Sample records for composite overlapping grids

  1. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  2. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  3. Grid adaptation using chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  4. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  5. Development of Three-Dimensional DRAGON Grid Technology

    NASA Technical Reports Server (NTRS)

    Zheng, Yao; Kiou, Meng-Sing; Civinskas, Kestutis C.

    1999-01-01

    For a typical three dimensional flow in a practical engineering device, the time spent in grid generation can take 70 percent of the total analysis effort, resulting in a serious bottleneck in the design/analysis cycle. The present research attempts to develop a procedure that can considerably reduce the grid generation effort. The DRAGON grid, as a hybrid grid, is created by means of a Direct Replacement of Arbitrary Grid Overlapping by Nonstructured grid. The DRAGON grid scheme is an adaptation to the Chimera thinking. The Chimera grid is a composite structured grid, composing a set of overlapped structured grids, which are independently generated and body-fitted. The grid is of high quality and amenable for efficient solution schemes. However, the interpolation used in the overlapped region between grids introduces error, especially when a sharp-gradient region is encountered. The DRAGON grid scheme is capable of completely eliminating the interpolation and preserving the conservation property. It maximizes the advantages of the Chimera scheme and adapts the strengths of the unstructured and while at the same time keeping its weaknesses minimal. In the present paper, we describe the progress towards extending the DRAGON grid technology into three dimensions. Essential and programming aspects of the extension, and new challenges for the three-dimensional cases, are addressed.

  6. Overset grid applications on distributed memory MIMD computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana; Weeratunga, Sisira

    1994-01-01

    Analysis of modern aerospace vehicles requires the computation of flowfields about complex three dimensional geometries composed of regions with varying spatial resolution requirements. Overset grid methods allow the use of proven structured grid flow solvers to address the twin issues of geometrical complexity and the resolution variation by decomposing the complex physical domain into a collection of overlapping subdomains. This flexibility is accompanied by the need for irregular intergrid boundary communication among the overlapping component grids. This study investigates a strategy for implementing such a static overset grid implicit flow solver on distributed memory, MIMD computers; i.e., the 128 node Intel iPSC/860 and the 208 node Intel Paragon. Performance data for two composite grid configurations characteristic of those encountered in present day aerodynamic analysis are also presented.

  7. Direct Replacement of Arbitrary Grid-Overlapping by Non-Structured Grid

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1994-01-01

    A new approach that uses nonstructured mesh to replace the arbitrarily overlapped structured regions of embedded grids is presented. The present methodology uses the Chimera composite overlapping mesh system so that the physical domain of the flowfield is subdivided into regions which can accommodate easily-generated grid for complex configuration. In addition, a Delaunay triangulation technique generates nonstructured triangular mesh which wraps over the interconnecting region of embedded grids. It is designed that the present approach, termed DRAGON grid, has three important advantages: eliminating some difficulties of the Chimera scheme, such as the orphan points and/or bad quality of interpolation stencils; making grid communication in a fully conservative way; and implementation into three dimensions is straightforward. A computer code based on a time accurate, finite volume, high resolution scheme for solving the compressible Navier-Stokes equations has been further developed to include both the Chimera overset grid and the nonstructured mesh schemes. For steady state problems, the local time stepping accelerates convergence based on a Courant - Friedrichs - Leury (CFL) number near the local stability limit. Numerical tests on representative steady and unsteady supersonic inviscid flows with strong shock waves are demonstrated.

  8. Implicit finite difference methods on composite grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1987-01-01

    Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.

  9. Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.

    2005-01-01

    A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.

  10. Solving Partial Differential Equations on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less

  11. Application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Parks, Steven J.; Chan, William M.; Renze, Kevin J.

    1992-01-01

    Several issues relating to the application of Chimera overlapped grids to complex geometries and flowfields are discussed. These include the addition of geometric components with different grid topologies, gridding for intersecting pieces of geometry, and turbulence modeling in grid overlap regions. Sample results are presented for transonic flow about the Space Shuttle launch vehicle. Comparisons with wind tunnel and flight measured pressures are shown.

  12. Computing Flows Using Chimera and Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Zheng, Yao

    2006-01-01

    DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.

  13. Large-scale dark diversity estimates: new perspectives with combined methods.

    PubMed

    Ronk, Argo; de Bello, Francesco; Fibich, Pavel; Pärtel, Meelis

    2016-09-01

    Large-scale biodiversity studies can be more informative if observed diversity in a study site is accompanied by dark diversity, the set of absent although ecologically suitable species. Dark diversity methodology is still being developed and a comparison of different approaches is needed. We used plant data at two different scales (European and seven large regions) and compared dark diversity estimates from two mathematical methods: species co-occurrence (SCO) and species distribution modeling (SDM). We used plant distribution data from the Atlas Florae Europaeae (50 × 50 km grid cells) and seven different European regions (10 × 10 km grid cells). Dark diversity was estimated by SCO and SDM for both datasets. We examined the relationship between the dark diversity sizes (type II regression) and the overlap in species composition (overlap coefficient). We tested the overlap probability according to the hypergeometric distribution. We combined the estimates of the two methods to determine consensus dark diversity and composite dark diversity. We tested whether dark diversity and completeness of site diversity (log ratio of observed and dark diversity) are related to various natural and anthropogenic factors differently than simple observed diversity. Both methods provided similar dark diversity sizes and distribution patterns; dark diversity is greater in southern Europe. The regression line, however, deviated from a 1:1 relationship. The species composition overlap of two methods was about 75%, which is much greater than expected by chance. Both consensus and composite dark diversity estimates showed similar distribution patterns. Both dark diversity and completeness measures exhibit relationships to natural and anthropogenic factors different than those exhibited by observed richness. In summary, dark diversity revealed new biodiversity patterns which were not evident when only observed diversity was examined. A new perspective in dark diversity studies can incorporate a combination of methods.

  14. Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals

    NASA Astrophysics Data System (ADS)

    Deimert, C.; Potter, M. E.; Okoniewski, M.

    2016-12-01

    The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.

  15. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described.

  16. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D.

  17. Final Report for''Numerical Methods and Studies of High-Speed Reactive and Non-Reactive Flows''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwendeman, D W

    2002-11-20

    The work carried out under this subcontract involved the development and use of an adaptive numerical method for the accurate calculation of high-speed reactive flows on overlapping grids. The flow is modeled by the reactive Euler equations with an assumed equation of state and with various reaction rate models. A numerical method has been developed to solve the nonlinear hyperbolic partial differential equations in the model. The method uses an unsplit, shock-capturing scheme, and uses a Godunov-type scheme to compute fluxes and a Runge-Kutta error control scheme to compute the source term modeling the chemical reactions. An adaptive mesh refinementmore » (AMR) scheme has been implemented in order to locally increase grid resolution. The numerical method uses composite overlapping grids to handle complex flow geometries. The code is part of the ''Overture-OverBlown'' framework of object-oriented codes [1, 2], and the development has occurred in close collaboration with Bill Henshaw and David Brown, and other members of the Overture team within CASC. During the period of this subcontract, a number of tasks were accomplished, including: (1) an extension of the numerical method to handle ''ignition and grow'' reaction models and a JWL equations of state; (2) an improvement in the efficiency of the AMR scheme and the error estimator; (3) an addition of a scheme of numerical dissipation designed to suppress numerical oscillations/instabilities near expanding detonations and along grid overlaps; and (4) an exploration of the evolution to detonation in an annulus and of detonation failure in an expanding channel.« less

  18. Adaptively-refined overlapping grids for the numerical solution of systems of hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.

    1995-01-01

    Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.

  19. User's Manual for FOMOCO Utilities-Force and Moment Computation Tools for Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Buning, Pieter G.

    1996-01-01

    In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.

  20. Numerical methods for the simulation of complex multi-body flows with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1992-01-01

    The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.

  1. A landsat data tiling and compositing approach optimized for change detection in the conterminous United States

    USGS Publications Warehouse

    Nelson, Kurtis; Steinwand, Daniel R.

    2015-01-01

    Annual disturbance maps are produced by the LANDFIRE program across the conterminous United States (CONUS). Existing LANDFIRE disturbance data from 1999 to 2010 are available and current efforts will produce disturbance data through 2012. A tiling and compositing approach was developed to produce bi-annual images optimized for change detection. A tiled grid of 10,000 × 10,000 30 m pixels was defined for CONUS and adjusted to consolidate smaller tiles along national borders, resulting in 98 non-overlapping tiles. Data from Landsat-5,-7, and -8 were re-projected to the tile extents, masked to remove clouds, shadows, water, and snow/ice, then composited using a cosine similarity approach. The resultant images were used in a change detection algorithm to determine areas of vegetation change. This approach enabled more efficient processing compared to using single Landsat scenes, by taking advantage of overlap between adjacent paths, and allowed an automated system to be developed for the entire process.

  2. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  3. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE PAGES

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2017-09-28

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  4. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    NASA Astrophysics Data System (ADS)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  5. Recent Developments in Grid Generation and Force Integration Technology for Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1994-01-01

    Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.

  6. A high-resolution Godunov method for compressible multi-material flow on overlapping grids

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.

    2007-04-01

    A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.

  7. An Efficient Means of Adaptive Refinement Within Systems of Overset Grids

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    1996-01-01

    An efficient means of adaptive refinement within systems of overset grids is presented. Problem domains are segregated into near-body and off-body fields. Near-body fields are discretized via overlapping body-fitted grids that extend only a short distance from body surfaces. Off-body fields are discretized via systems of overlapping uniform Cartesian grids of varying levels of refinement. a novel off-body grid generation and management scheme provides the mechanism for carrying out adaptive refinement of off-body flow dynamics and solid body motion. The scheme allows for very efficient use of memory resources, and flow solvers and domain connectivity routines that can exploit the structure inherent to uniform Cartesian grids.

  8. The Impacts of Bowtie Effect and View Angle Discontinuity on MODIS Swath Data Gridding

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei

    2007-01-01

    We have analyzed two effects of the MODIS viewing geometry on the quality of gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. This discontinuity appears as striping of the image clearly visible in certain cases with viewing geometry close to principle plane over the snow of the glint area of water. The striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be preserved during gridding. Second, due to bowtie effect, the observations in adjacent scans overlap each other. Commonly used method of calculating grid cell value by averaging all overlapping observations may result in smearing of the image. This paper describes a refined gridding algorithm that takes the above two effects into account. By calculating the grid cell value by averaging the overlapping observations from a single scan, the new algorithm preserves the measured BRF signal and enhances sharpness of the image.

  9. Structured Overlapping Grid Simulations of Contra-rotating Open Rotor Noise

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Kiris, Cetin C.

    2015-01-01

    Computational simulations using structured overlapping grids with the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for predicting tonal noise generated by a contra-rotating open rotor (CROR) propulsion system. A coupled Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) numerical approach is applied. Three-dimensional time-accurate hybrid Reynolds Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) CFD simulations are performed in the inertial frame, including dynamic moving grids, using a higher-order accurate finite difference discretization on structured overlapping grids. A higher-order accurate free-stream preserving metric discretization with discrete enforcement of the Geometric Conservation Law (GCL) on moving curvilinear grids is used to create an accurate, efficient, and stable numerical scheme. The aeroacoustic analysis is based on a permeable surface Ffowcs Williams-Hawkings (FW-H) approach, evaluated in the frequency domain. A time-step sensitivity study was performed using only the forward row of blades to determine an adequate time-step. The numerical approach is validated against existing wind tunnel measurements.

  10. A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, J W; Schwendeman, D W; Kapila, A K

    2006-02-13

    A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on amore » uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.« less

  11. Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow

    NASA Astrophysics Data System (ADS)

    Henshaw, William D.; Schwendeman, Donald W.

    2006-08-01

    We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows that demonstrate the use and accuracy of the numerical approach.

  12. Progress in Grid Generation: From Chimera to DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are discretized using the newly proposed flux scheme, AUSM+, which will be briefly described herein. Numerical tests on representative 2D inviscid flows are given for demonstration. Finally, extension to 3D is underway, only paced by the availability of the 3D unstructured grid generator.

  13. Ray tracing a three dimensional scene using a grid

    DOEpatents

    Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron

    2013-02-26

    Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.

  14. A grid-embedding transonic flow analysis computer program for wing/nacelle configurations

    NASA Technical Reports Server (NTRS)

    Atta, E. H.; Vadyak, J.

    1983-01-01

    An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.

  15. Variable High Order Multiblock Overlapping Grid Methods for Mixed Steady and Unsteady Multiscale Viscous Flows

    NASA Technical Reports Server (NTRS)

    Sjogreen, Bjoern; Yee, H. C.

    2007-01-01

    Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.

  16. DRAGON Grid: A Three-Dimensional Hybrid Grid Generation Code Developed

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2000-01-01

    Because grid generation can consume 70 percent of the total analysis time for a typical three-dimensional viscous flow simulation for a practical engineering device, payoffs from research and development could reduce costs and increase throughputs considerably. In this study, researchers at the NASA Glenn Research Center at Lewis Field developed a new hybrid grid approach with the advantages of flexibility, high-quality grids suitable for an accurate resolution of viscous regions, and a low memory requirement. These advantages will, in turn, reduce analysis time and increase accuracy. They result from an innovative combination of structured and unstructured grids to represent the geometry and the computation domain. The present approach makes use of the respective strengths of both the structured and unstructured grid methods, while minimizing their weaknesses. First, the Chimera grid generates high-quality, mostly orthogonal meshes around individual components. This process is flexible and can be done easily. Normally, these individual grids are required overlap each other so that the solution on one grid can communicate with another. However, when this communication is carried out via a nonconservative interpolation procedure, a spurious solution can result. Current research is aimed at entirely eliminating this undesired interpolation by directly replacing arbitrary grid overlapping with a nonstructured grid called a DRAGON grid, which uses the same set of conservation laws over the entire region, thus ensuring conservation everywhere. The DRAGON grid is shown for a typical film-cooled turbine vane with 33 holes and 3 plenum compartments. There are structured grids around each geometrical entity and unstructured grids connecting them. In fiscal year 1999, Glenn researchers developed and tested the three-dimensional DRAGON grid-generation tools. A flow solver suitable for the DRAGON grid has been developed, and a series of validation tests are underway.

  17. Collar grids for intersecting geometric components within the Chimera overlapped grid scheme

    NASA Technical Reports Server (NTRS)

    Parks, Steven J.; Buning, Pieter G.; Chan, William M.; Steger, Joseph L.

    1991-01-01

    A method for overcoming problems with using the Chimera overset grid scheme in the region of intersecting geometry components is presented. A 'collar grid' resolves the intersection region and provides communication between the component grids. This approach is validated by comparing computed and experimental data for a flow about a wing/body configuration. Application of the collar grid scheme to the Orbiter fuselage and vertical tail intersection in a computation of the full Space Shuttle launch vehicle demonstrates its usefulness for simulation of flow about complex aerospace vehicles.

  18. An adaptive method for a model of two-phase reactive flow on overlapping grids

    NASA Astrophysics Data System (ADS)

    Schwendeman, D. W.

    2008-11-01

    A two-phase model of heterogeneous explosives is handled computationally by a new numerical approach that is a modification of the standard Godunov scheme. The approach generates well-resolved and accurate solutions using adaptive mesh refinement on overlapping grids, and treats rationally the nozzling terms that render the otherwise hyperbolic model incapable of a conservative representation. The evolution and structure of detonation waves for a variety of one and two-dimensional configurations will be discussed with a focus given to problems of detonation diffraction and failure.

  19. Robust and efficient overset grid assembly for partitioned unstructured meshes

    NASA Astrophysics Data System (ADS)

    Roget, Beatrice; Sitaraman, Jayanarayanan

    2014-03-01

    This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning.

  20. Generation of a composite grid for turbine flows and consideration of a numerical scheme

    NASA Technical Reports Server (NTRS)

    Choo, Y.; Yoon, S.; Reno, C.

    1986-01-01

    A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions.

  1. Flow simulations about steady-complex and unsteady moving configurations using structured-overlapped and unstructured grids

    NASA Technical Reports Server (NTRS)

    Newman, James C., III

    1995-01-01

    The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of comparable accuracy for these simulations. This study also indicated that, overall, the structured-overlapped scheme was slightly more CPU efficient than the unstructured approach.

  2. Automated Processing of Two-Dimensional Correlation Spectra

    PubMed

    Sengstschmid; Sterk; Freeman

    1998-04-01

    An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.

  3. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments

    PubMed Central

    Davis, Doreen E.

    2018-01-01

    Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. Methods We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k-means clustering. Results Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. Discussion We show that edge effects on ground beetle community structure and composition and environmental variation at the intersection of forest patches and residential developments can be described by boundaries and that these boundaries overlap in space. However, our results also highlight the complexity of edge effects in our system: environmental boundaries were located at or near edges whereas beetle boundaries related to edges could be spatially disjunct from them; boundaries incompletely delineated edges such that only parts of edges were well-described by sharp transitions in beetle and/or environmental variables; and the occurrence of boundaries related to edges was apparently influenced by individual property management practices, site-specific characteristics such as development geometry, and spatial scale. PMID:29333346

  4. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments.

    PubMed

    Davis, Doreen E; Gagné, Sara A

    2018-01-01

    Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k -means clustering. Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. We show that edge effects on ground beetle community structure and composition and environmental variation at the intersection of forest patches and residential developments can be described by boundaries and that these boundaries overlap in space. However, our results also highlight the complexity of edge effects in our system: environmental boundaries were located at or near edges whereas beetle boundaries related to edges could be spatially disjunct from them; boundaries incompletely delineated edges such that only parts of edges were well-described by sharp transitions in beetle and/or environmental variables; and the occurrence of boundaries related to edges was apparently influenced by individual property management practices, site-specific characteristics such as development geometry, and spatial scale.

  5. Time-stable overset grid method for hyperbolic problems using summation-by-parts operators

    NASA Astrophysics Data System (ADS)

    Sharan, Nek; Pantano, Carlos; Bodony, Daniel J.

    2018-05-01

    A provably time-stable method for solving hyperbolic partial differential equations arising in fluid dynamics on overset grids is presented in this paper. The method uses interface treatments based on the simultaneous approximation term (SAT) penalty method and derivative approximations that satisfy the summation-by-parts (SBP) property. Time-stability is proven using energy arguments in a norm that naturally relaxes to the standard diagonal norm when the overlap reduces to a traditional multiblock arrangement. The proposed overset interface closures are time-stable for arbitrary overlap arrangements. The information between grids is transferred using Lagrangian interpolation applied to the incoming characteristics, although other interpolation schemes could also be used. The conservation properties of the method are analyzed. Several one-, two-, and three-dimensional, linear and non-linear numerical examples are presented to confirm the stability and accuracy of the method. A performance comparison between the proposed SAT-based interface treatment and the commonly-used approach of injecting the interpolated data onto each grid is performed to highlight the efficacy of the SAT method.

  6. Correlations and Functional Connections in a Population of Grid Cells

    PubMed Central

    Roudi, Yasser

    2015-01-01

    We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908

  7. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  8. Load Balancing Strategies for Multi-Block Overset Grid Applications

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biswas, Rupak; Lopez-Benitez, Noe; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficient high performance computations of large-scale realistic applications using this methodology, the individual grids must be properly partitioned among the parallel processors. Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we present three different load balancing strategies far overset grids and analyze their effects on the parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.

  9. A Composite Source Model With Fractal Subevent Size Distribution

    NASA Astrophysics Data System (ADS)

    Burjanek, J.; Zahradnik, J.

    A composite source model, incorporating different sized subevents, provides a pos- sible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock) . The subevents are distributed randomly over the fault. Each subevent is modeled as a finite source, using kinematic approach (radial rupture propagation, constant rupture velocity, boxcar slip-velocity function, with constant rise time on the subevent). The final slip at each subevent is related to its characteristic dimension, using constant stress-drop scaling. Variation of rise time with subevent size is a free parameter of modeling. The nucleation point of each subevent is taken as the point closest to mainshock hypocentre. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally lay- ered crustal model in a relatively coarse grid of points covering the fault plane. The Green's functions needed for the kinematic model in a fine grid are obtained by cu- bic spline interpolation. As different frequencies may be efficiently calculated with different sampling, the interpolation simplifies and speeds-up the procedure signifi- cantly. The composite source model described above allows interpretation in terms of a kinematic model with non-uniform final slip and rupture velocity spatial distribu- tions. The 1994 Northridge earthquake (Mw = 6.7) is used as a validation event. The strong-ground motion modeling of the 1999 Athens earthquake (Mw = 5.9) is also performed.

  10. Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters

    PubMed Central

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  11. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.

  12. Systems and methods for forming microchannel plate (MCP) photodetector assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Lei; Zhao, Huyue; Wagner, Robert G.

    A MCP photodetector assembly includes an anode plate including a plurality of electrical traces positioned thereon, a plurality of MCPs and a plurality of grid spacers. The MCPs are positioned between the grid spacers. The grid spacers have a grid spacer shape defining at least one aperture. A plurality of shims are positioned between the grid spacers and the MCPs so as to form a stack positioned on the anode plate. Each of the plurality of shims have a shim shape which is the same as the grid spacer shape such that each of the plurality of shims and eachmore » of the plurality of grid spacers overlap so as to define at least one MCP aperture. At least a portion of the plurality of MCPs are positioned within the MCP aperture. The shims are structured to electrically couple the MCPs to the anode plate.« less

  13. Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machinc. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.

  14. TIGER: A user-friendly interactive grid generation system for complicated turbomachinery and axis-symmetric configurations

    NASA Technical Reports Server (NTRS)

    Shih, Ming H.; Soni, Bharat K.

    1993-01-01

    The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.

  15. Restoration and reconstruction from overlapping images

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Kaiser, Daniel J.; Hanson, Andrew L.; Li, Jing

    1997-01-01

    This paper describes a technique for restoring and reconstructing a scene from overlapping images. In situations where there are multiple, overlapping images of the same scene, it may be desirable to create a single image that most closely approximates the scene, based on all of the data in the available images. For example, successive swaths acquired by NASA's planned Moderate Imaging Spectrometer (MODIS) will overlap, particularly at wide scan angles, creating a severe visual artifact in the output image. Resampling the overlapping swaths to produce a more accurate image on a uniform grid requires restoration and reconstruction. The one-pass restoration and reconstruction technique developed in this paper yields mean-square-optimal resampling, based on a comprehensive end-to-end system model that accounts for image overlap, and subject to user-defined and data-availability constraints on the spatial support of the filter.

  16. Separation of distinct adhesion complexes and associated cytoskeleton by a micro-stencil-printing method.

    PubMed

    Caballero, David; Osmani, Naël; Georges-Labouesse, Elisabeth; Labouesse, Michel; Riveline, Daniel

    2012-01-01

    Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with "stampcils" focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein-fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.

  17. An Analysis of Performance Enhancement Techniques for Overset Grid Applications

    NASA Technical Reports Server (NTRS)

    Djomehri, J. J.; Biswas, R.; Potsdam, M.; Strawn, R. C.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement techniques on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.

  18. Application of a predator-prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Greer, A. T.; Woodson, C. B.

    2016-02-01

    Because of the complexity and extremely large size of marine ecosystems, research attention has a strong focus on modelling the system through space and time to elucidate processes driving ecosystem state. One of the major weaknesses of current modelling approaches is the reliance on a particular grid cell size (usually 10's of km in the horizontal & water column mean) to capture the relevant processes, even though empirical research has shown that marine systems are highly structured on fine scales, and this structure can persist over relatively long time scales (days to weeks). Fine-scale features can have a strong influence on the predator-prey interactions driving trophic transfer. Here we apply a statistic, the AB ratio, used to quantify increased predator production due to predator-prey overlap on fine scales in a manner that is computationally feasible for larger scale models. We calculated the AB ratio for predator-prey distributions throughout the scientific literature, as well as for data obtained with a towed plankton imaging system, demonstrating that averaging across a typical model grid cell neglects the fine-scale predator-prey overlap that is an essential component of ecosystem productivity. Organisms from a range of trophic levels and oceanographic regions tended to overlap with their prey both in the horizontal and vertical dimensions. When predator swimming over a diel cycle was incorporated, the amount of production indicated by the AB ratio increased substantially. For the plankton image data, the AB ratio was higher with increasing sampling resolution, especially when prey were highly aggregated. We recommend that ecosystem models incorporate more fine-scale information both to more accurately capture trophic transfer processes and to capitalize on the increasing sampling resolution and data volume from empirical studies.

  19. Merge measuring mesh for complex surface parts

    NASA Astrophysics Data System (ADS)

    Ye, Jianhua; Gao, Chenghui; Zeng, Shoujin; Xu, Mingsan

    2018-04-01

    Due to most parts self-occlude and limitation of scanner range, it is difficult to scan the entire part by one time. For modeling of part, multi measuring meshes need to be merged. In this paper, a new merge method is presented. At first, using the grid voxelization method to eliminate the most of non-overlap regions, and retrieval overlap triangles method by the topology of mesh is proposed due to its ability to improve the efficiency. Then, to remove the large deviation of overlap triangles, deleting by overlap distance is discussion. After that, this paper puts forward a new method of merger meshes by registration and combination mesh boundary point. Through experimental analysis, the suggested methods are effective.

  20. Task Assignment Heuristics for Parallel and Distributed CFD Applications

    NASA Technical Reports Server (NTRS)

    Lopez-Benitez, Noe; Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    This paper proposes a task graph (TG) model to represent a single discrete step of multi-block overset grid computational fluid dynamics (CFD) applications. The TG model is then used to not only balance the computational workload across the overset grids but also to reduce inter-grid communication costs. We have developed a set of task assignment heuristics based on the constraints inherent in this class of CFD problems. Two basic assignments, the smallest task first (STF) and the largest task first (LTF), are first presented. They are then systematically costs. To predict the performance of the proposed task assignment heuristics, extensive performance evaluations are conducted on a synthetic TG with tasks defined in terms of the number of grid points in predetermined overlapping grids. A TG derived from a realistic problem with eight million grid points is also used as a test case.

  1. Chimera grids in the simulation of three-dimensional flowfields in turbine-blade-coolant passages

    NASA Technical Reports Server (NTRS)

    Stephens, M. A.; Rimlinger, M. J.; Shih, T. I.-P.; Civinskas, K. C.

    1993-01-01

    When computing flows inside geometrically complex turbine-blade coolant passages, the structure of the grid system used can affect significantly the overall time and cost required to obtain solutions. This paper addresses this issue while evaluating and developing computational tools for the design and analysis of coolant-passages, and is divided into two parts. In the first part, the various types of structured and unstructured grids are compared in relation to their ability to provide solutions in a timely and cost-effective manner. This comparison shows that the overlapping structured grids, known as Chimera grids, can rival and in some instances exceed the cost-effectiveness of unstructured grids in terms of both the man hours needed to generate grids and the amount of computer memory and CPU time needed to obtain solutions. In the second part, a computational tool utilizing Chimera grids was used to compute the flow and heat transfer in two different turbine-blade coolant passages that contain baffles and numerous pin fins. These computations showed the versatility and flexibility offered by Chimera grids.

  2. A Quadtree-gridding LBM with Immersed Boundary for Two-dimension Viscous Flows

    NASA Astrophysics Data System (ADS)

    Yao, Jieke; Feng, Wenliang; Chen, Bin; Zhou, Wei; Cao, Shikun

    2017-07-01

    An un-uniform quadtree grids lattice Boltzmann method (LBM) with immersed boundary is presented in this paper. In overlapping for different level grids, temporal and spatial interpolation are necessary to ensure the continuity of physical quantity. In order to take advantage of the equation for temporal and spatial step in the same level grids, equal interval interpolation, which is simple to apply to any refined boundary grids in the LBM, is adopted in temporal and spatial aspects to obtain second-order accuracy. The velocity correction, which can guarantee more preferably no-slip boundary condition than the direct forcing method and the momentum exchange method in the traditional immersed-boundary LBM, is used for solid boundary to make the best of Cartesian grid. In present quadtree-gridding immersed-boundary LBM, large eddy simulation (LES) is adopted to simulate the flows over obstacle in higher Reynolds number (Re). The incompressible viscous flows over circular cylinder are carried out, and a great agreement is obtained.

  3. Strategies Toward Automation of Overset Structured Surface Grid Generation

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2017-01-01

    An outline of a strategy for automation of overset structured surface grid generation on complex geometries is described. The starting point of the process consists of an unstructured surface triangulation representation of the geometry derived from a native CAD, STEP, or IGES definition, and a set of discretized surface curves that captures all geometric features of interest. The procedure for surface grid generation is decomposed into an algebraic meshing step, a hyperbolic meshing step, and a gap-filling step. This paper will focus primarily on the high-level plan with details on the algebraic step. The algorithmic procedure for the algebraic step involves analyzing the topology of the network of surface curves, distributing grid points appropriately on these curves, identifying domains bounded by four curves that can be meshed algebraically, concatenating the resulting grids into fewer patches, and extending appropriate boundaries of the concatenated grids to provide proper overlap. Results are presented for grids created on various aerospace vehicle components.

  4. Specific surface area of overlapping spheres in the presence of obstructions

    NASA Astrophysics Data System (ADS)

    Jenkins, D. R.

    2013-02-01

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  5. Specific surface area of overlapping spheres in the presence of obstructions.

    PubMed

    Jenkins, D R

    2013-02-21

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, F.; Banks, J. W.; Henshaw, W. D.

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less

  7. Advances in Distance-Based Hole Cuts on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Pandya, Shishir A.

    2015-01-01

    An automatic and efficient method to determine appropriate hole cuts based on distances to the wall and donor stencil maps for overset grids is presented. A new robust procedure is developed to create a closed surface triangulation representation of each geometric component for accurate determination of the minimum hole. Hole boundaries are then displaced away from the tight grid-spacing regions near solid walls to allow grid overlap to occur away from the walls where cell sizes from neighboring grids are more comparable. The placement of hole boundaries is efficiently determined using a mid-distance rule and Cartesian maps of potential valid donor stencils with minimal user input. Application of this procedure typically results in a spatially-variable offset of the hole boundaries from the minimum hole with only a small number of orphan points remaining. Test cases on complex configurations are presented to demonstrate the new scheme.

  8. Simulating incompressible flow on moving meshfree grids using General Finite Differences (GFD)

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2016-11-01

    We simulate incompressible flow around an oscillating cylinder at different Reynolds numbers using General Finite Differences (GFD) on a meshfree grid. We evolve the meshfree grid by treating each grid node as a particle. To compute velocities and accelerations, we consider the particles at a particular instance as Eulerian observation points. The incompressible Navier-Stokes equations are directly discretized using GFD with boundary conditions enforced using a sharp interface treatment. Cloud sizes are set such that the local approximations use only 16 neighbors. To enforce incompressibility, we apply a semi-implicit approximate projection method. To prevent overlapping particles and formation of voids in the grid, we propose a particle regularization scheme based on a local minimization principle. We validate the GFD results for an oscillating cylinder against the lattice Boltzmann method and find good agreement. Financial support provided by National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  9. Numerical simulation of three dimensional transonic flows

    NASA Technical Reports Server (NTRS)

    Sahu, Jubaraj; Steger, Joseph L.

    1987-01-01

    The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.

  10. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  11. geoknife: Reproducible web-processing of large gridded datasets

    USGS Publications Warehouse

    Read, Jordan S.; Walker, Jordan I.; Appling, Alison P.; Blodgett, David L.; Read, Emily K.; Winslow, Luke A.

    2016-01-01

    Geoprocessing of large gridded data according to overlap with irregular landscape features is common to many large-scale ecological analyses. The geoknife R package was created to facilitate reproducible analyses of gridded datasets found on the U.S. Geological Survey Geo Data Portal web application or elsewhere, using a web-enabled workflow that eliminates the need to download and store large datasets that are reliably hosted on the Internet. The package provides access to several data subset and summarization algorithms that are available on remote web processing servers. Outputs from geoknife include spatial and temporal data subsets, spatially-averaged time series values filtered by user-specified areas of interest, and categorical coverage fractions for various land-use types.

  12. Web service module for access to g-Lite

    NASA Astrophysics Data System (ADS)

    Goranova, R.; Goranov, G.

    2012-10-01

    G-Lite is a lightweight grid middleware for grid computing installed on all clusters of the European Grid Infrastructure (EGI). The middleware is partially service-oriented and does not provide well-defined Web services for job management. The existing Web services in the environment cannot be directly used by grid users for building service compositions in the EGI. In this article we present a module of well-defined Web services for job management in the EGI. We describe the architecture of the module and the design of the developed Web services. The presented Web services are composable and can participate in service compositions (workflows). An example of usage of the module with tools for service compositions in g-Lite is shown.

  13. Automatic Overset Grid Generation with Heuristic Feedback Control

    NASA Technical Reports Server (NTRS)

    Robinson, Peter I.

    2001-01-01

    An advancing front grid generation system for structured Overset grids is presented which automatically modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved. The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system which iteratively modifies the input specifications for Overset control line and surface grids. It is developed as an extension of modern control theory, production rules systems and subsumption architectures. The methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge representation, and knowledge execution. The vector/matrix framework of modern control theory systematically acquires and represents expert system knowledge. Missing matrix elements imply missing expert knowledge. The execution of the expert system knowledge is performed through symbolic execution of the matrix algebra equations of modern control theory. The dot product operation of matrix algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.

  14. Detection and Evaluation of Pre-Preg Gaps and Overlaps in Glare Laminates

    NASA Astrophysics Data System (ADS)

    Nardi, Davide; Abouhamzeh, Morteza; Leonard, Rob; Sinke, Jos

    2018-03-01

    Gaps and overlaps between pre-preg plies represent common flaws in composite materials that can be introduced easily in an automated fibre placement manufacturing process and are potentially detrimental for the mechanical performances of the final laminates. Whereas gaps and overlaps have been addressed for full composite material, the topic has not been extended to a hybrid composite material such as Glare, a member of the family of Fibre Metal Laminates (FMLs). In this paper/research, the manufacturing, the detection, and the optical evaluation of intraply gaps and overlaps in Glare laminates are investigated. As part of an initial assessment study on the effect of gaps and overlaps on Glare, only the most critical lay-up has been considered. The experimental investigation started with the manufacturing of specimens having gaps and overlaps with different widths, followed by a non-destructive ultrasonic-inspection. An optical evaluation of the gaps and overlaps was performed by means of microscope image analysis of the cross sections of the specimens. The results from the non-destructive evaluations show the effectiveness of the ultrasonic detection of gaps and overlaps both in position, shape, width, and severity. The optical inspections confirm the accuracy of the non-destructive evaluation also adding useful insights about the geometrical features due to the presence of gaps and overlaps in the final Glare laminates. All the results justify the need for a further investigation on the effect of gaps and overlaps on the mechanical properties.

  15. Elliptic generation of composite three-dimensional grids about realistic aircraft

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1986-01-01

    An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.

  16. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  17. Using a composite grid approach in a complex coastal domain to estimate estuarine residence time

    USGS Publications Warehouse

    Warner, John C.; Geyer, W. Rockwell; Arango, Herman G.

    2010-01-01

    We investigate the processes that influence residence time in a partially mixed estuary using a three-dimensional circulation model. The complex geometry of the study region is not optimal for a structured grid model and so we developed a new method of grid connectivity. This involves a novel approach that allows an unlimited number of individual grids to be combined in an efficient manner to produce a composite grid. We then implemented this new method into the numerical Regional Ocean Modeling System (ROMS) and developed a composite grid of the Hudson River estuary region to investigate the residence time of a passive tracer. Results show that the residence time is a strong function of the time of release (spring vs. neap tide), the along-channel location, and the initial vertical placement. During neap tides there is a maximum in residence time near the bottom of the estuary at the mid-salt intrusion length. During spring tides the residence time is primarily a function of along-channel location and does not exhibit a strong vertical variability. This model study of residence time illustrates the utility of the grid connectivity method for circulation and dispersion studies in regions of complex geometry.

  18. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    PubMed

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Formation of Virtual Organizations in Grids: A Game-Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Carroll, Thomas E.; Grosu, Daniel

    The execution of large scale grid applications requires the use of several computational resources owned by various Grid Service Providers (GSPs). GSPs must form Virtual Organizations (VOs) to be able to provide the composite resource to these applications. We consider grids as self-organizing systems composed of autonomous, self-interested GSPs that will organize themselves into VOs with every GSP having the objective of maximizing its profit. We formulate the resource composition among GSPs as a coalition formation problem and propose a game-theoretic framework based on cooperation structures to model it. Using this framework, we design a resource management system that supports the VO formation among GSPs in a grid computing system.

  20. Carbon-Based Ion Optics Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Patterson, Michael; Rawlin, Vince; Soulas, George

    2002-01-01

    With recent success of the NSTAR ion thruster on Deep Space 1, there is continued interest in long term, high propellant throughput thrusters to perform energetic missions. This requires flight qualified thrusters that can operate for long periods at high beam density, without degradation in performance resulting from sputter induced grid erosion. Carbon-based materials have shown nearly an order of magnitude improvement in sputter erosion resistance over molybdenum. NASA Glenn Research Center (GRC) has been active over the past several years pursuing carbon-based grid development. In 1995, NASA GRC sponsored work performed by the Jet Propulsion Laboratory to fabricate carbon/carbon composite grids using a machined panel approach. In 1999, a contract was initiated with a commercial vendor to produce carbon/carbon composite grids using a chemical vapor infiltration process. In 2001, NASA GRC purchased pyrolytic carbon grids from a commercial vendor. More recently, a multi-year contract was initiated with North Carolina A&T to develop carbon/carbon composite grids using a resin injection process. The following paper gives a brief overview of these four programs.

  1. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.

    1996-01-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  2. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments.

    PubMed

    Scoby, Cheyne M; Li, R K; Musumeci, P

    2013-04-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Non-overlapped P- and S-wave Poynting vectors and their solution by the grid method

    NASA Astrophysics Data System (ADS)

    Lu, Yongming; Liu, Qiancheng

    2018-06-01

    The Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common-image gathers. However, the P- and S-waves are mixed together during wavefield propagation so that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic-wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S Poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh-based modeling method named the grid method. Finally, we verify our method using two numerical examples.

  4. RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1997-01-01

    Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.

  5. A CFD study of complex missile and store configurations in relative motion

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    An investigation was conducted from May 16, 1990 to August 31, 1994 on the development of computational fluid dynamics (CFD) methodologies for complex missiles and the store separation problem. These flowfields involved multiple-component configurations, where at least one of the objects was engaged in relative motion. The two most important issues that had to be addressed were: (1) the unsteadiness of the flowfields (time-accurate and efficient CFD algorithms for the unsteady equations), and (2) the generation of grid systems which would permit multiple and moving bodies in the computational domain (dynamic domain decomposition). The study produced two competing and promising methodologies, and their proof-of-concept cases, which have been reported in the open literature: (1) Unsteady solutions on dynamic, overlapped grids, which may also be perceived as moving, locally-structured grids, and (2) Unsteady solutions on dynamic, unstructured grids.

