Science.gov

Sample records for composite materials including

  1. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2008-02-05

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties

  2. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  3. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    DOEpatents

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  4. Multi-objective shape and material optimization of composite structures including damping

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1990-01-01

    A multi-objective optimal design methodology is developed for light-weight, low cost composite structures of improved dynamic performance. The design objectives include minimization of resonance amplitudes (or maximization of modal damping), weight, and material cost. The design vector includes micromechanics, laminate, and structural shape parameters. Performance constraints are imposed on static displacements, dynamic amplitudes, and natural frequencies. The effects of damping on the dynamics of composite structures are incorporated. Preliminary applications on a cantilever composite beam illustrated that only the proposed multi-objective optimization, as opposed to single objective functions, simultaneously improved all objectives. The significance of composite damping in the design of advanced composite structures was also demonstrated, indicating the design methods based on undamped dynamics may fail to improve the dynamic performance near resonances.

  5. Multi-objective shape and material optimization of composite structures including damping

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1990-01-01

    A multi-objective optimal design methodology is developed for light-weight, low-cost composite structures of improved dynamic performance. The design objectives include minimization of resonance amplitudes (or maximization of modal damping), weight, and material cost. The design vector includes micromechanics, laminate, and structural shape parameters. Performance constraints are imposed on static displacements, dynamic amplitudes, and natural frequencies. The effects of damping on the dynamics of composite structures are incorporated. Preliminary applications on a cantilever composite beam illustrated that only the proposed multi-objective optimization, as opposed to single objective functions, simultaneously improved all objectives. The significance of composite damping in the design of advanced composite structures was also demonstrated, indicating that design methods based on undamped dynamics may fail to improve the dynamic performance near resonances.

  6. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  7. Vibration and damping of laminated, composite-material plates including thickness-shear effects

    NASA Technical Reports Server (NTRS)

    Bert, C. W.; Siu, C. C.

    1972-01-01

    An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.

  8. Accurate measurement of silver isotopic compositions in geological materials including low Pd/Ag meteorites

    NASA Astrophysics Data System (ADS)

    Woodland, S. J.; Rehkämper, M.; Halliday, A. N.; Lee, D.-C.; Hattendorf, B.; Günther, D.

    2005-04-01

    Very precise silver (Ag) isotopic compositions have been determined for a number of terrestrial rocks, and high and low Pd/Ag meteorites by utilizing multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The meteorites include primitive chondrites, the Group IAB iron meteorites Canyon Diablo and Toluca, and the Group IIIAB iron meteorite Grant. Silver isotopic measurements are primarily of interest because 107Ag was produced by decay of the short-lived radionuclide 107Pd during the formation of the solar system and hence the Pd-Ag chronometer has set constraints on the timing of early planetesimal formation. A 2σ precision of ±0.05‰ can be obtained for analyses of standard solutions when Ag isotopic ratios are normalized to Pd, to correct for instrumental mass discrimination, and to bracketing standards. Caution must be exercised when making Ag isotopic measurements because isotopic artifacts can be generated in the laboratory and during mass spectrometry. The external reproducibility for geological samples based on replicate analyses of rocks is ±0.2‰ (2σ). All chondrites analyzed have similar Ag isotopic compositions that do not differ significantly (>0.3‰) from the 'terrestrial' value of the NIST SRM 978a Ag isotope standard. Hence, they show no evidence of excess 107Ag derived from 107Pd decay or, of stable Ag isotope fractionation associated with volatile element depletion within the accretion disk or from parent body metamorphism. The Group IAB iron meteorite samples analyzed show evidence of complex behavior and disturbance of Ag isotope systematics. Therefore, care must be taken when using this group of iron meteorites to obtain chronological information based on the Pd-Ag decay scheme.

  9. Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of the mantle

    NASA Astrophysics Data System (ADS)

    Komiya, Tsuyoshi

    2004-08-01

    indicates that the upper mantle had higher FeO content (10 wt.%), and that the FeO content was constant until early Proterozoic, and then decreased. Segregation of iron grains from subducted oceanic crust during slab penetration into the lower mantle is plausible to decrease the FeO content in the mantle. If the produced metallic iron sinks and accumulates on the core, the metallic iron layer would be about 57 km thick. The potential mantle temperature of the upper mantle was about 1480 °C in the Archean and was hotter by ca. 150-200 °C than the modern mantle. The temperature decreased not monotonously but episodically. In addition, recent ultra-high pressure experiments presumed chemical differentiation within the mantle, dehydration or slab melting of subducted oceanic crust beneath a subduction zone, segregation of iron grains from slab materials during slab penetration [Science 273 (1996) 1522], and partial melting of subducted oceanic crust on the core-mantle boundary [Phys. Earth Planet. Inter. (2002)]. This work proposes a global material circulation model, which includes three chemical differentiations within the mantle and the secular change of temperature and composition of the mantle.

  10. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  11. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  12. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  13. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  14. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  15. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  16. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  17. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOEpatents

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  18. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  19. Composite Materials

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Composites are lighter and stronger than metals. Aramid fibers like Kevlar and Nomex were developed by DuPont Corporation and can be combined in a honeycomb structure which can give an airplane a light, tough structure. Composites can be molded into many aerodynamic shapes eliminating rivets and fasteners. Langley Research Center has tested composites for both aerospace and non-aerospace applications. They are also used in boat hulls, military shelters, etc.

  20. Three-energy radiography method for uniformity control of composite materials including components with different effective atomic numbers

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Volodymyr D.; Opolonin, Oleksandr D.; Grinyov, Boris V.; Galkin, Serhiy M.; Lysetska, Olena K.; Voronkin, Yevheniy F.; Kostioukevitch, Serhiy A.

    2013-09-01

    Presently, most X-ray security systems for luggage inspection use dual-energy detector. A drawback of this approach is that overlap in energy sensitivity of the low- and high-energy detectors creates the potential for ambiguity and inaccuracy. We have made an attempt to improve the identification quality of organic materials using a three-energy receiving-detecting circuit. New model calculations and several new algorithms for the detection of organic and nonorganic materials under multi-energy radiography were proposed, developed and experimentally verified. The purpose of the present work is study of the possibility of separation between substances with small effective atomic numbers for increasing the detection probability of explosives. Using a spectrum of the X-ray tube with a tungsten anode, evaluation has been carried out of the signal ratio from high-energy detector, medium-energy detector and low-energy detectors. Using differential energy sensitivity of detectors of different thickness, varying X-ray source anode voltages and filter for each array, special software it is possible to reconstruct images of the inspected object at the different energy scales. It was shown that using standard X-ray beams and specially-chosen scintillator types with different thicknesses, we can achieve accuracy in determination of Zeff up to 95%, that significantly better as compared with systems based on conventional X-ray inspection. Using two-coordinate identification palette, one can discern between imitators of explosives even when the difference in their Zeff values is small (from 7.08 to 8.07).

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  2. Processing composite materials

    NASA Technical Reports Server (NTRS)

    Baucom, R. M.

    1982-01-01

    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  3. European Composite Honeycomb Material

    NASA Astrophysics Data System (ADS)

    Tschepe, Christoph; Sauerbrey, Martin; Klebor, Maximillian; Henriksen, Torben

    2014-06-01

    A European CFRP honeycomb material for high demanding structure applications like antenna reflectors and optical benches was developed in the frame of an ESA GSTP project.The composite honeycomb was designed according to requirements defined by the European space industry. A developed manufacturing technique based on prepreg moulding enables the production of homogeneous CFRP honeycomb blocks. All characteristic material properties, including compression, tension and shear strength and CTE, were determined in a comprehensive verification test campaign. Competitiveness to comparable products was further verified by a representative breadboard.

  4. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  7. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  8. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  9. Strain-Detecting Composite Materials

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  10. Including supplementary elements in a compositional biplot

    NASA Astrophysics Data System (ADS)

    Daunis-i-Estadella, J.; Thió-Henestrosa, S.; Mateu-Figueras, G.

    2011-05-01

    The biplot is a widely and powerful methodology used with multidimensional data sets to describe and display the relationships between observations and variables in an easy way. Compositional data are vectors with positive components, whose sum is constant because they represent a relative contribution of different parts to a whole; due to this property standard biplots cannot be performed with compositional data, instead of a previous transformation of the data is performed. In this paper, we extend the compositional biplot defined by Aitchison and Greenacre (2002), in order to include in the display supplementary elements which are not used in the definition of the compositional biplot. Different types of supplementary elements are considered: supplementary parts of the composition, supplementary continuous variables external to the composition, supplementary categorical variables and supplementary observations. The projection of supplementary parts of the composition is done by means of the equivalence of clr and lr biplots. The other supplementary projections are done by classical methodology. An application example with a real geological data is included.

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  12. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  13. Electrically conductive composite material

    SciTech Connect

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  14. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  15. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  16. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  17. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  18. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  19. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  1. Analysis of Smart Composite Structures Including Debonding

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1997-01-01

    Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite

  2. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  3. Cladding material, tube including such cladding material and methods of forming the same

    DOEpatents

    Garnier, John E.; Griffith, George W.

    2016-03-01

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.

  4. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  6. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  7. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  8. Composite Materials: An Educational Need.

    ERIC Educational Resources Information Center

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  9. Fatigue Damage in Composite Materials

    NASA Astrophysics Data System (ADS)

    Revuelta, D.; Miravete, A.

    2002-02-01

    The phenomenon of fatigue is critical for designing structures including elements made of composite materials. The accurate prediction of the life and fatigue resistance of laminated composites is one of the subjects of inquiry in materials science. The ability of predicting the life of laminates is important for designing, operation, and safety analysis of a composite structure under specific conditions. To predict reliably the life of structures, it is necessary to know the mechanisms of cyclic deformation and damage. It is also necessary to develop a qualitative theory of fatigue failure that should be based on the concepts of solids mechanics. Developing such a theory requires to evaluate the microscopic parameters and the macroscopic variables of the material at the level of a laminate and the structure and to determine exactly the load modes acting on the system.

  10. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  11. Joining of polymer composite materials

    SciTech Connect

    Magness, F.H.

    1990-11-01

    Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide a review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.

  12. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  13. Armor systems including coated core materials

    SciTech Connect

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  14. Composite Pressure Vessel Including Crack Arresting Barrier

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  15. Composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1996-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  16. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  17. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  18. Erosion-resistant composite material

    DOEpatents

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  19. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  20. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  3. Materials issues in some advanced forming techniques, including superplasticity

    SciTech Connect

    Wadsworth, J.; Henshall, G.A.; Nieh, T.G.

    1995-08-22

    From mechanics and macroscopic viewpoints, the sensitivity of the flow stress of a material to the strain rate, i.e. the strain rate sensitivity (m), governs the development of neck formation and therefore has a strong influence on the tensile ductility and hence formability of materials. Values of strain rate sensitivity range from unity, for the case of Newtonian viscous materials, to less than 0.1 for some dispersion strengthened alloys. Intermediate values of m = 0.5 are associated with classical superplastic materials which contain very fine grain sizes following specialized processing. An overview is given of the influence of strain rate sensitivity on tensile ductility and of the various materials groups that can exhibit high values of strain rate sensitivity. Recent examples of enhanced formability (or extended tensile ductility) in specific regimes between m = 1 and m = 0.3 are described, and potential areas for commercial exploitation are noted. These examples include: internal stress superplasticity, superplastic ceramics, superplastic intermetallics, superplastic laminated composites, superplastic behavior over six orders of magnitude of strain rate in a range of aluminum-based alloys and composites, and enhanced ductility in Al-Mg alloys that require no special processing for microstructural development.

  4. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  5. Composite materials for battery applications

    DOEpatents

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  6. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  7. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  8. Composites and blends from biobased materials

    SciTech Connect

    Kelley, S.S.

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  9. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1979-08-01

    block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS; MICROCAPSULES ; SOFT FILLERS; ELASTuMER COMPOSITES 20,_ ABSTRACT ’Continue on reverse side...approaches were pursued toward making such microcapsules . One approach involves coaxial extrusion of a catalyzed elastomer precursor and core liquid into a...fabrication of maxillofacial prostheses. The projected composite systems are elastomeric-shelled, liquid-filled microcapsules . Two experimental approaches were

  11. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  12. Nondestructive Characterization of Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    Increasingly, composite materials are applied to fracture-critical structures of aircraft and spacecraft...Ultrasonics offer the most capable inspection technology and recently developed techniques appear to improve this technology significantly... Recent progress in ultrasonic NDE of composites will be reviewed.

  13. Advanced composite materials for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Bowles, David E.

    1988-01-01

    The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

  14. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  15. Fatigue and fracture research in composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1982-01-01

    The fatigue, fracture, and impact behavior of composite materials are investigated. Bolted and bonded joints are included. The solutions developed are generic in scope and are useful for a wide variety of structural applications. The analytical tools developed are used to demonstrate the damage tolerance, impact resistance, and useful fatigue life of structural composite components. Standard tests for screening improvements in materials and constituents are developed.

  16. Composite, ordered material having sharp surface features

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2006-12-19

    A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.

  17. Composite Materials for Low-Temperature Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  18. Nanophase and Composite Optical Materials

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.

  19. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1986-01-01

    The Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) specimens are employed to characterize MODE I and MODE II interlaminar fracture resistance of graphite/epoxy (CYCOM 982) and graphite/PEEK (APC2) composites. Sizing of test specimen geometries to achieve crack growth in the linear elastic regime is presented. Data reduction schemes based upon beam theory are derived for the ENF specimen and include the effects of shear deformation and friction between crack surfaces on compliance, C, and strain energy release rate, G sub II. Finite element (FE) analyses of the ENF geometry including the contact problem with friction are presented to assess the accuracy of beam theory expressions for C and G sub II. Virtual crack closure techniques verify that the ENF specimen is a pure Mode II test. Beam theory expressions are shown to be conservative by 20 to 40 percent for typical unidirectional test specimen geometries. A FE parametric study investigating the influence of delamination length and depth, span, thickness and material properties on G sub II is presented. Mode I and II interlaminar fracture test results are presented. Important experimental parameters are isolated, such as precracking techniques, rate effects, and nonlinear load-deflection response. It is found that subcritical crack growth and inelastic materials behavior, responsible for the observed nonlinearities, are highly rate-dependent phenomena with high rates generally leading to linear elastic response.

  20. Composite materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  1. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  2. Fiber composite materials technology development

    SciTech Connect

    Chiao, T.T.

    1980-10-23

    The FY1980 technical accomplishments from the Lawrence Livermore National laboratory (LLNL) for the Fiber Composite Materials Technology Development Task fo the MEST project are summarized. The task is divided into three areas: Engineering data base for flywheel design (Washington University will report this part separately), new materials evaluation, and time-dependent behavior of Kevlar composite strands. An epoxy matrix was formulated which can be used in composites for 120/sup 0/C service with good processing and mechanical properties. Preliminary results on the time-dependent properties of the Kevlar 49/epoxy strands indicate: Fatigue loading, as compared to sustained loading, drastically reduces the lifetime of a Kevlar composie; the more the number of on-off load cycles, the less the lifetime; and dynamic fatigue of the Kevlar composite can not be predicted by current damage theories such as Miner's Rule.

  3. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1982-11-01

    1(AXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES *ASTRAC7 lCofIflU Ir F*vsda Side It neceOaeen anud...composite systems are elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical...sealed, capsules achieved. The diamine bath has been E] improved and an automatic system has been developed for producing the microcapsules . The one

  4. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  5. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1985-01-01

    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  6. Materials analysis by ultrasonics: Metals, ceramics, composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex (Editor)

    1987-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properties, and dynamic response.

  7. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1981-08-01

    necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules

  8. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1983-02-01

    the most promise for producing elastomeric-shelled microcapsules containing an inert liquid. While much of the diverse field of microencapsulation is...Processes and Applications, Chicago, 28 August 1973. 11. Gutchko, M. H., Microcapsules and Microencapsulation Techniques. Noyes Data Corporation, Park Ridge...necesaryv and identify by block number) * MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : * SOFT FILLERS; ELASTOMER COMPOSITES 2L

  9. Tensile failure criteria for fiber composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Zweben, C. H.

    1972-01-01

    The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

  10. 3-D textile reinforcements in composite materials

    SciTech Connect

    Miravete, A.

    1999-11-01

    Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

  11. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  12. Energy absorption of composite materials

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1983-01-01

    Results of a study on the energy absorption characteristics of selected composite material systems are presented and the results compared with aluminum. Composite compression tube specimens were fabricated with both tape and woven fabric prepreg using graphite/epoxy (Gr/E), Kevlar (TM)/epoxy (K/E) and glass/epoxy (Gl/E). Chamfering and notching one end of the composite tube specimen reduced the peak load at initial failure without altering the sustained crushing load, and prevented catastrophic failure. Static compression and vertical impact tests were performed on 128 tubes. The results varied significantly as a function of material type and ply orientation. In general, the Gr/E tubes absorbed more energy than the Gl/E or K/E tubes for the same ply orientation. The 0/ + or - 15 Gr/E tubes absorbed more energy than the aluminum tubes. Gr/E and Gl/E tubes failed in a brittle mode and had negligible post crushing integrity, whereas the K/E tubes failed in an accordian buckling mode similar to the aluminum tubes. The energy absorption and post crushing integrity of hybrid composite tubes were not significantly better than that of the single material tubes.

  13. Flame-retardant composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1991-01-01

    The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.

  14. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  15. Computational modeling of composite material fires.

    SciTech Connect

    Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.

    2010-10-01

    Composite materials behave differently from conventional fuel sources and have the potential to smolder and burn for extended time periods. As the amount of composite materials on modern aircraft continues to increase, understanding the response of composites in fire environments becomes increasingly important. An effort is ongoing to enhance the capability to simulate composite material response in fires including the decomposition of the composite and the interaction with a fire. To adequately model composite material in a fire, two physical model development tasks are necessary; first, the decomposition model for the composite material and second, the interaction with a fire. A porous media approach for the decomposition model including a time dependent formulation with the effects of heat, mass, species, and momentum transfer of the porous solid and gas phase is being implemented in an engineering code, ARIA. ARIA is a Sandia National Laboratories multiphysics code including a range of capabilities such as incompressible Navier-Stokes equations, energy transport equations, species transport equations, non-Newtonian fluid rheology, linear elastic solid mechanics, and electro-statics. To simulate the fire, FUEGO, also a Sandia National Laboratories code, is coupled to ARIA. FUEGO represents the turbulent, buoyantly driven incompressible flow, heat transfer, mass transfer, and combustion. FUEGO and ARIA are uniquely able to solve this problem because they were designed using a common architecture (SIERRA) that enhances multiphysics coupling and both codes are capable of massively parallel calculations, enhancing performance. The decomposition reaction model is developed from small scale experimental data including thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in both nitrogen and air for a range of heating rates and from available data in the literature. The response of the composite material subject to a radiant heat flux boundary

  16. Asymmetric Dielectric Elastomer Composite Material

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  17. Studies of noise transmission in advanced composite material structures

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Mcgary, M. C.; Powell, C. A.

    1983-01-01

    Noise characteristics of advanced composite material fuselages were discussed from the standpoints of applicable research programs and noise transmission theory. Experimental verification of the theory was also included.

  18. Wear resistance of composite materials. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning wear resistance of composite materials. References discuss polymer, ceramic and metal composites. Tribological testing and failure analyses are included. (Contains a minimum of 200 citations and includes a subject term index and title list.)

  19. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M. V.

    2008-06-03

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  20. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  1. Catalog of Programmed Instructional Material. (Including Change I).

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    A catalog lists programed instruction material for military tasks that has been developed by the U.S. Navy. Part one of the catalog lists programed material alphabetically by subject area. Information provided for each program includes title, classification, identification code to be used when requesting copies of the program, population for whom…

  2. FIBER-REINFORCED METALLIC COMPOSITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (*FIBER METALLURGY, TITANIUM ALLOYS , NICKEL ALLOYS , REINFORCING MATERIALS, TUNGSTEN, WIRE, MOLYBDENUM ALLOYS , COBALT ALLOYS , CHROMIUM ALLOYS , ALUMINUM ALLOYS , MECHANICAL PROPERTIES, POWDER METALLURGY.

  3. Benchmark Composite Wing Design Including Joint Analysis and Optimization

    NASA Astrophysics Data System (ADS)

    Albers, Robert G.

    A composite wing panel software package, named WING Joint OpTimization and Analysis (WINGJOTA) featuring bolted joint analysis, is created and presented in this research. Three areas of focus were the development of an analytic composite bolted joint analysis suitable for fast evaluation; a more realistic wing design than what has been considered in the open literature; and the application of two optimization algorithms for composite wing design. Optimization results from 14 wing load cases applied to a composite wing panel with joints are presented. The composite bolted joint analysis consists of an elasticity solution that provides the stress state at a characteristic distance away from the bolt holes. The stresses at the characteristic distance are compared to a failure criterion on a ply-by-ply basis that not only determines first ply failure but also the failure mode. The loads in the multi-fastener joints used in this study were determined by an iterative scheme that provides the bearing-bypass loads to the elasticity analysis. A preliminary design of a composite subsonic transport wing was developed, based around a mid-size, twin-aisle aircraft. The benchmark design includes the leading and trailing edge structures and the center box inside the fuselage. Wing masses were included as point loads, and fuel loads were incorporated as distributed loads. The side-of-body boundary condition was modeled using high stiffness springs, and the aerodynamic loads were applied using an approximate point load scheme. The entire wing structure was modeled using the finite element code ANSYS to provide the internal loads needed as boundary conditions for the wing panel analyzed by WINGJOTA. The software package WINGJOTA combines the composite bolted joint analysis, a composite plate finite element analysis, a wing aeroelastic cycle, and two optimization algorithms to form the basis of a computer code for analysis and optimization. Both the Improving Hit-and-Run (IHR) and

  4. Composite materials for fusion applications

    SciTech Connect

    Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

    1991-10-01

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

  5. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  6. Composite tribological materials. (Latest citations from Fluidex). Published Search

    SciTech Connect

    1998-02-01

    The bibliography contains citations concerning the properties, behavior, and uses of composite tribological materials in and on various objects, devices, and equipment. The citations examine friction and wear characteristics, mechanisms, and the performance of these materials and the objects to which they are applied. Composite tribological materials are used, for example, in bearings, gears, and piston rings. Included are self lubricating materials. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Space processing of composite materials

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1975-01-01

    Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

  8. Life Prediction Methodologies for Composite Materials

    DTIC Science & Technology

    1992-01-31

    prediction methodology for composite materials is not a mathematical model (although it may include such models ), but can be purely empirical, as is the...understanding of realistic failure mechanisms and modeling procedures that translate such understanding into practical design tools, it also...comprehensive experimental procedures, were reviewed and considered in the development of an outline of the type of model deemed desirable by the committee. The

  9. Slow crack propagation in composite restorative materials.

    PubMed

    Montes-G, G M; Draughn, R A

    1987-05-01

    The double-torsion test technique was used to study slow crack propagation in a set of dental composite resins including two glass-filled and two microfilled materials. The microstructure within each pair was the same but one of the resins was selfcured and the other photocured. The fracture behavior was dependent on the filler concentration and the presence of absorbed water. Wet materials fractured by slow crack growth in the range of crack velocity studied (10(-7) to 10(-3) m/s), and the microfilled composites, which contain a lower concentration of inorganic filler, had lower stress intensity factors (K1c) than the glass-filled composites tested. Dry specimens of the microfilled materials and the selfcured, glass-filled composite also showed unstable, stick-slip fracture behavior indicative of a crack blunting mechanism which leads to an elevation of the stress intensity factor for crack initiation over K1c for stable crack growth. The plasticizing effect of water increased the viscoelastic response of the materials measured by the slope of curves of slow crack growth. Analysis of fracture surfaces showed that cracks propagated at low velocities (10(-7) to 10(-5) m/s) by the apparent failure of the filler/matrix interfacial bond, and absorbed water affected the strength or fracture resistance of the interface. At high crack velocities the properties of the composite depend on the properties of the polymeric matrix, the filler, and the filler volume fraction, but at low velocities the interface is the controlling factor in the durability of these composites exposed to an aqueous environment.

