Sample records for composite fuel elements

  1. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  2. Nuclear reactor composite fuel assembly

    DOEpatents

    Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  3. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  4. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  5. CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME

    DOEpatents

    Duckworth, W.H.

    1957-12-01

    This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.

  6. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  7. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  8. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  9. Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors

    DOE PAGES

    Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael; ...

    2016-11-17

    Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.

  10. Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael

    Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.

  11. Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2017-01-01

    To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.

  12. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium aftermore » the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.« less

  13. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1980-04-29

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  14. High temperature ceramic composition for hydrogen retention

    DOEpatents

    Webb, R.W.

    1974-01-01

    A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)

  15. NEUTRONIC REACTOR CONTROL ELEMENT

    DOEpatents

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  16. Studies of behavior of the fuel compound based on the U-Zr micro-heterogeneous quasialloy during cyclic thermal tests

    NASA Astrophysics Data System (ADS)

    Zaytsev, D. A.; Repnikov, V. M.; Soldatkin, D. M.; Solntsev, V. A.

    2017-11-01

    This paper provides the description of temperature cycle testing of U-Zr heterogeneous fuel composition. The composition is essentially a niobium-doped zirconium matrix with metallic uranium filaments evenly distributed over the cross section. The test samples 150 mm long had been fabricated using a fiber-filament technology. The samples were essentially two-bladed spiral mandrel fuel elements parts. In the course of experiments the following temperatures were applied: 350, 675, 780 and 1140 °C with total exposure periods equal to 200, 30, 30 and 6 hours respectively. The fuel element samples underwent post-exposure material science examination including: geometry measurements, metallographic analysis, X-ray phase analysis and electron-microscopic analysis as well as micro-hardness measurement. It has been found that no significant thermal swelling of the samples occurs throughout the whole temperature range from 350 °C up to 1140 °C. The paper presents the structural changes and redistribution of the fuel component over the fuel element cross section with rising temperature.

  17. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    NASA Astrophysics Data System (ADS)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  18. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars missions. The NCPS is being designed to readily integrate with the Space Launch System (SLS). A wide range of strategies for enabling affordable NCPS development, qualification, and utilization should be considered. These include multiple test and demonstration strategies (both ground and in-space), multiple potential test sites, and multiple engine designs. Two potential NCPS fuels are currently under consideration - coated graphite composite fuel and tungsten cermet fuel. During 2014 a representative, partial length (approximately 16") coated graphite composite fuel element with prototypic depleted uranium loading is being fabricated at Oak Ridge National Laboratory (ORNL). In addition, a representative, partial length (approximately 16") cermet fuel element with prototypic depleted uranium loading is being fabricated at Marshall Space Flight Center (MSFC). During the development process small samples (approximately 3" length) will be tested in the Compact Fuel Element Environmental Tester (CFEET) at high temperature (approximately 2800 K) in a hydrogen environment to help ensure that basic fuel design and manufacturing process are adequate and have been performed correctly. Once designs and processes have been developed, longer fuel element segments will be fabricated and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREE) at high temperature (approximately 2800 K) and in flowing hydrogen.

  19. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  20. Inert matrix fuel in dispersion type fuel elements

    NASA Astrophysics Data System (ADS)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  1. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  2. URANIUM OXIDE-CONTAINING FUEL ELEMENT COMPOSITION AND METHOD OF MAKING SAME

    DOEpatents

    Handwerk, J.H.; Noland, R.A.; Walker, D.E.

    1957-09-10

    In the past, bodies formed of a mixture of uranium dioxide and aluminum powder have been used in fuel elements; however, these mixtures were found not to be suitable when exposed to temperatures of about 600 deg C, because at such high temperatures the fuel elements were distorted. If uranosic oxide, U/sub 3/O/sub 8/, is substituted for UO/sub 2/, the mechanical properties are not impaired when these materials are used at about 600 deg C and no distortion takes place. The uranosic oxide and aluminum, both in powder form, are first mixed, and after a homogeneous mixture has been obtained, are shaped into fuel elements by extrusion at elevated temperature. Magnesium powder may be used in place of the aluminum.

  3. FUEL ELEMENT AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.

    1961-04-25

    A nuclear fuel element in the form of a wire is reported. A bar of uranium is enclosed in a thin layer of aluminum and the composite is sheathed in beryllium, zirconium, or stainnless steel. The sheathed article is then drawn to wire form, heated to alloy the aluminum with both uranium and sheath, and finally cold worked.

  4. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less

  5. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less

  7. FISSILE MATERIAL AND FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Shaner, B.E.

    1961-08-15

    The fissile material consists of about 64 to 70% (weight) zirconium dioxide, 15 to 19% uranium dioxide, and 8 to 17% calcium oxide. The fissile material is formed into sintered composites which are disposed in a compartmented fuel element, comprising essentially a flat filler plate having a plurality of compartments therein, enclosed in cladding plates of the same material as the filler plate. The resultant fuel has good resistance to corrosion in high temperature pressurized water, good dimensional stability to elevated temperatures, and good resistance to thermal shock. (AEC)

  8. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    NASA Astrophysics Data System (ADS)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  9. FUEL COMPOSITION FOR NUCLEAR REACTORS

    DOEpatents

    Andersen, J.C.

    1963-08-01

    A process for making refractory nuclear fuel elements involves heating uranium and silicon powders in an inert atmosphere to 1600 to 1800 deg C to form USi/sub 3/; adding silicon carbide, carbon, 15% by weight of nickel and aluminum, and possibly also molybdenum and silicon powders; shaping the mixture; and heating to 1700 to 2050 deg C again in an inert atmosphere. Information on obtaining specific compositions is included. (AEC)

  10. Reliability analysis of dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  11. Storage, generation, and use of hydrogen

    DOEpatents

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  12. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.

  13. Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.

    2006-06-01

    Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.

  14. Bitumoids in the crystalline rocks of the Kola superdeep drillhole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belokon, V.G.

    1987-04-01

    The genetic regularities in the distribution of organic fuels of various elemental compositions and molecular structures and their relationship to the processes of formation of regional structures present some of the most pressing and complicated problems of modern fossil-fuel geology. Regardless of the difference in molecular structure of the final products of these reactions and the phase state in nature (gases, petroleums, bitumens, lignite, bituminous coal or anthracite), fossil fuels manifest the property of carbon and hydrogen to yield a vast number of compounds with different extents of ordering of the structure, from simple linear compounds (methane and its homologs)more » to cyclic compounds of the graphite series. Karavayev worked out a classification diagram for solid fuels, based on calculation of the variation in the elemental composition of the organic matter. The ratio of hydrogen to carbon atoms, as a reflection of the extent of aromatization of the structure, is taken as a classification criterion. In investigating the earth's crust in the Baltic shield, the Kola superdeep drillhole found organic matter in the form of bitumoids, in the extractable part of which a broad spectrum of compounds was identified. Bitumoids are similar to humites in molecular structure, only somewhat more ordered. This paper applies Karavayev's principle to this type of compound. It was found that the elemental compositions of the organic matter from basement depths down to 10 km show patterns analogous to those from sedimentary basins. 9 references.« less

  15. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    NASA Astrophysics Data System (ADS)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  16. Carbide fuel pin and capsule design for irradiations at thermionic temperatures

    NASA Technical Reports Server (NTRS)

    Siegel, B. L.; Slaby, J. G.; Mattson, W. F.; Dilanni, D. C.

    1973-01-01

    The design of a capsule assembly to evaluate tungsten-emitter - carbide-fuel combinations for thermionic fuel elements is presented. An inpile fuel pin evaluation program concerned with clad temperture, neutron spectrum, carbide fuel composition, fuel geometry,fuel density, and clad thickness is discussed. The capsule design was a compromise involving considerations between heat transfer, instrumentation, materials compatibility, and test location. Heat-transfer calculations were instrumental in determining the method of support of the fuel pin to minimize axial temperature variations. The capsule design was easily fabricable and utilized existing state-of-the-art experience from previous programs.

  17. [Effects of oxygenated fuels on emissions and carbon composition of fine particles from diesel engine].

    PubMed

    Shi, Xiao-Yan; He, Ke-Bin; Zhang, Jie; Ge, Yun-Shan; Tan, Jian-Wei

    2009-06-15

    Acetal (1,1-diethoxyethane) is considered as an alternative to ethanol as bio-derived additive for diesel fuel, which is miscible in diesel fuel. Biodiesel can improve the oxygen content and flash point of the fuel blend of acetal and diesel fuel. Two oxygenated fuels were prepared: a blend of 10% acetal + 90% diesel fuel and 10% acetal + 10% biodiesel + 80% diesel fuel. The emissions of NO(x), HC and PM2.5 from oxygenated fuels were investigated on a diesel engine bench at five modes according to various loads at two steady speeds and compared with base diesel fuel. Additionally, the carbon compositions of PM2.5 were analyzed by DRI thermal/optical carbon analyzer. Oxygenated fuels have unconspicuous effect on NO(x) emission rate but HC emission rate is observed significantly increased at some modes. The emission rate of PM2.5 is decreased by using oxygenated fuels and it decreases with the increase of fuel oxygen content. The emission rates of TC (total carbon) and EC (elemental carbon) in PM2.5 are also decreased by oxygenated fuels. The emission rate of organic carbon (OC) is greatly decreased at modes of higher engine speed. The OC/EC ratios of PM2.5 from oxygenated fuels are higher than that from base diesel fuel at most modes. The carbon compositions fractions of PM2.5 from the three test fuels are similar, and OC1 and EC1 are contributed to the most fractions of OC and EC, respectively. Compared with base diesel fuel, oxygenated fuels decrease emission rate of PM2.5, and have more OC contribution to PM2.5 but have little effect on carbon composition fractions.

  18. An assessment of the benefits of the use of NASA developed fuel conservative technology in the US commercial aircraft fleet

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.

  19. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or crewed missions. There are potential options for either modifying existing facilities or constructing new ground test facilities. At least three potential options exist for reducing (or eliminating) the release of radioactivity into the environment during ground testing. These include fully containing the NTP exhaust during the ground test, scrubbing the exhaust, or utilizing an existing borehole at the Nevada National Security Site (NNSS) to filter the exhaust. Finally, the project is considering the potential for an early flight demonstration of an engine very similar to one that could be used to support human Mars or other ambitious missions. The flight demonstration could be an important step towards the eventual utilization of NTP.

  20. Nuclear design of a vapor core reactor for space nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Dugan, Edward T.; Watanabe, Yoichi; Kuras, Stephen A.; Maya, Isaac; Diaz, Nils J.

    1993-01-01

    Neutronic analysis methodology and results are presented for the nuclear design of a vapor core reactor for space nuclear propulsion. The Nuclear Vapor Thermal Reactor (NVTR) Rocket Engine uses modified NERVA geometry and systems which the solid fuel replaced by uranium tetrafluoride vapor. The NVTR is an intermediate term gas core thermal rocket engine with specific impulse in the range of 1000-1200 seconds; a thrust of 75,000 lbs for a hydrogen flow rate of 30 kg/s; average core exit temperatures of 3100 K to 3400 K; and reactor thermal powers of 1400 to 1800 MW. Initial calculations were performed on epithermal NVTRs using ZrC fuel elements. Studies are now directed at thermal NVTRs that use fuel elements made of C-C composite. The large ZrC-moderated reactors resulted in thrust-to-weight ratios of only 1 to 2; the compact C-C composite systems yield thrust-to-weight ratios of 3 to 5.

  1. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOEpatents

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  2. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  3. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melissa Teague; Michael Tonks; Stephen Novascone

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISONmore » fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.« less

  4. Demonstration of Subscale Cermet Fuel Specimen Fabrication Approach Using Spark Plasma Sintering and Diffusion Bonding

    NASA Technical Reports Server (NTRS)

    Barnes, Marvin W.; Tucker, Dennis S.; Benensky, Kelsa M.

    2018-01-01

    Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss.

  5. Sonochemical synthesis of magnetic responsive Fe3O4@TMU-17-NH2 composite as sorbent for highly efficient ultrasonic-assisted denitrogenation of fossil fuel.

    PubMed

    Mirzaie, Abbas; Musabeygi, Tahereh; Afzalinia, Ahmad

    2017-09-01

    In this work, a novel magnetic responsive composite was fabricated by encapsulation of Fe 3 O 4 nanoparticles into an amino-functionalized MOF (TMU-17-NH 2 ) under ultrasound irradiation. The prepared materials were characterized by several techniques such as elemental analyses, PXRD, FT-IR, N 2 adsorption, TGA and ICP. This composite has been applied to the adsorptive removal of nitrogen-contain compounds in model liquid fuel. The prepared composite demonstrates very good performance for the removal of NCCs. The maximum adsorption capacity of IND and QUI over prepared composite calculated 375.93 and 310.18mg·g -1 at 25°C, respectively. The composite material is magnetically separable and reusable for several times. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Glass sealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brow, R.K.; Kovacic, L.; Chambers, R.S.

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  7. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  8. Fuel Composition Analysis of Endothermically Heated JP-8 Fuel for Use in a Pulse Detonation Engine

    DTIC Science & Technology

    2008-06-01

    detonation engine (PDE) was extracted via zeolite catalyst coated concentric tube-counter flow heat exchangers to produce supercritical pyrolytic conditions...gas chromatography flame ionization and thermal conductivity detectors ............................................. 68 Table B.1. Elemental bias... chromatography ...................... 98 Table D.1b. Products found in the liquid sample by gas chromatography (continued) ... 99 Table D.1c

  9. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.

    PubMed

    Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R

    2011-04-15

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions.

  10. FUSED REACTOR FUELS

    DOEpatents

    Mayer, S.W.

    1962-11-13

    This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)

  11. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, Charles; Xing, Changhu; Jensen, Colby

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less

  12. Pyrolysis result of polyethylene waste as fuel for solid oxide fuel cell with samarium doped-ceria (SDC)-carbonate as electrolyte

    NASA Astrophysics Data System (ADS)

    Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.

    2017-02-01

    In this research, the result of pyrolysis on polyethylene was used as fuel for a solid oxide fuel cell (SOFC). The pyrolysis result is a liquid which consists of hydrocarbon chains. According to GC-MS analysis, the hydrocarbons mainly consist of C7 to C20 hydrocarbon chain. Then, the liquid was applied to a single cell of NSDC-L | NSDC | NSDC-L. NSDC is a composite SDC (samarium doped-ceria) with sodium carbonate. Meanwhile, NSDC-L is a composite of NSDC with LiNiCuO (LNC). NSDC and LNC were analyzed by X-ray diffraction to understand their crystal structure. The result shows that presence of carbonate did not change the crystal structure of SDC. SEM EDX analysis for fuel cell before and after being loaded with polyethylene oil to get information of element diffusion to the electrolyte. Meanwhile, the conductivity properties were investigated through impedance measurement. The presence of carbonate even increases the electrical conductivity. The single cell test with the pyrolysis result of polyethylene at 300 - 600 °C, found that the highest power density is at 600 °C with the maximum power density of 0.14 mW/cm2 and open circuit voltage of 0.4 Volt. Elemental analysis at three point spots of single cell NDSC-L |NSDC|NSDC-L found that a migration of ions was occurred during fuel operation at 300 - 600 °C.

  13. Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test

    DOE PAGES

    Lewis, L. A.; Knight, K. B.; Matzel, J. E.; ...

    2015-07-28

    The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U ( 238U/ 235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/ 238U < 11.84 among all five spherules and 0.02 < 235U/ 238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/ 238U ratio is correlated with changes in major elementmore » composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/ 238U, 235U/ 238U, and 236U/ 238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.« less

  14. Faecal-wood biomass co-combustion and ash composition analysis.

    PubMed

    Somorin, Tosin Onabanjo; Kolios, Athanasios J; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean

    2017-09-01

    Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14-18 L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400 °C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.

  15. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. Glagolenko; D. Wachs; N. Woolstenhulme

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily duemore » to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.« less

  16. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  17. An Optimization-Based Approach to Injector Element Design

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar; Turner, Jim (Technical Monitor)

    2000-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for gaseous oxygen/gaseous hydrogen (GO2/GH2) injector elements. A swirl coaxial element and an unlike impinging element (a fuel-oxidizer-fuel triplet) are used to facilitate the study. The elements are optimized in terms of design variables such as fuel pressure drop, APf, oxidizer pressure drop, deltaP(sub f), combustor length, L(sub comb), and full cone swirl angle, theta, (for the swirl element) or impingement half-angle, alpha, (for the impinging element) at a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for both element types. Method i is then used to generate response surfaces for each dependent variable for both types of elements. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail for each element type. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the element design is illustrated. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface that includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, combining results from both elements to simulate a trade study, thrust-to-weight trends are illustrated and examined in detail.

  18. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  19. Sources of PM10 Air Pollution in Rural Area in the Vicinity of a Highway In Žilina Selfgoverning Region, Slovakia

    NASA Astrophysics Data System (ADS)

    Jandačka, Dušan

    2015-05-01

    Particulate matter results as an aftermath of numerous distinctive processes in the atmosphere and they become a part of everyday life. Their harmful effect and impact on the ambient environment is determined predominantly by the presence of various chemical substances and elements. The chemical composition of these particles (organic and elemental carbon, mineral dust, sea aerosols, secondary particles, especially sulphates and nitrates, heavy metals and further elements) is mainly impacted on by their origin, whereas the primary source of the particulate matter is determined and specified by the profile of chemical elements and substances. Particulate Matter (PM) may originate in various natural resources or anthropogenic sources. Among the natural sources sea salt is to be counted on, dust of the earth crust, pollen and volcanic ashes. Anthropogenic sources do include, predominantly, burning fossil fuels in the fossil-fuel power plants, local heating of households, burning liquefied fossil fuels in the combustion engines of vehicles, noncombustion related emissions as a result of vehicular traffic, resuspension of the road-traffic-related dust.

  20. Evolution of Elemental Composition and Morphology in Fusion Reactor's First Wall

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    2007-11-01

    Forcing of a multi-element alloy by a gradient field can modify the spatial profile of its elemental composition. The gradient field may be in the imposed temperature or the flux of impinging particles. In a fusion device, both scenarios apply. The consequences must be well understood because they change the thermal transport properties as well as the strength, corrosion and wear characteristics of the first wall materials. Given the large number of directions material evolution can take, new robust methods of near-surface composition analyses are needed. This paper presents a new measurement methodology and requisite instrumentation, which can provide measures of local elemental composition and transport properties simultaneously by time-resolved spectroscopy of laser-produced plasma (LPP) plume emissions from the specimen surfaces. The studies to date show that the composition profiles can be modified thermally in a reproducible manner; disparate thermal transport of constituent atoms can incur modifications of near-surface composition profiles.[Y.W. Kim, Int. J. Thermophysics 28, 732 (2007)] Also, disparate fluxes of fuel particles, fusion products and impurities force the first walls in myriad ways. Repetitive application of the LPP analysis can resolve the near-surface composition profile as well as transport properties over several microns with depth resolutions to 20 nm. Work supported in part by NSF-DMR.

  1. Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew

    Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less

  2. Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE

    DOE PAGES

    Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew

    2017-03-01

    Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less

  3. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... data may be for such shorter period. (1) Hydrocarbon composition (aromatic content, olefin content, saturate content), with the methods of analysis identified; (2) Polynuclear organic material content, sulfur content, and trace element content, with the methods of analysis identified; (3) Distillation...

  4. Development of thermoplastic composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  5. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  6. Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

    DOE PAGES

    Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; ...

    2014-10-21

    For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce,more » La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.« less

  7. Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P

    2013-10-01

    One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.

  8. Examination of UC-ZrC after long term irradiation at thermionic temperature

    NASA Technical Reports Server (NTRS)

    Yang, L.; Johnson, H. O.

    1972-01-01

    Two fluoride tungsten clad UC-ZrC fueled capsules, designated as V-2C and V-2D, were examined a hot cell after irradiation in NASA Plum Brook Reactor at a maximum cladding temperature of 1930 K for 11,089 and 12,031 hours to burnups of 3.0 x 10 to the 20th power and 2.1 x 10 to the 20th power fission/c.c. respectively. Percentage of fission gas release from the fuel material was measured by radiochemical means. Cladding deformation, fuel-cladding interaction and microstructures of fuel, cladding, and fuel-cladding interface were studied metallographically. Compositions of dispersions in fuel, fuel matrix and fuel-cladding interaction layer were analyzed by electron microprobe techniques. Axial and radial distributions of burnup were determined by gamma-scan, autoradiography and isotopic burnup analysis. The results are presented and discussed in conjunction with the requirements of thermionic fuel elements for space power application.

  9. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek J.; Diamond D.; Cuadra, A.

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less

  10. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    NASA Technical Reports Server (NTRS)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  11. Separation of the rare-earth fission product poisons from spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Jerry D.; Sterbentz, James W.

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2more » in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.« less

  12. Quantitative ion beam analysis of M-C-O systems: application to an oxidized uranium carbide sample

    NASA Astrophysics Data System (ADS)

    Martin, G.; Raveu, G.; Garcia, P.; Carlot, G.; Khodja, H.; Vickridge, I.; Barthe, M. F.; Sauvage, T.

    2014-04-01

    A large variety of materials contain both carbon and oxygen atoms, in particular oxidized carbides, carbon alloys (as ZrC, UC, steels, etc.), and oxycarbide compounds (SiCO glasses, TiCO, etc.). Here a new ion beam analysis methodology is described which enables quantification of elemental composition and oxygen concentration profile over a few microns. It is based on two procedures. The first, relative to the experimental configuration relies on a specific detection setup which is original in that it enables the separation of the carbon and oxygen NRA signals. The second concerns the data analysis procedure i.e. the method for deriving the elemental composition from the particle energy spectrum. It is a generic algorithm and is here successfully applied to characterize an oxidized uranium carbide sample, developed as a potential fuel for generation IV nuclear reactors. Furthermore, a micro-beam was used to simultaneously determine the local elemental composition and oxygen concentration profiles over the first microns below the sample surface. This method is adapted to the determination of the composition of M?C?O? compounds with a sensitivity on elemental atomic concentrations around 1000 ppm.

  13. Comparison of the properties of some synthetic crudes with petroleum crudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1979-01-01

    Physical properties and chemical compositions of six synthetic crudes were determined. The results were compared to those of typical petroleum crudes, with the interest being the feasibility of making jet fuels from oil shale and coal syncrudes. The specific gravity, viscosity, and pour point were measured, showing that these crudes would be described as heavier rather than lighter crudes. The boiling range distribution of the crudes was determined by distillation and by gas chromatography. In addition, gel permeation chromatograms were obtained, giving a unique molecular weight distribution profile for each crude. Analyses for carbon, hydrogen, nitrogen and sulfur concentrations were performed, as well as for hydrocarbon group type and trace element concentrations. It was found that the range in concentration of vanadium, an element whose presence in turbine fuels is of major concern, was lower than that of petroleum crudes. Sodium and potassium, other elements of concern, were present in comparatively high concentrations.

  14. Synthesis and sintering of UN-UO2 fuel composites

    NASA Astrophysics Data System (ADS)

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A.; Tyburska-Püschel, Beata; Meyer, Mitch; Xu, Peng; Lahoda, Edward J.; Butt, Darryl P.

    2015-11-01

    The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO2 in a planetary ball mill. UN and UN - UO2 composite pellets were sintered in Ar - (0-1 at%) N2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO2 composite pellets were also sintered in Ar - 100 ppm N2 to assess the effects of temperature (1700-2000 °C) on the final grain morphology and phase concentration.