  6. Navier-Stokes calculations on multi-element airfoils using a chimera-based solver

    NASA Technical Reports Server (NTRS)

    Jasper, Donald W.; Agrawal, Shreekant; Robinson, Brian A.

    1993-01-01

    A study of Navier-Stokes calculations of flows about multielement airfoils using a chimera grid approach is presented. The chimera approach utilizes structured, overlapped grids which allow great flexibility of grid arrangement and simplifies grid generation. Calculations are made for two-, three-, and four-element airfoils, and modeling of the effect of gap distance between elements is demonstrated for a two element case. Solutions are obtained using the thin-layer form of the Reynolds averaged Navier-Stokes equations with turbulence closure provided by the Baldwin-Lomax algebraic model or the Baldwin-Barth one equation model. The Baldwin-Barth turbulence model is shown to provide better agreement with experimental data and to dramatically improve convergence rates for some cases. Recently developed, improved farfield boundary conditions are incorporated into the solver for greater efficiency. Computed results show good comparison with experimental data which include aerodynamic forces, surface pressures, and boundary layer velocity profiles.

  7. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    PubMed

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  8. Modular Multi-Sensor Display System Design Study. Volume 2. Detail Design and Application Analysis

    DTIC Science & Technology

    1974-08-01

    control grid . 2. Horizontal AFC/Deflection Module - Generates horizontal sweep signals from input syncs to provide 525 to 1023 line television raster...separation, and gener- ate composite blanking for the CRT control grid . Signal Number of Lines Signal Type Characteristics Input Interface Composite...SEPERATOR DC RESTORA- TION l_i BLANKING VERT DRIVE ■♦ Bl" CRT " CATHODE * _fc> BRIGHTNESS ^ (FRONT PANEL) .CRT GRID ■♦• COMP SYNC Figure

  9. A stable and accurate partitioned algorithm for conjugate heat transfer

    NASA Astrophysics Data System (ADS)

    Meng, F.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.

    2017-09-01

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in an implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems together with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode theory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized-Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and diffusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. The CHAMP scheme is also developed for general curvilinear grids and CHT examples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.

  10. A stable and accurate partitioned algorithm for conjugate heat transfer

    DOE PAGES

    Meng, F.; Banks, J. W.; Henshaw, W. D.; ...

    2017-04-25

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less

  11. Elliptic surface grid generation on minimal and parmetrized surfaces

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.

    1995-01-01

    An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.

  12. Efficient parallel seismic simulations including topography and 3-D material heterogeneities on locally refined composite grids

    NASA Astrophysics Data System (ADS)

    Petersson, Anders; Rodgers, Arthur

    2010-05-01

    The finite difference method on a uniform Cartesian grid is a highly efficient and easy to implement technique for solving the elastic wave equation in seismic applications. However, the spacing in a uniform Cartesian grid is fixed throughout the computational domain, whereas the resolution requirements in realistic seismic simulations usually are higher near the surface than at depth. This can be seen from the well-known formula h ≤ L-P which relates the grid spacing h to the wave length L, and the required number of grid points per wavelength P for obtaining an accurate solution. The compressional and shear wave lengths in the earth generally increase with depth and are often a factor of ten larger below the Moho discontinuity (at about 30 km depth), than in sedimentary basins near the surface. A uniform grid must have a grid spacing based on the small wave lengths near the surface, which results in over-resolving the solution at depth. As a result, the number of points in a uniform grid is unnecessarily large. In the wave propagation project (WPP) code, we address the over-resolution-at-depth issue by generalizing our previously developed single grid finite difference scheme to work on a composite grid consisting of a set of structured rectangular grids of different spacings, with hanging nodes on the grid refinement interfaces. The computational domain in a regional seismic simulation often extends to depth 40-50 km. Hence, using a refinement ratio of two, we need about three grid refinements from the bottom of the computational domain to the surface, to keep the local grid size in approximate parity with the local wave lengths. The challenge of the composite grid approach is to find a stable and accurate method for coupling the solution across the grid refinement interface. Of particular importance is the treatment of the solution at the hanging nodes, i.e., the fine grid points which are located in between coarse grid points. WPP implements a new, energy conserving, coupling procedure for the elastic wave equation at grid refinement interfaces. When used together with our single grid finite difference scheme, it results in a method which is provably stable, without artificial dissipation, for arbitrary heterogeneous isotropic elastic materials. The new coupling procedure is based on satisfying the summation-by-parts principle across refinement interfaces. From a practical standpoint, an important advantage of the proposed method is the absence of tunable numerical parameters, which seldom are appreciated by application experts. In WPP, the composite grid discretization is combined with a curvilinear grid approach that enables accurate modeling of free surfaces on realistic (non-planar) topography. The overall method satisfies the summation-by-parts principle and is stable under a CFL time step restriction. A feature of great practical importance is that WPP automatically generates the composite grid based on the user provided topography and the depths of the grid refinement interfaces. The WPP code has been verified extensively, for example using the method of manufactured solutions, by solving Lamb's problem, by solving various layer over half- space problems and comparing to semi-analytic (FK) results, and by simulating scenario earthquakes where results from other seismic simulation codes are available. WPP has also been validated against seismographic recordings of moderate earthquakes. WPP performs well on large parallel computers and has been run on up to 32,768 processors using about 26 Billion grid points (78 Billion DOF) and 41,000 time steps. WPP is an open source code that is available under the Gnu general public license.

  13. Michigan Magnetic and Gravity Maps and Data: A Website for the Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.; Snyder, Stephen L.

    2009-01-01

    This web site provides the best available, public-domain, aeromagnetic and gravity data in the State of Michigan and merges these data into composite grids that are available for downloading. The magnetic grid is compiled from 25 separate magnetic surveys that have been knit together to form a single composite digital grid and map. The magnetic survey grids have been continued to 305 meters (1,000 feet) above ground and merged together to form the State compilation. A separate map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. In addition, a complete Bouguer gravity anomaly grid and map were generated from more than 20,000 gravity station measurements from 33 surveys. A table provides the facts about each gravity survey where known.

  14. A Grid of NLTE Line-blanketed Model Atmospheres of Early B-Type Stars

    NASA Astrophysics Data System (ADS)

    Lanz, Thierry; Hubeny, Ivan

    2007-03-01

    We have constructed a comprehensive grid of 1540 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to early B-type stars. The BSTAR2006 grid considers 16 values of effective temperatures, 15,000 K<=Teff<=30,000 K with 1000 K steps, 13 surface gravities, 1.75<=logg<=4.75 with 0.25 dex steps, six chemical compositions, and a microturbulent velocity of 2 km s-1. The lower limit of logg for a given effective temperature is set by an approximate location of the Eddington limit. The selected chemical compositions range from twice to one-tenth of the solar metallicity and metal-free. Additional model atmospheres for B supergiants (logg<=3.0) have been calculated with a higher microturbulent velocity (10 km s-1) and a surface composition that is enriched in helium and nitrogen and depleted in carbon. This new grid complements our earlier OSTAR2002 grid of O-type stars (our Paper I). The paper contains a description of the BSTAR2006 grid and some illustrative examples and comparisons. NLTE ionization fractions, bolometric corrections, radiative accelerations, and effective gravities are obtained over the parameter range covered by the grid. By extrapolating radiative accelerations, we have determined an improved estimate of the Eddington limit in absence of rotation between 55,000 and 15,000 K. The complete BSTAR2006 grid is available at the TLUSTY Web site.

  15. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    PubMed Central

    Kim, JunHee; You, Young-Chan

    2015-01-01

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation. PMID:28787978

  16. Fast adaptive composite grid methods on distributed parallel architectures

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Quinlan, Daniel

    1992-01-01

    The fast adaptive composite (FAC) grid method is compared with the adaptive composite method (AFAC) under variety of conditions including vectorization and parallelization. Results are given for distributed memory multiprocessor architectures (SUPRENUM, Intel iPSC/2 and iPSC/860). It is shown that the good performance of AFAC and its superiority over FAC in a parallel environment is a property of the algorithm and not dependent on peculiarities of any machine.

  17. Plane Smoothers for Multiblock Grids: Computational Aspects

    NASA Technical Reports Server (NTRS)

    Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane

    1999-01-01

    Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.

  18. A Community Terrain-Following Ocean Modeling System (ROMS/TOMS)

    DTIC Science & Technology

    2012-09-30

    next user workshop will be held in Rio de Janeiro , Brazil, October 22-24, 2012. A special fourth day (October 25) has been added to focus modern...grid_extract.m is used to extract the Delaware Bay refinement grid (58 x 142) and Delaware River composite grid (42 x 55). Similarly, grid_extract.m is

  19. Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David

    2013-05-21

    We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes.

  20. Generation of three-dimensional body-fitted grids by solving hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  1. Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  2. Composite operators in cubic field theories and link-overlap fluctuations in spin-glass models

    NASA Astrophysics Data System (ADS)

    Altieri, Ada; Parisi, Giorgio; Rizzo, Tommaso

    2016-01-01

    We present a complete characterization of the fluctuations and correlations of the squared overlap in the Edwards-Anderson spin-glass model in zero field. The analysis reveals that the energy-energy correlation (and thus the specific heat) has a different critical behavior than the fluctuations of the link overlap in spite of the fact that the average energy and average link overlap have the same critical properties. More precisely the link-overlap fluctuations are larger than the specific heat according to a computation at first order in the 6 -ɛ expansion. An unexpected outcome is that the link-overlap fluctuations have a subdominant power-law contribution characterized by an anomalous logarithmic prefactor which is absent in the specific heat. In order to compute the ɛ expansion we consider the problem of the renormalization of quadratic composite operators in a generic multicomponent cubic field theory: the results obtained have a range of applicability beyond spin-glass theory.

  3. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse.

    PubMed

    Bangsgaard Bendtsen, Katja Maria; Krych, Lukasz; Sørensen, Dorte Bratbo; Pang, Wanyong; Nielsen, Dennis Sandris; Josefsen, Knud; Hansen, Lars H; Sørensen, Søren J; Hansen, Axel Kornerup

    2012-01-01

    Stress has profound influence on the gastro-intestinal tract, the immune system and the behavior of the animal. In this study, the correlation between gut microbiota composition determined by Denaturing Grade Gel Electrophoresis (DGGE) and tag-encoded 16S rRNA gene amplicon pyrosequencing (454/FLX) and behavior in the Tripletest (Elevated Plus Maze, Light/Dark Box, and Open Field combined), the Tail Suspension Test, and Burrowing in 28 female BALB/c mice exposed to two weeks of grid floor induced stress was investigated. Cytokine and glucose levels were measured at baseline, during and after exposure to grid floor. Stressing the mice clearly changed the cecal microbiota as determined by both DGGE and pyrosequencing. Odoribacter, Alistipes and an unclassified genus from the Coriobacteriaceae family increased significantly in the grid floor housed mice. Compared to baseline, the mice exposed to grid floor housing changed the amount of time spent in the Elevated Plus Maze, in the Light/Dark Box, and burrowing behavior. The grid floor housed mice had significantly longer immobility duration in the Tail Suspension Test and increased their number of immobility episodes from baseline. Significant correlations were found between GM composition and IL-1α, IFN-γ, closed arm entries of Elevated Plus Maze, total time in Elevated Plus Maze, time spent in Light/Dark Box, and time spent in the inner zone of the Open Field as well as total time in the Open Field. Significant correlations were found to the levels of Firmicutes, e.g. various species of Ruminococccaceae and Lachnospiraceae. No significant difference was found for the evaluated cytokines, except an overall decrease in levels from baseline to end. A significant lower level of blood glucose was found in the grid floor housed mice, whereas the HbA1c level was significantly higher. It is concluded that grid floor housing changes the GM composition, which seems to influence certain anxiety-related parameters.

  4. An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids

    NASA Astrophysics Data System (ADS)

    English, R. Elliot; Qiu, Linhai; Yu, Yue; Fedkiw, Ronald

    2013-12-01

    We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity. Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization is used for the parabolic terms including Navier-Stokes viscosity which we address separately through the development of a method for solving the heat diffusion equations. The most intricate aspect of any such discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or that resulting from the temporal discretization of parabolic terms. We address this by first removing any degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust second order accurate symmetric positive definite readily preconditioned discretization can be obtained by constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach on test problems in order to show efficacy and convergence before finally addressing a number of common test cases for incompressible flow with stationary and moving solid bodies.

  5. Framework for Service Composition in G-Lite

    NASA Astrophysics Data System (ADS)

    Goranova, R.

    2011-11-01

    G-Lite is a Grid middleware, currently the main middleware installed on all clusters in Bulgaria. The middleware is used by scientists for solving problems, which require a large amount of storage and computational resources. On the other hand, the scientists work with complex processes, where job execution in Grid is just a step of the process. That is why, it is strategically important g-Lite to provide a mechanism for service compositions and business process management. Such mechanism is not specified yet. In this article we propose a framework for service composition in g-Lite. We discuss business process modeling, deployment and execution in this Grid environment. The examples used to demonstrate the concept are based on some IBM products.

  6. A De-centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Arora, Manish; Das, Sajal K.; Biswas, Rupak

    2002-01-01

    In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper, we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is decentralized, scalable, and overlaps the node coordination time with that of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.

  7. A De-Centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Arora, Manish; Das, Sajal K.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is de-centralized, scalable, and overlaps the node coordination time of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.

  8. APORT: a program for the area-based apportionment of county variables to cells of a polar grid. [Airborne pollutant transport models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, D.E.; Little, C.A.

    1978-11-01

    The APORT computer code was developed to apportion variables tabulated for polygon-structured civil districts onto cells of a polar grid. The apportionment is based on fractional overlap between the polygon and the grid cells. Centering the origin of the polar system at a pollutant source site yields results that are very useful for assessing and interpreting the effects of airborne pollutant dissemination. The APOPLT graphics code, which uses the same data set as APORT, provides a convenient visual display of the polygon structure and the extent of the polar grid. The APORT/APOPLT methodology was verified by application to county summariesmore » of cattle population for counties surrounding the Oyster Creek, New Jersey, nuclear power plant. These numerical results, which were obtained using approximately 2-min computer time on an IBM System 360/91 computer, compare favorably to results of manual computations in both speed and accuracy.« less

  9. Grid Stiffened Structure Analysis Tool

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Grid Stiffened Analysis Tool contract is contract performed by Boeing under NASA purchase order H30249D. The contract calls for a "best effort" study comprised of two tasks: (1) Create documentation for a composite grid-stiffened structure analysis tool, in the form of a Microsoft EXCEL spread sheet, that was developed by originally at Stanford University and later further developed by the Air Force, and (2) Write a program that functions as a NASTRAN pre-processor to generate an FEM code for grid-stiffened structure. In performing this contract, Task 1 was given higher priority because it enables NASA to make efficient use of a unique tool they already have; Task 2 was proposed by Boeing because it also would be beneficial to the analysis of composite grid-stiffened structures, specifically in generating models for preliminary design studies. The contract is now complete, this package includes copies of the user's documentation for Task 1 and a CD ROM & diskette with an electronic copy of the user's documentation and an updated version of the "GRID 99" spreadsheet.

  10. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  11. Thermoplastic Composites Reinforced with Textile Grids: Development of a Manufacturing Chain and Experimental Characterisation

    NASA Astrophysics Data System (ADS)

    Böhm, R.; Hufnagl, E.; Kupfer, R.; Engler, T.; Hausding, J.; Cherif, C.; Hufenbach, W.

    2013-12-01

    A significant improvement in the properties of plastic components can be achieved by introducing flexible multiaxial textile grids as reinforcement. This reinforcing concept is based on the layerwise bonding of biaxially or multiaxially oriented, completely stretched filaments of high-performance fibers, e.g. glass or carbon, and thermoplastic components, using modified warp knitting techniques. Such pre-consolidated grid-like textiles are particularly suitable for use in injection moulding, since the grid geometry is very robust with respect to flow pressure and temperature on the one hand and possesses an adjustable spacing to enable a complete filling of the mould cavity on the other hand. The development of pre-consolidated textile grids and their further processing into composites form the basis for providing tailored parts with a large number of additional integrated functions like fibrous sensors or electroconductive fibres. Composites reinforced in that way allow new product groups for promising lightweight structures to be opened up in future. The article describes the manufacturing process of this new composite class and their variability regarding reinforcement and function integration. An experimentally based study of the mechanical properties is performed. For this purpose, quasi-static and highly dynamic tensile tests have been carried out as well as impact penetration experiments. The reinforcing potential of the multiaxial grids is demonstrated by means of evaluating drop tower experiments on automotive components. It has been shown that the load-adapted reinforcement enables a significant local or global improvement of the properties of plastic components depending on industrial requirements.

  12. Multigrid finite element method in stress analysis of three-dimensional elastic bodies of heterogeneous structure

    NASA Astrophysics Data System (ADS)

    Matveev, A. D.

    2016-11-01

    To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.

  13. A 3-D chimera grid embedding technique

    NASA Technical Reports Server (NTRS)

    Benek, J. A.; Buning, P. G.; Steger, J. L.

    1985-01-01

    A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.

  14. Evaluation of the phase properties of hydrating cement composite using simulated nanoindentation technique

    NASA Astrophysics Data System (ADS)

    Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi

    2017-10-01

    Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.

  15. Grid-free density functional calculations on periodic systems.

    PubMed

    Varga, Stefan

    2007-09-21

    Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xalpha exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.

  16. Grid-free density functional calculations on periodic systems

    NASA Astrophysics Data System (ADS)

    Varga, Štefan

    2007-09-01

    Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xα exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.

  17. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Tushita, E-mail: tp3rn@virginia.edu; Peppard, Heather; Williams, Mark B.

    2016-04-15

    Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscattermore » grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and 8 cm tissue-equivalent block phantom thicknesses, the inclusion of the W-poly grid reduced the SPR by factors of 5, 6, and 5.8, respectively. For the same thicknesses, the copper grid reduced the SPR by factors of 3.9, 4.5, and 4.9. For the 011A phantom, the W-poly grid raised the SDNR of the 70/30 block from 0.8, −0.32, and −0.72 to 0.9, 0.76, and 0.062 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. It raised the SDNR of the 100/0 block from 3.78, 1.95, and 1.0 to 3.79, 3.67, and 3.25 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. Inclusion of the W-poly grid improved the accuracy of image-based μ values for all block compositions. However, smearing of attenuation across slices due to limited angular sampling decreases the sensitivity of voxel values to changing composition compared to theoretical μ values. Conclusions: Under conditions of fixed radiation dose to the breast, use of a 2D focused grid increased contrast, SDNR, and accuracy of estimated attenuation for mass-simulating block compositions in all phantom thicknesses tested, with the degree of improvement depending upon material composition. A 2D antiscatter grid can be usefully incorporated in DBT systems that employ fully isocentric tube-detector rotation.« less

  18. Impacts of Integrating the Repertory Grid into an Augmented Reality-Based Learning Design on Students' Learning Achievements, Cognitive Load and Degree of Satisfaction

    ERIC Educational Resources Information Center

    Wu, Po-Han; Hwang, Gwo-Jen; Yang, Mei-Ling; Chen, Chih-Hung

    2018-01-01

    Augmented reality (AR) offers potential advantages for intensifying environmental context awareness and augmenting students' experiences in real-world environments by dynamically overlapping digital materials with a real-world environment. However, some challenges to AR learning environments have been described, such as participants' cognitive…

  19. The research on multi-projection correction based on color coding grid array

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu

    2017-10-01

    There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.

  20. Reserve networks based on richness hotspots and representation vary with scale.

    PubMed

    Shriner, Susan A; Wilson, Kenneth R; Flather, Curtis H

    2006-10-01

    While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap Analysis Programs (GAP) to produce 1-km2, 100-kmn2, 625-km2, 2500-km2, and 10,000-km2 grid cell resolution distribution maps. We used these distribution maps to generate species richness and hotspot (95th quantile) maps for each taxon in each state. Species composition information at each grain size was used to develop two types of representation networks using the reserve selection software MARXAN. Reserve selection analyses were restricted to Arizona birds due to considerable computation requirements. We used MARXAN to create best reserve networks based on the minimum area required to represent each species at least once and equal area networks based on irreplaceability values. We also measured the median area of each species' distribution included in hotspot (mammals and birds of Arizona and New Mexico) and irreplaceability (Arizona birds) networks across all species. Mean area overlap between richness hotspot reserves identified at the five grain sizes was 29% (grand mean for four within-taxon/state comparisons), mean overlap for irreplaceability reserve networks was 32%, and mean overlap for best reserve networks was 53%. Hotspots for mammals and birds showed low overlap with a mean of 30%. Comparison of hotspots and irreplaceability networks showed very low overlap with a mean of 13%. For hotspots, median species distribution area protected within reserves declined monotonically from a high of 11% for 1-km2 networks down to 6% for 10,000-km2 networks. Irreplaceability networks showed a similar, but more variable, pattern of decline. This work clearly shows that map resolution has a profound effect on conservation planning outcomes and that hotspot and representation outcomes may be strikingly dissimilar. Thus, conservation planning is scale dependent, such that reserves developed using coarse-grained data do not subsume fine-grained reserves. Moreover, preserving both full species representation and species rich areas may require combined reserve design strategies.

  1. Map visualization of groundwater withdrawals at the sub-basin scale

    NASA Astrophysics Data System (ADS)

    Goode, Daniel J.

    2016-06-01

    A simple method is proposed to visualize the magnitude of groundwater withdrawals from wells relative to user-defined water-resource metrics. The map is solely an illustration of the withdrawal magnitudes, spatially centered on wells—it is not capture zones or source areas contributing recharge to wells. Common practice is to scale the size (area) of withdrawal well symbols proportional to pumping rate. Symbols are drawn large enough to be visible, but not so large that they overlap excessively. In contrast to such graphics-based symbol sizes, the proposed method uses a depth-rate index (length per time) to visualize the well withdrawal rates by volumetrically consistent areas, called "footprints". The area of each individual well's footprint is the withdrawal rate divided by the depth-rate index. For example, the groundwater recharge rate could be used as a depth-rate index to show how large withdrawals are relative to that recharge. To account for the interference of nearby wells, composite footprints are computed by iterative nearest-neighbor distribution of excess withdrawals on a computational and display grid having uniform square cells. The map shows circular footprints at individual isolated wells and merged footprint areas where wells' individual footprints overlap. Examples are presented for depth-rate indexes corresponding to recharge, to spatially variable stream baseflow (normalized by basin area), and to the average rate of water-table decline (scaled by specific yield). These depth-rate indexes are water-resource metrics, and the footprints visualize the magnitude of withdrawals relative to these metrics.

  2. Map visualization of groundwater withdrawals at the sub-basin scale

    USGS Publications Warehouse

    Goode, Daniel J.

    2016-01-01

    A simple method is proposed to visualize the magnitude of groundwater withdrawals from wells relative to user-defined water-resource metrics. The map is solely an illustration of the withdrawal magnitudes, spatially centered on wells—it is not capture zones or source areas contributing recharge to wells. Common practice is to scale the size (area) of withdrawal well symbols proportional to pumping rate. Symbols are drawn large enough to be visible, but not so large that they overlap excessively. In contrast to such graphics-based symbol sizes, the proposed method uses a depth-rate index (length per time) to visualize the well withdrawal rates by volumetrically consistent areas, called “footprints”. The area of each individual well’s footprint is the withdrawal rate divided by the depth-rate index. For example, the groundwater recharge rate could be used as a depth-rate index to show how large withdrawals are relative to that recharge. To account for the interference of nearby wells, composite footprints are computed by iterative nearest-neighbor distribution of excess withdrawals on a computational and display grid having uniform square cells. The map shows circular footprints at individual isolated wells and merged footprint areas where wells’ individual footprints overlap. Examples are presented for depth-rate indexes corresponding to recharge, to spatially variable stream baseflow (normalized by basin area), and to the average rate of water-table decline (scaled by specific yield). These depth-rate indexes are water-resource metrics, and the footprints visualize the magnitude of withdrawals relative to these metrics.

  3. How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest

    USGS Publications Warehouse

    Saracco, J.F.; Collazo, J.A.; Groom, Martha J.

    2004-01-01

    Frugivores often track ripe fruit abundance closely across local areas despite the ephemeral and typically patchy distributions of this resource. We use spatial auto- and cross-correlation analyses to quantify spatial patterns of fruit abundance and avian frugivory across a 4-month period within a forested 4.05-ha study grid in Puerto Rico. Analyses focused on two tanager species, Spindalis portoricensis and Nesospingus speculiferus, and their principal food plants. Three broad questions are addressed: (1) at what spatial scales is fruit abundance and frugivory patchy; (2) at what spatial scales do frugivores respond to fruit abundance; and (3) to what extent do spatial patterns of frugivory overlap between bird species? Fruit patch size, species composition, and heterogeneity was variable among months, despite fruit patch locations remaining relatively consistent between months. Positive correlations between frugivory and fruit abundance suggested tanagers successfully tracked fruit abundance. Frugivory was, however, more localized than fruit abundance. Scales of spatial overlap in frugivory and monthly variation in the foraging locations of the two tanager species suggested that interspecific facilitation may have been important in determining bird foraging locations. In particular, S. portoricensis, a specialist frugivore, may have relied on the loud calls of the gregarious generalist, N. speculiferus, to find new foraging areas. Such a mechanism could help explain the formation of mixed species feeding flocks and highlights the potential importance of facilitation between species that share resources. ?? Springer-Verlag 2004.

  4. Transect versus grid trapping arrangements for sampling small-mammal communities

    Treesearch

    Dean E. Pearson; Leonard F. Ruggiero

    2003-01-01

    We compared transect and grid trapping arrangements for assessing small-mammal community composition and relative abundance for 2 years in 2 forest cover types in west-central Montana, USA. Transect arrangements yielded more total captures, more individual captures, and more species than grid arrangements in both cover types in both years. Differences between...

  5. The Impacts of an Observationally-Based Cloud Fraction and Condensate Overlap Parameterization on a GCM's Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle

    2011-01-01

    It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.

  6. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; hide

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  7. Parallel Processing of Adaptive Meshes with Load Balancing

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Many scientific applications involve grids that lack a uniform underlying structure. These applications are often also dynamic in nature in that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of unstructured grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing interprocessor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view of system loads across processors. In this paper, we propose a novel and general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication topology, and compare its performance with a successful global load balancing environment, called PLUM, specifically created to handle adaptive unstructured applications. Our experimental results on an IBM SP2 demonstrate that the SBN-based load balancer achieves lower redistribution costs than that under PLUM by overlapping processing and data migration.

  8. A procedure for automating CFD simulations of an inlet-bleed problem

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1995-01-01

    A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.

  9. Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars

    NASA Astrophysics Data System (ADS)

    Narayanan Nampy, Sreenivas

    Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an existing state-of-the-art and newly developed model to predict the torsion, bending, and axial stiffness of grid and grid-stiffened structures with various stiffening configurations. These predictions were compared to results generated using finite element analysis (FEA) to observe excellent correlation (within 6%) for a range of parameters for grid and grid-stiffened structures such as grid density, stiffener angle, and aspect ratio of the stiffener cross-section. Experimental results from cylindrical grid specimen testing were compared with analytical prediction using the new analysis. The new analysis predicted stiffness coefficients with nearly 7% error compared to FEA results. From the parametric studies conducted, it was observed that the previous state-of-the-art analysis on the other hand exhibited errors of the order of 39% for certain designs. Stability evaluations were also conducted by integrating the new analysis with established stability formulations. A design study was conducted to evaluate the potential weight savings of a simple grid-stiffened rotor blade spar structure compared to a baseline monocoque design. Various design constraints such as stiffness, strength, and stability were imposed. A manual search was conducted for design parameters such as stiffener density, stiffener angle, shell laminate, and stiffener aspect ratio that provide lightweight grid-stiffened designs compared to the baseline. It was found that a weight saving of 9.1% compared to the baseline is possible without violating any of the design constraints.

  10. Point-by-point compositional analysis for atom probe tomography.

    PubMed

    Stephenson, Leigh T; Ceguerra, Anna V; Li, Tong; Rojhirunsakool, Tanaporn; Nag, Soumya; Banerjee, Rajarshi; Cairney, Julie M; Ringer, Simon P

    2014-01-01

    This new alternate approach to data processing for analyses that traditionally employed grid-based counting methods is necessary because it removes a user-imposed coordinate system that not only limits an analysis but also may introduce errors. We have modified the widely used "binomial" analysis for APT data by replacing grid-based counting with coordinate-independent nearest neighbour identification, improving the measurements and the statistics obtained, allowing quantitative analysis of smaller datasets, and datasets from non-dilute solid solutions. It also allows better visualisation of compositional fluctuations in the data. Our modifications include:.•using spherical k-atom blocks identified by each detected atom's first k nearest neighbours.•3D data visualisation of block composition and nearest neighbour anisotropy.•using z-statistics to directly compare experimental and expected composition curves. Similar modifications may be made to other grid-based counting analyses (contingency table, Langer-Bar-on-Miller, sinusoidal model) and could be instrumental in developing novel data visualisation options.

  11. Snow and Ice Products from the Moderate Resolution Imaging Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Klein, Andrew G.

    2003-01-01

    Snow and sea ice products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, flown on the Terra and Aqua satellites, are or will be available through the National Snow and Ice Data Center Distributed Active Archive Center (DAAC). The algorithms that produce the products are automated, thus providing a consistent global data set that is suitable for climate studies. The suite of MODIS snow products begins with a 500-m resolution, 2330-km swath snow-cover map that is then projected onto a sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to daily and 8-day composite climate-modeling grid (CMG) products at 0.05 resolution. A daily snow albedo product will be available in early 2003 as a beta test product. The sequence of sea ice products begins with a swath product at 1-km resolution that provides sea ice extent and ice-surface temperature (IST). The sea ice swath products are then mapped onto the Lambert azimuthal equal area or EASE-Grid projection to create a daily and 8-day composite sea ice tile product, also at 1 -km resolution. Climate-Modeling Grid (CMG) sea ice products in the EASE-Grid projection at 4-km resolution are planned for early 2003.

  12. 76 FR 31749 - Energy Conservation Program for Certain Consumer Appliances: Test Procedures for Battery Chargers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    .... 6 at p. 1; AHAM, No. 10 at p. 8) Delta-Q cautioned ``against some overlap with any solar industry... electrical grid and the battery of many consumer photovoltaic (PV) and wind energy systems, as well as rapid... for residential PV systems that employ these higher output voltage devices. (ASAP, No. 11 at p. 2; PG...

  13. Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.

    PubMed

    Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K

    2007-01-01

    3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

  14. Critical Points and Traveling Wave in Locomotion: Experimental Evidence and Some Theoretical Considerations.

    PubMed

    Saltiel, Philippe; d'Avella, Andrea; Tresch, Matthew C; Wyler, Kuno; Bizzi, Emilio

    2017-01-01

    The central pattern generator (CPG) architecture for rhythm generation remains partly elusive. We compare cat and frog locomotion results, where the component unrelated to pattern formation appears as a temporal grid, and traveling wave respectively. Frog spinal cord microstimulation with N-methyl-D-Aspartate (NMDA), a CPG activator, produced a limited set of force directions, sometimes tonic, but more often alternating between directions similar to the tonic forces. The tonic forces were topographically organized, and sites evoking rhythms with different force subsets were located close to the constituent tonic force regions. Thus CPGs consist of topographically organized modules. Modularity was also identified as a limited set of muscle synergies whose combinations reconstructed the EMGs. The cat CPG was investigated using proprioceptive inputs during fictive locomotion. Critical points identified both as abrupt transitions in the effect of phasic perturbations, and burst shape transitions, had biomechanical correlates in intact locomotion. During tonic proprioceptive perturbations, discrete shifts between these critical points explained the burst durations changes, and amplitude changes occurred at one of these points. Besides confirming CPG modularity, these results suggest a fixed temporal grid of anchoring points, to shift modules onsets and offsets. Frog locomotion, reconstructed with the NMDA synergies, showed a partially overlapping synergy activation sequence. Using the early synergy output evoked by NMDA at different spinal sites, revealed a rostrocaudal topographic organization, where each synergy is preferentially evoked from a few, albeit overlapping, cord regions. Comparing the locomotor synergy sequence with this topography suggests that a rostrocaudal traveling wave would activate the synergies in the proper sequence for locomotion. This output was reproduced in a two-layer model using this topography and a traveling wave. Together our results suggest two CPG components: modules, i.e., synergies; and temporal patterning, seen as a temporal grid in the cat, and a traveling wave in the frog. Animal and limb navigation have similarities. Research relating grid cells to the theta rhythm and on segmentation during navigation may relate to our temporal grid and traveling wave results. Winfree's mathematical work, combining critical phases and a traveling wave, also appears important. We conclude suggesting tracing, and imaging experiments to investigate our CPG model.

  15. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  16. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less

  17. Numerical stability of an explicit finite difference scheme for the solution of transient conduction in composite media

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1981-01-01

    A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.

  18. Experience with 3-D composite grids

    NASA Technical Reports Server (NTRS)

    Benek, J. A.; Donegan, T. L.; Suhs, N. E.

    1987-01-01

    Experience with the three-dimensional (3-D), chimera grid embedding scheme is described. Applications of the inviscid version to a multiple-body configuration, a wind/body/tail configuration, and an estimate of wind tunnel wall interference are described. Applications to viscous flows include a 3-D cavity and another multi-body configuration. A variety of grid generators is used, and several embedding strategies are described.

  19. Development of a steady potential solver for use with linearized, unsteady aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Hoyniak, Daniel; Verdon, Joseph M.

    1991-01-01

    A full potential steady flow solver (SFLOW) developed explicitly for use with an inviscid unsteady aerodynamic analysis (LINFLO) is described. The steady solver uses the nonconservative form of the nonlinear potential flow equations together with an implicit, least squares, finite difference approximation to solve for the steady flow field. The difference equations were developed on a composite mesh which consists of a C grid embedded in a rectilinear (H grid) cascade mesh. The composite mesh is capable of resolving blade to blade and far field phenomena on the H grid, while accurately resolving local phenomena on the C grid. The resulting system of algebraic equations is arranged in matrix form using a sparse matrix package and solved by Newton's method. Steady and unsteady results are presented for two cascade configurations: a high speed compressor and a turbine with high exit Mach number.

  20. Optimal Design of Grid-Stiffened Panels and Shells With Variable Curvature

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin

    2001-01-01

    A design strategy for optimal design of composite grid-stiffened structures with variable curvature subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. Stiffening configuration is herein defined as a design variable that indicates the combination of axial, transverse and diagonal stiffeners in the stiffened panel. The design optimization process is adapted to identify the lightest-weight stiffening configuration and stiffener spacing for grid-stiffened composite panels given the overall panel dimensions. in-plane design loads, material properties. and boundary conditions of the grid-stiffened panel or shell.

  1. Advanced Concepts for Composite Structure Joints and Attachment Fittings. Volume 2. Design Guide

    DTIC Science & Technology

    1981-11-01

    500 3CC000 .loo 310- GRID 11040 100 M250 30.0000 .0 3311- GRID 11041 100 .2OO 15.COCO .5000 332- GRID 13042 ILO .2500 15.0000 .4000 313- GRID 11043...b~ l ( 115K -. 1 2 It e l t 1 1 A N A I 1 1 CARO 1 L~uNI 4 ... * ’ * 9.. 6 . p. . . 0 h0t- 91’ S 193 1001% 109 1016 402- SPl 9 123 10004 10006

  2. A Grid and Group Explanation of Students' and Instructors' Preferences in Computer Assisted Instruction: A Case Study of University Classrooms in Thailand

    ERIC Educational Resources Information Center

    Limwudhikraijirath, Aree

    2009-01-01

    This study was a case study which had three overlapping purposes. The first purpose was to use Douglas's typology to explain the educational culture of the Faculty of Management Sciences (FMS) at Prince of Songkla University (PSU) Hatyai, Songkhla, Thailand. The second purpose was to describe the students' and instructor's preferences about…

  3. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2012-01-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  4. Quantifying uncertainty in coral Sr/Ca-based SST estimates from Orbicella faveolata: A basis for multi-colony SST reconstructions

    NASA Astrophysics Data System (ADS)

    Richey, J. N.; Flannery, J. A.; Toth, L. T.; Kuffner, I. B.; Poore, R. Z.

    2017-12-01

    The Sr/Ca in massive corals can be used as a proxy for sea surface temperature (SST) in shallow tropical to sub-tropical regions; however, the relationship between Sr/Ca and SST varies throughout the ocean, between different species of coral, and often between different colonies of the same species. We aimed to quantify the uncertainty associated with the Sr/Ca-SST proxy due to sample handling (e.g., micro-drilling or analytical error), vital effects (e.g., among-colony differences in coral growth), and local-scale variability in microhabitat. We examine the intra- and inter-colony reproducibility of Sr/Ca records extracted from five modern Orbicella faveolata colonies growing in the Dry Tortugas, Florida, USA. The average intra-colony absolute difference (AD) in Sr/Ca of the five colonies during an overlapping interval (1997-2008) was 0.055 ± 0.044 mmol mol-1 (0.96 ºC) and the average inter-colony Sr/Ca AD was 0.039 ± 0.01 mmol mol-1 (0.51 ºC). All available Sr/Ca-SST data pairs from 1997-2008 were combined and regressed against the HadISST1 gridded SST data set (24 ºN and 82 ºW) to produce a calibration equation that could be applied to O. faveolata specimens from throughout the Gulf of Mexico/Caribbean/Atlantic region after accounting for the potential uncertainties in Sr/Ca-derived SSTs. We quantified a combined error term for O. faveolata using the root-sum-square (RMS) of the analytical, intra-, and inter-colony uncertainties and suggest that an overall uncertainty of 0.046 mmol mol-1 (0.81 ºC, 1σ), should be used to interpret Sr/Ca records from O. faveolata specimens of unknown age or origin to reconstruct SST. We also explored how uncertainty is affected by the number of corals used in a reconstruction by iteratively calculating the RMS error for composite coral time-series using two, three, four, and five overlapping coral colonies. Our results indicate that maximum RMS error at the 95% confidence interval on mean annual SST estimates is 1.4 ºC when a composite record is made from only two overlapping coral Sr/Ca records. The uncertainty decreases as additional coral Sr/Ca data are added, with a maximum RMS error of 0.5 ºC on mean annual SST for a five-colony composite. To reduce uncertainty to under 1 ºC, it is best to use Sr/Ca from three or more coral colonies from the same geographic location and time period.