  10. Mechanics of interfacial composite materials.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Mahadevan, L; Stone, Howard A

    2006-11-21

    Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties.

  11. Durability of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Liu

    The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin

  12. Composite armor, armor system and vehicle including armor system

    DOEpatents

    Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.

    2013-01-01

    Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.

  13. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  14. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  15. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  16. Composite materials for space structures

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Sykes, G. F.; Bowles, D. E.

    1985-01-01

    The use of advanced composites for space structures is reviewed. Barriers likely to limit further applications of composites are discussed and highlights of research to improve composites are presented. Developments in composites technology which could impact spacecraft systems are reviewed to identify technology needs and opportunities.

  17. Polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  18. Using Composite Materials in a Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  19. Nonlinear Dynamic Properties of Layered Composite Materials

    SciTech Connect

    Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter; Danishevs'kyy, Vladyslav V.

    2010-09-30

    We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

  20. Sinusoidal response of composite-material plates with material damping.

    NASA Technical Reports Server (NTRS)

    Siu, C. C.; Bert, C. W.

    1973-01-01

    A general forced-vibration analysis is presented for laminated anisotropic rectangular plates including material damping. The theory used is the laminated version of the Mindlin plate theory and includes thickness-shear flexibility and rotatory and coupling inertia. A solution is obtained by the Rayleigh-Ritz method, extended to include the energy dissipated and the work done by the excitation. The analysis is applied to prediction of the resonant frequencies and associated nodal patterns and damping ratios of the first five modes for a series of rectangular plates with free edges. The plates considered consist of unidirectional boron-fiber/epoxy composite material with respective fiber orientations of 0, 10, 30, 45, 60, and 90 deg.

  1. Graphene-based Composite Materials

    NASA Astrophysics Data System (ADS)

    Rafiee, Mohammad Ali

    We investigated the mechanical properties, such as fracture toughness (KIc), fracture energy (GIc), ultimate tensile strength (UTS), Young¡¦s modulus (E), and fatigue crack propagation rate (FCPR) of epoxy-matrix composites with different weight fractions of carbon-based fillers, including graphene platelets (GPL), graphene nanoribbons (GNR), single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and fullerenes (C60). Only ˜0.125 wt.% GPL was found to increase the KIc of the pure epoxy by ˜65% and the GIc by ˜115%. To get similar improvement, CNT and nanoparticle epoxy composites required one to two orders of magnitude greater weight fraction of nanofillers. Moreover, ˜0.125% wt.% GPL also decreased the fatigue crack propagation rate in the epoxy by ˜30-fold. The E value of 0.1 wt.% GPL/epoxy nanocomposite was ˜31% larger than the pure epoxy while there was only an increase of ˜3% for the SWNT composites. The UTS of the pristine epoxy was improved by ˜40% with GPLs in comparison with ˜14% enhancement for the MWNTs. The KIc of the GPL nanocomposite enhanced by ˜53% over the pristine epoxy compared to a ˜20% increase for the MWNT-reinforced composites. The results of the FCPR tests for the GPL nanocomposites showed a different trend. While the CNT nanocomposites were not effective enough to suppress the crack growth at high values of the stress intensity factor (DeltaK), the reverse behavior is observed for the GPL nanocomposites. The advantage of the GPLs over CNTs in terms of mechanical properties enhancement is due to their enormous specific surface area, enhanced adhesion at filler/epoxy interface (because of the wrinkled surfaces of GPLs), as well as the planar structure of the GPLs. We also show that unzipping of MWNTs into graphene nanoribbons (GNRs) enhances the load transfer effectiveness in epoxy nanocomposites. For instance, at ˜0.3 wt.% of fillers, the Young's modulus (E) of the epoxy nanocomposite with GNRs increased

  2. Extractant composition including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2009-04-28

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  3. Durability of Composite Materials and Structures

    DTIC Science & Technology

    2009-11-02

    Michigan State University Composite Materials and Structures Center 2100 Engineering Building , East Lansing, MI 48824-1226 6.1 Objectives The...DATES COVERED (From - To) February 7, 2005 - January 31. 2009 4. TITLE AND SUBTITLE DURABILITY OF COMPOSITE MATERIALS AND STRUCTURES 5a...Manager: Dr. Yapa D.S. Rajapakse Office of Naval Research 875 N. Randolph Street Arlington, VA 22203-1995 DURABILITY OF COMPOSITE MATERIALS AND

  4. Method for machining holes in composite materials

    NASA Technical Reports Server (NTRS)

    Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)

    1987-01-01

    A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

  5. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  6. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  7. Stratospheric experiments on curing of composite materials

    NASA Astrophysics Data System (ADS)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  8. Nanocellulose Composite Materials Synthesizes with Ultrasonic Agitation

    NASA Astrophysics Data System (ADS)

    Kidd, Timothy; Folken, Andrew; Fritch, Byron; Bradley, Derek

    We have extended current techniques in forming nanocellulose composite solids, suspensions and aerogels to enhance the breakdown of cellulose into its molecular components. Using only mechanical processing which includes ball milling, using a simple mortar and pestle, and ultrasonic agitation, we are able to create very low concentration uniform nanocellulose suspensions in water, as well as incorporate other materials such as graphite, carbon nanotubes, and magnetic materials. Of interest is that no chemical processing is necessary, nor is the use of nanoparticles, necessary for composite formation. Using both graphite and carbon nanotubes, we are able to achieve conducting nanocellulose solids and aerogels. Standard magnetic powder can also be incorporated to create magnetic solids. The technique also allows for the creation of an extremely fine nanocellulose suspension in water. Using extremely low concentrations, less than 1% cellulose by mass, along with careful control over processing parameters, we are able to achieve highly dilute, yet homogenous nanocellulose suspensions. When air dried, these suspensions have similar hardness and strength properties to those created with more typical starting cellulose concentrations (2-10%). However, when freeze-dried, these dilute suspensions form aerogels with a new morphology with much higher surface area than those with higher starting concentrations. We are currently examining the effect of this higher surface area on the properties of nanocellulose aerogel composites and how it influences the impact of incorporating nanocellulose into other polymer materials.

  9. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  10. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  11. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  12. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  13. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  14. Ceramic Matrix Composite (CMC) Materials Development

    NASA Technical Reports Server (NTRS)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  15. Ceramic Matrix Composite (CMC) Materials Characterization

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  16. Composite materials and method of making

    DOEpatents

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

    2011-05-17

    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  17. Composite materials for thermal energy storage

    DOEpatents

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  18. Composite Dielectric Materials for Electrical Switching

    SciTech Connect

    Modine, F.A.

    1999-04-25

    Composites that consist of a dielectric host containing a particulate conductor as a second phase are of interest for electrical switching applications. Such composites are "smart" materials that can function as either voltage or current limiters, and the difference in fimction depends largely upon whether the dielectric is filled to below or above the percolation threshold. It also is possible to combine current and voltage limiting in a single composite to make a "super-smart" material.

  19. Composite materials for biomedical applications: a review.

    PubMed

    Salernitano, E; Migliaresi, C

    2003-01-01

    The word "composite" refers to the combination, on a macroscopic scale, of two or more materials, different for composition, morphology and general physical properties. In many cases, and depending on the constituent properties, composites can be designed with a view to produce materials with properties tailored to fulfill specific chemical, physical or mechanical requirements. Therefore over the past 40 years the use of composites has progressively increased, and today composite materials have many different applications, i.e., aeronautic, automotive, naval, and so on. Consequently many composite biomaterials have recently been studied and tested for medical application. Some of them are currently commercialized for their advantages over traditional materials. Most human tissues such as bones, tendons, skin, ligaments, teeth, etc., are composites, made up of single constituents whose amount, distribution, morphology and properties determine the final behavior of the resulting tissue or organ. Man-made composites can, to some extent, be used to make prostheses able to mimic these biological tissues, to match their mechanical behavior and to restore the mechanical functions of the damaged tissue. Different types of composites that are already in use or are being investigated for various biomedical applications are presented in this paper. Specific advantages and critical issues of using composite biomaterials are also described (Journal of Applied Bio-materials & Biomechanics 2003; 1: 3-18).

  20. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  1. Health, safety and environmental requirements for composite materials

    NASA Technical Reports Server (NTRS)

    Hazer, Kathleen A.

    1994-01-01

    The health, safety and environmental requirements for the production of composite materials are discussed. The areas covered include: (1) chemical identification for each chemical; (2) toxicology; (3) industrial hygiene; (4) fire and safety; (5) environmental aspects; and (6) medical concerns.

  2. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  3. Overview of bacterial cellulose composites: a multipurpose advanced material.

    PubMed

    Shah, Nasrullah; Ul-Islam, Mazhar; Khattak, Waleed Ahmad; Park, Joong Kon

    2013-11-06

    Bacterial cellulose (BC) has received substantial interest owing to its unique structural features and impressive physico-mechanical properties. BC has a variety of applications in biomedical fields, including use as biomaterial for artificial skin, artificial blood vessels, vascular grafts, scaffolds for tissue engineering, and wound dressing. However, pristine BC lacks certain properties, which limits its applications in various fields; therefore, synthesis of BC composites has been conducted to address these limitations. A variety of BC composite synthetic strategies have been developed based on the nature and relevant applications of the combined materials. BC composites are primarily synthesized through in situ addition of reinforcement materials to BC synthetic media or the ex situ penetration of such materials into BC microfibrils. Polymer blending and solution mixing are less frequently used synthetic approaches. BC composites have been synthesized using numerous materials ranging from organic polymers to inorganic nanoparticles. In medical fields, these composites are used for tissue regeneration, healing of deep wounds, enzyme immobilization, and synthesis of medical devices that could replace cardiovascular and other connective tissues. Various electrical products, including biosensors, biocatalysts, E-papers, display devices, electrical instruments, and optoelectronic devices, are prepared from BC composites with conductive materials. In this review, we compiled various synthetic approaches for BC composite synthesis, classes of BC composites, and applications of BC composites. This study will increase interest in BC composites and the development of new ideas in this field.

  4. Filler Materials for Polyphenylenesulphide Composite Coatings: Preprint

    SciTech Connect

    Sugama, T.; Gawlik, K.

    2001-07-17

    Researchers at Brookhaven National Laboratory and the National Renewable Energy Laboratory have tested polymer-based coating systems to reduce the capital equipment and maintenance costs of heat exchangers in corrosive and fouling geothermal environments. These coating systems act as barriers to corrosion to protect low-cost carbon steel tubing; they are formulated to resist wear from hydroblasting and to have high thermal conductivity. Recently, new filler materials have been developed for coating systems that use polyphenylenesulphide as a matrix. These materials include boehmite crystals (orthorhombic aluminum hydroxide, which is grown in situ as a product of reaction with the geothermal fluid), which enhance wear and corrosion resistance, and carbon fibers, which improve mechanical, thermal, and corrosion-resistance properties of the composite.

  5. Composite materials for thermal energy storage

    DOEpatents

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  6. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1980-08-01

    projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure

  7. Ceramic composites: Enabling aerospace materials

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  8. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  9. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1999-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  10. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  11. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  12. Shock resistance of composite material pipes

    SciTech Connect

    Pays, M.F.; Garcin, P.

    1995-11-01

    Composite materials have found a wide range of applications for EDF nuclear plants. Applications include fire pipework, demineralized water, service water, and emergency-supplied service water piping. Some of those pipework is classified nuclear safety, their integrity (resistance to water aging and earthquakes or accidental excess pressure (water hammer)) must be safeguarded. As composite materials generally suffer damage for low energy impacts (under 10 J), the pipes planned for the Civaux power plant have been studied for their resistance to a low speed shock (0 to 50 m/s) and of a 0 to 110 J energy level. For three representative diameters (20, 150, 600 mm), the minimum impact energy that leads to a leak has been determined to be respectively 18, 20 and 48 J. Then the leak rate versus impact energy was plotted; until roughly 90 J, the leak rate remains stable at less than 25 cm{sup 3}/h and raises to higher values (300 cm{sup 3}/h) afterwards. The level of leakage in the range of impact energy tested always stays within the limits set by the Safety Authorities for metallic pipes. These results have been linked to destructive examinations, to clarify the damage mechanisms. Other tests are still ongoing to follow the evolution of the damage and of the leak rate while the pipe is maintained under service pressure during one year.

  13. Chemical composition of lunar material.

    PubMed

    Maxwell, J A; Abbey, S; Champ, W H

    1970-01-30

    Chemical and emission spectrographic analyses of three Apollo 11 samples, 10017-29, 10020-30, and 10084-132, are given. Major and minor constituents were determined both by conventional rock analysis methods and by a new composite scheme utilizing a lithium fluoborate method for dissolution of the samples and atomic absorption spectroscopy and colorimetry. Trace constituents were determined by optical emission spectroscopy involving a d-c arc, air-jet controlled.

  14. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  15. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-07-01

    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  16. Improved Materials for Composite and Adhesive Joints.

    DTIC Science & Technology

    1984-07-01

    Mechanical Testing 1 b. Composites Fabricated 2 2. RELATIONSHIP BETWEEN NEAT RESIN AND IN SITU COMPOSITE PROPERTIES 5 3. MATERIAL DEVELOPMENT 6 a...inspection revealed large variations in thickness across the width of the tape. This problem is serious in that the resin has a very high melt viscosity...and thus unfor- giving in correcting variations during composite processing. There is little or no resin loss during processing. The PEEK resin in

  17. Preparation of composite materials in space. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1973-01-01

    A study to define promising materials, significant processing criteria, and the related processing techniques and apparatus for the preparation of composite materials in space was conducted. The study also established a program for zero gravity experiments and the required developmental efforts. The following composite types were considered: (1) metal-base fiber and particle composites, including cemented compacts, (2) controlled density metals, comprising plain and reinforced metal foams, and (3) unidirectionally solidified eutectic alloys. A program of suborbital and orbital experiments for the 1972 to 1978 time period was established to identify materials, processes, and required experiment equipment.

  18. Composite materials with improved phyllosilicate dispersion

    DOEpatents

    Chaiko, David J.

    2004-09-14

    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  19. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  20. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  1. Method of making a composite refractory material

    DOEpatents

    Morrow, M.S.; Holcombe, C.E.

    1995-09-26

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000 C to form a composite refractory material.

  2. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  3. Method of making a composite refractory material

    DOEpatents

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  4. Recent atomistic modelling studies of energy materials: batteries included.

    PubMed

    Islam, M Saiful

    2010-07-28

    Advances in functional materials for energy conversion and storage technologies are crucial in addressing the global challenge of green sustainable energy. This article aims to demonstrate the valuable role that modern modelling techniques now play in providing deeper fundamental insight into novel materials for rechargeable lithium batteries and solid oxide fuel cells. Recent work is illustrated by studies on important topical materials encompassing transition-metal phosphates and silicates for lithium battery electrodes, and apatite-type silicates for fuel cell electrolytes.

  5. Effective Behavior of Composite Materials.

    DTIC Science & Technology

    2014-09-26

    7AD-A158 941 EFFECTIVE BEHAVIOR OF COMPOSITE MTERIRLS(A) NEW YORK i/i UNIV MY COURANT INST OF ATHEMATICAL SCIENCES 6CPAPANICOLAOU 23 APR 85 5274192... Courant ilfapphcabt e Instit.te of Math. Sciences AF0SR/NM 6c. ADDRESS Cit). State and ZIP Code, 7b. ADDRESS (City. State and ZIP Code) 251 Mercer St Bldg...Papanicolaou Courant Institute 251 Mercer Street New York, N.Y. 10012 i~istr~utlo2 During this period two thesis ipja b&have completed ’their work and have

  6. Composite materials molding simulation for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, Ł.; Baier, A.; Majzner, M.; Sobek, M.

    2016-08-01

    Composite materials loom large increasingly important role in the overall industry. Composite material have a special role in the ever-evolving automotive industry. Every year the composite materials are used in a growing number of elements included in the cars construction. Development requires the search for ever new applications of composite materials in areas where previously were used only metal materials. Requirements for modern solutions, such as reducing the weight of vehicles, the required strength and vibration damping characteristics go hand in hand with the properties of modern composite materials. The designers faced the challenge of the use of modern composite materials in the construction of bodies of power steering systems in vehicles. The initial choice of method for producing composite bodies was the method of molding injection of composite material. Molding injection of polymeric materials is a widely known and used for many years, but the molding injection of composite materials is a relatively new issue, innovative, it is not very common and is characterized by different conditions, parameters and properties in relation to the classical method. Therefore, for the purpose of selecting the appropriate composite material for injection for the body of power steering system computer analysis using Siemens NX 10.0 environment, including Moldex 3d and EasyFill Advanced tool to simulate the injection of materials from the group of possible solutions were carried out. Analyses were carried out on a model of a modernized wheel case of power steering system. During analysis, input parameters, such as temperature, pressure injectors, temperature charts have been analysed. An important part of the analysis was to analyse the propagation of material inside the mold during injection, so that allowed to determine the shape formability and the existence of possible imperfections of shapes and locations air traps. A very important parameter received from

  7. Spacecraft materials guide. [including: encapsulants and conformal coatings; optical materials; lubrication; and, bonding and joining processes

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L. (Editor)

    1975-01-01

    Materials which have demonstrated their suitability for space application are summarized. Common, recurring problems in encapsulants and conformal coatings, optical materials, lubrication, and bonding and joining are noted. The subjects discussed include: low density and syntactic foams, electrical encapsulants; optical glasses, interference filter, mirrors; oils, greases, lamillar lubricants; and, soldering and brazing processes.

  8. Chemical equilibrium of ablation materials including condensed species

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Brinkley, K. L.

    1975-01-01

    Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.

  9. Resistance fail strain gage technology as applied to composite materials

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Brinson, H. F.

    1985-01-01

    Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.

  10. Intrinsically Survivable Structural Composite Materials

    DTIC Science & Technology

    2001-02-01

    Coefficient 14 2.2.2 Low-Temperature Precure Treatment (LTPT) 16 2.2.3 Investigation of Several Commercially Available Organoclays 18 2.2.4 High-Shear...of material. Additional commercially available organoclay samples all flocculated to a greater extent than the original S30A. Other attempts to...nanocomposites. A series of epoxy-organosilicate nanocomposites have been successfully prepared with the nanosheets of the nano- organoclay uniformly and

  11. Center for Cement Composite Materials

    DTIC Science & Technology

    1990-01-31

    pastes have shown that the matrix is microporous; mesopores are absent unless the material is allowed to dry out. This results in water adsorption at low...only to water. When subsequently dried a portion of3 the porosity is converted to larger mesopores . • Only about one third of the cement reacts in a...Frictional sliding, in this case was characterized by a decreasing slope in the loading curve followed by hysteresis in the unload/reloading curves

  12. Method of preparing corrosion resistant composite materials

    DOEpatents

    Kaun, Thomas D.

    1993-01-01

    Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  13. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  14. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  15. Thermographic stress analysis of composite materials

    SciTech Connect

    Zhang, D.; Sandor, B.I.; Enke, N.F. Department of Defence, Aeronautical Research Laboratories, Melbourne )

    1990-03-01

    Several critical aspects of stress measurements in composite materials by thermographic stress analysis (TSA; also SPATE method) have been investigated. The emphasis is on the observed effects of thermal-expansion coefficients with positive and negative signs, thickness of surface coating, and absolute temperature increases in the material due to cyclic loading. Heat transfer and mean stress effects are also discussed. 23 refs.

  16. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  17. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  18. Magnetic porous composite material: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Peretyat'ko, P. I.; Kulikov, L. A.; Melikhov, I. V.; Perfil'ev, Yu. D.; Pal', A. F.; Timofeev, M. A.; Gudoshnikov, S. A.; Usov, N. A.

    2015-10-01

    A new method of obtaining magnetic porous composite materials is described, which is based on the self-propagating high-temperature synthesis (SHS) in the form of solid-phase combustion. The SHS process involves transformation of the nonmagnetic α-Fe2O3 particles (contained in the initial mixture) into magnetic Fe3O4 particles. The synthesized material comprises a porous carbonaceous matrix with immobilized Fe3O4 particles. The obtained composite has been characterized by electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. The sorption capacity of the porous material has been studied.

  19. Failure analysis of composite laminates including biaxial compression

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Elliott, W. G.

    1983-01-01

    This report describes a continued effort on the development and application of the tensor polynomial failure criterion for composite laminate analysis. In particular, emphasis is given to the design, construction and testing of a cross-beam laminate configuration to obtain "pure' biaxial compression failure. The purpose of this test case was to provide to permit "closure' of the cubic form of the failure surface in the 1-2 compression-compression quadrant. This resulted in a revised set of interaction strength parameters and the construction of a failure surface which can be used with confidence for strength predictions, assuming a plane stress state exists. Furthermore, the problem of complex conjugate roots which can occur in some failure regions is addressed and an "engineering' interpretation is provided. Results are presented illustrating this behavior and the methodology for overcoming this problem is discussed.

  20. Composite materials with self-contained wireless sensing networks

    NASA Astrophysics Data System (ADS)

    Schaaf, Kristin; Kim, Robert; Nemat-Nasser, Sia

    2010-04-01

    The increasing demand for in-service structural health monitoring, particularly in the aircraft industry, has stimulated efforts to integrate self sensing capabilities into materials and structures. This work presents efforts to develop structural composite materials which include networks of sensors with decision-making capabilities that extend the functionality of the composite materials to be information-aware. Composite panels are outfitted with networks of self-contained wireless sensor modules which can detect damage in composite materials via active nondestructive testing techniques. The wireless sensor modules will communicate with one another and with a central processing unit to convey the sensor data while also maintaining robustness and the ability to self-reconfigure in the event that a module fails. Ultimately, this research seeks to create an idealized network that is compact in size, cost efficient, and optimized for low power consumption while providing a sufficient data transfer rate to a local host.

  1. Microbiological destruction of composite polymeric materials in soils

    NASA Astrophysics Data System (ADS)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  2. Processes for fabricating composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  3. Extension of Murray's law including nonlinear mechanics of a composite artery wall.

