purposes. Significant features of logging in Chikyu expeditions are many use of LWD than wireline logging, and riser dirlling. riser selected specific tools for each scientific target, and 3) carried out various borehole experiments. LWD has been more popular than wireline logging in Chikyu expeditions, because its advantages match theirs science targets. The advantages are followings. 1) LWD has more opportunities for measurement in unstable borehole, such as in the series of Nankai trough drilling expeditions. 2) LWD realtime data allows us to make realtime interpretation and operational decision. Realtime interpretation was required to set obsevartory at the properposition. 3) LWD before coring allows us to make a strategy of spot coring.We can design coring intervals for our interest and core length to improve core recovery.Riser drilling brings us merits for logging. One is hole stability (good hole condition) and the other is the use of large diameter tools. Controled drilling mud in riser drilling system prevent mud invasion to formation and mitigates collapse of borehole wall. They reduce the risk of tool stack and improve data quality. Large diameter of riser pipe enhances variation of tool seizes. A couple of new tools were used for new measurement and improvement of the data quality. For example, SonicScanner (trademark of Schulumberger) successfully measured compressional and share velocity in very low velocities at the soft sediment, where it has been difficult to measure them with conventional DSI tool (Exp319). The stress and pore pressure in the borehole were measured with the wireline logging tool, (Schlumberger MDT). The single probe tool enable to measure temporal formation fluid pressure. The double packer tool enable to fracture test by sealing and pumping in the borehole. These in-situ measurement and stress experiment data are very important to understand physical properties and mechanism of fault zone (Exp319).Those new technologies and tools also expand the envelope of scientific ocean drilling.

  15. Geochemical and Mineralogical Profiles Across the Listvenite- Metamorphic Transition in the Basal Megathrust of the Oman Ophiolite: First Results from Drilling at Oman Drilling Project Hole BT1B

    NASA Astrophysics Data System (ADS)

    Godard, M.; Bennett, E.; Carter, E.; Kourim, F.; Lafay, R.; Noël, J.; Kelemen, P. B.; Michibayashi, K.; Harris, M.

    2017-12-01

    The transition from the base of the Oman ophiolite to the underlying metamorphic sole was drilled at Hole BT1B (Sumail Massif) during Phase 1 of Oman Drilling Project (Winter 2016-2017). 74 samples were collected from the 300m of recovered cores for whole rock geochemical and XRD analyses. 55 listvenites, ophicarbonates and serpentinites, and 19 schists and greenstones were analyzed for major and minor elements (XRF) and for CO2 and S concentrations (CHNS) aboard DV Chikyu (ChikyuOman, Summer 2017). Analyses for trace elements (ICP-MS) at the University of Montpellier are in progress. The composition of listvenites, ophicalcites and serpentinites recovered at Hole BT1B record extensive interactions between CO2-rich fluids and the serpentinized peridotites. These reactions involved addition of SiO2 and formation of carbonates at the expense of the serpentinized peridotite protolith. All samples recovered from the mantle section are enriched in fluid mobile and incompatible trace elements compared to the mean composition of the Oman mantle. These enrichments are up to 103 times the Oman mantle for Rb and Ba. They mimic the pattern of the samples from the metamorphic sole. This suggests that the composition of the listvenites in these elements is controlled by that of contaminating fluids that may have originated in the same lithologies as those drilled at the base of Hole BT1B. Listvenites, ophicalcites and serpentinites also show notable downhole chemical variations, with listvenites showing marked variations in Al2O3 and TiO2. Occurrence of lherzolites and cpx-harzburgites has been reported at the base of the Oman dominantly harzburgitic mantle section. The observed variations in the listvenites (Al2O3 and TiO2) could be related to the composition of their protolith, the deepest having more fertile compositions. Alternatively, the observed downhole changes in the composition of listvenites may relate to the progressive equilibration of the reacting ultramafic-rocks and/or listvenite with the fluids originating in the subducting metamorphic sole; these variations could be related to heterogeneous reaction kinetics (temperature, reactive surfaces, chemical gradients) and/or to transport (e.g. local variations in permeability) within the listvenite units.

  16. Oxygen isotope and trace element compositions of platiniferous dunite pipes of the Bushveld Complex, South Africa - Signals from a recycled mantle component?

    NASA Astrophysics Data System (ADS)

    Günther, T.; Haase, K. M.; Junge, M.; Oberthür, T.; Woelki, D.; Krumm, S.

    2018-06-01

    Platiniferous dunite pipes occur in the lower mafic/ultramafic portion of the Rustenburg Layered Suite of the Bushveld large igneous province (LIP). Olivine compositions in these pipes range from forsterite (Fo) 80 to 35 mol% and suggest crystallization from variably evolved magmas at high temperatures ( 1200 °C). The most primitive olivines are from a stock unit and have the highest contents of Ni (>0.15 wt%) and lowest contents of Mn (<0.3 wt%). Fractional crystallization and partial melting of pyroxenite host rock play a significant role in the formation of the fayalitic olivines with its high Mn contents (>0.3 wt%). High δ18O values of olivine (5.7-7.0‰) and pyroxene (6.7-7.4‰) are akin to those of the Lower and Critical Zone of the Bushveld intrusion suggesting a common origin. The constant high O isotope ratios with variable Fo contents in the olivines are unlike trends observed in olivine phenocrysts in magmas forming by assimilation-fractional crystallization. We suggest that the high δ18O in the most primitive dunites reflect that of the primary melt of the Bushveld pipes, indicating either a bulk assimilation of crust prior to pipe formation or a contribution from recycled oceanic crust in the sub-continental lithospheric mantle (SCLM). The latter scenario is supported by the high Ni/Mn ratios in primitive pipe olivine that might be inherited from melting of a pyroxene-rich mantle source.

  17. Extension of the hole-drilling method to birefringent composites

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    1982-01-01

    A complete stress analysis and reliable failure criteria are essential for important structural applications of composites in order to fully utilize their unique properties. The inhomogeneity, anisotropy and inelasticity of many composites make the use of experimental methods indispensable. Among the experimental techniques, transmission photoelasticity has been extended to birefringent composites in recent years. The extension is not straight-forward, in view of the complex nature of the photoelastic response of such model materials. This paper very briefly reviews the important developments in the subject and then describes the theoretical basis for a new method of determining the individual values of principal stresses in composite models. The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are then described which verify the theoretical predictions. The limitations of the method are pointed out and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.

  18. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites.

    PubMed

    Bello, Dhimiter; Wardle, Brian L; Zhang, Jie; Yamamoto, Namiko; Santeufemio, Christopher; Hallock, Marilyn; Virji, M Abbas

    2010-01-01

    This work investigated exposures to nanoparticles and nanofibers during solid core drilling of two types of advanced carbon nanotube (CNT)-hybrid composites: (1) reinforced plastic hybrid laminates (alumina fibers and CNT); and (2) graphite-epoxy composites (carbon fibers and CNT). Multiple real-time instruments were used to characterize the size distribution (5.6 nm to 20 microm), number and mass concentration, particle-bound polyaromatic hydrocarbons (b-PAHs), and surface area of airborne particles at the source and breathing zone. Time-integrated samples included grids for electron microscopy characterization of particle morphology and size resolved (2 nm to 20 microm) samples for the quantification of metals. Several new important findings herein include generation of airborne clusters of CNTs not seen during saw-cutting of similar composites, fewer nanofibers and respirable fibers released, similarly high exposures to nanoparticles with less dependence on the composite thickness, and ultrafine (< 5 nm) aerosol originating from thermal degradation of the composite material.

  19. EXCITATION OF A BURIED MAGMATIC PIPE: A SEISMIC SOURCE MODEL FOR VOLCANIC TREMOR.

    USGS Publications Warehouse

    Chouet, Bernard

    1985-01-01

    A model of volcanic tremor is presented in which the modes of vibration of a volcanic pipe are excited by the motion of the fluid within the pipe in response to a short-term perturbation in pressure. The model shows the relative importance of the various parts constituting this composite source in the radiated elastic field at near and intermediate distances. The paper starts with the presentation of the elastic field radiated by the source, and proceeds with an analysis of the energy balance between hydraulic and elastic motions. Next, the hydraulic excitation of the source is addressed and, finally, the ground response to this excitation is analyzed in the simple case of a pipe buried in a homogeneous half space.

  20. Real-Time Fluid and Gas Monitoring During Drilling of the SAFOD Main Hole in Parkfield, CA.

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Erzinger, J.

    2005-12-01

    Little is known about the role and origin of fluids and gases associated with the San Andreas Fault zone (SAF). To gain information on fluids and gases at depth, we performed real-time mud gas monitoring during drilling of the SAFOD (San Andreas Fault Observatory at Depth) Pilot Hole (PH) and Main Hole (MH). Gas extracted from returning drill mud was piped into a nearby laboratory trailer and analyzed on-line. Permanent gases were detected using a portable mass spectrometer, hydrocarbons with a gas chromatograph, and the 222Rn-activity with a Lucas-Cell detector. When significant amounts of non-atmospheric gases were detected, off-line gas samples were collected from the gas line for further isotope studies. The SAFOD PH and MH were drilled in only a few meter distance, but in contrast to the straight PH, which penetrates through 768 m of sediments into granites down to 2168 m target depth (TD), the nearby MH is deviated towards the SAF and returns into sedimentary strata below 1930 m. The MH drilled sedimentary rocks down to 3987 m TD, approximately 45 m northeast of the surface trace of the SAF. From surface to 1930 m, the depth distribution of gas is similar for SAFOD PH and MH. Shear zones, identified by geophysical logging, are often characterized by elevated concentrations of CH4, CO2, H2, Rn, and He. The same gases were found in the MH below 1930 m, but their concentrations were, with the exception of He, significantly higher: CH4, CO2, and H2 sometimes reach several volume percent. Generally, the gas composition is partly controlled by the lithology. Variation in the methane concentration in several depth intervals reflects the changes in lithology from low gas abundance in clays and silts to more gas rich shales, which are the source rocks for hydrocarbons. Highly porous and permeable sandstone yield the highest concentrations of hydrocarbons (up to 15 vol% methane), and may be regarded as reservoir rocks. We interpret high radon activities in mud gas as indicator for circulating fluids entering the borehole via fractures. These fluids are also rich in hydrocarbons, carbon dioxide, and hydrogen, but only low concentrated in helium. Such intervals could be identified in several depth intervals (2675-2750 m, 2825-2900 m, and 3550-3650 m depth, and below 3700 m). The hydrocarbons in the surrounding rocks show a similar composition as those associated with fault zones. In addition to the low helium concentration, these results demonstrate fluid migration from the nearby with only little evidence for gas migration from a deeper source. A striking observation is the high amount of hydrogen found in these intervals. We can exclude a significant contribution of artificial hydrogen (drilling artifact) and mantle hydrogen. From soil gas studies, it is known that fault zones sometimes show enhanced concentration of hydrogen. As a possible source of hydrogen, the interaction of water with freshly ground rock, caused by fault zone movement, is discussed. Isotopic studies on hydrogen in combination with laboratory experiments are ongoing to test hydrogen synthesis by rock-water interaction. First isotopic studies on δ13C of methane indicate mixing of microbial methane with only small amounts of methane generated by thermal degradation of organic matter in the shallower depth (down to ~2500 m). Below this depth, the concentration of heavy hydrocarbons increases. CH4/(C2H6+C3H8) significantly drops from >100 to values <30 towards the bottom of the MH, and, methane becomes isotopically heavier, which is more typical for thermogenic hydrocarbons.

  1. The Scale Formation of Barite (BaSO4) from Laminar Flowing Water in The Presence of Tartaric Acid and Ba2+ Concentration Variation of Solution

    NASA Astrophysics Data System (ADS)

    Fatra, F.; Ivanto, G.; Dera, N. S.; Muryanto, S.; Bayuseno, A. P.

    2017-05-01

    The barite (BaSO4) scale is a mineral deposit that can be precipitated during the process of drilling oil and gas in the offshore. Deposite scale in pipes can cause a narrowing of the diameter of pipes, and can reduce water flowing in the pipe. The aim of this study is to investigation the effect of the tartaric acid additive and Ba2+ concentration on the growth o the scale formation of barite in the laminar flow of the piping system. Solution forming barite crystal was prepared by mixing equimolar solutions of barium chloride (BaCl2) and sodium sulfate (Na2SO4) with concentration variations of Ba2+ of 3000, 3500, 4000, 4500, and 5000 ppm. The flow rate of solution is 40 ml/min at temperature of 50 °C. Various concentrations of tartaric acid (C4H6O6) of 0 ppm, 5 ppm and 10 ppm were added to the solutions. The formation of barite from the solution was observed by ion conductivity measurement. The obtained barite crystals before and after adding tartaric acid were dried and characterized by using SEM/EDX for morphology and elemental analysis, and XRD for phase identification. The SEM results show that the morphology of the crystals are star-like particles, while XRD analysis confirmed that the barite crystals were produced during the experiments are high purity. Moreover, the tartaric acid can inhibit the crystal growth of barite.

  2. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  3. Vertical-Screw-Auger Conveyer Feeder

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Vollmer, Hubert J. (Inventor)

    2016-01-01

    A conical feeder is attached to a vertically conveying screw auger. The feeder is equipped with scoops and rotated from the surface to force-feed regolith the auger. Additional scoops are possible by adding a cylindrical section above the conical funnel section. Such then allows the unit to collect material from swaths larger in diameter than the enclosing casing pipe of the screw auger. A third element includes a flexible screw auger. All three can be used in combination in microgravity and zero atmosphere environments to drill and recover a wide area of subsurface regolith and entrained volatiles through a single access point on the surface.

  4. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    PubMed

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  5. Effects of drilling fluids on soils and plants: I. Individual fluid components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.W.; Honarvar, S.; Hunsaker, B.

    1980-01-01

    The effects of 31 drilling fluid (drilling mud) components on the growth of green beans (Phaseolus vulgaris L., Tendergreen) and sweet corn (Zea may var. saccharata (Sturtev.) Bailey, Northrup King 199) were evaluated in greenhouse studies. Plants grew well in fertile Dagor silt loam soil (Cumulic Haploxeroll) when the soil was mixed with most soil-component mixtures at disposal proportions normally expected. Vinyl acetate and maleic acid polymer (VAMA) addition caused significantly increased growth at the 95% confidence level. No statistically significant depression of plant growth occurred at normal rates with asbestos, asphalt, barite, bentonite, calcium lignosulfonate, sodium polyacrylate, a modifiedmore » tannin, ethoxylated nonylphenol, a filming amine, gilsonite, a Xanthan gum, paraformaldehyde, a pipe dope, hydrolized polyacrylamide, sodium acid pyrophosphate, sodium carboxymethyl cellulose, sodium hydroxide added as pellets, and a sulfonated tall oil. Statistically significant reductions in plant yields (at the 95% confidence level) occurred at normal disposal rates with a long-chained aliphatic alcohol, sodium dichromate, diesel oil, guar gum, an iron chromelignosulfonate, lignite, a modified asphalt, a plant fibersynthetic fiber mixture, lignite, a nonfermenting starch, potassium chloride, pregelatinized starch, and sulfated triglyceride. Thirteen drilling fluid components added individually to a fluid base (water, bentonite, and barite) and then to soil were also tested for their effect on plant growth. Only the sulfated triglyceride (Torq-Trim) and the long-chain (high molecular weight) alcohol (Drillaid 405) caused no plant growth reductions at either rate added. The modified tannin (Desco) caused minimal reduction in bean growth only when added to soil in excess levels.« less

  6. PAH composition of Water Based Drilling Mud and drill cuttings in the offshore region, east coast of India.

    PubMed

    Jagwani, Devaanshi; Kulkarni, Atul; Shukla, Parth; Ramteke, Dilip S; Juneja, Harjeet D

    2011-11-01

    As a consequence of offshore drilling, used Water Based Drilling Muds (WBMs) are typically disposed off, by discharging into the sea; such a disposal does not fully eliminate the environmental hazards. Hence, in this study, 2, 3, 4 and 5 ringed polycyclic aromatic hydrocarbons (PAHs i.e. naphthalene, fluorene, phenanthrene, fluoranthene, chrysene and benzo (a) pyrene) were determined from the WBMs and associated drill cuttings obtained from varying depths(viz. 150, 300 and 600 m) from three offshore wells present in East coast of India. In both WBMs and drill cuttings, concentration of naphthalene was maximum i.e. 81.59 ± 2.73 and 39.87 ± 2.40 mg/kg respectively, while benzo (a) pyrene was minimum i.e. 0.19 ± 0.07 and 0.12 ± 0.03 mg/kg respectively. The WBMs contained significantly (p < 0.05) higher PAH concentration than drill cuttings. The individual PAH concentration significantly (p < 0.01) increased with increasing depth in each well.