  5. Method and apparatus for providing a seamless tiled display

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Johnson, Michael J. (Inventor)

    2002-01-01

    A display for producing a seamless composite image from at least two discrete images. The display includes one or more projectors for projecting each of the discrete images separately onto a screen such that at least one of the discrete images overlaps at least one other of the discrete images by more than 25 percent. The amount of overlap that is required to reduce the seams of the composite image to an acceptable level over a predetermined viewing angle depends on a number of factors including the field-of-view and aperture size of the projectors, the screen gain profile, etc. For rear-projection screens and some front projection screens, an overlap of more than 25 percent is acceptable.

  6. Erratum: ``A Grid of Non-LTE Line-blanketed Model Atmospheres of O-Type Stars'' (ApJS, 146, 417 [2003])

    NASA Astrophysics Data System (ADS)

    Lanz, Thierry; Hubeny, Ivan

    2003-07-01

    We have constructed a comprehensive grid of 680 metal line-blanketed, non-LTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to O-type stars. The OSTAR2002 grid considers 12 values of effective temperatures, 27,500K<=Teff<=55,000 K with 2500 K steps, eight surface gravities, 3.0<=logg<=4.75 with 0.25 dex steps, and 10 chemical compositions, from metal-rich relative to the Sun to metal-free. The lower limit of logg for a given effective temperature is set by an approximate location of the Eddington limit. The selected chemical compositions have been chosen to cover a number of typical environments of massive stars: the Galactic center, the Magellanic Clouds, blue compact dwarf galaxies like I Zw 18, and galaxies at high redshifts. The paper contains a description of the OSTAR2002 grid and some illustrative examples and comparisons. The complete OSTAR2002 grid is available at our Web site at ApJS, 146, 417 [2003]. Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771.

  7. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  8. Investigation on a coupled CFD/DSMC method for continuum-rarefied flows

    NASA Astrophysics Data System (ADS)

    Tang, Zhenyu; He, Bijiao; Cai, Guobiao

    2012-11-01

    The purpose of the present work is to investigate the coupled CFD/DSMC method using the existing CFD and DSMC codes developed by the authors. The interface between the continuum and particle regions is determined by the gradient-length local Knudsen number. A coupling scheme combining both state-based and flux-based coupling methods is proposed in the current study. Overlapping grids are established between the different grid systems of CFD and DSMC codes. A hypersonic flow over a 2D cylinder has been simulated using the present coupled method. Comparison has been made between the results obtained from both methods, which shows that the coupled CFD/DSMC method can achieve the same precision as the pure DSMC method and obtain higher computational efficiency.

  9. Analysis of Franck-Condon factors for CO+ molecule using the Fourier Grid Hamiltonian method

    NASA Astrophysics Data System (ADS)

    Syiemiong, Arnestar; Swer, Shailes; Jha, Ashok Kumar; Saxena, Atul

    2018-04-01

    Franck-Condon factors (FCFs) are important parameters and it plays a very important role in determining the intensities of the vibrational bands in electronic transitions. In this paper, we illustrate the Fourier Grid Hamiltonian (FGH) method, a relatively simple method to calculate the FCFs. The FGH is a method used for calculating the vibrational eigenvalues and eigenfunctions of bound electronic states of diatomic molecules. The obtained vibrational wave functions for the ground and the excited states are used to calculate the vibrational overlap integral and then the FCFs. In this computation, we used the Morse potential and Bi-Exponential potential model for constructing and diagonalizing the molecular Hamiltonians. The effects of the change in equilibrium internuclear distance (xe), dissociation energy (De), and the nature of the excited state electronic energy curve on the FCFs have been determined. Here we present our work for the qualitative analysis of Franck-Condon Factorsusing this Fourier Grid Hamiltonian Method.

  10. PEGASUS 5: An Automated Pre-Processor for Overset-Grid CFD

    NASA Technical Reports Server (NTRS)

    Suhs, Norman E.; Rogers, Stuart E.; Dietz, William E.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    An all new, automated version of the PEGASUS software has been developed and tested. PEGASUS provides the hole-cutting and connectivity information between overlapping grids, and is used as the final part of the grid generation process for overset-grid computational fluid dynamics approaches. The new PEGASUS code (Version 5) has many new features: automated hole cutting; a projection scheme for fixing gaps in overset surfaces; more efficient interpolation search methods using an alternating digital tree; hole-size optimization based on adding additional layers of fringe points; and an automatic restart capability. The new code has also been parallelized using the Message Passing Interface standard. The parallelization performance provides efficient speed-up of the execution time by an order of magnitude, and up to a factor of 30 for very large problems. The results of three example cases are presented: a three-element high-lift airfoil, a generic business jet configuration, and a complete Boeing 777-200 aircraft in a high-lift landing configuration. Comparisons of the computed flow fields for the airfoil and 777 test cases between the old and new versions of the PEGASUS codes show excellent agreement with each other and with experimental results.

  11. Field performance of a geosynthetic clay liner landfill capping system under simulated waste subsidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, W.; Siegmund, M.; Alexiew, D.

    1995-10-01

    A flexible landfill capping system consisting of a 3-D-geocore composite for gas vent, a Geosynthetic Clay Liner (GCL) for sealing and a 3-D-geocore composite for drainage of the vegetation soil was built on a test field at Michelshoehe landfill near Weimar, Germany. At four locations airbags were installed underneath the thin capping system to simulate subsidences. On top of three of these airbags overlaps of the GCL were positioned, for comparison there was no overlap at the fourth location. After hydratation of the GCL the airbags were de-aerated and subsidences occurred with app. 5 % tensile strain in the GCL.more » For three weeks the test field was intensively sprinkled in intervals. Then horizontal and vertical deformations were measured, but not displacements were registered in the overlaps. The evaluation of the GCL`s permeability showed no significant difference between the locations with and without overlaps.« less

  12. Finite Element Analysis of Composite Joint Configurations with Gaps and Overlaps

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2014-01-01

    The goal of the current study is to identify scenarios for which thermal and moisture effects become significant in the loading of a composite structure. In the current work, a simple configuration was defined, and material properties were selected. A Fortran routine was created to automate the mesh generation process. The routine was used to create the models for the initial mesh refinement study. A combination of element length and width suitable for further studies was identified. Also, the effect of the overlap length and gap length on computed shear and through-thickness stresses along the bondline of the joints was studied for the mechanical load case. Further, the influence of neighboring gaps and overlaps on these joint stresses was studied and was found to be negligible. The results suggest that for an initial study it is sufficient to focus on one configuration with fixed overlap and gap lengths to study the effects of mechanical, thermal and moisture loading and combinations thereof on computed joint stresses

  13. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials.

    PubMed

    Zhang, Lina; Zhang, Haoxu; Zhou, Ruifeng; Chen, Zhuo; Li, Qunqing; Fan, Shoushan; Ge, Guanglu; Liu, Renxiao; Jiang, Kaili

    2011-09-23

    A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.

  14. Development of Intelligent Unmanned Systems

    DTIC Science & Technology

    2011-05-01

    statistical analysis on the terrain map. The data points are stored in the corresponding cells of the Traversability Grid as a linked list of 3-D Cartesian...allowed for multiple configurations of specified data to be as flexible as possible. For example, when an object is being created the knowledge store ...library was also used for querying and storing spatial data . It provided many geometric abstractions necessary such as overlap and intersects

  15. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  16. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE PAGES

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; ...

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  17. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix.

    PubMed

    Morley, A; Sha, G; Hirosawa, S; Cerezo, A; Smith, G D W

    2009-04-01

    Aberrations in the ion trajectories near the specimen surface are an important factor in the spatial resolution of the atom probe technique. Near the boundary between two phases with dissimilar evaporation fields, ion trajectory overlaps may occur, leading to a biased measurement of composition in the vicinity of this interface. In the case of very small second-phase precipitates, the region affected by trajectory overlaps may extend to the centre of the precipitate prohibiting a direct measurement of composition. A method of quantifying the aberrant matrix contribution and thus estimating the underlying composition is presented. This method is applied to the Fe-Cu-alloy system, where the precipitation of low-nanometre size Cu-rich precipitates is of considerable technical importance in a number of materials applications. It is shown definitively that there is a non-zero underlying level of Fe within precipitates formed upon thermal ageing, which is augmented and masked by trajectory overlaps. The concentration of Fe in the precipitate phase is shown to be a function of ageing temperature. An estimate of the underlying Fe level is made, which is at lower levels than commonly reported by atom probe investigations.

  18. A dual communicator and dual grid-resolution algorithm for petascale simulations of turbulent mixing at high Schmidt number

    NASA Astrophysics Data System (ADS)

    Clay, M. P.; Buaria, D.; Gotoh, T.; Yeung, P. K.

    2017-10-01

    A new dual-communicator algorithm with very favorable performance characteristics has been developed for direct numerical simulation (DNS) of turbulent mixing of a passive scalar governed by an advection-diffusion equation. We focus on the regime of high Schmidt number (S c), where because of low molecular diffusivity the grid-resolution requirements for the scalar field are stricter than those for the velocity field by a factor √{ S c }. Computational throughput is improved by simulating the velocity field on a coarse grid of Nv3 points with a Fourier pseudo-spectral (FPS) method, while the passive scalar is simulated on a fine grid of Nθ3 points with a combined compact finite difference (CCD) scheme which computes first and second derivatives at eighth-order accuracy. A static three-dimensional domain decomposition and a parallel solution algorithm for the CCD scheme are used to avoid the heavy communication cost of memory transposes. A kernel is used to evaluate several approaches to optimize the performance of the CCD routines, which account for 60% of the overall simulation cost. On the petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign, scalability is improved substantially with a hybrid MPI-OpenMP approach in which a dedicated thread per NUMA domain overlaps communication calls with computational tasks performed by a separate team of threads spawned using OpenMP nested parallelism. At a target production problem size of 81923 (0.5 trillion) grid points on 262,144 cores, CCD timings are reduced by 34% compared to a pure-MPI implementation. Timings for 163843 (4 trillion) grid points on 524,288 cores encouragingly maintain scalability greater than 90%, although the wall clock time is too high for production runs at this size. Performance monitoring with CrayPat for problem sizes up to 40963 shows that the CCD routines can achieve nearly 6% of the peak flop rate. The new DNS code is built upon two existing FPS and CCD codes. With the grid ratio Nθ /Nv = 8, the disparity in the computational requirements for the velocity and scalar problems is addressed by splitting the global communicator MPI_COMM_WORLD into disjoint communicators for the velocity and scalar fields, respectively. Inter-communicator transfer of the velocity field from the velocity communicator to the scalar communicator is handled with discrete send and non-blocking receive calls, which are overlapped with other operations on the scalar communicator. For production simulations at Nθ = 8192 and Nv = 1024 on 262,144 cores for the scalar field, the DNS code achieves 94% strong scaling relative to 65,536 cores and 92% weak scaling relative to Nθ = 1024 and Nv = 128 on 512 cores.

  19. Newly discovered abundant fluid seep indicators off southern Costa Rica, imaged from overlapping multibeam swaths and 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J. W.; Silver, E. A.; Gibson, J. C.; Bangs, N. L.; McIntosh, K.; von Huene, R.; Orange, D.; Ranero, C. R.

    2012-12-01

    Offshore southern Costa Rica we have identified 161 potential fluid seepage sites on the shelf and slope regions within an 11 x 55 km strip where no fluid indicators had been reported previously using conventional deep-water mutlibeam bathymetry (100 m grid cell size) and deep towed side scan sonar. Evidence includes large and small pockmarks, mounds, ridges, and slope failure features with localized anomalous high-amplitude backscatter strength. The majority of seepage indicators are associated with shallow sub-bottom reversed polarity bright spots and flat spots imaged within the CRISP 3D seismic grid. Data were collected ~50 km west of Osa Peninsula, Costa Rica onboard the R/V Marcus G. Langseth during the spring of 2011. We obtained EM122 multibeam data using fixed, closely spaced receiver beams and 9-10 times swath overlap, which greatly improved the signal-to-noise ratio and sounding density and allowed for very small grid and mosaic cell sizes (2-10 m). A gas plume in the water column, seen on a 3.5 kHz profile, is located along a fault trace and above surface and subsurface seep indicators. Fluid indicators on the outer shelf occur largely on a dense array of faults, some of which cut through the reflective basement. Seismic flat spots commonly underlie axes of large anticlines on the shelf and slope. Pockmarks are also located at the foot of mid-slope canyons, very near to the upper end of the BSR. These pockmarks appear to be associated with canyon abandonment and folded beds that channel fluids upward, causing hydrate instability. Our findings suggest that significant amounts of methane are venting into ocean and potentially into the atmosphere across the heavily deformed shelf and slope of Costa Rica.

  20. Grid pattern of nanothick microgel network.

    PubMed

    Chen, Guoping; Kawazoe, Naoki; Fan, Yujiang; Ito, Yoshihiro; Tateishi, Tetsuya

    2007-05-22

    A novel grid pattern of two kinds of nanothick microgels was developed by alternate patterning using photolithography. At first, 100-microm-wide nanothick PAAm microgel stripes were grafted on a polystyrene surface by UV irradiation of the photoreactive azidobenzoyl-derivatized polyallylamine-coated surface through a photomask with 100-microm-wide stripes. Then, a second set of 100-microm-wide nanothick PAAc microgel stripes were grafted across the PAAm-grated polystyrene surface by UV irradiation of the photoreactive azidophenyl-derivatized poly(acrylic acid)-coated surface through a photomask placed perpendicularly to the first set of PAAm microgel stripes. The PAAc microgel stripe pattern was formed over the PAAm microgel stripe pattern. The cross angle of the two microgel stripes could be controlled by adjusting the position of the photomask when the second microgel pattern was prepared. Swelling and shrinking of the microgels were investigated by scanning probe microscopy (SPM) in an aqueous solution. SPM observation indicated that the thickness of the gel network was 100 to 500 nm. The regions containing PAAm, PAAc, and the PAAc-PAAm overlapping microgels showed different swelling and shrinking properties when the pH was changed. The PAAm microgel swelled at low pH and shrank at high pH whereas the PAAc microgel swelled at high pH and shrank at low pH. However, the PAAc-PAAm overlapping microgel did not change as significantly as did the two microgels, indicating that the swelling and shrinking of the two gels was partially offset. The pH-induced structural change was repeatedly reversible. The novel grid pattern of nanothick microgels will find applications in various fields such as smart actuators, artificial muscles, sensors, and drug delivery systems as well as in tissue engineering and so forth.

  1. Navier-Stokes simulation of rotor-body flowfield in hover using overset grids

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Ahmad, J. U.

    1993-01-01

    A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.

  2. Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints

    NASA Technical Reports Server (NTRS)

    Jaunky, N.; Ambur, D. R.; Knight, N. F., Jr.

    1998-01-01

    A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and strength constraints was developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory was used for the global analysis. Local buckling of skin segments were assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments were also assessed. Constraints on the axial membrane strain in the skin and stiffener segments were imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study were the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence and stiffening configuration, where stiffening configuration is a design variable that indicates the combination of axial, transverse and diagonal stiffener in the grid-stiffened cylinder. The design optimization process was adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configurations.

  3. Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints

    NASA Technical Reports Server (NTRS)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1998-01-01

    A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and, strength constraints is developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory is used for the global analysis. Local buckling of skin segments are assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments are also assessed. Constraints on the axial membrane strain in the skin and stiffener segments are imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study are the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence, and stiffening configuration, where herein stiffening configuration is a design variable that indicates the combination of axial, transverse, and diagonal stiffener in the grid-stiffened cylinder. The design optimization process is adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads, and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configuration.

  4. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  5. Technical and economic advantages of making lead-acid battery grids by continuous electroforming

    NASA Astrophysics Data System (ADS)

    Warlimont, H.; Hofmann, T.

    A new continuous electroforming process to manufacture lead grids for automotive and industrial lead-acid batteries has been developed. A galvanic cell comprising a drum cathode for electroforming and a subsequent series of galvanic cells which form a strip galvanizing line are operating in a single, fully continuous, automatic process. Virgin lead or lead scrap may be used as the anode material. The product is grid strip of any specified thickness and design which can be fed into existing strip-pasting equipment. The composition and microstructure of the grid material can be varied to provide increased corrosion resistance and increased paste adherence. A unique feature of the material is its inherent layered composite structure that allows optimization of the properties according to particular functional requirements. Thus, both the specific power and the specific energy of the battery can be increased by reducing weight. The material properties increase the calendar life of the battery by increasing the corrosion resistance of the grid, and increase the cycle-life of the battery by improved adherence of the positive active material. The technical and economic features and competitive advantages of this new technology and product are presented in quantitative terms.

  6. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  7. Generation of a Composite Grid for Turbine Flows and Consideration of a Numerical Scheme.

    DTIC Science & Technology

    1986-11-01

    section (a) Grids on blade-to-blade surface. WIWcr fb eatv r.t35eaiy aiso lsnbaet-baesrae Figure~~~~~~~~ 4. "eo’ycotuso.4det-ld urae(rmtre-ieso5 .2lcdcmp

  8. a Metadata Based Approach for Analyzing Uav Datasets for Photogrammetric Applications

    NASA Astrophysics Data System (ADS)

    Dhanda, A.; Remondino, F.; Santana Quintero, M.

    2018-05-01

    This paper proposes a methodology for pre-processing and analysing Unmanned Aerial Vehicle (UAV) datasets before photogrammetric processing. In cases where images are gathered without a detailed flight plan and at regular acquisition intervals the datasets can be quite large and be time consuming to process. This paper proposes a method to calculate the image overlap and filter out images to reduce large block sizes and speed up photogrammetric processing. The python-based algorithm that implements this methodology leverages the metadata in each image to determine the end and side overlap of grid-based UAV flights. Utilizing user input, the algorithm filters out images that are unneeded for photogrammetric processing. The result is an algorithm that can speed up photogrammetric processing and provide valuable information to the user about the flight path.

  9. High-resolution field shaping utilizing a masked multileaf collimator.

    PubMed

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm grids, and still further by the use of 4 x 2.5 mm grids, as would be expected. This was also achieved with a small or negligible broadening of the beam penumbra as measured at Dmax.

  10. Stability Test for Transient-Temperature Calculations

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1984-01-01

    Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.

  11. Statistically-Estimated Tree Composition for the Northeastern United States at Euro-American Settlement.

    PubMed

    Paciorek, Christopher J; Goring, Simon J; Thurman, Andrew L; Cogbill, Charles V; Williams, John W; Mladenoff, David J; Peters, Jody A; Zhu, Jun; McLachlan, Jason S

    2016-01-01

    We present a gridded 8 km-resolution data product of the estimated composition of tree taxa at the time of Euro-American settlement of the northeastern United States and the statistical methodology used to produce the product from trees recorded by land surveyors. Composition is defined as the proportion of stems larger than approximately 20 cm diameter at breast height for 22 tree taxa, generally at the genus level. The data come from settlement-era public survey records that are transcribed and then aggregated spatially, giving count data. The domain is divided into two regions, eastern (Maine to Ohio) and midwestern (Indiana to Minnesota). Public Land Survey point data in the midwestern region (ca. 0.8-km resolution) are aggregated to a regular 8 km grid, while data in the eastern region, from Town Proprietor Surveys, are aggregated at the township level in irregularly-shaped local administrative units. The product is based on a Bayesian statistical model fit to the count data that estimates composition on the 8 km grid across the entire domain. The statistical model is designed to handle data from both the regular grid and the irregularly-shaped townships and allows us to estimate composition at locations with no data and to smooth over noise caused by limited counts in locations with data. Critically, the model also allows us to quantify uncertainty in our composition estimates, making the product suitable for applications employing data assimilation. We expect this data product to be useful for understanding the state of vegetation in the northeastern United States prior to large-scale Euro-American settlement. In addition to specific regional questions, the data product can also serve as a baseline against which to investigate how forests and ecosystems change after intensive settlement. The data product is being made available at the NIS data portal as version 1.0.

  12. Dynamic grid refinement for partial differential equations on parallel computers

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.

  13. Damage mapping in structural health monitoring using a multi-grid architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, V. John

    2015-03-31

    This paper presents a multi-grid architecture for tomography-based damage mapping of composite aerospace structures. The system employs an array of piezo-electric transducers bonded on the structure. Each transducer may be used as an actuator as well as a sensor. The structure is excited sequentially using the actuators and the guided waves arriving at the sensors in response to the excitations are recorded for further analysis. The sensor signals are compared to their baseline counterparts and a damage index is computed for each actuator-sensor pair. These damage indices are then used as inputs to the tomographic reconstruction system. Preliminary damage mapsmore » are reconstructed on multiple coordinate grids defined on the structure. These grids are shifted versions of each other where the shift is a fraction of the spatial sampling interval associated with each grid. These preliminary damage maps are then combined to provide a reconstruction that is more robust to measurement noise in the sensor signals and the ill-conditioned problem formulation for single-grid algorithms. Experimental results on a composite structure with complexity that is representative of aerospace structures included in the paper demonstrate that for sufficiently high sensor densities, the algorithm of this paper is capable of providing damage detection and characterization with accuracy comparable to traditional C-scan and A-scan-based ultrasound non-destructive inspection systems quickly and without human supervision.« less

  14. Detection of CFRP Composite Manufacturing Defects Using a Guided Wave Approach

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yuan, Fuh-Gwo

    2015-01-01

    NASA Langley Research Center is investigating a guided-wave based defect detection technique for as-fabricated carbon fiber reinforced polymer (CFRP) composites. This technique will be extended to perform in-process cure monitoring, defect detection and size determination, and ultimately a closed-loop process control to maximize composite part quality and consistency. The overall objective of this work is to determine the capability and limitations of the proposed defect detection technique, as well as the number and types of sensors needed to identify the size, type, and location of the predominant types of manufacturing defects associated with laminate layup and cure. This includes, porosity, gaps, overlaps, through-the-thickness fiber waviness, and in-plane fiber waviness. The present study focuses on detection of the porosity formed from variations in the matrix curing process, and on local overlaps intentionally introduced during layup of the prepreg. By terminating the cycle prematurely, three 24-ply unidirectional composite panels were manufactured such that each subsequent panel had a higher final degree of cure, and lower level of porosity. It was demonstrated that the group velocity, normal to the fiber direction, of a guided wave mode increased by 5.52 percent from the first panel to the second panel and 1.26 percent from the second panel to the third panel. Therefore, group velocity was utilized as a metric for degree of cure and porosity measurements. A fully non-contact guided wave hybrid system composed of an air-coupled transducer and a laser Doppler vibrometer (LDV) was used for the detection and size determination of an overlap By transforming the plate response from the time-space domain to the frequency-wavenumber domain, the total wavefield was then separated into the incident and backscatter waves. The overlap region was accurately imaged by using a zero-lag cross-correlation (ZLCC) imaging condition, implying the incident and backscattered waves are in phase over the overlap boundaries.

  15. Evaluating potential overlap between pack stock and Sierra Nevada bighorn sheep (Ovis canadensis sierrae) in Sequoia and Kings Canyon National Parks, California

    USGS Publications Warehouse

    Klinger, Robert C.; Few, Alexandra P.; Knox, Kathleen A.; Hatfield, Brian E.; Clark, Jonathan; German, David W.; Stephenson, Thomas R.

    2015-01-01

    The association analyses indicated the potential for overlap between pack stock and SNBS was minimal; only 1 percent of the potential meadow area in the SNBS herd home ranges overlapped that of pack stock meadows. There were no systematic differences in overall vegetation structure or composition, or in diversity, cover, or composition of forage species, that indicated pack stock were altering SNBS habitat or affecting their nutrition. Variation in plant species composition was influenced primarily by random differences among meadows and environmental gradients, and there was little evidence that pack stock use contributed in meaningful ways to this variation. The few differences among meadows with different levels of use by bighorn sheep and pack stock either were minor or were not in a direction consistent with negative effects of pack stock on SNBS. We conclude that the current plan for managing pack stock grazing has been successful in minimizing significant negative effects on Sierra Nevada bighorn sheep at Sequoia and Kings Canyon National Parks.

  16. A two-dimensional composite grid numerical model based on the reduced system for oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y.F.; Browning, G.L.; Chesshire, G.

    The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less

  17. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  18. Nimbus-7 Stratospheric and Mesospheric Sounder (SAMS) experiment data user's guide

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Rodgers, C. D.; Nutter, S. T.; Oslik, N.

    1989-01-01

    The Stratospheric and Mesospheric Sounder (SAMS) aboard Nimbus-7 observes infrared radiation from the atmospheric limb. Global upper atmosphere temperature profiles and vertical concentrations of H2O, NO, N2O, CH4 and CO2 are derived from these measurements. The status of all channels was carefully monitored. Temperature and composition were retrieved from the measurements by linearizing the direct equation about an a priori profile and using an optimum statistical estimator to find the most likely solution. The derived temperature and composition profiles are archived on two tape products whose file structure and record formats are described in detail. The gridded retrieved temperature tape (GRID-T) contains daily day and night average temperatures at 62 pressure levels in a 2.5 degree latitude by 10 degree longitude grid extending from 67.5 degrees N to 50 degrees S. The zonal mean methane and nitrous oxide composition tape (ZMT-G) contains zonal mean day and night average CH4 and N2O mixing ratios at 31 pressure levels for 2.5 degrees latitude zones extending from 67.5 degrees N to 50 degrees S.

  19. Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheichl, Robert; Vassilevski, Panayot S.; Zikatanov, Ludmil T.

    2012-06-21

    We generalize the analysis of classical multigrid and two-level overlapping Schwarz methods for 2nd order elliptic boundary value problems to problems with large discontinuities in the coefficients that are not resolved by the coarse grids or the subdomain partition. The theoretical results provide a recipe for designing hierarchies of standard piecewise linear coarse spaces such that the multigrid convergence rate and the condition number of the Schwarz preconditioned system do not depend on the coefficient variation or on any mesh parameters. One assumption we have to make is that the coarse grids are sufficiently fine in the vicinity of crossmore » points or where regions with large diffusion coefficients are separated by a narrow region where the coefficient is small. We do not need to align them with possible discontinuities in the coefficients. The proofs make use of novel stable splittings based on weighted quasi-interpolants and weighted Poincaré-type inequalities. Finally, numerical experiments are included that illustrate the sharpness of the theoretical bounds and the necessity of the technical assumptions.« less

  20. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2011-06-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus the mosaic approaches of representing vegetation. Differences in grid averaged primary energy fluxes are generally less than 5 % between the two approaches. Grid-averaged carbon fluxes and pool sizes can, however, differ by as much as 46 %. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  1. Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field-Ionized Thruster

    DTIC Science & Technology

    2011-12-01

    30  Figure 13.  Equipotential plot, Ez as a function of z and r, Jreq=300 kA/m2, space charge off... Equipotential plots, Ez as a function of z and r, Jreq=300 kA/m2, space charge on. Plots are taken at time intervals of 0.05 ns...on the accelerating grids; under-perveance results in crossover, overlap of neighboring beamlets, and impingement on downstream surfaces . Optimum

  2. Numerical Prediction of Periodic Vortex Shedding in Subsonic and Transonic Turbine Cascade Flows

    NASA Astrophysics Data System (ADS)

    Mensink, C.

    1996-05-01

    Periodic vortex shedding at the trailing edge of a turbine cascade has been investigated numerically for a subsonic and a transonic cascade flow. The numerical investigation was carried out by a finite volume multiblock code, solving the 2D compressible Reynolds-averaged Navier-Stokes equations on a set of non-overlapping grid blocks that are connected in a conservative way. Comparisons are made with experimental results previously obtained by Sieverding and Heinemann.

  3. The Use of a Binary Composite Endpoint and Sample Size Requirement: Influence of Endpoints Overlap.

    PubMed

    Marsal, Josep-Ramon; Ferreira-González, Ignacio; Bertran, Sandra; Ribera, Aida; Permanyer-Miralda, Gaietà; García-Dorado, David; Gómez, Guadalupe

    2017-05-01

    Although composite endpoints (CE) are common in clinical trials, the impact of the relationship between the components of a binary CE on the sample size requirement (SSR) has not been addressed. We performed a computational study considering 2 treatments and a CE with 2 components: the relevant endpoint (RE) and the additional endpoint (AE). We assessed the strength of the components' interrelation by the degree of relative overlap between them, which was stratified into 5 groups. Within each stratum, SSR was computed for multiple scenarios by varying the events proportion and the effect of the therapy. A lower SSR using CE was defined as the best scenario for using the CE. In 25 of 66 scenarios the degree of relative overlap determined the benefit of using CE instead of the RE. Adding an AE with greater effect than the RE leads to lower SSR using the CE regardless of the AE proportion and the relative overlap. The influence of overlapping decreases when the effect on RE increases. Adding an AE with lower effect than the RE constitutes the most uncertain situation. In summary, the interrelationship between CE components, assessed by the relative overlap, can help to define the SSR in specific situations and it should be considered for SSR computation. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Networks of channels for self-healing composite materials

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Lorente, S.; Wang, K.-M.

    2006-08-01

    This is a fundamental study of how to vascularize a self-healing composite material so that healing fluid reaches all the crack sites that may occur randomly through the material. The network of channels is built into the material and is filled with pressurized healing fluid. When a crack forms, the pressure drops at the crack site and fluid flows from the network into the crack. The objective is to discover the network configuration that is capable of delivering fluid to all the cracks the fastest. The crack site dimension and the total volume of the channels are fixed. It is argued that the network must be configured as a grid and not as a tree. Two classes of grids are considered and optimized: (i) grids with one channel diameter and regular polygonal loops (square, triangle, hexagon) and (ii) grids with two channel sizes. The best architecture of type (i) is the grid with triangular loops. The best architecture of type (ii) has a particular (optimal) ratio of diameters that departs from 1 as the crack length scale becomes smaller than the global scale of the vascularized structure from which the crack draws its healing fluid. The optimization of the ratio of channel diameters cuts in half the time of fluid delivery to the crack.

  5. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    PubMed

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  6. Installed Transonic 2D Nozzle Nacelle Boattail Drag Study

    NASA Technical Reports Server (NTRS)

    Malone, Michael B.; Peavey, Charles C.

    1999-01-01

    The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the installed nacelles to be determined. Isolated nacelle mm were made at M=0.9 and M=1.1 for both the supersonic and transonic nozzle settings. AU of the isolated nacelle cases were run at alpha=0. Full configuration runs were to be made at Mach numbers of 0.9, 1.1, and 2.4 (the same as the wing/body and isolated nacelles). Both the isolated nacelles and installed nacelles were run with inlet conditions designed to give zero spillage. This was to be done in order to isolate the boattail effects as much as possible. Full configuration runs with the supersonic nozzles were completed for M=0.9 and 1.1 at a=4.0 and 6.0 (4 runs total) and with the transonic nozzles at M=0.9 and 1.1 at a=2.0, 4.0 and 6.0 (6 runs total). Drag breakdowns were completed for the M=0.9 and M= 1.1 showing favorable interference drag for both cases.

  7. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction.

    PubMed

    Choi, Insub; Kim, JunHee; Kim, Ho-Ryong

    2015-03-19

    A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs) subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP) shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  8. Physiographic position, disturbance and species composition in North Carolina coastal plain forests

    Treesearch

    James G. Wyant; Ralph J. Alig; William A. Bechtold

    1991-01-01

    Relations among physiographic heterogeneity, disturbance and temporal change in forest composition were analyzed on 765 forest stands in the southern coastal plain of North Carolina. Physiographic position strongly restricted the species composition of forest stands, though broad overlap of some physiographic classes was noted. Forest stands in different physiographic...

  9. GlyQ-IQ: Glycomics Quintavariate-Informed Quantification with High-Performance Computing and GlycoGrid 4D Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronewitter, Scott R.; Slysz, Gordon W.; Marginean, Ioan

    2014-05-31

    Dense LC-MS datasets have convoluted extracted ion chromatograms with multiple chromatographic peaks that cloud the differentiation between intact compounds with their overlapping isotopic distributions, peaks due to insource ion fragmentation, and noise. Making this differentiation is critical in glycomics datasets because chromatographic peaks correspond to different intact glycan structural isomers. The GlyQ-IQ software is targeted chromatography centric software designed for chromatogram and mass spectra data processing and subsequent glycan composition annotation. The targeted analysis approach offers several key advantages to LC-MS data processing and annotation over traditional algorithms. A priori information about the individual target’s elemental composition allows for exactmore » isotope profile modeling for improved feature detection and increased sensitivity by focusing chromatogram generation and peak fitting on the isotopic species in the distribution having the highest intensity and data quality. Glycan target annotation is corroborated by glycan family relationships and in source fragmentation detection. The GlyQ-IQ software is developed in this work (Part 1) and was used to profile N-glycan compositions from human serum LC-MS Datasets. The companion manuscript GlyQ-IQ Part 2 discusses developments in human serum N-glycan sample preparation, glycan isomer separation, and glycan electrospray ionization. A case study is presented to demonstrate how GlyQ-IQ identifies and removes confounding chromatographic peaks from high mannose glycan isomers from human blood serum. In addition, GlyQ-IQ was used to generate a broad N-glycan profile from a high resolution (100K/60K) nESI-LS-MS/MS dataset including CID and HCD fragmentation acquired on a Velos Pro Mass spectrometer. 101 glycan compositions and 353 isomer peaks were detected from a single sample. 99% of the GlyQ-IQ glycan-feature assignments passed manual validation and are backed with high resolution mass spectra and mass accuracies less than 7 ppm.« less

  10. Towards a consistent framework to oversample multi-sensors, multi-species satellite data into a common grid

    NASA Astrophysics Data System (ADS)

    Sun, K.; Zhu, L.; Gonzalez Abad, G.; Nowlan, C. R.; Miller, C. E.; Huang, G.; Liu, X.; Chance, K.; Yang, K.

    2017-12-01

    It has been well demonstrated that regridding Level 2 products (satellite observations from individual footprints, or pixels) from multiple sensors/species onto regular spatial and temporal grids makes the data more accessible for scientific studies and can even lead to additional discoveries. However, synergizing multiple species retrieved from multiple satellite sensors faces many challenges, including differences in spatial coverage, viewing geometry, and data filtering criteria. These differences will lead to errors and biases if not treated carefully. Operational gridded products are often at 0.25°×0.25° resolution with a global scale, which is too coarse for local heterogeneous emission sources (e.g., urban areas), and at fixed temporal intervals (e.g., daily or monthly). We propose a consistent framework to fully use and properly weight the information of all possible individual satellite observations. A key aspect of this work is an accurate knowledge of the spatial response function (SRF) of the satellite Level 2 pixels. We found that the conventional overlap-area-weighting method (tessellation) is accurate only when the SRF is homogeneous within the parameterized pixel boundary and zero outside the boundary. There will be a tessellation error if the SRF is a smooth distribution, and if this distribution is not properly considered. On the other hand, discretizing the SRF at the destination grid will also induce errors. By balancing these error sources, we found that the SRF should be used in gridding OMI data to 0.2° for fine resolutions. Case studies by merging multiple species and wind data into 0.01° grid will be shown in the presentation.

  11. On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.

    2017-03-01

    The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.

  12. Individual differences in automatic semantic priming.

    PubMed

    Andrews, Sally; Lo, Steson; Xia, Violet

    2017-05-01

    This research investigated whether masked semantic priming in a semantic categorization task that required classification of words as animals or nonanimals was modulated by individual differences in lexical proficiency. A sample of 89 skilled readers, assessed on reading comprehension, vocabulary and spelling ability, classified target words preceded by brief (50 ms) masked primes that were either congruent or incongruent with the category of the target. Congruent primes were also selected to be either high (e.g., hawk EAGLE, pistol RIFLE) or low (e.g., mole EAGLE, boots RIFLE) in semantic feature overlap with the target. "Overall proficiency," indexed by high performance on both a "semantic composite" measure of reading comprehension and vocabulary and a "spelling composite," was associated with stronger congruence priming from both high and low feature overlap primes for animal exemplars, but only predicted priming from low overlap primes for nonexemplars. Classification of high frequency nonexemplars was also significantly modulated by an independent "spelling-meaning" factor, indexed by the discrepancy between the semantic and spelling composites, because relatively higher scores on the semantic than the spelling composite were associated with stronger semantic priming. These findings show that higher lexical proficiency is associated with stronger evidence of automatic semantic priming and suggest that individual differences in lexical quality modulate the division of labor between orthographic and semantic processing in early lexical retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    NASA Astrophysics Data System (ADS)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  14. Diet composition, quality and overlap of sympatric American pronghorn and gemsbok

    USGS Publications Warehouse

    Cain, James W.; Avery, Mindi M.; Caldwell, Colleen A.; Abbott, Laurie B.; Holechek, Jerry L.

    2017-01-01

    Species with a long evolutionary history of sympatry often have mechanisms for resource partitioning that reduce competition. However, introduced non-native ungulates often compete with native ungulates and competitive effects can be exacerbated in arid regions due to low primary productivity. Our objectives were to characterize diet composition, quality, and overlap between American pronghorn Antilocapra americana and introduced non-native gemsbok Oryx gazella in southcentral New Mexico, USA. Severe drought occurred between 2010 and 2011, which allowed us to evaluate drought impacts on diet composition, quality, and overlap. Using feces collected from each species, we assessed diet composition and overlap with microhistological analysis and diet quality using fecal nitrogen (FN) and fecal 2,6-diaminopimelic acid (FDAPA). Pronghorn diet was primarily composed of shrubs in the cool—dry season (64.5%) then shifted to forbs in the warm—dry (64.7%) and warm—wet (54.1%) seasons. Pronghorn diet also shifted to shrubs during drought (50.7%). Gemsbok diets were evenly distributed across forage types. Fifty-three percent of the species of plants consumed by pronghorn and gemsbok were shared; diet overlap averaged 0.44 ± 0.06 (SE) and 0.49 ± 0.06 during the warm—dry seasons of 2010 and 2011, respectively. During drought, key forage species shared between pronghorn and gemsbok included yucca Yucca spp., prickly pear Opuntia spp., globemallow Sphaeralcea coccinea and horsenettle Solanum elaeagnifolium, comprising 50% of the pronghorn and 40% of the gemsbok diets. Fecal nitrogen and FDAPA decreased in pronghorn by 26% and 27% between the warm—dry season of 2010 (non-drought) and the warm—dry season of 2011 (drought), respectively. Drought had little effect on dietary quality for gemsbok. Gemsbok can use forage with lower nutritional content giving them an advantage over pronghorn, particularly during drought periods. Pronghorn are more dependent upon precipitation, which may be important to consider in light of increasing drought frequency associated with climate change.

  15. A Novel Multi-Scale Domain Overlapping CFD/STH Coupling Methodology for Multi-Dimensional Flows Relevant to Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Grunloh, Timothy P.