  15. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, David; Betzler, Ben; Hirtz, Gregory John

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less

  16. CONSTRUCTION OF NUCLEAR FUEL ELEMENTS

    DOEpatents

    Weems, S.J.

    1963-09-24

    >A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)

  17. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts.

    PubMed

    Liu, Siyang; Zhu, Qingqing; Guan, Qingxin; He, Liangnian; Li, Wei

    2015-05-01

    Bio-aviation fuel was firstly synthesized by hydroprocessing castor oil in a continuous-flow fixed-bed microreactor with the main objective to obtain the high yield of aviation fuel and determine the elemental compositions of the product phases as well as the reaction mechanism. Highest aviation range alkane yields (91.6 wt%) were achieved with high isomer/n-alkane ratio (i/n) 4.4-7.2 over Ni supported on acidic zeolites. In addition, different fuel range alkanes can be obtained by adjusting the degree of hydrodeoxygenation (HDO) and hydrocracking. And the observations are rationalized by a set of reaction pathways for the various product phases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  19. Advances in cryogenic foam insulations.

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.; Watts, C. R.

    1971-01-01

    Description of a discretely oriented thread-reinforced polyurethane foam thermal insulation system for liquid hydrogen fuel tanks. The 3-D foam and glass liner composite is designed to be adhesively bonded to the inside surface of the tank wall and to be in direct contact with liquid hydrogen. All elements of this insulation composite are capable of sustaining the loads and environmental conditions imposed by testing under simulated Space Shuttle vehicle requirements at temperatures between -423 and +350 F.

  20. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  1. Detection of pristine gas two billion years after the Big Bang.

    PubMed

    Fumagalli, Michele; O'Meara, John M; Prochaska, J Xavier

    2011-12-02

    In the current cosmological model, only the three lightest elements were created in the first few minutes after the Big Bang; all other elements were produced later in stars. To date, however, heavy elements have been observed in all astrophysical environments. We report the detection of two gas clouds with no discernible elements heavier than hydrogen. These systems exhibit the lowest heavy-element abundance in the early universe, and thus are potential fuel for the most metal-poor halo stars. The detection of deuterium in one system at the level predicted by primordial nucleosynthesis provides a direct confirmation of the standard cosmological model. The composition of these clouds further implies that the transport of heavy elements from galaxies to their surroundings is highly inhomogeneous.

  2. Understanding the Role of a nano Ce Additive in the Size Distribution and Organic Composition of Diesel Emissions

    EPA Science Inventory

    A number of alkali, alkaline earth, transition, and metalloid elements are known to act as fuel catalysts to limit the formation of soot precursors or promote its oxidation. These have been used with varying success on a variety of stationary and mobile combustion sources. Iron...

  3. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  4. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE PAGES

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; ...

    2017-01-31

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  5. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.

    2017-01-01

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  6. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  7. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  8. A new high strength alloy for hydrogen fueled propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcpherson, W. B.

    1986-01-01

    This paper describes the development of a high-strength alloy (1241 MPa ultimate and 1103 MPa yield, with little or no degradation in hydrogen) for application in advanced hydrogen-fueled rocket engines. Various compositions of the Fe-Ni-Co-Cr system with elemental additions of Cb, Ti and Al are discussed. After processing, notched tensile specimens were tested in 34.5-MPa hydrogen at room temperature, as the main screening test. The H2/air notch tensile ratio was used as the selection/rejection criterion. The most promising alloys are discussed.

  9. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  10. FUEL ELEMENT SUPPORT

    DOEpatents

    Wyman, W.L.

    1961-06-27

    The described cylindrical fuel element has longitudinally spaced sets of short longitudinal ribs circumferentially spaced from one another. The ribs support the fuel element in a coolant tube so that there is an annular space for coolant flow between the fuel element and the interior of the coolant tube. If the fuel element grows as a result of reactor operation, the circumferential distribution of the ribs maintains the uniformity of the annular space between the coolant tube and the fuel element, and the collapsibility of the ribs prevents the fuel element from becoming jammed in the coolant tube.

  11. Thermal breeder fuel enrichment zoning

    DOEpatents

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  12. Deposit formation in liquid fuels. II - The effect of selected compounds on the storage stability of Jet A turbine fuel

    NASA Technical Reports Server (NTRS)

    Worstell, J. H.; Daniel, S. R.

    1981-01-01

    The influence of substituted pyridines, pyrroles, indoles, and quinolines on the storage stability of conventional Jet A turbine fuel is evaluated. Significant increases in the amount of deposit formed in accelerated storage tests are found upon addition of these compounds at levels as low as one ppm nitrogen. While the effect is correlated with basicity of the nitrogen compound within a given compound class, the correlation does not hold between classes (pyridines, quinolines, etc.). Steric hindrance at the nitrogen atom greatly inhibits deposit promotion. The characteristics, but not the elemental composition, of deposits vary with the identity of the added nitrogen compound and with deposition temperature.

  13. A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2013-01-01

    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.

  14. Low temperature chemical processing of graphite-clad nuclear fuels

    DOEpatents

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  15. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste - 13187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger

    2013-07-01

    Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment ofmore » nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor Obrigheim in Germany for which sufficiently precise experimental reference data are available. (authors)« less

  16. 77 FR 5418 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... aft fuel system 40 micron fuel filter element with a 10 micron fuel filter element. This proposed AD... fuel filter element, part number (P/N) 52-0505-2 or 52-01064-1. This proposed AD would require replacing each forward and aft fuel system 40 micron fuel filter element with a 10 micron fuel filter...

  17. Synthesis and sintering of UN-UO 2 fuel composites

    DOE PAGES

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; ...

    2015-06-17

    In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO 2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO 2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized frommore » elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO 2 in a planetary ball mill. UN and UN – UO 2 composite pellets were sintered in Ar – (0–1 at%) N 2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO 2 composite pellets were also sintered in Ar – 100 ppm N 2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.« less

  18. Affordable Development and Demonstration of a Small NTR Engine and Stage: A Preliminary NASA, DOE, and Industry Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.

    2015-01-01

    The Nuclear Thermal Rocket (NTR) represents the next evolutionary step in cryogenic liquid rocket engines. Deriving its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core, the NTR can generate high thrust at a specific impulse of approx. 900 seconds or more - twice that of today's best chemical rockets. In FY'11, as part of the AISP project, NASA proposed a Nuclear Thermal Propulsion (NTP) effort that envisioned two key activities - "Foundational Technology Development" followed by system-level "Technology Demonstrations". Five near-term NTP activities identified for Foundational Technology Development became the basis for the NCPS project started in FY'12 and funded by NASA's AES program. During Phase 1 (FY'12-14), the NCPS project was focused on (1) Recapturing fuel processing techniques and fabricating partial length "heritage" fuel elements for the two candidate fuel forms identified by NASA and the DOE - NERVA graphite "composite" and the uranium dioxide (UO2) in tungsten "cermet". The Phase 1 effort also included: (2) Engine Conceptual Design; (3) Mission Analysis and Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable and Sustainable NTP Development Strategy. During FY'14, a preliminary plan for DDT&E was outlined by GRC, the DOE and industry for NASA HQ that involved significant system-level demonstration projects that included GTD tests at the NNSS, followed by a FTD mission. To reduce development costs, the GTD and FTD tests use a small, low thrust (approx. 7.5 or 16.5 klbf) engine. Both engines use graphite composite fuel and a "common" fuel element design that is scalable to higher thrust (approx. 25 klbf) engines by increasing the number of elements in a larger diameter core that can produce greater thermal power output. To keep the FTD mission cost down, a simple "1-burn" lunar flyby mission was considered along with maximizing the use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10-B2 engine and Delta Cryogenic Second Stage) to further ensure affordability. This paper provides a preliminary NASA, DOE and industry assessment of what is required - the key DDT&E activities, development options, and the associated schedule - to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.

  19. Understanding the Role of a nano Ce Additive in the Size Distribution and Organic Composition of the Particulate Phase of Diesel Emissions

    EPA Science Inventory

    A number of alkali, alkaline earth, transition, and metalloid elements are known to act as fuel catalysts to limit the formation of soot precursors or promote its oxidation. These have been used with varying success on a variety of stationary and mobile combustion sources. Iron...

  20. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    NASA Astrophysics Data System (ADS)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  1. Revised Point of Departure Design Options for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Borowski, Stanley K.; Schnitzler, Bruce

    2015-01-01

    In an effort to further refine potential point of departure nuclear thermal rocket engine designs, four proposed engine designs representing two thrust classes and utilizing two different fuel matrix types are designed and analyzed from both a neutronics and thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-carbide in a graphite composite fuel and a prismatic fuel element geometry developed during the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of numerous manned mission studies, including NASA's Design Reference Architecture 5.0. slightly higher T/W ratios, but they required substantially more 235U.

  2. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  3. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    PubMed

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Low cost, lightweight fuel cell elements

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  5. Predicting properties of gas and solid streams by intrinsic kinetics of fast pyrolysis of wood

    DOE PAGES

    Klinger, Jordan; Bar-Ziv, Ezra; Shonnard, David; ...

    2015-12-12

    Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, andmore » verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO 2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. As a result, close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition.« less

  6. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  7. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  8. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    NASA Astrophysics Data System (ADS)

    Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

    2011-07-01

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  9. Method of locating a leaking fuel element in a fast breeder power reactor

    DOEpatents

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  10. Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Janney, D. E.; Keiser, D. D.

    2003-09-01

    Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to ˜ 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.

  11. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  12. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  13. Polypropylene oil as fuel for solid oxide fuel cell with samarium doped-ceria (SDC)-carbonate as electrolyte

    NASA Astrophysics Data System (ADS)

    Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.

    2017-03-01

    The research focusses on converting polypropylene oil as pyrolysis product of polypropylene plastic into an electricity. The converter was a direct liquid fuel-solid oxide fuel cell (SOFC) with cerium oxide based material as electrolyte. The polypropylene vapor flowed into fuel cell, in the anode side and undergo oxidation reaction, meanwhile, the Oxygen in atmosphere reduced into oxygen ion at cathode. The fuel cell test was conducted at 400 - 600 °C. According to GC-MS analysis, the polypropylene oil consist of C8 to C27 hydrocarbon chain. The XRD analysis result shows that Na2CO3 did not change the crystal structure of SDC even increases the electrical conductivity. The maximum power density is 0.079 mW.cm-2 at 773 K. The open circuite voltage is 0.77 volt. Chemical stability test by analysing the single cell at before and after fuel cell test found that ionic migration occured during fuel cell operation. It is supported by the change of elemental composition in the point position of electrolyte and at the electrolyte-electrode interface

  14. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts

    DOE PAGES

    Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; ...

    2015-04-10

    In this study, the nanoscale morphology of highly active Pt 3Ni 7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure playsmore » in surface area, activity, and durability.« less

  15. CONCENTRIC TUBE FUEL ELEMENT SPRING ALIGNMENT SPACER DEVICE

    DOEpatents

    Weems, S.J.

    1963-09-24

    A rib construction for a nuclear-fuel element is described, in which one of three peripherally spaced ribs adjacent to each end of the fuel element is mounted on a radially yielding spring that embraces the fuel element. This spring enables the fuel element to have a good fit with a coolant tube and yet to be easily inserted in and withdrawn from the tube. (AEC)

  16. Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas

    NASA Astrophysics Data System (ADS)

    Moldanová, J.; Fridell, E.; Winnes, H.; Holmin-Fridell, S.; Boman, J.; Jedynska, A.; Tishkova, V.; Demirdjian, B.; Joulie, S.; Bladt, H.; Ivleva, N. P.; Niessner, R.

    2013-04-01

    Emissions of particulate matter (PM) from shipping contribute significantly to the anthropogenic burden of PM. The environmental effects of PM from shipping include negative impact on human health through increased concentrations of particles in many coastal areas and harbour cities and the climate impact. The PM emitted by ship engines consists of organic carbon (OC), elemental or black carbon (EC/BC), sulphate, inorganic compounds containing V, Ni, Ca, Zn and other metals and associated water. The chemical composition and physical properties of PM vary with type of fuel burned, type of engine and engine operation mode. While primary PM emissions of species like V, Ni and Ca are supposed to be determined by composition of fuel and lubricant oil, emissions of particulate OC, EC and sulphate are affected both by fuel quality and by operation mode of the engine. In this paper a number of parameters describing emission factors (EFs) of gases and of particulate matter from ship engines were investigated during 2 on-board measurement campaigns for 3 different engines and 3 different types of fuels. The measured EFs for PM mass were in the range 0.3 to 2.7 g/kg-fuel with lowest values for emissions from combustion of marine gas oil (MGO) and the highest for heavy fuel oil (HFO). Emission factors for particle numbers EF(PN) in the range 5 × 1015-1 × 1017 #/kg-fuel were found, the number concentration was dominated by particles in the ultrafine mode and ca. 2/3 of particles were non-volatile. The PM mass was dominated by particles in accumulation mode. Main metal elements in case of HFO exhaust PM were V, Ni, Fe, Ca and Zn, in case of MGO Ca, Zn and P. V and Ni were typical tracers of HFO while Ca, Zn and P are tracers of the lubricant oil. EC makes up 10-38% of the PM mass, there were not found large differences between HFO and MGO fuels. EC and ash elements make up 23-40% of the PM mass. Organic matter makes up 25-60% of the PM. The measured EF(OC) were 0.59 ± 0.15 g/kg-fuel for HFO and 0.22 ± 0.01 g/kg-fuel for MGO. The measured EF(SO42-) were low, ca. 100-200 mg/kg-fuel for HFO with 1% fuel sulphur content (FSC), 70-85 mg/kg-fuel for HFO with 0.5% FSC and 3-6 mg/kg-fuel for MGO. This corresponds to 0.2-0.7% and 0.01-0.02% of fuel S converted to PM sulphate for HFO and MGO, respectively. The (scanning) transmission electron microscopy (TEM and STEM) images of the collected PM have shown three different types of particles: (1) soot composed mainly of C, O, sometimes N, and with traces of Si, S, V, Ca and Ni; (2) char and char-mineral particles composed of C, O, Ca and S (sometimes Si and Al) with traces of V and Ni and sometimes P and (3) amorphous, probably organic particles containing sulphur and some vanadium. The maps of elements obtained from STEM showed heterogeneous composition of primary soot particles with respect to the trace metals and sulphur. Composition of the char-mineral particles indicates that species like CaSO4, CaO and/or CaCO3, SiO2 and/or Al2SiO5, V2O5 and Fe3O4 may be present; the last two were also confirmed by analyses of FTIR spectra of the PM samples. The TPO of PM from the ship exhaust samples showed higher soot oxidation reactivity compared to automotive diesel soot, PM from the HFO exhaust is more reactive than PM from the MGO exhaust. This higher oxidation reactivity could be explained by high content of catalytically active contaminants; in particular in the HFO exhaust PM for which the energy-dispersive X-ray spectroscopy (EDXRF) analyses showed high content of V, Ni and S. Oxidative potential measured as a rate of consumption of consumption of Dithiothreitol (DTT) was for the first time measured on PM from ship exhaust. The obtained values were between 0.01 and 0.04 nmol-DTT/min/μg-PM, quite similar to oxidative potentials of PM collected in urban and traffic sites. The data obtained during the experiments add information on emission factors for both gaseous and PM-bound compounds from ship engines using different fuels and under different engine load conditions. Observed variability of the EFs illustrates uncertainties of these emission factors as a result of measurement uncertainties, influences from trace components of fuels and lubricants and from differences between individual engines.

  17. STUDIES OF FAST REACTOR FUEL ELEMENT BEHAVIOR UNDER TRANSIENT HEATING TO FAILURE. I. INITIAL EXPERIMENTS ON METALLIC SAMPLES IN THE ABSENCE OF COOLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerman, C. E.; Sowa, E. S.; Okrent, D.

    1961-08-01

    Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)

  18. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S.; Kannan, R.

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% atmore » 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.« less

  19. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    DOE PAGES

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; ...

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less

  20. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  1. 15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. SHOWS AIR FORCE MAN AT EDGE OF TANK. INEL PHOTO NUMBER 65-6176, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  2. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  3. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  4. Transition Core Properties during Conversion of the NBSR from HEU to LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A. L.; Diamond, D.

    2013-10-31

    The transition of the NBSR from HEU to LEU fuel is challenging due to reactivity constraints and the need to maintain an uninterrupted science program, the mission of the NBSR. The transition cannot occur with a full change of HEU to LEU fuel elements since the excess reactivity would be large enough that the NBSR would violate the technical specification for shutdown margin. Manufacturing LEU fuel elements to represent irradiated fuel elements would be cost prohibitive since 26 one-of-a-kind fuel elements would need to be manufactured. For this report a gradual transition from the present HEU fuel to the proposedmore » LEU fuel was studied. The gradual change approach would follow the present fuel management scheme and replace four HEU fuel elements with four LEU fuel elements each cycle. This manuscript reports the results of a series of calculations to predict the neutronic characteristics and how the neutronics will change during the transition from HEU to LEU in the NBSR.« less

  5. Radiological Characterization Methodology of INEEL Stored RH-TRU Waste from ANL-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajiv N. Bhatt

    2003-02-01

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using this methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less

  6. Radiological Characterization Methodology for INEEL-Stored Remote-Handled Transuranic (RH TRU) Waste from Argonne National Laboratory-East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, P.; Bhatt, R.N.

    2003-01-14

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less

  7. Production of a refined biooil derived by fast pyrolysis of chicken manure with chemical and physical characteristics close to those of fossil fuels.

    PubMed

    Monreal, Carlos M; Schnitzer, Morris

    2011-01-01

    The chemical and physical properties of raw biooils prevent their direct use in combustion engines. We processed raw pyrolytic biooil derived from chicken manure to yield a colorless refined biooil with diesel qualities. Chemical characterization of the refined biooil involved elemental and several spectroscopic analyses. The physical measurements employed were viscosity, density and heat of combustion. The elemental composition (% wt/wt) of the refined biooil was 82.7 % C, 15.3 % H, 0.2 % N and 1.8 % O, no S. Its viscosity was 0.006 Pa.s and a heat of combustion of 43 MJ kg(-1). The refined biooil fraction contains n-alkanes, ranging from n-C(14) to n-C(27), alkenes varying from C(10:1) to C(22:1), and long-chain alcohols. The refined biooil makes a good diesel fuel due to its chemical and physical properties.

  8. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  9. Nuclear reactor

    DOEpatents

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  10. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  11. Combustion of horse manure for heat production.

    PubMed

    Lundgren, J; Pettersson, E

    2009-06-01

    The main objectives of this paper have been to evaluate the use of horse manure and wood-shavings as a fuel for heat production and to provide sets of data on the chemical composition, ash characteristics and ash forming elements of the fuel. Another objective has been to investigate the possibility to use the ash as fertiliser by analysing the heavy metal and nutrient contents. The results showed that the fuel is well suited for combustion for heat production causing low emissions of products of incomplete combustion. The emissions of NO(x) were however high due to the high content of fuel bound nitrogen. Emissions of CO and NO(x) were typically in the range of 30-150 mg/Nm(3) and 280-350 mg/Nm(3) at 10 vol% O(2), respectively. The analysis of the ash showed on sufficiently low concentration of heavy metals to allow recycling.

  12. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easilymore » processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined less by the needs of the plant than by the availability in the soil solution; in addition to occurring naturally, Cl is present in excess as the anion complement in K fertilizer applications. An analysis was performed on existing data for switchgrass samples from ten different farms in the south-central portion of Iowa, with the goal of determining correlations between switchgrass elemental composition and geographical and seasonal changes so as to identify factors that influence the elemental composition of biomass. The most important factors in determining levels of various chemical compounds were found to be seasonal and geographical differences related to soil conditions. Combustion testing was performed to obtain deposits typical of boiler fouling and slagging conditions as well as fly ash. Analysis methods using computer-controlled scanning electron microscopy and chemical fractionation were applied to determine the composition and association of inorganic materials in the biomass samples. Modified sample preparation techniques and mineral quantification procedures using cluster analysis were developed to characterize the inorganic material in these samples. Each of the biomass types exhibited different inorganic associations in the fuel as well as in the deposits and fly ash. Morphological analyses of the wheat straw show elongated 10-30-{micro}m amorphous silica particles or phytoliths in the wheat straw structure. Alkali such as potassium, calcium, and sodium is organically bound and dispersed in the organic structure of the biomass materials. Combustion test results showed that the blends fed quite evenly, with good burnout. Significant slag deposit formation was observed for the 100% wheat straw, compared to bituminous and subbituminous coals burned under similar conditions. Although growing rapidly, the fouling deposits of the biomass and coal-biomass blends were significantly weaker than those of the coals. Fouling was only slightly worse for the 100% wheat straw fuel compared to the coals. The wheat straw ash was found to show the greatest similarity from the fuel to the ash analyzed. A high percentage of particles from both fuel and ash samples contained both Si and K. While Cl was a significant component in the fuel, very little was detected in the ash sample.« less

  13. Nuclear reactor control

    DOEpatents

    Cawley, William E.; Warnick, Robert F.

    1982-01-01

    1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

  14. The ENABLER - Based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  15. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...

  16. Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G.; Werner, J.; Weitzberg, A.; Joyner, C. R.

    2015-01-01

    In FY11, NASA formulated a plan for Nuclear Thermal Propulsion (NTP) development that included Foundational Technology Development followed by system-level Technology Demonstrations The ongoing NTP project, funded by NASAs Advanced Exploration Systems (AES) program, is focused on Foundational Technology Development and includes 5 key task activities:(1) Fuel element fabrication and non-nuclear validation testing of heritage fuel options;(2) Engine conceptual design;(3) Mission analysis and engine requirements definition;(4) Identification of affordable options for ground testing; and(5) Formulation of an affordable and sustainable NTP development program Performance parameters for Point of Departure designs for a small criticality-limited and full size 25 klbf-class engine were developed during FYs 13-14 using heritage fuel element designs for both RoverNERVA Graphite Composite (GC) and Ceramic Metal (Cermet) fuel forms To focus the fuel development effort and maximize use of its resources, the AES program decided, in FY14, that a leader-follower down selection between GC and cermet fuel was required An Independent Review Panel (IRP) was convened by NASA and tasked with reviewing the available fuel data and making a recommendation to NASA. In February 2015, the IRP recommended and the AES program endorsed GC as the leader fuel In FY14, a preliminary development schedule DDTE plan was produced by GRC, DOE industry for the AES program. Assumptions, considerations and key task activities are presented here Two small (7.5 and 16.5 klbf) engine sizes were considered for ground and flight technology demonstration within a 10-year timeframe; their ability to support future human exploration missions was also examined and a recommendation on a preferred size is provided.

  17. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spentmore » fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.« less

  18. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  19. Fuel pumping system and method

    DOEpatents

    Shafer, Scott F [Morton, IL; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  20. Fuel Pumping System And Method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  1. Means for supporting fuel elements in a nuclear reactor

    DOEpatents

    Andrews, Harry N.; Keller, Herbert W.