  7. Continuous chain bit with downhole cycling capability

    DOEpatents

    Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  8. Experimental Analysis of the Influence of Drill Point Angle and Wear on the Drilling of Woven CFRPs

    PubMed Central

    Feito, Norberto; Díaz-Álvarez, José; Díaz-Álvarez, Antonio; Cantero, José Luis; Miguélez, María Henar

    2014-01-01

    This paper focuses on the effect of the drill geometry on the drilling of woven Carbon Fiber Reinforced Polymer composite (CFRPs). Although different geometrical effects can be considered in drilling CFRPs, the present work focuses on the influence of point angle and wear because they are the important factors influencing hole quality and machining forces. Surface quality was evaluated in terms of delamination and superficial defects. Three different point angles were tested representative of the geometries commonly used in the industry. Two wear modes were considered, being representative of the wear patterns commonly observed when drilling CFRPs: flank wear and honed cutting edge. It was found that the crossed influence of the point angle and wear were significant to the thrust force. Delamination at the hole entry and exit showed opposite trends with the change of geometry. Also, cutting parameters were checked showing the feed’s dominant influence on surface damage. PMID:28788675

  9. Evaluation of circularity error in drilling of syntactic foam composites

    NASA Astrophysics Data System (ADS)

    Ashrith H., S.; Doddamani, Mrityunjay; Gaitonde, Vinayak

    2018-04-01

    Syntactic foams are widely used in structural applications of automobiles, aircrafts and underwater vehicles due to their lightweight properties combined with high compression strength and low moisture absorption. Structural application requires drilling of holes for assembly purpose. In this investigation response surface methodology based mathematical models are used to analyze the effects of cutting speed, feed, drill diameter and filler content on circularity error both at entry and exit level in drilling of glass microballoon reinforced epoxy syntactic foam. Experiments are conducted based on full factorial design using solid coated tungsten carbide twist drills. The parametric analysis reveals that circularity error is highly influenced by drill diameter followed by spindle speed at the entry and exit level. Parametric analysis also reveals that increasing filler content decreases circularity error by 13.65 and 11.96% respectively at entry and exit levels. Average circularity error at the entry level is found to be 23.73% higher than at the exit level.

  10. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.

  11. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  12. Application of Composite Indices for Improving Joint Detection Capabilities of Instrumented Roof Bolt Drills in Underground Mining and Construction

    NASA Astrophysics Data System (ADS)

    Liu, Wenpeng; Rostami, Jamal; Elsworth, Derek; Ray, Asok

    2018-03-01

    Roof bolts are the dominant method of ground support in mining and tunneling applications, and the concept of using drilling parameters from the bolter for ground characterization has been studied for a few decades. This refers to the use of drilling data to identify geological features in the ground including joints and voids, as well as rock classification. Rock mass properties, including distribution of joints/voids and strengths of rock layers, are critical factors for proper design of ground support to avoid instability. The goal of this research was to improve the capability and sensitivity of joint detection programs based on the updated pattern recognition algorithms in sensing joints with smaller than 3.175 mm (0.125 in.) aperture while reducing the number of false alarms, and discriminating rock layers with different strengths. A set of concrete blocks with different strengths were used to simulate various rock layers, where the gap between the blocks would represent the joints in laboratory tests. Data obtained from drilling through these blocks were analyzed to improve the reliability and precision of joint detection systems. While drilling parameters can be used to detect the gaps, due to low accuracy of the results, new composite indices have been introduced and used in the analysis to improve the detection rates. This paper briefly discusses ongoing research on joint detection by using drilling parameters collected from a roof bolter in a controlled environment. The performances of the new algorithms for joint detection are also examined by comparing their ability to identify existing joints and reducing false alarms.

  13. Numerical Investigation of Delamination in Drilling of Carbon Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Tang, Wenliang; Chen, Yan; Yang, Haojun; Wang, Hua; Yao, Qiwei

    2018-03-01

    Drilling of carbon fiber reinforced polymer (CFRP) is a challenging task in modern manufacturing sector and machining induced delamination is one of the major problems affecting assembly precision. In this work, a new three-dimensional (3D) finite element model is developed to study the chip formation and entrance delamination in drilling of CFRP composites on the microscopic level. Fiber phase, matrix phase and equivalent homogeneous phase in the multi-phase model have different constitutive behaviors, respectively. A comparative drilling test, in which the cement carbide drill and unidirectional CFRP laminate are employed, is conducted to validate the proposedmodel in terms of the delamination and the similar changing trend is obtained. Microscopic mechanism of entrance delamination together with the chip formation process at four special fiber cutting angles (0°, 45°, 90° and 135°) is investigated. Moreover, the peeling force is also predicted. The results show that the delamination occurrence and the chip formation are both strongly dependent on the fiber cutting angle. The length of entrance delamination rises with increasing fiber cutting angles. Negligible delamination at 0° is attributed to the compression by the minor flank face. For 45° and 90°, the delamination resulted from the mode III fracture. At 135°, serious delamination which is driven by the mode I and III fractures is more inclined to occur and the peeling force reaches its maximum. Such numerical models can help understand the mechanism of hole entrance delamination further and provide guidance for the damage-free drilling of CFRP.

  14. Selective-placement burial of drilling fluids: 2. Effects on buffalograss and fourwing saltbrush. [Atriplex canescens; Buchloe dactyloides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.

    Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush (Atriplex canescens (Pursh Nutt.)) and buffalograss (Buchloe dactyloides (Nutt.) Engelm.) transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both speciesmore » was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected.« less

  15. Cr-rich rutile: A powerful tool for diamond exploration

    NASA Astrophysics Data System (ADS)

    Malkovets, V. G.; Rezvukhin, D. I.; Belousova, E. A.; Griffin, W. L.; Sharygin, I. S.; Tretiakova, I. G.; Gibsher, A. A.; O'Reilly, S. Y.; Kuzmin, D. V.; Litasov, K. D.; Logvinova, A. M.; Pokhilenko, N. P.; Sobolev, N. V.

    2016-11-01

    Mineralogical studies and U-Pb dating have been carried out on rutile included in peridotitic and eclogitic garnets from the Internatsionalnaya pipe, Mirny field, Siberian craton. We also describe a unique peridotitic paragenesis (rutile + forsterite + enstatite + Cr-diopside + Cr-pyrope) preserved in diamond from the Mir pipe, Mirny field. Compositions of rutile from the heavy mineral concentrates of the Internatsionalnaya pipe and rutile inclusions in crustal almandine-rich garnets from the Mayskaya pipe (Nakyn field), as well as from a range of different lithologies, are presented for comparison. Rutile from cratonic mantle peridotites shows characteristic enrichment in Cr, in contrast to lower-Cr rutile from crustal rocks and off-craton mantle. Rutile with Cr2O3 > 1.7 wt% is commonly derived from cratonic mantle, while rutiles with lower Cr2O3 may be both of cratonic and off-cratonic origin. New analytical developments and availability of standards have made rutile accessible to in situ U-Pb dating by laser ablation ICP-MS. A U-Pb age of 369 ± 10 Ma for 9 rutile grains in 6 garnets from the Internatsionalnaya pipe is consistent with the accepted eruption age of the pipe (360 Ma). The equilibrium temperatures of pyropes with rutile inclusions calculated using Ni-in-Gar thermometer range between 725 and 1030 °C, corresponding to a depth range of ca 100-165 km. At the time of entrainment in the kimberlite, garnets with Cr-rich rutile inclusions resided at temperatures well above the closure temperature for Pb in rutile, and thus U-Pb ages on mantle-derived rutile most likely record the emplacement age of the kimberlites. The synthesis of distinctive rutile compositions and U-Pb dating opens new perspectives for using rutile in diamond exploration in cratonic areas.

  16. 30 CFR 250.224 - What information on support vessels, offshore vehicles, and aircraft you will use must accompany...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the transportation method and quantities of drilling fluids and chemical products (see § 250.213(b... description of the composition, quantities, and destination(s) of solid and liquid wastes (see § 250.217(a)) you will transport from your drilling unit. (e) Vicinity map. A map showing the location of your...

  17. Development of a thermally-assisted piercing (TAP) process for introducing holes into thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas W. A.

    Composite parts can be manufactured to near-net shape with minimum wastage of material; however, there is almost always a need for further machining. The most common post-manufacture machining operations for composite materials are to create holes for assembly. This thesis presents and discusses a thermally-assisted piercing process that can be used as a technique for introducing holes into thermoplastic composites. The thermally-assisted piercing process heats up, and locally melts, thermoplastic composites to allow material to be displaced around a hole, rather than cutting them out from the structure. This investigation was concerned with how the variation of piercing process parameters (such as the size of the heated area, the temperature of the laminate prior to piercing and the geometry of the piercing spike) changed the material microstructure within carbon fibre/Polyetheretherketone (PEEK) laminates. The variation of process parameters was found to significantly affect the formation of resin rich regions, voids and the fibre volume fraction in the material surrounding the hole. Mechanical testing (using open-hole tension, open-hole compression, plain-pin bearing and bolted bearing tests) showed that the microstructural features created during piercing were having significant influence over the resulting mechanical performance of specimens. By optimising the process parameters strength improvements of up to 11% and 21% were found for pierced specimens when compared with drilled specimens for open-hole tension and compression loading, respectively. For plain-pin and bolted bearing tests, maximum strengths of 77% and 85%, respectively, were achieved when compared with drilled holes. Improvements in first failure force (by 10%) and the stress at 4% hole elongation (by 18%), however, were measured for the bolted bearing tests when compared to drilled specimens. The overall performance of pierced specimens in an industrially relevant application ultimately depends on the properties required for that specific scenario. The results within this thesis show that the piercing technique could be used as a direct replacement to drilling depending on this application.

  18. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor

    PubMed Central

    Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2017-01-01

    Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106–198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field. PMID:27754478

  19. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor.

    PubMed

    Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-Ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2017-02-01

    Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ 13 C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.

  20. Importance of Pipe Deposits to Lead and Copper Rule Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, Michael R.; Cantor, Abigail F.; Triantafyllidou, Simoni

    When Madison, Wis., exceeded the lead action level in 1992, residential and off-line tests suggested that lead release into the water was more complex than a lead solubility mechanism. Scale analyses (color and texture as well as mineralogical and elemental composition) of five excavated lead service lines (LSLs) revealed that accumulation of manganese (and iron) onto pipe walls had implications for lead corrosion by providing a high-capacity sink for lead. Manganese that accumulated from source well water onto pipe scales (up to 10% by weight of scale composition) served to capture and eventually transport lead to consumer taps. In addition,more » manganese sometimes obstructed the predominance of an insoluble (and thus potentially protective) plattnerite [Pb(IV) solid] scale layer. Full LSL replacement in Madison achieved Lead and Copper Rule compliance and a major reduction in lead contamination and exposure, supplemented by unidirectional flushing of water mains and manganese control in the source well water.« less

  1. Fluid flow analysis of E-glass fiber reinforced pipe joints in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.

    2018-04-01

    Glass Fiber reinforced composites have become increasingly important over the past few years and now they are the first choice materials for fabricating pipes with low weight in combination with high strength and stiffness. In Oil And Gas Industry, The Pipelines transporting heavy crude oil are subjected to variable pressure waves causing fluctuating stress levels in the pipes. Computational Fluid Dynamics (CFD) analysis was performed using solid works flow stimulation software to study the effects of these pressure waves on some specified joints in the pipes. Depending on the type of heavy crude oil being used, the flow behavior indicated a considerable degree of stress levels in certain connecting joints, causing the joints to become weak over a prolonged period of use. This research proposes a new perspective that is still required to be developed regarding the change of the pipe material, fiber winding angle in those specified joints and finally implementing cad wind technology to check the output result of the stress levels so that the life of the pipes can be optimized.

  2. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor visible evidence of down hole recharge. Mapping with Tiburon confirmed that the extent of hydrothermal venting at NESCA decreased dramatically since 1988. Formerly extensive colonies of Ridgia had vanished leaving no trace of their presence. Although hydrothermal venting has collapsed to a single mound, the temperature and composition of the fluids remained nearly unchanged. This is curious given that sediment pore fluids analyzed on Leg 169 included both high salinity and low salinity components of phase separated hydrothermal fluids in the shallow subsurface indicating that the hydrothermal field must have had a relatively recent (relative to the rate of pore fluid diffusion) high temperature history. Hydrothermal fluids presently venting at this site must be derived from an essentially homogeneous, approximately 215\\degC fluid reservoir that has declined in its fluid output on a decadal scale, but has not undergone significant changes in temperature and composition. Venting at the seafloor does not seem to have been affected by drilling in the hydrothermal field.

  3. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  4. Data from a thick unsaturated zone in Joshua Tree, San Bernardino County, California, 2007--09

    USGS Publications Warehouse

    Burgess, Matthew; Izbicki, John; Teague, Nicholas; O'Leary, David R.; Clark, Dennis; Land, Michael

    2012-01-01

    Data were collected on the physical properties of unsaturated alluvial deposits, the chemical composition of leachate extracted from unsaturated alluvial deposits, the chemical and isotopic composition of groundwater and unsaturated-zone water, and the chemical composition of unsaturated-zone gas at four monitoring sites in the southwestern part of the Mojave Desert in the town of Joshua Tree, San Bernardino County, California. The presence of denitrifying and nitrate-reducing bacteria from unsaturated alluvial deposits was evaluated for two of these monitoring sites that underlie unsewered residential development. Four unsaturated-zone monitoring sites were installed in the Joshua Tree area—two in an unsewered residential development and two adjacent to a proposed artificial-recharge site in an undeveloped area. The two boreholes in residential development areas were installed by using the ODEX air-hammer method. One borehole was drilled through the unsaturated zone to a depth of 541 ft (feet) below land surface; a well screened across the water table was installed. Groundwater was sampled from this well. The second borehole was drilled to a depth of 81 ft below land surface. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described. Core material was analyzed for water content, bulk density, matric potential, particle size, and water retention. The leachate from over 500 subsamples of cores and cuttings was analyzed for soluble anions, including fluoride, sulfate, bromide, chloride, nitrate, nitrite, and orthophosphate. Groundwater was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone water from suction-cup lysimeters was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone gas samples were analyzed for argon, oxygen, nitrogen, methane, carbon dioxide, ethane, nitrous oxide, and carbon monoxide. Drill cuttings were analyzed for denitrifying and nitrate-reducing bacteria. One of the boreholes installed adjacent to the Joshua Basin Water District proposed groundwater-recharge facility was installed by using the ODEX air-hammer method and the other was installed by using a 7.875-inch hollow-stem auger. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described; however, geochemical data were not available at the time of publication.

  5. Evidence of mantle metasomatism in garnet peridotites from V. Grib kimberlite pipe (Arkhangelsk region, Russia)

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena; Agashev, Alexey; Golovin, Nikolai; Pokhilenko, Nikolai

    2013-04-01

    We have studied 26 samples of garnet peridotite xenoliths from V.Grib pipe and 17 of them are phlogopite bearing. Studied peridotites have features of two types of modal metasomatism: low-temperature (˜ 1100 C°) and high-temperature (˜ 1100 C°). Low-temperature modal metasomatism: 17 samples contain modal phlogopite, which is present in the form of tabular grains (to 3 mm in size) and rims around pyrope grains. Chemical composition of minerals from phlogopite-garnet peridotites and phlogopite free peridotites is distinctly different. Olivine, garnet, orthopyroxene and clinopyroxene have higher concentration of FeO relative to these minerals in phlogopite free peridotites. Occurrence of phlogopite in peridotites indicates the influence of melt enriched in K2O, H2O, FeO and other incompatible elements. Two types of phlogopite have difference in chemical composition that indicates two different sources. High-temperature modal metasomatism: Reconstructed V.Grib pipe peridotite whole-rocks composition and high Mg# of peridotite olivines indicates that these samples are residues after 30-40 % partial melting of primitive mantle. At those high degree of partial melting all clinopyroxene and probably all garnet should be exhausted from residue. Character of REE patterns in garnets and clinopyroxenes indicates that the most garnets and all clinopyroxene in studied peridotites are of metasomatic origin. We used the method of geochemical modeling of fractional crystallization to establish the source's composition for garnets and clinopyroxenes. For geochemical modeling we used the composition of tholeitic basalts, picrites and carbonatites which occurred in Arkhangelsk diamondiferous province (ADP) and have emplacement ages similar to that of kimberlites. Modeling result indicates that garnets could be crystallized from alkali picrite and tholeite basalts compositions. Peridotites containing garnets equilibrated with picritic melt have a different position in lithospheric mantle section from that of peridotites with tholeitic originated garnets. Two geochemically distinct types of clinopyroxenes could be the products of crystallization of tholeite basalts (type 1) and carbonatites (type 2). Overall, the lithospheric mantle beneath V. Grib kimberlite pipe experienced a complex history including multiply metasomatic events. Metasomatic agents parental to peridotitic garnets and clinopyroxenes are similar in composition to basalts and carbonatites located within the ADP indicating that magmatic events within the province are interconnected.