    The objective of this dissertation is to develop a 3-D domain-overlapping coupling method that leverages the superior flow field resolution of the Computational Fluid Dynamics (CFD) code STAR-CCM+ and the fast execution of the System Thermal Hydraulic (STH) code TRACE to efficiently and accurately model thermal hydraulic transport properties in nuclear power plants under complex conditions of regulatory and economic importance. The primary contribution is the novel Stabilized Inertial Domain Overlapping (SIDO) coupling method, which allows for on-the-fly correction of TRACE solutions for local pressures and velocity profiles inside multi-dimensional regions based on the results of the CFD simulation. The method is found to outperform the more frequently-used domain decomposition coupling methods. An STH code such as TRACE is designed to simulate large, diverse component networks, requiring simplifications to the fluid flow equations for reasonable execution times. Empirical correlations are therefore required for many sub-grid processes. The coarse grids used by TRACE diminish sensitivity to small scale geometric details such as Reactor Pressure Vessel (RPV) internals. A CFD code such as STAR-CCM+ uses much finer computational meshes that are sensitive to the geometric details of reactor internals. In turbulent flows, it is infeasible to fully resolve the flow solution, but the correlations used to model turbulence are at a low level. The CFD code can therefore resolve smaller scale flow processes. The development of a 3-D coupling method was carried out with the intention of improving predictive capabilities of transport properties in the downcomer and lower plenum regions of an RPV in reactor safety calculations. These regions are responsible for the multi-dimensional mixing effects that determine the distribution at the core inlet of quantities with reactivity implications, such as fluid temperature and dissolved neutron absorber concentration.

  16. Application of a Two-dimensional Unsteady Viscous Analysis Code to a Supersonic Throughflow Fan Stage

    NASA Technical Reports Server (NTRS)

    Steinke, Ronald J.

    1989-01-01

    The Rai ROTOR1 code for two-dimensional, unsteady viscous flow analysis was applied to a supersonic throughflow fan stage design. The axial Mach number for this fan design increases from 2.0 at the inlet to 2.9 at the outlet. The Rai code uses overlapped O- and H-grids that are appropriately packed. The Rai code was run on a Cray XMP computer; then data postprocessing and graphics were performed to obtain detailed insight into the stage flow. The large rotor wakes uniformly traversed the rotor-stator interface and dispersed as they passed through the stator passage. Only weak blade shock losses were computerd, which supports the design goals. High viscous effects caused large blade wakes and a low fan efficiency. Rai code flow predictions were essentially steady for the rotor, and they compared well with Chima rotor viscous code predictions based on a C-grid of similar density.

  17. A Computational and Experimental Investigation of a Delta Wing with Vertical Tails

    NASA Technical Reports Server (NTRS)

    Krist. Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.

    2004-01-01

    The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 and a Reynolds number of 500; 000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.

  18. A computational and experimental investigation of a delta wing with vertical tails

    NASA Technical Reports Server (NTRS)

    Krist, Sherrie L.; Washburn, Anthony E.; Visser, Kenneth D.

    1993-01-01

    The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed experimental investigation. The laminar case presented is for an angle of attack of 20 deg and a Reynolds number of 500,000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories. While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing primary-vortex-core region, grid embedding improves the computational prediction.

  19. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  20. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  1. Optical music recognition on the International Music Score Library Project

    NASA Astrophysics Data System (ADS)

    Raphael, Christopher; Jin, Rong

    2013-12-01

    A system is presented for optical recognition of music scores. The system processes a document page in three main phases. First it performs a hierarchical decomposition of the page, identifying systems, staves and measures. The second phase, which forms the heart of the system, interprets each measure found in the previous phase as a collection of non-overlapping symbols including both primitive symbols (clefs, rests, etc.) with fixed templates, and composite symbols (chords, beamed groups, etc.) constructed through grammatical composition of primitives (note heads, ledger lines, beams, etc.). This phase proceeds by first building separate top-down recognizers for the symbols of interest. Then, it resolves the inevitable overlap between the recognized symbols by exploring the possible assignment of overlapping regions, seeking globally optimal and grammatically consistent explanations. The third phase interprets the recognized symbols in terms of pitch and rhythm, focusing on the main challenge of rhythm. We present results that compare our system to the leading commercial OMR system using MIDI ground truth for piano music.

  2. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction

    PubMed Central

    Choi, Insub; Kim, JunHee; Kim, Ho-Ryong

    2015-01-01

    A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs) subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP) shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors. PMID:28788001

  3. Constrained evolution in numerical relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  4. A decision support system using combined-classifier for high-speed data stream in smart grid

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun

    2016-11-01

    Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.

  5. Lead-acid batteries in solar photovoltaic power systems for marine aids to navigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trenchard, S.E.

    1981-10-01

    Since 1974, the U.S. Coast Guard has been testing lead-acid batteries in solar photovoltaic-powered systems for aids to navigation. Three types of lead-acid batteries, distinguished by the composition of their grid material, have been tested: lead-antimony grid, lead-calcium grid, and pure-lead grid. This report contains a comparison of the charging characteristics and the charge-discharge cycling behavior of each grid type. All types were remarkably similar qualitatively in their daily as well as annual cycling behavior but the significance of the quantitative differences offer distinctive tradeoffs. This report presents models for water usage, depth-of-discharge, and post-cycle capacity for various levels ofmore » voltage regulation. Based on the post-cycle capacity tests, the effect of grid strength, grid thickness, and operating conditions on life expectancy are presented. A final discussion presents the results of a field deployment of solar photovoltaic-powered aids to navigation in the Miami, Florida area. Potential solutions to the battery terminal corrosion and bird guano problems observed are discussed.« less

  6. Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.

    PubMed

    Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos

    2010-07-01

    To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.

  7. "Tools For Analysis and Visualization of Large Time- Varying CFD Data Sets"

    NASA Technical Reports Server (NTRS)

    Wilhelms, Jane; vanGelder, Allen

    1999-01-01

    During the four years of this grant (including the one year extension), we have explored many aspects of the visualization of large CFD (Computational Fluid Dynamics) datasets. These have included new direct volume rendering approaches, hierarchical methods, volume decimation, error metrics, parallelization, hardware texture mapping, and methods for analyzing and comparing images. First, we implemented an extremely general direct volume rendering approach that can be used to render rectilinear, curvilinear, or tetrahedral grids, including overlapping multiple zone grids, and time-varying grids. Next, we developed techniques for associating the sample data with a k-d tree, a simple hierarchial data model to approximate samples in the regions covered by each node of the tree, and an error metric for the accuracy of the model. We also explored a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH (Association for Computing Machinery Special Interest Group on Computer Graphics) '96. In our initial implementation, we automatically image the volume from 32 approximately evenly distributed positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation.

  8. Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform

    PubMed Central

    Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos

    2013-01-01

    Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028

  9. Numerical investigation of multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.

    1993-01-01

    The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.

  10. Atomisation and droplet formation mechanisms in a model two-phase mixing layer

    NASA Astrophysics Data System (ADS)

    Zaleski, Stephane; Ling, Yue; Fuster, Daniel; Tryggvason, Gretar

    2017-11-01

    We study atomization in a turbulent two-phase mixing layer inspired by the Grenoble air-water experiments. A planar gas jet of large velocity is emitted on top of a planar liquid jet of smaller velocity. The density ratio and momentum ratios are both set at 20 in the numerical simulation in order to ease the simulation. We use a Volume-Of-Fluid method with good parallelisation properties, implemented in our code http://parissimulator.sf.net. Our simulations show two distinct droplet formation mechanisms, one in which thin liquid sheets are punctured to form rapidly expanding holes and the other in which ligaments of irregular shape form and breakup in a manner similar but not identical to jets in Rayleigh-Plateau-Savart instabilities. Observed distributions of particle sizes are extracted for a sequence of ever more refined grids, the largest grid containing approximately eight billion points. Although their accuracy is limited at small sizes by the grid resolution and at large size by statistical effects, the distributions overlap in the central region. The observed distributions are much closer to log normal distributions than to gamma distributions as is also the case for experiments.

  11. The application of epoxy resin coating in grounding grid

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  12. An 11-Year Climatology of Storms in Which Most Cloud-to-Ground Flashes Lower Positive Charge

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.; Eddy, A.; Williams, E. R.; Calhoun, K. M.

    2017-12-01

    Previous studies have shown that storms which produce frequent cloud-to-ground (CG) lightning dominated by flashes lowering positive charge to ground (+CG flashes) tend to have a so called "inverted" vertical distribution of charge. Such storms have implications for our understanding of electrification processes. We have analyzed eleven years of National Lightning Detection Network data to count +CG and -CG flashes having peak currents ≥15 kA in grid cells with dimensions of 15 km x 15 km x 15 min, with overlapping grid boxes every 5 km along both x and y over the contiguous United States and grids every 5 min in time. These dimensions were chosen because 15 km corresponds roughly to the horizontal size of typical storm cells and 15 min is roughly half the typical duration of a cell. To focus on storms dominated by +CG flashes, we identified all grid cells satisfying one of four sets of thresholds: cells in which +CG flashes for 15 min constitute ≥80%, 90%, or 100% of ≥10 CG flashes or 100% of ≥20 CG flashes. These percentages are larger than those used in most previous studies of +CG flashes. Our primary goal is to investigate the environmental and storm characteristics conducive to +CG flashes and "inverted-polarity" charge distributions, but here we concentrate on the interannual and seasonal distributions of storms satisfying the above thresholds and examine also their relationship to severe weather. As in previous climatological studies of geographic variations in the +CG fraction of total CG flashes, most storms satisfying our thresholds were in a swath stretching from far eastern Colorado and western Kansas roughly northward through Nebraska, the Dakotas, and Minnesota. This region overlaps much of the region in which radar inferred that hail larger than 2.9 cm in diameter most often occurs, but is shifted westward and northward from maxima of observer reports of large-hail occurrence. Although the relationship with radar-inferred large-hail frequency suggests a common dependence on some storm characteristics, storms satisfying our thresholds for +CG flashes also occurred, although less frequently, in regions in which few storms were inferred to have produced large hail, such as east of mountain ranges in northwestern states, so relationships with severe weather will need to be examined on a storm-by-storm basis.

  13. Defining the loop structures in proteins based on composite β-turn mimics.

    PubMed

    Dhar, Jesmita; Chakrabarti, Pinak

    2015-06-01

    Asx- and ω-turns are β-turn mimics, which replace the conventional main-chain hydrogen bonds seen in the latter by those involving the side chains, and both involve three residues. In this paper we analyzed the cases where these turns occur together--side by side, with or without any gap, overlapping and in any order. These composite turns (of length 3-15 residues), occurring at ∼1 per 100 residues, may constitute the full length of many loops, and when the residues in the two component turns overlap or are adjacent to each other, the composite may take well-defined shape. It is thus possible for non-regular regions in protein structure to form local structural motifs, akin to the regular geometrical features exhibited by secondary structures. Composites having the order ω-turns followed by Asx-turns can constitute N-terminal helix capping motif. Ternary composite turns (made up of ω-, Asx- and ST-turns), some with characteristic shape, have also been identified. Delineation of composite turns would help in characterizing loops in protein structures, which often have functional roles. Some sequence patterns seen in composites can be used for their incorporation in protein design. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Smart grid as a service: a discussion on design issues.

    PubMed

    Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin

    2014-01-01

    Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.

  15. Smart Grid as a Service: A Discussion on Design Issues

    PubMed Central

    Tsai, Chen-Chou; Chou, I-Hsin

    2014-01-01

    Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as “smart” as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system. PMID:25243214

  16. An Overlap of Breastfeeding during Late Pregnancy Is Associated with Subsequent Changes in Colostrum Composition and Morbidity Rates among Peruvian Infants and Their Mothers1,2

    PubMed Central

    Marquis, Grace S.; Penny, Mary E.; Zimmer, J. Paul; Díaz, Judith M.; Marín, R. Margot

    2009-01-01

    An overlap of breast-feeding and late pregnancy is associated with decreased intake of human milk and reduced infant growth. We evaluated the association of an overlap with macronutrient and immunological components of milk, infant urinary IgA, and infant and maternal morbidity. On d 2 and 1 mo postpartum, staff measured 24-h intake of breast milk and collected samples from 133 Peruvian women; 68 had breast-fed during the last trimester of pregnancy (BFP) and 65 had not breast-fed during pregnancy (NBFP). Data on maternal and infant anthropometry and health were collected for 1 mo. On d 2, lactose and lysozyme concentrations were higher, total lysozyme intake was higher and concentration and total intake of lactoferrin were lower in the BFP than the NBFP group (P < 0.05). The total 1-mo IgA intake was lower among BFP than NBFP infants (P = 0.01). Urinary IgA concentration was correlated with breast milk IgA concentration (r = 0.29; P = 0.01) but not with breast-feeding during pregnancy. An overlap was not associated with diarrhea but BFP infants were 5 times as likely to have a cough for at least 7 d than NBFP infants (P < 0.05). Reported mastitis was rare and occurred only in the NBFP group (P = 0.05). An overlap of breast-feeding and late pregnancy was associated with changes in milk composition, an increased frequency in symptoms of infant respiratory illness but decreased reported mastitis. Further in-depth studies are warranted to determine the cumulative effects associated with a breast-feeding/pregnancy overlap on infant and maternal outcomes. PMID:12888642

  17. Defect-Property Relationships in Composite Materials. Part II.

    DTIC Science & Technology

    1977-06-01

    requires the use of a delay block since the composite specimens are so thin that returning echoes overlap one another on the screen of the cathode -ray...tube and can not be individually distinguished. The delay block, when placed on the opposite Oide of the specimen from the transducer, increases the

  18. Direct Numerical Simulations of a Full Stationary Wind-Turbine Blade

    NASA Astrophysics Data System (ADS)

    Qamar, Adnan; Zhang, Wei; Gao, Wei; Samtaney, Ravi

    2014-11-01

    Direct numerical simulation of flow past a full stationary wind-turbine blade is carried out at Reynolds number, Re = 10,000 placed at 0 and 5 (degree) angle of attack. The study is targeted to create a DNS database for verification of solvers and turbulent models that are utilized in wind-turbine modeling applications. The full blade comprises of a circular cylinder base that is attached to a spanwise varying airfoil cross-section profile (without twist). An overlapping composite grid technique is utilized to perform these DNS computations, which permits block structure in the mapped computational space. Different flow shedding regimes are observed along the blade length. Von-Karman shedding is observed in the cylinder shaft region of the turbine blade. Along the airfoil cross-section of the blade, near body shear layer breakdown is observed. A long tip vortex originates from the blade tip region, which exits the computational plane without being perturbed. Laminar to turbulent flow transition is observed along the blade length. The turbulent fluctuations amplitude decreases along the blade length and the flow remains laminar regime in the vicinity of the blade tip. The Strouhal number is found to decrease monotonously along the blade length. Average lift and drag coefficients are also reported for the cases investigated. Supported by funding under a KAUST OCRF-CRG grant.

  19. ESMPy and OpenClimateGIS: Python Interfaces for High Performance Grid Remapping and Geospatial Dataset Manipulation

    NASA Astrophysics Data System (ADS)

    O'Kuinghttons, Ryan; Koziol, Benjamin; Oehmke, Robert; DeLuca, Cecelia; Theurich, Gerhard; Li, Peggy; Jacob, Joseph

    2016-04-01

    The Earth System Modeling Framework (ESMF) Python interface (ESMPy) supports analysis and visualization in Earth system modeling codes by providing access to a variety of tools for data manipulation. ESMPy started as a Python interface to the ESMF grid remapping package, which provides mature and robust high-performance and scalable grid remapping between 2D and 3D logically rectangular and unstructured grids and sets of unconnected data. ESMPy now also interfaces with OpenClimateGIS (OCGIS), a package that performs subsetting, reformatting, and computational operations on climate datasets. ESMPy exposes a subset of ESMF grid remapping utilities. This includes bilinear, finite element patch recovery, first-order conservative, and nearest neighbor grid remapping methods. There are also options to ignore unmapped destination points, mask points on source and destination grids, and provide grid structure in the polar regions. Grid remapping on the sphere takes place in 3D Cartesian space, so the pole problem is not an issue as it can be with other grid remapping software. Remapping can be done between any combination of 2D and 3D logically rectangular and unstructured grids with overlapping domains. Grid pairs where one side of the regridding is represented by an appropriate set of unconnected data points, as is commonly found with observational data streams, is also supported. There is a developing interoperability layer between ESMPy and OpenClimateGIS (OCGIS). OCGIS is a pure Python, open source package designed for geospatial manipulation, subsetting, and computation on climate datasets stored in local NetCDF files or accessible remotely via the OPeNDAP protocol. Interfacing with OCGIS has brought GIS-like functionality to ESMPy (i.e. subsetting, coordinate transformations) as well as additional file output formats (i.e. CSV, ESRI Shapefile). ESMPy is distinguished by its strong emphasis on open source, community governance, and distributed development. The user base has grown quickly, and the package is integrating with several other software tools and frameworks. These include the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT), Iris, PyFerret, cfpython, and the Community Surface Dynamics Modeling System (CSDMS). ESMPy minimum requirements include Python 2.6, Numpy 1.6.1 and an ESMF installation. Optional dependencies include NetCDF and OCGIS-related dependencies: GDAL, Shapely, and Fiona. ESMPy is regression tested nightly, and supported on Darwin, Linux and Cray systems with the GNU compiler suite and MPI communications. OCGIS is supported on Linux, and also undergoes nightly regression testing. Both packages are installable from Anaconda channels. Upcoming development plans for ESMPy involve development of a higher order conservative grid remapping method. Future OCGIS development will focus on mesh and location stream interoperability and streamlined access to ESMPy's MPI implementation.

  20. Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations

    DTIC Science & Technology

    2012-10-16

    unidirectional fiber - reinforced composites, Computer Methods in Applied Mechanics and Engineering 217 (2012) 247-261. [44] S. A. Silling, M. Epton...numerical testing for different grid widths to horizon ratios , (4) development of an approach to add another material variable in the given approach...partition of unity principle, (3) numerical testing for different grid widths to horizon ratios , (4) development of an approach to add another

  1. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC-MS/MS. 2. Similarity search between protein maps for the analysis of protein complexes.

    PubMed

    Jin, Ya; Yuan, Qi; Zhang, Jun; Manabe, Takashi; Tan, Wen

    2015-09-01

    Human bronchial smooth muscle cell soluble proteins were analyzed by a combined method of nondenaturing micro 2DE, grid gel-cutting, and quantitative LC-MS/MS and a native protein map was prepared for each of the identified 4323 proteins [1]. A method to evaluate the degree of similarity between the protein maps was developed since we expected the proteins comprising a protein complex would be separated together under nondenaturing conditions. The following procedure was employed using Excel macros; (i) maps that have three or more squares with protein quantity data were selected (2328 maps), (ii) within each map, the quantity values of the squares were normalized setting the highest value to be 1.0, (iii) in comparing a map with another map, the smaller normalized quantity in two corresponding squares was taken and summed throughout the map to give an "overlap score," (iv) each map was compared against all the 2328 maps and the largest overlap score, obtained when a map was compared with itself, was set to be 1.0 thus providing 2328 "overlap factors," (v) step (iv) was repeated for all maps providing 2328 × 2328 matrix of overlap factors. From the matrix, protein pairs that showed overlap factors above 0.65 from both protein sides were selected (431 protein pairs). Each protein pair was searched in a database (UniProtKB) on complex formation and 301 protein pairs, which comprise 35 protein complexes, were found to be documented. These results demonstrated that native protein maps and their similarity search would enable simultaneous analysis of multiple protein complexes in cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    PubMed Central

    Pereira, N F; Sitek, A

    2011-01-01

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated. PMID:20736496

  3. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    NASA Astrophysics Data System (ADS)

    Pereira, N. F.; Sitek, A.

    2010-09-01

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.

  4. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  5. Grids in topographic maps reduce distortions in the recall of learned object locations.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2014-01-01

    To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.

  6. Stitching interferometry of a full cylinder without using overlap areas

    NASA Astrophysics Data System (ADS)

    Peng, Junzheng; Chen, Dingfu; Yu, Yingjie

    2017-08-01

    Traditional stitching interferometry requires finding out the overlap correspondence and computing the discrepancies in the overlap regions, which makes it complex and time-consuming to obtain the 360° form map of a cylinder. In this paper, we develop a cylinder stitching model based on a new set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials. With these polynomials, individual subaperture data can be expanded as a composition of the inherent form of a partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all subaperture data with the LF polynomials. A metal shaft was measured to experimentally verify the proposed method. In contrast to traditional stitching interferometry, our technique does not require overlapping of adjacent subapertures, thus significantly reducing the measurement time and making the stitching algorithm simple.

  7. A design approach for improving the performance of single-grid planar retarding potential analyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, R. L.; Earle, G. D.

    2011-01-15

    Planar retarding potential analyzers (RPAs) have a long flight history and have been included on numerous spaceflight missions including Dynamics Explorer, the Defense Meteorological Satellite Program, and the Communications/Navigation Outage Forecast System. RPAs allow for simultaneous measurement of plasma composition, density, temperature, and the component of the velocity vector normal to the aperture plane. Internal conductive grids are used to approximate ideal potential planes within the instrument, but these grids introduce perturbations to the potential map inside the RPA and cause errors in the measurement of the parameters listed above. A numerical technique is presented herein for minimizing these gridmore » errors for a specific mission by varying the depth and spacing of the grid wires. The example mission selected concentrates on plasma dynamics near the sunset terminator in the equatorial region. The international reference ionosphere model is used to discern the average conditions expected for this mission, and a numerical model of the grid-particle interaction is used to choose a grid design that will best fulfill the mission goals.« less

  8. The GridEcon Platform: A Business Scenario Testbed for Commercial Cloud Services

    NASA Astrophysics Data System (ADS)

    Risch, Marcel; Altmann, Jörn; Guo, Li; Fleming, Alan; Courcoubetis, Costas

    Within this paper, we present the GridEcon Platform, a testbed for designing and evaluating economics-aware services in a commercial Cloud computing setting. The Platform is based on the idea that the exact working of such services is difficult to predict in the context of a market and, therefore, an environment for evaluating its behavior in an emulated market is needed. To identify the components of the GridEcon Platform, a number of economics-aware services and their interactions have been envisioned. The two most important components of the platform are the Marketplace and the Workflow Engine. The Workflow Engine allows the simple composition of a market environment by describing the service interactions between economics-aware services. The Marketplace allows trading goods using different market mechanisms. The capabilities of these components of the GridEcon Platform in conjunction with the economics-aware services are described in this paper in detail. The validation of an implemented market mechanism and a capacity planning service using the GridEcon Platform also demonstrated the usefulness of the GridEcon Platform.

  9. Auspice: Automatic Service Planning in Cloud/Grid Environments

    NASA Astrophysics Data System (ADS)

    Chiu, David; Agrawal, Gagan

    Recent scientific advances have fostered a mounting number of services and data sets available for utilization. These resources, though scattered across disparate locations, are often loosely coupled both semantically and operationally. This loosely coupled relationship implies the possibility of linking together operations and data sets to answer queries. This task, generally known as automatic service composition, therefore abstracts the process of complex scientific workflow planning from the user. We have been exploring a metadata-driven approach toward automatic service workflow composition, among other enabling mechanisms, in our system, Auspice: Automatic Service Planning in Cloud/Grid Environments. In this paper, we present a complete overview of our system's unique features and outlooks for future deployment as the Cloud computing paradigm becomes increasingly eminent in enabling scientific computing.

  10. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    DOE PAGES

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; ...

    2017-08-19

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy’s Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models weremore » created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within ~40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90–130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.« less

  11. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    NASA Astrophysics Data System (ADS)

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; Swanson, Erika M.; Cooley, James A.

    2017-08-01

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy's Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models were created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within 40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90-130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.

  12. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy’s Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models weremore » created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within ~40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90–130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.« less

  13. Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Saganti, Premkumar B.; Hu, Xiao-Dong; Kim, Myung-Hee Y.; Cleghorn, Timothy F.; Wilson, John W.; Tripathi, Ram K.; Zeitlin, Cary J.

    2003-01-01

    For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  14. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOEpatents

    Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  15. Kwf-Grid workflow management system for Earth science applications

    NASA Astrophysics Data System (ADS)

    Tran, V.; Hluchy, L.

    2009-04-01

    In this paper, we present workflow management tool for Earth science applications in EGEE. The workflow management tool was originally developed within K-wf Grid project for GT4 middleware and has many advanced features like semi-automatic workflow composition, user-friendly GUI for managing workflows, knowledge management. In EGEE, we are porting the workflow management tool to gLite middleware for Earth science applications K-wf Grid workflow management system was developed within "Knowledge-based Workflow System for Grid Applications" under the 6th Framework Programme. The workflow mangement system intended to - semi-automatically compose a workflow of Grid services, - execute the composed workflow application in a Grid computing environment, - monitor the performance of the Grid infrastructure and the Grid applications, - analyze the resulting monitoring information, - capture the knowledge that is contained in the information by means of intelligent agents, - and finally to reuse the joined knowledge gathered from all participating users in a collaborative way in order to efficiently construct workflows for new Grid applications. Kwf Grid workflow engines can support different types of jobs (e.g. GRAM job, web services) in a workflow. New class of gLite job has been added to the system, allows system to manage and execute gLite jobs in EGEE infrastructure. The GUI has been adapted to the requirements of EGEE users, new credential management servlet is added to portal. Porting K-wf Grid workflow management system to gLite would allow EGEE users to use the system and benefit from its avanced features. The system is primarly tested and evaluated with applications from ES clusters.

  16. Oregon Magnetic and Gravity Maps and Data: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Roberts, Carter W.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each State. The results for the State of Oregon are presented here on this site. Files of aeromagnetic and gravity grids and images are available for these States for downloading. In Oregon, 49 magnetic surveys have been knit together to form a single digital grid and map. Also, a complete Bouguer gravity anomaly grid and map was generated from 40,665 gravity station measurements in and adjacent to Oregon. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  17. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry

    PubMed Central

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-01-01

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young’s modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties. PMID:28773725

  18. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry.

    PubMed

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-07-21

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young's modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties.

  19. Effect of stiffness characteristics on the response of composite grid-stiffened structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Rehfield, Lawrence W.

    1991-01-01

    A study of the effect of stiffness discontinuities and structural parameters on the response of continuous-filament grid-stiffened flat panels is presented. The buckling load degradation due to manufacturing-introduced stiffener discontinuities associated with a filament cut-and-add approach at the stiffener intersections is investigated. The degradation of buckling resistance in isogrid flat panels subjected to uni-axial compression and combined axial compression and shear loading conditions and induced damage is quantified using FEM. The combined loading case is the most critical one. Nonsolid stiffener cross sections, such as a foam-filled blade or hat with a 0-deg dominant cap, result in grid-stiffened structures that are structurally very efficient for wing and fuselage applications. The results of a study of the ability of grid-stiffened structural concepts to enhance the effective Poisson's ratio of a panel are presented. Grid-stiffened concepts create a highly effective Poisson's ratio, which can produce large camber deformations for certain elastic tailoring applications.

  20. TIMEDELN: A programme for the detection and parametrization of overlapping resonances using the time-delay method

    NASA Astrophysics Data System (ADS)

    Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.

    2017-06-01

    TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.

  1. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    2008-01-01

    In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.

  2. Non-LTE Line-Blanketed Model Atmospheres of B-type Stars

    NASA Astrophysics Data System (ADS)

    Lanz, T.; Hubeny, I.

    2005-12-01

    We present an extension of our OSTAR2002 grid of NLTE model atmospheres to B-type stars. We have calculated over 1,300 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to B stars. The grid covers 16 effective temperatures from 15,000 to 30,000 K, with 1000 K steps, 13 surface gravities, log g≤ 4.75 down to the Eddington limit, and 5 compositions (2, 1, 0.5, 0.2, and 0.1 times solar). We have adopted a microturbulent velocity of 2 km/s for all models. In the lower surface gravity range (log g≤ 3.0), we supplemented the main grid with additional model atmospheres accounting for higher microtutbulent velocity (10 km/s) and for alterated surface composition (He and N-rich, C-deficient), as observed in B supergiants. The models incorporate basically all known atomic levels of 46 ions of H, He, C, N, O, Ne, Mg, Al, Si, S, and Fe, which are grouped into 1127 superlevels. Models and spectra will be available at our Web site, http://nova.astro.umd.edu.

  3. Potential human impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA

    USGS Publications Warehouse

    Copeland, Stella; Bradford, John B.; Duniway, Michael C.; Schuster, Rudy

    2017-01-01

    Climate and land-use interactions are likely to affect future environmental and socioeconomic conditions in drylands, which tend to be limited by water resources and prone to land degradation. We characterized the potential for interactions between land-use types and land-use and climate change in a model dryland system, the Colorado Plateau, a region with a history of climatic variability and land-use change. We analyzed the spatial and temporal trends in aridification, land-use, and recreation at the county and 10 km2 grid scales. Our results show that oil and gas development and recreation may interact due to increasing trends and overlapping areas of high intensity. Projections suggest that aridification will impact all vegetation classes, with some of the highest proportional change in the south-east. The results suggest that the rate of change and spatial pattern of land-use in the future may differ from past patterns in land-use scale and intensity.

  4. Rapid Decimation for Direct Volume Rendering

    NASA Technical Reports Server (NTRS)

    Gibbs, Jonathan; VanGelder, Allen; Verma, Vivek; Wilhelms, Jane

    1997-01-01

    An approach for eliminating unnecessary portions of a volume when producing a direct volume rendering is described. This reduction in volume size sacrifices some image quality in the interest of rendering speed. Since volume visualization is often used as an exploratory visualization technique, it is important to reduce rendering times, so the user can effectively explore the volume. The methods presented can speed up rendering by factors of 2 to 3 with minor image degradation. A family of decimation algorithms to reduce the number of primitives in the volume without altering the volume's grid in any way is introduced. This allows the decimation to be computed rapidly, making it easier to change decimation levels on the fly. Further, because very little extra space is required, this method is suitable for the very large volumes that are becoming common. The method is also grid-independent, so it is suitable for multiple overlapping curvilinear and unstructured, as well as regular, grids. The decimation process can proceed automatically, or can be guided by the user so that important regions of the volume are decimated less than unimportant regions. A formal error measure is described based on a three-dimensional analog of the Radon transform. Decimation methods are evaluated based on this metric and on direct comparison with reference images.

  5. A Data Parallel Multizone Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1995-01-01

    We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.

  6. A visual LISP program for voxelizing AutoCAD solid models

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  7. A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)

    NASA Technical Reports Server (NTRS)

    Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.

    1993-01-01

    The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).

  8. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-04-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  9. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  10. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  11. Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*

    DOE PAGES

    Bank, R.; Falgout, R. D.; Jones, T.; ...

    2015-10-29

    In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less

  12. Optimal Grid Size for Inter-Comparability of MODIS And VIIRS Vegetation Indices at Level 2G or Higher

    NASA Astrophysics Data System (ADS)

    Campagnolo, M.; Schaaf, C.

    2016-12-01

    Due to the necessity of time compositing and other user requirements, vegetation indices, as well as many other EOS derived products, are distributed in a gridded format (level L2G or higher) using an equal area sinusoidal grid, at grid sizes of 232 m, 463 m or 926 m. In this process, the actual surface signal suffers somewhat of a degradation, caused by both the sensor's point spread function and this resampling from swath to the regular grid. The magnitude of that degradation depends on a number of factors, such as surface heterogeneity, band nominal resolution, observation geometry and grid size. In this research, the effect of grid size is quantified for MODIS and VIIRS (at five EOS validation sites with distinct land covers), for the full range of view zenith angles, and at grid sizes of 232 m, 253 m, 309 m, 371 m, 397 m and 463 m. This allows us to compare MODIS and VIIRS gridded products for the same scenes, and to determine the grid size at which these products are most similar. Towards that end, simulated MODIS and VIIRS bands are generated from Landsat 8 surface reflectance images at each site and gridded products are then derived by using maximum obscov resampling. Then, for every grid size, the original Landsat 8 NDVI and the derived MODIS and VIIRS NDVI products are compared. This methodology can be applied to other bands and products, to determine which spatial aggregation overall is best suited for EOS to S-NPP product continuity. Results for MODIS (250 m bands) and VIIRS (375 m bands) NDVI products show that finer grid sizes tend to be better at preserving the original signal. Significant degradation for gridded NDVI occurs when grid size is larger then 253 m (MODIS) and 371 m (VIIRS). Our results suggest that current MODIS "500 m" (actually 463 m) grid size is best for product continuity. Note however, that up to that grid size value, MODIS gridded products are somewhat better at preserving the surface signal than VIIRS, except for at very high VZA.

  13. Uncertain Representations of Sub-Grid Pollutant Transport in Chemistry-Transport Models and Impacts on Long-Range Transport and Global Composition

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Zhu, Z.; Ott, L. E.; Molod, A.; Duncan, B. N.; Nielsen, J. E.

    2009-01-01

    Sub-grid transport, by convection and turbulence, is known to play an important role in lofting pollutants from their source regions. Consequently, the long-range transport and climatology of simulated atmospheric composition are impacted. This study uses the Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric model to study pollutant transport. The baseline model uses a Relaxed Arakawa-Schubert (RAS) scheme that represents convection through a sequence of linearly entraining cloud plumes characterized by unique detrainment levels. Thermodynamics, moisture and trace gases are transported in the same manner. Various approximate forms of trace-gas transport are implemented, in which the box-averaged cloud mass fluxes from RAS are used with different numerical approaches. Substantial impacts on forward-model simulations of CO (using a linearized chemistry) are evident. In particular, some aspects of simulations using a diffusive form of sub-grid transport bear more resemblance to space-biased CO observations than do the baseline simulations with RAS transport. Implications for transport in the real atmosphere will be discussed. Another issue of importance is that many adjoint/inversion computations use simplified representations of sub-grid transport that may be inconsistent with the forward models: implications will be discussed. Finally, simulations using a complex chemistry model in GEOS-5 (in place of the linearized CO model) are underway: noteworthy results from this simulation will be mentioned.

  14. Effect of molding conditions on fracture mechanisms and stiffness of a composite of grid structure

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. P.; Pichugin, V. S.; Korobeinikov, A. G.

    1999-01-01

    Methods of determining a complex of stiffness and deformability characteristics of a composite with rhomb-type grid structure were elaborated. Rhomb-type specimens were used for testing the ribs of the structure in tension, compression, and bending and the nodal points in shear in the plane of the ribs. The effect of additional tensioning of the ribs preceding the curing of the binder was investigated (ten tensioning levels ranging from 8 to 70 N/bundle with a linear density of 390 tex were applied). In testing epoxy-carbon specimens (UKN-5000+EHD-MK) in compression and tension, the failure mode changed depending on the tensioning level, i.e., the presence or absence of delamination and the appearance of "dry" fibers were detected. Dependences of the mechanical properties on tensioning were of a markedly pronounced extreme nature. The methods elaborated allow us to investigate the effect of other molding parameters, as well as the conditions and nature of loading, on the mechanical characteristics of composites.

  15. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  16. Intelligent Patching of Conceptual Geometry for CFD Analysis

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2010-01-01

    The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect the second surface. No two intersection relationships will result in a common intersection point of three surfaces. The output files of iPatch are IGES, d3m, and mapbc files that define the CFD geometry in VGRID format. The IGES file gives the NURBS definition of the outer mold line in the geometry. The d3m file defines how the outer mold line is broken into surface patches whose boundary curves are defined by points. The mapbc file specifies what the boundary condition is on each patch and the corresponding NURBS surface definition of each non-planar patch in the IGES file.

  17. Time-Scale Modification of Complex Acoustic Signals in Noise

    DTIC Science & Technology

    1994-02-04

    of a response from a closing stapler . 15 6 Short-time processing of long waveforms. 16 7 Time-scale expansion (x 2) of sequence of transients using...filter bank/overlap- add. 17 8 Time-scale expansion (x2) of a closing stapler using filter bank/overlap-add. 18 9 Composite subband time-scale...INTRODUCTION Short-duration complex sounds, as from the closing of a stapler or the tapping of a drum stick, often consist of a series of brief

  18. Environmental Niche Overlap between Common and Dusky Dolphins in North Patagonia, Argentina.

    PubMed

    Svendsen, Guillermo Martín; Romero, María Alejandra; Williams, Gabriela Noemí; Gagliardini, Domingo Antonio; Crespo, Enrique Alberto; Dans, Silvana Laura; González, Raúl Alberto

    2015-01-01

    Research on the ecology of sympatric dolphins has increased worldwide in recent decades. However, many dolphin associations such as that between common dolphins (Delphinus delphis) and dusky dolphins (Lagenorhynchus obscurus) are poorly understood. The present study was conducted in the San Matías Gulf (SMG) ecosystem (North Patagonia, Argentina) where a high diet overlap among both species was found. The main objective of the present work was to explore the niche overlap of common and dusky dolphins in the habitat and temporal dimensions. The specific aims were (a) to evaluate the habitat use strategies of both species through a comparison of their group attributes (social composition, size and activity), and (b) to evaluate their habitat preferences and habitat overlap through Environmental Niche modeling considering two oceanographic seasons. To accomplish these aims, we used a historic database of opportunistic and systematic records collected from 1983 to 2011. Common and dusky dolphins exhibited similar patterns of group size (from less than 10 to more than 100 individuals), activity (both species use the area to feed, nurse, and copulate), and composition (adults, juveniles, and mothers with calves were observed for both species). Also, both species were observed travelling and feeding in mixed-species groups. Specific overlap indices were higher for common dolphins than for dusky dolphins, but all indices were low, suggesting that they are mainly segregated in the habitat dimension. In the case of common dolphins, the best habitats were located in the northwest of the gulf far from the coast. In the warm season they prefer areas with temperate sea surface and in the cold season they prefer areas with relatively high variability of sea surface temperature. Meanwhile, dusky dolphins prefer areas with steep slopes close to the coast in the southwestern sector of the gulf in both seasons.

  19. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion.

    PubMed

    Walter, André; Bechsgaard, Jesper; Scavenius, Carsten; Dyrlund, Thomas S; Sanggaard, Kristian W; Enghild, Jan J; Bilde, Trine

    2017-08-10

    Spiders are predaceous arthropods that are capable of subduing and consuming relatively large prey items compared to their own body size. For this purpose, spiders have evolved potent venoms to immobilise prey and digestive fluids that break down nutrients inside the prey's body by means of extra-oral digestion (EOD). Both secretions contain an array of active proteins, and an overlap of some components has been anecdotally reported, but not quantified. We systematically investigated the extent of such protein overlap. As venom injection and EOD succeed each other, we further infer functional explanations, and, by comparing two spider species belonging to different clades, assess its adaptive significance for spider EOD in general. We describe the protein composition of the digestive fluids of the mygalomorph Acanthoscurria geniculata and the araneomorph Stegodyphus mimosarum, in comparison with previously published data on a third spider species. We found a number of similar hydrolases being highly abundant in all three species. Among them, members of the family of astacin-like metalloproteases were particularly abundant. While the importance of these proteases in spider venom and digestive fluid was previously noted, we now highlight their widespread use across different spider taxa. Finally, we found species specific differences in the protein overlap between venom and digestive fluid, with the difference being significantly greater in S. mimosarum compared to A. geniculata. The injection of venom precedes the injection with digestive fluid, and the overlap of proteins between venom and digestive fluid suggests an early involvement in EOD. Species specific differences in the overlap may reflect differences in ecology between our two study species. The protein composition of the digestive fluid of all the three species we compared is highly similar, suggesting that the cocktail of enzymes is highly conserved and adapted to spider EOD.