    1980-01-01

    A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively

  2. Fuel assembly for nuclear reactors

    DOEpatents

    Creagan, Robert J.; Frisch, Erling

    1977-01-01

    A new and improved fuel assembly is formed to minimize the amount of parasitic structural material wherein a plurality of hollow tubular members are juxtaposed to the fuel elements of the assembly. The tubular members may serve as guide tubes for control elements and are secured to a number of longitudinally spaced grid members along the fuel assembly. The grid members include means thereon engaging each of the fuel elements to laterally position the fuel elements in a predetermined array. Openings in the bottom of each hollow member serve as a shock absorber to cushion shock transmitted to the structure when the control elements are rapidly inserted in their corresponding tubular members.

  3. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  4. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  5. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T.; James P. Meagher; Prasad Apte

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less

  6. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    PubMed

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed.

  7. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus

    PubMed Central

    2014-01-01

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed. PMID:24678140

  8. Current status of the development of high density LEU fuel for Russian research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatulin, A.; Dobrikova, I.; Suprun, V.

    2008-07-15

    One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiationmore » examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)« less

  9. Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element

    DTIC Science & Technology

    1990-06-01

    long fuel elements, arranged to form a core , were analyzed for an up-power transient from 0 MWt to approximately 18 MWt. The simple model significantly...VARIATIONS IN FUEL ELEMENT GEOMETRY ............. 60 4.4 VARIATIONS IN THE MANNER OF TRANSIENT CONTROL ..... 62 4.5 CORE REPRESENTATION BY MULTIPLE FUEL ...the HTGR , however, the PBR packs small fuel particles between inner and outer retention elements, designated as frits. The PBR is appropriate for a

  10. Nuclear fuel elements and method of making same

    DOEpatents

    Schweitzer, Donald G.

    1992-01-01

    A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

  11. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.

  12. 78 FR 17591 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... aft fuel system 40 micron fuel filter element with a 10 micron nominal (40 micron absolute) fuel filter element. This AD was prompted by a National Transportation Safety Board (NTSB) review of in... helicopters with a fuel system 40 micron fuel filter element, part number (P/N) 52-0505-2 or 52-01064-1. That...

  13. IMPROVEMENTS IN OR RELATING TO NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, W.E.; Lindley, P.A.

    1958-05-01

    A unique feature of the GEC Hunterston power station is the use of what the firm call the 'replaceable channel fuel element' and the patent covers the idea. The actual metallic element is generally simlar to those used in other power stations--a uranium bar sheathed in a helically-finned can--but it is supported inside a sleeve of graphite or other material. The composite elements are stacked inside channels through the core and are charged and discharged as complete units. The advantages claimed are: the core channels are protected against mechanical abrasion during fuelling operation, the moderator is protected against chemical attackmore » and mass transfer from the coolant, and if there is a burst slug it is only the sleeve which is contaminated. The sleeve also takes all the weight, thus elements are unlformly stressed. Working on this idea, the specification covers several variants, including the use of plate-type elements.« less

  14. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    DOEpatents

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  15. Study of Compton suppression for use in spent nuclear fuel assay

    NASA Astrophysics Data System (ADS)

    Bender, Sarah

    The focus of this study has been to assess Compton suppressed gamma-ray detection systems for the multivariate analysis of spent nuclear fuel. This objective has been achieved using direct measurement of samples of irradiated fuel elements in two geometrical configurations with Compton suppression systems. In order to address the objective to quantify the number of additionally resolvable photopeaks, direct Compton suppressed spectroscopic measurements of spent nuclear fuel in two configurations were performed: as intact fuel elements and as dissolved feed solutions. These measurements directly assessed and quantified the differences in measured gamma-ray spectrum from the application of Compton suppression. Several irradiated fuel elements of varying cooling time from the Penn State Breazeale Reactor spent fuel inventory were measured using three Compton suppression systems that utilized different primary detectors: HPGe, LaBr3, and NaI(Tl). The application of Compton suppression using a LaBr3 primary detector to the measurement of the current core fuel element, which presented the highest count rate, allowed four additional spectral features to be resolved. In comparison, the HPGe-CSS was able to resolve eight additional photopeaks as compared to the standalone HPGe measurement. Measurements with the NaI(Tl) primary detector were unable to resolve any additional peaks, due to its relatively low resolution. Samples of Approved Test Material (ATM) commercial fuel elements were obtained from Pacific Northwest National Laboratory. The samples had been processed using the beginning stages of the PUREX method and represented the unseparated feed solution from a reprocessing facility. Compton suppressed measurements of the ATM fuel samples were recorded inside the guard detector annulus, to simulate the siphoning of small quantities from the main process stream for long dwell measurement periods. Photopeak losses were observed in the measurements of the dissolved ATM fuel samples because the spectra was recorded from the source in very close proximity to the detector and surrounded by the guard annulus, so the detection probability is very high. Though this configuration is optimal for a Compton suppression system for the measurement of low count rate samples, measurement of high count rate samples in the enclosed arrangement leads to sum peaks in both the suppressed and unsuppressed spectra and losses to photopeak counts in the suppressed spectra. No additional photopeaks were detected using Compton suppression with this geometry. A detector model was constructed that can accurately simulate a Compton suppressed spectral measurement of radiation from spent nuclear fuel using HPGe or LaBr3 detectors. This is the first detector model capable of such an accomplishment. The model uses the Geant4 toolkit coupled with the RadSrc application and it accepts spent fuel composition data in list form. The model has been validated using dissolved ATM fuel samples in the standard, enclosed geometry of the PSU HPGe-CSS. The model showed generally good agreement with both the unsuppressed and suppressed measured fuel sample spectra, however the simulation is more appropriate for the generation of gamma-ray spectra in the beam source configuration. Photopeak losses due to cascade decay emissions in the Compton suppressed spectra were not appropriately managed by the simulation. Compton suppression would be a beneficial addition to NDA process monitoring systems if oriented such that the gamma-ray photons are collimated to impinge the primary detector face as a beam. The analysis has shown that peak losses through accidental coincidences are minimal and the reduction in the Compton continuum allows additional peaks to be resolved. (Abstract shortened by UMI.).

  16. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn Elizabeth; Papesch, Cynthia Ann

    2016-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, importantmore » to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, the handbook attempts to provide information about how well the property is known and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data. The Handbook is organized in two sections: one with information about the U-Pu-Zr ternary and one with information about other elements and binary and vi ternary alloys in the U-Np-Pu-Am-La-Ce-Pr-Nd-Zr system. Within each section, information about elements is presented first, followed by information about binary alloys, then information about ternary alloys. The order in which the elements in each alloy are mentioned follows the order in the first sentence of this paragraph. Much of the information on the U-Pu-Zr system repeats information from the FCRD Transmutation Fuels Handbook 2015. Most of the other data has been published elsewhere (although scattered throughout numerous references, some quite obscure); however, some data from Idaho National Laboratory is presented here for the first time. As the FCRD programmatic mission evolves, future editions of this handbook will begin to include other advanced reactor fuel designs and compositions. Hence, the title of the handbook will transition to the Advanced Reactor Fuels Handbook.« less

  17. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montierth, Leland M.

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element designmore » for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.« less

  18. Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghong; Li, Wenjian; Huang, Wen; Cao, Zhiqun; Shao, Kang; Li, Fengjiao; Tang, Chaoyun; Li, Cuihua; He, Chuanxin; Zhang, Qianling; Fan, Liangdong

    2018-05-01

    Highly conductive ceria-carbonate composite represents one type of most promising electrolyte materials for low temperature solid oxide fuel cells (SOFCs). Composites with large oxide-carbonate interface and homogeneous element/phase distribution are desirable to further enhance electrical properties and to study the ionic conduction mechanism. In this work, we report the successful synthesis of element/phase well-distributed, interfacial strongly coupled Sm0.2Ce0.8O2-Na2CO3 (NSDC) nanocomposite with different residual carbonate contents by an in-situ one-pot one-step citric acid-nitrate combustion method. Interestingly, NSDC shows distinct properties over those prepared by conventional methods and improved ionic conductivity. In particular, NSDC9010 nanocomposite displays a proton conductivity of 0.044 S cm-1 at 650 °C, which is 3-5 times higher than the oxide proton conductors. Electrolyte supported SOFCs based on the resultant nanocomposite electrolyte, NSDC9010, give the best power output of 281.5 mW cm-2 at 600 °C with LiNiO2 symmetric electro-catalysts. The excellent ionic conductivity and fuel cell performance are correlated with the unique core-shell structure, good phase distribution and large interfacial area induced by the one-step fabrication method, the strong coupling between oxide and carbonate as verified by the differential thermal and Raman spectroscopy characterization results and the optimal interfacial carbonate layer thickness by intentionally adjusting of carbonate contents.

  19. Physical particularities of nuclear reactors using heavy moderators of neutrons

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-12-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  20. Composition and Chemical Stability of Motor Fuels,

    DTIC Science & Technology

    Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes

  1. Characterization and degradation studies on synthetic polymers for aerospace application

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1982-01-01

    The anti-misting additive for jet fuels known as FM-9 (proprietary polymer) was characterized by elemental analysis, solubility studies and molecular weight determination. Physical properties of surface tension, viscosity, specific gravity and other physical parameters were determined. These results are compared with properties of polyisobutylene and fuels modified with the same; the misting characteristics of polyisobutylene and FM-9 in Jet A fuel are included. Characterization and degradation of phthalocyanine and its derivatives were accomplished by use of a mass spectrometer and a pyroprobe solid pyrolyzer. Metal phthalocyanine tetracarboxylic acids and phthalocyanine-tetraamine cured epoxies were studied. Epoxy/graphite composite panels were exposed to a NASA-Ames radiant panel fire simulator in the flaming and non-flaming modes; toxic gases of HCN and HZS were measured along with oxygen, Co2, Co, and organic gases.

  2. Analysis of sludge from Hanford K East Basin canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makenas, B.J.; Welsh, T.L.; Baker, R.B.

    1997-09-12

    Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the datamore » on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible.« less

  3. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  4. Evaluation of the finite element fuel rod analysis code (FRANCO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.; Feltus, M.A.

    1994-12-31

    Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less

  5. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  6. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  7. Sensitivity Analysis of Fuel Centerline Temperatures in SuperCritical Water-cooled Reactors (SCWRs)

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman

    SuperCritical Water-cooled Reactors (SCWRs) are one of the six nuclear-reactor concepts currently being developed under the Generation-IV International Forum (GIF). A main advantage of SCW Nuclear Power Plants (NPPs) is that they offer higher thermal efficiencies compared to those of current conventional NPPs. Unlike today's conventional NPPs, which have thermal efficiencies between 30 - 35%, SCW NPPs will have thermal efficiencies within a range of 45 - 50%, owing to high operating temperatures and pressures (i.e., coolant temperatures as high as 625°C at 25 MPa pressure). The use of current fuel bundles with UO2 fuel at the high operating parameters of SCWRs may cause high fuel centerline temperatures, which could lead to fuel failure and fission gas release. Studies have shown that when the Variant-20 (43-element) fuel bundle was examined at SCW conditions, the fuel centerline temperature industry limit of 1850°C for UO2 and the sheath temperature design limit of 850°C might be exceeded. Therefore, new fuel-bundle designs, which comply with the design requirements, are required for future use in SCWRs. The main objective of this study to conduct a sensitivity analysis in order to identify the main factors that leads to fuel centerline temperature reduction. Therefore, a 54-element fuel bundle with smaller diameter of fuel elements compared to that of the 43-element bundle was designed and various nuclear fuels are examined for future use in a generic Pressure Tube (PT) SCWR. The 54-element bundle consists of 53 heated fuel elements with an outer diameter of 9.5 mm and one central unheated element of 20-mm outer diameter which contains burnable poison. The 54-element fuel bundle has an outer diameter of 103.45 mm, which is the same as the outer diameter of the 43-element fuel bundle. After developing the 54-element fuel bundle, one-dimensional heat-transfer analysis was conducted using MATLAB and NIST REFPROP programs. As a result, the Heat Transfer Coefficient (HTC), bulk-fluid, sheath and fuel centerline temperature profiles were generated along the heated length of 5.772 m for a generic fuel channel. The fuel centerline and sheath temperature profiles have been determined at four Axial Heat Flux Profiles (AHFPs) using an average thermal power per channel of 8.5 MWth. The four examined AHFPs are the uniform, cosine, upstream-skewed and downstream-skewed profiles. Additionally, this study focuses on investigating a possibility of using low, enhanced and high thermal-conductivity fuels. The low thermal-conductivity fuels, which have been examined in this study, are uranium dioxide (UO 2), Mixed Oxide (MOX) and Thoria (ThO2) fuels. The examined enhanced thermal-conductivity fuels are uranium dioxide - silicon carbide (UO2 - SiC) and uranium dioxide - beryllium oxide (UO2 - BeO). Lastly, uranium carbide (UC), uranium dicarbide (UC2) and uranium nitride (UN) are the selected high thermal-conductivity fuels, which have been proposed for use in SCWRs. A comparison has been made between the low, enhanced and high thermal-conductivity fuels in order to identify the fuel centerline temperature behaviour when different nuclear fuels are used. Also, in the process of conducting the sensitivity analysis, the HTC was calculated using the Mokry et al. correlation, which is the most accurate supercritical water heat-transfer correlation so far. The sheath and the fuel centerline temperature profiles were determined for two cases. In Case 1, the HTC was calculated based on the Mokry et al. correlation, while in Case 2, the HTC values calculated for Case 1 were multiplied by a factor of 2. This factor was used in order to identify the amount of decrease in temperatures if the heat transfer is enhanced with appendages. Results of this analysis indicate that the use of the newly developed 54-element fuel bundle along with the proposed fuels is promising when compared with the Variant-20 (43-element) fuel bundle. Overall, the fuel centerline and sheath temperatures were below the industry and design limits when most of the proposed fuels were examined in the 54-element fuel bundle, however, the fuel centerline temperature limit was exceeded while MOX fuel was examined. Keywords: SCWRs, Fuel Centerline Temperature, Sheath Temperature, High Thermal Conductivity Fuels, Low Thermal Conductivity Fuels, HTC.

  8. Modelling the side impact of carbon fibre tubes

    NASA Astrophysics Data System (ADS)

    Sudharsan, Ms R.; Rolfe, B. F., Dr; Hodgson, P. D., Prof

    2010-06-01

    Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.

  9. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    DOEpatents

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  10. Design, fabrication, and testing of an external fuel (UO2), full-length thermionic converter

    NASA Technical Reports Server (NTRS)

    Schock, A.; Raab, B.

    1971-01-01

    The development of a full-length external-fuel thermionic converter for in-pile testing is described. The development program includes out-of-pile performance testing of the fully fueled-converter, using RF-induction heating, before its installation in the in-pile test capsule. The external-fuel converter is cylindrical in shape, and consists of an inner, centrally cooled collector, and an outer emitter surrounded by nuclear fuel. The term full-length denotes that the converter is long enough to extend over the full height of the reactor core. Thus, the converter is not a scaled-down test device, but a full-scale fuel element of the thermionic reactor. The external-fuel converter concept permits a number of different design options, particularly with respect to the fuel composition and shape, and the collector cooling arrangement. The converter described was developed for the Jet Propulsion Laboratory, and is based on their concept for a thermionic reactor with uninsulated collector cooling as previously described. The converter is double-ended, with through-flow cooling, and with ceramic seals and emitter and collector power take-offs at both ends. The design uses a revolver-shaped tungsten emitter body, with the central emitter hole surrounded by six peripheral fuel holes loaded with cylindrical UO2 pellets.

  11. Synthesis of functional materials in combustion reactions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-01

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  12. Optimization of a GO2/GH2 Impinging Injector Element

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar

    2001-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) impinging injector element. The unlike impinging element, a fuel-oxidizer- fuel (F-O-F) triplet, is optimized in terms of design variables such as fuel pressure drop, (Delta)P(sub f), oxidizer pressure drop, (Delta)P(sub o), combustor length, L(sub comb), and impingement half-angle, alpha, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 163 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface which includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, specific variable weights are further increased to illustrate the high marginal cost of realizing the last increment of injector performance and thruster weight.

  13. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  14. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  15. Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element

    DTIC Science & Technology

    1989-05-25

    Engineer and Master of Science in Nuclear Engineering. ABSTRACT A model of the behavior of a packed bed nuclear reactor fuel element is developed . It...RECOMMENDATIONS FOR FURTHER INVESTIGATION .................... 150 APPENDIX A FUEL ELEMENT MODEL PROGRAM DESIGN AND OPERA- T IO N...follow describe the details of the packed bed reactor and then discuss the development of the mathematical representations of the fuel element. These are

  16. METHOD AND APPARATUS FOR CONTROLLING NEUTRON DENSITY

    DOEpatents

    Wigner, E.P.; Young, G.J.; Weinberg, A.M.

    1961-06-27

    A neutronic reactor comprising a moderator containing uniformly sized and spaced channels and uniformly dimensioned fuel elements is patented. The fuel elements have a fissionable core and an aluminum jacket. The cores and the jackets of the fuel elements in the central channels of the reactor are respectively thinner and thicker than the cores and jackets of the fuel elements in the remainder of the reactor, producing a flattened flux.

  17. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  18. The ENABLER—based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.

  19. Spent nuclear fuel assembly inspection using neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Pope, Chad Lee

    The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.

  20. SLUG HANDLING DEVICES

    DOEpatents

    Gentry, J.R.

    1958-09-16

    A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

  1. FUEL ELEMENTS FOR NUCLEAR REACTORS

    DOEpatents

    Blainey, A.; Lloyd, H.

    1961-07-11

    A method of sheathing a tubular fuel element for a nuclear reactor is described. A low melting metal core member is centered in a die, a layer of a powdered sheathing substance is placed on the bottom of the die, the tubular fuel element is inserted in the die, the space between the tubular fuel element and the die walls and core member is filled with the same powdered sheathing substance, a layer of the same substance is placed over the fissile material, and the charge within the die is subjected to pressure in the direction of the axis of the fuel element at the sintering temperature of the protective substance.

  2. Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trammell, Michael P; Jolly, Brian C; Miller, James Henry

    ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

  3. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  4. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Shackleford, M.H.

    1958-12-16

    A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

  5. 35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ELEMENT HOLDER, TRIP MECHANISM COVER, AND OTHER DETAILS. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-3. INEL INDEX CODE NUMBER: 075 0701 60 851 151977. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  6. Possible consequences of operation with KIVN fuel elements in K Zircaloy process tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.A.

    1963-08-06

    From considerations of the results of experimental simulations of non-axial placement of fuel elements in process tubes and in-reactor experience, it is concluded that the ultimate outcome of a charging error which results in operation with one or more unsupported fuel elements in a K Zircaloy-2 process tube would be multiple fuel failure and failure of the process tube. The outcome of the accident is determined by the speed with which the fuel failure is detected and the reactor is shut down. The release of fission products would be expected to be no greater than that which has occurred followingmore » severe fuel failure incidents. The highest probability for fission product release occurs during the discharge of failed fuel elements, when a small fraction of the exposed uranium of the fuel element may be oxidized when exposed to air before the element falls into the water-filled discharge chute. The confinement and fog spray facilities were installed to reduce the amount of fission products which might escape from the reactor building after such an event.« less

  7. Propulsion system needs

    NASA Technical Reports Server (NTRS)

    Gunn, Stanley

    1991-01-01

    The needs of the designer of a solid core nuclear rocket engine are discussed. Some of the topics covered include: (1) a flight thrust module/feed system module assembly; (2) a nuclear thermal rocket (NTR), expander cycle, dual T/P; (3) turbopump operating conditions; (4) typical system parameters; (5) growth capability composite fuel elements; (6) a NTR radiation cooled nozzle extension; (7) a NFS-3B Feed System; and (8) a NTR Integrated Pneumatic-Fluidics Control System.

  8. Perovskite electrodes and method of making the same

    DOEpatents

    Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH

    2009-09-22

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  9. Perovskite electrodes and method of making the same

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  10. Assessment of atmospheric deposition of heavy metals and other elements in Belgrade using the moss biomonitoring technique and neutron activation analysis.

    PubMed

    Anicić, Mira; Frontasyeva, Marina V; Tomasević, Milica; Popović, Aleksandar

    2007-06-01

    This study aimed at assessing atmospheric deposition of heavy metals and other elements using the moss genera Brachythecium sp. (B. rutabulum and B. salebrosum) and Eurhynchium sp. (E. hians and E. striatum) collected in autumn 2004 in the urban area of Belgrade. The concentrations of 36 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Dy, Hf, Ta, W, Hg, Th, U) were determined in moss and local topsoil samples by instrumental neutron activation analysis. The concentration of elements in moss positively correlated to those obtained for topsoil. High enrichment factors for As, Zn, Mo, Br, Sb, Se, Hg and Cl, calculated to continental crust composition, gave an evidence for anthropogenic impact on urban area, mainly due to intensive vehicular traffic and fossil fuel combustion. The concentration of elements in moss, characteristic for fossil fuel combustion, obtained in this study were substantially lower than in the previous investigation (2000) conducted in the area of Belgrade. The level of concentrations for V, Cr, Ni, and As in moss from this study correlated to those measured for neighboring countries, and were several times higher than the base-level data from low polluted areas. The level of accumulated elements in both investigated moss genera were similar and all studied species could be combined for biomonitoring purposes in urban areas.

  11. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    PubMed Central

    2013-01-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction. PMID:23601907

  12. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    NASA Astrophysics Data System (ADS)

    Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F.; Zhou, Y. Norman

    2013-04-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.

  13. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites.

    PubMed

    Wen, John Z; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F; Zhou, Y Norman

    2013-04-20

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.

  14. Lightning protection guidelines and test data for adhesively bonded aircraft structures

    NASA Technical Reports Server (NTRS)

    Pryzby, J. E.; Plumer, J. A.

    1984-01-01

    The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.

  15. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction processmore » was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.« less

  16. Rack for storing spent nuclear fuel elements

    DOEpatents

    Rubinstein, Herbert J.; Clark, Philip M.; Gilcrest, James D.

    1978-06-20

    A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.

  17. METHOD OF OPERATING NUCLEAR REACTORS

    DOEpatents

    Untermyer, S.

    1958-10-14

    A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.

  18. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elementalmore » composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.« less

  19. EXAFS: New tool for study of battery and fuel cell materials

    NASA Technical Reports Server (NTRS)

    Mcbreen, James; Ogrady, William E.; Pandya, Kaumudi I.

    1987-01-01

    Extended X ray absorption fine structure (EXAFS) is a powerful technique for probing the local atomic structure of battery and fuel cell materials. The major advantages of EXAFS are that both the probe and the signal are X rays and the technique is element selective and applicable to all states of matter. This permits in situ studies of electrodes and determination of the structure of single components in composite electrodes, or even complete cells. EXAFS specifically probes short range order and yields coordination numbers, bond distances, and chemical identity of nearest neighbors. Thus, it is ideal for structural studies of ions in solution and the poorly crystallized materials that are often the active materials or catalysts in batteries and fuel cells. Studies on typical battery and fuel cell components are used to describe the technique and the capability of EXAFS as a structural tool in these applications. Typical experimental and data analysis procedures are outlined. The advantages and limitations of the technique are also briefly discussed.