    PubMed

    Lindström, Stefan B; Satha, Ganarupan; Klarbring, Anders

    2015-01-01

    A goal function approach is used to derive an extension of Murray's law that includes effects of nonlinear mechanics of the artery wall. The artery is modeled as a thin-walled tube composed of different species of nonlinear elastic materials that deform together. These materials grow and remodel in a process that is governed by a target state defined by a homeostatic radius and a homeostatic material composition. Following Murray's original idea, this target state is defined by a principle of minimum work. We take this work to include that of pumping and maintaining blood, as well as maintaining the materials of the artery wall. The minimization is performed under a constraint imposed by mechanical equilibrium. We derive a condition for the existence of a cost-optimal homeostatic state. We also conduct parametric studies using this novel theoretical frame to investigate how the cost-optimal radius and composition of the artery wall depend on flow rate, blood pressure, and elastin content.

  4. Orthotic devices using lightweight composite materials

    NASA Technical Reports Server (NTRS)

    Harrison, E., Jr.

    1983-01-01

    Potential applications of high strength, lightweight composite technology in the orthotic field were studied. Several devices were designed and fabricated using graphite-epoxy composite technology. Devices included shoe plates, assistive walker devices, and a Simes prosthesis reinforcement. Several other projects having medical application were investigated and evaluations were made of the potential for use of composite technology. A seat assembly was fabricated using sandwich construction techniques for the Total Wheelchair Project.

  5. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  6. Composition and process for making an insulating refractory material

    DOEpatents

    Pearson, Alan; Swansiger, Thomas G.

    1998-04-28

    A composition and process for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4-2.6 g/cm.sup.3 with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness, good abrasion resistance and crush strength.

  7. Composition and process for making an insulating refractory material

    DOEpatents

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  8. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  9. New composite materials for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Iovu, M. S.; Buzurniuc, S. A.; Verlan, V. I.; Culeac, I. P.; Nistor, Yu. H.

    2009-01-01

    The problem of obtaining low cost but efficient luminescent materials is still actually. Data concerning fabrication and luminescent properties of new composite materials on the base of thenoyltrifluoroacetone (TTA) of Europium(III) (Eu(TTA)3) and chalcogenide glasses doped with rare earth ions and polymers are presented. The visible emission spectra of the composites on the base of Eu(TTA)3 structured with phenantroline (Eu(TTA)3Phen) and copolymer from styrene and butylmethacrylate (1:1)(SBMA) under the excitation with N2-laser (λ=337 nm) contain sharp emission bands located at 354, 415, 580, 587, 590, 596, 611.4, 616.5, 621, 652, 690, 700, 713 nm. The nature of the observed emission bands and the possible mechanisms of the radiative electron transition in the investigated composite materials are discussed.

  10. Composite materials research and education program: The NASA-Virginia Tech composites program

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  11. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOEpatents

    Jia, Weiyi; Wang, Xiaojun; Jia, George D.; Lewis, Linda; Yen, Laurel C.

    2014-06-24

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  12. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOEpatents

    Jia, Weiyi; Wang, Xiaojun; Yen, William; Yen, Laurel C.; Jia, George D.

    2012-12-04

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  13. Health monitoring method for composite materials

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J.

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  14. Synthesis of aluminium nitride/boron nitride composite materials

    SciTech Connect

    Xiao, T.D. . Polymer Science Program and Dept. of Chemistry); Gonsalves, K.E. . Polymer Science Program and Dept. of Chemistry Univ. of Connecticut, Storrs, CT . Dept. of Chemistry); Strutt, P.R. . Dept. of Metallurgy)

    1993-04-01

    Aluminum nitride/boron nitride composite was synthesized by using boric acid, urea, and aluminum chloride (or aluminum lactate) as the starting compounds. The starting materials were dissolved in water and mixed homogeneously. Ammonolysis of this aqueous solution resulted in the formation of a precomposite gel, which converted into the aluminum nitride/boron nitride composite on further heat treatment. Characterization of both the precomposite and the composite powders included powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Analysis of the composite revealed that the aluminum nitride phase had a hexagonal structure, and the boron nitride phase a turbostratic structure.

  15. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  16. Composite materials and method of making

    DOEpatents

    Uribe, Francisco A.; Wilson, Mahlon S.; Garzon, Fernando H.

    2009-09-15

    A method of depositing noble metals on a metal hexaboride support. The hexaboride support is sufficiently electropositive to allow noble metals to deposit spontaneously from solutions containing ionic species of such metals onto the support. The method permits the deposition of metallic films of controlled thickness and particle size at room temperature without using separate reducing agents. Composite materials comprising noble metal films deposited on such metal hexaborides are also described. Such composite materials may be used as catalysts, thermionic emitters, electrical contacts, electrodes, adhesion layers, and optical coatings.

  17. Ground exposure of composite materials for helicopters

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1984-01-01

    Residual strength results are presented on four composite material systems that were exposed for three years at locations on the North American Continent. The exposure locations are near the areas where Bell Model 206L Helicopters, that are in a NSA/U.S. Army sponsored flight service program, are flying in daily commercial service. The composite systems are: (1) Kevlar-49 fabric/F-185 epoxy; (2) Kevlar-49 fabric/LRF-277 epoxy; (3) Kevlar-49 fabric/CE-306 epoxy; and (4) T-300 Graphite/E-788 epoxy. All material systems exhibited good strength retention in compression and short beam shear. The Kevlar-49/LRF-277 epoxy retained 88 to 93 percent of the baseline strength while the other material systems exceeded 95 percent of baseline strength. Residual tensile strength of all materials did not show a significant reduction. The available moisture absorption data is also presented.

  18. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  19. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  20. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  1. Multiaxial analysis of dental composite materials.

    PubMed

    Kotche, Miiri; Drummond, James L; Sun, Kang; Vural, Murat; DeCarlo, Francesco

    2009-02-01

    Dental composites are subjected to extreme chemical and mechanical conditions in the oral environment, contributing to the degradation and ultimate failure of the material in vivo. The objective of this study is to validate an alternative method of mechanically loading dental composite materials. Confined compression testing more closely represents the complex loading that dental restorations experience in the oral cavity. Dental composites, a nanofilled and a hybrid microfilled, were prepared as cylindrical specimens, light-cured in ring molds of 6061 aluminum, with the ends polished to ensure parallel surfaces. The samples were subjected to confined compression loading to 3, 6, 9, 12, and 15% axial strain. Upon loading, the ring constrains radial expansion of the specimen, generating confinement stresses. A strain gage placed on the outer wall of the aluminum confining ring records hoop strain. Assuming plane stress conditions, the confining stress (sigma(c)) can be calculated at the sample/ring interface. Following mechanical loading, tomographic data was generated using a high-resolution microtomography system developed at beamline 2-BM of the Advanced Photon Source at Argonne National Laboratory. Extraction of the crack and void surfaces present in the material bulk is numerically represented as crack edge/volume (CE/V), and calculated as a fraction of total specimen volume. Initial results indicate that as the strain level increases the CE/V increases. Analysis of the composite specimens under different mechanical loads suggests that microtomography is a useful tool for three-dimensional evaluation of dental composite fracture surfaces.

  2. Health monitoring in composite materials via peak strain sensing

    NASA Astrophysics Data System (ADS)

    Thompson, Larry D.; Westermo, Bruce D.

    1996-11-01

    Fiber-reinforced composite materials are beginning to be employed in applications related to retrofit and repair of large-scale civil structures. This paper discusses the utilization of a passive, pea, strain monitoring technology to the damage and health assessment of composite structures. Applications considered include epoxy-matrix composite materials reinforced with chopped glass, continuous glass fibers, carbon-fiber mat as well as continuous carbon-fiber. The advantages of the various material applications are discussed as they apply to large civil structures with peak strain monitoring data presented to illustrate how the systems can be field monitored. Full-scale structural component testing as well as subscale laboratory testing results will be presented and discussed. Recommendations are provided to guide the engineering community in such composite applications and to provide a design framework for the inclusion of simple and reliable sensor systems to detect both short-term and long-term damage.

  3. Composite materials for the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V.; Tello, Hector M.

    1992-01-01

    The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation

  4. Composite materials for rail transit systems

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  5. Method for Fabricating Composite Structures Including Continuous Press Forming and Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate is disclosed. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply, and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform, and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length, and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  6. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  7. Grained composite materials prepared by combustion synthesis under mechanical pressure

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  8. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect

    Ward, R.M.; Vaughey, J.T.

    2006-01-01

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  9. Composite materials for precision space reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-01-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

  10. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  11. Meso-scale imaging of composite materials

    SciTech Connect

    Grandin, R.; Gray, J.

    2015-03-31

    The performance of composite materials is controlled by the interaction between the individual components as well as the mechanical characteristics of the components themselves. Geometric structure on the meso-scale, where the length-scales are of the same order as the material granularity, plays a key role in controlling material performance and having a quantitative means of characterizing this structure is crucial in developing our understanding of NDE technique signatures of early damage states. High-resolution computed tomography (HRCT) provides an imaging capability which can resolve these structures for many composite materials. Coupling HRCT with three-dimensional physics-based image processing enables quantitative characterization of the meso-scale structure. Taking sequences of these damage states provides a means to structurally observe the damages evolution. We will discuss the limits of present 3DCT capability and challenges for improving this means to rapidly generate structural information of a composite and of the damage. In this presentation we will demonstrate the imaging capability of HRCT.

  12. Alternative processing methods for tungsten-base composite materials

    SciTech Connect

    Ohriner, E.K.; Sikka, V.K.

    1996-06-01

    Tungsten composite materials contain large amounts of tungsten distributed in a continuous matrix phase. Current commercial materials include the tungsten-nickel-iron with cobalt replacing some or all of the iron, and also tungsten-copper materials. Typically, these are fabricated by liquid-phase sintering of blended powders. Liquid-phase sintering offers the advantages of low processing costs, established technology, and generally attractive mechanical properties. However, liquid-phase sintering is restricted to a very limited number of matrix alloying elements and a limited range of tungsten and alloying compositions. In the past few years, there has been interest in a wider range of matrix materials that offer the potential for superior composite properties. These must be processed by solid-state processes and at sufficiently low temperatures to avoid undesired reactions between the tungsten and the matrix phase. These processes, in order of decreasing process temperature requirements, include hot isostatic pressing (HEPing), hot extrusion, and dynamic compaction. The HIPing and hot extrusion processes have also been used to improve mechanical properties of conventional liquid-phase-sintered materials. The results of laboratory-scale investigations of solid-state consolidation of a variety of matrix materials, including titanium, hafnium, nickel aluminide, and steels are reviewed. The potential advantages and disadvantages of each of the possible alternative consolidation processes are identified. Post consolidation processing to control microstructure and macrostructure is discussed, including novel methods of controlling microstructure alignment.

  13. Alternative processing methods for tungsten-base composite materials

    SciTech Connect

    Ohriner, E.K.; Sikka, V.K.

    1995-12-31

    Tungsten composite materials contain large amounts of tungsten distributed in a continuous matrix phase. Current commercial materials include the tungsten-nickel-iron with cobalt replacing some or all of the iron, and also tungsten-copper materials. Typically, these are fabricated by liquid-phase sintering of blended powders. Liquid-phase sintering offers the advantages of low processing costs, established technology, and generally attractive mechanical properties. However, liquid-phase sintering is restricted to a very limited number of matrix alloying elements and a limited range of tungsten and alloying compositions. In the past few years, there has been interest in a wider range of matrix materials that offer the potential for superior composite properties. These must be processed by solid-state processes and at sufficiently low temperatures to avoid undesired reactions between the tungsten and the matrix phase. These processes, in order of decreasing process temperature requirements, include hot-isostatic pressing (HIPing), hot extrusion, and dynamic compaction. The HIPing and hot extrusion processes have also been used to improve mechanical properties of conventional liquid-phase-sintered materials. Results of laboratory-scale investigations of solid-state consolidation of a variety of matrix materials, including titanium, hafnium, nickel aluminide, and steels are reviewed. The potential advantages and disadvantages of each of the possible alternative consolidation processes are identified. Postconsolidation processing to control microstructure and macrostructure is discussed, including novel methods of controlling microstructure alignment.

  14. Novel Cryogenic Insulation Materials: Aerogel Composites

    NASA Technical Reports Server (NTRS)

    White, Susan

    2001-01-01

    New insulation materials are being developed to economically and reliably insulate future reusable spacecraft cryogenic tanks over a planned lifecycle of extreme thermal challenges. These insulation materials must prevent heat loss as well as moisture and oxygen condensation on the cryogenic tanks during extended groundhold, must withstand spacecraft launch conditions, and must protect a partly full or empty reusable cryogenic tank from significant reentry heating. To perform over such an extreme temperature range, novel composites were developed from aerogels and high-temperature matrix material such as Space Shuttle tile. These materials were fabricated and tested for use both as cryogenic insulation and as high-temperature insulation. The test results given in this paper were generated during spacecraft re-entry heating simulation tests using cryogenic cooling.

  15. Graphics and composite material computer program enhancements for SPAR

    NASA Technical Reports Server (NTRS)

    Farley, G. L.; Baker, D. J.

    1980-01-01

    User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.

  16. Neutron Shielding Effectiveness of Multifunctional Composite Materials

    DTIC Science & Technology

    2013-03-01

    given that the material is made of only one isotope , is: 1 ln i fn En Eξ   =      . (0.6) For the elements with natural isotopic ratios in...material, Knoll states the relation shown in Equation 2.7 [5]. 0 tottI e I −Σ= (0.7) Equation 2.7 calculates the fraction of the neutron beam...Equation 2.7. # 1 Isotopes tot i i ii t N tσ = Σ =∑ (0.8) 8 In Equation 2.8 ∑tott is equal to the summation of the composite

  17. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  18. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  19. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  20. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  1. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  2. Failure Analysis of Composite Structure Materials.

    DTIC Science & Technology

    1986-05-01

    listed in order of preference, based on applicability, reliability, cost , and sample requirements. Figure 5-4. Failure Analysis Technique...development of a methodology in which optical analysis is used to increase the time and cost effectiveness of analyzing failed composite material struc...regarding the integrity of the bond. Accurate bondline defect information was achieved in such structures utilizing a transportable californium -252 (2 5 2

  3. Fatigue Prediction for Composite Materials and Structures

    DTIC Science & Technology

    2005-10-01

    Eugenio OÑATE CIMNE (International Center for Numerical Methods in Engineering) Building C-1, Campus Nord UPC -C/ Gran Capitán s/n 08034 Barcelona...SPAIN * salomon@cimne.upc.edu ABSTRACT The objective of this paper is to present a new computational methodology for predicting the durability of... methodology is validated using experimental data from tests on CFRR composite material samples. 1.0 INTRODUCTION Fatigue is defined as "the process

  4. Multifunctional Hybrid Composites for Thermal Materials

    DTIC Science & Technology

    2012-08-03

    Morphology 9 Simulation Approach: models of soft and hard carbon structures in metal matrix Metals CNTs Fullerenes M ET A L D EB YE F R EQ U EN C...Y Al Cu In Au •No (or narrow) overlap in fullerene / metal vibrational spectra 10 Conductance for Different Carbon -Metal Interfaces in NEMD...Hierarchical carbon fiber morphology for tailored thermal properties in heterogeneous materials systems – Fiber reinforced composites – Sensors, Heat sink

  5. Mechanics Methodology for Textile Preform Composite Materials

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1996-01-01

    NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.

  6. Multifunctional Martian habitat composite material synthesized from in situ resources

    NASA Astrophysics Data System (ADS)

    Sen, S.; Carranza, S.; Pillay, S.

    2010-09-01

    The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials.

  7. Impact of solids on composite materials

    NASA Technical Reports Server (NTRS)

    Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.

    1987-01-01

    The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.

  8. Chlorhexidine-releasing methacrylate dental composite materials.

    PubMed

    Leung, Danny; Spratt, David A; Pratten, Jonathan; Gulabivala, Kishor; Mordan, Nicola J; Young, Anne M

    2005-12-01

    Light curable antibacterial, dental composite restoration materials, consisting of 80 wt% of a strontium fluoroaluminosilicate glass dispersed in methacrylate monomers have been produced. The monomers contained 40-100 wt% of a 10 wt% chlorhexidine diacetate (CHXA) in hydroxyethylmethacrylate (HEMA) solution and 60-0 wt% of a 50/50 mix of urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA). On raising HEMA content, light cure polymerisation rates decreased. Conversely, water sorption induced swelling and rates of diffusion controlled CHXA release from the set materials increased. Experimental composites with 50 and 90 wt% of the CHXA in HEMA solution in the monomer were shown, within a constant depth film fermentor (CDFF), to have slower rates of biofilm growth on their surfaces between 1 and 7 days than the commercial dental composite Z250 or fluoride-releasing dental cements, Fuji II LC and Fuji IX. When an excavated bovine dentine cylinder re-filled with Z250 was placed for 10 weeks in the CDFF, both bacteria and polymers from the artificial saliva penetrated between the material and dentine. With the 50 wt% experimental HEMA/CHXA formulation, this bacterial microleakage was substantially reduced. Polymer leakage, however, still occurred. Both polymer and bacterial microleakage were prevented with a 90 wt% HEMA/CHXA restoration in the bovine dentine due to swelling compensation for polymerisation shrinkage in combination with antibacterial release.

  9. Fiber Reinforced Composite Materials Used for Tankage

    NASA Technical Reports Server (NTRS)

    Cunningham, Christy

    2005-01-01

    The Nonmetallic Materials and Processes Group is presently working on several projects to optimize cost while providing effect materials for the space program. One factor that must be considered is that these materials must meet certain weight requirements. Composites contribute greatly to this effort. Through the use of composites the cost of launching payloads into orbit will be reduced to one-tenth of the current cost. This research project involved composites used for aluminum pressure vessels. These tanks are used to store cryogenic liquids during flight. The tanks need some type of reinforcement. Steel was considered, but added too much weight. As a result, fiber was chosen. Presently, only carbon fibers with epoxy resin are wrapped around the vessels as a primary source of reinforcement. Carbon fibers are lightweight, yet high strength. The carbon fibers are wet wound onto the pressure vessels. This was done using the ENTEC Filament Winding Machine. It was thought that an additional layer of fiber would aid in reinforcement as well as containment and impact reduction. Kevlar was selected because it is light weight, but five times stronger that steel. This is the same fiber that is used to make bullet-proof vests trampolines, and tennis rackets.

  10. Characterization of self-healing composite materials

    NASA Astrophysics Data System (ADS)

    Ford, Kevin John

    Damage occurs in almost every composite material in the form of microcracks that develop in the epoxy matrix that binds the fibers together. Researchers at the University of Illinois Urbana Champaign have recently developed a method to reverse the effects of, or heal, damage in the epoxy matrix. Their in-situ self-healing system uses embedded microcapsules and a catalyst that trigger a romp reaction in an effort to rebond the microcracks. Several models have been developed in an effort to predict how a composite laminate damages. One model in particular, the Continuous Damage Mechanics model, CDM that has been developed at West Virginia University uses material properties that are easily obtained from standard ASTM and ISO testing methods. The CDM model has been extended at West Virginia University to incorporate the effects of a self-healing system to develop a Continuous Damage and Healing Mechanics model, CDHM. In this work, a testing procedure to characterize the autonomic healing of polymer matrix composites is outlined, as well as the regenerative effects of the self-healing system. The capability of the CDHM model to predict the material properties of the self-healing system is also addressed. The CDHM model is validated with experimental results for various laminates fabricated out of E-glass/epoxy.

  11. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  12. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  13. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  14. Dynamic Deformation Properties of Energetic Composite Materials

    DTIC Science & Technology

    2002-12-01

    the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size on the...study of the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size...qualitative only. 33 5. DEFLAGRATION-TO- DETONATION (DDT) STUDIES As part of an on-going programme to investigate the properties of ultrafine energetic

  15. Use of Thermoset Composite Materials in Cryogenic Tanks

    NASA Astrophysics Data System (ADS)

    Diaz, V.; Cardone, T.; Ramusat, G.

    2014-06-01

    To improve the performances of Future Expendable Launchers, one of the key aspects to be considered is the mass optimization of the cryogenic upper stage of the launcher, where a mass saving of one Kg, is directly transferred to one more Kg of payload.This optimization is inherently linked to the use of composite materials in all the structures that conforms the upper stage of the launcher.Currently, most of the upper stage structures of the operational launchers, like Ariane 5, are made in composite materials, with the exception of the cryogenic (LH2 and LOX) tanks which remain metallic.So, from a structural point of view, the next qualitative step in the development of new expendable launcher, would be the manufacturing of the upper stage cryogenic tanks in composite materials.To reach this objective important concerns mainly related to the potential for leaks and the compatibility with the LOX need to be resolved.In the frame of the FLPP (Future Launcher Preparatory Program) funded by ESA, an activity related to the use of thermoset composite material in the cryogenic tanks has been included.This paper presents a summary of the performed work which includes:* The selection and characterization of the most suitable candidate materials for the considered application* The design and analysis of a subscale demonstrator representative of the LH2 compartment* The design, manufacturing and testing of some test articles representatives of the selected design solutions* The manufacturing and testing of the selected subscale demonstrator.

  16. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  17. A grammatical approach to customization of shape and composite materials

    NASA Astrophysics Data System (ADS)

    Nandi, Soumitra

    value of composite material properties. A grammar is a formal definition of a language written in transformational form. To address these issues, in this research a grammatical approach is developed that will generate a shape grammar to perform shape optimization, and then incorporate a composite material selection system and loading analysis techniques of Solid Mechanics in order to design load bearing components of irregular shape. The approach will be able to consider the user requirements in the very general text form, convert them to the design requirements for the component, generate optimized shape based on multiple design constraints, perform the complete design work, and generate the component. The major contributions include: (1) generating a shape grammar to represent functions of the load bearing component such a way that mass-customization of shape is possible, (2) developing a composite material customization system in order to satisfy directional property requirements, and (3) introducing a unique laminate design approach in order to satisfy design property requirements at the critical cross-sections locally that can result in highly efficient design compared to conventional design method. Verification of the approach will focus on its application to simultaneously explore shapes and customization of composite materials.

  18. Synthesizing Smart Polymeric and Composite Materials

    NASA Astrophysics Data System (ADS)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  19. Nondestructive evaluation of advanced ceramic composite materials

    SciTech Connect

    Lott, L.A.; Kunerth, D.C.; Walter, J.B.

    1991-09-01

    Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

  20. On the Mechanical Behavior of Advanced Composite Material Structures

    NASA Astrophysics Data System (ADS)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  1. Polymer-composite materials for radiation protection.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2012-11-01

    Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.

  2. Experimental Investigation of Textile Composite Materials Using Moire Interferometry

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.

    1995-01-01

    The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less

  3. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  4. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  5. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  6. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  7. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOEpatents

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  8. Preliminary economic evaluation of the use of graphite composite materials in surface transportation, phase 1 results

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Composite materials are discussed with emphasis on the identification of the characteristics of those materials that make them attractive for use in surface transportation. Potential uses of graphite composites are given including automotive applications and the effects of materials substitution on vehicle characteristics and performance. Preliminary estimates of the economic effects of the use of graphite composite materials on vehicle manufacturers and consumers are included. The combined impact on the national economy of vehicle design changes to meet mandated fuel efficiency requirements and the extensive use of graphite composite materials in the automotive industry is considered.