  6. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain; hide

    2013-01-01

    Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.

  7. Hydraulic Presses,

    DTIC Science & Technology

    1984-03-09

    airfoils and 0 -..- r o _𔃼 -64 .76_ SDOC = 83120705 PAGE ducts/tubes/ pipes made of steel, heat -resistant and other wrought alloys. Fig. 85. A correct...characteristic of forging, stamping, blanking, bar- pipe and other presses is given. Are presented the methods of calculation of the dynamics of press and strength...multiplier drives). Good results gives use/application of soluble oils of the 0 following composition: 83-87* of mineral oil (spindle, machine, solar

  8. Real Time Mud Gas Logging During Drilling of DFDP-2B

    NASA Astrophysics Data System (ADS)

    Mathewson, L. A.; Toy, V.; Menzies, C. D.; Zimmer, M.; Erzinger, J.; Niedermann, S.; Cox, S.

    2015-12-01

    The Deep Fault Drilling Project (DFDP) aims to improve our understanding of the Alpine Fault Zone, a tectonically active mature fault system in New Zealand known to rupture in large events, by deep scientific drilling. The borehole DFDP-2B approached the Alpine Fault at depth, reaching a final depth of 892 m (820 m true vertical depth). Online gas analysis (OLGA) while drilling tracked changes in the composition of gases extracted from the circulating drill mud. The composition of fluids from fault zones can provide information about their origins, flow rates and -paths, fluid-rock interactions along these paths, and the permeability structure of the faulted rock mass. Apart from an atmospheric input, the gases in drilling mud derive from the pore space of rock, crushed at the drill bit, and from permeable layers intersected by the borehole. The rapid formation of mud wall cake seals the borehole from further fluid inflow, hence formation-derived gases enter mostly at the depth of the drill bit. OLGA analyses N2, O2, Ar, CO2, CH4, He, and H2 on a mass spectrometer, hydrocarbons CH4, C2H6, C3H8, i-C4H10, and n-C4H10 on a gas chromatograph, and Rn using a lucas-cell detector. Gas was sampled for offline analyses on noble gas and stable isotopes to complement the OLGA dataset. The principle formation-derived gases found in drilling mud during drilling of DFDP-2 were CO2 and CH4, with smaller component of H2 and He2. High radon activity is interpreted to reflect intervals of active fluid flow through highly fractured and faulted rock. 3He/4He values in many samples were extremely air-contaminated, i.e. there was almost no excess of non-atmospheric He. The 3He/4He values measured at 236 m and 610 m, which are the only analyses with uncertainties <100%, are very similar to those measured in hot springs along the Alpine Fault, e.g. Fox River (0.64 Ra), Copland (0.42 Ra), Lower Wanganui (0.81 Ra). We will compare these data to those gathered using OLGA and discuss the implications.

  9. Pressure-relief and methane production performance of pressure relief gas extraction technology in the longwall mining

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Tu, Shihao; Chen, Min; Zhang, Lei

    2017-02-01

    Pressure relief gas extraction technology (PRGET) has been successfully implemented at many locations as a coal mine methane exploitation and outburst prevention technology. Comprehensive PRGET including gob gas venthole (GGV), crossing seam drilling hole (CSDH), large diameter horizontal long drilling hole (LDHLDH) and buried pipe for extraction (BPE) have been used to extract abundant pressure-relief methane (PRM) during protective coal seam mining; these techniques mitigated dangers associated with coal and gas outbursts in 13-1 coal seam mining in the Huainan coalfield. These extraction technologies can ensure safe protective seam mining and effectively extract coal and gas. This article analyses PRGET production performance and verifies it with the field measurement. The results showed that PRGET drilling to extract PRM from the protected coal seam significantly reduced methane emissions from a longwall ventilation system and produced highly efficient extraction. Material balance analyses indicated a significant decrease in gas content and pressure in the protected coal seam, from 8.78 m3 t-1 and 4.2 MPa to 2.34 m3 t-1 and 0.285 MPa, respectively. The field measurement results of the residual gas content in protected coal seam (13-1 coal seam) indicated the reliability of the material balance analyses and the pressure relief range of PRGET in the protected coal seam is obtained.

  10. Continuous monitoring of the C isotope composition of CO_{2}-rich subsurface degassing at Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Barrancos, José; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Tenerife is the largest island of the Canarian archipelago and several volcanic eruptions have occurred in the last 500 years, the last one in 1909. The main volcano-tectonic features of Tenerife Island are three main volcano-tectonic rifts trending N-E, N-W and N-S where, at the interception center is located Las Cañadas caldera and the stratovolcano Teide-Pico Viejo. Due to the approximately 1,500 wells and water galleries (1650 km) drilled during the last 150 years tapping the island's volcanic aquifer at different depths, Tenerife is a unique natural-scale laboratory for hydrological studies in oceanic volcanic islands. Ground waters are mainly Na+-HCO3- water type, mainly due to the continuous volcanic CO2 supply from the volcanic-hydrothermal system. A signi?cant number of these galleries show a CO2-rich inner atmosphere, and gas bubbling has also been detected inside some galleries. Since 2002, an automatic geochemical station installed at the entrance of the horizontal drilling "Fuente del Valle" (TFE02 station), Arona, Tenerife, measures the activities of 222Rn and 220Rn in the gas discharged from a CO2-rich gas bubbling spot located at 2.850 m depth. Interesting variations were recorded in the 222Rn/220Rn ratio after the period of 2004 anomalous seismicity and it has been demonstrated that this is a good control spot for volcanic surveillance (Pérez et al., 2007). Thus, in November 2016, a new type of laser based isotopic analyzer, a DeltaRayTM (Thermo Fisher Scientific) was installed in the TFE02 station to measure δ13C(CO2) directly in the gas discharged from the water. The gas, collected by means of an inverted funnel, is pumped (3 L min-1) towards the gallery entrance, where the instrumentation is located, through a polyamide pipe. During the study period the recorded data show a range of δ13C(CO2) from -6.2 to -4.2‰ vs. VPDB, with an average value of -5.1‰Ṫhese values are comparable to those ones measured in the gas sampled directly at the gas bubbling spot (˜-4.7‰ unpublished data) and analyzed with a Thermo Finnigan MAT 253 isotope ratio mass spectrometer, which supports the validity of the analytical method used. This is the first time that this type of instrumentation is used to continuously monitor the δ13C(CO2) isotopic composition of the gas discharged from a gas bubbling in a horizontal drill as a geochemical tool to evaluate the volcanic activity, in particular in Tenerife, a unique natural-scale laboratory for hydrological studies in oceanic volcanic islands. To correlate temporal variations in the δ13C(CO2) isotopic composition with changes in the seismic-volcanic activity of Tenerife, a longer observation period will be required. References: Pérez et al., 2007. Pure Appl. Geophys. DOI 10.1007/s00024-007-0280

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensah, P.F.; Stubblefield, M.A.; Pang, S.S.

    Thermal characterization of a prepreg fabric used as the bonding material to join composite pipes has been modeled and solved using finite difference modeling (FDM) numerical analysis technique for one dimensional heat transfer through the material. Temperature distributions within the composite pipe joint are predicted. The prepreg material has temperature dependent thermal properties. Thus the resulting boundary value equations are non linear and analytical solutions cannot be obtained. This characterization is pertinent in determining the temperature profile in the prepreg layer during the manufacturing process for optimization purposes. In addition, in order to assess the effects of induced thermal stressmore » in the joint, the temperature profile is needed. The methodology employed in this analysis compares favorably with data from experimentation.« less

  12. Influence of Specific Surface of Lignite Fluidal Ashes on Rheological Properties of Sealing Slurries / Wpływ Powierzchni Właściwej Popiołów Fluidalnych z Węgla Brunatnego na Właściwości Reologiczne Zaczynów Uszczelniających

    NASA Astrophysics Data System (ADS)

    Stryczek, Stanisław; Wiśniowski, Rafał; Gonet, Andrzej; Złotkowski, Albert

    2012-11-01

    New generation fly ashes come from the combustion of coal in fluid-bed furnaces with simultaneous sulphur-removal from gases at ca. 850°C. Accordingly, all produced ashes basically differ in their physicochemical properties from the traditional silica ones. The aim of the laboratory analyses was determining the influence of specific surface and granular composition of fluidal ash on rheological properties of slurries used for sealing up the ground and rock mass media with hole injection methods, geoengineering works and cementing casing pipes in deep boreholes. Fluidal ash from the combustion of lignite contain active Puzzolan appearing in the form of dehydrated clayey minerals and active components activating the process of hydration ashes, i.e. CaO, anhydrite II and CaCO3. The ashes have a weak point, i.e. their high water diment, which the desired rheological properties related with the range of their propagation in the rock mass cannot not be acquired for injection works in the traditional sealing slurries technology. Increasing the water-to-mixture ratio should eliminate this feature of fluidal ashes. Laboratory analyses were performed for slurries based on metallurgical cement CEM III/A 32,5 having water-to-mixture ratios: 0.5; 0.6 ; 0.7 and 0.8; the fluidal ash concentration in the slurries was 30 wt.% (with respect to the mass of dry cement). Basing on the obtained results there were determined optimum recipes of sealing slurries in view of their rheological parameters which could be applied both in drilling technologies (cementing casing pipes, closing of boreholes, plugging) and in geoengineering works related with sealing up and reinforcing ground and rock mass media.

  13. Part C: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  14. Part B: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  15. Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  16. Part D: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  17. Data from a thick unsaturated zone underlying Oro Grande and Sheep Creek washes in the western part of the Mojave Desert, near Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Izbicki, John A.; Clark, Dennis A.; Pimental, Maria I.; Land, Michael; Radyk, John C.; Michel, Robert L.

    2000-01-01

    This report presents data on the physical properties of unsaturated alluvial deposits and on the chemical and isotopic composition of soil water and soil gas collected at 12 monitoring sites in the western part of the Mojave Desert, near Victorville, California. Sites were installed using the ODEX air-hammer method. Seven sites were located in the active channels of Oro Grande and Sheep Creek Washes. The remaining five sites were located away from the active washes. Most sites were drilled to a depth of about 100 feet below land surface; two sites were drilled to the water table almost 650 feet below land surface. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 1,000 subsamples of cores and cuttings was determined. Water extracted from selected subsamples of cores was analyzed for tritium and the stable isotopes of oxygen and hydrogen. Water from suction-cup lysimeters and soil-gas samples also were analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of bulk precipitation from five sites and on ground water from two water-table wells are reported.

  18. The remarkable chemical uniformity of Apollo 16 layered deep drill core section 60002

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Philpotts, J. A.; Lindstrom, M. M.; Schuhmann, P. J.; Lindstrom, D. J.

    1976-01-01

    Atomic absorption and colorimetric spectrophotometers were used to determine major- and minor-element abundances in 12 samples from layered section 60002 of the Apollo 16 deep drill core. It is suggested that gardening of a relatively thick local unit produced the layering in this section in such a manner that the proportions of materials of different compositions remained virtually unchanged.

  19. Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option.

  20. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kyser, T.K.

    1990-01-01

    Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

  1. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite

    PubMed Central

    Alizadeh Ashrafi, Sina; Miller, Peter W.; Wandro, Kevin M.; Kim, Dave

    2016-01-01

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal. PMID:28773950

  2. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    USGS Publications Warehouse

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  3. Seeding Method Influences Warm-Season Grass Abundance and Distribution but not Local Diversity in Grassland Restoration

    USGS Publications Warehouse

    Yurkonis, K.A.; Wilsey, B.J.; Moloney, K.A.; Drobney, P.; Larson, D.L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands. ?? 2010 Society for Ecological Restoration International.

  4. Flow Accelerated Erosion-Corrosion (FAC) considerations for secondary side piping in the AP1000{sup R} nuclear power plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderhoff, J. F.; Rao, G. V.; Stein, A.

    2012-07-01

    The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Duemore » to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)« less

  5. Life Test Approach for Refractory Metal/Sodium Heat Pipes

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. This paper describes an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Two specific test series have been identified and include: investigation of long term corrosion rates based on the guidelines contained in ASTM G-68-80 (using 7 heat pipes); and investigation of corrosion trends in a cross correlation sequence at various temperatures and mass fluences based on a central composite test design (using 9 heat pipes). The heat pipes selected for demonstration purposes are fabricated from a Mo-44.5%Re alloy with a length of 0.3 meters and a diameter of 1.59 cm(to conserve material) with a condenser to evaporator length ratio of approximately 3. The wick is a crescent annular design formed from 400-mesh Mo-Re alloy material hot isostatically pressed to produce a final wick core of 20 microns or less.

  6. The Changing Nature of the Hawaiian Hotspot in the Late Cretaceous-Early Tertiary: Evidence From Helium Isotopes and Melt Inclusion Compositions

    NASA Astrophysics Data System (ADS)

    Keller, R.; Graham, D.; Duncan, R.; Regelous, M.

    2002-12-01

    Ocean Drilling Program Leg 197 recovered basaltic basement from three of the Late Cretaceous-Paleogene Emperor seamounts: Detroit (Sites 1203 and 1204), Nintoku (Site 1205), and Koko (Site 1206) seamounts. The depths of penetration into basement achieved by this drilling (140-450 m), the range of rock types recovered (hawaiites, alkalic basalts, and tholeiitic basalts), and the age range (48-76 Ma) makes this one of the most comprehensive collections of the volcanic products of the Hawaiian hotspot available, and opens up new opportunities to study the temporal evolution of the Hawaiian hotspot during the Late Cretaceous and early Tertiary. Previous studies of the chemical evolution of the Hawaiian hotspot (Lanphere et al., 1980; Keller et al., 2000) found significant temporal variations. For example, Sr isotopic ratios of the tholeiitic basalts remain fairly constant along the Hawaiian Islands/Ridge between Kilauea volcano on Hawaii and the Hawaiian-Emperor bend, but then decrease steadily northward along the Emperor seamounts. Trace element compositions (especially the rare earth element patterns) also show limited variations along the Hawaiian Islands/Ridge, but change toward more depleted values northward along the Emperor seamounts. The trend to more MORB-like compositions back in time was attributed to a decrease in distance between the hotspot and the nearest spreading center, although a more comprehensive study suggests that variations in lithospheric thickness also caused changes in the composition of the plume melts (Regelous et al., 2002). We will complement these previous studies and the ongoing work of the other Leg 197 scientists by studying two aspects of the Emperor seamount basalts: helium isotopes and melt inclusion compositions. We will measure the helium isotopic ratios of selected olivine separates from three of the Leg 197 drill sites and from DSDP Site 433 on Suiko seamount (65 Ma) to determine if the composition of the Hawaiian "plume signal" has changed over time. We will also analyze the major and trace element compositions of melt inclusions that were isolated from shallow-level magma mixing and crystal fractionation processes to determine how much of the geochemical variations observed in the Emperor basalts are due to changes in melting processes. All of the drill sites recovered olivine and plagioclase phenocrysts suitable for melt inclusion studies.

  7. Heat Rejection Concepts for Brayton Power Conversion Systems

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James

    2005-01-01

    This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.

  8. 40Ar/39Ar dating and zircon chronochemistry for the Izu-Bonin rear arc, IODP site U1437

    NASA Astrophysics Data System (ADS)

    Schmitt, A. K.; Konrad, K.; Andrews, G. D.; Horie, K.; Brown, S. R.; Koppers, A. A. P.; Busby, C.; Tamura, Y.