  20. Illinois, Indiana, and Ohio Magnetic and Gravity Maps and Data: A Website for Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each state. The results for the three states, Illinois, Indiana, and Ohio are presented here in one site. Files of aeromagnetic and gravity grids and images are available for these states for downloading. In Illinois, Indiana, and Ohio, 19 magnetic surveys have been knit together to form a single digital grid and map. And, a complete Bouguer gravity anomaly grid and map was generated from 128,227 gravity station measurements in and adjacent to Illinois, Indiana, and Ohio. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  1. Counterrotating prop-fan simulations which feature a relative-motion multiblock grid decomposition enabling arbitrary time-steps

    NASA Technical Reports Server (NTRS)

    Janus, J. Mark; Whitfield, David L.

    1990-01-01

    Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.

  2. Macro-microscopic anatomy: obtaining a composite view of barrier zone formation in Acer saccharum

    Treesearch

    Kenneth Dudzik

    1988-01-01

    The technique for constructing a montage of large wood sections cut on a sliding microtome is discussed. Briefly, the technique involves photographing many serial micrographs in a pattern under a light microscope similar to the way flight lines are run in aerial photography. Assembly of the resulting overlapping photographs requires careful trimming. A composite of...

  3. The Twilight Zone between Protein Order and Disorder

    PubMed Central

    Szilágyi, A.; Györffy, D.; Závodszky, P.

    2008-01-01

    The amino acid composition of intrinsically disordered proteins and protein segments characteristically differs from that of ordered proteins. This observation forms the basis of several disorder prediction methods. These, however, usually perform worse for smaller proteins (or segments) than for larger ones. We show that the regions of amino acid composition space corresponding to ordered and disordered proteins overlap with each other, and the extent of the overlap (the “twilight zone”) is larger for short than for long chains. To explain this finding, we used two-dimensional lattice model proteins containing hydrophobic, polar, and charged monomers and revealed the relation among chain length, amino acid composition, and disorder. Because the number of chain configurations exponentially grows with chain length, a larger fraction of longer chains can reach a low-energy, ordered state than do shorter chains. The amount of information carried by the amino acid composition about whether a protein or segment is (dis)ordered grows with increasing chain length. Smaller proteins rely more on specific interactions for stability, which limits the possible accuracy of disorder prediction methods. For proteins in the “twilight zone”, size can determine order, as illustrated by the example of two-state homodimers. PMID:18441033

  4. The twilight zone between protein order and disorder.

    PubMed

    Szilágyi, A; Györffy, D; Závodszky, P

    2008-08-01

    The amino acid composition of intrinsically disordered proteins and protein segments characteristically differs from that of ordered proteins. This observation forms the basis of several disorder prediction methods. These, however, usually perform worse for smaller proteins (or segments) than for larger ones. We show that the regions of amino acid composition space corresponding to ordered and disordered proteins overlap with each other, and the extent of the overlap (the "twilight zone") is larger for short than for long chains. To explain this finding, we used two-dimensional lattice model proteins containing hydrophobic, polar, and charged monomers and revealed the relation among chain length, amino acid composition, and disorder. Because the number of chain configurations exponentially grows with chain length, a larger fraction of longer chains can reach a low-energy, ordered state than do shorter chains. The amount of information carried by the amino acid composition about whether a protein or segment is (dis)ordered grows with increasing chain length. Smaller proteins rely more on specific interactions for stability, which limits the possible accuracy of disorder prediction methods. For proteins in the "twilight zone", size can determine order, as illustrated by the example of two-state homodimers.

  5. Effects of different overlap lengths and composite adherend thicknesses on the performance of adhesively-bonded joints under tensile and bending loadings

    NASA Astrophysics Data System (ADS)

    Kadioglu, F.; Avil, E.; Ercan, M. E.; Aydogan, T.

    2018-05-01

    Fiber-reinforced polymer composites are being used in an increasingly wide range of products. They are particularly popular in automotive and aerospace sectors because they offer an attractive combination of stiffness, strength and low mass. Adhesively-bonded joints of such materials are preferred by many designers due to their assembling advantages over other traditional mechanical joining systems, such as bolted and riveted joints. In this study, some experimental works have been carried out on adhesively-bonded adherends manufactured from a woven carbon fiber-reinforced polymer matrix composite (Hexply 8552S/A280-5H, produced by Hexcel), by using a film adhesive (AF163-2K produced by 3 M). The bonded specimens were prepared in the Single Lap Joint (SLJ) configuration, and tested in tensile and also in four-point bending loading. In order to assess the joint performance, three different overlap lengths, 15 mm, 25 mm and 40 mm, and two different thicknesses of the composite adherends, 2 mm and 3 mm, were used. The results shown that the parameters are controlled by the loading modes; while the overlap length increases the joint performance significantly in tensile loading, the opposite was the case for those in bending loading, which was affected mainly by the adherend thicknesses. The results were related to the mechanisms of joint failures; while the joints in the tensile failed in the adhesive layer with some exceptions, those in the bending mainly failed in the plies adjacent to the layer. The current study indicates that one of the important factors affecting the joint strength of the adherends manufactured from the laminated composites is the local failure of the plies. It is thought more focused-studies would be needed to lessen such problems, which would be possible via in-depth numerical analysis.

  6. Algebraic dynamic multilevel method for compositional flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cusini, Matteo; Fryer, Barnaby; van Kruijsdijk, Cor; Hajibeygi, Hadi

    2018-02-01

    This paper presents the algebraic dynamic multilevel method (ADM) for compositional flow in three dimensional heterogeneous porous media in presence of capillary and gravitational effects. As a significant advancement compared to the ADM for immiscible flows (Cusini et al., 2016) [33], here, mass conservation equations are solved along with k-value based thermodynamic equilibrium equations using a fully-implicit (FIM) coupling strategy. Two different fine-scale compositional formulations are considered: (1) the natural variables and (2) the overall-compositions formulation. At each Newton's iteration the fine-scale FIM Jacobian system is mapped to a dynamically defined (in space and time) multilevel nested grid. The appropriate grid resolution is chosen based on the contrast of user-defined fluid properties and on the presence of specific features (e.g., well source terms). Consistent mapping between different resolutions is performed by the means of sequences of restriction and prolongation operators. While finite-volume restriction operators are employed to ensure mass conservation at all resolutions, various prolongation operators are considered. In particular, different interpolation strategies can be used for the different primary variables, and multiscale basis functions are chosen as pressure interpolators so that fine scale heterogeneities are accurately accounted for across different resolutions. Several numerical experiments are conducted to analyse the accuracy, efficiency and robustness of the method for both 2D and 3D domains. Results show that ADM provides accurate solutions by employing only a fraction of the number of grid-cells employed in fine-scale simulations. As such, it presents a promising approach for large-scale simulations of multiphase flow in heterogeneous reservoirs with complex non-linear fluid physics.

  7. Diode-Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-Micrometers Laser

    DTIC Science & Technology

    2015-09-01

    composite fiber laser of holmium-core and thulium-doped cladding . The composite fiber was optically pumped by an 803-nm fiber coupled diode source and was...4 odd and 5 even modes were exclusive to the core and first cladding . As the Tm laser modes are excluded from lasing in the second (undoped...of the Tm-doped clad /Ho-doped core fiber laser . In particular, calculations of the model overlap of the cladding modes with the core have been

  8. [Analytical figures of merit of Hildebrand grid and ultrasonic nebulizations in inductively coupled plasma atomic emission].

    PubMed

    Tian, Mei; Han, Xiao-yuan; Zhuo, Shang-jun; Zhang, Rui-rong

    2012-05-01

    Hildebrand grid nebulizer is a kind of improved Babington nebulizer, which can nebulize solutions with high total dissolved solids. And the ultrasonic nebulizer (USN) possesses advantage of high nebulization efficiency and fine droplets. In the present paper, the detection limits, matrix effects, ICP robustness and memory effects of Hildebrand grid and ultrasonic nebulizers for ICP-AES were studied. The results show that the detection limits using USN are improved by a factor of 6-23 in comparison to Hildebrand grid nebulizer for Cu, Pb, Zn, Cr, Cd and Ni. With the USN the matrix effects were heavier, and the degree of intensity enhancement and lowering depends on the element line, the composition and concentrations of matrices. Moreover, matrix effects induced by Ca and Mg are more significant than those caused by Na and Mg, and intensities of ionic lines are affected more easily than those of atomic lines. At the same time, with the USN ICP has less robustness. In addition, memory effect of the USN is also heavier than that of Hildebrand grid nebulizer.

  9. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)

    2001-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.

  10. Composite isogrid structures for parabolic surfaces

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)

    2000-01-01

    The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.

  11. What Level 2 Products are available?

    Atmospheric Science Data Center

    2014-12-08

    The Aerosol data (MIL2ASAE) contains aerosol optical depth, aerosol compositional model, ancillary meteorological data, and related parameters on a 17.6 km grid. The Land Surface data (MIL2ASLS) includes bihemispherical and...

  12. Decomposition and correction overlapping peaks of LIBS using an error compensation method combined with curve fitting.

    PubMed

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-09-01

    The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.

  13. Sensitivities of simulated satellite views of clouds to subgrid-scale overlap and condensate heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.

    Satellite simulators are often used to account for limitations in satellite retrievals of cloud properties in comparisons between models and satellite observations. The purpose of the simulator framework is to enable more robust evaluation of model cloud properties, so that di erences between models and observations can more con dently be attributed to model errors. However, these simulators are subject to uncertainties themselves. A fundamental uncertainty exists in connecting the spatial scales at which cloud properties are retrieved with those at which clouds are simulated in global models. In this study, we create a series of sensitivity tests using 4more » km global model output from the Multiscale Modeling Framework to evaluate the sensitivity of simulated satellite retrievals when applied to climate models whose grid spacing is many tens to hundreds of kilometers. In particular, we examine the impact of cloud and precipitation overlap and of condensate spatial variability. We find the simulated retrievals are sensitive to these assumptions. Specifically, using maximum-random overlap with homogeneous cloud and precipitation condensate, which is often used in global climate models, leads to large errors in MISR and ISCCP-simulated cloud cover and in CloudSat-simulated radar reflectivity. To correct for these errors, an improved treatment of unresolved clouds and precipitation is implemented for use with the simulator framework and is shown to substantially reduce the identified errors.« less

  14. Quantifying high resolution transitional breaks in plant and mammal distributions at regional extent and their association with climate, topography and geology.

    PubMed

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C

    2013-01-01

    We quantify spatial turnover in communities of 1939 plant and 59 mammal species at 2.5 km resolution across a topographically heterogeneous region in south-eastern Australia to identify distributional breaks and low turnover zones where multiple species distributions overlap. Environmental turnover is measured to determine how climate, topography and geology influence biotic turnover differently across a variety of biogeographic breaks and overlaps. We identify the genera driving turnover and confirm the versatility of this approach across spatial scales and locations. Directional moving window analyses, rotated through 360°, were used to measure spatial turnover variation in different directions between gridded cells containing georeferenced plant and mammal occurrences and environmental variables. Generalised linear models were used to compare taxic turnover results with equivalent analyses for geology, regolith weathering, elevation, slope, solar radiation, annual precipitation and annual mean temperature, both uniformly across the entire study area and by stratifying it into zones of high and low turnover. Identified breaks and transitions were compared to a conservation bioregionalisation framework widely used in Australia. Detailed delineations of plant and mammal turnover zones with gradational boundaries denoted subtle variation in species assemblages. Turnover patterns often diverged from bioregion boundaries, though plant turnover adhered most closely. A prominent break zone contained either comparable or greater numbers of unique genera than adjacent overlaps, but these were concentrated in a small subsection relatively under-protected by conservation reserves. The environmental correlates of biotic turnover varied for different turnover zones in different subsections of the study area. Topography and temperature showed much stronger relationships with plant turnover in a topographically complex overlap, relative to a lowland overlap where weathering was most predictive. This method can quantify transitional turnover patterns from small to broad extents, at different resolutions for any location, and complements broad-scale bioregionalisation schemes in conservation planning.

  15. Temperature and composition dependent density of states extracted using overlapping large polaron tunnelling model in MnxCo1-xFe2O4 (x=0.25, 0.5, 0.75) nanoparticles

    NASA Astrophysics Data System (ADS)

    Jamil, Arifa; Afsar, M. F.; Sher, F.; Rafiq, M. A.

    2017-03-01

    We report detailed ac electrical and structural characterization of manganese cobalt ferrite nanoparticles, prepared by coprecipitation technique. X-ray diffraction (XRD) confirmed single-phase cubic spinel structure of the nanoparticles. Tetrahedral (A) and octahedral (B) group complexes were present in the spinel lattice as determined by Fourier Transform Infrared Spectroscopy (FTIR). Scanning Electron Microscope (SEM) images revealed presence of spherical shape nanoparticles having an average diameter 50-80 nm. Composition, temperature and frequency dependent ac electrical study of prepared nanoparticles interpreted the role of cationic distribution between A and B sites. Overlapping large polaron tunnelling (OLPT) conduction mechanism was observed from 290 to 200 K. Frequency exponent s was fitted theoretically using OLPT model. High values of Density of States (DOS) of the order of 1022-1024 eV-1 cm-3 were extracted from ac conductivity for different compositions. We found that DOS was dependent on distribution of cations in the tunnel-type cavities along the a and b axis.

  16. High-Order Moving Overlapping Grid Methodology in a Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Merrill, Brandon E.

    A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies, show near linear strong scaling, even for moderately large processor counts. The moving overlapping mesh methodology is utilized to investigate the effect of an upstream turbulent wake on a three-dimensional oscillating NACA0012 extruded airfoil. A direct numerical simulation (DNS) at Reynolds Number 44,000 is performed for steady inflow incident upon the airfoil oscillating between angle of attack 5.6° and 25° with reduced frequency k=0.16. Results are contrasted with subsequent DNS of the same oscillating airfoil in a turbulent wake generated by a stationary upstream cylinder.

  17. The 2012 Arctic Field Season of the NRL Sea-Ice Measurement Program

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Hagen, R. A.; Liang, R.; Ball, D.

    2012-12-01

    The U.S. Naval Research Laboratory (NRL) is beginning a five year study of the changing Arctic with a particular focus on ice thickness and distribution variability with the intent of optimizing state-of-the-art computer models which are currently used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat2 ice thickness data prior to its incorporation into new ice forecast models. NRL Code 7420 collected coincident data with the CryoSat2 satellite in both 2011 and 2012 using a LiDAR (Riegl Q560) to measure combined snow and ice thickness and a 10 GHz pulse-limited precision radar altimeter to measure sea-ice freeboard. These measurements were coordinated with the Seasonal Ice Zone Observing Network (SIZONet) group who conducted surface based ice thickness surveys using a Geonics EM-31 along hunter trails on the landfast ice near Barrow as well as on drifting ice offshore during helicopter landings. On two sorties, a twin otter carrying the NRL LiDAR and radar altimeter flew in tandem with the helicopter carrying the EM-31 to achieve synchronous data acquisition. Data from these flights are shown here along with a digital elevation map. The LiDAR and radar altimeter were also flown on grid patterns over the ice that were synchronous with 5 Cryosat2 satellite passes. These grids were intended to cover roughly 10 km long segments of Cryosat2 tracks with widths similar to the footprint of the satellite (~2 km). Reduction of these grids is challenging because of ice drift which can be many hundreds of meters over the 1-2 hours collection period of each grid. Relocation of the individual scanning LiDAR tracks is done by means of tie-points observed in the overlapping swaths. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface across the footprint.

  18. Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches.

    PubMed

    Yang, Jun-Ho; Yoh, Jack J

    2018-01-01

    A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.

  19. Analytic treatment of charge cloud overlaps: an improvement of the tomographic atom probe efficiency

    NASA Astrophysics Data System (ADS)

    Bas, P.; Bostel, A.; Grancher, G.; Deconihout, B.; Blavette, D.

    1996-03-01

    Although reliable position and composition data are obtained with the Tomographic Atom Probe, the procedure of position calculation by charge centroiding fails when the detector receives two or more ions with close spaced positions and the same mass-to-charge ratio. As the charge clouds of the ions overlap, they form a unique charge pattern on the multianode detector. Only one atom is represented and its position is biased. In order to estimate real positions, we have developed a correction method. The spatial distribution of charges inside a cloud issued from one impact is modelled by a Gaussian law. The particular properties of the Gaussian enable the calculation of exact positions of the two impacts of the overlapped charge patterns and charges of corresponding clouds. The calculation may be generalized for more than two overlapped clouds. The method was tested on a plane-by-plane analysis of a fully ordered Cu 3Au alloy performed on a (100) pole.

  20. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  1. Automatic Intra-Operative Stitching of Non-Overlapping Cone-Beam CT Acquisitions

    PubMed Central

    Fotouhi, Javad; Fuerst, Bernhard; Unberath, Mathias; Reichenstein, Stefan; Lee, Sing Chun; Johnson, Alex A.; Osgood, Greg M.; Armand, Mehran; Navab, Nassir

    2018-01-01

    Purpose Cone-Beam Computed Tomography (CBCT) is one of the primary imaging modalities in radiation therapy, dentistry, and orthopedic interventions. While CBCT provides crucial intraoperative information, it is bounded by a limited imaging volume, resulting in reduced effectiveness. This paper introduces an approach allowing real-time intraoperative stitching of overlapping and non-overlapping CBCT volumes to enable 3D measurements on large anatomical structures. Methods A CBCT-capable mobile C-arm is augmented with a Red-Green-Blue-Depth (RGBD) camera. An off-line co-calibration of the two imaging modalities results in co-registered video, infrared, and X-ray views of the surgical scene. Then, automatic stitching of multiple small, non-overlapping CBCT volumes is possible by recovering the relative motion of the C-arm with respect to the patient based on the camera observations. We propose three methods to recover the relative pose: RGB-based tracking of visual markers that are placed near the surgical site, RGBD-based simultaneous localization and mapping (SLAM) of the surgical scene which incorporates both color and depth information for pose estimation, and surface tracking of the patient using only depth data provided by the RGBD sensor. Results On an animal cadaver, we show stitching errors as low as 0.33 mm, 0.91 mm, and 1.72mm when the visual marker, RGBD SLAM, and surface data are used for tracking, respectively. Conclusions The proposed method overcomes one of the major limitations of CBCT C-arm systems by integrating vision-based tracking and expanding the imaging volume without any intraoperative use of calibration grids or external tracking systems. We believe this solution to be most appropriate for 3D intraoperative verification of several orthopedic procedures. PMID:29569728

  2. Cenozoic Motion of Greenland - Overlaps and Seaways

    NASA Astrophysics Data System (ADS)

    Lawver, L. A.; Norton, I. O.; Gahagan, L.

    2014-12-01

    Using the seafloor magnetic anomalies found in the Labrador Sea, North Atlantic and Eurasian basin to constrain the Cenozoic motion of Greenland, we have produced a new model for the tectonic evolution of the region. The aeromagnetic data collected by the Naval Research Lab [Brozena et al., 2003] in the Eurasian Basin and Canadian data from the Labrador Sea have been re-evaluated using new gridding algorithms and profile modeling using ModMag (Mendel et al., 2005). As a consequence, we have changed the published correlations, mostly prior to Chron C6 [19.05 Ma]. Presently published seafloor magnetic anomalies from the Labrador Sea assume that seafloor spreading ceased at C13 [33.06 Ma] but such an assumption produces an unacceptable overlap of Kronprins Christian Land of northeast Greenland with Svalbard, up to 140 km of overlap in some models. Our new model does not need any "unacceptable" overlap but does produce a slight amount of Eocene compression on Svalbard as is found on land there. Our model allows for an Early Eocene seaway between Ellesmere Island and northwest Greenland that may have connected the Labrador Sea through Baffin Bay and ultimately to the nascent Eurasian Basin, although its depth or even its essential existence is unknowable. During the Miocene, there is no room for a deepwater seaway in Fram Strait until at least the very end of the Early Miocene and perhaps not until Middle Miocene. Brozena, J. and six others, 2003. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development. Geology 31, 825-828. Mendel, V., M. Munschy and D.Sauter, 2005, MODMAG, a MATLAB program to model marine magnetic anomalies, Comp. Geosci., 31, .589-597

  3. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy

    DOE PAGES

    Huang, Xiaojing; Yan, Hanfei; Ge, Mingyuan; ...

    2017-07-11

    In this paper, we report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. Lastly, this capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.

  4. Efficient implementation of a 3-dimensional ADI method on the iPSC/860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Wijngaart, R.F.

    1993-12-31

    A comparison is made between several domain decomposition strategies for the solution of three-dimensional partial differential equations on a MIMD distributed memory parallel computer. The grids used are structured, and the numerical algorithm is ADI. Important implementation issues regarding load balancing, storage requirements, network latency, and overlap of computations and communications are discussed. Results of the solution of the three-dimensional heat equation on the Intel iPSC/860 are presented for the three most viable methods. It is found that the Bruno-Cappello decomposition delivers optimal computational speed through an almost complete elimination of processor idle time, while providing good memory efficiency.

  5. Permeability of model porous medium formed by random discs

    NASA Astrophysics Data System (ADS)

    Gubaidullin, A. A.; Gubkin, A. S.; Igoshin, D. E.; Ignatev, P. A.

    2018-03-01

    Two-dimension model of the porous medium with skeleton of randomly located overlapping discs is proposed. The geometry and computational grid are built in open package Salome. Flow of Newtonian liquid in longitudinal and transverse directions is calculated and its flow rate is defined. The numerical solution of the Navier-Stokes equations for a given pressure drop at the boundaries of the area is realized in the open package OpenFOAM. Calculated value of flow rate is used for defining of permeability coefficient on the base of Darcy law. For evaluating of representativeness of computational domain the permeability coefficients in longitudinal and transverse directions are compered.

  6. A new class of accurate, mesh-free hydrodynamic simulation methods

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2015-06-01

    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.

  7. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    NASA Astrophysics Data System (ADS)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  8. Numerical simulation of axisymmetric turbulent flow in combustors and diffusors. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Yung, Chain Nan

    1988-01-01

    A method for predicting turbulent flow in combustors and diffusers is developed. The Navier-Stokes equations, incorporating a turbulence kappa-epsilon model equation, were solved in a nonorthogonal curvilinear coordinate system. The solution applied the finite volume method to discretize the differential equations and utilized the SIMPLE algorithm iteratively to solve the differenced equations. A zonal grid method, wherein the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal boundaries required special handling. Boundary overlap and interpolating techniques were used and an adjustment of the flow variables was required to assure conservation of mass, momentum and energy fluxes. The numerical accuracy was assessed using different finite differencing methods, i.e., hybrid, quadratic upwind and skew upwind, to represent the convection terms. Flows in different geometries of combustors and diffusers were simulated and results compared with experimental data and good agreement was obtained.

  9. Methods for Combination of GRACE Gravimetry and ICESat Altimetry over Antarctica on Monthly Timescales

    NASA Astrophysics Data System (ADS)

    Hardy, R. A.; Nerem, R. S.; Wiese, D. N.

    2017-12-01

    Gravity and surface elevation change data altimetry provide different perspectives on mass variability in Antarctica. In anticipation of the concurrent operation of the successors of GRACE and ICESat, GRACE Follow-On and ICESat-2, we approach the problem of combining these data for enhanced spatial resolution and disaggregation of Antarctica's major mass transport processes. Using elevation changes gathered from over 500 million overlapping ICESat laser shot pairs between 2003 and 2009, we construct gridded models of Antarctic elevation change for each ICESat operational period. Comparing these elevation grids with temporally registered JPL RL05M mascon solutions, we exploit the relationship between surface mass flux and elevation change to inform estimates of effective surface density. These density estimates enable solutions for glacial isostatic adjustment and monthly estimates of surface mass change. These are used alongside spatial statistics from both the data and models of surface mass balance to produce enhanced estimates of Antarctic mass balance. We validate our solutions by modeling the effects of elastic loading and GIA from these solutions on the vertical motion of Antarctica's GNSS sites.

  10. A 5 x 40 cm rectangular-beam multipole ion source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Haynes, C. M.

    1981-01-01

    A rectangular ion source particularly suited for the continuous sputter processing of materials over a wide area is discussed. A multipole magnetic field configuration was used to design an ion source with a 5 x 40 cm beam area, while a three-grid ion optics system was used to maximize ion current density at the design ion energy of 500 eV. An average extracted current density of about 4 mA/sq cm could be obtained from 500 eV Ar ions. The difference between the experimental performance and the design value of 6 mA/sq cm is attributed to grid misalignment due to thermal expansion. The discharge losses at typical operating conditions ranged from about 600 to 1000 eV/ion, in reasonable agreement with the design value of 800 eV/ion. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source was also studied, and the most uniform coverage was found to be obtainable with a 0 to 2 cm overlap.

  11. Grid effects on the derived ion temperature and ram velocity from the simulated results of the retarding potential analyzer data

    NASA Astrophysics Data System (ADS)

    Chao, C. K.; Su, S.-Y.; Yeh, H. C.

    2003-12-01

    The ROCSAT-1 satellite circulating at 600 km altitude in the low- and mid-latitude topside ionosphere carries a retarding potential analyzer to measure the ion composition, temperature, and the plasma flow velocity in the ram direction. Based on an existing three-dimensional model, the particle's motion inside the instrument is simulated with the exact wire and mesh sizes but with a smaller aperture of the real sensor configuration. The simulation results indicate that the retarding grids could not provide a uniform retarding potential barrier to completely repel low energy particles. Some of low energy particles could pass through those grids and arrive at the collector. The leakage will cause the ram velocity to be over-estimated for by about 180 m/sec. Furthermore, the simulated O + temperature derived from the I-V curve is lower than the input temperature due to ion losses from colliding with the grids from the non-uniform potential field generated by the high retarding voltage.

  12. The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids

    PubMed Central

    Hesford, Andrew J.; Waag, Robert C.

    2010-01-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased. PMID:20835366

  13. The fast multipole method and Fourier convolution for the solution of acoustic scattering on regular volumetric grids

    NASA Astrophysics Data System (ADS)

    Hesford, Andrew J.; Waag, Robert C.

    2010-10-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  14. The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids.

    PubMed

    Hesford, Andrew J; Waag, Robert C

    2010-10-20

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  15. Conceptual overlap between moral norms and anticipated regret in the prediction of intention: implications for theory of planned behaviour research.

    PubMed

    Newton, Joshua D; Newton, Fiona J; Ewing, Michael T; Burney, Sue; Hay, Margaret

    2013-01-01

    Moral norms and anticipated regret are widely used extensions to the theory of planned behaviour, yet there is some evidence to suggest that these constructs may conceptually overlap as predictors of intention. Two health-related behaviours with distinct moral implications (Study 1: organ donation registration, N = 352 and Study 2: condom usage, N = 1815) were therefore examined to ascertain whether moral norms and anticipated regret are indeed conceptually distinct. While evidence consistent with conceptual overlap was identified in Study 1, the evidence for such overlap in Study 2 was more ambiguous. In Study 3, a meta-analysis of existing literature revealed that the relationship between moral norms and anticipated regret was moderated by the extent of the moral implications arising from the behaviour under examination. Taken together, these findings suggest that conceptual overlap between moral norms and anticipated regret is more likely to occur among behaviours with obvious moral implications. Researchers wishing to examine the predictive utility of moral norms and anticipated regret among such behaviours would therefore be advised to aggregate these measures to form a composite variable (personal norms).

  16. Determination and representation of electric charge distributions associated with adverse weather conditions

    NASA Technical Reports Server (NTRS)

    Rompala, John T.

    1992-01-01

    Algorithms are presented for determining the size and location of electric charges which model storm systems and lightning strikes. The analysis utilizes readings from a grid of ground level field mills and geometric constraints on parameters to arrive at a representative set of charges. This set is used to generate three dimensional graphical depictions of the set as well as contour maps of the ground level electrical environment over the grid. The composite, analytic and graphic package is demonstrated and evaluated using controlled input data and archived data from a storm system. The results demonstrate the packages utility as: an operational tool in appraising adverse weather conditions; a research tool in studies of topics such as storm structure, storm dynamics, and lightning; and a tool in designing and evaluating grid systems.

  17. Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates

    NASA Astrophysics Data System (ADS)

    Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi

    2017-06-01

    Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.

  18. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens

    DOE PAGES

    Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann; ...

    2015-09-17

    Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less

  19. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  20. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, Robert M.; Han, Bong-Gyoon; Csencsits, Roseann

    Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. We first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. Furthermore, we then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surfacemore » pressure) can hardly be avoided during standard cryo-EM specimen preparation. Thus it is suggested that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness.« less

  1. An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter.

    PubMed

    Gayen, P K; Chatterjee, D; Goswami, S K

    2016-05-01

    In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Evaluation of Shear Tie Connectors for Use in Insulated Concrete Sandwich Panels

    DTIC Science & Technology

    2009-12-01

    stainless steel, galvanized carbon steel, carbon fiber reinforced polymers (CFRP), glass fiber reinforced polymer (GFRP), and basalt fiber reinforced polymer...Glass Fiber Reinforced Polymer (GFRP) Delta Tie produced by Dayton Superior; • (B) THERMOMASS® composite GFRP pins; • (C) THERMOMASS® non-composite...GFRP pins; • (D) Altus Group CFRP Grid; • (E) Universal Building products GFRP Teplo Tie; and • (F) Universal Building products Basalt FRP

  3. Evolution of aerosol downwind of a major highway

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.

    2010-12-01

    Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of turbulent dispersion as a function of distance from the highway, and a traffic camera was used to determine traffic density, composition and speed. These measurements differ from previous studies in that turbulence is measured under realistic conditions and hence the relationship of the aerosol evolution to atmospheric stability and mixing will also be quantified. Preliminary results suggest that aerosol size and composition does change on the sub-grid scale, and sub-grid scale parameterizations of turbulence and particle chemistry should be included in models to accurately represent these effects.

  4. On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Pusok, A. E.; Popov, A.

    2015-12-01

    The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation reduces the dispersion or clustering of markers and that the density of markers remains steady over time without the need of additional marker control. Jenny et al. (2001, J Comp Phys, 166, 218-252 Meyer and Jenny (2004), Proc Appl Math Mech, 4, 466-467 Wang et al. (2015), G3, Vol.16 Funding was provided by the ERC Starting Grant #258830.

  5. LPV Modeling of a Flexible Wing Aircraft Using Modal Alignment and Adaptive Gridding Methods

    NASA Technical Reports Server (NTRS)

    Al-Jiboory, Ali Khudhair; Zhu, Guoming; Swei, Sean Shan-Min; Su, Weihua; Nguyen, Nhan T.

    2017-01-01

    One of the earliest approaches in gain-scheduling control is the gridding based approach, in which a set of local linear time-invariant models are obtained at various gridded points corresponding to the varying parameters within the flight envelop. In order to ensure smooth and effective Linear Parameter-Varying control, aligning all the flexible modes within each local model and maintaining small number of representative local models over the gridded parameter space are crucial. In addition, since the flexible structural models tend to have large dimensions, a tractable model reduction process is necessary. In this paper, the notion of s-shifted H2- and H Infinity-norm are introduced and used as a metric to measure the model mismatch. A new modal alignment algorithm is developed which utilizes the defined metric for aligning all the local models over the entire gridded parameter space. Furthermore, an Adaptive Grid Step Size Determination algorithm is developed to minimize the number of local models required to represent the gridded parameter space. For model reduction, we propose to utilize the concept of Composite Modal Cost Analysis, through which the collective contribution of each flexible mode is computed and ranked. Therefore, a reduced-order model is constructed by retaining only those modes with significant contribution. The NASA Generic Transport Model operating at various flight speeds is studied for verification purpose, and the analysis and simulation results demonstrate the effectiveness of the proposed modeling approach.

  6. Broad-area detection of structural irregularities in composites using fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Davis, Claire E.; Norman, Patrick; Moss, Scott; Ratcliffe, Colin; Crane, Roger

    2010-04-01

    The Structural Irregularity and Damage Evaluation Routine (SIDER) is a broadband vibration-based technique that uses features in complex curvature operating shapes to locate damage and other areas with structural stiffness variations. It is designed for the inspection of large-scale composite structures not amenable to more conventional inspection methods. The current SIDER methodology relies on impact excitation at a series of grid points on the structure and records the response using a small number of accelerometers to determine the operational curvature shapes. This paper reports on a modification to the SIDER technique whereby the acceleration measurements are replaced with in-plane strain measurements using Fibre Bragg Gratings (FBGs). One of the major challenges associated with using Bragg gratings for this type of response measurement is that the strains induced by structural vibrations tend to be low, particularly at higher frequencies. This paper also reports on the development of an intensity-based, swept wavelength interrogation system to facilitate these measurements. The modified SIDER system was evaluated on an E-glass/vinyl ester composite test beam containing a machined notch. The measurements accurately detected the presence and location of the notch. The distributive capacity of FBGs means that these sensors have the potential to replace the excitation grid with a measurement grid, allowing for single point or environmental excitation. The spatially separated measurements of strain can be used to provide the curvature shapes directly. This change in approach could potentially transition SIDER from an interval-based, broad-area inspection tool to an in-service structural health monitoring system.

  7. Composite shade guides and color matching.

    PubMed

    Paolone, Gaetano; Orsini, Giovanna; Manauta, Jordi; Devoto, Walter; Putignano, Angelo

    2014-01-01

    Finding reliable systems that can help the clinician match the color of direct composite restorations is often an issue. After reviewing several composite shade guides available on the market and outlining their main characteristics and limits (unrealistic specimen thickness, not made with the same material the clinician will use, only a few allow to overlap enamel tabs on dentin ones), the authors evaluated the reliability of a system designed to produce self-made standardized "tooth-shaped" shade guide specimens. Small changes in composite enamel thickness may determine huge differences in esthetic outcomes. In conclusion, the results showed that all the specimens demonstrated comparable enamel thickness in all the examined areas (cervical, middle, incisal).

  8. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest.

    PubMed

    Correa, Sandra Bibiana; Winemiller, Kirk O

    2014-01-01

    In response to temporal changes in the quality and availability of food resources, consumers should adjust their foraging behavior in a manner that maximizes energy and nutrient intake and, when resources are limiting, minimizes dietary overlap with other consumers. Floodplains of the Amazon and its lowland tributaries are characterized by strong, yet predictable, hydrological seasonality, seasonal availability of fruits, seeds, and other food resources of terrestrial origin, and diverse assemblages of frugivorous fishes, including morphologically similar species of several characiform families. Here, we investigated how diets of frugivorous fishes in the Amazon change in response to fluctuations in food availability, and how this influences patterns of interspecific dietary overlap. We tested predictions from classical theories of foraging and resource competition by estimating changes in diet breadth and overlap across seasons. We monitored fruiting phenology to assess food availability, and surveyed local fish populations during three hydrological seasons in an oligotrophic river and an adjacent oxbow lake in the Colombian Amazon. We analyzed stomach contents and stable isotope data to evaluate temporal and interspecific relationships for dietary composition, breadth, and overlap. Diets of six species of characiform fishes representing three genera changed according to seasonal fluctuations in food availability, and patterns of diet breadth and interspecific overlap during the peak flood pulse were consistent with predictions of optimal foraging theory. During times of high fruit abundance, fishes consumed items to which their functional morphological traits seemed best adapted, potentially enhancing net energy and nutritional gains. As the annual flood pulse subsided and availability of forest food resources in aquatic habitats changed, there was not a consistent pattern of diet breadth expansion or compression. Nonetheless, shifts in both diet composition and stable isotope ratios of consumer tissues during this period resulted in trophic niche segregation in a pattern consistent with competition theory.

  9. Environmental Niche Overlap between Common and Dusky Dolphins in North Patagonia, Argentina

    PubMed Central

    Svendsen, Guillermo Martín; Romero, María Alejandra; Williams, Gabriela Noemí; Gagliardini, Domingo Antonio; Crespo, Enrique Alberto; Dans, Silvana Laura; González, Raúl Alberto

    2015-01-01

    Research on the ecology of sympatric dolphins has increased worldwide in recent decades. However, many dolphin associations such as that between common dolphins (Delphinus delphis) and dusky dolphins (Lagenorhynchus obscurus) are poorly understood. The present study was conducted in the San Matías Gulf (SMG) ecosystem (North Patagonia, Argentina) where a high diet overlap among both species was found. The main objective of the present work was to explore the niche overlap of common and dusky dolphins in the habitat and temporal dimensions. The specific aims were (a) to evaluate the habitat use strategies of both species through a comparison of their group attributes (social composition, size and activity), and (b) to evaluate their habitat preferences and habitat overlap through Environmental Niche modeling considering two oceanographic seasons. To accomplish these aims, we used a historic database of opportunistic and systematic records collected from 1983 to 2011. Common and dusky dolphins exhibited similar patterns of group size (from less than 10 to more than 100 individuals), activity (both species use the area to feed, nurse, and copulate), and composition (adults, juveniles, and mothers with calves were observed for both species). Also, both species were observed travelling and feeding in mixed-species groups. Specific overlap indices were higher for common dolphins than for dusky dolphins, but all indices were low, suggesting that they are mainly segregated in the habitat dimension. In the case of common dolphins, the best habitats were located in the northwest of the gulf far from the coast. In the warm season they prefer areas with temperate sea surface and in the cold season they prefer areas with relatively high variability of sea surface temperature. Meanwhile, dusky dolphins prefer areas with steep slopes close to the coast in the southwestern sector of the gulf in both seasons. PMID:26091542

  10. Using hidden Markov models and observed evolution to annotate viral genomes.

    PubMed

    McCauley, Stephen; Hein, Jotun

    2006-06-01

    ssRNA (single stranded) viral genomes are generally constrained in length and utilize overlapping reading frames to maximally exploit the coding potential within the genome length restrictions. This overlapping coding phenomenon leads to complex evolutionary constraints operating on the genome. In regions which code for more than one protein, silent mutations in one reading frame generally have a protein coding effect in another. To maximize coding flexibility in all reading frames, overlapping regions are often compositionally biased towards amino acids which are 6-fold degenerate with respect to the 64 codon alphabet. Previous methodologies have used this fact in an ad hoc manner to look for overlapping genes by motif matching. In this paper differentiated nucleotide compositional patterns in overlapping regions are incorporated into a probabilistic hidden Markov model (HMM) framework which is used to annotate ssRNA viral genomes. This work focuses on single sequence annotation and applies an HMM framework to ssRNA viral annotation. A description of how the HMM is parameterized, whilst annotating within a missing data framework is given. A Phylogenetic HMM (Phylo-HMM) extension, as applied to 14 aligned HIV2 sequences is also presented. This evolutionary extension serves as an illustration of the potential of the Phylo-HMM framework for ssRNA viral genomic annotation. The single sequence annotation procedure (SSA) is applied to 14 different strains of the HIV2 virus. Further results on alternative ssRNA viral genomes are presented to illustrate more generally the performance of the method. The results of the SSA method are encouraging however there is still room for improvement, and since there is overwhelming evidence to indicate that comparative methods can improve coding sequence (CDS) annotation, the SSA method is extended to a Phylo-HMM to incorporate evolutionary information. The Phylo-HMM extension is applied to the same set of 14 HIV2 sequences which are pre-aligned. The performance improvement that results from including the evolutionary information in the analysis is illustrated.