  20. Optimization of fuels from waste composition with application of genetic algorithm.

    PubMed

    Małgorzata, Wzorek

    2014-05-01

    The objective of this article is to elaborate a method to optimize the composition of the fuels from sewage sludge (PBS fuel - fuel based on sewage sludge and coal slime, PBM fuel - fuel based on sewage sludge and meat and bone meal, PBT fuel - fuel based on sewage sludge and sawdust). As a tool for an optimization procedure, the use of a genetic algorithm is proposed. The optimization task involves the maximization of mass fraction of sewage sludge in a fuel developed on the basis of quality-based criteria for the use as an alternative fuel used by the cement industry. The selection criteria of fuels composition concerned such parameters as: calorific value, content of chlorine, sulphur and heavy metals. Mathematical descriptions of fuel compositions and general forms of the genetic algorithm, as well as the obtained optimization results are presented. The results of this study indicate that the proposed genetic algorithm offers an optimization tool, which could be useful in the determination of the composition of fuels that are produced from waste.

  1. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    DOEpatents

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  2. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  3. Deposition and material response from Mach 0.3 burner rig combustion of SRC 2 fuels

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Fryburg, G. C.; Johnson, J. R.

    1980-01-01

    Collectors at 1173K (900 C) were exposed to the combustion products of a Mach 0.3 burner rig fueled with various industrial turbine liquid fuels from solvent refined coals. Four fuels were employed: a naphtha, a light oil, a wash solvent and a mid-heavy distillate blend. The response of four superalloys (IN-100, U 700, IN 792 and M-509) to exposure to the combustion gases from the SRC-2 naphtha and resultant deposits was also determined. The SRC-2 fuel analysis and insights obtained during the combustion experience are discussed. Particular problems encountered were fuel instability and reactions of the fuel with hardware components. The major metallic elements which contributed to the deposits were copper, iron, chromium, calcium, aluminum, nickel, silicon, titanium, zinc, and sodium. The deposits were found to be mainly metal oxides. An equilibrium thermodynamic analysis was employed to predict the chemical composition of the deposits. The agreement between the predicted and observed compounds was excellent. No hot corrosion was observed. This was expected because the deposits contained very little sodium or potassium and consisted mainly of the unreactive oxides. However, the amounts of deposits formed indicated that fouling is a potential problem with the use of these fuels.

  4. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  5. Nuclear fuel element

    DOEpatents

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konyashov, Vadim V.; Krasnov, Alexander M.

    Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. Anmore » approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)« less

  7. Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunting, Bruce G; Farrell, John T

    2006-01-01

    The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less

  8. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Rebecca J.; Lewis, Keith M.; Dessiaterik, Yury

    2007-09-20

    Single scattering albedo (ω) and Angstrom absorption coefficient (αap) values are measured at 405, 532 and 870 nm for aerosols generated during controlled laboratory combustion of twelve wildland fuels. Considerable fuel dependent variation in these optical properties is observed at these wavelengths. Complementary microspectroscopy techniques are used to elucidate spatially resolved local chemical bonding, carbon-to-oxygen atomic ratios, percent of sp2 hybridization (graphitic nature), elemental composition, particle size and morphology. These parameters are compared directly with the corresponding optical properties for each combustion product, facilitating an understanding of the fuel dependent variability observed. Results indicate that combustion products can be dividedmore » into three categories based on chemical, physical and optical properties. Only materials displaying a high degree of sp2 hybridization, with chemical and physical properties characteristic of ‘soot’ or black carbon, exhibit ω and αap values that indicate a high light absorbing capacity.« less

  9. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOEpatents

    Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV; Haynes, Daniel [Morgantown, WV; Smith, Mark [Morgantown, WV; Spivey, James J [Baton Rouge, LA

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  10. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOEpatents

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  11. Photographic combustion characterization of LOX/Hydrocarbon type propellants

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1980-01-01

    One hundred twenty-seven tests were conducted over a chamber pressure range of 125-1500 psia, a fuel temperature range of -245 F to 158 F, and a fuel velocity range of 48-707 ft/sec to demonstrate the advantages and limitations of using high speed photography to identify potential combustion anomalies such as pops, fuel freezing, reactive stream separation and carbon formations. Combustion evaluation criteria were developed to guide selection of the fuels, injector elements, and operating conditions for testing. Separate criteria were developed for fuel and injector element selection and evaluation. The photographic test results indicated conclusively that injector element type and design directly influence carbon formation. Unlike spray fan, impingement elements reduce carbon formation because they induce a relatively rapid near zone fuel vaporization rate. Coherent jet impingement elements, on the other hand, exhibit increased carbon formation.

  12. VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS

    DOEpatents

    Furgerson, W.T.

    1963-12-17

    A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)

  13. Implications of Fast Reactor Transuranic Conversion Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

    2010-11-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to floatmore » while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.« less

  14. NEUTRONIC REACTOR CHARGING AND DISCHARGING

    DOEpatents

    Zinn, W.H.

    1959-07-14

    A method and arrangement is presented for removing a fuel element from a neutronic reactor tube through which a liquid coolant is being circulaled. The fuel element is moved into a section of the tube beyond the reactor proper, and then the coolant in the tube between the fuel element and the reactor proper is frozen, so that the fuel element may be removed from the tube without loss of the coolant therein. The method is particularly useful in the case of a liquid metal- cooled reactor.

  15. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  16. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  17. Theoretical Estimate of Maximum Possible Nuclear Explosion

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1950-01-31

    The maximum nuclear accident which could occur in a Na-cooled, Be moderated, Pu and power producing reactor is estimated theoretically. (T.R.H.) 2O82 Results of nuclear calculations for a variety of compositions of fast, heterogeneous, sodium-cooled, U-235-fueled, plutonium- and power-producing reactors are reported. Core compositions typical of plate-, pin-, or wire-type fuel elements and with uranium as metal, alloy, and oxide were considered. These compositions included atom ratios in the following range: U-23B to U-235 from 2 to 8; sodium to U-235 from 1.5 to 12; iron to U-235 from 5 to 18; and vanadium to U-235 from 11 to 33. Calculations were performed to determine the effect of lead and iron reflectors between the core and blanket. Both natural and depleted uranium were evaluated as the blanket fertile material. Reactors were compared on a basis of conversion ratio, specific power, and the product of both. The calculated results are in general agreement with the experimental results from fast reactor assemblies. An analysis of the effect of new cross-section values as they became available is included. (auth)

  18. Physical particularities of nuclear reactors using heavy moderators of neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N.

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program packagemore » for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.« less

  19. Fuel handling apparatus for a nuclear reactor

    DOEpatents

    Hawke, Basil C.

    1987-01-01

    Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

  20. Drying results of K-Basin fuel element 1990 (Run 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, S.C.; Abrefah, J.; Klinger, G.S.

    1998-06-01

    The water-filled K-Basins in the Hanford 100-Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtainedmore » from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first of those tests (Run 1), which was conducted on an N-Reactor inner fuel element (1990) that had been stored underwater in the K-West Basin (see Section 2.0). This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The testing was conducted in the Whole Element Furnace Testing System, described in Section 3.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in Section 4.0, and the experimental results provided in Section 5.0. These results are further discussed in Section 6.0.« less

  1. FUEL ELEMENT FOR NEUTRONIC REACTORS

    DOEpatents

    Evans, T.C.; Beasley, E.G.

    1961-01-17

    A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.

  2. Synthesis of functional materials in combustion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, V. D., E-mail: zhvd@ihim.uran.ru; Bamburov, V. G.; Ermakova, L. V.

    2015-12-15

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al{sub 2}O{sub 3}, YSZ composites, uranium oxides, nickelmore » powder, NiO and NiO: YSZ composite, TiO{sub 2}, and manganites, cobaltites, and aluminates of rare earth elements.« less

  3. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  4. Spatial distribution of polycyclic aromatic hydrocarbon and polychlorinated biphenyl sources in the Nakdong River Estuary, South Korea.

    PubMed

    Lee, Jun H; Woo, Han J; Jeong, Kap S; Kang, Jeong W; Choi, Jae U; Jeong, Eun J; Park, Kap S; Lee, Dong H

    2017-10-15

    Our research team investigated the elemental composition and the presence of various toxic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), in estuary surface sediments to trace the spatial distribution of the sources of pollution deposited in Nakdong River, Busan, South Korea. The spatial patterns of elemental composition and toxic organic compounds were determined from the measurements of total organic carbon (TOC), total nitrogen, total sulfur, PAHs, and PCBs. The sediments had TOC contents of between 0.02 and 1.80 wt% (avg. 0.34 wt%), depending on the amount of clay-sized particles. The concentrations of PAHs and PCBs (10.8-167.7 ng g -1 dry wt and 197.0-754.0 pg g -1 dry wt, respectively) in surface sediments revealed different spatial patterns for these compounds, suggesting that they partially originated from the combustion of fossil fuels and from the use of commercial PCB products at adjacent industrial complexes. Although these concentrations were far below the Sediment Quality Guideline (SQG) of the National Oceanic and Atmospheric Administration (NOAA), the sediments at one site contained PCBs at concentrations close to the response level (754.0 pg g -1 dry wt), and were dominated by low-molecular-weight PAHs. The PAHs and PCBs in Nakdong River Estuary sediments were likely to have originated from the combustion of fossil fuels and biomass at the adjacent industrial complexes. The primarily analyzed results determined that PAHs originated from the combustion of fossil fuels and biomass, and overall concentrations were related to the contributions of individual PAHs in most sediment samples. Based on the SQG of the NOAA, our results indicate that the anthropogenic activity should be considered on the future-sustainable management of this estuary system.

  5. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  6. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less

  7. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.

    There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accuratemore » fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.« less

  8. BOILER-SUPERHEATED REACTOR

    DOEpatents

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  9. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  10. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  11. Phase evolution, characterisation, and performance of cement prepared in an oxy-fuel atmosphere.

    PubMed

    Zheng, Liya; Hills, Thomas P; Fennell, Paul

    2016-10-20

    Cement manufacture is one of the major contributors (7-10%) to global anthropogenic CO 2 emissions. Carbon capture and storage (CCS) has been identified as a vital technology for decarbonising the sector. Oxy-fuel combustion, involving burning fuel in a mixture of recycled CO 2 and pure O 2 instead of air, makes CO 2 capture much easier. Since it combines a theoretically lower energy penalty with an increase in production, it is attractive as a CCS technology in cement plants. However, it is necessary to demonstrate that changes in the clinkering atmosphere do not reduce the quality of the clinker produced. Clinkers were successfully produced in an oxy-fuel atmosphere using only pure oxides as raw materials as well as a mixture of oxides and clay. Then, CEM I cements were prepared by the addition of 5 wt% gypsum to the clinkers. Quantitative XRD and XRF were used to obtain the phase and elemental compositions of the clinkers. The particle size distribution and compressive strength of the cements at 3, 7, 14, and 28 days' ages were tested, and the effect of the particle size distribution on the compressive strength was investigated. Additionally, the compressive strength of the cements produced in oxy-fuel atmospheres was compared with those of the cement produced in air and commercially available CEMEX CEM I. The results show that good-quality cement can be successfully produced in an oxy-fuel atmosphere and it has similar phase and chemical compositions to CEM I. Additionally, it has a comparable compressive strength to the cement produced in air and to commercially available CEMEX CEM I.

  12. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less

  13. Novel fabrication of silicon carbide based ceramics for nuclear applications

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous silicon carbide (a-SiC) at 900--1150 °C. Results indicated that this processing technique can be effectively used to fabricate various silicon carbide composites with UC or UO2 as the nuclear component.

  14. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    DOEpatents

    Steinberg, Meyer; Powell, James R.; Takahashi, Hiroshi; Grand, Pierre; Kouts, Herbert

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

  15. Organized energetic composites based on micro and nanostructures and methods thereof

    DOEpatents

    Gash, Alexander E.; Han, Thomas Yong-Jin; Sirbuly, Donald J.

    2012-09-04

    An ordered energetic composite structure according to one embodiment includes an ordered array of metal fuel portions; and an oxidizer in gaps located between the metal fuel portions. An ordered energetic composite structure according to another embodiment includes at least one metal fuel portion having an ordered array of nanopores; and an oxidizer in the nanopores. A method for forming an ordered energetic composite structure according to one embodiment includes forming an ordered array of metal fuel portions; and depositing an oxidizer in gaps located between the metal fuel portions. A method for forming an ordered energetic composite structure according to another embodiment includes forming an ordered array of nanopores in at least one metal fuel portion; and depositing an oxidizer in the nanopores.

  16. Calculation of Heat-Bearing Agent’s Steady Flow in Fuel Bundle

    NASA Astrophysics Data System (ADS)

    Amosova, E. V.; Guba, G. G.

    2017-11-01

    This paper introduces the result of studying the heat exchange in the fuel bundle of the nuclear reactor’s fuel magazine. The article considers the fuel bundle of the infinite number of fuel elements, fuel elements are considered in the checkerboard fashion (at the tops of a regular triangle a fuel element is a plain round rod. The inhomogeneity of volume energy release in the rod forms the inhomogeneity of temperature and velocity fields, and pressure. Computational methods for studying hydrodynamics in magazines and cores with rod-shape fuel elements are based on a significant simplification of the problem: using basic (averaged) equations, isobaric section hypothesis, porous body model, etc. This could be explained by the complexity of math description of the three-dimensional fluid flow in the multi-connected area with the transfer coefficient anisotropy, curved boundaries and technical computation difficulties. Thus, calculative studying suggests itself as promising and important. There was developed a method for calculating the heat-mass exchange processes of inter-channel fuel element motions, which allows considering the contribution of natural convection to the heat-mass exchange based on the Navier-Stokes equations and Boussinesq approximation.

  17. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    NASA Astrophysics Data System (ADS)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  18. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    PubMed

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. THE MANUFACTURE OF FUEL ELEMENTS OF THE ARGONAUT TYPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kittl, J.; Machado, R.E.; Mazza, J.A.

    1958-06-10

    The conditions required for the manufacture of the RA-1 Argonant type fuel elements are investigated. The fuel elements are in the form of a plate which is manufactured by the extrusion of a presintered mass of U/sub 3/O/sub 8/ (20% enriched) in an aluminum matrix. Steps in the investigation were obtention and specification of U/sub 3/O/sub 8/ and Al in powder form for testing, filling, and extrusion tests, finishing of the fuel elements, and computation of U/sub 3/O/sub 8/ content. (W.D.M.)

  20. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  1. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... further testing under the provisions of Tier 3 or to support regulatory decisions affecting that fuel or... elements or classes of compounds other than those permitted in the base fuel for the respective fuel family... all of the following criteria: (1) Contain no elements other than carbon, hydrogen, oxygen, nitrogen...

  2. Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Fayek; M. Ren

    2007-02-14

    Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue ofmore » spent nuclear fuel.« less

  3. Isoprenoid based alternative diesel fuel

    DOEpatents

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  4. Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options

    NASA Astrophysics Data System (ADS)

    Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn

    2007-01-01

    The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt & Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt & Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.

  5. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  6. Fuel assembly for the production of tritium in light water reactors

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1983-06-10

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  7. Fuel assembly for the production of tritium in light water reactors

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1985-01-01

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  8. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  9. Surfactants in the sea-surface microlayer and atmospheric aerosol around the southern region of Peninsular Malaysia.

    PubMed

    Jaafar, Shoffian Amin; Latif, Mohd Talib; Chian, Chong Woan; Han, Wong Sook; Wahid, Nurul Bahiyah Abd; Razak, Intan Suraya; Khan, Md Firoz; Tahir, Norhayati Mohd

    2014-07-15

    This study was conducted to determine the composition of surfactants in the sea-surface microlayer (SML) and atmospheric aerosol around the southern region of the Peninsular Malaysia. Surfactants in samples taken from the SML and atmospheric aerosol were determined using a colorimetric method, as either methylene blue active substances (MBAS) or disulphine blue active substances (DBAS). Principal component analysis with multiple linear regressions (PCA-MLR), using the anion and major element composition of the aerosol samples, was used to determine possible sources of surfactants in atmospheric aerosol. The results showed that the concentrations of surfactants in the SML and atmospheric aerosol were dominated by anionic surfactants and that surfactants in aerosol were not directly correlated (p>0.05) with surfactants in the SML. Further PCA-MLR from anion and major element concentrations showed that combustion of fossil fuel and sea spray were the major contributors to surfactants in aerosol in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at the time and resulted in NTREES being out of commission for a couple of months while a new stronger coil was procured. The new coil includes several additional pieces of support structure to prevent coil movement in the future. In addition, new insulating test article support components have been fabricated to prevent unexpected arcing to the test articles. Additional activities are also now underway to address ways in which the radial temperature profiles across test articles may be controlled such that they are more prototypical of what they would encounter in an operating nuclear engine. The causes of the temperature distribution problem are twofold. First, the fuel element test article is isolated in NTREES as opposed to being in the midst of many other mostly identical fuel elements in a nuclear engine. As a result, the fuel element heat flux boundary conditions in NTREES are far from adiabatic as would normally be the case in a reactor. Second, induction heating skews the power distribution such that power is preferentially deposited near the outside of the fuel element. Nuclear heating, conversely, deposits its power much more uniformly throughout the fuel element. Current studies are now looking at various schemes to adjust the amount of thermal radiation emitted from the fuel element surface so as to essentially vary the thermal boundary conditions on the test article. It is hoped that by properly adjusting the thermal boundary conditions on the fuel element test article, it may be possible to substantially correct for the inappropriate radial power distributions resulting from the induction heating so as to yield a more nearly correct temperature distribution throughout the fuel element.

  11. Analysis of Accidents at the Pakistan Research Reactor-1 Using Proposed Mixed-Fuel (HEU and LEU) Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokhari, Ishtiaq H.

    2004-12-15

    The Pakistan Research Reactor-1 (PARR-1) was converted from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel in 1991. The reactor is running successfully, with an upgraded power level of 10 MW. To save money on the purchase of costly fresh LEU fuel elements, the use of less burnt HEU spent fuel elements along with the present LEU fuel elements is being considered. The proposal calls for the HEU fuel elements to be placed near the thermal column to gain the required excess reactivity. In the present study the safety analysis of a proposed mixed-fuel core has been carried outmore » at a calculated steady-state power level of 9.8 MW. Standard computer codes and correlations were employed to compute various parameters. Initiating events in reactivity-induced accidents involve various modes of reactivity insertion, namely, start-up accident, accidental drop of a fuel element on the core, flooding of a beam tube with water, and removal of an in-pile experiment during reactor operation. For each of these transients, time histories of reactor power, energy released, temperature, and reactivity were determined.« less

  12. METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS

    DOEpatents

    Nicoll, D.

    1959-02-24

    A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

  13. Calculation of Distribution Dynamics of Inhomogeneous Temperature Field in Range of Fuel Elements by Using FreeFem++

    NASA Astrophysics Data System (ADS)

    Amosova, E. V.; Shishkin, A. V.

    2017-11-01

    This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.

  14. Effects of Low Sulfur Fuel and a Catalyzed Particle Trap on the Composition and Toxicity of Diesel Emissions

    PubMed Central

    McDonald, Jacob D.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2004-01-01

    In this study we compared a “baseline” condition of uncontrolled diesel engine exhaust (DEE) emissions generated with current (circa 2003) certification fuel to an emissions-reduction (ER) case with low sulfur fuel and a catalyzed particle trap. Lung toxicity assessments (resistance to respiratory viral infection, lung inflammation, and oxidative stress) were performed on mice (C57Bl/6) exposed by inhalation (6 hr/day for 7 days). The engine was operated identically (same engine load) in both cases, and the inhalation exposures were conducted at the same exhaust dilution rate. For baseline DEE, this dilution resulted in a particle mass (PM) concentration of approximately 200 μg/m3 PM, whereas the ER reduced the PM and almost every other measured constituent [except nitrogen oxides (NOx)] to near background levels in the exposure atmospheres. These measurements included PM, PM size distribution, PM composition (carbon, ions, elements), NOx, carbon monoxide, speciated/total volatile hydrocarbons, and several classes of semi-volatile organic compounds. After exposure concluded, one group of mice was immediately sacrificed and assessed for inflammation and oxidative stress in lung homogenate. Another group of mice were intratracheally instilled with respiratory syncytial virus (RSV), and RSV lung clearance and inflammation was assessed 4 days later. Baseline DEE produced statistically significant biological effects for all measured parameters. The use of low sulfur fuel and a catalyzed trap either completely or nearly eliminated the effects. PMID:15345344

  15. Fuel cell elements with improved water handling capacity

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  16. Fuel Cell Electric Vehicle Performance Composite Data Products: Spring 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer M; Sprik, Samuel; Ainscough, Christopher D

    This publication includes 22 composite data products (CDPs) produced in Spring 2018 for fuel cell electric vehicle performance in the categories of deployment, driving behavior, fuel economy, fueling behavior, and hydrogen performance.

  17. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, V. E.

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium,more » and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.« less

  18. Coal derived fuel gases for molten carbonate fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-11-01

    Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less

  19. Application of Chemometric Methods to Devolve Co-Eluting Peaks in GC-MS of Fuels to Improve Compound Identification: Final Report

    DTIC Science & Technology

    2018-02-12

    Unclassified Unlimited 49 Jeffrey Cramer (202) 404-3419 Fuel stability and performance problems are often due to the presence of trace levels of contaminants or...other minor changes in composition. Detailed compositional analyses of suspect fuels are often critical to the determination of the cause(s) of the...problem(s) at hand. Sensitive methods to compare fuel compositions via GC-MS methods are available, but the detailed compositional analyses of

  20. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  1. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  2. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-03-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  3. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-05-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  4. Compositions and methods for treating nuclear fuel

    DOEpatents

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  5. Compositions and methods for treating nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  6. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    PubMed

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined.

  7. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    PubMed Central

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined. PMID:6337825

  8. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A

    2012-03-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling

    PubMed Central

    Chin, Jo-Yu; Batterman, Stuart A.

    2015-01-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and bio-diesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C9 to C16 n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor–liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. PMID:22154341

  10. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable... assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research...

  11. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.

    1957-10-01

    A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.

  12. Building Block Approach' for Structural Analysis of Thermoplastic Composite Components for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.

    2017-12-01

    Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.

  13. Variations of the aerosol concentration and chemical composition over the arid steppe zone of Southern Russia in summer

    NASA Astrophysics Data System (ADS)

    Artamonova, M. S.; Gubanova, D. P.; Iordanskii, M. A.; Lebedev, V. A.; Maksimenkov, L. O.; Minashkin, V. M.; Obvintsev, Y. I.; Chketiani, O. G.

    2016-12-01

    Variations in the surface aerosol over the arid steppe zone of Southern Russia have been measured. The parameters of atmospheric aerosol (mass concentration, both dispersed and elemental compositions) and meteorological parameters were measured in Tsimlaynsk raion (Rostov oblast). The chemical composition of aerosol particles in the atmospheric surface layer has been determined, and the coefficients of enrichment of elements with respect to clarkes in the Earth's crust have been calculated. It is shown that, in summer, arid aerosols are transported from both alkaline and sandy soils of Kalmykia to the air basin over the observation zone. Aerosol particles in the surface air layer over this region have been found to contain the products of combustion of oil, coal, and ethylized fuel. These combustion products make a small contribution to the total mass concentration of atmospheric aerosol; however, they are most hazardous to the health of people because of their sizes and heavy-metal contents. A high concentration of submicron sulfur-containing aerosol particles of chemocondensation nature has been recorded. Sources of aerosol of both natural and anthropogenic origins in southern Russia are discussed.

  14. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  15. Tag gas capsule with magnetic piercing device

    DOEpatents

    Nelson, Ira V.