    2016-12-01

    The scientific objective of IODP Expedition 350 drilling at Site U1437 (31°47.390'N, 139°01.580'E) was to reveal the "missing half of the subduction factory": the rear arc of a long-lived intraoceanic subduction zone. Site U1437 lies in a 50 km long and 20 km wide volcano-bounded basin, 90 km west of the Izu arc front, and is the only IODP site drilled in the rear arc. The Izu rear arc is dominated by Miocene basaltic to dacitic seamount chains, which strike at a high angle to the arc front. Radiometric dating targeted a single igneous unit (1390 mbsf), and fine to coarse volcaniclastic units for which we present zircon and 40Ar/39Ar (hornblende, plagioclase, and groundmass) age determinations. All zircons analyzed as grain separates were screened for contamination from drill-mud (Andrews et al., 2016) by analyzing trace elements and, where material was available, O and Hf isotope compositions. Igneous Unit 1 is a rhyolite sheet and yielded concordant in-situ and crystal separate U-Pb zircon ages (13.7±0.3 Ma; MSWD = 1.3; n = 40 spots), whereas the 40Ar/39Ar hornblende plateau age (12.9±0.3; MSWD = 1.1; n = 9 steps) is slightly younger, possibly reflecting pre-eruptive zircon crystallization, or alteration of hornblende. U-Pb zircon and 40Ar/39Ar plateau ages from samples above igneous Unit 1 are concordant with biostratigraphic and paleomagnetic ages (available to 1300 mbsf), but plagioclase and groundmass samples below 1300 m become younger with depth, hinting at post-depositional alteration. A single zircon from 1600 mbsf yielded a U-Pb age of 15.4±1.8 Ma; its trace element composition resembles other igneous zircons from U1437, and is tentatively interpreted as a Middle Miocene age for the lowermost lithostratigraphic unit VII. Oxygen and Hf isotopic values of igneous zircon indicate mantle origins, with some influence of assimilation of hydrothermally altered oceanic crust evident in sub-mantle oxygen isotopic compositions. Lessons from site U1437 are that integrated chronochemistry is essential for achieving accurate age models in oceanic drilling. Reference: Andrews, G. D., Schmitt, A. K., Busby, C. J., Brown, S. R., Blum, P., & Harvey, J. (2016). Age and compositional data of zircon from sepiolite drilling mud to identify contamination of ocean drilling samples. G3. doi: 10.1002/2016GC006397.

  9. Chesapeake Bay impact structure: A blast from the past

    USGS Publications Warehouse

    Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, J. Wright

    2015-10-28

    Since its discovery in the early 1990s, scientists have conducted deep drilling and geophysical surveys of the impact structure to find out more about its size, composition, structure, age, and biological effects and to understand its lingering influences on the regional groundwater system. These efforts culminated in the drilling of a 1-mile-deep, continuously sampled corehole in 2005 by an international group of scientists and agencies.

  10. Procedures, considerations for welding X-80 line pipe established

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillenbrand, H.G.; Niederhoff, K.A.; Hauck, G.

    1997-09-15

    The possibility of manufacturing and laying high-strength Grade X-80 (GRS 550) linepipe has been proven in large projects that have already been implemented. Two welding methods for pipeline construction are well established: manual deposition of root and hot passes with cellulosic electrodes and of filler and cap passes with basic vertical-down electrodes (combined-electrode welding) and mechanized-gas-metal arc welding (GMAW). This is also true for the welding consumables, which have been well-tuned to match the pipe material in strength. The pipe material is suitable for unrestricted use in onshore and offshore applications. The paper discusses higher grades, composition, weldability, welding methods,more » and economics.« less

  11. A study of electro-osmosis as applied to drilling engineering

    NASA Astrophysics Data System (ADS)

    Hariharan, Peringandoor Raman

    In the present research project. the application of the process of electro-osmosis has been extended to a variety of rocks during the drilling operation. Electro-osmosis has been utilized extensively to examine its influence in reducing (i) bit balling, (ii) coefficient of friction between rock and metal and (iii) bit/tool wear. An attempt has been made to extend the envelope of confidence in which electro-osmosis was found to be operating satisfactorily. For all the above cases the current requirements during electro-osmosis were identified and were recorded. A novel test method providing repeatable results has been developed to study the problem of bit balling in the laboratory through the design of a special metallic bob simulating the drill bit. A numerical parameter described as the Degree-of-Balling (DOB) defined by the amount of cuttings stuck per unit volume of rock cut for the same duration of time is being proposed as a means to quantitatively describe the balling process in the laboratory. Five different types of shales (Pierre I & II, Catoosa, Mancos and Wellington) were compared and evaluated for balling characteristics and to determine the best conditions for reducing bit balling with electro-osmosis in a variety of drilling fluids including fresh water, polymer solutions and field type drilling fluids. Through the design, fabrication and performing of experiments conducted with a model Bottom Hole Assembly (BHA). the feasibility of maintaining the drill bit separately at a negative potential and causing the current to flow through the rock back into the string through a near bit stabilizer has been demonstrated. Experiments conducted with this self contained arrangement for the application of electro-osmosis have demonstrated a substantial decrease in balling and increase in the rate of penetration (ROP) while drilling with both a roller cone and PDC microbit (1-1/4" dia.) in Pierre I and Wellington shales. It is believed that the results obtained from the model BHA will aid in scaling up to a full-scale prototype BHA for possible application in the field. Experiments conducted with electro-osmosis in a simulated drill string under loaded conditions have clearly demonstrated that the coefficient of friction (mu) can be reduced at the interface of a rotating cylinder (simulating the drill-pipe) and a rock (usually a type of shale), through electro-osmosis. Studies examined the influence of many variables such as drilling fluid, rock type, and current on mu. The need for the correct estimation of mu is for reliable correlation between values obtained in the laboratory with those observed in the field. The knowledge of the coefficient of friction (mu) is an important requirement for drill string design and well trajectory planning. The use of electro-osmosis in reducing bit/tool wear through experiments in various rocks utilizing a specially designed steel bob simulating the drill bit has clearly indicated a decreased average tool wear, varying from 35% in Pierre I shale up to 57% in sandstone when used with the tool maintained at a cathodic DC potential. (Abstract shortened by UMI.)

  12. Plug Repairs of Marine Glass Fiber / Vinyl Ester Laminates Subjected to Uniaxial Tension

    DTIC Science & Technology

    2009-06-01

    Material characteristics of glass fiber / vinyl ester composites used in naval surface ships 1.1.1.2 Construction of surface ship hulls with FRP...Piping - Ventilation ducts - Deck gratings 1.1.1.1 Material characteristics of glass fiber / vinyl ester composites used in naval surface ships The...that polysester-based composites do [15, 24]. Typical processing methods for vinyl ester composites are hand lay-up, Resin Transfer Molding (RTM

  13. Analysis of the bacterial communities associated with different drinking water treatment processes.

    PubMed

    Zeng, Dan-Ning; Fan, Zhen-Yu; Chi, Liang; Wang, Xia; Qu, Wei-Dong; Quan, Zhe-Xue

    2013-09-01

    A drinking water plant was surveyed to determine the bacterial composition of different drinking water treatment processes (DWTP). Water samples were collected from different processing steps in the plant (i.e., coagulation, sedimentation, sand filtration, and chloramine disinfection) and from distantly piped water. The samples were pyrosequensed using sample-specific oligonucleotide barcodes. The taxonomic composition of the microbial communities of different DWTP and piped water was dominated by the phylum Proteobacteria. Additionally, a large proportion of the sequences were assigned to the phyla Actinobacteria and Bacteroidetes. The piped water exhibited increasing taxonomic diversity, including human pathogens such as the Mycobacterium, which revealed a threat to the safety of drinking water. Surprisingly, we also found that a sister group of SAR11 (LD12) persisted throughout the DWTP, which was always detected in freshwater aquatic systems. Moreover, Polynucleobacter, Rhodoferax, and a group of Actinobacteria, hgcI clade, were relatively consistent throughout the processes. It is concluded that smaller-size microorganisms tended to survive against the present treatment procedure. More improvement should be made to ensure the long-distance transmission drinking water.

  14. Morphology of powders of tungsten carbide used in wear-resistant coatings and deposition on the PDC drill bits

    NASA Astrophysics Data System (ADS)

    Zakharova, E. S.; Markova, I. Yu; Maslov, A. L.; Polushin, N. I.; Laptev, A. I.

    2017-05-01

    Modern drill bits have high abrasive wear in the area of contact with the rock and removed sludge. Currently, these bits have a protective layer on the bit body, which consists of a metal matrix with inclusions of carbide particles. The research matrix of this coating and the wear-resistant particles is a prerequisite in the design and production of drill bits. In this work, complex investigation was made for various carbide powders of the grades Relit (tungsten carbide produced by Ltd “ROSNAMIS”) which are used as wear-resistant particles in the coating of the drill bit body. The morphology and phase composition of the chosen powders as well as the influence of a particle shape on prospects of their application in wear-resistance coating presented in this work.

  15. Demonstration and Validation of Stainless Steel Materials for Critical Above Grade Piping in Highly Corrosive Locations

    DTIC Science & Technology

    2017-05-01

    Protecting And Bonding Reinforcing Steel In Cement -Based Composites, Corrosion 2009, Atlanta, GA, 22-26 March 2009. 7. Hock, V., O. Marshall, S...ER D C/ CE RL T R- 17 -1 3 DoD Corrosion Prevention and Control Program Demonstration and Validation of Stainless Steel Materials for...ERDC/CERL TR-17-13 May 2017 Demonstration and Validation of Stainless Steel Materials for Critical Above-Grade Piping in Highly Corrosive

  16. Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Barshilia, Harish C.; Ghosh, Moumita; Shashidhara; Ramakrishna, Raja; Rajam, K. S.

    2010-08-01

    This work reports the performance of high speed steel drill bits coated with TiAlSiN nanocomposite coating at different Si contents (5.5-8.1 at.%) prepared using a four-cathode reactive pulsed direct current unbalanced magnetron sputtering system. The surface morphology of the as-deposited coatings was characterized using field emission scanning electron microscopy. The crystallographic structure, chemical composition and bonding structure were evaluated using X-ray diffraction, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, respectively. The corrosion behavior, mechanical properties and thermal stability of TiAlSiN nanocomposite coatings were also studied using potentiodynamic polarization, nanoindentation and Raman spectroscopy, respectively. The TiAlSiN coating thickness was approximately 2.5-2.9 μm. These coatings exhibited a maximum hardness of 38 GPa at a silicon content of approximately 6.9 at.% and were stable in air up to 850 °C. For the performance evaluation, the TiAlSiN coated drills were tested under accelerated machining conditions by drilling a 12 mm thick 304 stainless steel plate. Under dry conditions the uncoated drill bits failed after drilling 50 holes, whereas, TiAlSiN coated drill bits (Si = 5.5 at.%) drilled 714 holes before failure. Results indicated that for TiAlSiN coated drill bits the tool life increased by a factor of more than 14.

  17. Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining.

    PubMed

    Ramulu, M; Spaulding, Mathew

    2016-09-01

    An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.

  18. Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining

    PubMed Central

    Ramulu, M.; Spaulding, Mathew

    2016-01-01

    An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application. PMID:28773866

  19. Identification and characterization of steady and occluded water in drinking water distribution systems.

    PubMed

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. High-resolution chemical composition of geothermal scalings from Hungary: Preliminary results

    NASA Astrophysics Data System (ADS)

    Boch, Ronny; Dietzel, Martin; Deák, József; Leis, Albrecht; Mindszenty, Andrea; Demeny, Attila

    2015-04-01

    Geothermal fluids originating from several hundreds to thousands meters depth mostly hold a high potential for secondary mineral precipitation (scaling) due to high total dissolved solid contents at elevated temperature and pressure conditions. The precipitation of e.g. carbonates, sulfates, sulfides, and silica has shown to cause severe problems in geothermal heat and electric power production, when clogging of drill-holes, downhole pumps, pipes and heat exchangers occurs (e.g. deep geothermal doublet systems). Ongoing scaling reduces the efficiency in energy extraction and might even question the abandonment of installations in worst cases. In an attempt to study scaling processes both temporally and spatially we collected mineral precipitates from selected sites in Hungary (Bükfürdo, Szechenyi, Szentes, Igal, Hajduszoboszlo). The samples of up to 8 cm thickness were recovered from different positions of the geothermal systems and precipitated from waters of various temperatures (40-120 °C) and variable overall chemical composition. Most of these scalings show fine lamination patterns representing mineral deposition from weeks up to 45 years at our study sites. Solid-fluid interaction over time captured in the samples are investigated applying high-resolution analytical techniques such as laser-ablation mass-spectrometry and electron microprobe, micromill-sampling for stable isotope analysis, and micro-XRD combined with hydrogeochemical modeling. A detailed investigation of the processes determining the formation and growth of precipitates can help to elucidate the short-term versus long-term geothermal performance with regard to anthropogenic and natural reservoir and production dynamics. Changes in fluid chemistry, temperature, pressure, pH, degassing rate (CO2) and flow rate are reflected by the mineralogical, chemical and isotopic composition of the precipitates. Consequently, this high-resolution approach is intended as a contribution to decipher the environmental conditions during the formation of the investigated scalings and to increase our knowledge on retarding and preventive measures of scaling for geothermal applications.

  1. Failure analysis of eleven Gates Glidden drills that fractured intraorally during post space preparation. A retrieval analysis study.

    PubMed

    Al Jabbari, Youssef S; Fournelle, Raymond; Al Taweel, Sara M; Zinelis, Spiros

    2017-07-19

    The purpose of this study was to determine the failure mechanism of clinically failed Gates Glidden (GG) drills. Eleven retrieved GG drills (sizes #1 to #3) which fractured during root canal preparation were collected and the fracture location was recorded based on macroscopic observation. All fracture surfaces were investigated by a SEM. Then the fractured parts were embedded in acrylic resin and after metallographic preparation, the microstructure and elemental composition was evaluated by SEM and EDS. The Vickers hardness (HV) of all specimens was also determined. Macroscopic examination and SEM analysis showed that the drills failed near the hand piece end by torsional fatigue with fatigue cracks initiating at several locations around the circumference and propagating toward the center. Final fracture followed by a tensile overloading at the central region of cross section. Microstructural analysis, hardness measurements and EDS show that the drills are made of a martensitic stainless steel like AISI 440C. Based on the findings of this study, clinicians should expect fatigue fracture of GG drills that have small size during root canal preparation. Selection of a more fatigue resistant stainless steel alloy and enhancing the instrument design might reduce the incidence of quasi-cleavage fracture on GG drills.

  2. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  3. Flexible Cryogenic Heat Pipe Development Program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This paper is actually a composite of two papers dealing with automation and computerized control of underground mining equipment. The paper primarily discusses drills, haulage equipment, and tunneling machines. It compares performance and cost benefits of conventional equipment to the new automated methods. The company involved are iron ore mining companies in Scandinavia. The papers also discusses the different equipment using air power, water power, hydraulic power, and computer power. The different drill rigs are compared for performance and cost.