  11. Isotope and trace element insights into heterogeneity of subridge mantle

    NASA Astrophysics Data System (ADS)

    Mallick, Soumen; Dick, Henry J. B.; Sachi-Kocher, Afi; Salters, Vincent J. M.

    2014-06-01

    Geochemical data for abyssal peridotites are used to determine the relationship to mid-ocean ridge basalts from several locations at ridge segments on the SW Indian Ridge (SWIR), the Mid-Cayman-Rise (MCR), and the Mid-Atlantic Ridge (MAR). Based on chemical and petrological criteria peridotites are categorized as being either dominantly impregnated with melt or being residual after recent melting. Those that are considered impregnated with melt also have isotopic compositions similar to the basalts indicating impregnation by an aggregate MORB melt. A SWIR and MCR residual peridotite Nd-isotopic compositions partly overlap the Nd-isotopic compositions of the basalts but extend to more radiogenic compositions. The differences between peridotite and basalt Nd-isotopic compositions can be explained by incorporating a low-solidus component with enriched isotopic signature in the subridge mantle: a component that is preferentially sampled by the basalts. At the MAR, peridotites and associated basalts have overlapping Nd-isotopic compositions, suggesting a more homogeneous MORB mantle. The combined chemistry and petrography indicates a complex history with several depletion and enrichment events. The MCR data indicate that a low-solidus component can be a ubiquitous component of the asthenosphere. Residual abyssal peridotites from limited geographic areas also show significant chemical variations that could be associated with initial mantle heterogeneities related to events predating the ridge-melting event. Sm-Nd model ages for possible earlier depletion events suggest these could be as old as 2.4 Ga. This article was corrected on 9 JULY 2014. See the end of the full text for details.

  12. Age and intrusive relations of the Lamarck granodiorite and associated mafic plutons, Sierra Nevada, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joye, J.L.; Bachl, C.A.; Miller, J.S.

    The compositionally zoned Late Cretaceous Lamarck granodiorite, west of Bishop, hosts numerous mafic intrusions ranging from hornblende gabbro to mafic granodiorite. Frost and Mahood (1987) suggested from field relations that the Lamarck and the associated mafic plutons were co-intrusive. Contact relations between the Lamarck host and the mafic intrusions are variable (sharp to diffuse) and in places suggest commingling. In order to constrain the intrusive relationships between the Lamarck and its associated mafic plutons, the authors have analyzed feldspars from the Mt. Gilbert pluton and the Lamarck granodiorite to see if feldspar compositions in the Mt. Gilbert overlap those inmore » the Lamarck host and determined U-Pb zircon ages for the Mt. Gilbert and Lake Sabrina plutons to see if they have the same age as the Lamarck granodiorite. Feldspars from the Lamarck granodiorite are normally zoned and range compositionally from An[sub 38--32]; those in the Mt. Gilbert diorite are also normally zoned but range compositionally from An[sub 49--41] and do not overlap the Lamarck host. Four to five zircon fractions from each pluton were handpicked and dated using U-Pb methods. The Mt. Gilbert mafic diorite has a concordant age of 92.5 Ma and the Lake Sabrina diorite has a concordant age of 91.5 Ma. Ages for the two plutons overlap within error, but multiple fractions from each suggest that the Lake Sabrina pluton is slightly younger than the Mt. Gilbert pluton. These data and field relationships indicate: (1) plagioclase phenocrysts in the Mt. Gilbert pluton were not derived from the Lamarck granodiorite despite their textural similarity; but (2) the Lamarck granodiorite and its associated mafic plutons are co-intrusive as supported by the close agreement of the ages with the crystallization age obtained by Stern and others for the Lamarck granodiorite.« less

  13. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-10-01

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system thatmore » can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.« less

  14. ADMAP-2: The next-generation Antarctic magnetic anomaly map

    NASA Astrophysics Data System (ADS)

    Golynsky, Alexander; Golynsky, Dmitry; Ferraccioli, Fausto; Jordan, Tom; Damaske, Detlef; Blankenship, Don; Holt, Jack; Young, Duncan; Ivanov, Sergey; Kiselev, Alexander; Jokat, Wilfried; Gohl, Karsten; Eagles, Graeme; Bell, Robin; Armadillo, Egidio; Bozzo, Emanuelle; Caneva, Giorgio; Finn, Carol; Forsberg, Rene; Aitken, Alan

    2017-04-01

    The Antarctic Digital Magnetic Anomaly Project compiled the first international magnetic anomaly map of the Antarctic region south of 60°S (ADMAP-1) some six years after its 1995 launch (Golynsky et al., 2001; Golynsky et al., 2007; von Frese et al., 2007). This magnetic anomaly compilation provided new insights into the structure and evolution of Antarctica, including its Proterozoic-Archaean cratons, Proterozoic-Palaeozoic orogens, Palaeozoic-Cenozoic magmatic arc systems, continental rift systems and rifted margins, large igneous provinces and the surrounding oceanic gateways. The international working group produced the ADMAP-1 database from more than 1.5 million line-kilometres of terrestrial, airborne, marine and satellite magnetic observations collected during the IGY 1957-58 through 1999. Since the publication of the first magnetic anomaly map, the international geomagnetic community has acquired more than 1.9 million line-km of new airborne and marine data. This implies that the amount of magnetic anomaly data over the Antarctic continent has more than doubled. These new data provide important constraints on the geology of the enigmatic Gamburtsev Subglacial Mountains and Prince Charles Mountains, Wilkes Land, Dronning Maud Land, and other largely unexplored Antarctic areas (Ferraccioli et al., 2011, Aitken et al., 2014¸ Mieth & Jokat, 2014, Golynsky et al., 2013). The processing of the recently acquired data involved quality assessments by careful statistical analysis of the crossover errors. All magnetic data used in the ADMAP-2 compilation were delivered as profiles, although several of them were in raw form. Some datasets were decimated or upward continued to altitudes of 4 km or higher with the higher frequency geological signals smoothed out. The line data used for the ADMAP-1 compilation were reprocessed for obvious errors and residual corrugations. The new near-surface magnetic data were corrected for the international geomagnetic reference field and diurnal effects, edited for high-frequency errors, and levelled to minimize line-correlated noise. The magnetic anomaly data collected mainly in the 21-st century clearly cannot be simply stitched together with the previous surveys. Thus, mutual levelling adjustments were required to accommodate overlaps in these surveys. The final compilation merged all the available aeromagnetic and marine grids to create the new composite grid of the Antarctic with minimal mismatch along the boundaries between the datasets. Regional coverage gaps in the composite grid will be filled with anomaly estimates constrained by both the near-surface data and satellite magnetic observations taken mainly from the CHAMP and Swarm missions. Magnetic data compilations are providing tantalizing new views into regional-scale subglacial geology and crustal architecture in interior of East and West Antarctica. The ADMAP-2 map provides a new geophysical foundation to better understand the geological structure and tectonic history of Antarctica and surrounding marine areas. In particular, it will provide improved constraints on the lithospheric transition of Antarctica to its oceanic basins, and thus enable improved interpretation of the geodynamic evolution of the Antarctic lithosphere that was a key component in the assembly and break-up of the Rodinia and Gondwana supercontinents. This work was supported by the Korea Polar Research Institute.

  15. NASA SPoRT Initialization Datasets for Local Model Runs in the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Carcione, Brian; Wood, Lance; Maloney, Joseph; Estupinan, Jeral; Medlin, Jeffrey M.; Blottman, Peter; Rozumalski, Robert A.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can be used to initialize local model runs within the Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). These real-time datasets consist of surface-based information updated at least once per day, and produced in a composite or gridded product that is easily incorporated into the WRF EMS. The primary goal for making these NASA datasets available to the WRF EMS community is to provide timely and high-quality information at a spatial resolution comparable to that used in the local model configurations (i.e., convection-allowing scales). The current suite of SPoRT products supported in the WRF EMS include a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Greenness Vegetation Fraction (GVF) composite, and Land Information System (LIS) gridded output. The SPoRT SST composite is a blend of primarily the Moderate Resolution Imaging Spectroradiometer (MODIS) infrared and Advanced Microwave Scanning Radiometer for Earth Observing System data for non-precipitation coverage over the oceans at 2-km resolution. The composite includes a special lake surface temperature analysis over the Great Lakes using contributions from the Remote Sensing Systems temperature data. The Great Lakes Environmental Research Laboratory Ice Percentage product is used to create a sea-ice mask in the SPoRT SST composite. The sea-ice mask is produced daily (in-season) at 1.8-km resolution and identifies ice percentage from 0 100% in 10% increments, with values above 90% flagged as ice.

  16. Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye.

    PubMed

    Kotresh, M G; Adarsh, K S; Shivkumar, M A; Mulimani, B G; Savadatti, M I; Inamdar, S R

    2016-05-01

    Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r), rate of energy transfer k(T)(r), and transfer efficiency (E) are determined by employing both steady-state and time-resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern-Volmer (K(D)) and bimolecular quenching constants (k(q)) are determined from the Stern-Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Twin disk composite flywheel

    NASA Astrophysics Data System (ADS)

    Ginsburg, B. R.

    The design criteria, materials, and initial test results of composite flywheels produced under DOE/Sandia contract are reported. The flywheels were required to store from 1-5 kWh with a total energy density of 80 W-h/kg at the maximum operational speed. The maximum diameter was set at 0.6 m, coupled to a maximum thickness of 0.2 m. A maximum running time at full speed of 1000 hr, in addition to a 10,000 cycle lifetime was mandated, together with a radial overlap in the material. The unit selected was a circumferentially wound composite rim made of graphite/epoxy mounted on an aluminum mandrel ring connected to an aluminum hub consisting of two constant stress disks. A tangentially wound graphite/epoxy overlap covered the rings. All conditions, i.e., rotation at 22,000 rpm and a measured storage of 1.94 kWh were verified in the first test series, although a second flywheel failed in subsequent tests when the temperature was inadvertantly allowed to rise from 15 F to over 200 F. Retest of the first flywheel again satisfied design goals. The units are considered as ideal for coupling with solar energy and wind turbine systems.

  18. Research on grid connection control technology of double fed wind generator

    NASA Astrophysics Data System (ADS)

    Ling, Li

    2017-01-01

    The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.

  19. The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. IV. Construction and Validation of a Grid of Models for Oxygen-rich AGB Stars, Red Supergiants, and Extreme AGB Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.

    2011-02-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the "Grid of Red supergiant and Asymptotic giant branch star ModelS" (GRAMS). This model grid explores four parameters—stellar effective temperature from 2100 K to 4700 K luminosity from 103 to 106 L sun; dust shell inner radii of 3, 7, 11, and 15 R star; and 10.0 μm optical depth from 10-4 to 26. From an initial grid of ~1200 2Dust models, we create a larger grid of ~69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  20. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular moieties correlated to variability in the temperature response of organic matter decomposition, as assessed by Q10. Thus, 2D NMR methods, and their combination with multivariate analysis, can greatly improve analysis of litter and SOM composition, thereby facilitating elucidation of their roles in biogeochemical and ecological processes that are so critical to foresee associated feedback mechanisms on SOM turnover as a result of global environmental change.

  1. Sub-Model Partial Least Squares for Improved Accuracy in Quantitative Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Clegg, S. M.; Frydenvang, J.

    2015-12-01

    One of the primary challenges faced by the ChemCam instrument on the Curiosity Mars rover is developing a regression model that can accurately predict the composition of the wide range of target types encountered (basalts, calcium sulfate, feldspar, oxides, etc.). The original calibration used 69 rock standards to train a partial least squares (PLS) model for each major element. By expanding the suite of calibration samples to >400 targets spanning a wider range of compositions, the accuracy of the model was improved, but some targets with "extreme" compositions (e.g. pure minerals) were still poorly predicted. We have therefore developed a simple method, referred to as "submodel PLS", to improve the performance of PLS across a wide range of target compositions. In addition to generating a "full" (0-100 wt.%) PLS model for the element of interest, we also generate several overlapping submodels (e.g. for SiO2, we generate "low" (0-50 wt.%), "mid" (30-70 wt.%), and "high" (60-100 wt.%) models). The submodels are generally more accurate than the "full" model for samples within their range because they are able to adjust for matrix effects that are specific to that range. To predict the composition of an unknown target, we first predict the composition with the submodels and the "full" model. Then, based on the predicted composition from the "full" model, the appropriate submodel prediction can be used (e.g. if the full model predicts a low composition, use the "low" model result, which is likely to be more accurate). For samples with "full" predictions that occur in a region of overlap between submodels, the submodel predictions are "blended" using a simple linear weighted sum. The submodel PLS method shows improvements in most of the major elements predicted by ChemCam and reduces the occurrence of negative predictions for low wt.% targets. Submodel PLS is currently being used in conjunction with ICA regression for the major element compositions of ChemCam data.

  2. Deriving the species richness distribution of Geotrupinae (Coleoptera: Scarabaeoidea) in Mexico from the overlap of individual model predictions.

    PubMed

    Trotta-Moreu, Nuria; Lobo, Jorge M

    2010-02-01

    Predictions from individual distribution models for Mexican Geotrupinae species were overlaid to obtain a total species richness map for this group. A database (GEOMEX) that compiles available information from the literature and from several entomological collections was used. A Maximum Entropy method (MaxEnt) was applied to estimate the distribution of each species, taking into account 19 climatic variables as predictors. For each species, suitability values ranging from 0 to 100 were calculated for each grid cell on the map, and 21 different thresholds were used to convert these continuous suitability values into binary ones (presence-absence). By summing all of the individual binary maps, we generated a species richness prediction for each of the considered thresholds. The number of species and faunal composition thus predicted for each Mexican state were subsequently compared with those observed in a preselected set of well-surveyed states. Our results indicate that the sum of individual predictions tends to overestimate species richness but that the selection of an appropriate threshold can reduce this bias. Even under the most optimistic prediction threshold, the mean species richness error is 61% of the observed species richness, with commission errors being significantly more common than omission errors (71 +/- 29 versus 18 +/- 10%). The estimated distribution of Geotrupinae species richness in Mexico in discussed, although our conclusions are preliminary and contingent on the scarce and probably biased available data.

  3. Impact detection and analysis/health monitoring system for composites

    NASA Astrophysics Data System (ADS)

    Child, James E.; Kumar, Amrita; Beard, Shawn; Qing, Peter; Paslay, Don G.

    2006-05-01

    This manuscript includes information from test evaluations and development of a smart event detection system for use in monitoring composite rocket motor cases for damaging impacts. The primary purpose of the system as a sentry for case impact event logging is accomplished through; implementation of a passive network of miniaturized piezoelectric sensors, logger with pre-determined force threshold levels, and analysis software. Empirical approaches to structural characterizations and network calibrations along with implementation techniques were successfully evaluated, testing was performed on both unloaded (less propellants) as well as loaded rocket motors with the cylindrical areas being of primary focus. The logged test impact data with known physical network parameters provided for impact location as well as force determination, typically within 3 inches of actual impact location using a 4 foot network grid and force accuracy within 25%of an actual impact force. The simplistic empirical characterization approach along with the robust / flexible sensor grids and battery operated portable logger show promise of a system that can increase confidence in composite integrity for both new assets progressing through manufacturing processes as well as existing assets that may be in storage or transportation.

  4. Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.

    PubMed

    McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun

    2016-01-01

    With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface.

  5. Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.

    2012-10-01

    The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.

  6. Isotopic evolution of the idaho batholith and Challis intrusive province, Northern US Cordillera

    USGS Publications Warehouse

    Gaschnig, Richard M.; Vervoort, J.D.; Lewis, R.S.; Tikoff, B.

    2011-01-01

    The Idaho batholith and spatially overlapping Challis intrusive province in the North American Cordillera have a history of magmatism spanning some 55 Myr. New isotopic data from the ???98 Ma to 54 Ma Idaho batholith and ???51 Ma to 43 Ma Challis intrusions, coupled with recent geochronological work, provide insights into the evolution of magmatism in the Idaho segment of the Cordillera. Nd and Hf isotopes show clear shifts towards more evolved compositions through the batholith's history and Pb isotopes define distinct fields correlative with the different age and compositionally defined suites of the batholith, whereas the Sr isotopic compositions of the various suites largely overlap. The subsequent Challis magmatism shows the full range of isotopic compositions seen in the batholith. These data suggest that the early suites of metaluminous magmatism (98-87 Ma) represent crust-mantle hybrids. Subsequent voluminous Atlanta peraluminous suite magmatism (83-67 Ma) results primarily from melting of different crustal components. This can be attributed to crustal thickening, resulting from either subduction processes or an outboard terrane collision. A later, smaller crustal melting episode, in the northern Idaho batholith, resulted in the Bitterroot peraluminous suite (66-54 Ma) and tapped different crustal sources. Subsequent Challis magmatism was derived from both crust and mantle sources and corresponds to extensional collapse of the over-thickened crust. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  7. Process modifications for improved carbon fiber composites: Alleviation of the electrical hazards problem

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1980-01-01

    Attempts to alleviate carbon-fiber-composite electrical hazards during airplane crash fires through fiber gasification are described. Thermogravimetric and differential scanning calorimetric experiments found several catalysts that caused fibers to combust when composites were exposed to test fires. Composites were tested in the 'Burn-Bang' apparatus and in high voltage electrical detection grid apparatus. In a standard three minute burn test modified composites released no fibers, while state-of-the-art composites released several hundred fiber fragments. Expected service life with and without catalytic modification was studied and electron microscopy and X-ray microanalysis furnished physical appearance and chemical composition data. An acrylic acid polymer fiber coating was developed that wet the carbon fiber surface uniformly with the catalyst, providing a marked contrast with the uneven coats obtained by solution-dipping.

  8. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  9. What can the occult do for you?

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Keel, W. C.

    2017-03-01

    Interstellar dust is still a dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. The STARSMOG program uses Hubble to map the distribution of dust in foreground galaxies in fine (<100 pc) detail. Integral Field Unit (IFU) observations will map the effective extinction curve, disentangling the role of fine-scale geometry and grain composition on the path of light through a galaxy. The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: geometry, a probability function of dimming as a function of galaxy mass and radius, and its dependence on wavelength.

  10. Color-Coded Clues to Composition Superimposed on Martian Seasonal-Flow Image

    NASA Image and Video Library

    2014-02-10

    This image from NASA Mar Reconnaissance Orbiter combines a photograph of seasonal dark flows on a Martian slope at Palikir Crater with a grid of colors based on data collected by a mineral-mapping spectrometer observing the same area.

  11. High-Density Stretchable Electrode Grids for Chronic Neural Recording

    PubMed Central

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F.; Buzsáki, György; Vörös, János

    2018-01-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. PMID:29488263

  12. Boundary condition identification for a grid model by experimental and numerical dynamic analysis

    NASA Astrophysics Data System (ADS)

    Mao, Qiang; Devitis, John; Mazzotti, Matteo; Bartoli, Ivan; Moon, Franklin; Sjoblom, Kurt; Aktan, Emin

    2015-04-01

    There is a growing need to characterize unknown foundations and assess substructures in existing bridges. It is becoming an important issue for the serviceability and safety of bridges as well as for the possibility of partial reuse of existing infrastructures. Within this broader contest, this paper investigates the possibility of identifying, locating and quantifying changes of boundary conditions, by leveraging a simply supported grid structure with a composite deck. Multi-reference impact tests are operated for the grid model and modification of one supporting bearing is done by replacing a steel cylindrical roller with a roller of compliant material. Impact based modal analysis provide global modal parameters such as damped natural frequencies, mode shapes and flexibility matrix that are used as indicators of boundary condition changes. An updating process combining a hybrid optimization algorithm and the finite element software suit ABAQUS is presented in this paper. The updated ABAQUS model of the grid that simulates the supporting bearing with springs is used to detect and quantify the change of the boundary conditions.

  13. Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers

    NASA Astrophysics Data System (ADS)

    Malki, Abdelrafik; Gafsi, Rachid; Michel, Laurent; Labarrère, Michel; Lecoy, Pierre

    1996-09-01

    An optical fiber sensor based on the intermodal interference principle is integrated in a composite material to detect impacts and vibrations. Six fibers are integrated at the top of a carbon/epoxy composite panel so as to form a grid into the structure. Spectral and temporal responses to impacts and acoustic vibrations of the sensor are compared with a piezoelectric accelerometer. The tests proved the facility of integration and the high sensitivity of the device. The location of impacts is performed with this arrangement by measuring the arrival times of the front waves to the fibers.

  14. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    NASA Astrophysics Data System (ADS)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  15. Airborne Grid Sea-Ice Surveys for Comparison with CryoSat-2

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.

    2014-12-01

    The U.S. Naval Research Laboratory is engaged in a study of the changing Arctic with a particular focus on ice thickness and distribution variability. The purpose is to optimize computer models used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat-2 ice thickness data prior to its incorporation into new ice forecast models. The large footprint of the CryoSat-2 altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of airborne scanning lidar and nadir pointing radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. One difficulty in the collection of grids comprised of adjacent overlapping tracks is that the ice moves as much as 300 m over the duration of a single track (~ 10 min). With a typical lidar swath width of 500m we needed to adjust the survey tracks in near real-time for the ice motion. This was accomplished by a photogrammetric method of ice velocity determination (RTIME) reported in another presentation. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. An important factor is that we were able to reconstruct the ice configuration at the time of the satellite overflight, resulting in an accurate representation of the surface illuminated by CryoSat-2. Our intention is to develop a model of the ice surface using the lidar grid which includes both snow and ice using radar profiles to determine snow thickness. In 2013 a set of 6 usable grids 5-20 km wide (cross-track) by 10-30 km long were collected north of Barrow, AK. In 2014 a further 5 narrower grids (~5km) were collected. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface.

  16. A three-dimensional application with the numerical grid generation code: EAGLE (utilizing an externally generated surface)

    NASA Technical Reports Server (NTRS)

    Houston, Johnny L.

    1990-01-01

    Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.

  17. Seasonal variations in diet composition, diet breadth and dietary overlap between three commercially important fish species within a flood-pulse system: The Tonle Sap Lake (Cambodia).

    PubMed

    Heng, Kong; Chevalier, Mathieu; Lek, Sovan; Laffaille, Pascal

    2018-01-01

    Tropical lakes and their associated floodplain habitats are dynamic habitat mosaics strongly influenced by seasonal variations in hydrologic conditions. In flood-pulse systems, water level oscillations directly influence the connectivity to floodplain habitats for fish. Here, we aimed to investigate whether seasonal changes in the water level of a flood-pulse system (the Tonle Sap Lake, Cambodia) differentially affect diet breadth and dietary overlap of three common and commercially important fish species (Anabas testudineus, Boesemania microplepis and Notopterus notopterus) presenting important differences in their life-cycle (e.g. seasonal migration). For this purpose, the three fish species were sampled at four locations spread over the lake and their stomach contents extracted for analyses. Dietary differences were investigated across seasons regarding the diet composition and diet breadth of each species as well as the amount of dietary overlap between species. We found that the proportion of empty stomachs changed similarly across seasons for the three species, thus suggesting that ecological differences between species are not sufficient to outweigh the effect of seasonal variations in resource abundance. In contrast, changes in diet composition were species-specific and can be explained by ecological and behavioral differences between species. Diet breadth differed between species in all seasons, except during the wet season, and tended to be higher during the dry season when dietary overlap was the lowest. These variations likely result from changes in the diversity and amount of resources and may lead to habitat use shifts with potential implications for competitive interactions. In particular, increasing connectivity to floodplain habitats may reduce the competitive pressure during the wet season, while resource scarcity during the dry season may constrain individuals to diversify their diet to avoid competition. Overall, our results suggest a considerable plasticity in the feeding behavior of the three species as demonstrated by seasonal variation in both diet breadth and dietary overlap. Such variations can be explained by a number of factors and processes, including changes in resource availability or competitive interactions between individuals for resources, whose relative influence might vary depending on the magnitude and the timing of the flood-pulse driving the connectivity to floodplain habitats. Gaining knowledge on the seasonal evolution of fish's diet is relevant for fisheries management and conservation and our result could be used to guide aquaculture development in Cambodia.

  18. Glaucophane chloritoid-bearing assemblages from NE Oman: petrologic significance and a petrogenetic grid for high P metapelites

    NASA Astrophysics Data System (ADS)

    El-Shazly, A. K.; Liou, J. G.

    1991-04-01

    Pelitic layers and lenses interbedded with blueschists and eclogites in Saih Hatat, NE Oman contain chloritoid- and sodic amphibole-bearing mineral assemblages that are useful for reconstructing the P-T history of the area. Textural and mineral chemical relations suggest that coexisting glaucophane (Gln) and chloritoid (Ctd) formed at the expense of chlorite (Chl)+paragonite (Pg) and later broke down to garnet (Gt)+Pg during prograde metamorphism according to the reaction: Gln+Ctd+Qz=Gt+Pg+H2O. During retrogression, Gln and Chl first formed at the expense of Gt and Pg, followed by the breakdown of Ctd and Gt to Chl. The final stages of retrogression are marked by the breakdown of Gln to an aggregate of Chl+albite (Ab). A projection from quartz (Qz), H2O and phengite (Ph) on the (Al2O3+Fe2O3)-(FeO+MgO)-Na2O plane in the system NFMASH is best suited for the representation of the phase relations in high P metapelites. Petrogenetic grids for the model systems NMASH and NFASH were calculated using program GEO-CALC (Berman et al. 1987) and its database (Berman 1988) after the retrieval of S{i/o}and ΔH{f/o}for Gln and Ctd by mathematical programming and calculating all possible reactions among Gln, Ctd, Chl, jadeite (Jd), Ab, Gt, Pg, talc (Tc), pyrophyllite (Prl) and kyanite (Ky). The calculated petrogenetic grid for the system NFASH shows that Fe-Ctd and ferroglaucophane coexist at P>6.5 kbar and T<525°C, whereas the assemblage: Ct-Gln-Pg is stable between 435 and 630°C and P>6 kbar. This grid is consistent with the P-T estimates for high P metapelites from Oman, New Caledonia, Seward Peninsula, Ile de Groix, Sifnos and Peloponnese, where Gln+Ctd bearing units are interbedded with cofacial mafic blueschists and eclogites. The grid also explains the observed textural relations in the metapelites of Oman, and is consistent with the “clockwise” P-T path proposed for this area, but differs from the grids of Guiraud et al. (1990) in showing a larger stability field for Gln+Ctd that overlaps with the stability fields of Jd+Qz as well as Ab. The petrogenetic grid calculated for the system NMASH shows that Mg-Ctd+Gln-bearing assemblages require unusually low geothermal gradients to form in metapelites. It also shows that Mg-rich Ctd+Tc coexist at high pressures over a wider P-T range than predicted by Guiraud et al. (1990). This grid can therefore be applied to high P metamorphic assemblages from the eastern and western Alps.

  19. Ionization correction factors for H II regions in blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Holovatyi, V. V.; Melekh, B. Ya.

    2002-08-01

    Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.

  20. Development of a nondestructive evaluation method for FRP bridge decks

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Fox, Terra

    2010-05-01

    Open steel grids are typically used on bridges to minimize the weight of the bridge deck and wearing surface. These grids, however, require frequent maintenance and exhibit other durability concerns related to fatigue cracking and corrosion. Bridge decks constructed from composite materials, such as a Fiber-reinforced Polymer (FRP), are strong and lightweight; they also offer improved rideability, reduced noise levels, less maintenance, and are relatively easy to install compared to steel grids. This research is aimed at developing an inspection protocol for FRP bridge decks using Infrared thermography. The finite element method was used to simulate the heat transfer process and determine optimal heating and data acquisition parameters that will be used to inspect FRP bridge decks in the field. It was demonstrated that thermal imaging could successfully identify features of the FRP bridge deck to depths of 1.7 cm using a phase analysis process.

  1. High-resolution wavefront reconstruction using the frozen flow hypothesis

    NASA Astrophysics Data System (ADS)

    Liu, Xuewen; Liang, Yonghui; Liu, Jin; Xu, Jieping

    2017-10-01

    This paper describes an approach to reconstructing wavefronts on finer grid using the frozen flow hypothesis (FFH), which exploits spatial and temporal correlations between consecutive wavefront sensor (WFS) frames. Under the assumption of FFH, slope data from WFS can be connected to a finer, composite slope grid using translation and down sampling, and elements in transformation matrices are determined by wind information. Frames of slopes are then combined and slopes on finer grid are reconstructed by solving a sparse, large-scale, ill-posed least squares problem. By using reconstructed finer slope data and adopting Fried geometry of WFS, high-resolution wavefronts are then reconstructed. The results show that this method is robust even with detector noise and wind information inaccuracy, and under bad seeing conditions, high-frequency information in wavefronts can be recovered more accurately compared with when correlations in WFS frames are ignored.

  2. Performance Evaluation of a SLA Negotiation Control Protocol for Grid Networks

    NASA Astrophysics Data System (ADS)

    Cergol, Igor; Mirchandani, Vinod; Verchere, Dominique

    A framework for an autonomous negotiation control protocol for service delivery is crucial to enable the support of heterogeneous service level agreements (SLAs) that will exist in distributed environments. We have first given a gist of our augmented service negotiation protocol to support distinct service elements. The augmentations also encompass related composition of the services and negotiation with several service providers simultaneously. All the incorporated augmentations will enable to consolidate the service negotiation operations for telecom networks, which are evolving towards Grid networks. Furthermore, our autonomous negotiation protocol is based on a distributed multi-agent framework to create an open market for Grid services. Second, we have concisely presented key simulation results of our work in progress. The results exhibit the usefulness of our negotiation protocol for realistic scenarios that involves different background traffic loading, message sizes and traffic flow asymmetry between background and negotiation traffics.

  3. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors - Performance results

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.

  4. Spatial match-mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea.

    PubMed

    Siddon, Elizabeth Calvert; Kristiansen, Trond; Mueter, Franz J; Holsman, Kirstin K; Heintz, Ron A; Farley, Edward V

    2013-01-01

    Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth 'hot spots', for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.

  5. Grid mapping: a novel method of signal quality evaluation on a single lead electrocardiogram.

    PubMed

    Li, Yanjun; Tang, Xiaoying

    2017-12-01

    Diagnosis of long-term electrocardiogram (ECG) calls for automatic and accurate methods of ECG signal quality estimation, not only to lighten the burden of the doctors but also to avoid misdiagnoses. In this paper, a novel waveform-based method of phase-space reconstruction for signal quality estimation on a single lead ECG was proposed by projecting the amplitude of the ECG and its first order difference into grid cells. The waveform of a single lead ECG was divided into non-overlapping episodes (T s  = 10, 20, 30 s), and the number of grids in both the width and the height of each map are in the range [20, 100] (N X  = N Y  = 20, 30, 40, … 90, 100). The blank pane ratio (BPR) and the entropy were calculated from the distribution of ECG sampling points which were projected into the grid cells. Signal Quality Indices (SQI) bSQI and eSQI were calculated according to the BPR and the entropy, respectively. The MIT-BIH Noise Stress Test Database was used to test the performance of bSQI and eSQI on ECG signal quality estimation. The signal-to-noise ratio (SNR) during the noisy segments of the ECG records in the database is 24, 18, 12, 6, 0 and - 6 dB, respectively. For the SQI quantitative analysis, the records were divided into three groups: good quality group (24, 18 dB), moderate group (12, 6 dB) and bad quality group (0, - 6 dB). The classification among good quality group, moderate quality group and bad quality group were made by linear support-vector machine with the combination of the BPR, the entropy, the bSQI and the eSQI. The classification accuracy was 82.4% and the Cohen's Kappa coefficient was 0.74 on a scale of N X  = 40 and T s  = 20 s. In conclusion, the novel grid mapping offers an intuitive and simple approach to achieving signal quality estimation on a single lead ECG.

  6. Strangeness and charmness content of the nucleon from overlap fermions on 2+1-flavor domain-wall fermion configurations

    NASA Astrophysics Data System (ADS)

    Gong, M.; Alexandru, A.; Chen, Y.; Doi, T.; Dong, S. J.; Draper, T.; Freeman, W.; Glatzmaier, M.; Li, A.; Liu, K. F.; Liu, Z.

    2013-07-01

    We present a calculation of the strangeness and charmness contents ⟨N|s¯s|N⟩ and ⟨N|c¯c|N⟩ of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations. The configurations are generated by the RBC collaboration on a 243×64 lattice with sea-quark mass aml=0.005, ams=0.04, and inverse lattice spacing a-1=1.73GeV. Both actions have chiral symmetry which is essential in avoiding contamination due to the operator mixing with other flavors. The nucleon propagator and the quark loops are both computed with stochastic grid sources, while low-mode substitution and low-mode averaging methods are used respectively which substantially improve the signal-to-noise ratio. We obtain the strangeness matrix element fTs=ms⟨N|s¯s|N⟩/MN=0.0334(62), and the charmness content fTc=mc⟨N|c¯c|N⟩/MN=0.094(31) which is resolved from zero by 3σ precision for the first time.

  7. Numerical Simulations of Close and Contact Binary Systems Having Bipolytropic Equation of State

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Motl, Patrick M.; Marcello, Dominic; Frank, Juhan

    2017-01-01

    I present the results of the numerical simulations of the mass transfer in close and contact binary systems with both stars having a bipolytropic (composite polytropic) equation of state. The initial binary systems are obtained by a modifying Hachisu’s self-consistent field technique. Both the stars have fully resolved cores with a molecular weight jump at the core-envelope interface. The initial properties of these simulations are chosen such that they satisfy the mass-radius relation, composition and period of a late W-type contact binary system. The simulations are carried out using two different Eulerian hydrocodes, Flow-ER with a fixed cylindrical grid, and Octo-tiger with an AMR capable cartesian grid. The detailed comparison of the simulations suggests an agreement between the results obtained from the two codes at different resolutions. The set of simulations can be treated as a benchmark, enabling us to reliably simulate mass transfer and merger scenarios of binary systems involving bipolytropic components.

  8. Parallel grid library for rapid and flexible simulation development

    NASA Astrophysics Data System (ADS)

    Honkonen, I.; von Alfthan, S.; Sandroos, A.; Janhunen, P.; Palmroth, M.

    2013-04-01

    We present an easy to use and flexible grid library for developing highly scalable parallel simulations. The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space and time allowing dccrg to be used in very different types of simulations, for example in fluid and particle codes. Dccrg transfers the data between neighboring cells on different processes transparently and asynchronously allowing one to overlap computation and communication. This enables excellent scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI processes reducing the scalability of adaptive mesh refinement (AMR) to between 200 and 600 processes. Dccrg is free software that anyone can use, study and modify and is available at https://gitorious.org/dccrg. Users are also kindly requested to cite this work when publishing results obtained with dccrg. Catalogue identifier: AEOM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License version 3 No. of lines in distributed program, including test data, etc.: 54975 No. of bytes in distributed program, including test data, etc.: 974015 Distribution format: tar.gz Programming language: C++. Computer: PC, cluster, supercomputer. Operating system: POSIX. The code has been parallelized using MPI and tested with 1-32768 processes RAM: 10 MB-10 GB per process Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20. External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4] Nature of problem: Grid library supporting arbitrary data in grid cells, parallel adaptive mesh refinement, transparent remote neighbor data updates and load balancing. Solution method: The simulation grid is represented by an adjacency list (graph) with vertices stored into a hash table and edges into contiguous arrays. Message Passing Interface standard is used for parallelization. Cell data is given as a template parameter when instantiating the grid. Restrictions: Logically cartesian grid. Running time: Running time depends on the hardware, problem and the solution method. Small problems can be solved in under a minute and very large problems can take weeks. The examples and tests provided with the package take less than about one minute using default options. In the version of dccrg presented here the speed of adaptive mesh refinement is at most of the order of 106 total created cells per second. http://www.mpi-forum.org/. http://www.boost.org/. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data management services for parallel dynamic applications, Comput. Sci. Eng. 4 (2002) 90-97. http://dx.doi.org/10.1109/5992.988653. https://gitorious.org/sfc++.

  9. Obstacle-avoiding navigation system

    DOEpatents

    Borenstein, Johann; Koren, Yoram; Levine, Simon P.

    1991-01-01

    A system for guiding an autonomous or semi-autonomous vehicle through a field of operation having obstacles thereon to be avoided employs a memory for containing data which defines an array of grid cells which correspond to respective subfields in the field of operation of the vehicle. Each grid cell in the memory contains a value which is indicative of the likelihood, or probability, that an obstacle is present in the respectively associated subfield. The values in the grid cells are incremented individually in response to each scan of the subfields, and precomputation and use of a look-up table avoids complex trigonometric functions. A further array of grid cells is fixed with respect to the vehicle form a conceptual active window which overlies the incremented grid cells. Thus, when the cells in the active window overly grid cell having values which are indicative of the presence of obstacles, the value therein is used as a multiplier of the precomputed vectorial values. The resulting plurality of vectorial values are summed vectorially in one embodiment of the invention to produce a virtual composite repulsive vector which is then summed vectorially with a target-directed vector for producing a resultant vector for guiding the vehicle. In an alternative embodiment, a plurality of vectors surrounding the vehicle are computed, each having a value corresponding to obstacle density. In such an embodiment, target location information is used to select between alternative directions of travel having low associated obstacle densities.