    1976-06-22

    An apparatus for introducing a tag (i.e., identifying) gas into a tubular nuclear fuel element. A sealed capsule containing the tag gas is placed in the plenum in the fuel tube between the fuel and the end cap. A ferromagnetic punch having a penetrating point is slidably mounted in the plenum. By external electro-magnets, the punch may be caused to penetrate a thin rupturable end wall of the capsule and release the tag gas into the fuel element. Preferably the punch is slidably mounted within the capsule, which is in turn loaded as a sealed unit into the fuel element.

  16. Measurement of PM and its chemical composition in real-world emissions from non-road and on-road diesel vehicles

    NASA Astrophysics Data System (ADS)

    Cui, Min; Chen, Yingjun; Feng, Yanli; Li, Cheng; Zheng, Junyu; Tian, Chongguo; Yan, Caiqing; Zheng, Mei

    2017-06-01

    With the rapid growth in the number of both non-road and on-road diesel vehicles, the adverse effects of particulate matter (PM) and its constituents on air quality and human health have attracted increasing attentions. However, studies on the characteristics of PM and its composition emitted from diesel vehicles are still scarce, especially under real-world driving conditions. In this study, six excavators and five trucks that provided a wide range of emission standards and operation modes were tested, and PM emissions and their constituents - including organic carbon (OC), elemental carbon (EC), water-soluble ions (WSIs), elements, and organic species like polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and hopanes - as well as steranes were analyzed and characterized. The average emission factors for PM (EFPM) from excavator and truck emissions were 829 ± 806 and 498 ± 234 mg kg-1 fuel, respectively. EFPM and PM constituents were significantly affected by fuel quality, operational mode, and emission standards. A significant correlation (R2 = 0. 79, p < 0. 01) was found between EFPM for excavators and the sulfur contents in fuel. The highest average EFPM for working excavators was 904 ± 979 mg kg-1 fuel as a higher engine load required in this mode. From pre-stage 1 to stage 2, the average EFPM for excavators decreased by 58 %. For trucks, the average non-highway EFPM at 548 ± 311 mg kg-1 fuel was higher than the highway EFPM at 497 ± 231 mg kg-1 fuel. Moreover, the reduction rates were 63.5 and 65.6 % when switched from China II and III to China IV standards, respectively. Generally, the PM composition emitted from excavators was dominated by OC (39. 2 ± 21. 0 %) and EC (33. 3 ± 25. 9 %); PM from trucks was dominated by EC (26. 9 ± 20. 8 %), OC (9. 89 ± 12 %), and WSIs (4. 67 ± 5. 74 %). The average OC / EC ratios for idling and working excavators were 3 to 4 times higher than those for moving excavators. Although the EFPM for excavators and trucks was reduced with the constraint of regulations, the element fractions for excavators increased from 0.49 % in pre-stage 1 to 3.03 % in stage 2, and the fraction of WSIs for the China IV truck was 5 times higher than the average value of all other-level trucks. Furthermore, as compared with other diesel vehicles, wide ranges were found for excavators of the ratios of benzo[a]anthracene / (benzo[a]anthracene + chrysene) (0.26-0.86), indeno[1,2,3-cd]pyrene / (indeno[1,2,3-cd]pyrene + benzo[ghi]perylene) (0.20-1.0), and fluoranthene / (fluoranthene + pyrene) (0.24-0.87), which might be a result of the complex characteristics of the excavator operation modes. A comparison of our results with those in the literature revealed that on-board measurement data more accurately reflect actual conditions. Although the fractions of the 16 priority PAHs in PM from the excavator and truck emissions were similar, the equivalent concentrations of total benzo[a]pyrene of excavators were 31 times than that for trucks, implying that more attention should be paid to non-road vehicle emissions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.

    In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO 2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO 2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized frommore » elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO 2 in a planetary ball mill. UN and UN – UO 2 composite pellets were sintered in Ar – (0–1 at%) N 2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO 2 composite pellets were also sintered in Ar – 100 ppm N 2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap}more » (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.« less

  19. Nuclear reactor fuel element having improved heat transfer

    DOEpatents

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  20. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  1. MRT fuel element inspection at Dounreay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  2. Direct carbon fuel cell and stack designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorte, Raymond J.; Oh, Tae-Sik

    Disclosed are novel configurations of Direct Carbon Fuel Cells (DCFCs), which optionally comprise a liquid anode. The liquid anode comprises a molten salt/metal, preferably Sb, and a fuel, which has significant elemental carbon content (coal, bio-mass, etc.). The supply of fuel is continuously replenished in the anode. In addition, a stack configuration is suggested where combining a large number of planar or tubular fuel elements.

  3. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  4. Two-Dimensional Diffusion Theory Analysis of Reactivity Effects of a Fuel-Plate-Removal Experiment

    NASA Technical Reports Server (NTRS)

    Gotsky, Edward R.; Cusick, James P.; Bogart, Donald

    1959-01-01

    Two-dimensional two-group diffusion calculations were performed on the NASA reactor simulator in order to evaluate the reactivity effects of fuel plates removed successively from the center experimental fuel element of a seven- by three-element core loading at the Oak Ridge Bulk Shielding Facility. The reactivity calculations were performed by two methods: In the first, the slowing-down properties of the experimental fuel element were represented by its infinite media parameters; and, in the second, the finite size of the experimental fuel element was recognized, and the slowing-down properties of the surrounding core were attributed to this small region. The latter calculation method agreed very well with the experimented reactivity effects; the former method underestimated the experimental reactivity effects.

  5. DNS of moderate-temperature gaseous mixing layers laden with multicomponent-fuel drops

    NASA Technical Reports Server (NTRS)

    Clercq, P. C. Le; Bellan, J.

    2004-01-01

    A formulation representing multicomponent-fuel (MC-fuel) composition as a Probability Distribution Function (PDF) depending on the molar weight is used to construct a model of a large number of MC-fuel drops evaporating in a gas flow, so as to assess the extent of fuel specificity on the vapor composition.

  6. Fuel Chemistry Research | Transportation Research | NREL

    Science.gov Websites

    composition Comparing behavior, performance, and emissions impacts of different alternative fuels and fuel for petroleum displacement have a different chemical composition than traditional petroleum-based

  7. Exploratory Development of New and Improved Self-Sealing Materials for Fuel Lines

    DTIC Science & Technology

    1974-10-01

    identify hy block number) New and improved self-sealing fuel line composites were developed under this program. Fabric reinforced plastic and nonflowering...integrated aluminum foil, fabric reinforced laminated fuel line composites employing compressed natural rubber foam as the sealant were fabricated which...successfully sealed wounds inflicted by .30 and .50 caliber projectiles. The weight of these new self-sealing fuel line composites ranged from 0.83

  8. Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs).

    PubMed

    Wu, Liang; Zhang, Zhenghui; Ran, Jin; Zhou, Dan; Li, Chuanrun; Xu, Tongwen

    2013-04-14

    Proton-exchange membranes (PEM) display unique ion-selective transport that has enabled a breakthrough in high-performance proton-exchange membrane fuel cells (PEMFCs). Elemental understanding of the morphology and proton transport mechanisms of the commercially available Nafion® has promoted a majority of researchers to tune proton conductive channels (PCCs). Specifically, knowledge of the morphology-property relationship gained from statistical and segmented copolymer PEMs has highlighted the importance of the alignment of PCCs. Furthermore, increasing efforts in fabricating and aligning artificial PCCs in field-aligned copolymer PEMs, nanofiber composite PEMs and mesoporous PEMs have set new paradigms for improvement of membrane performances. This perspective profiles the recent development of the channels, from the self-assembled to the artificial, with a particular emphasis on their formation and alignment. It concludes with an outlook on benefits of highly aligned PCCs for fuel cell operation, and gives further direction to develop new PEMs from a practical point of view.

  9. Determining the minimum required uranium carbide content for HTGR UCO fuel kernels

    DOE PAGES

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; ...

    2017-03-10

    There are three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from free O generated when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. Furthermore, in the HTGR UCO kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium in the form of a carbide, UC x. An approach for determining the minimum UC xmore » content to ensure negligible CO formation was developed and demonstrated using CALPHAD models and the Serpent 2 reactor physics and depletion analysis tool. Our results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmutation products on the oxygen distribution as the fuel kernel composition evolves with burnup.« less

  10. Analysis of new measurements of Calvert Cliffs spent fuel samples using SCALE 6.2

    DOE PAGES

    Hu, Jianwei; Giaquinto, J. M.; Gauld, I. C.; ...

    2017-04-28

    High quality experimental data for isotopic compositions in irradiated fuel are important to spent fuel applications, including nuclear safeguards, spent fuel storage, transportation, and final disposal. The importance of these data has been increasingly recognized in recent years, particularly as countries like Finland and Sweden plan to open the world’s first two spent fuel geological repositories in 2020s, while other countries, including the United States, are considering extended dry fuel storage options. Destructive and nondestructive measurements of a spent fuel rod segment from a Combustion Engineering 14 × 14 fuel assembly of the Calvert Cliffs Unit 1 nuclear reactor havemore » been recently performed at Oak Ridge National Laboratory (ORNL). These ORNL measurements included two samples selected from adjacent axial locations of a fuel rod with initial enrichment of 3.038 wt% 235U, which achieved burnups close to 43.5 GWd/MTU. More than 50 different isotopes of 16 elements were measured using high precision measurement methods. Various investigations have assessed the quality of the new ORNL measurement data, including comparison to previous measurements and to calculation results. Previous measurement data for samples from the same fuel rod measured at ORNL are available from experiments performed at Pacific Northwest National Laboratory in the United States and the Khoplin Radium Institute in Russia. Detailed assembly models were developed using the newly released SCALE 6.2 code package to simulate depletion and decay of the measured fuel samples. Furthermore, results from this work show that the new ORNL measurements provide a good quality radiochemical assay data set for spent fuel with relatively high burnup and long cooling time, and they can serve as good benchmark data for nuclear burnup code validation and spent fuel studies.« less

  11. Analysis of new measurements of Calvert Cliffs spent fuel samples using SCALE 6.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Giaquinto, J. M.; Gauld, I. C.

    High quality experimental data for isotopic compositions in irradiated fuel are important to spent fuel applications, including nuclear safeguards, spent fuel storage, transportation, and final disposal. The importance of these data has been increasingly recognized in recent years, particularly as countries like Finland and Sweden plan to open the world’s first two spent fuel geological repositories in 2020s, while other countries, including the United States, are considering extended dry fuel storage options. Destructive and nondestructive measurements of a spent fuel rod segment from a Combustion Engineering 14 × 14 fuel assembly of the Calvert Cliffs Unit 1 nuclear reactor havemore » been recently performed at Oak Ridge National Laboratory (ORNL). These ORNL measurements included two samples selected from adjacent axial locations of a fuel rod with initial enrichment of 3.038 wt% 235U, which achieved burnups close to 43.5 GWd/MTU. More than 50 different isotopes of 16 elements were measured using high precision measurement methods. Various investigations have assessed the quality of the new ORNL measurement data, including comparison to previous measurements and to calculation results. Previous measurement data for samples from the same fuel rod measured at ORNL are available from experiments performed at Pacific Northwest National Laboratory in the United States and the Khoplin Radium Institute in Russia. Detailed assembly models were developed using the newly released SCALE 6.2 code package to simulate depletion and decay of the measured fuel samples. Furthermore, results from this work show that the new ORNL measurements provide a good quality radiochemical assay data set for spent fuel with relatively high burnup and long cooling time, and they can serve as good benchmark data for nuclear burnup code validation and spent fuel studies.« less

  12. Permeability of Impacted Coated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Findley, Benjamin

    2002-01-01

    Composite materials are being considered for use on future generations of Reusable Launch Vehicles (RLVs) for both fuel tanks and fuel feedlines. Through the use of composite materials NASA can reduce the overall weight of the vehicle dramatically. This weight savings can then be translated into an increase in the weight of payload sent into orbit, reducing the cost per pound of payload. It is estimated that by switching to composite materials for fuel tanks the weight of the tanks can be reduced by 40 percent, which translates to a total vehicle weight savings of 14 percent. In this research, carbon/epoxy composites were studied for fuel feedline applications. There are concerns about using composite materials for feedlines and fuel tanks because these materials are extremely vulnerable to impact in the form of inadvertent bumping or dropped tools both during installation and maintenance. Additionally, it has been found that some of the sample feedlines constructed have had leaks, and thus there may be a need to seal preexisting leaks in the composite prior to usage.

  13. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  14. RP-1 and JP-8 Thermal Stability Experiments

    NASA Technical Reports Server (NTRS)

    Brown, Sarah P.; Emens, Jessica M.; Frederick, Robert A., Jr.

    2005-01-01

    This work experimentally investigates the effect of fuel composition changes on jet and rocket fuel thermal stability. A High Reynolds Number Thermal Stability test device evaluated JP-8 and RP-1 fuels. The experiment consisted of an electrically heated, stainless steel capillary tube with a controlled fuel outlet temperature. An optical pyrometer monitored the increasing external temperature profiles of the capillary tube as deposits build inside during each test. Multiple runs of each fuel composition provided results on measurement repeatability. Testing a t two different facilities provided data on measurement reproducibility. The technique is able to distinguish between thermally stable and unstable compositions of JP-8 and intermediate blends made by combining each composition. The technique is also able to distinguish among standard RP-1 rocket fuels and those having reduced sulfur levels. Carbon burn off analysis of residue in the capillary tubes on the RP-1 fuels correlates with the external temperature results.

  15. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A [Idaho Falls, ID; Heaps, Ronald J [Idaho Falls, ID; Steffler, Eric D [Idaho Falls, ID; Swank, William D [Idaho Falls, ID

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  16. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  17. Space reactor fuel element testing in upgraded TREAT

    NASA Astrophysics Data System (ADS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.

  18. Space reactor fuel element testing in upgraded TREAT

    NASA Astrophysics Data System (ADS)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  19. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOEpatents

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  20. Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.

    2002-03-01

    The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.

  1. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  2. Environmental mineralogy - Understanding element behavior in ecosystems

    NASA Astrophysics Data System (ADS)

    Brown, Gordon E., Jr.; Calas, Georges

    2011-02-01

    Environmental Mineralogy has developed over the past decade in response to the recognition that minerals are linked in many important ways with the global ecosystem. Minerals are the main repositories of the chemical elements in Earth's crust and thus are the main sources of elements needed for the development of civilization, contaminant and pollutant elements that impact global and local ecosystems, and elements that are essential plant nutrients. These elements are released from minerals through natural processes, such as chemical weathering, and anthropogenic activities, such as mining and energy production, agriculture and industrial activities, and careless waste disposal. Minerals also play key roles in the biogeochemical cycling of the elements, sequestering elements and releasing them as the primary minerals in crustal rocks undergo various structural and compositional transformations in response to physical, chemical, and biological processes that produce secondary minerals and soils. These processes have resulted in the release of toxic elements such as arsenic in groundwater aquifers, which is having a major impact on the health of millions of people in South and Southeast Asia. The interfaces between mineral surfaces and aqueous solutions are the locations of most chemical reactions that control the composition of the natural environment, including the composition of natural waters. The nuclear fuel cycle, from uranium mining to the disposition of high-level nuclear waste, is also intimately related to minerals. A fundamental understanding of these processes requires molecular-scale information about minerals, their bulk structures and properties such as solubility, their surfaces, and their interactions with aqueous solutions, atmospheric and soil gases, natural organic matter, and biological organisms. Gaining this understanding is further complicated by the presence of natural, incidental, and manufactured nanoparticles in the environment, which are becoming increasingly important due to the rapidly developing field of nanotechnology. As a result of this complexity, Environmental Mineralogy requires the use of the most modern molecular-scale analytical and theoretical methods and overlaps substantially with closely related fields such as Environmental Sciences, low-temperature Geochemistry, and Geomicrobiology. This paper provides brief overviews of the above topics and discusses the complexity of minerals, natural vs. anthropogenic inputs of elements and pollutants into the biosphere, the role of minerals in the biogeochemical cycling of elements, natural nanoparticles, and the Environmental Mineralogy of three major potential pollutant elements (Hg, As and U).

  3. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1997-12-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.

  4. Reduced size fuel cell for portable applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor); Frank, Harvey A. (Inventor)

    2004-01-01

    A flat pack type fuel cell includes a plurality of membrane electrode assemblies. Each membrane electrode assembly is formed of an anode, an electrolyte, and an cathode with appropriate catalysts thereon. The anode is directly into contact with fuel via a wicking element. The fuel reservoir may extend along the same axis as the membrane electrode assemblies, so that fuel can be applied to each of the anodes. Each of the fuel cell elements is interconnected together to provide the voltage outputs in series.

  5. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  6. MEANS FOR COOLING REACTORS

    DOEpatents

    Wheeler, J.A.

    1957-11-01

    A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.

  7. Navy Fuel Composition and Screening Tool (FCAST) v.2.5

    DTIC Science & Technology

    2014-07-18

    a major impediment to certification of these fuels as Fit-For- Purpose (FFP) for the U.S. Navy. A method whereby a candidate fuel could be rapidly...the U.S. Navy. A method whereby a candidate fuel could be rapidly screened for many FFP properties, using a minimal volume (< 1 mL), would overcome...mobility fuels with new alternative fuels, regardless of their source or processing methods . The Fuel Composition and Screening Tool (FCAST) was

  8. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  9. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    DOEpatents

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  10. JACKETED FUEL ELEMENT

    DOEpatents

    Wigner, E.P.; Szilard, L.; Creutz, E.C.

    1959-02-01

    These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.

  11. Comprehensive Fuel Spray Modeling and Impacts on Chamber Acoustics in Combustion Dynamics Simulations

    DTIC Science & Technology

    2013-05-01

    multiple swirler configurations and fuel injector locations at atmospheric pressure con- ditions. Both single-element and multiple-element LDI...the swirl number, Reynolds’ number and injector location in the LDI element. Besides the multi-phase flow characteristics, several experimen- tal...region downstream of the fuel injector on account of a sta- ble and compact precessing vortex core. Recent ex- periments conducted by the Purdue group have

  12. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  13. Weight optimal design of lateral wing upper covers made of composite materials

    NASA Astrophysics Data System (ADS)

    Barkanov, Evgeny; Eglītis, Edgars; Almeida, Filipe; Bowering, Mark C.; Watson, Glenn

    2016-09-01

    The present investigation is devoted to the development of a new optimal design of lateral wing upper covers made of advanced composite materials, with special emphasis on closer conformity of the developed finite element analysis and operational requirements for aircraft wing panels. In the first stage, 24 weight optimization problems based on linear buckling analysis were solved for the laminated composite panels with three types of stiffener, two stiffener pitches and four load levels, taking into account manufacturing, reparability and damage tolerance requirements. In the second stage, a composite panel with the best weight/design performance from the previous study was verified by nonlinear buckling analysis and optimization to investigate the effect of shear and fuel pressure on the performance of stiffened panels, and their behaviour under skin post-buckling. Three rib-bay laminated composite panels with T-, I- and HAT-stiffeners were modelled with ANSYS, NASTRAN and ABAQUS finite element codes to study their buckling behaviour as a function of skin and stiffener lay-ups, stiffener height, stiffener top and root width. Owing to the large dimension of numerical problems to be solved, an optimization methodology was developed employing the method of experimental design and response surface technique. Optimal results obtained in terms of cross-sectional areas were verified successfully using ANSYS and ABAQUS shared-node models and a NASTRAN rigid-linked model, and were used later to estimate the weight of the Advanced Low Cost Aircraft Structures (ALCAS) lateral wing upper cover.

  14. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  15. Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic

    NASA Technical Reports Server (NTRS)

    Gutierrez-Lemini, Danton; Ehle, Curt

    2003-01-01

    An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting

  16. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.

    1990-10-12

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results aremore » related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarta, Jose A.; Castiblanco, Luis A

    With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several calculations and tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safely a program was established at the Instituto de Ciencias Nucleares y Energias Alternativas (INEA). This program included training, acquisition of hardware and software, design and construction of a decay pool, transfer ofmore » the spent HEU fuel elements into the decay pool and his final transport to Savannah River in United States. In this paper are presented data of activities calculated for each relevant radionuclide present in spent MTR-HEU fuel elements of the IAN-R1 Research Reactor and the total activity. The total activity calculated takes in consideration contributions of fission, activation and actinides products. The data obtained were the base for shielding calculations for the decay pool concerning the storage of spent MTR-HEU fuel elements and the respective dosimetric evaluations in the transferring operations of fuel elements into the decay pool.« less

  18. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  19. Substitution for petroleum products in Brasil: Urgent issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Araujo, J.L.; Ghirardi, A.

    Brazililan energy policy during the last decade has focused on the replacement of imported petroleum with domestic energy sources, combined with efforts at conservation. The substitution results, however, have been more spectacular by far. The strategy of replacement is based on two elements. first, to increase domestic petroleum exploration and production. Second, to promote non-petroleum fuels as alternatives to the industrial and transportation sectors, for the substitution of fuel oil and gasoline, respectively. A combination of the substitution strategy, the country's petroleum refining structure, and the composition of the substitution strategy, the country's petroleum refining structure, and the composition ofmore » demand, has resulted in large surpluses of both gasoline and fuel oil, while diesel has become the most used among petroleum products. The surpluses are not easily exportable because there is ample availability of fuel oil in the world market, and because the low octane number of the gasoline produced in Brasil is not compatible with the engines of cars elsewhere in the region and in the world. Furthermore, although gasoline might be upgraded, the question remains that prospects for the world market are not encouraging, and an export-based strategy does not seem justified in view of the growing surpluses. The objective of this analysis is to review the mechanisms of themajor petroleum-substitution programs currently in existence, identifying their past impact on the energy market and the possible consequences of changes in the goals and operating conditions of these programs, in the light of the new prospects for increased domestic oil production and self-sufficiency. 23 refs., 2 figs., 1 tab.« less

  20. 40 CFR 79.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion or other chemical or physical reaction. (d) Fuel manufacturer means any person who, for sale or... the chemical composition of a bulk fuel, or the mixture of chemical compounds in a bulk fuel, by... fuel. (h) Chemical composition means the name and percentage by weight of each compound in an additive...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, David Charles; Taylor, Craig Michael; Coons, James Elmer

    The percent void of the Fort Saint Vrain (FSV) material is estimated to be 21.1% based on the volume of the gap at the top of the drums, the volume of the coolant channels in the FSV fuel element, and the volume of the fuel handling channel in the FSV fuel element.

  2. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  3. Space reactor fuel element testing in upgraded TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todosow, M.; Bezler, P.; Ludewig, H.

    1993-01-14

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less

  4. Space reactor fuel element testing in upgraded TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todosow, M.; Bezler, P.; Ludewig, H.

    1993-05-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less

  5. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    DOEpatents

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  6. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis.

    PubMed

    Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E

    2014-01-31

    There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an improved approach to fuel formulation and specification for advanced engine cycles. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of Operating and Sampling Conditions on the Exhaust Gas Composition of Small-Scale Power Generators

    PubMed Central

    Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia

    2012-01-01

    Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670

  8. The Role of Hydrogen Bonds Of The Azeotropic Hydrous Ethanol Fuel Composition To The Exhaust Emissions

    NASA Astrophysics Data System (ADS)

    Made Suarta, I.; Nyoman Gede Baliarta, I.; Sopan Rahtika, I. P. G.; Wijaya Sunu, Putu

    2018-01-01

    In this study observed the role of hydrogen bonding to the composition of exhaust emissions which is produced hydrous ethanol fuel (95.5% v). Testing is done by using single cylinder four stroke motor engine. The composition of exhaust gas emissions is tested using exhaust gas analyzer on lean and stoichiometry mixer. The exhaust emissions produced by anhydrous ethanol were also tested. The composition of emissions produced by that two fuels is compared. The results showed CO emissions levels produced by hydrous ethanol are slightly higher than anhydrous ethanol in stoichiometric mixtures. But the composition of CO hydrous ethanol emissions is lower in the lean mix. If lean the mixer the different in the composition of emissions is increasing. On hydrous ethanol emission CO2 content little bit lower on the stoichiometric mixer and higher on the lean mixture. Exhaust emissions of ethanol fuel also produce O2. O2 hydrous ethanol emissions is higher than anhydrous ethanol fuel.