  5. Removal of the Plutonium Recycle Test Reactor - 13031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, C. Brad; Guercia, Rudolph; LaCome, Matt

    2013-07-01

    The 309 Facility housed the Plutonium Recycle Test Reactor (PRTR), an operating test reactor in the 300 Area at Hanford, Washington. The reactor first went critical in 1960 and was originally used for experiments under the Hanford Site Plutonium Fuels Utilization Program. The facility was decontaminated and decommissioned in 1988-1989, and the facility was deactivated in 1994. The 309 facility was added to Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response actions as established in an Interim Record of Decision (IROD) and Action Memorandum (AM). The IROD directs a remedial action for the 309 facility, associated waste sites, associatedmore » underground piping and contaminated soils resulting from past unplanned releases. The AM directs a removal action through physical demolition of the facility, including removal of the reactor. Both CERCLA actions are implemented in accordance with U.S. EPA approved Remedial Action Work Plan, and the Remedial Design Report / Remedial Action Report associated with the Hanford 300-FF-2 Operable Unit. The selected method for remedy was to conventionally demolish above grade structures including the easily distinguished containment vessel dome, remove the PRTR and a minimum of 300 mm (12 in) of shielding as a single 560 Ton unit, and conventionally demolish the below grade structure. Initial sample core drilling in the Bio-Shield for radiological surveys showed evidence that the Bio-Shield was of sound structure. Core drills for the separation process of the PRTR from the 309 structure began at the deck level and revealed substantial thermal degradation of at least the top 1.2 m (4LF) of Bio-Shield structure. The degraded structure combined with the original materials used in the Bio-Shield would not allow for a stable structure to be extracted. The water used in the core drilling process proved to erode the sand mixture of the Bio-Shield leaving the steel aggregate to act as ball bearings against the core drill bit. A redesign is being completed to extract the 309 PRTR and entire Bio-Shield structure together as one monolith weighing 1100 Ton by cutting structural concrete supports. In addition, the PRTR has hundreds of contaminated process tubes and pipes that have to be severed to allow for a uniformly flush fit with a lower lifting frame. Thirty-two 50 mm (2 in) core drills must be connected with thirty-two wire saw cuts to allow for lifting columns to be inserted. Then eight primary saw cuts must be completed to severe the PRTR from the 309 Facility. Once the weight of the PRTR is transferred to the lifting frame, then the PRTR may be lifted out of the facility. The critical lift will be executed using four 450 Ton strand jacks mounted on a 9 m (30 LF) tall mobile lifting frame that will allow the PRTR to be transported by eight 600 mm (24 in) Slide Shoes. The PRTR will then be placed on a twenty-four line, double wide, self powered Goldhofer for transfer to the onsite CERCLA Disposal Cell (ERDF Facility), approximately 33 km (20 miles) away. (authors)« less

  6. Ultrasonic Welding of Graphite/Thermoplastic Composite

    NASA Technical Reports Server (NTRS)

    Hardy, S. S.; Page, D. B.

    1982-01-01

    Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

  7. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland

    USGS Publications Warehouse

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.

    2013-01-01

    The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.

  8. Impact of water heater temperature setting and water use frequency on the building plumbing microbiome

    PubMed Central

    Ji, Pan; Rhoads, William J; Edwards, Marc A; Pruden, Amy

    2017-01-01

    Hot water plumbing is an important conduit of microbes into the indoor environment and can increase risk of opportunistic pathogens (for example, Legionella pneumophila). We examined the combined effects of water heater temperature (39, 42, 48, 51 and 58 °C), pipe orientation (upward/downward), and water use frequency (21, 3 and 1 flush per week) on the microbial composition at the tap using a pilot-scale pipe rig. 16S rRNA gene amplicon sequencing indicated that bulk water and corresponding biofilm typically had distinct taxonomic compositions (R2Adonis=0.246, PAdonis=0.001), yet similar predicted functions based on PICRUSt analysis (R2Adonis=0.087, PAdonis=0.001). Although a prior study had identified 51 °C under low water use frequency to enrich Legionella at the tap, here we reveal that 51 °C is also a threshold above which there are marked effects of the combined influences of temperature, pipe orientation, and use frequency on taxonomic and functional composition. A positive association was noted between relative abundances of Legionella and mitochondrial DNA of Vermamoeba, a genus of amoebae that can enhance virulence and facilitate replication of some pathogens. This study takes a step towards intentional control of the plumbing microbiome and highlights the importance of microbial ecology in governing pathogen proliferation. PMID:28282040

  9. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.

    PubMed

    Lautenschlager, Karin; Boon, Nico; Wang, Yingying; Egli, Thomas; Hammes, Frederik

    2010-09-01

    Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Development of a robotic system of nonstripping pipeline repair by reinforced polymeric compositions

    NASA Astrophysics Data System (ADS)

    Rybalkin, LA

    2018-03-01

    The article considers the possibility of creating a robotic system for pipeline repair. The pipeline repair is performed due to inner layer formation by special polyurethane compositions reinforced by short glass fiber strands. This approach provides the opportunity to repair pipelines without excavation works and pipe replacement.

  11. Design for On-Sun Evaluation of Evaporator Receivers

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Colozza, Anthony; Sechkar, Edward A.

    2011-01-01

    A heat pipe designed for operation as a solar power receiver should be optimized to accept the solar energy flux and transfer this heat into a reactor. Optical properties of the surface, thermal conductance of the receiver wall, contact resistance of the heat pipe wick, and other heat pipe wick properties ultimately define the maximum amount of power that can be extracted from the concentrated sunlight impinging on the evaporator surface. Modeling of solar power receivers utilizing optical and physical properties provides guidance to their design. On-sun testing is another important means of gathering information on performance. A test rig is being designed and built to conduct on-sun testing. The test rig is incorporating a composite strip mirror concentrator developed as part of a Small Business Innovative Research effort and delivered to NASA Glenn Research Center. In the strip concentrator numerous, lightweight composite parabolic strips of simple curvature were combined to form an array 1.5 m x 1.5 m in size. The line focus of each strip is superimposed in a central area simulating a point of focus. A test stand is currently being developed to hold the parabolic strip concentrator, track the sun, and turn the beam downward towards the ground. The hardware is intended to be sufficiently versatile to accommodate on-sun testing of several receiver concepts, including those incorporating heat pipe evaporators. Characterization devices are also being developed to evaluate the effectiveness of the solar concentrator, including a receiver designed to conduct calorimetry. This paper describes the design and the characterization devices of the on-sun test rig, and the prospect of coupling the concentrated sunlight to a heat pipe solar power receiver developed as part of another Small Business Innovative Research effort.

  12. Selective placement disposal of drilling fluids in west Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, M.L.

    1988-01-01

    Burial of spent drilling fluids used in petroleum and natural gas exploration was evaluated as an alternative disposal technique for reducing surface soil contamination in western Texas. Simulated reserve pits were constructed to provide burial depths of 30, 90, and 150 cm below the surface, with orderly replacement of stockpiled subsoil and topsoil. Movement of soluble salts and heavy metals from drilling fluids into the overlying soil was monitored over a 20-month period. The effects of depth of drilling fluid burial on establishment, yields, and chemical composition of transplanted fourwing saltbush (Atriplex canescens (Pursh) Nutt.) and buffalograss (Buchloe dactyloides (Nutt.)more » Engelm.) were determined for two growing seasons. Sodium, Ca{sup +2}, and Cl{sup {minus}} were the dominant mobile ions, while migration of Mg{sup +2}, K{sup +}, and SO{sub 4}{sup {minus}2} was observed to a lesser degree. Exchangeable sodium percentages in the 15-cm zone immediately above drilling fluid ranged from 1.9 to 19.0 after 20 months. Total concentrations of Ba, Cr, Cu, Ni, and Zn were greater in drilling fluids than in native soil, but there was no evidence of migration of these metals into overlying soil.« less

  13. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and development, cycling through classical fluid escape pipes evoking non-Darcy flow to Darcy flow exploiting surrounding permeable bodies (during low fluid recharge period). Limit and uncertainty of the seismic data imaging the internal structure are still controlled by illumination factor, the lateral and vertical resolution (Fresnel. Tuning thickness) and scattering/noise effect of seismic wave when they interact with the plumbing system.

  14. Multifunctional Carbon Nanotube Fiber Composites

    DTIC Science & Technology

    2004-12-26

    Opt. Eng. 4234 (Smart Materials), 223-23 1, (2001). 9. " Microfabricated Electroactive Carbon Nanotube Actuators", A. Ahluwalia, R.H. Baughman, D. De...peristaltic pumped circulating flow of PVA operating in an open loop consisting of a 1.5 m long, 0.40 cm diameter glass pipe , flex-tubing, and a polymer reserve...forming a gel-like ribbon that flows down the length of the pipe before being released into a rotating water bath where it is collected on a mandrel. Our

  15. [Subchondral drilling method combined with gum-bletilla complex to repair articular cartilage defects].

    PubMed

    Huang, Yong; Wang, Xin-Ling; Qiu, Heng; Xiao, Yi-Cheng; Wu, Zong-Hong; Xu, Jian

    2018-02-01

    Two types(A model and B model) of articular cartilage defect models were prepared by using adult New Zealand white rabbits. A model group was applied by drilling without through subchondral bone, whose right joint was repaired by composite scaffolds made by seed cell, gum-bletilla as well as Pluronic F-127, and left side was blank control. B model group was applied by subchondral drilling method, whose right joint was repaired by using composite scaffolds made by gum-bletilla and Pluronic F-127 without seed cells, and left side was blank control. Autogenous contrast was used in both model types. In addition, another group was applied with B model type rabbits, which was repaired with artificial complex material of Pluronic F-127 in both joint sides. 4, 12 and 24 weeks after operation, the animals were sacrificed and the samples were collected from repaired area for staining with HE, typeⅡcollagen immunohistochemical method, Alcian blue, and toluidine blue, and then were observed with optical microscope. Semi-quantitative scores were graded by referring to Wakitanis histological scoring standard to investigate the histomorphology of repaired tissue. Hyaline cartilage repairing was achieved in both Group A and Group B, with satisfactory results. There were no significant differences on repairing effects for articular cartilage defects between composite scaffolds made by seed cell, gum-bletilla and Pluronic F-127, and the composite scaffolds made by gum-bletilla and Pluronic F-127 without seed cell. Better repairing effects for articular cartilage defects were observed in groups with use of gum-bletilla, indicating that gum-bletilla is a vital part in composite scaffolds material. Copyright© by the Chinese Pharmaceutical Association.

  16. Environmental Particle Emissions due to Automated Drilling of Polypropylene Composites and Nanocomposites Reinforced with Talc, Montmorillonite and Wollastonite

    NASA Astrophysics Data System (ADS)

    Starost, K.; Frijns, E.; Laer, J. V.; Faisal, N.; Egizabal, A.; Elizextea, C.; Nelissen, I.; Blazquez, M.; Njuguna, J.

    2017-05-01

    In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.

  17. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  18. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough

    PubMed Central

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term. PMID:25902075

  19. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    PubMed

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term.

  20. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen.

    PubMed

    Sarin, P; Snoeyink, V L; Bebee, J; Jim, K K; Beckett, M A; Kriven, W M; Clement, J A

    2004-03-01

    Iron release from corroded iron pipes is the principal cause of "colored water" problems in drinking water distribution systems. The corrosion scales present in corroded iron pipes restrict the flow of water, and can also deteriorate the water quality. This research was focused on understanding the effect of dissolved oxygen (DO), a key water quality parameter, on iron release from the old corroded iron pipes. Corrosion scales from 70-year-old galvanized iron pipe were characterized as porous deposits of Fe(III) phases (goethite (alpha-FeOOH), magnetite (Fe(3)O(4)), and maghemite (alpha-Fe(2)O(3))) with a shell-like, dense layer near the top of the scales. High concentrations of readily soluble Fe(II) content was present inside the scales. Iron release from these corroded pipes was investigated for both flow and stagnant water conditions. Our studies confirmed that iron was released to bulk water primarily in the ferrous form. When DO was present in water, higher amounts of iron release was observed during stagnation in comparison to flowing water conditions. Additionally, it was found that increasing the DO concentration in water during stagnation reduced the amount of iron release. Our studies substantiate that increasing the concentration of oxidants in water and maintaining flowing conditions can reduce the amount of iron release from corroded iron pipes. Based on our studies, it is proposed that iron is released from corroded iron pipes by dissolution of corrosion scales, and that the microstructure and composition of corrosion scales are important parameters that can influence the amount of iron released from such systems.

  1. Calculating the Optimum Angle of Filament-Wound Pipes in Natural Gas Transmission Pipelines Using Approximation Methods.

    PubMed

    Reza Khoshravan Azar, Mohammad; Emami Satellou, Ali Akbar; Shishesaz, Mohammad; Salavati, Bahram

    2013-04-01

    Given the increasing use of composite materials in various industries, oil and gas industry also requires that more attention should be paid to these materials. Furthermore, due to variation in choice of materials, the materials needed for the mechanical strength, resistance in critical situations such as fire, costs and other priorities of the analysis carried out on them and the most optimal for achieving certain goals, are introduced. In this study, we will try to introduce appropriate choice for use in the natural gas transmission composite pipelines. Following a 4-layered filament-wound (FW) composite pipe will consider an offer our analyses under internal pressure. The analyses' results will be calculated for different combinations of angles 15 deg, 30 deg, 45 deg, 55 deg, 60 deg, 75 deg, and 80 deg. Finally, we will compare the calculated values and the optimal angle will be gained by using the Approximation methods. It is explained that this layering is as the symmetrical.

  2. Portable total reflection x-ray fluorescence analysis in the identification of unknown laboratory hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu

    In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less

  3. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.P. McGrail; E. C. Sullivan; F. A. Spane

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less

  4. Apxs Chemical Composition of the Kimberley Sandstone in Gale Crater

    NASA Astrophysics Data System (ADS)

    Gellert, R.; Boyd, N.; Campbell, J. L.; VanBommel, S.; Thompson, L. M.; Schmidt, M. E.; Berger, J. A.; Clark, B. C.; Grotzinger, J. P.; Yen, A. S.; Fisk, M. R.

    2014-12-01

    Kimberley was chosen as a major waypoint of the MSL rover Curiosity on its way to Mount Sharp. APXS data before drilling showed interestingly high K, Fe and Zn. This warranted drilling of the fine-grained sandstone for detailed investigations with SAM and Chemin. With significantly lower Na, Al and higher K, Mg and Fe, the composition of the drill target Windjana is very distinct from the previous ones in the mudstones at Yellowknife Bay. Up to 2000 ppm Br and 4000 ppm Zn post-brush were among the highest measured values in Gale Crater. The excavated fines, stemming from about 6cm, showed lower Br, but even higher Zn. Preliminary Chemin results indicate K-feldspar and magnetite being major mineral phases in Windjana, which is consistent with the pre drill APXS result and derived CIPW norms. Inside the accessible work volume of the arm at the drill site ChemCam exposed a greyish, shinier patch of rock underneath the dust, dubbed Stephen. ChemCam sees a high Mn signal in most of the spots. An APXS integration revealed high MnO as well (~4%), in addition to high Mg, Cl,K,Ni,Zn,Br,Cu,Ge and for the first time an APXS detectable amount of ~300 ppm Co. The surface might reflect a thin surface layer and may underestimate the higher Z elemental concentration since the APXS analysis assumes an infinite sample. Important elemental correlations are likely not impacted. A four spot daytime raster of Stephen before leaving the drill site showed a good correlation of Mn with Zn, Cu and Ni. All spots have 3-3.5% Cl, the highest values measured on Mars so far. While the stratigraphic setting of the Stephen sample is discussed elsewhere, the similarity with Mn deep-sea nodules is striking, e.g. the APXS calibration sample GBW07296. Whatever process formed Stephen, the process of Mn scavenging high Z trace metals from solutions seems to have happened similarly at this site on Mars.

  5. Hole 504B reclaimed for future drilling

    NASA Astrophysics Data System (ADS)

    Leg 137 Scientific Drilling Party

    Hole 504B, perhaps the most important in situ reference section for the structure and composition of the oceanic crust, has been reopened for future drilling and downhole measurements after remedial operations during Leg 137 of the Ocean Drilling Program. By far the deepest penetration into oceanic crust, Hole 504B had been feared lost when a large diamond bit and assorted hardware (“junk”) broke off in the bottom of the hole at the end of ODP Leg 111 in 1986. Since then ODP's drill ship, JOIDES Resolution, has circumnavigated the globe, with no opportunity to redress this situation. But the objective of deep penetration into the oceanic crust and the hole itself are considered so important by marine Earth scientists that remedial measures in Hole 504B were undertaken as soon as the drill ship returned to the eastern Pacific. These measures succeeded better than had been hoped. Hole 504B was reopened after less than a week of cleaning operations, which included grappling for the lost junk with tools to pull it from the hole (called “fishing”) and grinding or milling the junk away.

  6. Raman spectroscopic investigations on natural samples from the Integrated Ocean Drilling Program (IODP) Expedition 311: indications for heterogeneous compositions in hydrate crystals.

    PubMed

    Schicks, J M; Ziemann, M A; Lu, H; Ripmeester, J A

    2010-12-01

    Natural gas hydrates usually are found in the form of structure I, encasing predominantly methane in the hydrate lattices as guest molecules, sometimes also minor amount of higher hydrocarbons, CO2 or H2S. Raman spectroscopy is an approved tool to determine the composition of the hydrate phase. Thus, in this study Raman spectroscopic analyses have been applied to hydrate samples obtained from Integrated Ocean Drilling Program (IODP) Expedition 311 in two different approaches: studying the samples randomly taken from the hydrate core, and--as a new application--mapping small areas on the surface of clear hydrate crystals. The results obtained imply that the gas composition of hydrate, in terms of relative concentrations of CH4 and H2S, is not homogeneous over a core or even within a crystal. The mapping method yielded results with very high lateral resolution, indicating the coexistence of different phases with the same structure but different compositions within a hydrate crystal. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Integral Radiator and Storage Tank

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0.85. The composite wrap remained tightly bound to the surface of the tank throughout the testing in thermal vacuum conditions.