  9. Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2006-01-01

    A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.

  10. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  11. Mishap risk control for advanced aerospace/composite materials

    NASA Technical Reports Server (NTRS)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  12. Ptah-socar fuel-cooled composite materials structure

    NASA Astrophysics Data System (ADS)

    Bouchez, M.; Beyer, S.

    2009-09-01

    One of the key points for the development of dual-mode ramjets operating up to Mach 8 or more is the mastery of fuel-cooled composite materials structures, which are needed, at least, for the combustion chamber. MBDA France and EADS ST have been working on the development of a particular technology for such structures taking advantage of the background of MBDA France in the field of dual-mode ramjet and fuel-cooled structures and of ASTRIUM-EADS ST in the field of high-temperature composite materials. They have developed an innovative technology for advanced monobloc cooled C/C/SiC structures. The paper gives an updated status of the development of Paroi Tissée Application Hypersonique - Simple Operational Composite for Advanced Ramjet (PTAH-SOCAR) technology, including test results, and presents some results obtained during system and demonstrator studies.

  13. Imaging composite material using ultrasonic arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Pain, Damien; Wilcox, Paul D.; Drinkwater, Bruce W.

    2012-05-01

    This article describes an experimental procedure for improving the detectability of small defects in composite laminates based on modifications to the total focusing method (TFM) of processing ultrasonic array data to form an image. The TFM is modified to include the directional dependence of ultrasonic velocity. The maximum aperture angle is limited and a Gaussian frequency-domain filter is applied prior to processing. The parameters of maximum aperture angle, filter centre frequency and filter bandwidth are optimized.

  14. Composite materials flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    Organic composite test specimens were flown on several LDEF experiments. Both bare and coated composites were flown. Atomic oxygen eroded bare composite material, with the resins being recessed at a greater rate than the fibers. Selected coating techniques protected the composite substrate in each case. Tensile and optical properties are reported for numerous specimens. Fiberglass and metal matrix composites were also flown.

  15. Method for preparing dielectric composite materials

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2004-11-23

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  16. Dielectric composite materials and method for preparing

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2003-07-29

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  17. Assessment of space environment induced microdamage in toughened composite materials

    NASA Technical Reports Server (NTRS)

    Sykes, George F.; Funk, Joan G.; Slemp, Wayne S.

    1986-01-01

    The effects of simulated space environments on the microdamage in a series of commercially available toughened matrix composite systems was determined. Low-earth orbit (LEO) exposures were simulated by thermal cycling; geosynchronous orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. Material response was characterized by assessing the induced microcracking and its influence on chemical and mechanical property changes. All materials, including several advanced, tough thermoplastics microcracked when exposed to the simulated LEO environment except a 177 C cured single phase toughened epoxy composite. The GEO simulated environment produced microdamage in all materials. The results suggest that increased matrix toughness may not be the overriding factor leading to improved durability in the space environment.

  18. NASA Composite Materials Development: Lessons Learned and Future Challenges

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  19. Environmental, Safety, and Health Considerations: Composite Materials in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Chu, Huai-Pu (Compiler)

    1994-01-01

    The Aerospace Industries Association, Suppliers of Advanced Composite Materials Association, and the National Aeronautics and Space Administration co-sponsored a conference on 'Environmental, Safety, and Health Considerations--Composite Materials in the Aerospace Industry.' The conference was held in Mesa, Arizona, on October 20-21, 1994. Seventeen papers were presented in four sessions including general information, safety, waste, and emissions from composites. Topics range from product stewardship, best work practice, biotransformation of uncured composite materials, to hazardous waste determination and offgassing of composite materials.

  20. Composite Materials for Advanced Global Mobility Concepts

    DTIC Science & Technology

    2000-10-01

    materials: examples include impregnation with phenolic or other resins, lamination with Kevlar tape, and lamination with a phenolic-resin skin... nanofibers or nanotubes, and crushed calcined cokes can add significantly to the strength and tailorability of the foams; unidirectional expansion

  1. Material Composite Behavior Under High-Pressure

    NASA Astrophysics Data System (ADS)

    Conil, N.; Kavner, A.

    2004-12-01

    ; fibers and matrix pressures are almost the same (not more than 0.6 GPa in difference in our experiments). In addition, we present finite element modeling of behavior of composite materials in the diamond cell sample chamber that are in excellent agreement with experiments results. With this study we show that the geometry of samples in the diamond cell must be understood in order to properly interpret measurements. Our ultimate goal is to use this information to design samples that are optimized for better measurements of rheological behavior of Earth interior materials.

  2. Composite tribological materials. (Latest citations from Fluidex data base). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the properties, behavior, and uses of composite tribological materials in and on various objects, devices, and equipment. The citations examine friction and wear characteristics, mechanisms, and the performance of these materials and the objects to which they are applied. Composite tribological materials are used, for example, in bearings, gears, and piston rings. Included are self lubricating materials. (Contains 250 citations and includes a subject term index and title list.)

  3. Composition of estuarine colloidal material: organic components

    USGS Publications Warehouse

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  4. SRM nozzle design breakthroughs with advanced composite materials

    NASA Astrophysics Data System (ADS)

    Berdoyes, Michel

    1993-06-01

    The weight reduction-related performance and cost of the Space Shuttle's Solid Rocket Motor (SRM) units' critical nozzle components are undergoing revolutionary improvements through the use of 3D-woven carbon/carbon and carbon/alumina composite materials. These can be used to fabricate the SRM's nozzle throat nondegradable insulators, thermostructural insulator, and exit cones. Additional developments are noted among nozzle-related structural components for additional rocket propulsion systems, including a three-piece extendible nozzle.

  5. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    NASA Astrophysics Data System (ADS)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  6. Dynamically driven phase transformations in heterogeneous materials. II. Applications including damage

    NASA Astrophysics Data System (ADS)

    Plohr, JeeYeon N.; Clements, B. E.; Addessio, F. L.

    2006-12-01

    A model, developed for heterogeneous materials undergoing dynamically driven phase transformations in its constituents, has been extended to include the evolution of damage. Damage is described by two mechanisms: interfacial debonding between the constituents and brittle failure micro-crack growth within the constituents. The analysis is applied to silicon carbide-titanium (SiC-Ti) unidirectional metal matrix composites that undergo the following phenomena: Ti has a yield stress of approximately 0.5 GPa and above a pressure of about 2 GPa undergoes a solid-solid phase transformation. The inelastic work from plastic dissipation contributes to the temperature and pressure rise in the Ti. SiC behaves elastically below a critical stress, above which it is damaged by microcrack growth. Finally, under tensile loading, the interface between Ti and SiC debonds according to an interfacial decohesion law. Each process is first examined independently in order to understand how its characteristic behavior is manifested in the stress-strain response of the composite. The complex interplay between loading states, viscoplasticity, damage, and solid-solid phase transformations is then studied at both the micromechanics and macromechanics levels.

  7. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    DOEpatents

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  8. Fire water systems in composite materials

    SciTech Connect

    Sundt, J.L.

    1993-12-31

    Due to corrosion problems in fire water systems offshore there is a need for a corrosion resistant material to improve the reliability of onboard fire fighting systems. Glass Reinforced Epoxy (GRE) pipe is seen as a cost effective and light weight alternative to metals. Through a test program run by AMAT, Advanced Materials a/s in collaboration with the Norwegian Fire and Research Laboratory (NBL, SINTEF), GRE pipes have proved to be viable materials for offshore fire water systems. The test program included furnace testing, jetfire testing and simulated explosion testing. GRE pipes (2--12 inches) from two suppliers were fire tested and evaluated. Both adhesively bonded joints and flange connections were tested. During the course of the project, application methods of passive fire protection and nozzle attachments were improved.

  9. DOE/MSU composite material fatigue database: Test methods, materials, and analysis

    SciTech Connect

    Mandell, J.F.; Samborsky, D.D.

    1997-12-01

    This report presents a detailed analysis of the results from fatigue studies of wind turbine blade composite materials carried out at Montana State University (MSU) over the last seven years. It is intended to be used in conjunction with the DOE/MSU composite Materials Fatigue Database. The fatigue testing of composite materials requires the adaptation of standard test methods to the particular composite structure of concern. The stranded fabric E-glass reinforcement used by many blade manufacturers has required the development of several test modifications to obtain valid test data for materials with particular reinforcement details, over the required range of tensile and compressive loadings. Additionally, a novel testing approach to high frequency (100 Hz) testing for high cycle fatigue using minicoupons has been developed and validated. The database for standard coupon tests now includes over 4,100 data points for over 110 materials systems. The report analyzes the database for trends and transitions in static and fatigue behavior with various materials parameters. Parameters explored are reinforcement fabric architecture, fiber content, content of fibers oriented in the load direction, matrix material, and loading parameters (tension, compression, and reversed loading). Significant transitions from good fatigue resistance to poor fatigue resistance are evident in the range of materials currently used in many blades. A preliminary evaluation of knockdowns for selected structural details is also presented. The high frequency database provides a significant set of data for various loading conditions in the longitudinal and transverse directions of unidirectional composites out to 10{sup 8} cycles. The results are expressed in stress and strain based Goodman Diagrams suitable for design. A discussion is provided to guide the user of the database in its application to blade design.

  10. A Study of Failure Criteria of Fibrous Composite Materials

    NASA Technical Reports Server (NTRS)

    Paris, Federico; Jackson, Karen E. (Technical Monitor)

    2001-01-01

    The research described in this paper is focused on two areas: (1) evaluation of existing composite failure criteria in the nonlinear, explicit transient dynamic finite element code, MSC.Dytran, and (2) exploration of the possibilities for modification of material and failure models to account for large deformations, progressive failure, and interaction of damage accumulation with stress/strain response of laminated composites. Following a review of the MSC.Dytran user manual, a bibliographical review of existing failure criteria of composites was performed. The papers considered most interesting for the objective of this report are discussed in section 2. The failure criteria included in the code under consideration are discussed in section 3. A critical summary of the present procedures to perform analysis and design of composites is presented in section 4. A study of the most important historical failure criteria for fibrous composite materials and some of the more recent modifications proposed were studied. The result of this analysis highlighted inadequacies in the existing failure criteria and the need to perform some numerical analyses to elucidate the answer to questions on which some of the proposed criteria are based. A summary of these ideas, which is a proposal of studies to be developed, is presented in section 5. Finally, some ideas for future developments are summarized in section 6.

  11. Systems and strippable coatings for decontaminating structures that include porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  12. NDE Elastic Properties of Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Fiber-reinforced composites are increasingly replacing metallic alloys as structural materials for primary components of fracture-critical structures. This trend is a result of the growing understanding of material behavior and recognition of the desirable properties of composites. A research program was conducted on NDE methods for determining the elastic properties of composites.

  13. Composite materials: Tomorrow for the day after tomorrow

    NASA Technical Reports Server (NTRS)

    Condom, P.

    1982-01-01

    A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.

  14. A decade of science and engineering of composite materials at the North West Composites Centre, University of Manchester, UK

    NASA Astrophysics Data System (ADS)

    Soutis, Constantinos

    2017-04-01

    The University of Manchester, School of Materials has a large multidisciplinary research programme on polymers, composites and carbon-based materials. This takes place through fundamental studies of structure-property relationships for these materials, including controlled synthesis and processing, and effects of structure andnano-, meso- and macro-scale morphology on physical properties and engineering applications.

  15. A decade of science and engineering of composite materials at the North West Composites Centre, University of Manchester, UK

    NASA Astrophysics Data System (ADS)

    Soutis, Constantinos

    2016-12-01

    The University of Manchester, School of Materials has a large multidisciplinary research programme on polymers, composites and carbon-based materials. This takes place through fundamental studies of structure-property relationships for these materials, including controlled synthesis and processing, and effects of structure andnano-, meso- and macro-scale morphology on physical properties and engineering applications.

  16. On the machinability of composite materials

    SciTech Connect

    Caprino, G.; De Iorio, I.; Santo, L.; Nele, L.

    1996-12-31

    Orthogonal cutting tests were carried out on a unidirectional Carbon Fibre Reinforced Plastic (CFRP), a unidirectional Glass Fibre Reinforced Plastic (GFRP), and a Sheet Moulding Compound (SMC) R50, using high speed steel tools. The force data were interpreted in the light of the usual force scheme adopted in metal cutting, disregarding the forces developing at the tool flank. It was found that, similarly to metals, the unit cutting force depends on the depth of cut t, decreasing with increasing the latter (size effect). The same trend was followed by the coefficient of friction. A new force scheme, previously proposed for composites, together with a different definition of {open_quotes}specific energy{close_quotes}, was then applied. Irrespective of the material considered, the new model results in a coefficient of friction independent of the cutting parameters, and in a specific energy X unaffected by the depth of cut. Nevertheless, X strongly decreases with increasing the rake angle, following different trends for CFRP and GFRP. Amongst the materials tested, the poorest machinability pertains to SMC.

  17. Nondestructive evaluation of a ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1992-01-01

    Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.

  18. Method for preparing polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1990-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  19. Fissure sealant materials: Wear resistance of flowable composite resins

    PubMed Central

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  20. Fissure sealant materials: Wear resistance of flowable composite resins.

    PubMed

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  1. Material and structural studies of metal and polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Serafini, T. T.; Johns, R. H.

    1973-01-01

    Fiber-reinforced composites and design analysis methods for these materials are being developed because of the vast potential of composites for decreasing weight and/or increasing use temperature capability in aerospace systems. These composites have potential for use in airbreathing engine components as well as aeronautical and space vehicle structures. Refractory wire-superalloy composites for use up to 2200 F or more and metal-matrix composites for lower temperature applications such as aerospace structures and turbojet fan and compressor blades are under investigation and are discussed. The development of a number of resin systems, including the polyimides and polyphenylquinoxalines, is described and their potential for use at temperatures approaching 315 C (600 F) is indicated. Various molecular modifications that improve processability and/or increase thermal and oxidative resistance of the resins are also described. Structural analysis methods are discussed for determining the stresses and deformations in complex composite systems. Consideration is also given to residual stresses resulting from the curing process and to the foreign object damage problem in fan blade applications.

  2. Micromechanics of Composite Materials Governed by Vector Constitutive Laws

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2017-01-01

    The high-fidelity generalized method of cells micromechanics theory has been extended for the prediction of the effective property tensor and the corresponding local field distributions for composites whose constituents are governed by vector constitutive laws. As shown, the shear analogy, which can predict effective transverse properties, is not valid in the general three-dimensional case. Consequently, a general derivation is presented that is applicable to both continuously and discontinuously reinforced composites with arbitrary vector constitutive laws and periodic microstructures. Results are given for thermal and electric problems, effective properties and local field distributions, ordered and random microstructures, as well as complex geometries including woven composites. Comparisons of the theory's predictions are made to test data, numerical analysis, and classical expressions from the literature. Further, classical methods cannot provide the local field distributions in the composite, and it is demonstrated that, as the percolation threshold is approached, their predictions are increasingly unreliable. XXXX It has been observed that the bonding between the fibers and matrix in composite materials can be imperfect. In the context of thermal conductivity, such imperfect interfaces have been investigated in micromechanical models by Dunn and Taya (1993), Duan and Karihaloo (2007), Nan et al. (1997) and Hashin (2001). The present HFGMC micromechanical method, derived for perfectly bonded composite materials governed by vector constitutive laws, can be easily generalized to include the effects of weak bonding between the constituents. Such generalizations, in the context of the mechanical micromechanics problem, involve introduction of a traction-separation law at the fiber/matrix interface and have been presented by Aboudi (1987), Bednarcyk and Arnold (2002), Bednarcyk et al. (2004) and Aboudi et al. (2013) and will be addressed in the future.

  3. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    NASA Astrophysics Data System (ADS)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental

  4. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  5. ISOTOPIC COMPOSITIONS OF URANIUM REFERENCE MATERIALS

    SciTech Connect

    Jacobsen, B; Borg, L; Williams, R; Brennecka, G; Hutcheon, I

    2009-09-03

    Uranium isotopic compositions of a variety of U standard materials were measured at Lawrence Livermore National Laboratory and are reported here. Both thermal ionization mass spectrometry (TIMS) and multi-collector inductively couple plasma mass spectrometry (MC-ICPMS) were used to determine ratios of the naturally occurring isotopes of U. Establishing an internally coherent set of isotopic values for a range of U standards is essential for inter-laboratory comparison of small differences in {sup 238}U/{sup 235}U, as well as the minor isotopes of U. Differences of {approx} 1.3{per_thousand} are now being observed in {sup 238}U/{sup 235}U in natural samples, and may play an important role in understanding U geochemistry where tracing the origin of U is aided by U isotopic compositions. The {sup 238}U/{sup 235}U ratios were measured with a TRITON TIMS using a mixed {sup 233}U-{sup 236}U isotopic tracer to correct for instrument fractionation. this tracer was extremely pure and resulted in only very minor corrections on the measured {sup 238}U/{sup 235}U ratios of {approx} 0.03. The values obtained for {sup 238}U/{sup 235}U are: IRMM184 = 137.698 {+-} 0.020 (n = 15), SRM950a = 137.870 {+-} 0.018 (n = 8), and CRM112a = 137.866 {+-} 0.030 (n = 16). Uncertainties represent 2 s.d. of the population. The measured value for IRMM184 is in near-perfect agreement with the certified value of 137.697 {+-} 0.042. However, the U isotopic compositions of SRM950a and CRM112a are not certified. Minor isotopes of U were determined with a Nu Plasma HR MC-ICPMS and mass bias was corrected by sample/standard bracketing to IRMM184, using its certified {sup 238}U/{sup 235}U ratio. Thus, the isotopic compositions determined using both instruments are compatible. The values obtained for {sup 234}U/{sup 235}U are: SRM950a = (7.437 {+-} 0.043) x 10{sup -3} (n = 18), and CRM112a = (7.281 {+-} 0.050) x 10{sup -3} (n = 16), both of which are in good agreement with published values. The value for

  6. Test Methods for Measuring Material Properties of Composite Materials in all Three Material Axes

    DTIC Science & Technology

    2012-01-24

    materials. Hara et al. [4] studied the out-of-plane tensile strength of CFRP laminates using the direct tensile method with specimens of various size...Composite Structures (35) (1996): 5-20. 3. Nielsen, A., Ibsen, J., & Thomsen, O. “Through-Thickness Tensile and Compressive Properties of Stitched CFRP ...Strength of Aligned CFRP Determined by Direct Tensile Method”. Composites Part A: Applied Science and Manufacturing (41) (10) (2010): 1425-1433. 6

  7. Thick electrodes including nanoparticles having electroactive materials and methods of making same

    DOEpatents

    Xiao, Jie; Lu, Dongping; Liu, Jun; Zhang, Jiguang; Graff, Gordon L.

    2017-02-21

    Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.

  8. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    SciTech Connect

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  9. The Development of Low-Cost Integrated Composite Seal for SOFC: Materials and Design Methodologies

    SciTech Connect

    Xinyu Huang; Kristoffer Ridgeway; Srivatsan Narasimhan; Serg Timin; Wei Huang; Didem Ozevin; Ken Reifsnider

    2006-07-31

    This report summarizes the work conducted by UConn SOFC seal development team during the Phase I program and no cost extension. The work included composite seal sample fabrication, materials characterizations, leak testing, mechanical strength testing, chemical stability study and acoustic-based diagnostic methods. Materials characterization work revealed a set of attractive material properties including low bulk permeability, high electrical resistivity, good mechanical robustness. Composite seal samples made of a number of glasses and metallic fillers were tested for sealing performance under steady state and thermal cycling conditions. Mechanical testing included static strength (pull out) and interfacial fracture toughness measurements. Chemically stability study evaluated composite seal material stability after aging at 800 C for 168 hrs. Acoustic based diagnostic test was conducted to help detect and understand the micro-cracking processes during thermal cycling test. The composite seal concept was successfully demonstrated and a set of material (coating composition & fillers) were identified to have excellent thermal cycling performance.

  10. Assessment of The Compatibility of Composite Materials With High-Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Griffin, Dennis E. (Technical Monitor)

    2000-01-01

    The compatibility of composite materials with high-test hydrogen peroxide (HTP) was assessed using various chemical and mechanical techniques. Methods included classical schemes combining concentration assay with accelerated aging by means of a heated water bath. Exothermic reactivity was observed using Isothermal Microcalorimetry. Mechanical Properties testing determined degradation of the composite material. Photoacoustic Infrared Spectroscopy was used to monitor chemical alteration of the resin matrix. Other materials were examined including some polymers and metals.

  11. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    PubMed Central

    Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping

    2010-01-01

    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508

  12. Material properties and fractography of an indirect dental resin composite

    PubMed Central

    Quinn, Janet B.; Quinn, George D.

    2011-01-01

    Objectives Determination of material and fractographic properties of a dental indirect resin composite material. Methods A resin composite (Paradigm, 3M-ESPE, MN) was characterized by strength, static elastic modulus, Knoop hardness, fracture toughness and edge toughness. Fractographic analyses of the broken bar surfaces was accomplished with a combination of optical and SEM techniques, and included determination of the type and size of the failure origins, and fracture mirror and branching constants. Results The flexure test mean strength ± standard deviation was 145 MPA ± 17 MPa, and edge toughness, Te, was 172 N/mm ±12 N/mm. Knoop hardness was load dependent, with a plateau at 0.99 GPa ± .02 GPa. Mirrors in the bar specimens were measured with difficulty, resulting in a mirror constant of approximately 2.6 MPa·m1/2. Fracture in the bar specimens initiated at equiaxed material flaws that had different filler concentrations that sometimes were accompanied by partial microcracks. Using the measured flaw sizes, which ranged from 35 µm to 100 µm in size, and estimates of the stress intensity shape factors, fracture toughness was estimated to be 1.1 MPa·m1/2 ± 0.2 MPa·m1/2. Significance Coupling the flexure tests with fractographic examination enabled identification of the intrinsic strength limiting flaws. The same techniques could be useful in determining if clinical restorations of similar materials fail from the same causes. The existence of a strong load-dependence of the Knoop hardness of the resin composite is not generally mentioned in the literature, and is important for material comparisons and wear evaluation studies. Finally, the edge toughness test was found promising as a quantitative measure of resistance to edge chipping, an important failure mode in this class of materials. PMID:20304478

  13. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    NASA Astrophysics Data System (ADS)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  14. Mechanics of Composite Materials for Spacecraft

    DTIC Science & Technology

    1992-07-01

    Temperature Fibrous Composite Systems," Damage and Oxidation Protection in High Temperature Composites, G.K. Haritos and 0.0. Ochoa, Editors, AD-Vol. 25...Strain-Localization and Size Effect Due to Cracking and Damage , "Fatigue Damage Mechanics of Metal Matrix Composite Laminates," (with E.C.J. Wung...synthesis, characterization and properties, International Center for Applied Sciences, " Damage Mechanics of Metal Matrix Composite Laminates," Gradisca

  15. Ultrasonic Characterization of Fatigue Cracks in Composite Materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Watson, Jason; Johnson, Devin; Walker, James; Russell, Sam; Thom, Robert (Technical Monitor)

    2002-01-01

    Microcracking in composite structures due to combined fatigue and cryogenic loading can cause leakage and failure of the structure and can be difficult to detect in-service. In aerospace systems, these leaks may lead to loss of pressure/propellant, increased risk of explosion and possible cryo-pumping. The success of nondestructive evaluation to detect intra-ply microcracking in unlined pressure vessels fabricated from composite materials is critical to the use of composite structures in future space systems. The work presented herein characterizes measurements of intraply fatigue cracking through the thickness of laminated composite material by means of correlation with ultrasonic resonance. Resonant ultrasound spectroscopy provides measurements which are sensitive to both the microscopic and macroscopic properties of the test article. Elastic moduli, acoustic attenuation, and geometry can all be probed. The approach is based on the premise of half-wavelength resonance. The method injects a broadband ultrasonic wave into the test structure using a swept frequency technique. This method provides dramatically increased energy input into the test article, as compared to conventional pulsed ultrasonics. This relative energy increase improves the ability to measure finer details in the materials characterization, such as microcracking and porosity. As the microcrack density increases, more interactions occur with the higher frequency (small wavelength) components of the signal train causing the spectrum to shift toward lower frequencies. Several methods are under investigation to correlate the degree of microcracking from resonance ultrasound measurements on composite test articles including self organizing neural networks, chemometric techniques used in optical spectroscopy and other clustering algorithms.