  9. Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation.

    PubMed

    Hu, Jing; Wu, Xiaofeng; Zhang, Qingfan; Gao, Mingyan; Qiu, Haifang; Huang, Keke; Feng, Shouhua; Wang, Tingting; Yang, Ying; Liu, Zhelin; Zhao, Bo

    2018-02-27

    A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.

  10. Diesel surrogate fuels for engine testing and chemical-kinetic modeling: Compositions and properties

    DOE PAGES

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; ...

    2016-01-07

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the fourmore » surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. In conclusion, this work documents the surrogate-fuel creation process and the results of the property measurements.« less

  11. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    PubMed Central

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  12. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    NASA Astrophysics Data System (ADS)

    Schneider, E. A.; Deinert, M. R.; Cady, K. B.

    2006-10-01

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  13. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    PubMed

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (p<0.05) in a BEAS-2B cell line. This study contributes novel data on real-world, nonroad engine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Petrodiesel and Waste Grease Biodiesel (B20) Emission Particles at a Rural Recycling Center: Characterization and Effects on Lung Epithelial Cells and Macrophages

    PubMed Central

    Traviss, Nora; Li, Muyao; Lombard, Melissa; Thelen, Brett Amy; Palmer, Brian C.; Poynter, Matthew E.; Mossman, Brooke T.; Holmén, Britt A.; Fukagawa, Naomi K.

    2016-01-01

    Diesel engine emissions are an important source of ultrafine particulate matter (PM) in both ambient air and many occupational settings. Biodiesel is a popular, ‘green’ alternative to petroleum diesel fuel, but little is known about the impact of ‘real world’ biodiesel combustion on workplace PM concentrations and particle characteristics including size, morphology, and composition; or on biological responses. The objectives of the present work were to characterize PM workplace concentrations and tailpipe emissions produced by the combustion of commercially purchased low sulfur petrodiesel and a waste grease B20 blend (20% biodiesel/80% petrodiesel by volume) in heavy duty diesel (HDD) nonroad equipment operating in a ‘real world’ rural recycling center. Furthermore, we assessed the in vitro responses of cell lines representing human lung epithelial cells (BEAS-2B) and macrophages (THP-1) after 24 h of exposure to these real-world particles. Compared to petroleum diesel, use of B20 in HDD equipment resulted in lower mass concentrations of PM2.5, PM<0.25 (particle diameter less than 2.5 and 0.25 micrometer, respectively), and elemental carbon. Transmission electron analysis of PM showed that primary particle size and morphology were similar between fuel types. Metals composition analysis revealed differences between fuels, with higher Fe, Al, V, and Se measured during B20 use, and higher As, Cd, Cu, Mn, Ni and Pb concentrations measured during petrodiesel use. In vitro responses varied between fuels but data supported that waste grease B20 particles elicited inflammatory responses in human macrophages and lung epithelial cells comparable to petrodiesel particles. However, the effects were more pronounced with B20 than petrodiesel at the same mass concentration. Since the primary particle size and morphology were similar between fuels, it is likely that the differential results seen in the in vitro assays points to differences in the composition of the PM. Future research should focus on the organic carbon and metals speciation and potential impact of real world particles on reactive oxygen species generation and mechanisms for differences in the cellular inflammatory responses. PMID:29430261

  15. Torrefaction of landfill food waste for possible application in biomass co-firing.

    PubMed

    Pahla, G; Ntuli, F; Muzenda, E

    2018-01-01

    Greenhouse gas emissions and municipal solid waste management have presented challenges globally. This study aims to produce a high-quality biochar with properties close to bituminous coal from landfill food waste (FW). FW was analyzed by proximate and ultimate analyses to determine its fuel properties and elemental composition before torrefaction. Temperature was varied from 200 to 300 °C at a constant residence time of 40 min and 10 °C/min heating rate. Calorific value, mass yield, energy yield and energy density were computed and used to determine the quality of the resulting biochar. Quality of raw food waste was also determined by elemental analysis. Thermal evolution was then investigated using hyphenated Thermogravimetric Analysis (TGA) and Fourier Transform Infra-Red Spectrometry (FTIR). Torrefaction was done at 225 °C, 275 °C and 300 °C. The calorific value was upgraded from 19.76 MJ/kg for dried raw food waste to 26.15 MJ/kg for torrefied food waste at the appropriate conditions which were 275 °C, 40 min and 10 °C/min. The higher heating value was comparable to that of bituminous coal from Anglo Mafube in South Africa. Elemental analysis of biochar showed an increase in carbon content with temperature due to loss of oxygen containing volatiles. This agreed with TG curves and FTIR spectra which confirmed release of H 2 O, CO and CO 2 . This resulted in a more hydrophobic solid fuel with high energy density. Food waste can therefore be upgraded to a biochar with similar fuel properties as pulverized coal used in coal fired boilers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fuel shipment experience, fuel movements from the BMI-1 transport cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Thomas L.; Krause, Michael G

    1986-07-01

    The University of Texas at Austin received two shipments of irradiated fuel elements from Northrup Aircraft Corporation on April 11 and 16, 1985. A total of 59 elements consisting of standard and instrumented TRIGA fuel were unloaded from the BMI-1 shipping cask. At the time of shipment, the Northrup core burnup was approximately 50 megawatt days with fuel element radiation levels, after a cooling time of three months, of approximately 1.75 rem/hr at 3 feet. In order to facilitate future planning of fuel shipment at the UT facility and other facilities, a summary of the recent transfer process including severalmore » factors which contributed to its success are presented. Numerous color slides were made of the process for future reference by UT and others involved in fuel transfer and handling of the BMI-1 cask.« less

  17. The Finite Element Modelling and Dynamic Characteristics Analysis about One Kind of Armoured Vehicles’ Fuel Tanks

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Ge, Zhishang; Zhai, Weihao; Tan, Shiwang; Zhang, Feng

    2018-01-01

    The static and dynamic characteristics of fuel tank are studied for the armoured vehicle in this paper. The CATIA software is applied to build the CAD model of the armoured vehicles’ fuel tank, and the finite element model is established in ANSYS Workbench. The finite element method is carried out to analyze the static and dynamic mechanical properties of the fuel tank, and the first six orders of mode shapes and their frequencies are also computed and given in the paper, then the stress distribution diagram and the high stress areas are obtained. The results of the research provide some references to the fuel tanks’ design improvement, and give some guidance for the installation of the fuel tanks on armoured vehicles, and help to improve the properties and the service life of this kind of armoured vehicles’ fuel tanks.

  18. Predicting the ash behavior during biomass combustion in FBC conditions by combining advanced fuel analyses with thermodynamic multicomponent equilibrium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Blomquist, J.P.; Hupa, M.

    1998-12-31

    Previous work at Aabo Akademi University has focused on identification and quantification of various sintering mechanisms which are relevant for problematic ash behavior during biomass combustion in fluidized bed combustion conditions, and on multi-component multi-phase thermodynamic phase equilibrium calculations of ash chemistry in these conditions. In both areas new information has been developed and useful modeling capabilities have been created. Based on the previous work, the authors now present a novel approach of using a combination of an advanced fuel analysis method and thermodynamic phase equilibrium calculations to predict the chemical and thermal behavior of the ash when firing biomass.more » Four different fuels [coal, forest residues, wood chips, and a mixture of forest residue and wood chips] were analyzed using the chemical fractionation analysis technique. Based on the results from these analyses, the authors formed two different ash fractions, (1) one fine sized fraction consisting of those elements found in the water and weak acid leach, and (2) a coarse ash particle fraction consisting of those elements found in the strong acid leach and non-leachable rest. The small sized ash fraction was then assumed to be carried up with the flue gases and consequently formed the base for any ash related problems in the flue gas channel. This fraction was therefore analyzed on its chemical and thermal behavior using multi-component multi-phase equilibrium calculations, by which the composition and the melting behavior was estimated as a function of the temperature. The amount of melt, which has earlier been found to be strongly related to problematic ash behavior, was finally expressed as a function of the temperature for the fraction. The coarse fraction was treated separately. Here the authors estimate the composition only. The paper discusses the results and their relevance to full scale combustion.« less

  19. Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel

    NASA Astrophysics Data System (ADS)

    Lewis, operating defective fuel B. J.; Thompson, W. T.; Akbari, F.; Thompson, D. M.; Thurgood, C.; Higgs, J.

    2004-07-01

    A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor.

  20. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  1. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  2. PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE

    DOEpatents

    Plott, R.F.

    1958-10-28

    A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.

  3. Development and Evaluation of an Airplane Fuel Tank Ullage Composition Model. Volume 2. Experimental Determination of Airplane Fuel Tank Ullage Compositions

    DTIC Science & Technology

    1987-10-01

    Airplane Fuel Tank Ullage Compositions ~C A. J. Roth BOEING MILITARY AIRPLANE COMPANY P. 0. Box 3707 Seattle, Washington 98124-2207 October 1987 FINAL...controlled mission simulations were made using the ModComp computer to control the Simulated Aircraft Fuel Tank Environment ( SAFTEI facility at Wright...of this report. iii PREFACE This is a final report of work conducted under F33615-84-C-2431 and submitted by the Boeing Military Airplane Company

  4. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  5. JACKETED FISSIONABLE MEMBER

    DOEpatents

    Boller, E.R.; Robinson, J.W.

    1960-09-13

    A fuel element design for a nuclear reactor is presented. The fuel element comprises a cylindrical fuel body having a portion of smaller diameter at each end thereof with an annular flange at the extreme ends of these portions of smaller diameter. An end cap fits over the ends of the fuel body and has an internal annular groove adapted to receive the flange. The fuel body and end caps are disposed in a cup-shaped jacket, a closure disc completing the enclosure of the fuel body, and tht caps are bonded over their entire periphery to the jacket.

  6. U-Mo Plate Blister Anneal Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francine J. Rice; Daniel M. Wachs; Adam B. Robinson

    2010-10-01

    Blister thresholds in fuel elements have been a longstanding performance parameter for fuel elements of all types. This behavior has yet to be fully defined for the RERTR U-Mo fuel types. Blister anneal studies that began in 2007 have been expanded to include plates from more recent RERTR experiments. Preliminary data presented in this report encompasses the early generations of the U-Mo fuel systems and the most recent but still developing fuel system. Included is an overview of relevant dispersion fuel systems for the purposes of comparison.

  7. Methods and Piezoelectric Imbedded Sensors for Damage Detection in Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert; Ooi, Teng K.

    2004-01-01

    New methods for structural health monitoring are being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. A variety of damage detection methods and different Sensors are employed in the different composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency, impedance measurements, and pulse echoing techniques of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage. These results are furthermore compared with previous work using externally mounted sensors. Results and optimized methods from this work can then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2" generation reusable launch vehicle using composites as a structural element.

  8. The Gaseous Explosive Reaction : A Study of the Kinetics of Composite Fuels

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1929-01-01

    This report deals with the results of a series of studies of the kinetics of gaseous explosive reactions where the fuel under observation, instead of being a simple gas, is a known mixture of simple gases. In the practical application of the gaseous explosive reaction as a source of power in the gas engine, the fuels employed are composite, with characteristics that are apt to be due to the characteristics of their components and hence may be somewhat complex. The simplest problem that could be proposed in an investigation either of the thermodynamics or kinetics of the gaseous explosive reaction of a composite fuel would seem to be a separate study of the reaction characteristics of each component of the fuel and then a study of the reaction characteristics of the various known mixtures of those components forming composite fuels more and more complex. (author)

  9. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less

  10. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.; Jiang, C.; Zhang, Y.

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is foundmore » that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.« less

  11. A small, 1400 deg Kelvin, reactor for Brayton space power systems

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    A preliminary cost estimate for a small reactor in Brayton space power systems with (u-233)n or (pu-239)n as the fuel in the T-111 fuel elements totaled to about four million dollars; considered is a 22.8 in. diameter reactor with 247 fuel elements.

  12. Photochemical Degradation of Petroleum-Derived Water-Soluble Organics into the Background Dissolved Organic Carbon Pool

    NASA Astrophysics Data System (ADS)

    Podgorski, D. C.; Ray, P. Z.; Roland, N. V.; Corilo, Y. E.; Tarr, M. A.; Guillemette, F.; Spencer, R. G.

    2016-02-01

    Water-soluble organic (WSO) photoproducts produced from Macondo crude oil (MC252) and a heavy fuel oil (HFO), a surrogate for that which was spilled into the San Francisco Bay by the M/V Cosco Busan, were isolated and irradiated with simulated sunlight to examine the photochemical fate of the products in aquatic ecosystems. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals marked transformations in the elemental composition of WSOs at specific irradiation periods across a time series that correspond with shifts in bulk properties determined with optical measurements. Blue shifts in EEMs spectra correlate with an increase in formulas classified as unsaturated, high oxygen while the polyphenols and unsaturated, low oxygen compounds decrease. The characteristic A and C humic- and fulvic-like FDOM signatures begin to appear in the EEM spectra of WSOs that were irradiated for as little as 8 to 12 hours, the equivalent of 2 to 3 days of natural sunlight. The presence of the A and C signatures correlate to elemental compositions that exhibit a further decrease in the unsaturated, low oxygen and subsequent increase of unsaturated, high oxygen and highly oxygenated aliphatic compounds. Furthermore, van Krevelen plots reveal a shift toward the compositional space associated with carboxyl-rich aromatic moieties (CRAM) as a function of irradiation period and the appearance of the humic- and fulvic-like FDOM signatures in the EEM spectra. Although the photodegraded WSO products show similarities in FDOM and elemental composition to representative natural dissolved organic matter from their respective pools, persistent petroleum signatures that are not photoactive are still detected. Future studies are required to examine the bioavailability of these photodegraded WSO products to determine if they degrade or persist in the environment.

  13. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)

    2005-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  14. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    2003-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  15. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    1999-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  16. Local Burn-Up Effects in the NBSR Fuel Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peakingmore » relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.« less

  17. NUCLEAR REACTOR COMPENENT CLADDING MATERIAL

    DOEpatents

    Draley, J.E.; Ruther, W.E.

    1959-01-27

    Fuel elements and coolant tubes used in nuclear reactors of the heterogeneous, water-cooled type are described, wherein the coolant tubes extend through the moderator and are adapted to contain the fuel elements. The invention comprises forming the coolant tubes and the fuel element cladding material from an alloy of aluminum and nickel, or an alloy of aluminum, nickel, alloys are selected to prevent intergranular corrosion of these components by water at temperatures up to 35O deg C.

  18. Investigation of thermoelastic stresses induced at high altitudes on aircraft external fuel tanks

    NASA Astrophysics Data System (ADS)

    Mousseau, Stephanie Lynn Steber

    As composite technology has grown over the past several decades, the use of composite materials in military applications has become more feasible and widely accepted. Although composite materials provide many benefits, including strength optimization and reduced weight, damage and repair of these materials creates an additional challenge, especially when operating in a marine environment, such as on a carrier deck. This is evident within the Navy, as excessive damage often leads to the scrapping of F/A-18 External Fuel Tanks. This damage comes in many forms, the most elusive of which is delamination. Often the delamination found on the tanks is beyond repairable limits and the cause unknown, making it difficult to predict and prevent. The purpose of this investigation was to study the structure of the Navy's 330 gallon External Fuel Tanks and investigate one potential cause of delamination, stresses induced at high altitudes by cold temperatures. A stress analysis was completed using finite element software, and validation of the model was accomplished through testing of a scale model specimen. Due to the difficulties in modeling and predicting delamination, such as unknown presence of voids and understanding failure criteria, delamination was not modeled in Abaqus, rather stresses were observed and characteristics were studied to understand the potential for delamination within the layup. In addition, studies were performed to understand the effect of material properties and layup sequence on the stress distribution within the tank. Alternative design solutions are presented which could reduce the radial stresses within the tank, and recommendations are made for further study to understand the trade-offs between stress, cost, and manufacturability.

  19. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  20. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.

    PubMed

    Podur, Justin J; Martell, David L

    2009-07-01

    Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.

  1. 40 CFR 80.162 - Additive compositional data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Additive compositional data. 80.162... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.162 Additive compositional data... gasoline detergency requirements of this subpart, the compositional data to be supplied to EPA by the...

  2. 40 CFR 80.162 - Additive compositional data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Additive compositional data. 80.162... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.162 Additive compositional data... gasoline detergency requirements of this subpart, the compositional data to be supplied to EPA by the...

  3. 40 CFR 80.162 - Additive compositional data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Additive compositional data. 80.162... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.162 Additive compositional data... gasoline detergency requirements of this subpart, the compositional data to be supplied to EPA by the...

  4. 40 CFR 80.162 - Additive compositional data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Additive compositional data. 80.162... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.162 Additive compositional data... gasoline detergency requirements of this subpart, the compositional data to be supplied to EPA by the...

  5. 40 CFR 80.162 - Additive compositional data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Additive compositional data. 80.162... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.162 Additive compositional data... gasoline detergency requirements of this subpart, the compositional data to be supplied to EPA by the...

  6. NEUTRONIC REACTOR WITH ACCESSIBLE THIMBLE AND EMERGENCY COOLING FEATURES

    DOEpatents

    McCorkle, W.H.

    1960-02-23

    BS>A safety system for a water-moderated reactor is described. The invention comprises a reservoir system for spraying the fuel elements within a fuel assembly with coolant and keeping them in a continuous bath even if the coolant moderator is lost from the reactor vessel. A reservoir gravity feeds one or more nozzels positioned within each fuel assembly which continually forces water past the fuel elements.

  7. State-of-the-Art Fuel Cell Voltage Durability and Cost Status: 2018 Composite Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, Genevieve; Kurtz, Jennifer M; Dinh, Huyen N

    This publication includes 18 composite data products (CDPs) for fuel cell technology status, focusing on state-of-the-art fuel cell voltage durability and cost with data through the fourth quarter of 2017.

  8. Assessment of the behavior of potentially toxic elements (PTEs) in soil from the Sarno River Basin through a compositional data analysis

    NASA Astrophysics Data System (ADS)

    Matar, Thiombane; Vivo Benedetto, De; Albanese, Stefano; Martín-Fernández, Josep-Antoni; Lima, Annamaria; Doherty, Angela

    2017-04-01

    The Sarno River Basin (south-west Italy), nestled between the Somma-Vesuvius volcanic complex and the limestone formations of the Campania-Apennine Chain, is one of the most polluted river basins in Europe due to a high rate of industrialization and intensive agriculture. Water from the Sarno River, which is heavily contaminated by the discharge of human and industrial waste, is partially used for irrigation on the agricultural fields surrounding it. We apply compositional data analysis on 319 samples collected during two field campaigns along the river course, and throughout the basin, to determine the level and potential origin (anthropogenic and/or geogenic) of the potentially toxic elements (PTEs). The concentrations of 53 elements determined by ICP-MS, and were subsequently log-transformed. Using a clr-biplot and principal factor analysis, the variability and the correlations between a subset of extracted variables (26 elements) were identified. Using both normalized raw data and clr-transformed coordinates, factor association interpolated maps were generated to better visualize the distribution and potential sources of the PTEs in the Sarno Basin. The underlying geology substrata appear to be associated with raised of levels of Na, K, P, Rb, Ba, V, Co, B, Zr, and Li, due to the presence of pyroclastic rocks from Mt. Somma-Vesuvius. Similarly, elevated Pb, Zn, Cd, and Hg concentrations are most likely related to both geological and anthropogenic sources, the underlying volcanic rocks and contamination from fossil fuel combustion associated with urban centers. Interpolated factors score maps and clr-biplot indicate a clear correlation between Ni and Cr in samples taken along the Sarno River, and Ca and Mg near the Solofra district. After considering nearby anthropogenic sources, the Ni and Cr are PTEs from the Solofra tannery industry, while Ca and Mg correlate to the underlying limestone-rich soils of the area. This study shows the applicability of the compositional data analysis transformations, which relates perfectly relationships and dependencies between elements which can be lost when univariate and classical multivariate analyses are employed on normal data. Keywords: Sarno basin, PTEs, compositional data analysis, centered-log Transformation (clr), Biplot, Factor analysis, ArcGIS

  9. Modules for estimating solid waste from fossil-fuel technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less

  10. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    NASA Astrophysics Data System (ADS)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  11. All ceramic structure for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  12. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  13. Sources and Chemical Composition of Atmospheric Fine Particles in Rabigh, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Nayebare, S. R.; Aburizaiza, O. S.; Siddique, A.; Hussain, M. M.; Zeb, J.; Khwaja, H. A.

    2014-12-01

    Air pollution research in Saudi Arabia and the whole of Middle East is at its inception, making air pollution in the region a significant problem. This study presents the first detailed data on fine particulate matter (PM2.5) concentrations of Black Carbon (BC), ions, and trace metals at Rabigh, Saudi Arabia, and assesses their sources. Results showed several characteristic aspects of air pollution at Rabigh. Daily levels of PM2.5 and BC showed significant temporal variability ranging from 12.2 - 75.9 µg/m3 and 0.39 - 1.31 µg/m3, respectively. More than 90% of the time, the daily PM2.5 exceeded the 24 h WHO guideline of 20 µg/m3. Sulfate, NO3-, and NH4+ dominated the identifiable components. Trace metals with significantly higher concentrations included Si, S, Ca, Al, Fe, Na, Cl, Mg, K, and Ti, with average concentrations of 3.1, 2.2, 1.6, 1.2, 1.1, 0.7, 0.7, 0.5, 0.4 and 0.1 µg/m3, respectively. Based on the Air Quality Index (AQI), there were 44% days of moderate air quality, 33% days of unhealthy air quality for sensitive groups, and 23% days of unhealthy air quality throughout the study period. Two categories of aerosol trace metal sources were defined: anthropogenic (S, V, Cr, Ni, Cu, Zn, Br, Cd, Sb, and Pb) and naturally derived elements (Si, Al, and Fe). The extent of anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the crustal composition. Soil resuspension and/or mobilization is an important source of "natural" elements, while "anthropogenic" elements originate primarily from fossil fuel combustion and industries. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. A positive matrix factorization (PMF) was used to obtain information about possible sources. Our study highlights the need for stringent laws on PM2.5 emission control to protect human health and the environment.

  14. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Simnad, M.T.