  8. EC02-0188-19

    NASA Image and Video Library

    2002-07-12

    Technician Dave Brown installs a drilling template during construction of the all-composite left wing of NASA's Altair aircraft at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif.

  9. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiCello, D.C.; Odell, A.D.; Jackson, T.J.

    1995-03-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished,more » and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific ({mu}Ci/cm{sup 2}) of Co-60 and Zn-65 were analyzed.« less

  10. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Robert; Halkyard, John; Johnson, Peter

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to finalmore » design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.« less

  11. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions are so effective that the axial force needed to make the tool bit advance into the material of interest is much smaller than in ordinary twist drilling, ultrasonic drilling, or ordinary steady pushing.

  12. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  13. Use of Fiber Reinforced Plastics in the Marine Industry

    DTIC Science & Technology

    1990-09-06

    surface should be molded or machined into the hull. 129 Design of Detais Marine Composites With single skin laminates, holes are normally drilled...SH), FIre and Toxicity Test Methods and Qualification Procedure for Composite Material Systems Used In Hull, Machinely and Structural Applications...date on the state of the marine composites industry and should for many years serve as an excellent reference and source book for designers and

  14. Completion Report for Well ER-EC-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    2004-10-01

    Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to amore » total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.« less

  15. Intelligent and integrated techniques for coalbed methane (CBM) recovery and reduction of greenhouse gas emission.

    PubMed

    Qianting, Hu; Yunpei, Liang; Han, Wang; Quanle, Zou; Haitao, Sun

    2017-07-01

    Coalbed methane (CBM) recovery is a crucial approach to realize the exploitation of a clean energy and the reduction of the greenhouse gas emission. In the past 10 years, remarkable achievements on CBM recovery have been obtained in China. However, some key difficulties still exist such as long borehole drilling in complicated geological condition, and poor gas drainage effect due to low permeability. In this study, intelligent and integrated techniques for CBM recovery are introduced. These integrated techniques mainly include underground CBM recovery techniques and ground well CBM recovery techniques. The underground CBM recovery techniques consist of the borehole formation technique, gas concentration improvement technique, and permeability enhancement technique. According to the division of mining-induced disturbance area, the ground well arrangement area and well structure type in mining-induced disturbance developing area and mining-induced disturbance stable area are optimized to significantly improve the ground well CBM recovery. Besides, automatic devices such as drilling pipe installation device are also developed to achieve remote control of data recording, which makes the integrated techniques intelligent. These techniques can provide key solutions to some long-term difficulties in CBM recovery.

  16. Survey of possibility for volcanic energy development

    NASA Astrophysics Data System (ADS)

    1990-03-01

    Volcanic areas, clarification of heat source structure, evaluation of resources and problems on utilization techniques were arranged to search the possibility of future volcanic heat source. It is necessary to improve the exploration accuracy by combining geophysical exploration with geological and geochemical surveys in order to explorate a magma reservoir. Especially, seismic exploration is effective. The surveying procedure is as follows: confirmation of magma existence and grasping the whole image, evaluation of resources, clarification of three-dimensional distribution of magma in a promising area, and heat structure survey by heat flow measurement and others to construct more accurate model for resources. This model is verified finally by practical drilling. Promising areas which are worthy of development, are active volcanic areas in Kyushu, Hakkoda nad Hokkaido. It is desirable to make drilling to the depth of 3 km or magma reservoir to develop the future heat source. It is also required to improve the thermal resistance and corrosion resistance of materials to be used. Heat extraction by a single well is most realistic and the closed coaxial double pipe heat exchanger or open heat exchanger in the well will be used to improve the extraction.

  17. Heat-pipe planets

    NASA Astrophysics Data System (ADS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2017-09-01

    Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.

  18. Composites in energy generation and storage systems - An overview

    NASA Astrophysics Data System (ADS)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  19. Development and characterization of self-healing carbon fabric/ionomer composite through stitched polymeric artificial muscle

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark Joseph

    Typical cracks in composite materials are hard to detect, because they may be very small or occur inside the material. This study investigates the development and characterization of carbon fiber and an ionomer, self-healing, laminate composite, enhanced with stitched artificial muscle elements. Although the carbon fiber is used as a structural reinforcement, the carbon fiber can also act as a resistive heating element in order to activate the healing elements in a Close-Then-Heal (CTH) approach. However in this study, hot air in an oven was used to activate the, SurlynRTM 8940, self-healing matrix. Artificial muscle was prepared from commercial fishing line to stitch reinforce the carbon laminate composite in the Z plane. Holes were drilled into the final composite and the muscle was stitched into the composite for active reinforcement. Differential scanning calorimetry was used to characterize the matrix and fishing line properties. The resulting smart composite was subjected to low velocity impact tests and consequential damage before healing in an oven, followed by three point bending flexure tests. Cracks in the carbon fiber reinforcement formed more easily than expected after impact because the holes were drilled to facilitate the muscle stitching. The matrix material could heal, but the reinforcement carbon could not. Several equipment issues and failures limited the amount of samples that could be created to continue testing with new parameters.

  20. Residual stresses investigations in composite samples by speckle interferometry and specimen repositioning

    NASA Astrophysics Data System (ADS)

    Baldi, Alfonso; Jacquot, Pierre

    2003-05-01

    Graphite-epoxy laminates are subjected to the "incremental hole-drilling" technique in order to investigate the residual stresses acting within each layer of the composite samples. In-plane speckle interferometry is used to measure the displacement field created by each drilling increment around the hole. Our approach features two particularities (1) we rely on the precise repositioning of the samples in the optical set-up after each new boring step, performed by means of a high precision, numerically controlled milling machine in the workshop; (2) for each increment, we acquire three displacement fields, along the length, the width of the samples, and at 45°, using a single symmetrical double beam illumination and a rotary stage holding the specimens. The experimental protocol is described in detail and the experimental results are presented, including a comparison with strain gages. Speckle interferometry appears as a suitable method to respond to the increasing demand for residual stress determination in composite samples.

  1. Hydrothermal alteration of kimberlite by convective flows of external water.

    PubMed

    Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J

    Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO 18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.

  2. Heat transport system, method and material

    DOEpatents

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  3. Salem limestone oil and gas production in the Keenville field, Wayne County, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, D.L.

    Oil has been produced from the Salem Limestone of Valmeyeran (middle Mississippian) age in Illinois since 1939. In 1972 the discovery of Salem oil at Zenith North field in Wayne County, Illinois, stimulated a resurgence of Salem exploration in the Illinois Basin. By the end of 1977, activity had resulted in 3 new field discoveries and 24 new pool discoveries in the Salem of Illinois. One of the most promising of these discoveries was in the Keenville field in T. 1 S., R. 5 E., Wayne County, Illinois. The discovery well was completed early in January 1977, and by themore » end of the year 40 wells had produced approximately 760,000 barrels of Salem oil. The oil is produced from a biocalcarenite (predominatly sand-sized fossils and fossil fragments), with highly variable porosity and permeability, which lies about midway between the top and bottom of the formation. No structural closure is evident on key marker beds above the Salem, but some closure is created by the tendency of the producing zone to occur increasingly lower in the section in an up-dip direction. Water-free oil production was obtained in many wells by setting pipe through the reservoir and perforating above the oil-water contact, as determined by examination of drill cuttings. The oil produced is accompanied by gas with a heating value of about 1500 Btu/ft/sup 3/. To date, most of the oil accumulations in the Salem have been found by drilling below shallower, producing zones on prominent structures. The presence of reservoirs within the Salem, such as the one at Keenville has been difficult to predict prior to drilling. The recent increase in the number of holes drilled to or through the Salem should add to our knowledge of its depositional and diagenetic history and help in further oil exploration.« less

  4. Bending moment evaluation of a long specimen using a radial speckle pattern interferometer in combination with relaxation methods

    NASA Astrophysics Data System (ADS)

    Pacheco, Anderson; Fontana, Filipe; Viotti, Matias R.; Veiga, Celso L. N.; Lothhammer, Lívia R.; Albertazzi G., Armando, Jr.

    2015-08-01

    The authors developed an achromatic speckle pattern interferometer able to measure in-plane displacements in polar coordinates. It has been used to measure combined stresses resulting from the superposition of mechanical loading and residual stresses. Relaxation methods have been applied to produce on the surface of the specimen a displacement field that can be used to determine the amount of combined stresses. Two relaxation methods are explored in this work: blind hole-drilling and indentation. The first one results from a blind hole drilled with a high-speed drilling unit in the area of interest. The measured displacement data is fitted in an appropriate model to quantify the stress level using an indirect approach based on a set of finite element coefficients. The second approach uses indentation, where a hard spherical tip is firmly pressed against the surface to be measured with a predetermined indentation load. A plastic flow occurs around the indentation mark producing a radial in-plane displacement field that is related to the amount of combined stresses. Also in this case, displacements are measured by the radial interferometer and used to determine the stresses by least square fitting it to a displacement field determined by calibration. Both approaches are used to quantify the amount of bending stresses and moment in eight sections of a 12 m long 200 mm diameter steel pipe submitted to a known transverse loading. Reference values of bending stresses are also determined by strain gauges. The comparison between the four results is discussed in the paper.

  5. Interactive 3D visualization speeds well, reservoir planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzet, G.A.

    1997-11-24

    Texaco Exploration and Production has begun making expeditious analyses and drilling decisions that result from interactive, large screen visualization of seismic and other three dimensional data. A pumpkin shaped room or pod inside a 3,500 sq ft, state-of-the-art facility in Southwest Houston houses a supercomputer and projection equipment Texaco said will help its people sharply reduce 3D seismic project cycle time, boost production from existing fields, and find more reserves. Oil and gas related applications of the visualization center include reservoir engineering, plant walkthrough simulation for facilities/piping design, and new field exploration. The center houses a Silicon Graphics Onyx2 infinitemore » reality supercomputer configured with 8 processors, 3 graphics pipelines, and 6 gigabytes of main memory.« less

  6. Downhole Data Transmission System

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe

    2004-04-06

    A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

  7. Landslide investigations, southern Cianjur Regency, West Java Province, Indonesia; a progress report

    USGS Publications Warehouse

    Ege, John R.

    1983-01-01

    Two landslide-monitoring sites have been established for a minimum 2-year investigation near the villages of Pasirpari and Cibacang in southern Cianjur Regency, West Java, Indonesia. Surveyed-in lines will measure amounts of surface movement and tilt, borings that produced exploratory cores now serve as slip-surface detectors and open-pipe piezometers, and rain gages will record rainfall at both sites. Exploratory cores and field observations located upper slip surfaces ranging in depth between 4 and 14 m. Rises of borehole-water levels of as much as 63 cm during drilling suggest that pore pressures exist at the inferred-slip surfaces. Sliding along slip surfaces and slope failures occurred during the rainy season between November 1980 and April 1981.

  8. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  9. Feasibility of Using Plastic Pipe for Ethanol Low Stress Lines

    DOT National Transportation Integrated Search

    2010-05-28

    This USDOT PHMSA sponsored research project addressed and successfully determined the initial feasibility of using new materials, both polymeric and composites, as low-cost alternatives to specially designed metallic gathering pipelines. The project ...

  10. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    USGS Publications Warehouse

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific. ?? 1994.

  11. Bolted Joints in Three Axially Braided Carbon Fibre/Epoxy Textile Composites with Moulded-in and Drilled Fastener Holes

    NASA Astrophysics Data System (ADS)

    Ataş, Akın; Gautam, Mayank; Soutis, Constantinos; Potluri, Prasad

    2017-04-01

    Experimental behaviour of bolted joints in triaxial braided (0°/±45°) carbon fibre/epoxy composite laminates with drilled and moulded-in fastener holes has been investigated in this paper. Braided laminates were manufactured by vacuum infusion process using 12 K T700S carbon fibres (for bias and axial tows) and Araldite LY-564 epoxy resin. Moulded-in fastener holes were formed using guide pins which were inserted in the braided structure prior to the vacuum infusion process. The damage mechanism of the specimens was investigated using ultrasonic C-Scan technique. The specimens were dimensioned to obtain a bearing mode of failure. The bearing strength of the specimens with moulded-in hole was reduced in comparison to the specimens with drilled hole, due to the increased fibre misalignment angle following the pin insertion procedure. An improvement on the bearing strength of moulded-in hole specimens might be developed if the specimen dimensions would be prepared for a net-tension mode of failure where the fibre misalignment would not have an effect as significant as in the case of bearing failure mode, but this mode should be avoided since it leads to sudden catastrophic failures.

  12. [The influence of the oil and gas industry on environmental safety and population health in the Khanty-Mansiĭskiĭ Region - Iugra].

    PubMed

    Samutin, N M; Vorob'ev, V O; Butorin, N N

    2013-01-01

    Production activities of oil and gas industry plants are related to technogenic impact on the environment, which has a high environmental risk. This is associated with low levels of environmental orientation of sheer technological processes of exploration and exploitation of hydrocarbons and also used in this technical means, materials and chemical reagents. The main pollutants that deteriorate the toxic characteristics of drilling waste, are the most likely drilling fluids, mud flush agents and chemicals, which enter into their composition. Existing methods of disposal of drilling wastes are not effective, the technology of their use is often violated. Dumping drilling waste into water bodies and burying toxic waste in water protection areas under the guise of processed waste has been observed. In the region there are significantly exceeded the national average values rate of morbidity of allergic, cardiovascular, pulmonary and cancer diseases, mediated by environmental factors and new monofactorial and multifactorial diseases appear.

  13. Sediment studies associated with drilling activity on a tropical shallow shelf.

    PubMed

    Souza, Claudete R; Vital, Helenice; Melo, Germano; Souza, Cleuneide R; da Silva Nogueira, Mary Lucia; Tabosa, Werner Farkatt

    2015-02-01

    Environmental monitoring studies were developed in an area located on the outer shelf in the Potiguar Basin, Brazilian equatorial margin. This tropical shelf represents a modern, highly dynamic mixed carbonate-siliciclastic system. Field sampling was carried out during 3 cruises surrounding a shallow-water exploratory well to compare sediment properties of the seafloor, including grain size, texture, mineral composition, carbonate content, and organic matter, prior to drilling with samples obtained 3 and 12 months after drilling. The sample grid used had 16 stations located along 4 radials from 50 m the well up to a distance of 500 m. Sediments were analyzed in the first 0-2 cm and 0-10 cm layers. The results show that sedimentary cover around the well is dominated by bioclastic sediments, poor to very poorly sorted. Only minor sedimentological variations occurred in the area affected by drilling operations. The most noticeable effects were observed during the second cruise, in terms of a change in grain size distribution associated to a slight increase in siliciclastic content. This impact occurred in the most surficial sediment (0-2 cm), in the radials closest to the well (50 m), and could suggest the effects of drilling. However, in the third cruise, 1 year after drilling, the sediments return to show the same characteristics as in the first cruise. These results show no significant sedimentological variations due to drilling activity and indicate that ocean dynamics in this area was high enough to recover the environment original characteristics.