  16. Measurement of Poisson's ratio of dental composite restorative materials.

    PubMed

    Chung, Sew Meng; Yap, Adrian U Jin; Koh, Wee Kiat; Tsai, Kuo Tsing; Lim, Chwee Teck

    2004-06-01

    The aim of this study was to determine the Poisson ratio of resin-based dental composites using a static tensile test method. Materials used in this investigation were from the same manufacturer (3M ESPE) and included microfill (A110), minifill (Z100 and Filtek Z250), polyacid-modified (F2000), and flowable (Filtek Flowable [FF]) composites. The Poisson ratio of the materials were determined after 1 week conditioning in water at 37 degrees C. The tensile test was performed with using a uniaxial testing system at crosshead speed of 0.5 mm/min. Data was analysed using one-way ANOVA/post-hoc Scheffe's test and Pearson's correlation test at significance level of 0.05. Mean Poisson's ratio (n=8) ranged from 0.302 to 0.393. The Poisson ratio of FF was significantly higher than all other composites evaluated, and the Poisson ratio of A110 was higher than Z100, Z250 and F2000. The Poisson ratio is higher for materials with lower filler volume fraction.

  17. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    During the past three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. As part of my startup package I received funds to construct a state-of-the-art experimental facility to study gas-solid reaction kinetics. Much of our effort was spent developing the methodology to measure the abundance and isotopic composition of Hg at ultratrace levels in solid materials. In our first study, the abundance and isotopic composition of Hg was determined in bulk samples of the Murchison (CM) and Allende (CV) carbonaceous chondrites. We have continued our study of mercury in primitive meteorites and expanded the suite of meteorites to include other members of the CM and CV chondrite group as well as CI and CO chondrites. Samples of the CI chondrite Orgueil, the CM chondrites Murray, Nogoya, and Cold Bokkeveld, the CO chondrites Kainsaz, Omans, and Isna, and the CV chondrites Vigarano, Mokoia, and Grosnaja were tested. We have developed a thermal analysis ICP-MS technique and applied it to the study of a suite of thermally labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Hg, Au, Tl, Pb, and Bi) in geologic materials as well.

  18. Multi-material Preforming of Structural Composites

    SciTech Connect

    Norris, Robert E.; Eberle, Cliff C.; Pastore, Christopher M.; Sudbury, Thomas Z.; Xiong, Fue; Hartman, David

    2015-05-01

    Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.

  19. Degradation of experimental composite materials and in vitro wear simulation

    NASA Astrophysics Data System (ADS)

    Givan, Daniel Allen

    2001-12-01

    The material, mechanical, and clinical aspects of surface degradation of resin composite dental restorative materials by in vitro wear simulation continues to be an area of active research. To investigate wear mechanisms, a series of experimental resin composites with variable and controlled filler particle shape and loading were studied by in vitro wear simulation. The current investigation utilized a simulation that isolated the wear environment, entrapped high and low modulus debris, and evaluated the process including machine and fluid flow dynamics. The degradation was significantly affected by filler particle shape and less by particle loading. The spherical particle composites demonstrated wear loss profiles suggesting an optimized filler loading may exist. This was also demonstrated by the trends in the mechanical properties. Very little difference in magnitude was noted for the wear of irregular particle composites as a function of particulate size; and as a group they were more wear resistant than spherical particle composites. This was the result of different mechanisms of wear that were correlated with the three-dimensional particle shape. The abrasive effects of the aggregate particles and the polymeric stabilization of the irregular shape versus the destabilization and "plucking" of the spherical particles resulted in an unprotected matrix that accounted for significantly greater wear of spherical composite. A model and analysis was developed to explain the events associated with the progressive material wear loss. The initial phase was explained by fatigue-assisted microcracking and loss of material segments in a zone of high stress immediately beneath a point of high stress contact. The early phase was characterized by the development of a small facet primarily by fatigue-assisted microcracking. Although the translation effects were minimal, some three-body and initial two-body wear events were also present. In the late phases, the abrasive effects

  20. Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh

    2006-01-01

    Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.

  1. Overview of composite materials for optomechanical, data storage, and thermal management systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl H.

    1999-09-01

    Composites offer major improvements in key properties over monolithic materials, including high stiffness, strength and thermal conductivity and low density and coefficient of thermal expansion. They are now baseline in a large and increasing number of dimensionally stable structures, optomechanical systems components and in electronic packaging and thermal management. They also are under development in a number of data storage component, including disks and actuators. In this paper, we present an overview of key materials, including polymer matrix composites, metal matrix composites and carbon/carbon composites.

  2. Supervisory control of drilling of composite materials

    NASA Astrophysics Data System (ADS)

    Ozaki, Motoyoshi

    Composite materials have attractive features, such as high ratios of strength-to-weight and stiffness-to-weight. However, they are easily damaged when they are machined. A typical damage is delamination, which can occur when fiber reinforced composite laminates are drilled. The objective of this research is to study the drilling processes of carbon fiber reinforced laminates, and to develop and test a supervisory control strategy for their delamination-free drilling. Characterization of thrust force and torque is achieved through constant feedrate drilling experiments. The average values of thrust force and torque during the full engagement of the drill are utilized to obtain the Shaw's equations' parameters. The thrust force profile just before exit is given special attention. The Hocheng-Dharan equations, which give conservative values of delamination at the entrance and at the exit, are modified to express the influence of one lamina thickness explicitly. They are utilized not only for the characterization of thrust force but also for the determination of the thrust force reference for force control. In the design of the controllers of thrust force and torque, both thrust force and torque are assumed to be proportional to FPHR (Feed Per Half Revolution). A discrete-time dynamic model is established for the case when the time interval for a half revolution of the drill is divided by the sampling time, and the model is extended to the case of general spindle speeds. PI controllers are designed for the dynamic models of thrust force and torque. Root-locus techniques are used in the analysis. The phases of the drilling process are introduced and the control strategy at each phase is explained. The supervisory controller chooses not only the best control strategy for each phase, but also the reference value and the controller gain that are suitable at each drill position. Drilling experiments are conducted to show the usefulness of the concepts introduced in this

  3. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  4. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  5. Solid Freeform Fabrication of Composite-Material Objects

    NASA Technical Reports Server (NTRS)

    Wang, C. Jeff; Yang, Jason; Jang, Bor Z.

    2005-01-01

    Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on

  6. Poly(vinylidene fluoride)/zinc oxide smart composite material

    NASA Astrophysics Data System (ADS)

    Öğüt, Erdem; Yördem, O. Sinan; Menceloğlu, Yusuf Z.; Papila, Melih

    2007-04-01

    This work aimed at fabrication and electromechanical characterization of a smart material system composed of electroactive polymer and ceramic materials. The idea of composite material system is on account of complementary characteristics of the polymer and ceramic for flexibility and piezoelectric activity. Our preliminary work included Polyvinylidene Fluoride (PVDF) as the flexible piezoelectric polymer, and Zinc Oxide (ZnO) as the piezoelectric ceramic brittle, but capable to respond strains without poling. Two alternative processes were investigated. The first process makes use of ZnO fibrous formation achieved by sintering PVA/zinc acetate precursor fibers via electrospinning. Highly brittle fibrous ZnO mat was dipped into a PVDF polymer solution and then pressed to form pellets. The second process employed commercial ZnO nanopowder material. The powder was mixed into a PVDF/acetone polymer solution, and the resultant paste was pressed to form pellets. The free standing composite pellets with electrodes on the top and bottom surfaces were then subjected to sinusoidal electric excitation and response was recorded using a fotonic sensor. An earlier work on electrospun PVDF fiber mats was also summarized here and the electromechanical characterization is reported.

  7. Mechanics of Composite Materials for Spacecraft

    DTIC Science & Technology

    1992-08-01

    Numerical Techniques for the Elastic Plastic Analysis of Fibrous Metal Matrix Composites. PhD thesis , Civil Engineering, Rensselaer Polytechnic...concentration factor are related as: do*,+ qdo AMBrL do,,ced+dawhere L Is the composite overall stiffness matrix. Thus, once the instantaneous stress...Fibrous Metal Matrix Composites". Ph.D. D =21 (Y31 Thesis , Rensselaer Polytechnic Institute. Thus once the roots of the quartic equation are known, the

  8. Composite materials: Fatigue and fracture. Vol. 3

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K. (Editor)

    1991-01-01

    The present volume discusses topics in the fields of matrix cracking and delamination, interlaminar fracture toughness, delamination analysis, strength and impact characteristics, and fatigue and fracture behavior. Attention is given to cooling rate effects in carbon-reinforced PEEK, the effect of porosity on flange-web corner strength, mode II delamination in toughened composites, the combined effect of matrix cracking and free edge delamination, and a 3D stress analysis of plain weave composites. Also discussed are the compression behavior of composites, damage-based notched-strength modeling, fatigue failure processes in aligned carbon-epoxy laminates, and the thermomechanical fatigue of a quasi-isotropic metal-matrix composite.

  9. Material Characterization for Composite Materials in Load Bearing Wave Guides

    DTIC Science & Technology

    2012-03-01

    range for applications in small RPAs. A graphite epoxy stiffening component will be primarily considered. Different nickel , graphene, and carbon...69 4.3.4 Nickel coated CNT composite ............................................................ 71 4.3.5 P100 carbon fiber...69 Error! Bookmark Figure 48. Power coefficient for the Nickel coated CNT composite

  10. Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Paine, Jeffrey S. N.; Rogers, Craig A.

    1996-01-01

    Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which

  11. Worldwide flight and ground-based exposure of composite materials

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.; Baker, D. J.

    1984-01-01

    The long-term durability of those advanced composite materials which are applicable to aircraft structures was discussed. The composite components of various military and commercial aircraft and helicopters were reviewed. Both ground exposure and flight service were assessed in terms of their impact upon composite structure durability. The ACEE Program is mentioned briefly.

  12. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    NASA Astrophysics Data System (ADS)

    Thiele, Alexander

    conditions, (iii) microencapsulated PCM-concrete walls have the best energetic performance in climates where the outdoor temperature oscillates around the desired indoor temperature, (iv) microencapsulated PCM offers the largest energy and cost savings when embedded in South- and West-facing walls and during the summer months in San Francisco and Los Angeles, CA. Third, a novel experimental method was developed to rapidly quantitatively characterize the thermal performance and potential energy savings of composite materials containing phase change materials (PCM) based on a figure of merit termed the energy indicator (EI). The method featured (i) commonly used specimen geometry, (ii) straightforward experimental implementation, and (iii) sensitivity to relevant design parameters including PCM volume fraction, enthalpy of phase change, composite effective thermal conductivity, and specimen dimensions. Finally, the widely-used admittance method was extended to account for the effects of phase change on the thermal load passing through PCM-composite building walls subjected to realistic outdoor temperature and solar radiation flux. The speed and simplicity of the admittance method could facilitate the design and evaluation of the energy benefits of PCM-composite walls through user-friendly design software for a wide range of users.

  13. Characterization of selected LDEF polymer matrix resin composite materials

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  14. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD).

  15. Evaluation of Composite Materials for Use on Launch Complexes

    NASA Technical Reports Server (NTRS)

    Finchum, A.; Welch, Peter J.

    1989-01-01

    Commercially available composite structural shapes were evaluated for use. These composites, fiberglass-reinforced polyester and vinylester resin materials are being used extensively in the fabrication and construction of low maintenance, corrosion resistant structures. The evaluation found that in many applications these composite materials can be successfully used at the space center. These composite materials should not be used where they will be exposed to the hot exhaust plume/cloud of the launch vehicle during the liftoff, and caution should be taken in their use in areas where electrostatic discharge and hypergolic propellant compatibility are primary concerns.

  16. Progressive failure analysis of fibrous composite materials and structures

    NASA Technical Reports Server (NTRS)

    Bahei-El-din, Yehia A.

    1990-01-01

    A brief description is given of the modifications implemented in the PAFAC finite element program for the simulation of progressive failure in fibrous composite materials and structures. Details of the memory allocation, input data, and the new subroutines are given. Also, built-in failure criteria for homogeneous and fibrous composite materials are described.

  17. Pistons and Cylinders Made of Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

  18. Industry technology assessment of graphite-polymide composite materials. [conferences

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.

  19. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  20. Cured composite materials for reactive metal battery electrolytes

    DOEpatents

    Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.

    2006-03-07

    A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.

  1. Flexible hydrogel-based functional composite materials

    DOEpatents

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  2. Thermophysical characterization of composite materials under transient heating conditions

    NASA Technical Reports Server (NTRS)

    Roetling, J.; Hanson, J.

    1972-01-01

    Thermophysical property measurements were made under transient heating conditions on several materials being considered for use in SCOUT rocket motors. The materials included were ATJ graphite, MX 2600 silica phenolic, FM 5272 cellulose phenolic, and two carbon-carbon composites: CARBITEX 700 and RPP-4. The ATJ was included as a reference or base line material to check performance of the transient tests as it was not expected to be sensitive to heating rate. Measurements included in the program were thermal conductivity, strength, compressive stress-strain (carbon-carbon only), thermal expansion and the effective thermal expansion under partially restrained conditions. Development of this latter measurement was a major part of the program. It consisted of partially restraining the expansion of a specimen as it was heated, measuring the load and strain which occurred (together with a simultaneous modulus determination by superimposing a small cyclic load) and using these quantities to calculate what the effective thermal expansion would have to be to produce the observed stress and deformation. For materials which are sensitive to heating rate, such as reinforced phenolics, it was believed that this would provide a more realistic determination of the thermal expansion as it more nearly simulates the conditions experienced in end use.

  3. Compressive strength of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1975-01-01

    Results of an experimental and analytical investigation of the compressive strength of unidirectional boron-epoxy composite material are presented. Observation of fiber coordinates in a boron-epoxy composite indicates that the fibers contain initial curvature. Combined axial compression and torsion tests were conducted on boron-epoxy tubes and it was shown that the shear modulus is a function of axial compressive stress. An analytical model which includes initial curvature in the fibers and permits an estimate of the effect of curvature on compressive strength is proposed. Two modes of failure which may result from the application of axial compressive stress are analyzed - delamination and shear instability. Based on tests and analysis, failure of boron-epoxy under axial compressive load is due to shear instability.

  4. Super-hybrid composites - An emerging structural material

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Specimens of super-hybrids and advanced fiber composites were subjected to extensive tests to determine their mechanical properties, including impact and thermal fatigue. The super-hybrids were fabricated by a procedure similar to that reported by Chamis et al., (1975). Super-hybrids subjected to 1000 cycles of thermal fatigue from -100 to 300 F retained over 90% of their longitudinal flexural strength and over 75% of their transverse flexural strength; their transverse flexural strength may be as high as 8 times that of a commercially supplied boron/1100-Al composite. The thin specimen Izod longitudinal impact resistance of the super-hybrids was twice that of the boron/110-Al material. Super-hybrids subjected to transverse tensile loads exhibited nonlinear stress-strain relationships. The experimentally determined initial membrane (in-plane) and bending elastic properties of super-hybrids were predicted adequately by linear laminate analysis.

  5. Development of microwave absorbing materials prepared from a polymer binder including Japanese lacquer and epoxy resin

    NASA Astrophysics Data System (ADS)

    Iwamaru, T.; Katsumata, H.; Uekusa, S.; Ooyagi, H.; Ishimura, T.; Miyakoshi, T.

    Microwave absorption composites were synthesized from a poly urushiol epoxy resin (PUE) mixed with one of microwave absorbing materials; Ni-Zn ferrite, Soot, Black lead, and carbon nano tube (CNT) to investigate their microwave absorption properties. PUE binders were specially made from Japanese lacquer and epoxy resin, where Japanese lacquer has been traditionally used for bond and paint because it has excellent beauty. Japanese lacquer solidifies with oxygen contained in air's moisture, which has difficulty in making composite, but we improved Japanese lacquer's solidification properties by use of epoxy resin. We made 10 mm thickness composite samples and cut them into toroidal shape to measure permittivity, permeability, and reflection loss in frequencies ranging from 50 Hz to 20 GHz. Electric magnetic absorber's composites synthesized from a PUE binders mixed either with Soot or CNT showed significantly higher wave absorption over -27 dB than the others at frequencies around 18 GHz, although Japanese lacquer itself doesn't affect absorption. This means Japanese lacquer can be used as binder materials for microwave absorbers.

  6. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  7. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne

    1999-01-01

    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  8. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  9. Corrosion inhibiting composition for treating asbestos containing materials

    DOEpatents

    Hartman, Judithann Ruth

    1998-04-21

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C.sub.8 -C.sub.15 alkylpyridinium halide or mixtures thereof. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  10. Corrosion inhibiting composition for treating asbestos containing materials

    SciTech Connect

    Hartman, J.R.

    1998-04-21

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C{sub 8}{single_bond}C{sub 15} alkylpyridinium halide or mixtures. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

  11. Continuation of tailored composite structures of ordered staple thermoplastic material

    NASA Technical Reports Server (NTRS)

    Santare, Michael H.; Pipes, R. Byron

    1992-01-01

    The search for the cost effective composite structure has motivated the investigation of several approaches to develop composite structure from innovative material forms. Among the promising approaches is the conversion of a planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. A framework was established which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. Predictions for the effective viscosities of a hyper-anisotropic medium consisting of collimated, discontinuous fibers suspended in viscous matrix were extended to capture the characteristics of typical polymers including non-Newtonian behavior and temperature dependence. In addition, the influence of fiber misorientation was also modeled by compliance averaging to determine ensemble properties for a given orientation distribution. A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams such as those used in aircraft fuselage structures. Material heterogeneity can be induced during manufacturing processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing radial and tangential gradients in material properties. Two analysis procedures are used to solve the beam problems. The first method uses separate two-dimensional elasticity solutions for the stresses in the flange and web sections of the beam. The separate solutions are coupled by requiring that forces and displacements match section boundaries. The second method uses an approximate Rayleigh-Ritz technique to find the solutions for more complex beams. Analyses

  12. Reflection and transmission for layered composite materials

    NASA Technical Reports Server (NTRS)

    Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.

    1991-01-01

    A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.

  13. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  14. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  15. Boron cage compound materials and composites for shielding and absorbing neutrons

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-03-04

    Boron cage compound-containing materials for shielding and absorbing neutrons. The materials include BCC-containing composites and compounds. BCC-containing compounds comprise a host polymer and a BCC attached thereto. BCC-containing composites comprise a mixture of a polymer matrix and a BCC filler. The BCC-containing materials can be used to form numerous articles of manufacture for shielding and absorbing neutrons.

  16. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  17. Predictive rendering of composite materials: a multi-scale approach

    NASA Astrophysics Data System (ADS)

    Muller, T.; Callet, P.; da Graça, F.; Paljic, A.; Porral, P.; Hoarau, R.

    2015-03-01

    Predictive rendering of material appearance means going deep into the understanding of the physical interaction between light and matter and how these interactions are perceived by the human brain. In this paper we describe our approach to predict the appearance of composite materials by relying on the multi-scale nature of the involved phenomena. Using recent works on physical modeling of complex materials, we show how to predict the aspect of a composite material based on its composition and its morphology. Specifically, we focus on the materials whose morphological structures are defined at several embedded scales. We rely on the assumption that when the inclusions in a composite material are smaller than the considered wavelength, the optical constants of the corresponding effective media can be computed by a homogenization process (or analytically for special cases) to be used into the Fresnel formulas.

  18. Composite material application for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Heubner, S. W.

    1982-01-01

    With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.

  19. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  20. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012

    SciTech Connect

    Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-10-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

  1. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

  2. Resources, Guidance Materials for the Formaldehyde Emission Standards for Composite Wood Products Rule

    EPA Pesticide Factsheets

    This page provides guidance documents and resources pertaining to formaldehyde including guidance materials pertaining to the Formaldehyde Emissions Standards for Composite Wood Products final rule at 40 CFR part 770.

  3. Bioenvironmental Engineering Guide for Composite Materials

    DTIC Science & Technology

    2014-03-31

    Although some studies show composite fibers to be a potential health risk, other studies show the risk to be relatively less than that of asbestos or...that carbon fiber and composite dust are significantly less toxic than crystalline silica dusts and fibers, such as asbestos , although more research...analysis is conducted under the alternate counting rules for non- asbestos fibers, designated as the B rules. Table 4. Recommended Sampling

  4. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1987-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  5. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1989-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  6. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

  7. Physics in ``Polymers, Composites, and Sports Materials" an Interdisciplinary Course

    NASA Astrophysics Data System (ADS)

    Hagedorn, Eric; Suskavcevic, Milijana

    2007-10-01

    The undergraduate science course described uses the themes of polymers and composites, as used in sports materials, to teach some key concepts in introductory chemistry and physics. The course is geared towards students who are interested in science, but are still completing prerequisite mathematics courses required for science majors. Each class is built around a laboratory activity. Atoms, molecules and chemical reactions are taught in reference to making polyvinyl acetate (white glue) and polyvinyl alcohol (gel glue). These materials, combined with borax, form balls which are subsequently used in physics activities centered on free-fall and the coefficient of restitution. These activities allow the introduction of kinematics and dynamics. A free fall activity involving ice pellets, with and without embedded tissue paper, illustrates the properties of composites. The final series of activities uses balls, shoes, racquets and bats to further illustrate dynamics concepts (including friction, momentum and energy). The physical properties of these sports objects are discussed in terms of the materials of which they are made. The evaluation plan to determine the effectiveness of these activities and preliminary results are also presented.

  8. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The effects of environmental exposure on composite materials are determined. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209, and T300/934. Future results will include AS-1/3501-6 and Kevlar 49/F161-188. Specimens are exposed on the exterior and interior of 737 airplanes of three airlines, and to continuous ground-level exposure at four locations. In addition, specimens are exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to five years at five ground-level exposure locations and on airplanes from one airline.