    1961-08-15

    A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

  15. The Guardian: The Source for Antiterrorism Information. Volume 9, Number 1, April 2007

    DTIC Science & Technology

    2007-04-01

    the fuel in these research reactors is generally not highly radioactive . Unlike the fuel rods in a nuclear power plant, these fuel elements would...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...practices and lessons learned. In addition, we will include Service and issue-specific breakout sessions that will focus on critical AT program elements

  16. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  17. PATHFINDER ATOMIC POWER PLANT TECHNICAL PROGRESS REPORT FOR JULY 1, 1959- SEPTEMBER 30, 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-10-31

    ABS>Fuel Element Research and Development. Dynamic and static corrosion tests on 8001 Al were completed. Annealmmmg of 1100 cladding on 5083 and M400 cladding on X2219 were tested at 500 deg C, and investigation continued on producing X8101 Al alloy cladding in tube plates by extrusion. Boiler fuel element capsule irradiation tests and subassembly tests are described Heat transfer loop studies and fuel fabrication for the critical facility are reported. Boiler fuel element mechanical design and testing progress is desc ribed. and the superheater fuel element temperature evaluating routine is discussed. Low- enrichment superheater fuel element development included design studiesmore » and stainless steel powder and UO/sub 2/ powder fabrication studies Reactor Mechanical Studies. Research is reported on vessel and structure design, fabrication, and testing, recirculation system design, steam separator tests, and control rod studies. Nuclear Analysis. Reactor physics studies are reported on nuclear constants, baffle plate analysis, comparison of core representations, delayed neutron fraction. and shielding analysis of the reactor building. Reactor and system dynamics and critical experiments were also studied. Chemistry. Progress is reported on recombiner. radioactive gas removal and storage, ion exchanger and radiochemical processing. (For preceding period see ACNP-5915.) (T.R.H.)« less

  18. Compact Fuel Element Environment Test

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  19. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment. This finding has implications for future policies aiming to improve air quality in urban environments where fuel composition changes as a function of season.

  20. AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Keiser; J. I. Cole

    2007-09-01

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. Thismore » temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.« less

  1. Dart model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1997-06-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density.more » Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.« less

  2. IRRADIATION METHOD AND APPARATUS

    DOEpatents

    Cabell, C.P.

    1962-12-18

    A method and apparatus are described for changing fuel bodies into a process tube of a reactor. According to this method fresh fuel elements are introduced into one end of the tube forcing used fuel elements out the other end. When sufficient fuel has been discharged, a reel and tape arrangement is employed to pull the column of bodies back into the center of the tube. Due provision is made for providing shielding in the tube. (AEC)

  3. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  4. Composite construction for nuclear fuel containers

    DOEpatents

    Cheng, Bo-Ching [Fremont, CA; Rosenbaum, Herman S [Fremont, CA; Armijo, Joseph S [Saratoga, CA

    1987-01-01

    An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

  5. Navy Fuel Composition and Screening Tool (FCAST) v2.8

    DTIC Science & Technology

    2016-05-10

    allowed us to develop partial least squares (PLS) models based on gas chromatography–mass spectrometry (GC-MS) data that predict fuel properties. The...Chemometric property modeling Partial least squares PLS Compositional profiler Naval Air Systems Command Air-4.4.5 Patuxent River Naval Air Station Patuxent...Cumulative predicted residual error sum of squares DiEGME Diethylene glycol monomethyl ether FCAST Fuel Composition and Screening Tool FFP Fit for

  6. Current status of U{sub 3}Si{sub 2} fuel element fabrication in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durazzo, M.; Carvalho, E.F. Urano de; Saliba-Silva, A.M.

    2008-07-15

    IPEN has been working for increasing radioisotope production in order to supply the expanding demand for radiopharmaceutical medicines requested by the Brazilian welfare. To reach this objective, the IEA-R1 research reactor power capacity was recently increased from 2 MW to 4 MW. Since 1988 IPEN has been manufacturing its own fuel element, initially based on U{sub 3}O{sub 8}-Al dispersion fuel plates with 2.3 gU/cm{sup 3}. To support the reactor power increase, higher uranium density in the fuel plate meat had to be achieved for better irradiation flux and also to minimize the irradiated fuel elements to be stored. Uranium silicidemore » was the chosen option and the fuel fabrication development started with the support of the IAEA BRA/4/047 Technical Cooperation Project. This paper describes the results of this program and the current status of silicide fuel fabrication and its qualification. (author)« less

  7. Axially staggered seed-blanket reactor-fuel-module construction. [LWBR

    DOEpatents

    Cowell, G.K.; DiGuiseppe, C.P.

    1982-10-28

    A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.

  8. Investigations of Multiple Swirl-Venturi Fuel Injector Concepts: Recent Experimental Optical Measurement Results for 1-Point, 7-Point, and 9-Point Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert C.; Tedder, Sarah A.; Tacina, Kathleen M.

    2015-01-01

    This paper presents results obtained during testing in optically-accessible, JP8-fueled, flame tube combustors using swirl-venturi lean direct injection (LDI) research hardware. The baseline LDI geometry has 9 fuel/air mixers arranged in a 3 x 3 array within a square chamber. 2-D results from this 9-element array are compared to results obtained in a cylindrical combustor using a 7-element array and a single element. In each case, the baseline element size remains the same. The effect of air swirler angle, and element arrangement on the presence of a central recirculation zone are presented. Only the highest swirl number air swirler produced a central recirculation zone for the single element swirl-venturi LDI and the 9-element LDI, but that same swirler did not produce a central recirculation zone for the 7-element LDI, possibly because of strong interactions due to element spacing within the array.

  9. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  10. High Burn-Up Spent Nuclear Fuel Vibration Integrity Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into localmore » stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.« less

  11. The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Tsang, Alpha C. H.; Kwok, Holly Y. H.; Leung, Dennis Y. C.

    2017-05-01

    This manuscript presents the methodology of the production of 2D and 3D graphene based material, and their applications in fuel cell, supercapacitor, and photovoltic in recent years. Due to the uniqueness and attractive properties of graphene nanosheets, a large number of techniques have been developed for raw graphene preparation, from a chemical method to a physical deposition of carbon vapor under extreme conditions. A variety of graphene based materials were also prepared from raw graphene or graphene oxide, including the metal loaded, metal oxides loaded, to the foreign elements doped graphene. Both two-dimensional (2D) to three-dimensional (3D) structured graphene were covered. These materials included the bulk or template hybrid composite, containing graphene hydrogel, graphene aerogel, or graphene foam and its derived products. They were widely used in green energy device research, which exhibited strong activity, and developed some special usage in recent research.

  12. Abstracts: Energy Sciences programs, January--December 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report presents abstracts of all publications in the Energy Sciences programs of the Department of Energy and Environment from January 1, 1978 through December 31, 1978. It is a companion report to Annual Highlights of Programs in Energy Sciences - (December 1978, BNL 50973). Together, they present scientific and/or technical highlights of the Energy Sciences programs for the past calendar year, detailed descriptions of all the programs, and the publication issuing from the work performed. The following are some of the topics included: porphyrin chemistry; chemistry of energetic compounds; combustion; coal utilization; metal hydrides; cyclic separations process research; tracemore » element analysis; materials properties and structures; radiation damage; superconducting materials; materials of construction for geothermal applications; repair of deteriorated concrete; development of glass--polymer composite sewer pipe; flash hydropyrolysis of coal; desulfurization of high-temperature combustion and fuel gases; and synthetic fuels development. (RWR)« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1990. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis. The Chemical Analysis Group uses wet-chemical and instrumental methods for elemental, compositional, and isotopic analyses of solid, liquid, and gaseous samples and provides specialized analytical services. The Instrumental Analysis Group uses nuclear counting techniques in radiochemical analyses over a wide range of sample types from low-level environmental samples to samples of high radioactivity. The Organic Analysis Group uses amore » number of complementary techniques to separate and to quantitatively and qualitatively analyze complex organic mixtures and compounds at the trace level, including synthetic fuels, toxic substances, fossil-fuel residues and emissions, pollutants, biologically active compounds, pesticides, and drugs. The Environmental Analysis Group performs analyses of inorganic environmental and hazardous waste and coal samples.« less

  14. PREIRRADIATION MEASUREMENTS OF PIQUA FUEL ELEMENTS NO. P-1111, P-1113, P- 1114, AND P-1120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbell, H.J.

    1962-11-01

    Results of preirradiation measurements and tests performed during the processing and assembly of the individual fuel cylinders contained in Piqua Fuel Elements No. P-1111, P-1113, P-1114, and P-1120 are presented. A description of the techniques and equipment used in obtaining the data is also included. (auth)

  15. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  16. Photographic combustion characterization of LOX/hydrocarbon type propellants

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1979-01-01

    Single element injectors and two fuels were tested with the aim of photographically characterizing observed combustion phenomena. The three injectors tested were the O-F-O triplet, the transverse like on like (TLOL), and the rectangular unlike doublet (RUD). The fuels tested were RP-1 and propane. The hot firings were conducted in a specifically constructed chamber fitted with quartz windows for photographically viewing the impingement spray field. All LOX/HC testing demonstrated coking with the RP-1 fuel leaving far more soot than the propane fuel. No fuel freezing or popping was experienced under the test conditions evaluated. Carbon particle emission and combustion light brilliance increased with Pc for both fuels although RP-1 was far more energetic in this respect. The RSS phenomena appear to be present in the high Pc tests as evidenced by striations in the spray pattern and by separate fuel rich and oxidizer rich areas. The RUD element was also tested as a fuel rich gas generator element by switching the propellant circuits. Excessive sooting occurred at this low mixture ratio (0.55), precluding photographic data.

  17. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  18. ELECTROLYTIC SEPARATION PROCESS AND APPARATUS

    DOEpatents

    McLain, M.E. Jr.; Roberts, M.W.

    1962-03-01

    A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)

  19. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  20. Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell

    DOEpatents

    Gorer, Alexander

    2004-01-27

    A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  1. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    DOE PAGES

    Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; ...

    2012-05-22

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionizemore » future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.« less

  2. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  3. Initial Operation and Shakedown of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.

  4. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  5. Thermal Characterization and Flammability of Structural Epoxy Adhesive and Carbon/Epoxy Composite with Environmental and Chemical Degradation (Postprint)

    DTIC Science & Technology

    2012-01-01

    this study). TGA scans show the thermal degradation of carbon/ epoxy composite by fuel additive at room temperature. Through Microscale Combustion...concerns regarding the durability of structural epoxy adhesive contaminated by hydraulic fluid or fuel additive , under simplified test conditions (no...higher than room tem- perature) or fuel additive (at all temperatures of this study). TGA scans show the thermal degradation of carbon/ epoxy composite

  6. Composite construction for nuclear fuel containers

    DOEpatents

    Cheng, B. C.; Rosenbaum, H. S.; Armijo, J. S.

    1987-04-21

    Disclosed is an improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof. 1 fig.

  7. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOEpatents

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  8. Composition and methods for improved fuel production

    DOEpatents

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  9. FLUID MODERATED REACTOR

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1957-10-22

    A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.

  10. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    NASA Astrophysics Data System (ADS)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316 substrates were also tested for suitability in performing as PEM fuel cell bipolar plates. Interfacial contact resistance and accelerated corrosion resistance tests were carried out for various bulk materials and chromium carbide coatings. Results of the study showed that chromium carbide protective coatings had relatively low interfacial contact resistance and moderate corrosion resistance in comparison to other metals. Single fuel cells with 6.45cm2 and 50cm2 active areas were fabricated and tested for performance and lifetime durability using chromium carbide coated aluminum bipolar plates and graphite composite bipolar plates as a control reference. Polarization curves and power curves were recorded from these single cells under various load conditions. The results showed that coated aluminum bipolar plates had an advantage of anchoring the terminals directly into the plates resulting in higher power density of the fuel cell. This was due to the elimination of additional ICR to the power stack caused by the need for extra terminal plates. However, this study also revealed that direct terminal anchoring was efficient and useable only with metallic bipolar plates but was inapplicable to graphite composite plates due to the poor mechanical strength and brittleness of the graphite composite material. In addition, the 1000 hour lifetime testing of coated aluminum single cells conducted at 70°C cell temperature under cyclic loading condition showed minimal power degradation (<5%) due to metal corrosion. Surface characterization was also conducted on the bipolar plates and MEAs to identify possible chemical change to their surfaces during the fuel cell operation and the electrochemical reaction. The single cell performance evaluation was complemented by an extended study on the fuel cell stack level. For the latter, a ten-cell graphite composite stack with a 40 cm2 active area was fabricated and evaluated for the effect of humidity and operating temperature on the stack performance. Graphite plates were selected for this study to eliminate any possible metal corrosion. A finite element analysis (FEA) model of a bipolar plate was developed to evaluate the effect of air cooling system design parameters and different bipolar plate materials on maintaining the PEM power stack at a safe operating temperature of 80°C or less. In the final stage of this work, a three-cell metallic stack with a 50 cm2 active area and coated aluminum bipolar plates was fabricated based on the positive results that were obtained from earlier studies. The three-cell stack was successfully operated and tested for 750 hours at different temperatures and power densities. This laboratory testing coupled with characterization studies showed that small amounts of aluminum oxide were observed on the coating surface due to localized imperfections in the coating and a lack of protection in the uncoated areas, such as internal manifolds and mounting plates. However, the scanning electron microscopy (SEM) and the energy dispersive x-ray spectroscopy (EDX) showed that coating thickness, chemistry, and surface morphology remained consistent after 750 hours of operation.

  11. Improved gas tagging and cover gas combination for nuclear reactor

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1983-09-26

    The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.

  12. Review of Rover fuel element protective coating development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  13. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  14. Unsupervised classification of petroleum Certified Reference Materials and other fuels by chemometric analysis of gas chromatography-mass spectrometry data

    PubMed Central

    de Carvalho Rocha, Werickson Fortunato; Schantz, Michele M.; Sheen, David A.; Chu, Pamela M.; Lippa, Katrice A.

    2017-01-01

    As feedstocks transition from conventional oil to unconventional petroleum sources and biomass, it will be necessary to determine whether a particular fuel or fuel blend is suitable for use in engines. Certifying a fuel as safe for use is time-consuming and expensive and must be performed for each new fuel. In principle, suitability of a fuel should be completely determined by its chemical composition. This composition can be probed through use of detailed analytical techniques such as gas chromatography-mass spectroscopy (GC-MS). In traditional analysis, chromatograms would be used to determine the details of the composition. In the approach taken in this paper, the chromatogram is assumed to be entirely representative of the composition of a fuel, and is used directly as the input to an algorithm in order to develop a model that is predictive of a fuel's suitability. When a new fuel is proposed for service, its suitability for any application could then be ascertained by using this model to compare its chromatogram with those of the fuels already known to be suitable for that application. In this paper, we lay the mathematical and informatics groundwork for a predictive model of hydrocarbon properties. The objective of this work was to develop a reliable model for unsupervised classification of the hydrocarbons as a prelude to developing a predictive model of their engine-relevant physical and chemical properties. A set of hydrocarbons including biodiesel fuels, gasoline, highway and marine diesel fuels, and crude oils was collected and GC-MS profiles obtained. These profiles were then analyzed using multi-way principal components analysis (MPCA), principal factors analysis (PARAFAC), and a self-organizing map (SOM), which is a kind of artificial neural network. It was found that, while MPCA and PARAFAC were able to recover descriptive models of the fuels, their linear nature obscured some of the finer physical details due to the widely varying composition of the fuels. The SOM was able to find a descriptive classification model which has the potential for practical recognition and perhaps prediction of fuel properties. PMID:28603295

  15. Method and apparatus for diagnosing breached fuel elements

    DOEpatents

    Gross, K.C.; Lambert, J.D.B.; Nomura, S.

    1987-03-02

    The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative curve of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element. 8 figs.

  16. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  17. Compositional effects on the ignition of FACE gasolines [Compositional effects on the ignition of FACE gasoline fuels: experiments, surrogate fuel formulation, and chemical kinetic modeling

    DOE PAGES

    Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco; ...

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less

  18. Compositional effects on the ignition of FACE gasolines [Compositional effects on the ignition of FACE gasoline fuels: experiments, surrogate fuel formulation, and chemical kinetic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less

  19. Green colorants based on energetic azole borates.

    PubMed

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Compositional insights and valorization pathways for carbonaceous material deposited during bio-oil thermal treatment.

    PubMed

    Ochoa, Aitor; Aramburu, Borja; Ibáñez, María; Valle, Beatriz; Bilbao, Javier; Gayubo, Ana G; Castaño, Pedro

    2014-09-01

    This work analyses the composition, morphology, and thermal behavior of the carbonaceous materials deposited during the thermal treatment of bio-oil (thermal pyrolytic lignin-TPL). The bio-oil was obtained by flash pyrolysis of lignocellulosic biomass (pine sawdust), and the TPLs were obtained in the 400-700 °C range. The TPLs were characterized by performing elemental analysis; (13)C NMR, Raman, FTIR, and X-ray photoelectron spectroscopy; SEM; and temperature-programmed oxidation analyzed by differential thermogravimetry and differential scanning calorimetry. The results are compared to a commercial lignin (CL). The TPLs have lower oxygen and hydrogen contents and a greater aromaticity and structural order than the CL material. Based on these features, different valorization routes are proposed: the TPL obtained at 500 °C is suitable for use as a fuel, and the TPL obtained at 700 °C has a suitable morphology and composition for use as an adsorbent or catalyst support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  2. NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Brooks, H.

    1960-04-26

    A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.

  3. Method for forming nuclear fuel containers of a composite construction and the product thereof

    DOEpatents

    Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.

    1984-01-01

    An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

  4. Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development.

    PubMed

    Lovestead, Tara M; Burger, Jessica L; Schneider, Nico; Bruno, Thomas J

    2016-12-15

    Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content "best case" JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content "worst case" JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight - mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, T k and T h , provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency.

  5. Biofuel Mixture Composition and Parameters of Exhaust Gases Toxicity

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Loboda, S. S.

    2018-03-01

    Advantages of using fuels of vegetable origin as motor fuels are shown. Possible ways of using cameline oil as a fuel for a diesel engine are considered. Experimental research of diesel engine D-245.12S functioning on mixtures of diesel fuel and cameline oil of various percentage is given. Parameters of exhaust gases toxicity of the diesel engine by using these mixtures of various compositions are analyzed.

  6. Nuclear characteristics of a fissioning uranium plasma test reactor with light-water cooling

    NASA Technical Reports Server (NTRS)

    Whitmarsh, C. L., Jr.

    1973-01-01

    An analytical study was performed to determine a design configuration for a cavity test reactor. Test section criteria were that an average flux of 10 to the 15th power neutrons/sq cm/sec (E less than or equal to 0.12 eV) be supplied to a 61-cm-diameter spherical cavity at 200-atm pressure. Design objectives were to minimize required driver power, to use existing fuel-element technology, and to obtain fuel-element life of 10 to 100 full-power hours. Parameter calculations were made on moderator region size and material, driver fuel arrangement, control system, and structure in order to determine a feasible configuration. Although not optimized, a configuration was selected which would meet design criteria. The driver fuel region was a cylindrical annular region, one element thick, of 33 MTR-type H2O-cooled elements (Al-U fuel plate configuration), each 101 cm long. The region between the spherical test cavity and the cylindrical driver fuel region was Be (10 vol. % H2O coolant) with a midplane dimension of 8 cm. Exterior to the driver fuel, the 25-cm-thick cylindrical and axial reflectors were also Be with 10 vol. % H2O coolant. The entire reactor was contained in a 10-cm-thick steel pressure vessel, and the 200-atm cavity pressure was equalized throughout the driver reactor. Fuel-element life was 50 hr at the required driver power of 200 MW. Reactor control would be achieved with rotating poison drums located in the cylindrical reflector region. A control range of about 18 percent delta k/k was required for reactor operation.

  7. Ion chromatographic determination of sulfur in fuels

    NASA Technical Reports Server (NTRS)

    Mizisin, C. S.; Kuivinen, D. E.; Otterson, D. A.

    1978-01-01

    The sulfur content of fuels was determined using an ion chromatograph to measure the sulfate produced by a modified Parr bomb oxidation. Standard Reference Materials from the National Bureau of Standards, of approximately 0.2 + or - 0.004% sulfur, were analyzed resulting in a standard deviation no greater than 0.008. The ion chromatographic method can be applied to conventional fuels as well as shale-oil derived fuels. Other acid forming elements, such as fluorine, chlorine and nitrogen could be determined at the same time, provided that these elements have reached a suitable ionic state during the oxidation of the fuel.

  8. DART model for irradiation-induced swelling of uranium silicide dispersion fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1999-04-01

    Models for the interaction of uranium silicide dispersion fuels with an aluminum matrix, for the resultant reaction product swelling, and for the calculation of the stress gradient within the fuel particles are described within the context of DART fission-gas-induced swelling models. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by comparing DART calculations with irradiation data for the swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al in variously designed dispersion fuel elements.

  9. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Novitrian,; Waris, Abdul

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less

  10. Tests of blending and correlation of distillate fuel properties

    NASA Technical Reports Server (NTRS)

    Erwin, J.; Bowden, J. N.

    1982-01-01

    The development of a fuel test matrix, results from tests of several blends of distillate aircraft fuels, and the use of correlations in formulation determination during a NASA-sponsored program to identify new aircraft fuels are described. The program was initiated in order to characterize fuel blends which are appropriate for different types of combustors in use and under development. The fuels were required to feature a specified range of properties. Attention is given to fuel volatility, hydrogen content, aromatic content, freezing point, kinematic viscosity, and naphthalene content. Paraffinic and naphtenic base stocks were employed, using alkyl benzene, naphthene benzenes, and naphthalenes to adjust the blend properties. Categories for the test fuels comprised source-controlled and composition controlled fuels. Test results and compositions of various fuels are provided.

  11. Liquid fuels of high octane values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, P.J.

    1989-03-14

    This patent describes an unleaded fuel composition having an octane rating of about 100 or more, the fuel comprising toluene and alkylate and at least two further components selected from the group consisting of methyl tertiary-butyl ether, isopentane, and n-butane. It also describes a specific composition consisting of toluene, isopentane, alkylate, and MTBE.

  12. Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study.

    PubMed

    Atabani, A E; Mercimek, S M; Arvindnarayan, Sundaram; Shobana, Sutha; Kumar, Gopalakrishnan; Cadir, Mehmet; Al-Muhatseb, Ala'a H

    2018-03-01

    In this study, recycling of spent coffee grounds (SCG) as a potential feedstock for alternative fuel production and compounds of added value in Turkey was assessed. The average oil content was found (≈ 13% w/w). All samples (before and after extraction) were tested for scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), calorific value, surface analysis and porosity, Fourier transform infrared (FT-IR), and elemental analysis to assess their potential towards fuel properties. Elemental analysis indicated that carbon represents the highest percentages (49.59% and 46.42%, respectively), followed by nitrogen (16.7% and 15.5%), hydrogen (6.74% and 6.04%), and sulfur (0.851% and 0.561%). These results indicate that SCG can be utilized as compost, as it is rich in nitrogen. Properties of the extracted oil were examined, followed by biodiesel production. The quality of biodiesel was compared with American Society for Testing and Materials (ASTM) D6751 standards, and all the properties complied with standard specifications. The fatty acid compositions were analyzed by gas chromatography. It was observed that coffee waste methyl ester (CWME) is mainly composed of palmitic (35.8%) and arachidic (44.6%) acids, which are saturated fatty acids. The low degree of unsaturation provides an excellent oxidation stability (10.4 hr). CWME has also excellent cetane number, higher heating value, and iodine value with poor cold flow properties. The studies also investigated blending of biodiesel with Euro diesel and butanol. Following this, a remarkable improvement in cloud and pour points of biodiesel was obtained. Spent coffee grounds after oil extraction is an ideal material for garden fertilizer, feedstock for ethanol, biogas production, and as fuel pellets. The outcome of such research work produces valuable insights on the recycling importance of SCG in Turkey. Coffee is a huge industry, and coffee has been widely used due to its refreshing properties. This industry generates large quantities of waste. Therefore, recycling of spent coffee grounds for producing alternative fuels and compounds of added value is crucial. Elemental analysis indicated that coffee waste can be utilized as compost, as it is rich in nitrogen. Coffee waste after oil extraction is an ideal feedstock for ethanol and biogas production, garden fertilizer, and as fuel pellets. The low degree of unsaturation provides excellent oxidation stability. Its biodiesel has also excellent cetane number, higher heating value, and lower iodine value.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searchedmore » and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.« less

  14. Characterization of diesel particles: effects of fuel reformulation, exhaust aftertreatment, and engine operation on particle carbon composition and volatility.