  14. Sulfation of Eggshell Proteins by Pipe Defines Dorsal-Ventral Polarity in the Drosophila embryo

    PubMed Central

    Zhang, Zhenyu; Stevens, Leslie M.; Stein, David

    2009-01-01

    Summary Drosophila embryonic dorsal-ventral (DV) polarity is controlled by a group of sequentially acting serine proteases located in the fluid-filled perivitelline space between the embryonic membrane and the eggshell, which generate the ligand for the Toll receptor on the ventral side of the embryo [1, 2, 3]. Spatial control of the protease cascade relies on the Pipe sulfotransferase, a fly homologue of vertebrate glycosaminoglycan modifying enzymes [4, 5, 6], which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. The identification of the Pipe enzymatic target has remained a major gap in our understanding of the mechanism controlling the perivitelline protease cascade, and hence embryonic DV patterning. Here we show that the protein Vitelline Membrane-Like (VML) [7] undergoes Pipe-dependent sulfation and, consistent with a role in conveying positional information from the egg chamber to the embryo, becomes incorporated into the eggshell at a position corresponding to the location of the follicle cells from which it was secreted. Although VML influences embryonic DV pattern in a sensitized genetic background, VML is not essential for DV axis formation, suggesting that there is redundancy in the composition of the Pipe enzymatic target. Correspondingly, we find that additional structural components of the vitelline membrane undergo Pipe-dependent sulfation. In identifying the elusive targets of Pipe, this ork points to the vitelline membrane as the source of signals that generate the Drosophila DV axis and provides a framework for understanding the mechanism controlling spatially-specific activation of serine protease activity during embryonic pattern formation. PMID:19540119

  15. Contaminants in landfill soils - Reliability of prefeasibility studies.

    PubMed

    Hölzle, Ingo

    2017-05-01

    Recent landfill mining studies have researched the potential for resource recovery using samples from core drilling or grab cranes. However, most studies used small sample numbers, which may not represent the heterogeneous landfill composition. As a consequence, there exists a high risk of an incorrect economic and/or ecological evaluation. The main objective of this work is to investigate the possibilities and limitations of preliminary investigations concerning the crucial soil composition. The preliminary samples of landfill investigations were compared to the excavation samples from three completely excavated landfills in Germany. In addition, the research compared the reliability of prediction of the two investigation methods, core drilling and grab crane. Sampling using a grab crane led to better results, even for smaller investigations of 10 samples. Analyses of both methods showed sufficiently accurate results to make predictions (standard error 5%, level of confidence 95%) for most heavy metals, cyanide and PAH in the dry substance and for sulphate, barium, Benzo[a]pyrene, pH and the electrical conductivity in leachate analyses of soil type waste. While chrome and nickel showed less accurate results, the concentrations of hydrocarbons, TOC, DOC, PCB and fluorine (leachate) were not predictable even for sample numbers of up to 59. Overestimations of pollutant concentrations were more frequently apparent in drilling, and underestimations when using a grab crane. The dispersion of the element and elemental composition had no direct impact on the reliability of prediction. Thus, an individual consideration of the particular element or elemental composition for dry substance and leachate analyses is recommended to adapt the sample strategy and calculate an optimum sample number. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Carbon chemistry of the Apollo 15 and 16 deep drill cores

    NASA Technical Reports Server (NTRS)

    Wszolek, P. C.; Burlingame, A. L.

    1973-01-01

    The carbon chemistry of the Apollo 15 and 16 deep drill cores is a function of the surface exposure plus the chemical and mineralogical composition of the individual samples. The depth profiles of carbide and methane yields in the Apollo 15 core show a general decline with depth and correlate with the solar wind noble gas content, percentage agglutinates, track densities, and metallic iron. All horizons examined were exposed for a considerable time on the lunar surface. The Apollo 16 core samples show that chemical and mineralogical composition plays an important role in determining the nature of carbide-like material present in the fines. The higher aluminum and calcium contents and lower iron contents of highlands material result in carbide-like material yielding less CD4 and more C2D2 (deuteroacetylene) upon DF acid dissolution.

  17. Petrology of basaltic sills from ocean drilling program sites 794 and 797 in the Yamato Basin of the Japan Sea

    NASA Technical Reports Server (NTRS)

    Thy, P.

    1992-01-01

    The basaltic sills from ocean drilling program sites 794 and 797 in the Yamato Basin of the Japan Sea are characterized petrographically on the basis of a detailed study of the composition of relict phenocryst and groundmass phases. The systematic variation in the rock compositions is discussed. Results of 1-atm melting experiments on a relatively primitive basalt from site 797 are reported. The sills are found to constitute two distinct groups of suites: primitive, olivine-bearing suites with low potassium and primitive olivine-bearing to evolved, olivine-free suites with relatively high potassium. A pseudoinvariant reaction relationship between olivine and augite and magnetite is inferred. Complex magmatic and tectonic evolutions in the region, perhaps reflecting a transitional stage between subduction zone activity and back arc spreading, are suggested.

  18. Continuous monitoring of the progressive degradation of a liquid composite by means of a noninvasive microwave resonator

    NASA Astrophysics Data System (ADS)

    Catala-Civera, Jose M.; Canos-Marin, Antoni J.; de los Reyes, E.

    2000-07-01

    Microwave control capabilities have been used to monitor the degradation of polyol, an alcohol composite material commonly used in the footwear industry for polymerization purposes. The liquid flows continuously inside a thin pipe and its desirable properties are altered with time associated to moisture absorption processes. Consequently, variations in the dielectric properties are involved, and they can be detected by permittivity measurements. In this paper, in order to obtain high sensitivity and resolution, a rectangular cavity resonator working at a fixed frequency was designed using as sample holder a rectangular pipe containing the liquid going through. Changes in the liquid modify the original response of the cavity with a non- degraded liquid and these differences have been used to determine the degree of degradation of the material. The final response of the microwave resonator was experimentally validated with measurements in a continuous line.

  19. Pattern recognition by wavelet transforms using macro fibre composites transducers

    NASA Astrophysics Data System (ADS)

    Ruiz de la Hermosa González-Carrato, Raúl; García Márquez, Fausto Pedro; Dimlaye, Vichaar; Ruiz-Hernández, Diego

    2014-10-01

    This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.

  20. Physical Nature of the Processes in Structure Forming, Phase and Chemical Composition of pipe Permanent Joints when MMA Welding

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Danilov, V. I.; Sadykov, I. D.

    2016-04-01

    The paper outlines peculiarities of structure formation, phase and chemical composition in regard to heat content in molten electrode metal beads when pipe steel (steel 09G2S) welding using power sources with various energy characteristics. Mathematical calculations indicate an inverter power source provides minor heat content into the bead of electrode metal when welding. Experimental research has pointed at 4-9 % increase in impact strength of joints produced using an inverter power source in comparison with samples produced applying a diode rectifier. The following factors can possibly give rise to the increasing impact strength: difference in microstructures of weld joints, up to 50% shortening ferritic plates in metal of weld joint, change in dimensions of ferritic grains in the heat-affected zone by as much as 17.5 %, and decrease in the extent of heat-affected zone by 50%.

  1. Heat transport system, method and material

    DOEpatents

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  2. An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources

    NASA Astrophysics Data System (ADS)

    dell'Erba, M.; Galantucci, L. M.; Miglietta, S.

    This paper reports on the results of research which investigated the potential for the application of an excimer laser in the field of composite material drilling and cutting, by comparing this technology with that using CO2 sources. In particular, the scope of the work was to check whether the interaction between excimer lasers and composite materials, whose characteristic feature is the absence of thermal transfer, could yield better results than those obtainable with CO2 sources once heat transfer-induced difficulties had been eliminated. The materials selected for the experiments were multilayer composites having an epoxy resin matrix (65 percent in volume), with aramid fiber (Kevlar), carbon fiber and glass fiber as reinforcing materials, all of considerable interest for the aerospace industry. Optimal operational parameters were identified in relation to each source with a view to obtaining undersize holes or through cuts exhibiting severed areas of good quality. A comparison between the two types of processing carried out show that rims processed by excimer lasers are of better quality - particularly so with Kevlar - whereas the ablation rate is undoubtedly rather low compared with the CO2 technology.

  3. Continental Scientific Drilling and Exploration Act. Introduced in the Senate, Ninety-Ninth Congress, Second Session, September 19, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    The Senate Committee on Energy and Natural Resources report on S. 1026 recommends without amendment the bill which directs the Secretaries of the Interior and the National Science Foundation to cooperate in implementing the Continental Scientific Drilling Program (CSDP). The purpose of the CSDP is to enhance the knowledge and understanding of the composition, structure, dynamics, and evolution of the continental crust, including how such processes affect natural phenomena. The report includes background and the need for the legislation and summarizes the four sections.

  4. Study of the Martian Subsurface with a Fiber Optics Spectrometer: the Ma_Miss Experiment

    NASA Astrophysics Data System (ADS)

    Coradini, A.; de Sanctis, M. C.; Ammannito, E.; Boccaccini, A.; Battistelli, E.; Capanni, A.

    2009-04-01

    In this presentation is described the investigation that we intend to do with a small imaging spectrometer that will be inserted in the drill of the Exomars- Pasteur rover. This spectrometer is named Ma_miss (Mars Multispectral Imager for Subsurface Studies ). The Ma_Miss experiment is located in the drill ,that will be able to make a hole in the Mars soil and rock up to 2 m. Ma_Miss includes the optical head of the spectrometer, a lamp to illuminate the borehole walls, and the optical fiber that brings the signal to the spectrometer. The multispectral images are acquired by means of a sapphire window placed on the lateral wall of the drill tool, as close as possible to the drill head. The images are gathered by means of an optical fibre system and analyzed using the spectrometer. The Ma_Miss gathered light containing the scientific information is transferred to the array detector and electronics of the instrument by means of an optical rotary joint implemented in the roto-translation group of the drill, as shown in the next pictures In the figure is schematically represented the Ma_Miss- Dibs architecture. This experiment will be extremely valuable since it will allow, for the first time, to have an idea of the mineralogical composition of the Martian subsurface and to study freshly cut rocks. The study of surface and subsurface mineralogy of Martian soil and rocks is the key for understanding the chemico-physical processes that led to the formation and evolution of the Red Planet. The history of the water and other volatiles, as well as the signatures of weathering processes are important to understand present and past environmental conditions associated with the possibility of life. Surface samples are highly influenced by exogenous processes (weathering, erosion, sedimentation, impact) that alter their original properties. So, the analyses of uncontaminated samples by means of instrumented drills and in situ analytic stations are the key for unambiguous interpretation of the original environment that leading to the formation of rocks. Analysis of subsurface layers is the only approach that warranties measurements on samples close to their original composition. The upper few meters of the surface materials on Mars play a crucial role in its history, providing important constraints geologic, hydrologic, and climatic to the history of the planet. Drilling into the near-surface crust will provide an opportunity to assess variations in composition, texture, stratification, unconformities, etc. that will help define its lithology and structure, and provide important clues regarding its origin and subsequent evolution. The subsurface material can give information on the evolution of surface sediments (erosion, transport, deposition), on the relation between sediments and bedrock, on the relation between environmental conditions and surface processes permitting to "investigate planetary processes that influence habitability." Investigation of mineralogical composition of near-surface geological materials is needed to fully characterize the geology of the regions that will be visited by the Rover at all appropriate spatial scales, and to interpret the processes that have formed and modified rocks and regolith. Subsurface access, sampling material below the oxidized layer, can be the key to "assess the biological potential of the target environment (past or present)". To date, we have direct observations relative only to the Martian surface. Little is known about the characteristics of the first subsurface layers. The possibility to sample subsurface materials to be delivered to other instruments, and to record the context of the sampled soil doing in situ borehole mineralogical analysis, is fundamental to search for traces of past or present life on Mars. The spectrometer observes a single point target, having 0.1 mm diameter, on the borehole wall surface. Depending on the surface features we are interested in, the observation window can scan the borehole's surface by means of drill tip rotation or translation. When the drill is translated, a "Column Image" is acquired. This translation step can be equal to the observation spot (0.1 mm). The "Ring Image" can be obtained by rotation of the drill tip; a rotation step of about 0.5˚ (corresponding to 720 acquisitions in the ring) is sufficient to assure the full coverage of the ring.

  5. Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.

    2017-12-01

    Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in drilling mud. Understanding why contamination occurs will improve the coring process and ensure maximum recovery in the future. The XRD data also show the presence of 7-angstrom clay minerals, most likely chlorite and serpentine, but more analysis is required in order to verify the identification and to establish relative abundances of each mineral.

  6. Initial results from the ICDP SCOPSCO drilling project, Lake Ohrid (Macedonia, Albania)

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Krastel, S.; Lindhorst, K.; Wilke, T.; Zanchetta, G.; Sulpizio, R.; Grazhdani, A.; Reicherter, K. R.

    2013-12-01

    Lake Ohrid (Macedonia, Albania) is about 30 km long and 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe, providing a high-resolution, continuous archive of environmental change and tectonic and tephrostratigraphic history in the Eastern Mediterranean Region. The deep drilling campaign at Lake Ohrid in spring 2013 within the scope of the ICDP project SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the 'DEEP' site in the center of the lake, seismic data implied a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Coarse-grained gravel and pebbles underlying clay and shallow water facies sediments hampered deeper penetration. 6 boreholes at the 'DEEP' site resulted in a total of 1526 m of sediment cores and a composite field recovery of 544 m (95%). Initial geochemical and magnetic susceptibility data imply that the sediments from 'DEEP' site are highly sensitive to climate and environmental variations in the Balkan area probably over the last 1.5 Mio years. Long-term climate oscillations on a glacial/interglacial timescale and also short-term events such as Dansgaard-Oescher cycles during the last glacial period can be inferred from the initial data. Although a high amount of greigite complicates the paleomagnetic dating of the recovered sediments, a robust age model can likely be inferred from numerous tephras and cryptotephras, which are indicated by spikes in the magnetic susceptibility data. Three additional sites at lateral parts of Lake Ohrid were drilled to un-ravel lake level fluctuations, catchment dynamics, biodiversity and evolution processes ('Cerava', deepest drilled depth: 90 m), active tectonics and spring dynamics ('Gradiste', deepest drilled depth: 123 m), and the early development of the Ohrid Basin ('Pestani', deepest drilled depth: 194 m). The composite field recovery is >90% at each site. The initial results obtained from the field campaign indicate that Lake Ohrid provides an extraordinary record of environmental change in the northern Mediterranean and will become a key site for a better understanding of speciation triggers.

  7. Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code.

    PubMed

    Predoi, Mihai Valentin

    2014-09-01

    The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    PubMed

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

  9. Alterations in bottom sediment physical and chemical characteristics at the Terra Nova offshore oil development over ten years of drilling on the grand banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper describes sediment composition at the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland, Canada, at an approximate water depth of 100 m. Surface sediment samples (upper 3 cm) were collected for chemical and particle size analyses at the site pre-development (1997) and in 2000-2002, 2004, 2006, 2008 and 2010. Approximately 50 stations have been sampled in each program year, with stations extending from less than 1 km to a maximum of 20 km from source (drill centres) along five gradients, extending to the southeast, southwest, northeast, northwest and east of Terra Nova. Results show that Terra Nova sediments were contaminated with >C10-C21 hydrocarbons and barium-the two main constituents of synthetic-based drilling muds used at the site. Highest levels of contamination occurred within 1 to 2 km from source, consistent with predictions from drill cuttings dispersion modelling. The strength of distance gradients for >C10-C21 hydrocarbons and barium, and overall levels, generally increased as drilling progressed but decreased from 2006 to 2010, coincident with a reduction in drilling. As seen at other offshore oil development sites, metals other than barium, sulphur and sulphide levels were elevated and sediment fines content was higher in the immediate vicinity (less than 0.5 km) of drill centres in some sampling years; but there was no strong evidence of project-related alterations of these variables. Overall, sediment contamination at Terra Nova was spatially limited and only the two major constituents of synthetic-based drilling muds used at the site, >C10-C21 hydrocarbons and barium, showed clear evidence of project-related alternations.

  10. Space power thermal management materials and fabrication technologies for commerical use

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Anderson, William G.; Horner-Richardson, Kevin; Hartenstine, John R.; Keller, Robert F.; Beals, James T.

    1995-01-01

    This paper describes three materials technologies, developed for space nuclear power thermal management, with exciting and varied applications in other fields. Six dual-use applications are presented. The three basic technologies are described: (1) Refractory-metal/ceramic layered composites can be made into thin, rigid, vacuum tight shells. These shells can be tailored for excellent impact resistance and/or excellent corrision/erosion properties. Dual use applications range from micrometeroid shield radiators for spacecraft to erosion resistant waste-stream heat recovery for corrosive exhaust. (2.) Porous metal technology was initially developed to produce wicks for liquid metal heat pipes. This technology is being developed in several new directions. Porous metal heat exchangers feature extraordinarily high specific surface ratios and have absorbed heat fluxes in excess of 100 MW/m2. Porous metal structures are highly compliant, so the technology has been expanded to produce a compliant interface for the attachment of materials with widely different coefficients of thermal expansion such as low expansion carbon-carbon to high expansion metals. (3.) The paper also describes a process, developed for space nuclear power (thermionics), which achieves 100% dense tungsten by plasma spraying. This could have major application in the reprocessing of spent nuclear fuel or other pyrochemical processes, where it would replace gun-drilled tungsten-molybdenum tubes with pure tungsten tubes of smaller diameter, longer, and thiner walled. The process could produce pure tungsten components in complex shapes for arcjet thrusters and other electric propulsion devices.