  9. A high liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  10. High liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  11. Fatigue of Composite Materials and Substructures for Wind Turbine Blades

    SciTech Connect

    MANDELL, JOHN F.; SAMBORSKY, DANIEL D.; CAIRNS, DOUGLAS

    2002-03-01

    This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; and design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.

  12. Correlation of composite material test results with finite element analysis

    NASA Astrophysics Data System (ADS)

    Guƫu, M.

    2016-08-01

    In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.

  13. Production of composites by using gliadin as a bonding material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In our previous papers, a new technology that produces biopolymer composites by particle-bonding was introduced. During the manufacturing process, micrometer-scale raw material was coated with a corn protein, zein, which is then processed to form a rigid material. The coating of raw-material particl...

  14. A Procedure to Determine the Coordinated Chromium and Calcium Isotopic Composition of Astromaterials Including the Chelyabinsk Meteorite

    NASA Technical Reports Server (NTRS)

    Tappa, M. J.; Mills, R. D.; Ware, B.; Simon, J. I.

    2014-01-01

    The isotopic compositions of elements are often used to characterize nucelosynthetic contributions in early Solar System objects. Coordinated multiple middle-mass elements with differing volatilities may provide information regarding the location of condensation of early Solar System solids. Here we detail new procedures that we have developed to make high-precision multi-isotope measurements of chromium and calcium using thermal ionization mass spectrometry, and characterize a suite of chondritic and terrestrial material including two fragments of the Chelyabinsk LL-chondrite.

  15. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  16. Compressive strength after blast of sandwich composite materials.

    PubMed

    Arora, H; Kelly, M; Worley, A; Del Linz, P; Fergusson, A; Hooper, P A; Dear, J P

    2014-05-13

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene-acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson-Cranz scaled distance of 3.02 m kg(-1/3), 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411-413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast.

  17. Cement Paste Matrix Composite Materials Center.

    DTIC Science & Technology

    1987-10-01

    not being fully funded. The projects are: The Effect of Chemical Doping and Phase Transformations on Microstructural Development of Dicalcium Silicate...Ceramics Alumina phosphate cements S. Granick* MSE -Ceramics Polymer-solid interfaces J. Homeny* MSE+-Ceramics Fracture of composites R. J. Kirkpatrick

  18. Delamination durability of composite materials for rotorcraft

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1988-01-01

    Delamination is the most commonly observed failure mode in composite rotorcraft dynamic components. Although delamination may not cause immediate failure of the composite part, it often precipitates component repair or replacement, which inhibits fleet readiness, and results in increased life cycle costs. A fracture mechanics approach for analyzing, characterizing, and designing against delamination will be outlined. Examples of delamination problems will be illustrated where the strain energy release rate associated with delamination growth was found to be a useful generic parameter, independent of thickness, layup, and delamination source, for characterizing delamination failure. Several analysis techniques for calculating strain energy release rates for delamination from a variety of sources will be outlined. Current efforts to develop ASTM standard test methods for measuring interlaminar fracture toughness and developing delamination failure criteria will be reviewed. A technique for quantifying delamination durability due to cyclic loading will be presented. The use of this technique for predicting fatigue life of composite laminates and developing a fatigue design philosophy for composite structural components will be reviewed.

  19. One-zone rolling of composite materials

    NASA Astrophysics Data System (ADS)

    Kokhan, L. S.; Morozov, Yu. A.; Slavgorodskaya, Yu. B.

    2016-12-01

    The energy-force parameters of free rolling of a strip without its tension and rolling with one backward or forward creep zone in the deformation zone are compared. The limiting backward or forward tensions are determined, and the change in the linear sizes of a composite billet during deformation in a rolling mill is considered.

  20. Damage Prediction Models for Advanced Materials and Composites

    NASA Technical Reports Server (NTRS)

    Xie, Ming; Ahmad, Jalees; Grady, Joseph E. (Technical Monitor)

    2005-01-01

    In the present study, the assessment and evaluation of various acoustic tile designs were conducted using three-dimensional finite element analysis, which included static analysis, thermal analysis and modal analysis of integral and non-integral tile design options. Various benchmark specimens for acoustic tile designs, including CMC integral T-joint and notched CMC plate, were tested in both room and elevated temperature environment. Various candidate ceramic matrix composite materials were used in the numerical modeling and experimental study. The research effort in this program evolved from numerical modeling and concept design to a combined numerical analysis and experimental study. Many subjects associated with the design and performance of the acoustic tile in jet engine exhaust nozzle have been investigated.

  1. The Possibility of Using Composite Nanoparticles in High Energy Materials

    NASA Astrophysics Data System (ADS)

    Komarova, M. V.; Vorozhtsov, A. B.; Wakutin, A. G.

    2017-01-01

    The effect of nanopowders on the burning rate varying with the metal content in mixtures of different high energy composition is investigated. Experiments were performed on compositions based on an active tetrazol binder and electroexplosive nanoaluminum with addition of copper, nickel, or iron nanopowders, and of Al-Ni, Al-Cu, or Al-Fe composite nanoparticles produced by electrical explosion of heterogeneous metal wires. The results obtained from thermogravimetric analysis of model metal-based compositions are presented. The advantages of the composite nanoparticles and the possibility of using them in high energy materials are discussed.

  2. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    SciTech Connect

    McIntosh, M.J.; Arzoumanidis, G.G.

    1997-09-02

    A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

  3. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOEpatents

    McIntosh, Michael J.; Arzoumanidis, Gregory G.

    1997-01-01

    A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

  4. A method and system including a double rotary kiln pyrolysis or gasification of waste material

    SciTech Connect

    McIntosh, M.J.; Arzoumanidis, G.G.

    1995-12-31

    A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

  5. Composite materials for polymer electrolyte membrane microbial fuel cells.

    PubMed

    Antolini, Ermete

    2015-07-15

    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials.

  6. Mechanical behaviour of composite materials made by resin film infusion

    NASA Astrophysics Data System (ADS)

    Barile, C.; Casavola, C.; Pappalettere, C.; Tursi, F.

    2010-06-01

    Innovative composite materials are frequently used in designing aerospace, naval and automotive components. In the typical structure of composites, multiple layers are stacked together with a particular sequence in order to give specific mechanical properties. Layers are organized with different angles, different sequences and different technological process to obtain a new and innovative material. From the standpoint of engineering designer it is useful to consider the single layer of composite as macroscopically homogeneous material. However, composites are non homogeneous bodies. Moreover, layers are not often perfectly bonded together and delamination often occurs. Other violations of lamination theory hypotheses, such as plane stress and thin material, are not unusual and in many cases the transverse shear flexibility and the thickness-normal stiffness should be considered. Therefore the real behaviour of composite materials is quite different from the predictions coming from the traditional lamination theory. Due to the increasing structural performance required to innovative composites, the knowledge of the mechanical properties for different loading cases is a fundamental source of concern. Experimental characterization of materials and structures in different environmental conditions is extremely important to understand the mechanical behaviour of these new materials. The purpose of the present work is to characterize a composite material developed for aerospace applications and produced by means of the resin film infusion process (RFI). Different tests have been carried out: tensile, open-hole and filled-hole tensile, compressive, openhole and filled-hole compressive. The experimental campaign has the aim to define mechanical characteristics of this RFI composite material in different conditions: environmental temperature, Hot/Wet and Cold.

  7. High temperature composite materials and magnetodielectric composites for microwave application

    NASA Astrophysics Data System (ADS)

    Do, Thanh Ba

    In the part I, we investigated the microstructures, mechanical properties, and oxidation behavior of hot pressed BN in the presence of sintering additives Al2O3, Y2O3 and SiO2. BN platelets size in the sintered samples grew from ˜5 to ˜30 times for the use of all three oxides, and the use of Al2O3 and Y2O3, correspondingly. The excessive growth of BN platelets in samples containing Al2O3 and Y2O 3 caused them to misalign which, in turn, resulted in its low relative density (92.0%). The use of SiO2 mitigated this grain growth so that BN platelets aligned better to gain a higher relative density (99.5%). Flexural strength and elastic modulus of BN were proportional to their densities. Oxidation experiments conducted at 1200°C in flowing dry air showed borate glass droplets were formed on all of oxidized BN samples. The addition of SiO2 resulted in the formation of a glass layer before the appearance of these glass droplets. The presence of glass droplets was a result of the poor wetting of liquid B2O3 on BN and the dominance of the formation of B2O3 to its evaporation. Their size evolution described the "breadth figure" theory, similar to the formation of water droplets on a flat surface from the saturated water vapor air. Substructures observed inside the glass droplets contained high and consistent Al:Y atomic ratio (5:7) in all samples. The evaporation of B2O 3 isolated Al2O3, Y2O3 in the form of immiscible liquid phase to borate. In the part II, we investigated the formulation of equivalent permittivity and permeability with isotropic and anisotropic Co2Z-polymer composition. These two properties of isotropic Co2Z-LDPE/Co2Z-Silicone composites increased with Co2Z composition. However, their permittivity was always higher than that of their permeability. Permittivity and permeability of anisotropic Co2Z-Silicone composites were split into high and low values along the parallel and perpendicular directions to the alignment direction of Co2Z particles. The

  8. Using Virtual Testing for Characterization of Composite Materials

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  9. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  10. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

    2009-01-01

    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  11. Polydimethylsiloxane-based self-healing composite and coating materials

    NASA Astrophysics Data System (ADS)

    Cho, Soo Hyoun

    This thesis describes the science and technology of a new class of autonomic polymeric materials which mimic some of the functionalities of biological materials. Specifically, we demonstrate an autonomic self-healing polymer system which can heal damage in both coatings and bulk materials. The new self-healing system we developed greatly extends the capability of self-healing polymers by introducing tin catalyzed polycondensation of hydroxyl end-functionalited polydimethylsiloxane and polydiethoxysiloxane based chemistries. The components in this system are widely available and comparatively low in cost, and the healing chemistry also remains stable in humid or wet environments. These achievements significantly increase the probability that self-healing could be extended not only to polymer composites but also to coatings and thin films in harsh environments. We demonstrate the bulk self-healing property of a polymer composite composed of a phase-separated PDMS healing agent and a microencapsulated organotin catalyst by chemical and mechanical testing. Another significant research focus is on self-healing polymer coatings which prevent corrosion of a metal substrate after deep scratch damage. The anti-corrosion properties of the self-healing polymer on metal substrates are investigated by corrosion resistance and electrochemical tests. Even after scratch damage into the substrate, the coating is able to heal, while control samples which do not include all the necessary healing components reveal rapid corrosion propagation. This self-healing coating solution can be easily applied to most substrate materials, and is compatible with most common polymer matrices. Self-healing has the potential to extend the lifetime and increase the reliability of thermosetting polymers used in a wide variety of applications ranging from microelectronics to aerospace.

  12. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, Daniel J.; Bielawski, William J.

    1991-01-01

    A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.

  13. Fabricating Composite-Material Structures Containing SMA Ribbons

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.

    2003-01-01

    An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.

  14. Structural integrity of engineering composite materials: a cracking good yarn

    PubMed Central

    Beaumont, Peter W. R.

    2016-01-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a ‘fracture safe design’ is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242293

  15. Damage detection in composite materials using Lamb wave methods

    NASA Astrophysics Data System (ADS)

    Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos

    2002-04-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.

  16. Synergistic effect of additives including multifunctional acrylates in wood plastic composites

    NASA Astrophysics Data System (ADS)

    Khan, Mubarak A.; Idriss Ali, K. M.; Garnett, John L.

    1993-07-01

    Wood Plastic Composite (WPC) was prepared with simul (soft wood, density = 0.4g/cc) and butylmethacrylate (BMA) monomer using 10% methanol as the swelling agent. Effect of additives including (i) multifunctional acrylates such as tripropylene glycol diacrylate (TPGDA), trimethylol propane triacrylate (TMPTA) (ii) oligomer acrylates like the urethane (UA), epoxy (EA) and polyester (PEA) acrylates and (iii) N-vinyl pyrrolidone (NVP) was investigated using 1 to 3 Mrad dose at 0.8 Mrad/h. Synergistic increases in polymer loading yields was achieved in presence of the additives, particularly with the trifunctional acrylate (TMPTA). In addition, acid as well as urea were also used as co-additives and synergistic enhancement in yields of polymer loading were obtained. The synergistic polymer loading by acid addition causes substantial decrease in tensile strength of the composite; but other additives and co-additives increase both the polymer loading and the tensile strength in these systems.

  17. Regeneration and Remodeling of Composite Materials

    DTIC Science & Technology

    2015-08-27

    gel times to the new two-stage polymers is not applicable because HEMA used Gelator A with a Mn = 1000 g/mol). The polymerization rates were measured...White, Self- Healing Epoxies and Their Composites, in: W.H. Binder (Ed.), Self-Healing Polymers From Principles to Applications . Wiley-VCH Verlag...Jeffrey S. Moore. Multiple stage curable polymer system with controlled transition. US Provisional Patent Application 61/976,793 2. Jason F

  18. Probabilistic Anisotropic Failure Criteria for Composite Materials.

    DTIC Science & Technology

    1987-12-01

    worksheets were based on Microsoft Excel software. 55 55 ’. 2.’ 𔃼..’. -.. ’-,’€’.’’.’ :2.,2..’..’.2.’.’.,’.." .𔃼.. .2...analytically described the failure cri - terion and probabilistic failure states of a anisotropic composite in a combined stress state. Strength...APPENDIX F RELIABILITY/FAILURE FUNCTION WORKSHEET ........... 76 APPENDIX G PERCENTILE STRENGTH WORKSHEET ....................... 80 LIST OF

  19. Photorefractivity in liquid crystalline composite materials

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R.

    1997-09-01

    We report recent improvements in the photorefractive of liquid crystalline thin film composites containing electron donor and acceptor molecules. The improvements primarily result from optimization of the exothermicity of the intermolecular charge transfer reaction and improvement of the diffusion characteristics of the photogenerated ions. Intramolecular charge transfer dopants produce greater photorefractivity and a 10-fold decrease in the concentration of absorbing chromophores. The mechanism for the generation of mobile ions is discussed.

  20. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-09-01

    conditions of static loads; various theories have been advanced to predict the onset and progress of these individual damage events. • The approach taken in...composite laminates, one common approach is the well-known "first ply failure" theory (see e.g. Tsai and Hahn [l]). The basic assumption in the theory ...edge interlaminar stresses provides a physical x tai,-ntion of the edge delamination phenomenon; a suitable theory defining t he conditions for its

  1. Compendium of Fractographic Data for Composite Materials

    DTIC Science & Technology

    1989-12-01

    NOTATION 17 COSt.T: CCOTES is SUBECT TERMS (Continue an reverse f necesjary and IdentIfv by block nurrIY FLD GROUP Si 3R Composites: Coniposite...Fractures * High pressure liquid 3.2.1 Mode l Tension chromatography ( HPLC ) 3.2.2 Mode I Compression * Infrared spectroscopy (IR) 3.2.3 Flexural...overall appearance of a fractured component. The appearance, orientation, and relative position of fractured component is essential for deducing the

  2. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  3. Composite materials for thermal energy storage: enhancing performance through microstructures.

    PubMed

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer.

  4. Flight service environmental effects on composite materials and structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Baker, Donald J.

    1992-01-01

    NASA Langley and the U.S. Army have jointly sponsored programs to assess the effects of realistic flight environments and ground-based exposure on advanced composite materials and structures. Composite secondary structural components were initially installed on commercial transport aircraft in 1973; secondary and primary structural components were installed on commercial helicopters in 1979; and primary structural components were installed on commercial aircraft in the mid-to-late 1980's. Service performance, maintenance characteristics, and residual strength of numerous components are reported. In addition to data on flight components, 10 year ground exposure test results on material coupons are reported. Comparison between ground and flight environmental effects for several composite material systems are also presented. Test results indicate excellent in-service performance with the composite components during the 15 year period. Good correlation between ground-based material performance and operational structural performance has been achieved.

  5. Space Radiation Effects in Inflatable and Composite Habitat Materials

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  6. Optimum design of structures of composite materials in response to aerodynamic noise and noise transmission

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1977-01-01

    Elastic wave propagation and attenuation in a model fiber matrix was investigated. Damping characteristics in graphite epoxy composite materials were measured. A sound transmission test facility suitable to incorporate into NASA Ames wind tunnel for measurement of transmission loss due to sound generation in boundary layers was constructed. Measurement of transmission loss of graphite epoxy composite panels was also included.

  7. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    DOEpatents

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  8. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  9. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  10. Electrode material comprising graphene-composite materials in a graphite network

    DOEpatents

    Kung, Harold H.; Lee, Jung K.

    2014-07-15

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  11. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  12. Generating Finite-Element Models Of Composite Materials

    NASA Technical Reports Server (NTRS)

    Melis, M. E.

    1993-01-01

    Program starts at micromechanical level, from simple inputs supplied by user. COMGEN, COmposite Model GENerator, is interactive FORTRAN program used to create wide variety of finite-element models of continuous-fiber composite materials at micromechanical level. Quickly generates batch or "session files" to be submitted to finite-element preprocessor and postprocessor program, PATRAN. COMGEN requires PATRAN to complete model.

  13. Joining and fabrication of metal-matrix composite materials

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Wiant, H. R.; Bales, T. T.

    1975-01-01

    Manufacturing technology associated with developing fabrication processes to incorporate metal-matrix composites into flight hardware is studied. The joining of composite to itself and to titanium by innovative brazing, diffusion bonding, and adhesive bonding is examined. The effects of the fabrication processes on the material properties and their influence on the design of YF-12 wing panels are discussed.

  14. Support Assembly for Composite Laminate Materials During Roll Press Processing

    NASA Technical Reports Server (NTRS)

    Catella, Luke A.

    2011-01-01

    A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.

  15. Characterization of Elastic Properties of Interfaces in Composite Materials

    DTIC Science & Technology

    1990-09-01

    29.50 ± 3.5*. Although this variance is too large to be explained by the shift in energy flow (analogous to the Goos - Hanchen shift in optics), its...JHU-CNDE-IW.7 AD-A228 119 Characterization of Elastic Properties of Interfaces in Composite Materials T.M. Hsieh, K.A. Hirshman, EA. Lindgren, M...Strategic Defense Initiative Organization has placed a great deal of emphasis on the development of new composite materials, specifically metal and

  16. Composite materials comprising two jonal functions and methods for making the same

    DOEpatents

    Fareed, Ali Syed; Garnier, John Edward; Schiroky, Gerhard Hans; Kennedy, Christopher Robin; Sonuparlak, Birol

    2001-01-01

    The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.

  17. Dynamic Deformation Properties of Energetic Composite Materials

    DTIC Science & Technology

    2005-04-01

    references are provided for further reading. Materials The materials that have been used are ultrafine PETN and RDX prepared by a proprietary method by ICI...density of the loose powder on delivery is ~15 % of the theoretical maximum density (TMD). The ultrafine HNS that was used was HNS IV as supplied by...ultrafine PETN . A - Point at which initiation takes place; B - Detonation wave travelling at 5.6 ± 0.3 mm ms-1. 37 Figure 1.31. Negative streak

  18. Development of Ceramic Fibers for Reinforcement in Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on

  19. Composite-Material Tanks with Chemically Resistant Liners

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  20. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1991-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  1. Eco: An Island Simulation Game. [Includes Packet of Population Education Materials].

    ERIC Educational Resources Information Center

    Yoder, Anita; Landahl, John

    These materials, developed for upper elementary and junior high school students, focus on a selected core of population learning objectives. Included are 24 self-contained student activities designed to be integrated into the existing curriculum. The activities relate to population concepts that can be investigated through mathematics, science,…

  2. Preparation of Al8B4C7 composite materials by using oxide raw materials

    NASA Astrophysics Data System (ADS)

    Zhu, H. X.; Pan, C.; Deng, C. J.; Yuan, W. J.

    2011-10-01

    Al8B4C7 composites materials were prepared by using Al, B2O3 and C as raw materials. The effect of sintering temperature and different additives (Al and C) on Al8B4C7 composites materials were investigated. The Al8B4C7 composites materials were characterized from microstructure, apparent porosity, bulk density and compressive strength. The results demonstrated that the increasing of sintering temperatures could make the samples denser and improve compressive strength. The optimal sintering temperature was 1700 °C, and the main phase composition of Al8B4C7 composites materials were Al8B4C7 and Al2O3. Al additive could improve the properties while C additive played an harmful role. The Al8B4C7 grains were irregular flake and the size was 2~4 μm.

  3. Bearing material. [composite material with low friction surface for rolling or sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, H. E. (Inventor)

    1976-01-01

    A composite material is described which will provide low friction surfaces for materials in rolling or sliding contact and is self-lubricating and oxidation resistant up to and in excess of about 930 C. The composite is comprised of a metal component which lends strength and elasticity to the structure, a fluoride salt component which provides lubrication and, lastly, a glass component which not only provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

  4. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  5. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  6. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  7. Anisotropy of torsional rigidity of sheet polymer composite materials

    NASA Astrophysics Data System (ADS)

    Startsev, O. V.; Kovalenko, A. A.; Nasonov, A. D.

    1999-05-01

    Wide application of polymer composite materials (PCM) in modern technology calls for detailed evaluation of their stress-strain properties in a broad temperature range. To obtain such information, we use the dynamic mechanical analysis and with the help of a reverse torsion pendulum measure the dynamic torsional rigidity of PCM bars of rectangular cross section in the temperature range up to 600 K. It is found that the temperature dependences of the dynamic rigidity of the calculated values of dynamic shear moduli are governed by the percentage and properties of the binder and fibers, the layout of fibers, the phase interaction along interfaces, etc. The principles of dynamic mechanical spectrometry are used to substantiate and analyze the parameters of anisotropy by which the behavior of a composite can be described in the temperature range including the transition of the binder from the glassy into a highly elastic state. For this purpose, the values of dynamic rigidity are measured under low-amplitude vibrations of the PCM specimens with a fiber orientation angle from 0 to 90°. It is shown that for unidirectional composites the dependence between the dynamic rigidity and the fiber orientation angle is of extreme character. The value and position of the peak depend on the type of the binder and fibers and change with temperature. It is found that the anisotropy degree of PCM is dictated by the molecular mobility and significantly changes in the temperature range of transition of the binder and reinforcement from the glassy into a highly elastic state (in the case of SVM fibers). The possibility of evaluating the anisotropy of composites with other reinforcement schemes, in particular, of orthogonally reinforced PCMs, is shown.