    PubMed

    Alander, Timo J A; Leskinen, Ari P; Raunemaa, Taisto M; Rantanen, Leena

    2004-05-01

    Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.

  15. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOEpatents

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  16. MERCHANT MARINE SHIP REACTOR

    DOEpatents

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  17. Merchant Marine Ship Reactor

    DOEpatents

    Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.

    1961-05-01

    A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)

  18. Methods for making a porous nuclear fuel element

    DOEpatents

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  19. The investigation of solid slag obtained by neutralization of sewage sludge.

    PubMed

    Kavaliauskas, Zydrunas; Valincius, Vitas; Stravinskas, Giedrius; Milieska, Mindaugas; Striugas, Nerijus

    2015-11-01

    The purpose of this research is to investigate the feasibility of utilizing the slag collected after gasification of organic fuel combined with sewage sludge. The residue left after gasification process is likely usable as raw material for production of supercondensers. The sewage sludge neutralization system consists of a dosing system (fuel tank), gasifier, plasma reactor, electrostatic filter, and heat exchangers. For the gasification process, dried solid sewage is supplied in proportion of 70% to biomass 30% by weight. The slag is collected in a specially designed chamber beneath the gasifier. A scanning electron microscope (SEM) was used to evaluate surface morphology of the samples. Elemental analysis of the sewage sludge slag was performed using the energy-dispersive spectroscopy (EDS) method, which showed different solid-state elements contained in the porous structure of the solid phase: carbon 29%, aluminum 26%, potassium 20%, chlorine 1%, and others. The specific surface area of the sewage sludge slag is 6.15 m(2)/g as the BET analysis shows. In order to use the slag as a secondary raw material, detailed analysis of the structure and properties is necessary for a decision on whether the slag left after gasification of sewage sludge is suitable for any further usages. Initial results indicate that the slag may be used for production of electrodes for supercapacitors. Every year thousands of tons of sewage sludge are formed in Lithuania. Sewage sludge consists of organic and inorganic compounds. Partial combustion, plasma decomposition, and other methods are used to neutralize the sewage sludge. The incineration of sewage sludge results in generation of solid-phase slag. In this paper the material structure and composition of a solid slag (formed during neutralization of sewage sludge) is considered. Also, the impact the ambient temperature on structure and composition of solid slag is analyzed.

  20. Process for preparing a liquid fuel composition

    DOEpatents

    Singerman, Gary M.

    1982-03-16

    A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

  1. Upgraded HFIR Fuel Element Welding System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. Inmore » recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.« less

  2. 76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... the requirements of reconstituted fuel assemblies; add requirements to qualify metal matrix composite... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the...

  3. Emission control devices, fuel additive, and fuel composition changes.

    PubMed Central

    Piver, W T

    1977-01-01

    Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235

  4. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less

  5. Apollo 12 Mission image - Alan Bean unloads ALSEP RTG fuel element

    NASA Image and Video Library

    1969-11-19

    AS12-46-6790 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, is photographed at quadrant II of the Lunar Module (LM) during the first Apollo 12 extravehicular activity (EVA) on the moon. This picture was taken by astronaut Charles Conrad Jr., commander. Here, Bean is using a fuel transfer tool to remove the fuel element from the fuel cask mounted on the LM's descent stage. The fuel element was then placed in the Radioisotope Thermoelectric Generator (RTG), the power source for the Apollo Lunar Surface Experiments Package (ALSEP) which was deployed on the moon by the two astronauts. The RTG is next to Bean's right leg. While astronauts Conrad and Bean descended in the LM "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.

  6. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  7. Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, Thomas; Rooyen, Isabella Van

    2015-05-01

    Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number ofmore » nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ~23 μm along a radial direction through the 35 μm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ~24 μm in the SiC layer. Also, Pd-rich, nano-precipitates (~10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all grain boundaries and triple junctions contained precipitates with fission products and/or uranium, along with the differences in migration behavior between Pd, Ag and U, it was concluded that crystallographic grain boundary and triple junction parameters likely influence migration behavior.« less

  8. Method of making metal-polymer composite catalysts

    DOEpatents

    Zelena, Piotr [Los Alamos, NM; Bashyam, Rajesh [Los Alamos, NM

    2009-06-23

    A metal-polymer-carbon composite catalyst for use as a cathode electrocatalyst in fuel cells. The catalyst includes a heteroatomic polymer; a transition metal linked to the heteroatomic polymer by one of nitrogen, sulfur, and phosphorus, and a recast ionomer dispersed throughout the heteroatomic polymer-carbon composite. The method includes forming a heteroatomic polymer-carbon composite and loading the transition metal onto the composite. The invention also provides a method of making a membrane electrode assembly for a fuel cell that includes the metal-polymer-carbon composite catalyst.

  9. Combined catalysts for the combustion of fuel in gas turbines

    DOEpatents

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  10. Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    DOE PAGES

    Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...

    2016-07-29

    Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.

  11. THE FUEL ELEMENT GRAPHITE. Project DRAGON.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, L.W.; Price, M.S.T.

    1963-01-15

    The main requirements of a fuel element graphite for reactors based on the Dragon concept are low transmission coefficient for fission products, dimensional stability under service conditions, high strength, high thermal conductivity, high purity, and high resistance to oxidation. Since conclusions reached in early 1960, a considerable amount of information has accumulated concerning the likely behaviour of graphites in high temperature reactor systems, particularly data on dimensional stability under irradiation. The influence of this new knowledge on the development of fuel element graphite with the Dragon Project is discussed in detail in the final section of this paper.

  12. Low exchange element for nuclear reactor

    DOEpatents

    Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.

    1985-01-01

    A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.

  13. NEUTRONIC REACTOR FUEL COMPOSITION

    DOEpatents

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  14. The influence of hydrocarbon composition and exposure conditions on jet fuel-induced immunotoxicity.

    PubMed

    Hilgaertner, Jianhua W; He, Xianghui; Camacho, Daniel; Badowski, Michael; Witten, Mark; Harris, David T

    2011-11-01

    Chronic jet fuel exposure could be detrimental to the health and well-being of exposed personnel, adversely affect their work performance and predispose these individuals to increased incidences of infectious disease, cancer and autoimmune disorders. Short-term (7 day) JP-8 jet fuel exposure has been shown to cause lung injury and immune dysfunction. Physiological alterations can be influenced not only by jet fuel exposure concentration (absolute amount), but also are dependent on the type of exposure (aerosol versus vapor) and the composition of the jet fuel (hydrocarbon composition). In the current study, these variables were examined with relation to effects of jet fuel exposure on immune function. It was discovered that real-time, in-line monitoring of jet fuel exposure resulted in aerosol exposure concentrations that were approximately one-eighth the concentration of previously reported exposure systems. Further, the effects of a synthetic jet fuel designed to eliminate polycyclic aromatic hydrocarbons were also examined. Both of these changes in exposure reduced but did not eliminate the deleterious effects on the immune system of exposed mice.

  15. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit corrosion of certain potential NTR fuel forms. Additional diagnostic upgrades included in the present NTREES set up include the addition of a gamma ray spectrometer located near the vent filter to detect uranium fuel particles exiting the fuel element in the propellant exhaust stream to provide additional information any material loss occurring during testing. Other aspects of the upgrade included reworking NTREES to reduce the operational complexity of the system despite the increased complexity of the induction heating system. To this end, many of the controls were consolidated on fewer panels. As part of this upgrade activity, the Safety Assessment (SA) and the Standard Operating Procedures (SOPs) for NTREES were extensively rewritten. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can be accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements.

  16. NUCLEAR REACTOR CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-02-01

    A nuclear reactor core composed of a number of identical elements of solid moderator material fitted together was designed. Each moderator element is apertured to provide channels for fuel and coolant. The elements have an external shape which permits them to be stacked in layers with similar elements, with the surfaces of adjacent elements fitting and in contact with each other. The cross section of the element is of a general hexagonal shape with identations and protrusions, so that the elements can be fitted together. The described core should not be liable to fracture under transverse loading. Specific arrangements ofmore » moderator elements and fuel and coolant apertures are described. (M.P.G.)« less

  17. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  18. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less

  19. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  20. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  1. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  2. Final Report: Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowsell, David Leon

    This report documents the Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation. The review followed the approved Plan of Action (POA) and Implementation Plan (IP) using the identified core requirements. The activity was limited scope focusing on the control rod drives functional isolation and fuel element movement. The purpose of this review is to ensure the facility's readiness to move fuel elements thus supporting inspection and functionally isolate the control rod drives to maintain the required shutdown margin.

  3. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOEpatents

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  4. Aerogel and xerogel composites for use as carbon anodes

    DOEpatents

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2010-10-12

    A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

  5. The manufacture of LEU fuel elements at Dounreay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  6. Corrosion protected, multi-layer fuel cell interface

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  7. A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element

    Treesearch

    B.L. Yashwanth; B. Shotorban; S. Mahalingam; C.W. Lautenberger; David Weise

    2016-01-01

    The effects of thermal radiation and moisture content on the pyrolysis and gas phase ignition of a solid fuel element containing high moisture content were investigated using the coupled Gpyro3D/FDS models. The solid fuel has dimensions of a typical Arctostaphylos glandulosa leaf which is modeled as thin cellulose subjected to radiative heating on...

  8. Application of Analytic Hierarchy Process (AHP) in the analysis of the fuel efficiency in the automobile industry with the utilization of Natural Fiber Polymer Composites (NFPC)

    NASA Astrophysics Data System (ADS)

    Jayamani, E.; Perera, D. S.; Soon, K. H.; Bakri, M. K. B.

    2017-04-01

    A systematic method of material analysis aiming for fuel efficiency improvement with the utilization of natural fiber reinforced polymer matrix composites in the automobile industry is proposed. A multi-factor based decision criteria with Analytical Hierarchy Process (AHP) was used and executed through MATLAB to achieve improved fuel efficiency through the weight reduction of vehicular components by effective comparison between two engine hood designs. The reduction was simulated by utilizing natural fiber polymer composites with thermoplastic polypropylene (PP) as the matrix polymer and benchmarked against a synthetic based composite component. Results showed that PP with 35% of flax fiber loading achieved a 0.4% improvement in fuel efficiency, and it was the highest among the 27 candidate fibers.

  9. AST Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines Area of Interest 1.0: Reliable and Affordable Control Systems

    NASA Technical Reports Server (NTRS)

    Myers, William; Winter, Steve

    2006-01-01

    The General Electric Reliable and Affordable Controls effort under the NASA Advanced Subsonic Technology (AST) Program has designed, fabricated, and tested advanced controls hardware and software to reduce emissions and improve engine safety and reliability. The original effort consisted of four elements: 1) a Hydraulic Multiplexer; 2) Active Combustor Control; 3) a Variable Displacement Vane Pump (VDVP); and 4) Intelligent Engine Control. The VDVP and Intelligent Engine Control elements were cancelled due to funding constraints and are reported here only to the state they progressed. The Hydraulic Multiplexing element developed and tested a prototype which improves reliability by combining the functionality of up to 16 solenoids and servo-valves into one component with a single electrically powered force motor. The Active Combustor Control element developed intelligent staging and control strategies for low emission combustors. This included development and tests of a Controlled Pressure Fuel Nozzle for fuel sequencing, a Fuel Multiplexer for individual fuel cup metering, and model-based control logic. Both the Hydraulic Multiplexer and Controlled Pressure Fuel Nozzle system were cleared for engine test. The Fuel Multiplexer was cleared for combustor rig test which must be followed by an engine test to achieve full maturation.

  10. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs.

    PubMed Central

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E

    1994-01-01

    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions. PMID:7529705

  11. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs.

    PubMed

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E

    1994-10-01

    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions.

  12. Isotopic compositions of (236)U and Pu isotopes in "black substances" collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Sakaguchi, Aya; Steier, Peter; Takahashi, Yoshio; Yamamoto, Masayoshi

    2014-04-01

    Black-colored road dusts were collected in high-radiation areas in Fukushima Prefecture. Measurement of (236)U and Pu isotopes and (134,137)Cs in samples was performed to confirm whether refractory elements, such as U and Pu, from the fuel core were discharged and to ascertain the extent of fractionation between volatile and refractory elements. The concentrations of (134,137)Cs in all samples were exceptionally high, ranging from 0.43 to 17.7 MBq/kg, respectively. (239+240)Pu was detected at low levels, ranging from 0.15 to 1.14 Bq/kg, and with high (238)Pu/(239+240)Pu activity ratios of 1.64-2.64. (236)U was successfully determined in the range of (0.28 to 6.74) × 10(-4) Bq/kg. The observed activity ratios for (236)U/(239+240)Pu were in reasonable agreement with those calculated for the fuel core inventories, indicating that trace amounts of U from the fuel cores were released together with Pu isotopes but without large fractionation. The quantities of U and (239+240)Pu emitted to the atmosphere were estimated as 3.9 × 10(6) Bq (150 g) and 2.3 × 10(9) Bq (580 mg), respectively. With regard to U, this is the first report to give a quantitative estimation of the amount discharged. Appreciable fractionation between volatile and refractory radionuclides associated with the dispersal/deposition processes with distance from the Fukushima Dai-ichi Nuclear Power Plant was found.

  13. Natural and anthropogenic controls on sediment composition of an arid coastal environment: Sharm Obhur, Red Sea, Saudi Arabia.

    PubMed

    Ghandour, I M; Basaham, A S; Basaham, S; Al-Washmi, H A; Al-Washmi, A; Masuda, H

    2014-03-01

    The present study investigated the natural and anthropogenic processes that control the composition of the bottom sediments of Sharm Obhur, Red Sea. Mineralogical analysis using XRD indicated that the sediments consist of carbonate and non-carbonate minerals. Elemental interrelationships allowed differentiating two groups of elements of different sources and origin. Elements that are in the same group are positively correlated, while they correlate negatively with elements of the other group. The first group includes silicon, Al, Fe, Mn, Mg, vanadium (V), chromium (Cr), Co, Ni, Cu, and Zn, whereas the other group includes Ca, Sr, and CaCO3. The highest concentration levels of the first group and the highest content of non-carbonate minerals were obtained from the sediments near the head of the sharm (zone A), whereas the sediments near the mouth of the sharm (zone B) yielded high concentrations of second group and carbonate minerals. Metal enrichment and contamination factors and pollution load index were calculated. The values of these indices differentiate two groups of metals: lithogenic and non-lithogenic. Except for lead (Pb) at one sampling site, metals in zone A sediments are of lithogenic source, supplied to the sharm either naturally by aeolian transportation and through Wadi Al-Kuraa'a during rare but major floods or by human activities such as dumping and shore protection. Non-lithogenic Cr, Pb, V, and Mn were documented from some sampling sites in zone B, and their occurrences are related to waste disposal and fossil fuel combustion.

  14. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  15. Exposing Hierarchical Parallelism in the FLASH Code for Supernova Simulation on Summit and Other Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papatheodore, Thomas L.; Messer, Bronson

    Since roughly 100 million years after the big bang, the primordial elements hydrogen (H), helium (He), and lithium (Li) have been synthesized into heavier elements by thermonuclear reactions inside of the stars. The change in stellar composition resulting from these reactions causes stars to evolve over the course of their lives. Although most stars burn through their nuclear fuel and end their lives quietly as inert, compact objects, whereas others end in explosive deaths. These stellar explosions are called supernovae and are among the most energetic events known to occur in our universe. Supernovae themselves further process the matter ofmore » their progenitor stars and distribute this material into the interstellar medium of their host galaxies. In the process, they generate ∼1051 ergs of kinetic energy by sending shock waves into their surroundings, thereby contributing to galactic dynamics as well.« less

  16. Steady-State Thermal-Hydraulics Analyses for the Conversion of BR2 to Low Enriched Uranium Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    The code PLTEMP/ANL version 4.2 was used to perform the steady-state thermal-hydraulic analyses of the BR2 research reactor for conversion from Highly-Enriched to Low Enriched Uranium fuel (HEU and LEU, respectively). Calculations were performed to evaluate different fuel assemblies with respect to the onset of nucleate boiling (ONB), flow instability (FI), critical heat flux (CHF) and fuel temperature at beginning of cycle conditions. The fuel assemblies were characteristic of fresh fuel (0% burnup), highest heat flux (16% burnup), highest power (32% burnup) and highest burnup (46% burnup). Results show that the high heat flux fuel element is limiting for ONB,more » FI, and CHF, for both HEU and LEU fuel, but that the high power fuel element produces similar margin in a few cases. The maximum fuel temperature similarly occurs in both the high heat flux and high power fuel assemblies for both HEU and LEU fuel. A sensitivity study was also performed to evaluate the variation in fuel temperature due to uncertainties in the thermal conductivity degradation associated with burnup.« less

  17. TRIGA MARK-II source term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Hamzah, N. S., E-mail: mark-dennis@nuclearmalaysia.gov.my; Abi, M. J. B., E-mail: mark-dennis@nuclearmalaysia.gov.my

    ORIGEN 2.2 are employed to obtain data regarding γ source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences ofmore » results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel.« less

  18. Welding of unique and advanced alloys for space and high-temperature applications: welding and weldability of iridium and platinum alloys

    DOE PAGES

    David, Stan A.; Miller, Roger G.; Feng, Zhili

    2016-08-31

    Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less

  19. Welding of unique and advanced alloys for space and high-temperature applications: welding and weldability of iridium and platinum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Stan A.; Miller, Roger G.; Feng, Zhili

    Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less

  20. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  1. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  2. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  3. HEAVY WATER MODERATED NEUTRONIC REACTOR

    DOEpatents

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  4. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    PubMed

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  5. Correlation of RP-1 Fuel Properties with Chemical Composition using Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry followed by Partial Least Squares Regression Analysis

    DTIC Science & Technology

    2013-09-01

    Striebich, S . P. Bagley , M. J. Wornant, Ind. Eng. Chem. Res. 50 (2011) 10434. [5] M. C. Billingsley, J. T. Edwards, L. M. Shafer, T. J. Bruno, AIAA 2010...CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Kehimkar, B., J. Hoggard, L. Marney, M. Billingsley, C...Fraga, T. Bruno, and R. Synovec 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0A4 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES

  6. Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident.

    PubMed

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2014-06-01

    Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 μm, while the diameter of (131)I was 0.45 μm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at <0.5 μm, 0.94 μm, and 7.8 μm. The (134)Cs/(137)Cs ratio of the first collection was 1.02 in total, but the ratio in the fine fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions <0.43 μm and the composition in the 1.1-2.1 μm range (including the AMAD of 1.5-1.6 μm) were similar to the calculated compositions of fuels in the reactors No. 1 and No. 3 at the FDNPP using the ORIGEN-II code. The Cs composition collected in May, 2011 was similar to the calculation results of reactor No. 2 fuel composition. The change of Cs composition implies that the radioactive Cs was released from the three reactors at the FDNPP via different processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    NASA Technical Reports Server (NTRS)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  8. LCRE and SNAP 50-DR-1 programs. Engineering progress report, January 1, 1963--March 31, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Declassified 5 Sep 1973. Information is presented concerning LCRE specifications, primary coolant circuit, aaxiliary systems, fuel elements, instrumentation, materials development, and fabrication; and SNAP-50DR-1 specifications, fuel elements, pumps, steam generator, and materials development. (DCC)

  9. 34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT FRAME. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-4. INEL INDEX CODE NUMBER: 075 0701 60 851 151978. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  10. Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development*

    PubMed Central

    Lovestead, Tara M.; Burger, Jessica L.; Schneider, Nico; Bruno, Thomas J.

    2018-01-01

    Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content “best case” JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content “worst case” JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight – mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, Tk and Th, provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency. PMID:29706688

  11. JACKETED URANIUM SLUG

    DOEpatents

    Ohlinger, L.A.; Cooper, C.M.

    1958-10-01

    Fuel elements for nuclear reactors are described. Eacb fuel element is comprised of a solid cylindrical slug containing fissionable material enclosed within a fluid tight jacket of neutron permeable material such as aluminum. The jacket is provided with a flexible end cap and with a sealing member having a substantially fluid-tight fit within the jacket in tight abutment with the end cap and the end of the slug. A fluid passage is provided between the end of the slug and the cap whereby leakage fiuid is principally directed to the end of the slug. In this manner, any reaction between the fissionable material and fiuid which may take place occurs more rapidly at the end of the slug than along the sides between the slug and the jacket, thereby causing longitudinal expansion of the fuel element prior to radial expansion. The longitudinal expansion can be readily detected and the fuel element removed from the coolant tube before radial expansion causes it to become jammed in the tube.

  12. Stocking rate and fuels reduction effects on beef cattle diet composition and quality

    Treesearch

    Abe Clark; Tim DelCurto; Martin Vavra; Brian L. Dick

    2013-01-01

    An experiment was conducted to evaluate the influence of forest fuels reduction on diet quality, botanical composition, relative preference, and foraging efficiency of beef cattle grazing at different stocking rates. A split plot factorial design was used, with whole plots (3 ha) being fuel reduced or no treatment (control), and split plots (1 ha) within whole plots...

  13. Ash formation, deposition, corrosion, and erosion in conventional boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, S.A.; Jones, M.L.

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustionmore » and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.« less

  14. Comparison of Tungsten and Molybdenum Based Emitters for Advanced Thermionic Space Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Lee, Hsing H.; Dickinson, Jeffrey W.; Klein, Andrew C.; Lamp, Thomas R.

    1994-07-01

    Variations to the Advanced Thermionic Initiative thermionic fuel element are analyzed. Analysis included neutronic modeling with MCNP for criticality determination and thermal power distribution, and thermionic performance modeling with TFEHX. Changes to the original ATI configuration include the addition of W-HfC wire to the emitter for high temperature creep resistance improvement and substitution of molybdenum for the tungsten base material. Results from MCNP showed that all the tungsten used in the coating and base material must be 100% W-184 to obtain criticality. The presence of molybdenum in the emitter base affects the neutronic performance of the TFE by increasing the emitter neutron absorption cross section. Due to the reduced thermal conductivity for the molybdenum based emitter, a higher temperature is obtained resulting in a greater electrical power production. The thermal conductivity and resistivity of the composite emitter region were derived for the W-Mo composite and used in TFEHX.

  15. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  16. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  17. Chemical Dissolution of Simulant FCA Cladding and Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, G.; Pierce, R.; O'Rourke, P.

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO 3-KF) flowsheets ofmore » H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.« less

  18. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2012-11-13

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  19. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Zhang, Junliang [Stony Brook, NY; Vukmirovic, Miomir [Port Jefferson Station, NY

    2011-11-22

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  20. Nuclear fuel element

    DOEpatents

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

Top