  11. Empirical Models for Quantification of Machining Damage in Composite Materials

    NASA Astrophysics Data System (ADS)

    Machado, Carla Maria Moreira

    The tremendous growth which occurs at a global level of demand and use of composite materials brings with the need to develop new manufacturing tools and methodologies. One of the major uses of such materials, in particular plastics reinforced with carbon fibres, is their application in structural components for the aircraft industry with low weight and high stiffness. These components are produced in near-final form but the so-called secondary processes such as machining are often unavoidable. In this type of industry, drilling is the most frequent operation due to the need to obtain holes for riveting and fastening bolt assembly of structures. However, the problems arising from drilling, particularly the damage caused during the operation, may lead to rejection of components because it is an origin of lack of resistance. The delamination is the most important damage, as it causes a decrease of the mechanical properties of the components of an assembly and, irrefutably, a reduction of its reliability in use. It can also raise problems with regard to the tolerances of the assemblies. Moreover, the high speed machining is increasingly recognized to be a manufacturing technology that promotes productivity by reducing production times. However, the investigation whose focus is in high speed drilling is quite limited, and few studies on this subject have been found in the literature review. Thus, this thesis aims to investigate the effects of process variables in high speed drilling on the damage produced. The empirical models that relate the delamination damage, the thrust force and the torque with the process parameters were established using Response Surface Methodology. The process parameters considered as input factors were the spindle speed, the feed per tooth, the tool diameter and the workpiece thickness. A new method for fixing the workpiece was developed and tested. The results proved to be very promising since in the same cutting conditions and with this new methodology, it was observed a significant reduction of the delamination damage. Finally, it has been found that is possible to use high speed drilling, using conventional twist drills, to produce holes with good quality, minimizing the damage.

  12. Drill Hole Image and Spectra Acquired by Mastcam

    NASA Image and Video Library

    2013-03-18

    This set of images illustrates how the science filters of the Mast Camera Mastcam on NASA Mars rover Curiosity can be used to investigate aspects of the composition and mineralogy of materials on Mars.

  13. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes.

    PubMed

    Yang, Fan; Shi, Baoyou; Bai, Yaohui; Sun, Huifang; Lytle, Darren A; Wang, Dongsheng

    2014-08-01

    The chemical stability of iron corrosion scales and the microbial community of biofilm in drinking water distribution system (DWDS) can have great impact on the iron corrosion and corrosion product release, which may result in "red water" issues, particularly under the situation of source water switch. In this work, experimental pipe loops were set up to investigate the effect of sulfate on the dynamical transformation characteristics of iron corrosion products and bacterial community in old cast iron distribution pipes. All the test pipes were excavated from existing DWDS with different source water supply histories, and the test water sulfate concentration was in the range of 50-350 mg/L. Pyrosequencing of 16S rRNA was used for bacterial community analysis. The results showed that iron release increased markedly and even "red water" occurred for pipes with groundwater supply history when feed water sulfate elevated abruptly. However, the iron release of pipes with only surface water supply history changed slightly without noticeable color even the feed water sulfate increased multiply. The thick-layered corrosion scales (or densely distributed tubercles) on pipes with surface water supply history possessed much higher stability due to the larger proportion of stable constituents (mainly Fe3O4) in their top shell layer; instead, the rather thin and uniform non-layered corrosion scales on pipes with groundwater supply history contained relatively higher proportion of less stable iron oxides (e.g. β-FeOOH, FeCO3 and green rust). The less stable corrosion scales tended to be more stable with sulfate increase, which was evidenced by the gradually decreased iron release and the increased stable iron oxides. Bacterial community analysis indicated that when switching to high sulfate water, iron reducing bacteria (IRB) maintained dominant for pipes with stable corrosion scales, while significant increase of sulfur oxidizing bacteria (SOB), sulfate reducing bacteria (SRB) and iron oxidizing bacteria (IOB) was observed for pipes with less stable corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates and... flow and volatile organic compound content under varying liquid level conditions (dynamic and static... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...

  15. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specifications shall be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates..., including flow and volatile organic compound content under varying liquid level conditions (dynamic and... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...

  16. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates and... flow and volatile organic compound content under varying liquid level conditions (dynamic and static... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...

  17. New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength

    NASA Astrophysics Data System (ADS)

    Clark, David A.

    2012-09-01

    Acquisition of magnetic gradient tensor data is likely to become routine in the near future. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetisation direction. In combination the NSS and its vector gradient determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Inversion based on the vector gradient of the NSS over the Tallawang magnetite deposit obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Besides the geological applications, the algorithms for the dipole model are readily applicable to the detection, location and characterisation (DLC) of magnetic objects, such as naval mines, unexploded ordnance, shipwrecks, archaeological artefacts, and buried drums.

  18. Innovative hyperspectral imaging (HSI) based techniques applied to end-of-life concrete drill core characterization for optimal dismantling and materials recovery

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2015-02-01

    The reduction of EOL concrete disposal in landfills, together with a lower exploitation of primary raw materials, generates a strong interest to develop, set-up and apply innovative technologies to maximize Construction and Demolition Waste (C&DW) conversion into useful secondary raw materials. Such a goal can be reached starting from a punctual in-situ efficient characterization of the objects to dismantle in order to develop demolition actions aimed to set up innovative mechanical-physical processes to recover the different materials and products to recycle. In this paper an innovative recycling-oriented characterization strategy based on HyperSpectral Imaging (HSI) is described in order to identify aggregates and mortar in drill core samples from end-of-life concrete. To reach this goal, concrete drill cores from a demolition site were systematically investigated by HSI in the short wave infrared field (1000-2500 nm). Results obtained by the adoption of the HSI approach showed as this technology can be successfully applied to analyze quality and characteristics of C&DW before dismantling and as final product to reutilise after demolition-milling-classification actions. The proposed technique and the related recognition logics, through the spectral signature detection of finite physical domains (i.e. concrete slice and/or particle) of different nature and composition, allows; i) to develop characterization procedures able to quantitatively assess end-of-life concrete compositional/textural characteristics and ii) to set up innovative sorting strategies to qualify the different materials constituting drill core samples.

  19. Thermographic identification of wetted insulation on pipelines in the arctic oilfields

    NASA Astrophysics Data System (ADS)

    Miles, Jonathan J.; Dahlquist, A. L.; Dash, L. C.

    2006-04-01

    Steel pipes used at Alaskan oil-producing facilities to transport production crude, gas, and injection water between well house and drill site manifold building, and along cross-country lines to and from central processing facilities, must be insulated in order to protect against the severely cold temperatures that are common during the arctic winter. A problem inherent with this system is that the sealed joints between adjacent layers of the outer wrap will over time degrade and can allow water to breach the system and migrate into and through the insulation. The moisture can ultimately interact with the steel pipe and trigger external corrosion which, if left unchecked, can lead to pipe failure and spillage. A New Technology Evaluation Guideline prepared for ConocoPhillips Alaska, Inc. in 2001 is intended to guide the consideration of new technologies for pipeline inspection in a manner that is safer, faster, and more cost-effective than existing techniques. Infrared thermography (IRT) was identified as promising for identification of wetted insulation regions given that it offers the means to scan a large area quickly from a safe distance, and measure the temperature field associated with that area. However, it was also recognized that there are limiting factors associated with an IRT-based approach including instrument sensitivity, cost, portability, functionality in hostile (arctic) environments, and training required for proper interpretation of data. A methodology was developed and tested in the field that provides a technique to conduct large-scale screening for wetted regions along insulated pipelines. The results of predictive modeling analysis and testing demonstrate the feasibility under certain condition of identifying wetted insulation areas. The results of the study and recommendations for implementation are described.

  20. A Transient Electromagnetic Analysis of Groundwater on the Utah-Arizona Border

    NASA Astrophysics Data System (ADS)

    Vander Vis, Tanya

    Groundwater is often the primary water source for municipal and agricultural purposes, especially in the arid and semi-arid southwestern United States where surface water is limited. Understanding subsurface structure and groundwater flow is an essential part of managing this limited resource, however, it is often difficult and expensive to obtain extensive subsurface data. The purpose of this study was to better understand the Navajo Sandstone Aquifer in the region south of the East Fork of the Virgin River in southern Utah and north of Pipe Spring National Monument in northern Arizona. This was accomplished by using transient electromagnetics (TEM) to define the depth to the water table and to determine the location of the groundwater divide between the East Fork of the Virgin River and Pipe Spring National Monument. The Navajo Sandstone Aquifer is important regionally as it supplies water to the National Park Service (NPS), the Kaibab Paiute Tribe, and local communities, as well as, numerous springs that feed the Virgin River and Pipe Spring National Monument. A transient electromagnetic survey was conducted using an in-loop configuration and 30 receiver locations. This method was chosen because it is inexpensive relative to drilling costly wells and is highly sensitive to groundwater systems. Results from modeling the transient response show the groundwater divide 1500m south of the Utah-Arizona border. The National Park Service is interested in the location of the groundwater divide because, in Utah, Zion National Park has rights to water that flows through park boundaries and these rights extend to the groundwater system. Subsurface information from this study can be used to inform future policy decisions.

  1. a Study of Nanocomposite Coatings on the Surface of Ship Exhaust Pipe

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Sahoo, Prasanta K.; Pan, Yipeng

    In order to improve the high temperature oxidation resistance of exhaust pipes, the nanocomposite coatings are carried out on the surface of exhaust pipe by pulsed current electrodeposition technology, and the microstructure and oxidation behavior of the nanocomposite coatings are investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and oxidation resistance of nanocomposite coatings in presence of attapulgite and cerium oxide CeO2. The results show that the amount of the attapulgite-CeO2 has significant influence on the structural properties of nanocomposite coatings. The surface of coating becomes more compact and smooth with the increase of the amount of the attapulgite and CeO2. Furthermore, the anti-oxidation performances of the nanocomposite coatings formed with attapulgite and CeO2 were both better than those of the composite coatings formed without attapulgite and CeO2.

  2. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  3. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  4. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.

  5. Fabrication and development of several heat pipe honeycomb sandwich panel concepts. [airframe integrated scramjet engine

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1982-01-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  6. Ablation by-products of dental materials from the Er:YAG laser and the dental handpiece

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-05-01

    Recently there has been much interest in lasers and their potential use to replace the dental drill. The research has been directed towards vital dental tissues. It must be understood that any laser to be used in dentistry which will replace the dental drill must also ablate and remove existing dental materials. Some concern exists about the ablation products when the Er:YAG laser is used to ablate dental materials. It is incumbent on the professionals using these lasers to understand the materials being produced by these lasers and protect themselves and their patients from possible toxic products. It is the intent of this paper to evaluate the products produced by the ablation of both dental amalgam and composite dental restorative materials and compare them with those produced by the traditional dental handpiece (drill).

  7. MECHANICAL PROPERTIES OF TOTALLY PERMEABLE TITANIUM COMPOSITE PYLON FOR DIRECT SKELETAL ATTACHMENT

    PubMed Central

    Pitkin, M.; Pilling, J.; Raykhtsaum, G.

    2012-01-01

    Composite pylons containing a solid titanium core with drilled holes surrounded by a porous sintered titanium shell have been fabricated and tested in bending along with the raw cores and pylons composed of the porous titanium alone. The new pylons were designed with the concept of enhanced ingrowth of bone and skin cells and are intended for direct skeletal attachment of limb prostheses considering requirements for long-lasting anchorage to the residuum bone and a need for a safe skin-implant seal. Load-displacement thresholds were determined after which the integrity of the porous component may be compromised. The composite pylons have a flexural strength and stiffness substantially greater than that of pylons composed of the porous titanium alone. The drilled holes in the solid insert have been shown to have virtually no effect on the flexural strength of the pylon, while meeting a requirement for total permeability of the device for unrestricted cell ingrowth. The predicted strength of the pylons and associated failure modes are in close agreement with those measured. PMID:22287509

  8. Flammability properties and radiant fraction of FRT wood plastic composites using mass loss calorimeter under HRR hood

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman; Nicole Stark

    2017-01-01

    A special test arrangement was used to assess the flammability of 4 different wood plastic composites (WPC), most with fire retardants, all of which has a tendency to high smoke production leading to high radiant energy losses to the apparatus walls. The mass loss calorimeter (MLC) was modified to include a thermopile on the exhaust pipe stack to compensate for radiant...

  9. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

  10. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1989-11-21

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

  11. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  12. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  13. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    PubMed

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Seismic anisotropy of the crystalline crust: What does it tell us?

    USGS Publications Warehouse

    Rabbel, Wolfgang; Mooney, Walter D.

    1996-01-01

    The study of the directional dependence of seismic velocities (seismic anisotropy) promises more refined insight into mineral composition and physical properties of the crystalline crust than conventional deep seismic refraction or reflection profiles providing average values of P-and S-wave velocities. The alignment of specific minerals by ductile rock deformation, for instance, causes specific types of seismic anisotropy which can be identified by appropriate field measurements.Vice versa, the determination of anisotropy can help to discriminate between different rock candidates in the deep crust. Seismic field measurements at the Continental Deep Drilling Site (KTB, S Germany) are shown as an example that anisotropy has to be considered in crustal studies. At the KTB, the dependence of seismic velocity on the direction of wave propagation in situ was found to be compatible with the texture, composition and fracture density of drilled crustal rocks.

  15. Scale Formation under Blended Phosphate Treatment for a Utility with Lead Pipes

    EPA Science Inventory

    Conventional wisdom hypothesizes that the orthophosphate component of blended phosphate corrosion inhibitors causes the formation of low solubility lead-orthophosphate solids which inhibit lead release into drinking water. This study characterized the composition and morphology o...

  16. Venice Park landfill: Working with the community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill usesmore » about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.« less

  17. Final Section of Australia's Moomba-Sydney line completed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, G. Jr.

    1976-12-01

    Newham-Techint Gas Line JV, a joint venture between Techint Engineering (Australia) Inc. and Eric Newham (Wallerawang) Pty. Ltd., has finished construction of the final 58-mile leg of the Moomba-Sydney gas line. More than half the line is owned by The Pipeline Authority (a goverment department); the remainder belongs to the privately owned Australian Gas Light Co. Along the right-of-way, the terrain varies from an open farm belt to some 28 miles of rugged sandstone requiring blasting and drilling. In addition, the excessive number of river (2) and stream (43) crossings presented considerable problems to work crews. At the river-crossing sections,more » the pipe was installed (with a minimum of 3-ft cover) in the dry after crews temporarily dammed the river.« less

  18. Continental crust formation on early Earth controlled by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-05-01

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  19. Continental crust formation on early Earth controlled by intrusive magmatism.

    PubMed

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T

    2017-05-18

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  20. Three years experience with forward-site mass casualty triage-, evacuation-, operating room-, ICU-, and radiography-enabled disaster vehicles: development of usage strategies from drills and deployments.

    PubMed

    Griffiths, Jane L; Kirby, Neil R; Waterson, James A

    2014-01-01

    Delineation of the advantages and problems related to the use of forward-site operating room-, Intensive Care Unit (ICU)-, radiography-, and mass casualty-enabled disaster vehicles for site evacuation, patient stabilization, and triage. The vehicles discussed have six ventilated ICU spaces, two ORs, on-site radiography, 21 intermediate acuity spaces with stretchers, and 54 seated minor acuity spaces. Each space has piped oxygen with an independent vehicle-loaded supply. The vehicles are operated by the Dubai Corporate Ambulance Services. Their support hospital is the main trauma center for the Emirate of Dubai and provides the vehicles' surgical, intensivist, anesthesia, and nursing staff. The disaster vehicles have been deployed 264 times in the last 5 years (these figures do not include deployments for drills). Introducing this new service required extensive initial planning and ongoing analysis of the performance of the disaster vehicles that offer ambulance services and receiving hospitals a large array of possibilities in terms of triage, stabilization of priority I and II patients, and management of priority III patients. In both drills and in disasters, the vehicles were valuable in forward triage and stabilization and in the transport of large numbers of priority III patients. This has avoided the depletion of emergency transport available for priority I and II patients. The successful utilization of disaster vehicles requires seamless cooperation between the hospital staffing the vehicles and the ambulance service deploying them. They are particularly effective during preplanned deployments to high-risk situations. These vehicles also potentially provide self-sufficient refuges for forward teams in hostile environments.

Top