  8. Lightweight Composite Materials for Heavy Duty Vehicles

    SciTech Connect

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  9. Anatomy of a Natural Composite Material

    DTIC Science & Technology

    1989-11-01

    Material PERIOD OF PERFORMANCE: 1 Nov 1989 to 31 Oct 1990 OBJECTIVES: A. To characterize the proteins involved in the formation of the mussel byssus ...organisms have been determined (see Table I), B. Catecholoxidase (MW 38,000) from the byssus of ribbed mussels has been purified, polyclonal antibodies have...the byssal varnish. At this concentration it likely c3ntributes to the structural integrity of the byssus as well as being a catalyst. C. 0c,1

  10. Vibration Damping Response of Composite Materials

    DTIC Science & Technology

    1991-04-01

    to predict the vibration damping of these coposites. L lein Irauu, .. rii. se i-s foi tesi specimel gC-miLtrics oSl0y, so that - material...manner that the strain in the x direction was determined. This development results in the transverse strain given as av (x,y,z) avO (x,y)ei~ t a 2wO(xy) ei

  11. Acoustic emission from composite materials. [nondestructive tests

    NASA Technical Reports Server (NTRS)

    Visconti, I. C.; Teti, R.

    1979-01-01

    The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

  12. Active Structural Fibers for Multifunctional Composite Materials

    DTIC Science & Technology

    2014-05-06

    1. Lin, Y., Zhi, Z. and Sodano, 2012, “Barium Titanate and Barium Strontium Titanate Coated Carbon Fibers for Multifunctional Structural Capacitors...Multifunctional Structural Capacitors Consisting of Barium Titanate and Barium Strontium Titanate Coated Carbon Fibers, 18 th International Conference on... Strontium Titanate Coated SiC Fibers,” Electronic Materials and Applications 2011, Jan. 19 th –21 st Orlando, FL (Invited). 9. Lin, Y., Shaffer

  13. Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size

    NASA Astrophysics Data System (ADS)

    Barthelat, Francois

    2014-12-01

    Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.

  14. Investigation of woven composites as potential cryogenic tank materials

    NASA Astrophysics Data System (ADS)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.

    2015-12-01

    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  15. Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Roberts, Gary D.

    2012-01-01

    Textile-based composites could significantly benefit from local toughening using nanofiber coatings. Nanofibers, thermoplastic or otherwise, can be applied to the surface of the fiber tow bundle, achieving toughening of the fiber tow contact surfaces, resulting in tougher and more damage-resistant/tolerant composite structures. The same technique could also be applied to other technologies such as tape laying, fiber placement, or filament winding operations. Other modifications to the composite properties such as thermal and electrical conductivity could be made through selection of appropriate nanofiber material. Control of the needle electric potential, precursor solution, ambient temperature, ambient humidity, airflow, etc., are used to vary the diameter and nanofiber coating morphology as needed. This method produces a product with a toughening agent applied to the fiber tow or other continuous composite precursor material where it is needed (at interfaces and boundaries) without interfering with other composite processing characteristics.

  16. The behavior of delaminations in composite materials - experimental results

    NASA Astrophysics Data System (ADS)

    Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.

    2016-02-01

    Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.

  17. Carbon-carbon composites: Emerging materials for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.

    1989-01-01

    An emerging class of high temperature materials called carbon-carbon composites are being developed to help make advanced aerospace flight become a reality. Because of the high temperature strength and low density of carbon-carbon composites, aerospace engineers would like to use these materials in even more advanced applications. One application of considerable interest is as the structure of the aerospace vehicle itself rather than simply as a protective heat shield as on Space Shuttle. But suitable forms of these materials have yet to be developed. If this development can be successfully accomplished, advanced aerospace vehicles such as the National Aero-Space Plane (NASP) and other hypersonic vehicles will be closer to becoming a reality. A brief definition is given of C-C composites. Fabrication problems and oxidation protection concepts are examined. Applications of C-C composites in the Space Shuttle and in advanced hypersonic vehicles as well as other applications are briefly discussed.

  18. Composite Material Property Nondestructive Characterization Using Obliquely Insonified Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mal, A. K.; Lih, S.

    1994-01-01

    The analysis of reflected ultrasonic waves induced by oblique insonification of composite materials is a powerful tool for providing informations about defects and material properties. A device was developed to manipulate a pair of transmitting and receiving transducers at vrious angles of wave incidence and propagation with the fiber orientation.

  19. Thermal pretreatment of silica composite filler materials

    PubMed Central

    Wan, Quan; Ramsey, Christopher

    2010-01-01

    Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent silanization on Stöber-type silica, we suggest heating at 673 K followed by overnight boiling in water. PMID:20445821

  20. Failure Analysis of Composite Structure Materials.

    DTIC Science & Technology

    1987-05-27

    eTest conditions Dry *Fiber end fracture -. * -Material Hercules 3501-6 177’Ccr AS4 fibers - A.(4 *~ ~ _____________ oil’ , S.D3 P: 65*F dry 400X 180*F...type __ ideit !: Fal hear cr~_ _ 0 v es Wociti- e N 1 44 Mochanicafy intucsd crack direction 270’F. wet 400X 49 2~ .c ’ ag -,ficator1n Fraclograplhs...to 60% maximum stroke) presented in figure 60. The conclusion made is that an increase in Gmax with constant AG results in an increase in striation

  1. Flammability Characteristics of Fiber Reinforced Composite Materials

    DTIC Science & Technology

    1990-08-01

    Thick Vertical Sheet of Kevlar/Phenolio-PVB ( Owens - Corning $pall Liner), MTL A4) 3 12 Chemical Heat Release Rate During Fire Propagation for a 40 0.61 m...Long, 0.10 m Wide and 3 mm Thick Vertical Sheet of S-2/Phenolic ( Owens - Corning ), MTL #5) 13 Chemical Heac Release Rate During Fire Propagation for 41...Materials T eohnology Laboratory (AKTL) by Owens - Corning Corporation; 3. NTL #3: S-2 fiberglabs/polyestel’, flame retardant, prepreg, formulated for

  2. Polymeric compositions incorporating polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  3. DOE Automotive Composite Materials Research: Present and Future Efforts

    SciTech Connect

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  4. Workshop on Scaling Effects in Composite Materials and Structures

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E. (Compiler)

    1994-01-01

    This document contains presentations and abstracts from the Workshop on Scaling Effects in Composite Materials and Structures jointly sponsored by NASA Langley Research Center, Virginia Tech, and the Institute for Mechanics and Materials at the University of California, San Diego, and held at NASA Langley on November 15-16, 1993. Workshop attendees represented NASA, other government research labs, the aircraft/rotorcraft industry, and academia. The workshop objectives were to assess the state-of-technology in scaling effects in composite materials and to provide guidelines for future research.

  5. Recent advances and developments in composite dental restorative materials.

    PubMed

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  6. Emissivity Results on High Temperature Coatings for Refractory Composite Materials

    NASA Technical Reports Server (NTRS)

    Ohlhorst, Craig W.; Vaughn, Wallace L.; Daryabeigi, Kamran; Lewis, Ronald K.; Rodriguez, Alvaro C.; Milhoan, James D.; Koenig, John R.

    2007-01-01

    The directional emissivity of various refractory composite materials considered for application for reentry and hypersonic vehicles was investigated. The directional emissivity was measured at elevated temperatures of up to 3400 F using a directional spectral radiometric technique during arc-jet test runs. A laboratory-based relative total radiance method was also used to measure total normal emissivity of some of the refractory composite materials. The data from the two techniques are compared. The paper will also compare the historical database of Reinforced Carbon-Carbon emissivity measurements with emissivity values generated recently on the material using the two techniques described in the paper.

  7. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  8. The Catalytic Behaviour of NanoAg@montmorillonite Composite Materials

    NASA Astrophysics Data System (ADS)

    Karlíková, Martina; Kvítek, Libor; Prucek, Robert; Panáček, Aleš; Filip, Jan; Pechoušek, Jiří; Adegboyega, Nathaniel F.

    The preparation of nanoAg@montmorillonite composite materials and their catalytic activity is reported in this article. The nanoAg@montmorillonite composite materials were prepared by the adsorption of silver NPs, with an average size about 30 nm, from their aqueous dispersion onto two types of montmorillonite with different chemical composition. Silver NPs were prepared via modified Tollens process, which involves the reduction of [Ag(NH3)2]+ complex cation by maltose. The amount of silver NPs anchored onto the MMT surfaces was determined by UV-VIS spectroscopy; the decrease in absorbance of the dispersion after the adsorption was monitored. Prepared nanocomposite materials were subsequently characterized by means of transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). The reduction of 4-nitrophenol by sodium borohydride was chosen to examine the catalytic properties of the synthesized silver nanocomposite materials.

  9. Biotransformation of an uncured composite material

    NASA Technical Reports Server (NTRS)

    Welsh, Clement J.; Glass, Michael J.; Cheslack, Brian; Pryor, Robert; Tran, Duan K.; Bowers-Irons, Gail

    1994-01-01

    The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible.

  10. Composite material fabrication techniques. CRADA final report

    SciTech Connect

    Frame, B J; Paulauskas, F L; Miller, J; Parzych, W

    1996-09-30

    This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

  11. Composite materials based on wastes of flat glass processing.

    PubMed

    Gorokhovsky, A V; Escalante-Garcia, J I; Gashnikova, G Yu; Nikulina, L P; Artemenko, S E

    2005-01-01

    Glass mirrors scrap and poly (vinyl) butiral waste (PVB) obtained from flat glass processing plants were investigated as raw materials to produce composites. The emphasis was on studying the influence of milled glass mirror waste contents on properties of composites produced with PVB. The characterization involved: elongation under rupture, water absorption, tensile strength and elastic modulus tests. The results showed that the composite containing 10 wt% of filler powder had the best properties among the compositions studied. The influence of the time of exposure in humid atmosphere on the composite properties was investigated. It was found that the admixture of PVB iso-propanol solution to the scrap of glass mirrors during milling provided stabilization of the properties of the composites produced.

  12. Thermal Energy in Carbon Nanotube and Graphene Composite Materials

    NASA Astrophysics Data System (ADS)

    Schiffres, Scott N.

    Low-dimensional materials, like carbon nanotubes (CNTs) and graphene, possess extraordinary properties---higher thermal conductivity than any bulk material, mechanical strength 10-100 times greater than steel on a mass basis, and electrical current capacity 1000 times greater than copper. While composites incorporating these low-dimensional materials promise solutions to global sustainability challenges, significant transport barriers exist at the matrix interface that influence the composite properties. My PhD research sought to address this knowledge gap. I've experimentally explored how CNTs and graphene impact thermal conductivity when added in small volume fractions to gases, liquids and solids through the study of CNT aerogels (ultra lightweight, 8 kg/m3, 99.6% void space), and phase change nanocomposites (hexadecane-graphene). I measured the thermal conductivity of the CNT aerogel with various filling gases versus pressure using a novel technique that targeted ultralow thermal conductivity materials, called metal-coated 3o. I observed amplified energy transport length scales resulting from low gas accommodation, which is a general feature of carbon based nanoporous materials. Our evidence also shows that despite the high thermal conductivity of CNTs, thermal conduction through the CNT network is limited by the high thermal boundary resistance at van der Waals bonded CNT junctions. In the second system, I studied thermal and electrical conductivity of hexadecane- multi-layered-graphene (MLG) phase change nanocomposites to understand how morphology of the MLG network impacts transport. By adjusting the freezing rate, the electrical conductivity in the solid phase can be tuned between 1 and 5 orders-of-magnitude and the solid-liquid thermal conductivity ratio can be varied between 2.6 to 3.0. This research has yielded interesting insights into the tunability of nanocomposites and the physics underlying it, including evidence to indicate that the presence of

  13. A new technique for simulating composite material

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1991-01-01

    This project dealt with the development on new methodologies and algorithms for the multi-spectrum electromagnetic characterization of large scale nonmetallic airborne vehicles and structures. A robust, low memory, and accurate methodology was developed which is particularly suited for modern machine architectures. This is a hybrid finite element method that combines two well known numerical solution approaches. That of the finite element method for modeling volumes and the boundary integral method which yields exact boundary conditions for terminating the finite element mesh. In addition, a variety of high frequency results were generated (such as diffraction coefficients for impedance surfaces and material layers) and a class of boundary conditions were developed which hold promise for more efficient simulations. During the course of this project, nearly 25 detailed research reports were generated along with an equal number of journal papers. The reports, papers, and journal articles are listed in the appendices along with their abstracts.

  14. Highly explosive nanosilicon-based composite materials

    NASA Astrophysics Data System (ADS)

    Clément, D.; Diener, J.; Gross, E.; Künzner, N.; Timoshenko, V. Yu.; Kovalev, D.

    2005-06-01

    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter.

  15. Fracture toughness of fibrous composite materials

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1984-01-01

    Laminates with various proportions of 0 deg, 45 deg, and 90 deg plies were fabricated from T300/5208 and T300/BP-907 graphite/epoxy prepreg tape material. The fracture toughness of each laminate orientation or lay-up was determined by testing center-cracked specimens, and it was also predicted with the general fracture-toughness parameter. The predictions were good except when crack-tip splitting was large, at which time the toughness and strengths tended to be underpredicted. By using predictions, a parametric study was also made of factors that influence fracture toughness. Fiber and matrix properties as well as lay-up were investigated. Without crack-tip splitting, fracture toughness increases in proportion to fiber strength and fiber volume fraction, increases linearly with E(22)/E(11), is largest when the modulus for non-0 deg fibers is greater than that of 0 deg fibers, and is smallest for 0(m)/90(p)(s) lay-ups. (The E(11) and E(22) are Young's moduli of the lamina parallel to and normal to the direction of the fibers, respectively). For a given proportion of 0 deg plies, the most notch-sensitive lay-ups are 0(m)/90(p)(s) and the least sensitive are 0(m)/45(n)(s) and alpha(s). Notch sensitivity increases with the proportion of 0 deg plies and decreases with alpha. Strong, tough matrix materials, which inhibit crack-tip splitting, generally lead to minimum fracture toughness.

  16. Composites Materials and Manufacturing Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  17. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  18. PEDOT-based composites as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiheng; Richardson, Georgia F.; Meng, Qingshi; Zhu, Shenmin; Kuan, Hsu-Chiang; Ma, Jun

    2016-01-01

    Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge-discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications.

  19. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Blum, J. D.; Klaue, Bjorn

    2005-01-01

    During the three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. At the time the grant started, our collaborating PI, Dante Lauretts, was a postdoctoral research associate working with Peter Buseck at Arizona State University. The work on chondritic Hg was done in collaboration with Dante Lauretta and Peter Buseck and this study was published in Lauretta et a1 (2001a). In July, 2001 Dante Lauretta accepted a position as an Assistant Professor in the Lunar and Planetary Laboratory at the University of Arizona. His funding was transferred and this grant has supported much of his research activities during his first two years at the U of A. Several other papers are in preparation and will be published soon. We presented papers on this topic at Goldschmidt Conferences, the Lunar and Planetary Science Conferences, and the Annual Meetings of the Meteoritical Society. The work done under this grant has spurred several new directions of inquiry, which we are still pursuing. Included in this paper are the studies of bulk abundances and isotopic compositions of metreoritic Mercury, and the development of a thermal analysis ICP-MS technique applied to thermally liable elements.

  20. Mechanistic Effects of Porosity on Structural Composite Materials

    NASA Astrophysics Data System (ADS)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  1. Write Me a Ream: A Course in Controlled Composition for Job Training and Adult Education (includes handbook).

    ERIC Educational Resources Information Center

    Kunz, Linda Ann; Viscount, Robert R.

    This handbook for teachers and the accompanying student workbook are the basic materials in a course on controlled composition that can be used for on-the-job training, adult education, or as part of a writing course for students at various grade levels. Controlled composition is a program for improving expository writing skills; the program…

  2. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    SciTech Connect

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow production rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.

  3. Development of chemical vapor composites, CVC materials. Final report

    SciTech Connect

    1998-10-05

    Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

  4. Use of Composite Protein Database including Search Result Sequences for Mass Spectrometric Analysis of Cell Secretome

    PubMed Central

    Shin, Jihye; Kim, Gamin; Kabir, Mohammad Humayun; Park, Seong Jun; Lee, Seoung Taek; Lee, Cheolju

    2015-01-01

    Mass spectrometric (MS) data of human cell secretomes are usually run through the conventional human database for identification. However, the search may result in false identifications due to contamination of the secretome with fetal bovine serum (FBS) proteins. To overcome this challenge, here we provide a composite protein database including human as well as 199 FBS protein sequences for MS data search of human cell secretomes. Searching against the human-FBS database returned more reliable results with fewer false-positive and false-negative identifications compared to using either a human only database or a human-bovine database. Furthermore, the improved results validated our strategy without complex experiments like SILAC. We expect our strategy to improve the accuracy of human secreted protein identification and to also add value for general use. PMID:25822838

  5. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  6. Microwave grafted, composite and coprocessed materials: drug delivery applications.

    PubMed

    Kaur, Loveleen; Singh, Inderbir

    2016-12-01

    Novel modified pharmaceutical materials with desired functionalities are required for the development of drug delivery systems. Excipients are no more inert ingredients but these are playing crucial roles in modifying physicochemical properties of drugs and for imparting desired functionalities in the delivery system. In this review article, modified materials such as grafted, composite and coprocessed have been discussed along with the updated reported literature on the same. Applications of grafted materials as drug release retardant, mucoadhesive polymer and tablet superdisintegrant have been elaborated. Use of composite materials in the development of transdermal films, hydrogels, microspheres, beads and nanoparticles have been discussed. Methods for the preparation of coprocessed materials along with commercial products of different coprocessed excipients have also been enlisted.

  7. Compositional effects of organic material in HC potential assessment

    NASA Astrophysics Data System (ADS)

    Luo, W. P.; Tsai, L. Y.

    2015-12-01

    Studies of petroleum system is the main theme of hydrocarbon potential assessment, in which the characteristics of source rock is especially worth noticed. In recent years, besides the growth of conventional hydrocarbon resources being rapidly utilized, the exploration of unconventional deposits is getting more and more important. Since Taiwan has a strong energy demand and still highly relied on imported fossil fuel, the development of unconventional gas resources needs to be considered. This research discussed the relationship among characteristics and thermal maturity of different organic material versus their hydrocarbon potential. In order to compare the compositional effects from different organic material, torbanites from Huangxian basin, China and Miocene humic coal from Chuhuangkeng Anticline (one of the most productive oil and gas fields), Taiwan were examined and compared. Torbanites from China had relatively low maturation with vitrinite reflectance 0.38~0.51%, whereas the maturation of humic coal from Chuhuangkeng Anticline are a little bit higher with vitrinite reflectance 0.55~0.6%, plus some methane explored. Methods of study include petrographic analysis, vitrinite reflectance measurement (Ro%), Rock-Eval pyrolysis, and other geochemical parameters. The conclusions were derived after comparing experimental results and the regional geologic information of samples studied. In conclude, sample from China is type I kerogen, and its organic matter is mostly algae, whereas the humic coal sample from Taiwan belongs to type III kerogen. The analytic results indicate that the characteristics organic matters affect their maturity. Even though the thermal history and depositional environments are different in Taiwan and China, their organic micelles still exhibit a similar trend in the process of coalification. The role of maceral composition played in HC potential needs to be considered in future shale gas exploration.

  8. Modeling the thermal properties and processing of composite materials

    SciTech Connect

    Pitchumani, R.

    1992-01-01

    The manufacture of partially cured, thermoset matrix composite systems is modeled. A generalized analysis, applicable to almost all the fiber-resin systems encountered in practice, is carried out in terms of four key dimensionless groups formed of the process and the product parameters - (1) the Damkohler number (K(sub o)) which is a relative measure of the conduction and the reaction time scales, (2) the dimensionless activation energy (E(sub o)), (3) the adiabatic reaction temperature (B(sub o)) which represents the temperature rise potential in the composite due to the heat of the cure reaction, and (4) the Biot number (B(sub i)) which characterizes the post-cure convective cooling of the composite product. Optimal cure cycles which yield a homogeneous cure in the composite, are obtained as a function of the dimensionless parameters. Design plots for the optimal cure temperature and duration are presented. Their use in practical situations is illustrated in the context of a commercially available graphite-epoxy prepreg from Hercules, which is widely used in the aerospace industry. The thermal properties of the composite namely, the transient thermal diffusivity and the steady state thermal conductivity, are essential parameters in the process modeling studies, as well for the design of composite materials for several high temperature applications. Transient heat conduction in fibrous composites is investigated with the aim of devising a criterion for the validity of the analysis of composite materials as homogeneous media having the effective thermal properties. A homogeneity criterion based on the composite thickness is derived in terms of the fiber volume fraction and the fiber diameter. The criterion, which is the first of its kind for fibrous composites, is valid in the practical range of composite parameters. An analytical means for evaluating the effective thermal diffusivity is also presented.

  9. Insulation Materials Comprising Fibers Having a Partially Cured Polymer Coating Thereon, Articles Including Such Insulation Materials, and Methods of Forming Such Materials and Articles

    NASA Technical Reports Server (NTRS)

    Morgan, Richard E. (Inventor); Meeks, Craig L. (Inventor)

    2017-01-01

    Insulation materials have a coating of a partially cured polymer on a plurality of fibers, and the plurality of coated fibers in a cross-linked polymeric matrix. Insulation may be formed by applying a preceramic polymer to a plurality of fibers, heating the preceramic polymer to form a partially cured polymer over at least portions of the plurality of fibers, disposing the plurality of fibers in a polymeric material, and curing the polymeric material. A rocket motor may be formed by disposing a plurality of coated fibers in an insulation precursor, curing the insulation precursor to form an insulation material without sintering the partially cured polymer, and providing an energetic material over the polymeric material. An article includes an insulation material over at least one surface.

  10. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  11. Mechanical Properties of Composite Material Using Coal Ash and Clay

    NASA Astrophysics Data System (ADS)

    Fukumoto, Isao; Kanda, Yasuyuki

    Coal ash is industry waste exhausted lots of amount by electric power plant. The particle sizes of coal ash, especially coal fly ash are very fine, and the chemical component are extremely resemble with Okinawa-Kucha clay. From the point of view that clay is composed of particles of micro meter size in diameter, we should try the application for fabrication of composite material using coal fly ash and clay. The comparison of the mechanical properties of composite material using coal fly ash and clay were performed during electric furnace burning and spark plasma sintering. As a result, the bending strength of composite material containing the coal ash 10% and fired at 1423K using the electric furnace after press forming at 30 MPa showed the highest value of 47 MPa. This phenomenon suggests a reinforcement role of coal ash particles to clay base material. In spark plasma sintering process, the bending strength of the composite material containing the clay 5-10% to fly ash base material fired at 1473K and pressured at 20 MPa showed the highest value of 88 MPa. This result indicates a binder effect of clay according to the liquid phase sintering of melted clay surrounding around coal fly ash particles surface.

  12. Military turbojet component design and validation with thermostructural composite material

    SciTech Connect

    Spriet, P.; Boury, D.; Habarou, G.

    1995-12-01

    Ceramic Matrix Composite (CMC) materials based on a concept providing both high temperature capabilities and high mechanical strength can meet new turbojet requirements. They have the potential to enhance performance and durability of pertinent parts. Lab characterization performed on test samples showed that SEPCARBINOX {reg_sign} C/SiC composites with adequate finishing treatments can sustain temperatures up to 600 - 650{degrees}C for long duration and CERASEP {reg_sign} SiC/SiC composites can sustain temperatures up to 1200{degrees}C. A large amount of R&D activities at SEP on CMC components over the last 10 years have demonstrated a good potential for C/SiC and SiC/SiC composites and brought design experience and methodology for developments. In the future, engines should be able to take advantage of an improved thermostructural material specifically developed for turbojet environment.