  10. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  11. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  12. High-Resolution Digital Terrain Models of the Sacramento/San Joaquin Delta Region, California

    USGS Publications Warehouse

    Coons, Tom; Soulard, Christopher E.; Knowles, Noah

    2008-01-01

    The U.S. Geological Survey (USGS) Western Region Geographic Science Center, in conjunction with the USGS Water Resources Western Branch of Regional Research, has developed a high-resolution elevation dataset covering the Sacramento/San Joaquin Delta region of California. The elevation data were compiled photogrammically from aerial photography (May 2002) with a scale of 1:15,000. The resulting dataset has a 10-meter horizontal resolution grid of elevation values. The vertical accuracy was determined to be 1 meter. Two versions of the elevation data are available: the first dataset has all water coded as zero, whereas the second dataset has bathymetry data merged with the elevation data. The projection of both datasets is set to UTM Zone 10, NAD 1983. The elevation data are clipped into files that spatially approximate 7.5-minute USGS quadrangles, with about 100 meters of overlap to facilitate combining the files into larger regions without data gaps. The files are named after the 7.5-minute USGS quadrangles that cover the same general spatial extent. File names that include a suffix (_b) indicate that the bathymetry data are included (for example, sac_east versus sac_east_b). These files are provided in ESRI Grid format.

  13. Erratum: Retraction Note to: Effect of Temperature on the Dielectric Properties of Carbon Black-Filled Polyethylene Matrix Composites Below the Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi; Kwon, In-Kyu

    2018-03-01

    The Editor-in-Chief and Editorial Board of Electronic Materials Letters have retracted this article [1] because it shows significant overlap with a publication by the same co-author without proper citation [2].

  14. HYDRAULIC CONDUCTIVITY OF THREE GEOSYNTHETIC CLAY LINERS

    EPA Science Inventory

    The hydraulic conductivity of three 2.9 m2 (32 sq ft) geosynthetic clay liners (GCLs) was measured. Tests were performed on individual sheets of the GCLs, on overlapped pieces of GCLs, and on composite liners consisting of a punctured geomembrane overlying a GCL. Hyd...

  15. Dietary overlap between sympatric Mexican spotted and great horned owls in Arizona

    Treesearch

    Joseph L. Ganey; William M Block

    2005-01-01

    We estimated diet composition of sympatric Mexican spotted (Strix occidentalis lucida, n = 7 pairs of owls) and great horned owls (Bubo virginianus, n = 4 pairs) in ponderosa pine (Pinus ponderosa) - Gambel oak (Quercus gambelii) forest, northern Arizona. Both species preyed on mammals...

  16. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1995-01-01

    A smeared stiffener theory for stiffened panels is presented that includes skin-stiffener interaction effects. The neutral surface profile of the skin-stiffener combination is developed analytically using the minimum potential energy principle and statics conditions. The skin-stiffener interaction is accounted for by computing the stiffness due to the stiffener and the skin in the skin-stiffener region about the neutral axis at the stiffener. Buckling load results for axially stiffened, orthogrid, and general grid-stiffened panels are obtained using the smeared stiffness combined with a Rayleigh-Ritz method and are compared with results from detailed finite element analyses.

  17. Diet composition, dry matter intake and diet overlap of mule deer, elk and cattle.

    Treesearch

    Scott L. Findholt; Bruce K. Johnson; Daalkhaijav Damiran; Tim DelCurto; John G. Kie

    2004-01-01

    Mule deer (Odocoileus hemionus), elk (Cervus elaphus) and cattle share rangeland throughout much of interior western North America. Considerable debate exists about the degree to which facilitation or competition occurs for forage between these three species (Nelson 1982, Wisdom and Thomas 1996, Miller 2002).

  18. Old age and frailty in the dialysis population.

    PubMed

    Brown, Edwina A; Johansson, Lina

    2010-01-01

    Dialysis management is changing over time due to the changing dialysis population, with many overlapping issues between gerontological and nephrological care. The conditions that are focused on in this review are frailty, cognitive impairment, depression and changes in body composition. These factors should be considered when managing older patients on dialysis.

  19. When Borders Overlap: Composite Identities in Children in International Schools

    ERIC Educational Resources Information Center

    Pearce, Richard

    2011-01-01

    A growing internationally mobile community is served by international schools. Their students are seen as adjusting to moves by identity development, acquiring new values and norms through cultural influences from national, individual and perhaps global sources. This occurs by emotional attachment to significant others and subsequent adoption of…

  20. Single-Ion Deconvolution of Mass Peak Overlaps for Atom Probe Microscopy.

    PubMed

    London, Andrew J; Haley, Daniel; Moody, Michael P

    2017-04-01

    Due to the intrinsic evaporation properties of the material studied, insufficient mass-resolving power and lack of knowledge of the kinetic energy of incident ions, peaks in the atom probe mass-to-charge spectrum can overlap and result in incorrect composition measurements. Contributions to these peak overlaps can be deconvoluted globally, by simply examining adjacent peaks combined with knowledge of natural isotopic abundances. However, this strategy does not account for the fact that the relative contributions to this convoluted signal can often vary significantly in different regions of the analysis volume; e.g., across interfaces and within clusters. Some progress has been made with spatially localized deconvolution in cases where the discrete microstructural regions can be easily identified within the reconstruction, but this means no further point cloud analyses are possible. Hence, we present an ion-by-ion methodology where the identity of each ion, normally obscured by peak overlap, is resolved by examining the isotopic abundance of their immediate surroundings. The resulting peak-deconvoluted data are a point cloud and can be analyzed with any existing tools. We present two detailed case studies and discussion of the limitations of this new technique.

  1. First results from comparison of rainfall estimations by GPM IMERG with rainfall measurements from the WegenerNet high density network

    NASA Astrophysics Data System (ADS)

    Oo, Sungmin; Foelsche, Ulrich; Kirchengast, Gottfried; Fuchsberger, Jürgen

    2016-04-01

    The research level products of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG "Final" run datasets) were compared with rainfall measurements from the WegenerNet high density network as part of ground validation (GV) projects of GPM missions. The WegenerNet network comprises 151 ground level weather stations in an area of 15 km × 20 km in south-eastern Austria (Feldbach region, ˜46.93° N, ˜15.90° E) designed to serve as a long-term monitoring and validation facility for weather and climate research and applications. While the IMERG provides rainfall estimations every half hour at 0.1° resolution, the WegenerNet network measures rainfall every 5 minutes at around 2 km2 resolution and produces 200 m × 200 m gridded datasets. The study was conducted on the domain of the WegenerNet network; eight IMERG grids are overlapped with the network, two of which are entirely covered by the WegenerNet (40 and 39 stations in each grid). We investigated data from April to September of the years 2014 to 2015; the date of first two years after the launch of the GPM Core Observatory. Since the network has a flexibility to work with various spatial and temporal scales, the comparison could be conducted on average-points to pixel basis at both sub-daily and daily timescales. This presentation will summarize the first results of the comparison and future plans to explore the characteristics of errors in the IMERG datasets.

  2. Composite sizing and ply orientation for stiffness requirements using a large finite element structural model

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.; Gentile, D. P.

    1989-01-01

    A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.

  3. Making the case for high temperature low sag (htls) overhead transmission line conductors

    NASA Astrophysics Data System (ADS)

    Banerjee, Koustubh

    The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.

  4. Design, Static Analysis And Fabrication Of Composite Joints

    NASA Astrophysics Data System (ADS)

    Mathiselvan, G.; Gobinath, R.; Yuvaraja, S.; Raja, T.

    2017-05-01

    The Bonded joints will be having one of the important issues in the composite technology is the repairing of aging in aircraft applications. In these applications and also for joining various composite material parts together, the composite materials fastened together either using adhesives or mechanical fasteners. In this paper, we have carried out design, static analysis of 3-D models and fabrication of the composite joints (bonded, riveted and hybrid). The 3-D model of the composite structure will be fabricated by using the materials such as epoxy resin, glass fibre material and aluminium rivet for preparing the joints. The static analysis was carried out with different joint by using ANSYS software. After fabrication, parametric study was also conducted to compare the performance of the hybrid joint with varying adherent width, adhesive thickness and overlap length. Different joint and its materials tensile test result have compared.

  5. Corrosion Development of Carbon Steel Grids and Shear Connectors in Cracked Composite Beams Exposed to Wet–Dry Cycles in Chloride Environment

    PubMed Central

    Xue, Wen; Chen, Ju; Jiang, Ao-yu

    2018-01-01

    The corrosion development of the reinforcement and shear stud connectors in the cracked steel–concrete composite beams under the salt-fog wet–dry cycles is presented in this investigation. Seven identical composite beams with load-induced concrete cracks were exposed to an aggressive chloride environment. The reinforcement and shear connectors were retrieved after specimens underwent a specified number of wet–dry cycles to obtain the corrosion pattern and the cross-section loss at different exposure times and their evolutions. The crack map, the corrosion pattern and the cross-section loss were measured and presented. Based on the experimental results, the influence of crack characteristics, including crack widths, orientations and positions on the corrosion rate and distribution, were accessed. Moreover, the effects of the connecting weldments on the corrosion initiations and patterns were analyzed. It was shown that the corrosion rate would increase with the number of wet–dry cycles. The characteristics of load-induced cracks could have different influences on the steel grids and shear stud connectors. The corrosion tended to initiate from the connecting weldments, due to the potential difference with the parent steel and the aggressive exposure environment, leading to a preferential weldment attack. PMID:29565836

  6. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    NASA Astrophysics Data System (ADS)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  7. XML-based data model and architecture for a knowledge-based grid-enabled problem-solving environment for high-throughput biological imaging.

    PubMed

    Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif

    2008-03-01

    High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.

  8. Glycosylation of Cblns attenuates their receptor binding.

    PubMed

    Rong, Yongqi; Bansal, Parmil K; Wei, Peng; Guo, Hong; Correia, Kristen; Parris, Jennifer; Morgan, James I

    2018-05-18

    Cbln1 is the prototype of a family (Cbln1-Cbln4) of secreted glycoproteins and is essential for normal synapse structure and function in cerebellum by bridging presynaptic Nrxn to postsynaptic Grid2. Here we report the effects of glycosylation on the in vitro receptor binding properties of Cblns. Cbln1, 2 and 4 harbor two N-linked glycosylation sites, one at the N-terminus is in a region implicated in Nrxn binding and the second is in the C1q domain, a region involved in Grid2 binding. Mutation (asparagine to glutamine) of the N-terminal site, increased neurexin binding whereas mutation of the C1q site markedly increased Grid2 binding. These mutations did not influence subunit composition of Cbln trimeric complexes (mediated through the C1q domain) nor their assembly into hexamers (mediated by the N-terminal region). Therefore, glycosylation likely masks the receptor binding interfaces of Cblns. As Cbln4 has undetectable Grid2 binding in vitro we assessed whether transgenic expression of wild type Cbln4 or its glycosylation mutants rescued the Cbln1-null phenotype in vivo. Cbln4 partially rescued and both glycosylation mutants completely rescued ataxia in cbln1-null mice. Thus Cbln4 has intrinsic Grid2 binding that is attenuated by glycosylation, and glycosylation mutants exhibit gain of function in vivo. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Modeling North Atlantic Nor'easters With Modern Wave Forecast Models

    NASA Astrophysics Data System (ADS)

    Perrie, Will; Toulany, Bechara; Roland, Aron; Dutour-Sikiric, Mathieu; Chen, Changsheng; Beardsley, Robert C.; Qi, Jianhua; Hu, Yongcun; Casey, Michael P.; Shen, Hui

    2018-01-01

    Three state-of-the-art operational wave forecast model systems are implemented on fine-resolution grids for the Northwest Atlantic. These models are: (1) a composite model system consisting of SWAN implemented within WAVEWATCHIII® (the latter is hereafter, WW3) on a nested system of traditional structured grids, (2) an unstructured grid finite-volume wave model denoted "SWAVE," using SWAN physics, and (3) an unstructured grid finite element wind wave model denoted as "WWM" (for "wind wave model") which uses WW3 physics. Models are implemented on grid systems that include relatively large domains to capture the wave energy generated by the storms, as well as including fine-resolution nearshore regions of the southern Gulf of Maine with resolution on the scale of 25 m to simulate areas where inundation and coastal damage have occurred, due to the storms. Storm cases include three intense midlatitude cases: a spring Nor'easter storm in May 2005, the Patriot's Day storm in 2007, and the Boxing Day storm in 2010. Although these wave model systems have comparable overall properties in terms of their performance and skill, it is found that there are differences. Models that use more advanced physics, as presented in recent versions of WW3, tuned to regional characteristics, as in the Gulf of Maine and the Northwest Atlantic, can give enhanced results.

  10. Absolute Hounsfield unit measurement on noncontrast computed tomography cannot accurately predict struvite stone composition.

    PubMed

    Marchini, Giovanni Scala; Gebreselassie, Surafel; Liu, Xiaobo; Pynadath, Cindy; Snyder, Grace; Monga, Manoj

    2013-02-01

    The purpose of our study was to determine, in vivo, whether single-energy noncontrast computed tomography (NCCT) can accurately predict the presence/percentage of struvite stone composition. We retrospectively searched for all patients with struvite components on stone composition analysis between January 2008 and March 2012. Inclusion criteria were NCCT prior to stone analysis and stone size ≥4 mm. A single urologist, blinded to stone composition, reviewed all NCCT to acquire stone location, dimensions, and Hounsfield unit (HU). HU density (HUD) was calculated by dividing mean HU by the stone's largest transverse diameter. Stone analysis was performed via Fourier transform infrared spectrometry. Independent sample Student's t-test and analysis of variance (ANOVA) were used to compare HU/HUD among groups. Spearman's correlation test was used to determine the correlation between HU and stone size and also HU/HUD to % of each component within the stone. Significance was considered if p<0.05. Fourty-four patients met the inclusion criteria. Struvite was the most prevalent component with mean percentage of 50.1%±17.7%. Mean HU and HUD were 820.2±357.9 and 67.5±54.9, respectively. Struvite component analysis revealed a nonsignificant positive correlation with HU (R=0.017; p=0.912) and negative with HUD (R=-0.20; p=0.898). Overall, 3 (6.8%) had <20% of struvite component; 11 (25%), 25 (56.8%), and 5 (11.4%) had 21% to 40%, 41% to 60%, and 61% to 80% of struvite, respectively. ANOVA revealed no difference among groups regarding HU (p=0.68) and HUD (p=0.37), with important overlaps. When comparing pure struvite stones (n=5) with other miscellaneous stones (n=39), no difference was found for HU (p=0.09) but HUD was significantly lower for pure stones (27.9±23.6 v 72.5±55.9, respectively; p=0.006). Again, significant overlaps were seen. Pure struvite stones have significantly lower HUD than mixed struvite stones, but overlap exists. A low HUD may increase the suspicion for a pure struvite calculus.

  11. High-Density Stretchable Electrode Grids for Chronic Neural Recording.

    PubMed

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János

    2018-04-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Computer-Based Atlas of Global Instrumental Climate Data (DB1003)

    DOE Data Explorer

    Bradley, Raymond S.; Ahern, Linda G.; Keimig, Frank T.

    1994-01-01

    Color-shaded and contoured images of global, gridded instrumental data have been produced as a computer-based atlas. Each image simultaneously depicts anomaly maps of surface temperature, sea-level pressure, 500-mbar geopotential heights, and percentages of reference-period precipitation. Monthly, seasonal, and annual composites are available in either cylindrical equidistant or northern and southern hemisphere polar projections. Temperature maps are available from 1854 to 1991, precipitation from 1851 to 1989, sea-level pressure from 1899 to 1991, and 500-mbar heights from 1946 to 1991. The source of data for the temperature images is Jones et al.'s global gridded temperature anomalies. The precipitation images were derived from Eischeid et al.'s global gridded precipitation percentages. Grids from the Data Support Section, National Center for Atmospheric Research (NCAR) were the sources for the sea-level-pressure and 500-mbar geopotential-height images. All images are in GIF files (1024 × 822 pixels, 256 colors) and can be displayed on many different computer platforms. Each annual subdirectory contains 141 images, each seasonal subdirectory contains 563 images, and each monthly subdirectory contains 1656 images. The entire atlas requires approximately 340 MB of disk space, but users may retrieve any number of images at one time.

  13. Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions

    DOE PAGES

    Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; ...

    2015-10-26

    Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel–oxygen equivalence ratio (Φ FO), oxygen molar fraction (χ O2) and temperature (T) was determined for threemore » parametric studies. In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the Φ FO and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel injection. The final study evaluated positive valve overlap and negative valve overlap valve events with direct injection. Furthermore, relative to positive valve overlap, the negative valve overlap condition had a wider reactivity stratification, a longer burn duration and higher NO and CO emissions associated with reduced fuel–air mixing.« less

  14. Long range lidar data processing for validating LES of wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Trabucchi, D.; van Dooren, M.; Vollmer, L.; Schneemann, J.; Trujillo, J. J.; Witha, B.; Kühn, M.

    2014-12-01

    Scanning wind lidars offer the possibility to compare full-scale measurements in the wake of a wind turbine with LES wind fields calculated for the same test case. Due to the novelty and the peculiarity of lidar measurements, a comparison between experimental data and simulation results is non-trivial and several methods can be applied. This study presents validation methods for single and dual-doppler lidar measurements respectively.Consecutive azimuthal scans - commonly indicated as Plan Position Indicator (PPI) - at a low fixed elevation and centered on the wind turbine wake provide the radial wind speed, i.e. the wind component along the laser beam, on an almost flat polar grid. This data can be directly compared with the radial wind speed evaluated at the measurement point from the simulated wind field. This approach provides a detailed spatial description of the wind field and can be applied to averaged data for steady analysis. For the comparison with LES results, time average and spatial interpolation of the computed wind field are needed. Moreover, a proper wind direction should be chosen to evaluate the radial wind speed.With two lidars performing consecutive PPI scans over the same region from different places it is possible to estimate the horizontal wind field where the scanned regions overlap. Due to the limits in the synchronization of the PPI scans by the lidars, only steady analysis based on time averaged data can be done. A horizontal grid based on the one used for the LES is overlapped to the region covered by the two non-co-planar scans. The horizontal wind field at a considered point can be evaluated solving the system given by at least two non-aligned radial directions about this point. For each node, the data sampled by the lidars in a well defined volume during the considered time interval is used to write this system. Moreover, a discrete approximation of the continuity equation is applied to link the solutions for all the grid nodes. Instead of an interpolation on the LES wind field, this approach requires a temporal and vertical average over the considered time and height intervals.The application of these two approaches to lidar measurements performed in the offshore wind farm »alpha ventus« is presented in this work. The results are going to be used to evaluate different wind turbine wake models applied to LES.

  15. A study of the diffusional behavior of a two-phase metal matrix composite exposed to a high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.

  16. Biodiversity and distribution of leptocephali west of the Mascarene Plateau in the southwestern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Miller, Michael J.; Feunteun, Eric; Aoyama, Jun; Watanabe, Shun; Kuroki, Mari; Lecomte-Finiger, Raymonde; Minegishi, Yuki; Robinet, Tony; Réveillac, Elodie; Gagnaire, Pierre-Alexandre; Berrebi, Patrick; Tsukamoto, Katsumi; Otake, Tsuguo

    2015-09-01

    Marine eels that live on the continental shelf, slope and deep-sea and in the pelagic realms of the ocean are distributed worldwide at tropical and subtropical latitudes, but little information is available about their biodiversity and ecology in most areas. Collections of their leptocephalus larvae that all live together in the upper few hundred meters of the ocean are one way to learn about the distributions, reproductive ecology, and life histories of these difficult to observe fishes. This study evaluated the biodiversity and spatial distributions of leptocephali collected during two surveys conducted to the west of the shallow banks of the Mascarene Plateau in the southwestern Indian Ocean. 1140 leptocephali of at least 94 species of ⩾14 families of anguilliform and notacanthid fishes were collected in Nov.-Dec. 2006 and Jan.-Feb. 2010 in overlapping areas west of the plateau. In 2006, 565 leptocephali of at least 71 species were collected at 42 stations in two transects from 8 to 18°S, with larvae of shallow-water eel species of the Congridae, Muraenidae, Ophichthidae and Chlopsidae being most abundant at the northern stations in warmer water to the west of the Mascarene Plateau. Some small leptocephali of those eel families appeared to be transported offshore by currents from areas including the Seychelles, but the distribution of the leptocephali of mesopelagic eels of the Nemichthyidae and Serrivomeridae were more widespread. In 2010, 575 leptocephali of at least 53 species were collected in a dense grid of stations with the smallest larvae of the Muraenidae and Ophichthidae being near the banks, and spawning occurring at the Cargados Carajos Bank. Small larvae of Conger collected in the southwestern edge of the grid indicated offshore spawning, which is similar to Conger species in the Atlantic and Pacific. Seasonal and geographic differences in the characteristics or compositions of leptocephali were apparent, with higher proportions of small larvae in 2010 than in 2006, but cluster analysis of assemblage structure found similar geographic structure between the two surveys. Thalassenchelys larvae were only collected in the same southern area in both surveys and nettastomatid and notacanthid larvae were only collected in the north in 2006. The two surveys suggested that there is a relatively high biodiversity of eels in the Mascarene Plateau area compared to some regions and that colder water temperatures may inhibit spawning of eels on the southern banks. The two types of sampling strategies (transects or grid survey) each had different advantages, which can be considered for use in future oceanographic surveys for leptocephali in other regions of the world.

  17. A Data-Model Comparison over Europe using a new 2000-yr Summer Temperature Reconstruction from the PAGES 2k Regional Network and Last-Millennium GCM Simulations

    NASA Astrophysics Data System (ADS)

    Smerdon, Jason; Werner, Johannes; Fernandez-Donado, Laura; Buntgen, Ulf; Charpentier Ljungqvist, Fredrik; Esper, Jan; Fidel Gonzalez-Rouco, J.; Luterbacher, Juerg; McCarroll, Danny; Wagner, Sebastian; Wahl, Eugene; Wanner, Heinz; Zorita, Eduardo

    2013-04-01

    A new reconstruction of European summer (JJA) land temperatures is presented and compared to 37 forced transient simulations of the last millennium from coupled General Circulation Models (CGCMs). The reconstructions are derived from eleven annually resolved tree-ring and documentary records from ten European countries/regions, compiled as part of the Euro_Med working group contribution to the PAGES 2k Regional Network. Records were selected based upon their summer temperature signal, annual resolution, and time-continuous sampling. All tree-ring data were detrended using the Regional Curve Standardization (RCS) method to retain low-frequency variance in the resulting mean chronologies. A nested Composite-Plus-Scale (CPS) mean temperature reconstruction extending from 138 B.C.E. to 2003 C.E. was derived using nine nests reflecting the availability of predictors back in time. Each nest was calculated using a weighted composite based on the correlation of each proxy with the CRUTEM4v mean European JJA land temperature (35°-70°N, 10°W-40°E). The CPS methodology was implemented using a sliding calibration period, initially extending from 1850-1953 C.E. and incrementing by one year until reaching the final period of 1900-2003 C.E. Within each calibration step, the 50 years excluded from calibration were used for validation. Validation statistics across all reconstruction ensemble members within each nest indicate skillful reconstructions (RE: 0.42-0.64; CE: 0.26-0.54) and are all above the maximum validation statistics achieved in an ensemble of red noise benchmarking experiments. A gridded (5°x5°) European summer (JJA) temperature reconstruction back to 750 C.E. was derived using Bayesian inference together with a localized stochastic description of the underlying processes. Instrumental data are JJA means from the 5° European land grid cells in the CRUTEM4v dataset. Predictive experiments using the full proxy data were made, resulting in a multivariate distribution of temperature reconstructions from 750-2003 C.E. The mean of this distribution is the optimal estimate of the gridded JJA temperature anomalies and its width provides objective reconstruction uncertainties. The derived reconstruction is compared to withheld instrumental and proxy data to evaluate reconstruction skill on decadal-to-centennial time scales. A comparison between the mean Bayesian and CPS reconstructions indicates remarkable agreement, with a correlation during their period of overlap of 0.95. In both the Bayesian and CPS reconstructions, warm periods during the 1st, 2nd, and 7th-12th centuries compare to similar warm summer temperatures during the mid 20th century, although the 2003 summer remains the warmest single summer over the duration of the reconstructions. A relative period of cold summer temperatures is also noted from the 14th-19th centuries, consistent with the expected timing of the Little Ice Age. Comparisons between the reconstructions and the 37-member ensemble of millennium-length forced transient simulations from CGCMs, including eleven simulations from the collection of CMIP5/PMIP3 last-millennium experiments, indicate good regional agreement between reconstructions and models. Based on the separation of simulations into strong or weak scaling of total solar irradiance (TSI) forcing over the last millennium, there is some evidence that there is better agreement with the ensemble using strong TSI as forcing.

  18. Statistical variability and confidence intervals for planar dose QA pass rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher

    Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics ofmore » various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. Results: For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. Conclusions: Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.« less

  19. Matching soil grid unit resolutions with polygon unit scales for DNDC modelling of regional SOC pool

    NASA Astrophysics Data System (ADS)

    Zhang, H. D.; Yu, D. S.; Ni, Y. L.; Zhang, L. M.; Shi, X. Z.

    2015-03-01

    Matching soil grid unit resolution with polygon unit map scale is important to minimize uncertainty of regional soil organic carbon (SOC) pool simulation as their strong influences on the uncertainty. A series of soil grid units at varying cell sizes were derived from soil polygon units at the six map scales of 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), respectively, in the Tai lake region of China. Both format soil units were used for regional SOC pool simulation with DeNitrification-DeComposition (DNDC) process-based model, which runs span the time period 1982 to 2000 at the six map scales, respectively. Four indices, soil type number (STN) and area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils simulated with the DNDC, were attributed from all these soil polygon and grid units, respectively. Subjecting to the four index values (IV) from the parent polygon units, the variation of an index value (VIV, %) from the grid units was used to assess its dataset accuracy and redundancy, which reflects uncertainty in the simulation of SOC. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pool, matching with soil polygon units map scales, respectively. With the optimal raster resolution the soil grid units dataset can hold the same accuracy as its parent polygon units dataset without any redundancy, when VIV < 1% of all the four indices was assumed as criteria to the assessment. An quadratic curve regression model y = -8.0 × 10-6x2 + 0.228x + 0.211 (R2 = 0.9994, p < 0.05) was revealed, which describes the relationship between optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:x). The knowledge may serve for grid partitioning of regions focused on the investigation and simulation of SOC pool dynamics at certain map scale.

  20. Bodies of Knowledge: Definitions, Delineations, and Implications of Embodied Writing in the Academy

    ERIC Educational Resources Information Center

    Knoblauch, A. Abby

    2012-01-01

    This article differentiates three primary ways scholars in Composition and Rhetoric talk about embodiment as it relates to knowledge production and writing in the academy: embodied language, embodied knowledge, and embodied rhetoric. While these categories overlap and inform each other, clarifying the definitions themselves is important as there…

  1. The Family-School Interaction: School Composition and Parental Educational Expectations in the United States

    ERIC Educational Resources Information Center

    Lawrence, Elizabeth

    2015-01-01

    Research has shown that intersections among families, schools and communities affect children's development, but there is still much unknown about how these contexts are linked and how they jointly influence children's education. This study explores one aspect of the overlapping influence of schools and families on children's education: the…

  2. Die Bestimmung der Herkunft der Marmore von Büsten der Münchener Residenz

    NASA Astrophysics Data System (ADS)

    Riederer, Josef; Hoefs, Joachim

    1980-09-01

    51 Greek, Roman and Renaissance marble busts from the Antiquarium of the Residenz in Munich were studied for their C- and O-isotopic composition. Apart from some overlapping values, this technique permits — contrary to microscopic and chemical methods — localization of different Turkish, Greek and Italian marble deposits.

  3. Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

    NASA Astrophysics Data System (ADS)

    Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun

    2017-12-01

    Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

  4. Microgrid Design Toolkit (MDT) User Guide Software v1.2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy, John P.

    2017-08-01

    The Microgrid Design Toolkit (MDT) supports decision analysis for new ("greenfield") microgrid designs as well as microgrids with existing infrastructure. The current version of MDT includes two main capabilities. The first capability, the Microgrid Sizing Capability (MSC), is used to determine the size and composition of a new, grid connected microgrid in the early stages of the design process. MSC is focused on developing a microgrid that is economically viable when connected to the grid. The second capability is focused on designing a microgrid for operation in islanded mode. This second capability relies on two models: the Technology Management Optimizationmore » (TMO) model and Performance Reliability Model (PRM).« less

  5. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume.

    PubMed

    Abouchami, W; Hofmann, A W; Galer, S J G; Frey, F A; Eisele, J; Feigenson, M

    2005-04-14

    The two parallel chains of Hawaiian volcanoes ('Loa' and 'Kea') are known to have statistically different but overlapping radiogenic isotope characteristics. This has been explained by a model of a concentrically zoned mantle plume, where the Kea chain preferentially samples a more peripheral portion of the plume. Using high-precision lead isotope data for both centrally and peripherally located volcanoes, we show here that the two trends have very little compositional overlap and instead reveal bilateral, non-concentric plume zones, probably derived from the plume source in the mantle. On a smaller scale, along the Kea chain, there are isotopic differences between the youngest lavas from the Mauna Kea and Kilauea volcanoes, but the 550-thousand-year-old Mauna Kea lavas are isotopically identical to Kilauea lavas, consistent with Mauna Kea's position relative to the plume, which was then similar to that of present-day Kilauea. We therefore conclude that narrow (less than 50 kilometres wide) compositional streaks, as well as the larger-scale bilateral zonation, are vertically continuous over tens to hundreds of kilometres within the plume.

  6. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  7. Parking simulation of three-dimensional multi-sized star-shaped particles

    NASA Astrophysics Data System (ADS)

    Zhu, Zhigang; Chen, Huisu; Xu, Wenxiang; Liu, Lin

    2014-04-01

    The shape and size of particles may have a great impact on the microstructure as well as the physico-properties of particulate composites. However, it is challenging to configure a parking system of particles to a geometrical shape that is close to realistic grains in particulate composites. In this work, with the assistance of x-ray tomography and a spherical harmonic series, we present a star-shaped particle that is close to realistic arbitrary-shaped grains. To realize such a hard particle parking structure, an inter-particle overlapping detection algorithm is introduced. A serial sectioning approach is employed to visualize the particle parking structure for the purpose of justifying the reliability of the overlapping detection algorithm. Furthermore, the validity of the area and perimeter of solids in any arbitrary section of a plane calculated using a numerical method is verified by comparison with those obtained using an image analysis approach. This contribution is helpful to further understand the dependence of the micro-structure and physico-properties of star-shaped particles on the realistic geometrical shape.

  8. Fault model of the 2014 Cephalonia seismic sequence - Evidence of spatiotemporal fault segmentation along the NW edge of Aegean Arc

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Moschas, Fanis; Stiros, Stathis

    2017-04-01

    Finite fault models (FFM) are presented for the two main shocks of the 2014 Cephalonia (Ionian Sea, Greece) seismic sequence (M 6.0) which produced extreme peak ground accelerations ( 0.7g) in the west edge of the Aegean Arc, an area in which the poor coverage by seismological and GPS/INSAR data makes FFM a real challenge. Modeling was based on co-seismic GPS data and on the recently introduced TOPological INVersion algorithm. The latter is a novel uniform grid search-based technique in n-dimensional spaces, is based on the concept of stochastic variables and which can identify multiple unconstrained ("free") solutions in a specified search space. Derived FFMs for the 2014 earthquakes correspond to an essentially strike slip fault and of part of a shallow thrust, the surface projection of both of which run roughly along the west coast of Cephalonia. Both faults correlate with pre-existing faults. The 2014 faults, in combination with the faults of the 2003 and 2015 Leucas earthquakes farther NE, form a string of oblique slip, partly overlapping fault segments with variable geometric and kinematic characteristics along the NW edge of the Aegean Arc. This composite fault, usually regarded as the Cephalonia Transform Fault, accommodates shear along this part of the Arc. Because of the highly fragmented crust, dominated by major thrusts in this area, fault activity is associated with 20km long segments and magnitude 6.0-6.5 earthquakes recurring in intervals of a few seconds to 10 years.

  9. Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries.

    PubMed

    Fang, Yongjin; Chen, Zhongxue; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2018-03-01

    Grid-scale energy storage batteries with electrode materials made from low-cost, earth-abundant elements are needed to meet the requirements of sustainable energy systems. Sodium-ion batteries (SIBs) with iron-based electrodes offer an attractive combination of low cost, plentiful structural diversity and high stability, making them ideal candidates for grid-scale energy storage systems. Although various iron-based cathode and anode materials have been synthesized and evaluated for sodium storage, further improvements are still required in terms of energy/power density and long cyclic stability for commercialization. In this Review, progress in iron-based electrode materials for SIBs, including oxides, polyanions, ferrocyanides, and sulfides, is briefly summarized. In addition, the reaction mechanisms, electrochemical performance enhancements, structure-composition-performance relationships, merits and drawbacks of iron-based electrode materials for SIBs are discussed. Such iron-based electrode materials will be competitive and attractive electrodes for next-generation energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Exploring multivariate representations of indices along linear geographic features

    NASA Astrophysics Data System (ADS)

    Bleisch, Susanne; Hollenstein, Daria

    2018-05-01

    A study of the walkability of a Swiss town required finding suitable representations of multivariate geographical da-ta. The goal was to represent multiple indices of walkability concurrently and visualizing the data along the street network it relates to. Different indices of pedestrian friendliness were assessed for short street sections and then mapped to an overlaid grid. Basic and composite glyphs were designed using square- or triangle-areas to display one to four index values concurrently within the grid structure. Color was used to indicate different indices. Implement-ing visualizations for different combinations of index sets, we find that single values can be emphasized or de-emphasized by selecting the color scheme accordingly and that different color selections either allow perceiving sin-gle values or overall trends over the evaluated area. Values for up to four indices can be displayed in combination within the resulting geovisualizations and the underlying gridded road network references the data to its real world locations.

  11. Interactions between Neighbourhood Urban Form and Socioeconomic Status and Their Associations with Anthropometric Measurements in Canadian Adults

    PubMed Central

    Friedenreich, Christine; McLaren, Lindsay; Potestio, Melissa; Sandalack, Beverly; Csizmadi, Ilona

    2017-01-01

    Neighbourhood-level socioeconomic composition and built context are correlates of weight-related behaviours. We investigated the relations between objective measures of neighbourhood design and socioeconomic status (SES) and their interaction, in relation to self-reported waist circumference (WC), waist-to-hip ratio, and body mass index (BMI) in a sample of Canadian adults (n = 851 from 12 Calgary neighbourhoods). WC and BMI were higher among residents of disadvantaged neighbourhoods, independent of neighbourhood design (grid, warped grid, and curvilinear street patterns) and individual-level characteristics (sex, age, education, income, dog ownership, marital status, number of dependents, motor vehicle access, smoking, sleep, mental health, physical health, and past attempts to modify bodyweight). The association between neighbourhood-level SES and WC was modified by neighbourhood design; WC was higher in disadvantaged-curvilinear neighbourhoods and lower in advantaged-grid neighbourhoods. Policies making less obesogenic neighbourhoods affordable to low socioeconomic households and that improve the supportiveness for behaviours leading to healthy weight in low socioeconomic neighbourhoods are necessary. PMID:29056976

  12. Hypoxia Impacts on Food Web Linkages in a Pelagic Ecosystem

    NASA Astrophysics Data System (ADS)

    Sato, M.; Horne, J. K.; Parker-Stetter, S. L.; Essington, T.; Keister, J. E.; Moriarty, P.; Li, L.

    2016-02-01

    Low dissolved oxygen (DO), or hypoxia, causes significant disturbances on aquatic organisms, but the consequences for key food web linkages is not well understood. Here, we tested how the intensity of low DO events governs the degree of spatial overlap between pelagic zooplanktivorous fish and their zooplankton prey, fish feeding rates, and community compositions of zooplankton. We hypothesized that the greater sensitivity of fish to DO compared to zooplankton would lead to diminished spatial overlap at moderate DO and reduced feeding rates of fish, while severe hypoxia would amplify spatial overlap by preventing zooplankton from using deep refuge habitats leading to increased fish feeding rates. We also hypothesized shifts in zooplankton community composition towards less energetically profitable taxa such as small copepods and gelatinous species. We used a combination of multifrequency acoustic and net sampling for detecting distributions and abundance of zooplankton and pelagic fish in Hood Canal, WA, a seasonally hypoxic fjord. We employed a sampling design which paired hypoxic regions of Hood Canal with normoxic regions sampled prior to, during, and after the onset of hypoxia in two years. Contrary to our hypotheses, we found that fish and zooplankton did not change their horizontal and vertical distributions during periods and in locations with low DO levels. Consequently, the vertical overlap between fish and zooplankton did not change with DO. Fish feeding rates and the dominant zooplankton prey did not change with hypoxia events. The apparent resilience of fish to low DO in our system may be explained by decreased metabolic oxygen demand due to cool temperatures, increased availability and accessibility to their prey in low DO waters, or potential increase in predation risk at shallower depth. This study highlights the importance of both temperature and DO, instead of hypoxia threshold alone, in evaluating the impacts of hypoxia on pelagic communities.

  13. Fake Plate Vehicle Auditing Based on Composite Constraints in Internet of Things Environment

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Xiangji Huang, Jimmy; Tohti, Turdi

    2018-03-01

    Accordance to the real application demands, this paper proposes a fake plate vehicle auditing method based on composite constrains strategy, a corresponding simulated IOT (internet of things) environment was created and uses liner matrix, Base64 encryption and grid monitoring technology and puts forward a real-time detecting algorithm for fake plate vehicles. The developed real system not only shows the superiority on its speed, detection accuracy and visualization, it also be good at realizing the vehicle’s real-time position and predicting the possible traveling trajectory.

  14. Airborne Grid Sea-Ice Surveys for Comparison with Cryosat-2

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.; Newman, T.

    2015-12-01

    The Naval Research Laboratory is studying of the changing Arctic with a focus on ice thickness and distribution variability. The goal is optimization of computer models used to predict sea ice changes. An important part of our study is to calibrate/validate Cryosat-2 ice thickness data prior to its incorporation into new ice forecast models. The footprint of the altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of scanning LiDAR and radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. The difficulty in the collection of such grids, which are comprised of adjacent overlapping tracks is ice motion of as much as 300 m over the duration of a single flight track (~ 20 km) of data collection. With a typical LiDAR swath width of < 500m adjustment of the survey tracks in near real-time for the ice motion is necessary for a coherent data set. This was accomplished by a an NRL devised photogrammetric method of ice velocity determination. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. This allows us to reconstruct the ice configuration to the time of the satellite overflight, resulting in a good picture of the surface actually illuminated by the radar. The detailed 2-d LiDAR image is the snow surface, not the underlying ice presumably illuminated by the radar. Our hope is that the 1-D radar profiles collected along the LiDAR swath centerlines will be sufficient to correct the grid for snow thickness. A total of 15 grids 5-20 km wide (cross-track) by 10-30 km long (along-track) centered on ice illuminated by CryoSat-2 were collected north of Barrow, AK. This occured over three field seasons which took place from 2013-15. Data from the grids are shown here and are being used to examine the relationship of the tracked satellite waveform data to the actual surface.