  13. Development of Boride Composite Materials for Cold Cathode Devices

    DTIC Science & Technology

    1981-05-01

    22 7. Diagram of the Induction Heating Facilities .. .. .....24 8. Typical Pellet After RF Heating...technique in an RF induction furnace. Pellets of the eu- tectic composition available from the literature were melted as well as pellets of a composition...com- pounds with the metals and metal oxides . Pure boron is silvery gray in color. In order to avoid reactions with Other materials at high tempera

  14. A physically-based abrasive wear model for composite materials

    SciTech Connect

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  15. Effects of thermal cycling on composite materials for space structures

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.

  16. Heat induced damage detection in composite materials by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  17. Pin bearing evaluation of LTM25 composite materials

    NASA Technical Reports Server (NTRS)

    Shah, C. H.; Postyn, A. S.

    1996-01-01

    This report summarizes pin bearing evaluations of LTM25 composite materials. Northrop Grumman Corporation conducted pin bearing testing and fabricate two panels from composite materials that cure at low temperatures. These materials are being incorporated into Unmanned Aerial Vehicles (UAVS) to reduce manufacturing costs since they allow the use of low-cost tooling and facilities. Two composite prepreg product forms were evaluated; MR50/LTM25 unidirectional tape, batch 2881vd and CFS003/LTM25 woven cloth, batch 2216. Northrop Grumman fabricated, machined, and tested specimens to determine the bearing strength in accordance with MIL-HDBK-17D, Volume 1, Section 7.2.4. Quasi-isotropic laminates from the two product forms were fabricated for these tests. In addition, 2 quasi-isotropic panels of dimensions 12 in. x 28 in. were fabricated (one each from the two product forms), inspected, and shipped to NASA Langley for further evaluation.

  18. Composite materials. Volume 3 - Engineering applications of composites. Volume 4 - Metallic matrix composites. Volume 8 - Structural design and analysis, Part 2

    NASA Technical Reports Server (NTRS)

    Noton, B. R. (Editor); Kreider, K. G.; Chamis, C. C.

    1974-01-01

    This volume discusses a vaety of applications of both low- and high-cost composite materials in a number of selected engineering fields. The text stresses the use of fiber-reinforced composites, along with interesting material systems used in the electrical and nuclear industries. As to technology transfer, a similarity is noted between many of the reasons responsible for the utilization of composites and those problems requiring urgent solution, such as mechanized fabrication processes and design for production. Features topics include road transportation, rail transportation, civil aircraft, space vehicles, builing industry, chemical plants, and appliances and equipment. The laminate orientation code devised by Air Force materials laboratory is included. Individual items are announced in this issue.

  19. Research of carbon composite material for nonlinear finite element method

    NASA Astrophysics Data System (ADS)

    Kim, Jung Ho; Garg, Mohit; Kim, Ji Hoon

    2012-04-01

    Works on the absorption of collision energy in the structural members are carried out widely with various material and cross-sections. And, with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. CFRP(Carbon Fiber Reinforced Plastics) usually is applying the two primary structural members because of different result each design parameter as like stacking thickness, stacking angle, moisture absorption ect. We have to secure the data for applying primary structural members. But it always happens to test design parameters each for securing the data. So, it has much more money and time. We can reduce the money and the time, if can ensure the CFRP material properties each design parameters. In this study, we experiment the coupon test each tension, compression and shear using CFRP prepreg sheet and simulate non-linear analyze at the sources - test result, Caron longitudinal modulus and matrix poisson's ratio using GENOAMQC is specialized at Composite analysis. And then we predict the result that specimen manufacture changing stacking angle and experiment in such a way of test method using GENOA-MCQ.

  20. Research of carbon composite material for nonlinear finite element method

    NASA Astrophysics Data System (ADS)

    Kim, Jung Ho; Garg, Mohit; Kim, Ji Hoon

    2011-11-01

    Works on the absorption of collision energy in the structural members are carried out widely with various material and cross-sections. And, with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. CFRP(Carbon Fiber Reinforced Plastics) usually is applying the two primary structural members because of different result each design parameter as like stacking thickness, stacking angle, moisture absorption ect. We have to secure the data for applying primary structural members. But it always happens to test design parameters each for securing the data. So, it has much more money and time. We can reduce the money and the time, if can ensure the CFRP material properties each design parameters. In this study, we experiment the coupon test each tension, compression and shear using CFRP prepreg sheet and simulate non-linear analyze at the sources - test result, Caron longitudinal modulus and matrix poisson's ratio using GENOAMQC is specialized at Composite analysis. And then we predict the result that specimen manufacture changing stacking angle and experiment in such a way of test method using GENOA-MCQ.

  1. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  2. Fungal degradation of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

    1997-01-01

    As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

  3. Study of the stress wave factor technique for evaluation of composite materials. Final report

    SciTech Connect

    Duke, J.C. Jr.; Henneke, E.G. II; Kiernan, M.T.; Grosskopf, P.P.

    1989-01-01

    The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.

  4. A study of the stress wave factor technique for evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Kiernan, M. T.; Grosskopf, P. P.

    1989-01-01

    The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.

  5. Using Spiral Notch Torsion Test to Evaluate Fracture Toughness of Structural Materials and Polymeric Composites

    SciTech Connect

    Wang, Jy-An John; Tan, Ting

    2013-01-01

    Spiral Notch Torsion Test (SNTT) was developed recently to measure the intrinsic fracture toughness (KIC) of structural materials. The SNTT system operates by applying pure torsion to uniform cylindrical specimens with a notch line that spirals around the specimen at a 45 pitch. The KIC values and the associated energy release rate are obtained with the aid of a three-dimensional finite-element evaluation. The SNTT method is uniquely suitable for testing a wide variety of structural materials, including others such as ceramics, graphite, concrete, polymeric composites, and for bi-material interface fracture toughness evaluation. The SNTT test results for these structural materials and polymeric composite are demonstrated in this paper. These results demonstrated that SNTT has great potential in structural materials and polymeric composites testing, which can provide useful information for design and fabrication of structural components.

  6. Promising quantitative nondestructive evaluation techniques for composite materials

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.

    1985-01-01

    Some recent results in the area of the ultrasonic, acoustic emission, thermographic, and acousto-ultrasonic NDE of composites are reviewed. In particular, attention is given to the progress in the use of ultrasonic attenuation, acoustic emission (parameter) delay, liquid-crystal thermography, and the stress wave factor in structural integrity monitoring of composite materials. The importance of NDE flaw significance characterizations is emphasized since such characterizations can directly indicate the appropriate NDE technique sensitivity requirements. The role of the NDE of flawed composites with and without overt defects in establishing quantitative accept/reject criteria for structural integrity assessment is discussed.

  7. Composite Overwrapped Pressure Vessels (COPV) Materials Aging Issues

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This slide presentation reviews some of the issues concerning the aging of the materials in a Composite Overwrapped Pressure Vessels (COPV). The basic composition of the COPV is a Boss, a composite overwrap, and a metallic liner. The lifetime of a COPV is affected by the age of the overwrap, the cyclic fatigue of the metallic liner, and stress rupture life, a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. There is information about the coupon tests that were performed, and a test on a flight COPV.

  8. Effective thermal conductivity of a thin, randomly oriented composite material

    SciTech Connect

    Phelan, P.E.; Niemann, R.C.

    1997-10-01

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thicknesses. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relative low thermal conductivity. The results indicate that, below some threshold thickness, the composite thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between the filler and matrix thermal conductivities.

  9. Experimental determination of material constants of a hybrid composite laminate

    SciTech Connect

    Ihekweazu, S.N.; Lari, S.B.; Unanwa, C.O.

    1999-07-01

    This paper discusses the results of the experimental study that was conducted in order to determine the material properties of a hybrid composite laminate made from Fiberite material MXM-7714/120 (a fabric prepreg consisting of woven Kevlar{reg_sign} 49 reinforcement impregnated with Fiberite 250 F (121 C) curing 7714 epoxy resin) and HYE-2448AIE (a 250 F (121 C) curing epoxy resin impregnated unidirectional graphite tape). First, each of the materials that comprise the hybrid laminate was fabricated separately according to ASTM-D-3039 specification in order to determine their material properties. The materials were then hybridized and the properties were determined. Data from this experiment reveal that a new class of material that can meet desired specifications can be created through hybridization. The data also revealed that the properties of the materials bonded together as a hybrid complement the properties of the constituent members of the hybrid.

  10. Optimizing material properties of composite plates for sound transmission problem

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Ting; Pawar, S. J.; Huang, Jin H.

    2015-01-01

    To calculate the specific transmission loss (TL) of a composite plate, the conjugate gradient optimization method is utilized to estimate and optimize material properties of the composite plate in this study. For an n-layer composite plate, a nonlinear dynamic stiffness matrix based on the thick plate theory is formulated. To avoid huge computational efforts due to the combination of different composite material plates, a transfer matrix approach is proposed to restrict the dynamic stiffness matrix of the composite plate to a 4×4 matrix. Moreover, the transfer matrix approach has also been used to simplify the complexity of the objective function gradient for the optimization method. Numerical simulations are performed to validate the present algorithm by comparing the TL of the optimal composite plate with that of the original plate. Small number of iterations required during convergence tests illustrates the efficiency of the optimization method. The results indicate that an excellent estimation for the composite plate can be obtained for the desired sound transmission.

  11. Determination of replicate composite bone material properties using modal analysis.

    PubMed

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found.

  12. Factors affecting the isotopic composition of organic matter. (1) Carbon isotopic composition of terrestrial plant materials.

    PubMed

    Yeh, H W; Wang, W M

    2001-07-01

    The stable isotope composition of the light elements (i.e., H, C, N, O and S) of organic samples varies significantly and, for C, is also unique and distinct from that of inorganic carbon. This is the result of (1) the isotope composition of reactants, (2) the nature of the reactions leading to formation and post-formational modification of the samples, (3) the environmental conditions under which the reactions took place, and (4) the relative concentration of the reactants compared to that of the products (i.e., [products]/[reactants] ratio). This article will examine the carbon isotope composition of terrestrial plant materials and its relationship with the above factors. delta13C(PDB) values of terrestrial plants range approximately from -8 to -38%, inclusive of C3-plants (-22 to -38%), C4-plants (-8 to -15%) and CAM-plants (-13 to -30%). Thus, the delta13C(PDB) values largely reflect the photosynthesis pathways of a plant as well as the genetics (i.e., species difference), delta13C(PDB) values of source CO2, relevant humidity, CO2/O2 ratios, wind and light intensity etc. Significant variations in these values also exist among different tissues, different portions of a tissue and different compounds. This is mainly a consequence of metabolic reactions. Animals mainly inherit the delta13C(PDB) values of the foods they consume; therefore, their delta13C(PDB) values are similar. The delta13C(PDB) values of plant materials, thus, contain information regarding the inner workings of the plants, the environmental conditions under which they grow, the delta13C(PDB) values of CO2 sources etc., and are unique. Furthermore, this uniqueness is passed on to their derivative matter, such as animals, humus etc. Hence, they are very powerful tools in many areas of research, including the ecological and environmental sciences.

  13. Graphene and carbon nanofiber nanopaper for multifunction composite materials

    NASA Astrophysics Data System (ADS)

    Wu, Chunxia; Lu, Haibao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2011-04-01

    The new structures and multifunctional materials is that it can achieve some other special functions while it has ability to carry, such as wave-transparent, absorbing, anti-lightning, anti-heat, anti-nuclear etc. It represents the direction of future development of structural materials. And graphene is the one of two-dimensional atomic crystal free substance only found in the existence and shows great importance for fundamental studies and technological applications due to its unique structure and a wide range of unusual properties. It exhibits great promise for potential applications in chemistry, materials, and many other technological fields. In this paper, we prepare nanopaper through physical vapor deposition (PVD) with a variety in the weight ratio between graphene and nanofiber. Then prepare composite materials with nanopaper and T300/AG80 prepreg by the meaning of autoclave molding. The morphology of nanopaper was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). And the electrical properties and the EMI shielding performances of these nanocomposites have been investigated experimentally by and four-point probe measurement and vector network analyzer. The experimental results indicate that the composites made from graphene and nanofiber nanopaper have highly electric capability, and the EMI shielding value of composites were all up to -15dB. In the same time the conductivity and the EMI shielding performances were improved with increasing the ratio of graphene in nanopaper. We tested the mechanical properties of composite materials at the same time. The average strength of composite materials is about 2000MPa, the elastic modulus is 130GPa above. We are sure that it can be used as the load-bearing structural material which has a multi-functional performance in the aviation field.

  14. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  15. Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties

    NASA Astrophysics Data System (ADS)

    Margossian, Christa M.

    Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

  16. Optical properties of polymer/chalcogenide glass composite materials

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Pogreb, Roman; Sutovski, Semion

    2000-06-01

    The novel composite material based on middle density polyethylene on one hand and thermoplastic chalcogenide glass on other hand has been worked out. Both materials used in the research are highly transparent in the middle and far IR but refraction indexes of components differ dramatically. The basic materials, polymer and glass, have close viscosities at the temperature of polyethylene processing. This fact allowed use of the extrusion technique for homogenization purposes. We proved, that the controlled structure of a composite could be derived through the varying of technological parameters of the mixing process. Single- and twin screw extrusion processes obtained compositions, which contain up to 50% particles of chalcogenide glass, which were dispersed in the polymer matrix. The highly homogeneous compositions that contain perfect spherical glass particles of 1-2 micrometers in diameter dispersed into polymer matrix were obtained as well. Highly oriented structures involving chalcogenide glass fibers immersed in the polymer matrix were prepared under high stretch speeds as well. Such fiberlike structures exhibited pronounced polarization properties. We studied the optical properties of the composite and came to the conclusion that the controlled structure of the composite allows variation in its optical properties. It was established that it is possible to produce a composite that is opaque in the visible and near IR, and highly transparent in the 2-25-micrometers wave length band. Light scattering on oriented and disordered structures was studied by the IR spectro-goniometer. The novel composite which was developed by our group is intended for various IR-optics applications.

  17. Composite Materials Design Database and Data Retrieval System Requirements

    DTIC Science & Technology

    1991-08-01

    technology. Gaining such an understanding will facilitate the eventual development and operation of utilitarian composite materials databases ( CMDB ) designed...Significant Aspects of Materials Databases. While the components of a CMDB can be mapped to components of other types of databases, some differences...stand out and make it difficult to implement an effective CMDB on current Commercial, Off-The-Shelf (COTS) systems, or general DBMSs. These are summarized

  18. Nanocomposite Interphases for Improved Transparent Polymer Composite Materials

    DTIC Science & Technology

    2008-08-01

    Nanocomposite Interphases for Improved Transparent Polymer Composite Materials by Daniel J. O’Brien, Jason Robinette, James R. Heflin , and...Jason Robinette Weapons and Materials Research Directorate, ARL James R. Heflin and Jason Ridley Virginia Polytechnic Institue and State... Heflin ,* and Jason Ridley* 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: AMSRD-ARL

  19. Modifications of a Composite-Material Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; McNeal, Shawn R.

    2005-01-01

    Two short reports discuss modifications of a small, lightweight combustion chamber that comprises a carbon/carbon composite outer shell and an iridium/ rhenium inner liner. The first report discusses chamber design modifications made as results of hot-fire tests and post-test characterization. The Books & Reports 32 NASA Tech Briefs, June 2005 modifications were intended to serve a variety of purposes, including improving fabrication, reducing thermal-expansion mismatch stresses, increasing strength-to-weight ratios of some components, and improving cooling of some components. The second report discusses (1) the origin of stress in the mismatch between the thermal expansions of the Ir/Re liner and a niobium sleeve and flange attached to the carbon/ carbon shell and (2) a modification intended to relieve the stress. The modification involves the redesign of an inlet connection to incorporate a compressible seal between the Ir/Re liner and the Nb flange. A nickel alloy was selected as the seal material on the basis of its thermal-expansion properties and its ability to withstand the anticipated stresses, including the greatest stresses caused by the high temperatures to be used in brazing during fabrication.

  20. Topics in composite materials and structures; Proceedings of the Sessions, ASME Summer Mechanics and Materials Conference, Tempe, AZ, Apr. 28-May 1, 1992

    NASA Astrophysics Data System (ADS)

    Birman, Victor; Nagar, Arvind

    Various papers on composite materials and structures are presented. The individual topics addressed include: dynamic stress concentrations in particle- and fiber-reinforced composite materials, structural analysis of textile composites, effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites, fracture strength modeling and analysis of notched composites, structural similitude and scaling laws for laminated beam plates, dynamic and static pseudo-axisymemtric thermal problems of generally laminated cylindrical shells, analytical method for developing the contact law of laminated plates.

  1. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  2. Novel Microstructures for Polymer-Liquid Crystal Composite Materials

    NASA Technical Reports Server (NTRS)

    Magda, Jules J.

    2004-01-01

    There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

  3. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  4. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  5. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  6. Aluminum-matrix composite materials with shungite rock fillers

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. E.; Kovalevski, V. V.; Chernyshova, T. A.; Bolotova, L. K.

    2010-11-01

    A method is proposed for the introduction of shungite rocks into aluminum melts by mechanical mixing with carriers, namely, aluminum granules and reactive titanium powders taking part in exothermic in situ reactions. The structures of composite materials with shungite rock additions are studied, and a stabilizing effect of these additions on dry sliding friction is revealed.

  7. A three dimensional calculation of elastic equilibrium for composite materials

    NASA Technical Reports Server (NTRS)

    Lustman, Liviu R.; Rose, Milton E.

    1986-01-01

    A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.

  8. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  9. In-situ cure monitoring of advanced composite materials

    NASA Astrophysics Data System (ADS)

    Saliba, Tony; Saliba, Susan; Lanzafame, John; Gudeman, Linda

    Automatic process control and optimization depends on the ability to effectively determine the state of the process. In-situ sensors capable of monitoring the physical and chemical changes are therefore essential. The use of an in-situ acoustic ultrasonic sensor to monitor the cure characteristics of Bismaleimides (BMI) based composite materials was investigated. The acoustic attenuation reflects changes in the viscosity of the resin. The effects on the acoustic response curve of laminate thickness, ply orientation as well as the type of BMI were studied. A general correlation relating the acoustic attenuation of a curing BMI composite to the actual viscosity was developed. The results obtained for BMI were compared to those obtained from epoxy based composite materials.

  10. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  11. 27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. (a) Display fireworks, pyrotechnic compositions, and explosive...

  12. 27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. (a) Display fireworks, pyrotechnic compositions, and explosive...

  13. 27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. (a) Display fireworks, pyrotechnic compositions, and explosive...

  14. 27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. (a) Display fireworks, pyrotechnic compositions, and explosive...

  15. 27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles... Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. (a) Display fireworks, pyrotechnic compositions, and explosive...

  16. Composite graft including bone tissue: a case report of successful reattachment of multiple fingertip oblique amputation.

    PubMed

    Lee, Kyung Suk; Lim, Yun sub; Choi, Jaehoon; Kim, Nam Gyun; Kim, Jun Sik

    2013-02-01

    A composite graft for reattachment of an amputated fingertip is a very controversial and challenging procedure. An osteocutaneous composite graft is rarely conducted and has a low success rate following fingertip amputation. A 21-year-old male patient was referred to our emergency clinic with dorsal oblique amputation of the middle, ring and small fingers of the left hand through the distal interphalangeal joint and middle phalanx. The amputated parts of the middle and ring fingers were reattached with osteocutaneous composite grafts. The amputated part of the small finger was revascularised to the ulnar palmar digital artery of the small finger. The composite grafts of the middle and ring fingers and the revascularised small finger survived completely. We suggest that careful patient selection will allow an osteocutaneous composite graft to become an acceptable method for the treatment of fingertip amputation. A large-scale study of osteocutaneous graft of amputated fingertips is required to improve the survival rate.

  17. Materials research for high-speed civil transport and generic hypersonics: Composites durability

    NASA Technical Reports Server (NTRS)

    Allen-Lilly, Heather; Cregger, Eric; Hoffman, Daniel; Mccool, Jim

    1995-01-01

    This report covers a portion of an ongoing investigation of the durability of composites for the High Speed Civil Transport (HSCT) program. Candidate HSCT composites need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate the design, analysis, fabrication, and testing of equipment intended for use in validating the long-term durability of materials for the HSCT. This equipment includes thermally actuated compression and tension fixtures, hydraulic-actuated reversible load fixtures, and thermal chambers. This equipment can be used for the durability evaluation of both composite and adhesive materials. Thermally actuated fixtures are recommended for fatigue cycling when long-term thermomechanical fatigue (TMF) data are required on coupon-sized tension or compression specimens. Long term durability testing plans for polymer matrix composite specimens are included.

  18. Development of rice husks-plastics composites for building materials.

    PubMed

    Choi, Nak-Woon; Mori, Ippei; Ohama, Yoshihiko

    2006-01-01

    In this paper, a new effective recycling method for rice husks and waste expanded polystyrene is developed by using a combination of both wastes. A styrene solution of waste expanded polystyrene is used as a binder for rice husks-plastics composites. The composites are prepared with various mix proportions by a hot press molding method, and tested for apparent density, water absorption, expansion in thickness, and dry and wet flexural strengths. From the test results, the apparent density of the composites is increased with increasing binder content and filler-binder ratio. Their flexural strength and wet flexural strengths reach maximums at a binder content of 30.0% and a filler-binder ratio of 1.0. Their water absorption and expansion in thickness are decreased with increasing binder content and filler-binder ratio. Since the composites have a high flexural strength and water resistance, their uses as building materials are expected.

  19. Strength criteria for composite materials (a literature survey)

    NASA Technical Reports Server (NTRS)

    Roode, F.

    1982-01-01

    Literature concerning strength (failure) criteria for composite materials is reviewed with emphasis on phenomenological failure criteria. These criteria are primarily intended to give a good estimation of the safety margin with respect to failure for arbitrary multiaxial stress states. The failure criteria do not indicate the types of fracture that will occur in the material. The collection of failure criteria is evaluated for applicability for the glass reinforced plastics used in mine detectors. Material tests necessary to determine the parameters in the failure criteria are discussed.

  20. Bioinspired Composite Materials: Applications in Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Prasad, Alisha; Mahato, Kuldeep; Chandra, Pranjal; Srivastava, Ananya; Joshi, Shrikrishna N.; Maurya, Pawan Kumar

    2016-08-01

    Evolution-optimized specimens from nature with inimitable properties, and unique structure-function relationships have long served as a source of inspiration for researchers all over the world. For instance, the micro/nanostructured patterns of lotus-leaf and gecko feet helps in self-cleaning, and adhesion, respectively. Such unique properties shown by creatures are results of billions of years of adaptive transformation, that have been mimicked by applying both science and engineering concepts to design bioinspired materials. Various bioinspired composite materials have been developed based on biomimetic principles. This review presents the latest developments in bioinspired materials under various categories with emphasis on diagnostic and therapeutic applications.