  15. Visualization of Metal Ion Buffering via Three-Dimensional Topographic Surfaces (Topos) of Complexometric Titrations

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2017-01-01

    "Complexation TOPOS" is a free software package to generate 3-D topographic surfaces ("topos") for metal-ligand complexometric titrations in aqueous media. It constructs surfaces by plotting computed equilibrium parameters above a composition grid with "volume of ligand added" as the x-axis and overall system dilution…

  16. Development of a 2nd Generation Decision Support Tool to Optimize Resource and Energy Recovery for Municipal Solid Waste

    EPA Science Inventory

    In 2012, EPA’s Office of Research and Development released the MSW decision support tool (MSW-DST) to help identify strategies for more sustainable MSW management. Depending upon local infrastructure, energy grid mix, population density, and waste composition and quantity, the m...

  17. LSST camera grid structure made out of ceramic composite material, HB-Cesic

    NASA Astrophysics Data System (ADS)

    Kroedel, Matthias R.; Langton, J. Bryan

    2016-08-01

    In this paper we are presenting the ceramic design and the fabrication of the camera structure which is using the unique manufacturing features of the HB-Cesic technology and associated with a dedicated metrology device in order to ensure the challenging flatness requirement of 4 micron over the full array.

  18. Novel and lost forests in the Upper Midwestern United States, from new estimates of settlement-era composition, stem density, and biomass

    USGS Publications Warehouse

    Goring, Simon; Mladenoff, David J.; Cogbill, Charles; Record, Sydne; Paciorek, Christopher J.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn; McLachlan, Jason S.; Williams, John W.

    2016-01-01

    EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection.

  19. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lafontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.

  20. Composite Socio-Technical Systems: A Method for Social Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; He, Fulin; Hao, Jun

    In order to model and study the interactions between social on technical systems, a systemic method, namely the composite socio-technical systems (CSTS), is proposed to incorporate social systems, technical systems and the interaction mechanism between them. A case study on University of Denver (DU) campus grid is presented in paper to demonstrate the application of the proposed method. In the case study, the social system, technical system, and the interaction mechanism are defined and modelled within the framework of CSTS. Distributed and centralized control and management schemes are investigated, respectively, and numerical results verifies the feasibility and performance of themore » proposed composite system method.« less

  1. An Excel-based tool for evaluating and visualizing geothermobarometry data

    NASA Astrophysics Data System (ADS)

    Hora, John Milan; Kronz, Andreas; Möller-McNett, Stefan; Wörner, Gerhard

    2013-07-01

    Application of geothermobarometry based on equilibrium exchange of chemical components between two mineral phases in natural samples frequently leads to the dilemma of either: (1) relying on relatively few measurements where there is a high likelihood of equilibrium, or (2) using many analysis pairs, where a significant proportion may not be useful and must be filtered out. The second approach leads to the challenges of (1) evaluation of equilibrium for large numbers of analysis pairs, (2) finding patterns in the dataset where multiple populations exist, and (3) visualizing relationships between calculated temperatures and compositional and textural parameters. Given the limitations of currently-used thermobarometry spreadsheets, we redesign them in a way that eliminates tedium by automating data importing, quality control and calculations, while making all results visible in a single view. Rather than using a traditional spreadsheet layout, we array the calculations in a grid. Each color-coded grid node contains the calculated temperature result corresponding to the intersection of two analyses given in the corresponding column and row. We provide Microsoft Excel templates for some commonly-used thermometers, that can be modified for use with any geothermometer or geobarometer involving two phases. Conditional formatting and ability to sort according to any chosen parameter simplifies pattern recognition, while tests for equilibrium can be incorporated into grid calculations. A case study of rhyodacite domes at Parinacota volcano, Chile, indicates a single population of Fe-Ti oxide temperatures, despite Mg-Mn compositional variability. Crystal zoning and differing thermal histories are, however, evident as a bimodal population of plagioclase-amphibole temperatures. Our approach aids in identification of suspect analyses and xenocrysts and visualization of links between temperature and phase composition. This facilitates interpretation of whether heat transfer was accompanied by bulk mass transfer, and to what degree diffusion has homogenized calculated temperature results in hybrid magmas.

  2. Automated Interval velocity picking for Atlantic Multi-Channel Seismic Data

    NASA Astrophysics Data System (ADS)

    Singh, Vishwajit

    2016-04-01

    This paper described the challenge in developing and testing a fully automated routine for measuring interval velocities from multi-channel seismic data. Various approaches are employed for generating an interactive algorithm picking interval velocity for continuous 1000-5000 normal moveout (NMO) corrected gather and replacing the interpreter's effort for manual picking the coherent reflections. The detailed steps and pitfalls for picking the interval velocities from seismic reflection time measurements are describe in these approaches. Key ingredients these approaches utilized for velocity analysis stage are semblance grid and starting model of interval velocity. Basin-Hopping optimization is employed for convergence of the misfit function toward local minima. SLiding-Overlapping Window (SLOW) algorithm are designed to mitigate the non-linearity and ill- possessedness of root-mean-square velocity. Synthetic data case studies addresses the performance of the velocity picker generating models perfectly fitting the semblance peaks. A similar linear relationship between average depth and reflection time for synthetic model and estimated models proposed picked interval velocities as the starting model for the full waveform inversion to project more accurate velocity structure of the subsurface. The challenges can be categorized as (1) building accurate starting model for projecting more accurate velocity structure of the subsurface, (2) improving the computational cost of algorithm by pre-calculating semblance grid to make auto picking more feasible.

  3. Application of FUN3D and CFL3D to the Third Workshop on CFD Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Thomas, J. L.

    2008-01-01

    Two Reynolds-averaged Navier-Stokes computer codes - one unstructured and one structured - are applied to two workshop cases (for the 3rd Workshop on CFD Uncertainty Analysis, held at Instituto Superior Tecnico, Lisbon, in October 2008) for the purpose of uncertainty analysis. The Spalart-Allmaras turbulence model is employed. The first case uses the method of manufactured solution and is intended as a verification case. In other words, the CFD solution is expected to approach the exact solution as the grid is refined. The second case is a validation case (comparison against experiment), for which modeling errors inherent in the turbulence model and errors/uncertainty in the experiment may prevent close agreement. The results from the two computer codes are also compared. This exercise verifies that the codes are consistent both with the exact manufactured solution and with each other. In terms of order property, both codes behave as expected for the manufactured solution. For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very low for both codes (whose results are nearly identical). Agreement with experiment is good at some locations for particular variables, but there are also many areas where the CFD and experimental uncertainties do not overlap.

  4. A multithreaded and GPU-optimized compact finite difference algorithm for turbulent mixing at high Schmidt number using petascale computing

    NASA Astrophysics Data System (ADS)

    Clay, M. P.; Yeung, P. K.; Buaria, D.; Gotoh, T.

    2017-11-01

    Turbulent mixing at high Schmidt number is a multiscale problem which places demanding requirements on direct numerical simulations to resolve fluctuations down the to Batchelor scale. We use a dual-grid, dual-scheme and dual-communicator approach where velocity and scalar fields are computed by separate groups of parallel processes, the latter using a combined compact finite difference (CCD) scheme on finer grid with a static 3-D domain decomposition free of the communication overhead of memory transposes. A high degree of scalability is achieved for a 81923 scalar field at Schmidt number 512 in turbulence with a modest inertial range, by overlapping communication with computation whenever possible. On the Cray XE6 partition of Blue Waters, use of a dedicated thread for communication combined with OpenMP locks and nested parallelism reduces CCD timings by 34% compared to an MPI baseline. The code has been further optimized for the 27-petaflops Cray XK7 machine Titan using GPUs as accelerators with the latest OpenMP 4.5 directives, giving 2.7X speedup compared to CPU-only execution at the largest problem size. Supported by NSF Grant ACI-1036170, the NCSA Blue Waters Project with subaward via UIUC, and a DOE INCITE allocation at ORNL.

  5. Automatic digital surface model (DSM) generation from aerial imagery data

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  6. Rectangular beam (5 X 40 cm multipole ion source). M.S. Thesis - Nov. 1979; [applications to electron bombardment in materials processing

    NASA Technical Reports Server (NTRS)

    Haynes, C. M.

    1980-01-01

    A 5 x 40 cm rectangular-beam ion source was designed and fabricated. A multipole field configuration was used to facilitate design of the modular rectangular chamber, while a three-grid ion optics system was used for increased ion current densities. For the multipole chamber, a magnetic integral of 0.000056 Tesla-m was used to contain the primary electrons. This integral value was reduced from the initial design value, with the reduction found necessary for discharge stability. The final value of magnetic integral resulted in discharge losses at typical operating conditions which ranged from 600 to 1000 eV/ion, in good agreement with the design value of 800 eV/ion. The beam current density at the ion optics was limited to about 3.2 mA/sq cm at 500 eV and to about 3.5 mA/sq cm at 1000 ev. The effects of nonuniform ion current, dimension tolerance, and grid thermal warping were considered. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source (approx. 40 cm) was also studied. Beam profiles were surveyed at a variety of operating conditions and the results of various amounts of beam overlap calculated.

  7. Simulations of the Formation and Evolution of X-ray Clusters

    NASA Astrophysics Data System (ADS)

    Bryan, G. L.; Klypin, A.; Norman, M. L.

    1994-05-01

    We describe results from a set of Omega = 1 Cold plus Hot Dark Matter (CHDM) and Cold Dark Matter (CDM) simulations. We examine the formation and evolution of X-ray clusters in a cosmological setting with sufficient numbers to perform statistical analysis. We find that CDM, normalized to COBE, seems to produce too many large clusters, both in terms of the luminosity (dn/dL) and temperature (dn/dT) functions. The CHDM simulation produces fewer clusters and the temperature distribution (our numerically most secure result) matches observations where they overlap. The computed cluster luminosity function drops below observations, but we are almost surely underestimating the X-ray luminosity. Because of the lower fluctuations in CHDM, there are only a small number of bright clusters in our simulation volume; however we can use the simulated clusters to fix the relation between temperature and velocity dispersion, allowing us to use collisionless N-body codes to probe larger length scales with correspondingly brighter clusters. The hydrodynamic simulations have been performed with a hybrid particle-mesh scheme for the dark matter and a high resolution grid-based piecewise parabolic method for the adiabatic gas dynamics. This combination has been implemented for massively parallel computers, allowing us to achive grids as large as 512(3) .

  8. Modelling sheet-flow sediment transport in wave-bottom boundary layers using discrete-element modelling.

    PubMed

    Calantoni, Joseph; Holland, K Todd; Drake, Thomas G

    2004-09-15

    Sediment transport in oscillatory boundary layers is a process that drives coastal geomorphological change. Most formulae for bed-load transport in nearshore regions subsume the smallest-scale physics of the phenomena by parametrizing interactions amongst particles. In contrast, we directly simulate granular physics in the wave-bottom boundary layer using a discrete-element model comprised of a three-dimensional particle phase coupled to a one-dimensional fluid phase via Newton's third law through forces of buoyancy, drag and added mass. The particulate sediment phase is modelled using discrete particles formed to approximate natural grains by overlapping two spheres. Both the size of each sphere and the degree of overlap can be varied for these composite particles to generate a range of non-spherical grains. Simulations of particles having a range of shapes showed that the critical angle--the angle at which a grain pile will fail when tilted slowly from rest--increases from approximately 26 degrees for spherical particles to nearly 39 degrees for highly non-spherical composite particles having a dumbbell shape. Simulations of oscillatory sheet flow were conducted using composite particles with an angle of repose of approximately 33 degrees and a Corey shape factor greater than about 0.8, similar to the properties of beach sand. The results from the sheet-flow simulations with composite particles agreed more closely with laboratory measurements than similar simulations conducted using spherical particles. The findings suggest that particle shape may be an important factor for determining bed-load flux, particularly for larger bed slopes.

  9. Meter Scale Heterogeneities in the Oceanic Mantle Revealed in Ophiolites Peridotites

    NASA Astrophysics Data System (ADS)

    Haller, M. B.; Walker, R. J.; Day, J. M.; O'Driscoll, B.; Daly, J. S.

    2016-12-01

    Mid-ocean ridge basalts and other oceanic mantle-derived rocks do not capture the depleted endmember isotopic compositions present in oceanic peridotites. Ophiolites are especially useful in interrogating this issue as field-based observations can be paired with geochemical investigations over a wide range of geologic time. Grid sampling methods (3m x 3m) at the 497 Ma Leka Ophiolite Complex (LOC), Norway, and the 1.95 Ga Jormua Ophiolite Complex (JOC), Finland, offer an opportunity to study mantle domains at the meter and kilometer scale, and over a one billion year timespan. The lithology of each locality predominately comprises harzburgite, hosting layers and lenses of dunite and pyroxenite. Here, we combine highly siderophile elements (HSE) and Re-Os isotopic analysis of these rocks with major and trace element measurements. Harzburgites at individual LOC grid sites show variations in γOs(497 Ma) (-2.1 to +2.2) at the meter scale. Analyses of adjacent, more radiogenic dunites within the same LOC grid, reveal that dunites may either have similar γOs to their host harzburgite, or different, implying interactions between spatially associated rock types may differ at the meter scale. Averaged γOs values between the mantle sections of two LOC grid sites (+1.3 and -0.4) separated by 5 km indicate km-scale heterogeneity in the convecting upper mantle. Pd/Ir and Ru/Ir ratios are scattered and do not obviously correlate with γOs values. Analyses of pyroxenites within LOC grid sections, thin section observations of relict olivine grains, and whole rock major and trace element data are also examined to shed light on the causes of the isotopic heterogeneities in the LOC. Data from JOC grid sampling will be presented as well.

  10. Addressing extreme precipitation change under future climates in the Upper Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yuan, Z.; Gao, X.

    2017-12-01

    Investigating the impact of climate change on extreme precipitation accurately is of importance for application purposes such as flooding mitigation and urban drainage system design. In this paper, a systematical analysis framework to assess the impact of climate change on extreme precipitation events is developed and practiced in the Upper Yangtze River Basin (UYRB) in China. Firstly, the UYRB is gridded and five extreme precipitation indices (annual maximum 3- 5- 7- 15- and 30-day precipitation) are selected. Secondly, with observed precipitation from China's Ground Precipitation 0.5°×0.5° Gridded Dataset (V2.0) and simulated daily precipitation from ten general circulation models (GCMs) of CMIP5, A regionally efficient GCM is selected for each grid by the skill score (SS) method which maximizes the overlapped area of probability density functions of extreme precipitation indices between observations and simulations during the historical period. Then, simulations of assembled efficient GCMs are bias corrected by Equidistant Cumulative Distribution Function method. Finally, the impact of climate change on extreme precipitation is analyzed. The results show that: (1) the MRI-CGCM3 and MIROC-ESM perform better in the UYRB. There are 19.8 to 20.9% and 14.2 to 18.7% of all grids regard this two GCMs as regionally efficient GCM for the five indices, respectively. Moreover, the regionally efficient GCMs are spatially distributed. (2) The assembled GCM performs much better than any single GCM, with the SS>0.8 and SS>0.6 in more than 65 and 85 percent grids. (3) Under the RCP4.5 scenario, the extreme precipitation of 50-year and 100-year return period is projected to increase in most areas of the UYRB in the future period, with 55.0 to 61.3% of the UYRB increasing larger than 10 percent for the five indices. The changes are spatially and temporal distributed. The upstream region of the UYRB has a relatively significant increase compared to the downstream basin, while the increase for annual maximum 5- and 7-day precipitation are more significant than other indices. The results demonstrate the impact of climate change on extreme precipitation in the UYRB, which provides a support to manage the water resource in this area.

  11. A MISO UCA Beamforming Dimmable LED System for Indoor Positioning

    PubMed Central

    Taparugssanagorn, Attaphongse; Siwamogsatham, Siwaruk; Pomalaza-Ráez, Carlos

    2014-01-01

    The use of a multiple input single output (MISO) transmit beamforming system using dimmable light emitting arrays (LEAs) in the form of a uniform circular array (UCA) of transmitters is proposed in this paper. With this technique, visible light communications between a transmitter and a receiver (LED reader) can be achieved with excellent performance and the receiver's position can be estimated. A hexagonal lattice alignment of LED transmitters is deployed to reduce the coverage holes and the areas of overlapping radiation. As a result, the accuracy of the position estimation is better than when using a typical rectangular grid alignment. The dimming control is done with pulse width modulation (PWM) to obtain an optimal closed loop beamforming and minimum energy consumption with acceptable lighting. PMID:24481234

  12. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network

    NASA Astrophysics Data System (ADS)

    Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-04-01

    At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.

  13. Tensor hypercontraction. II. Least-squares renormalization

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David

    2012-12-01

    The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.

  14. Tensor hypercontraction. II. Least-squares renormalization.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David

    2012-12-14

    The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.

  15. SIZE DISTRIBUTION OF AMBIENT AND INDOOR PARTICLES: DOES THE OVERLAP OF FINE AND COARSE PARTICLES CAUSE PROBLEMS IN THE INTERPRETATION OF RESEARCH RESULTS?

    EPA Science Inventory

    Measurement of the mass and composition of particulate matter (PM) as a function of size is important for research studies for chemical mass balance, factor analysis, air quality model evaluation, epidemiology, and risk assessment. Such measurements are also important in underst...

  16. Effects of selective logging on bat communities in the southeastern Amazon.

    PubMed

    Peters, Sandra L; Malcolm, Jay R; Zimmerman, Barbara L

    2006-10-01

    Although extensive areas of tropical forest are selectively logged each year, the responses of bat communities to this form of disturbance have rarely been examined. Our objectives were to (1) compare bat abundance, species composition, and feeding guild structure between unlogged and low-intensity selectively logged (1-4 logged stems/ha) sampling grids in the southeastern Amazon and (2) examine correlations between logging-induced changes in bat communities and forest structure. We captured bats in understory and canopy mist nets set in five 1-ha study grids in both logged and unlogged forest. We captured 996 individuals, representing 5 families, 32 genera, and 49 species. Abundances of nectarivorous and frugivorous taxa (Glossophaginae, Lonchophyllinae, Stenodermatinae, and Carolliinae) were higher at logged sites, where canopy openness and understory foliage density were greatest. In contrast, insectivorous and omnivorous species (Emballonuridae, Mormoopidae, Phyllostominae, and Vespertilionidae) were more abundant in unlogged sites, where canopy foliage density and variability in the understory stratum were greatest. Multivariate analyses indicated that understory bat species composition differed strongly between logged and unlogged sites but provided little evidence of logging effects for the canopy fauna. Different responses among feeding guilds and taxonomic groups appeared to be related to foraging and echolocation strategies and to changes in canopy cover and understory foliage densities. Our results suggest that even low-intensity logging modifies habitat structure, leading to changes in bat species composition.

  17. Mathematical Approach to Identification of Load Structure at the Nodes of the Distribution Grids 6-10 kV and 0.4 kV

    NASA Astrophysics Data System (ADS)

    Nizamutdinova, T.; Mukhlynin, N.

    2017-06-01

    A significant increasing energy efficiency of the full cycle of production, transmission and distribution of electricity in grids should be based on the management of separate consumers of electricity. The existing energy supply systems based on the concept of «smart things» do not allow to identify the technical structure of the electricity consumption in the load nodes from the grid side. It makes solving the tasks of energy efficiency more difficult. To solve this problem, the use of Wavelet transform to create a mathematical tool for monitoring the load composition in the nodes of the distribution grids of 6-10 kV, 0.4 kV is proposed in this paper. The authors have created a unique wavelet based functions for some consumers, based on their current consumption graphs of these power consumers. Possibility of determination of the characteristics of individual consumers of electricity in total nodal charts of load is shown in the test case. In future, creation of a unified technical and informational model of load control will allow to solve the problem of increasing the economic efficiency of not only certain consumers, but also the entire power supply system as a whole.

  18. An artificial system for selecting the optimal surgical team.

    PubMed

    Saberi, Nahid; Mahvash, Mohsen; Zenati, Marco

    2015-01-01

    We introduce an intelligent system to optimize a team composition based on the team's historical outcomes and apply this system to compose a surgical team. The system relies on a record of the procedures performed in the past. The optimal team composition is the one with the lowest probability of unfavorable outcome. We use the theory of probability and the inclusion exclusion principle to model the probability of team outcome for a given composition. A probability value is assigned to each person of database and the probability of a team composition is calculated from them. The model allows to determine the probability of all possible team compositions even if there is no recoded procedure for some team compositions. From an analytical perspective, assembling an optimal team is equivalent to minimizing the overlap of team members who have a recurring tendency to be involved with procedures of unfavorable results. A conceptual example shows the accuracy of the proposed system on obtaining the optimal team.

  19. Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.

    PubMed

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-03-16

    Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.

  20. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang

    2018-06-01

    Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.

  1. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites.

    PubMed

    Bello, Dhimiter; Wardle, Brian L; Zhang, Jie; Yamamoto, Namiko; Santeufemio, Christopher; Hallock, Marilyn; Virji, M Abbas

    2010-01-01

    This work investigated exposures to nanoparticles and nanofibers during solid core drilling of two types of advanced carbon nanotube (CNT)-hybrid composites: (1) reinforced plastic hybrid laminates (alumina fibers and CNT); and (2) graphite-epoxy composites (carbon fibers and CNT). Multiple real-time instruments were used to characterize the size distribution (5.6 nm to 20 microm), number and mass concentration, particle-bound polyaromatic hydrocarbons (b-PAHs), and surface area of airborne particles at the source and breathing zone. Time-integrated samples included grids for electron microscopy characterization of particle morphology and size resolved (2 nm to 20 microm) samples for the quantification of metals. Several new important findings herein include generation of airborne clusters of CNTs not seen during saw-cutting of similar composites, fewer nanofibers and respirable fibers released, similarly high exposures to nanoparticles with less dependence on the composite thickness, and ultrafine (< 5 nm) aerosol originating from thermal degradation of the composite material.

  2. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)

    2002-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.

  3. Cylinder stitching interferometry: with and without overlap regions

    NASA Astrophysics Data System (ADS)

    Peng, Junzheng; Chen, Dingfu; Yu, Yingjie

    2017-06-01

    Since the cylinder surface is closed and periodic in the azimuthal direction, existing stitching methods cannot be used to yield the 360° form map. To address this problem, this paper presents two methods for stitching interferometry of cylinder: one requires overlap regions, and the other does not need the overlap regions. For the former, we use the first order approximation of cylindrical coordinate transformation to build the stitching model. With it, the relative parameters between the adjacent sub-apertures can be calculated by the stitching model. For the latter, a set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials, was developed. With these polynomials, individual sub-aperture data can be expanded as composition of inherent form of partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all sub-aperture data with LF polynomials. Finally the two proposed methods are compared under various conditions. The merits and drawbacks of each stitching method are consequently revealed to provide suggestion in acquisition of 360° form map for a precision cylinder.

  4. Integration of color, orientation, and size functional domains in the ventral pathway

    PubMed Central

    Ghose, Geoffrey M.; Ts’o, Daniel Y.

    2017-01-01

    Abstract. Functional specialization within the extrastriate areas of the ventral pathway associated with visual form analysis is poorly understood. Studies comparing the functional selectivities of neurons within the early visual areas have found that there are more similar than different between the areas. We simultaneously imaged visually evoked activation over regions of V2 and V4 and parametrically varied three visual attributes for which selectivity exists in both areas: color, orientation, and size. We found that color selective regions were observed in both areas and were of similar size and spatial distribution. However, two major areal distinctions were observed: V4 contained a greater number and diversity of color-specific regions than V2 and exhibited a higher degree of overlap between domains for different functional attributes. In V2, size and color regions were largely segregated from orientation domains, whereas in V4 both color and size regions overlapped considerably with orientation regions. Our results suggest that higher-order composite selectivities in the extrastriate cortex may arise organically from the interactions afforded by an overlap of functional domains for lower order selectivities. PMID:28573155

  5. Near-optimal quantum circuit for Grover's unstructured search using a transverse field

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor G.; Wang, Zhihui

    2017-06-01

    Inspired by a class of algorithms proposed by Farhi et al. (arXiv:1411.4028), namely, the quantum approximate optimization algorithm (QAOA), we present a circuit-based quantum algorithm to search for a needle in a haystack, obtaining the same quadratic speedup achieved by Grover's original algorithm. In our algorithm, the problem Hamiltonian (oracle) and a transverse field are applied alternately to the system in a periodic manner. We introduce a technique, based on spin-coherent states, to analyze the composite unitary in a single period. This composite unitary drives a closed transition between two states that have high degrees of overlap with the initial state and the target state, respectively. The transition rate in our algorithm is of order Θ (1 /√{N }) , and the overlaps are of order Θ (1 ) , yielding a nearly optimal query complexity of T ≃√{N }(π /2 √{2 }) . Our algorithm is a QAOA circuit that demonstrates a quantum advantage with a large number of iterations that is not derived from Trotterization of an adiabatic quantum optimization (AQO) algorithm. It also suggests that the analysis required to understand QAOA circuits involves a very different process from estimating the energy gap of a Hamiltonian in AQO.

  6. Coda Q and its Frequency Dependence in the Eastern Himalayan and Indo-Burman Plate Boundary Systems

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Kumar, A.

    2015-12-01

    We use broadband waveform data for 305 local earthquakes from the Eastern Himalayan and Indo-Burman plate boundary systems, to model the seismic attenuation in NE India. We measure the decay in amplitude of coda waves at discreet frequencies (between 1 and 12Hz) to evaluate the quality factor (Qc) as a function of frequency. We combine these measurements to evaluate the frequency dependence of Qc of the form Qc(f)=Qof η, where Qo is the quality factor at 1Hz and η is the frequency dependence. Computed Qo values range from 80-360 and η ranges from 0.85-1.45. To study the lateral variation in Qo and η, we regionalise the Qc by combining all source-receiver measurements using a back-projection algorithm. For a single back scatter model, the coda waves sample an elliptical area with the epicenter and receiver at the two foci. We parameterize the region using square grids. The algorithm calculates the overlap in area and distributes Qc in the sampled grids using the average Qc as the boundary value. This is done in an iterative manner, by minimising the misfit between the observed and computed Qc within each grid. This process is repeated for all frequencies and η is computed for each grid by combining Qc for all frequencies. Our results reveal strong variation in Qo and η across NE India. The highest Qo are in the Bengal Basin (210-280) and the Indo-Burman subduction zone (300-360). The Shillong Plateau and Mikir Hills have intermediate Qo (~160) and the lowest Qo (~80) is observed in the Naga fold thrust belt. This variation in Qo demarcates the boundary between the continental crust beneath the Shillong Plateau and Mikir Hills and the transitional to oceanic crust beneath the Bengal Basin and Indo-Burman subduction zone. Thick pile of sedimentary strata in the Naga fold thrust belt results in the low Qo. Frequency dependence (η) of Qc across NE India is observed to be very high, with regions of high Qo being associated with relatively higher η.

  7. A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.; Jedlovec, Gary J.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and show sample output from summer 2010, compare the MODIS GVF data to the AVHRR monthly climatology, and illustrate the sensitivity of the Noah LSM within LIS and/or the coupled LIS/WRF system to the new MODIS GVF dataset.

  8. Discrimination of tornadic and non-tornadic severe weather outbreaks

    NASA Astrophysics Data System (ADS)

    Mercer, Andrew Edward

    Outbreaks of severe weather affect the majority of the conterminous United States. An outbreak is characterized by multiple severe weather occurrences within a single synoptic system. Outbreaks can be categorized by whether or not they produce tornadoes. It is hypothesized that the antecedent synoptic signal contains important information about outbreak type. Accordingly, the scope of this research is to determine the extent that the synoptic signal can be utilized to classify outbreak type at various lead times. Outbreak types are classified using the NCEP/NCAR reanalysis data, which are arranged on a global 2.5° latitude-longitude grid, include 17 vertical pressure levels, and span from 1948 to the present (2008). Fifty major tornado outbreak (TO) cases and fifty major non-tornadic severe weather outbreak (NTO) cases are selected for this work. Two types of analyses are performed on these cases to assess discrimination ability. One analysis involves outbreak classification using the Weather Research and Forecasting (WRF) model initialized with the NCEP/NCAR reanalysis dataset. Meteorological covariates are computed from the WRF output and used in training and testing of statistical classification models. The covariate fields are depicted on a 21 X 21 gridpoint field with an 18 km grid spacing centered on the outbreak. Covariates with large discrimination potential are determined using permutation testing. A P-mode principal component analysis (PCA) is used on the subset of covariates determined by permutation testing to reduce data dimensionality, since numerous redundancies exist in the initial covariate set. Three statistical classification models are trained and tested with the resulting PC scores: a support vector machine (SVM), a logistic regression model (LogR), and a multiple linear regression model (LR). Promising results emerge from these methods, as a probability of detection (POD) of 0.89 and a false alarm ratio (FAR) of 0.13 are obtained from the best discriminating statistical technique (SVM) at 24-hours lead time. Results degrade only slightly by 72-hours lead time (maximum POD of 0.833 and minimum FAR of 0.276). Synoptic composites of the outbreak types are the second analysis considered. Composites are used to reveal synoptic features of outbreak types, which can be utilized to diagnose the differences between classes (in this case, TOs and NTOs). The composites are created using PCA. Five raw variables, height, temperature, relative humidity, and u and v wind components, are extracted from the NCEP/NCAR reanalysis data for North America. Converging longitude lines with increasing latitude on the reanalysis grid introduce bias into correlation calculations in higher latitudes; hence, the data are mapped onto both a latitudinal density grid and a Fibonacci grid. The resulting PCA produces two significant principal components (PCs), and a cluster analysis on these PCs for each outbreak type results in two types of TOs and NTOs. TO composites are characterized by a trough of low pressure over the central United States and major quasigeostrophic forcing features such as an upper level jet streak, cyclonic vorticity advection increasing with height, and warm air advection. These dynamics result in a strong surface cyclone in most tornado outbreaks. These features are considerably less pronounced in NTOs. The statistical analyses presented herein were successful in classifying outbreak types at various lead times, using synoptic scale data as input.

  9. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  10. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M.-S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  11. Sinter of uniform, predictable, blemish-free nickel plaque for large aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Seiger, H. N.

    1975-01-01

    A series of nickel slurry compositions were tested. Important slurry parameters were found to be the nature of the binder, a pore former and the method of mixing. A slow roll mixing which is non-turbulent successfully eliminated entrapped air so that bubbles and pockets were avoided in the sinter. A slurry applicator was developed which enabled an equal quantity of slurry to be applied to both sides of the grid. Sintering in a furnace having a graded atmosphere characteristic, ranging from oxidizing to strongly reducing, improved adhesion of porous sinter to grid and resulted in a uniform welding of nickel particles to each other throughout the plaque. Sintering was carried out in a horizontal furnace having three heating zones and 16 heating control circuits. Tests used for plaque evaluation include (1) appearance, (2) grid location and adhesion, (3) mechanical strength, (4) thickness, (5) weight per unit area, (6) void volume per unit area, (7) surface area and (8) electrical resistance. Plaque material was impregnated using Heliotek proprietary processes and 100 AH cells were fabricated.

  12. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana E.; Freedman, Richard; Visscher, Channon

    2017-06-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure.In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations.We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 ≤ Teff ≤ 2400 K and 2.5 ≤ log g ≤ 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  13. Interfacing a small thermophotovoltaic generator to the grid

    NASA Astrophysics Data System (ADS)

    Durisch, W.; Grob, B.; Mayor, J.-C.; Panitz, J.-C.; Rosselet, A.

    1999-03-01

    A prototype thermophotovoltaic generator and grid-interfacing device have been developed to demonstrate the feasibility of grid-connected operation. For this purpose a conventional butane burner (rated power 1.35 kWth) was equipped with a ceramic composite emitter made of rare earth oxides. A water layer between emitter and photocells was used to protect the photocells against overheating. It absorbs the nonconvertible emitter radiation and is heated up thereby. The hot water so produced in larger units of this type could be used in a primary recirculation loop to transfer heat to a secondary domestic hot water system. For the photovoltaic generator, commercial grade silicon solar cells with 16% efficiency (under standard test conditions) were used. With the radiation of the emitter, a current of 4.6 A at a maximum power point voltage of 3.3 V was produced, corresponding to a DC output of 15 W and a thermal to DC power conversion efficiency of 1.1%. A specially developed high efficiency DC/DC converter and a modified, commercially available inverter were used to feed the generated power to the local grid. Under the experimental conditions in question the DC/DC-converter and the grid-inverter had efficiencies of 98 and 91%, respectively resulting in an overall interface efficiency of 89%. From modeling of the measured electrical characteristics of the photo cell generator under solar and emitter radiation, it is concluded that the photo current was about three times higher under the filtered emitter radiation. Under these conditions the electrical losses of the photocells were significantly higher than under sunlight.

  14. Assessing the Impacts of Wind Integration in the Western Provinces

    NASA Astrophysics Data System (ADS)

    Sopinka, Amy

    Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.

  15. Cosmic Ornament of Gas and Dust

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 4-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Silicon Gas Figure 2 Argon Figure 3 Dust Collection Figure 4

    This beautiful bulb might look like a Christmas ornament but it is the blown-out remains of a stellar explosion, or supernova. Called Cassiopeia A, this supernova remnant is located about 10,000 light-years away in our own Milky Way galaxy. The remains are shown here in an infrared composite from NASA's Spitzer Space Telescope. Silicon gas is blue and argon gas is green, while red represents about 10,000 Earth masses worth of dust. Yellow shows areas where red and green overlap.

    The fact that these two features line up (as seen in yellow in the combined view) tells astronomers that the dust, together with the gas, was created in the explosion. This is the best evidence yet that supernovae are a significant source of dust in the early universe something that was postulated before, but not proven. Dust in our young universe is important because it eventually made its way into future stars, planets and even people.

    In figure 1, the upper left panel is a composite made up of three infrared views shown in the remaining panels. The bottom left view (figure 3) shows argon gas (green) that was synthesized as it was ejected from the star. The upper right panel (figure 2) shows silicon gas (blue) deep in the interior of the remnant. This cooler gas, called the unshocked ejecta, was also synthesized in the supernova blast. The bottom right view (figure 4) shows a collection of dust (red), including proto-silicates, silicate dioxide and iron oxide.

    The data for these images were taken by Spitzer's infrared spectrograph, which splits light apart to reveal the fingerprints of molecules and elements. In total, Spitzer collected separate 'spectra' at more than 1,700 positions across Cassiopeia A. Astronomers then created maps from this massive grid of data, showing the remnant in a multitude of infrared colors.

  16. Diets and niche overlap among nine co-occurring demersal fishes in the southern continental shelf of East/Japan Sea, Korea

    NASA Astrophysics Data System (ADS)

    Myun Park, Joo; Nam Kwak, Seok; Huh, Sung-Hoi; Han, In-Seong

    2017-09-01

    Dietary niches and food resource partitioning can support the coexistence of many fishes in benthic marine systems, which can lead to the greater abundances of those species that can potentially support their fisheries. Diets and niche overlap among nine demersal fish species were investigated in the southern continental shelf of East/Japan Sea, Korea. Specimens were collected monthly from January to November 2007 on soft bottoms between 40 and 100 m depth using a bottom trawl. A total of 20 prey taxa were found in 1904 stomachs of the nine species. Comparison of the stomach contents among the nine species showed that inter-specific dietary compositions differed significantly. Although all fish species consumed similar types of prey items, their contributions to the diet of different species varied. Among prey taxa, carid shrimps contributed greatly to the diets of Amblychaeturichthys hexanema, Amblychaeturichthys sciistius, Coelorinchus multispinulosus, Lepidotrigla guentheri, and Liparis tanakae, whereas polychaetes and teleosts contributed to the diets of Callionymus lunatus and Lophius litulon, respectively. On the other hand, carid shrimps and teleosts together contributed to the diets of Pseudorhombus pentophthalmus. Non-metric multivariate analysis of the mass contributions of dietary categories for food resources emphasized visually that the dietary compositions of the nine species differed. Although C. multispinulosus, L. guentheri, L. litulon, and L. tanakae showed similar dietary compositions between small and large size classes, ontogenetic diet changes of the remaining six species were evident. Feeding relationships among the nine demersal species were complicated, but inter- and intra-specific differences in dietary composition among the species reduced potential competition for food resources within the fish community in the southern continental shelf of East/Japan Sea, Korea.

  17. Scope of partial least-squares regression applied to the enantiomeric composition determination of ketoprofen from strongly overlapped chromatographic profiles.

    PubMed

    Padró, Juan M; Osorio-Grisales, Jaiver; Arancibia, Juan A; Olivieri, Alejandro C; Castells, Cecilia B

    2015-07-01

    Valuable quantitative information could be obtained from strongly overlapped chromatographic profiles of two enantiomers by using proper chemometric methods. Complete separation profiles where the peaks are fully resolved are difficult to achieve in chiral separation methods, and this becomes a particularly severe problem in case that the analyst needs to measure the chiral purity, i.e., when one of the enantiomers is present in the sample in very low concentrations. In this report, we explore the scope of a multivariate chemometric technique based on unfolded partial least-squares regression, as a mathematical tool to solve this quite frequent difficulty. This technique was applied to obtain quantitative results from partially overlapped chromatographic profiles of R- and S-ketoprofen, with different values of enantioresolution factors (from 0.81 down to less than 0.2 resolution units), and also at several different S:R enantiomeric ratios. Enantiomeric purity below 1% was determined with excellent precision even from almost completely overlapped signals. All these assays were tested on the most demanding condition, i.e., when the minor peak elutes immediately after the main peak. The results were validated using univariate calibration of completely resolved profiles and the method applied to the determination of enantiomeric purity of commercial pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 3-D Surface Visualization of pH Titration "Topos": Equivalence Point Cliffs, Dilution Ramps, and Buffer Plateaus

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul; MacCarthy, Patrick

    2014-01-01

    3-D topographic surfaces ("topos") can be generated to visualize how pH behaves during titration and dilution procedures. The surfaces are constructed by plotting computed pH values above a composition grid with volume of base added in one direction and overall system dilution on the other. What emerge are surface features that…

  19. Eastern Wind Data Set | Grid Modernization | NREL

    Science.gov Websites

    cell was computed by combining these data sets with a composite turbine power curve. Wind power plants wind speed at the site. Adjustments were made for model biases, wake losses, wind gusts, turbine and conversion was also updated to better reflect future wind turbine technology. The 12-hour discontinuity was

  20. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Bowman, D. E.

    1983-08-01

    Research programs on lead-acid batteries are reported that cover active materials utilization, active material integrity, and some technical support projects. Processing problems were encountered and corrected. Components and materials, a lead-plastic composite grid, cell designs, and deliverables are described. Cell testing is discussed, as well as battery subsystems, including fuel gage, thermal management, and electrolyte circulation.

  1. Composite Grids for Reinforcement of Concrete Structures.

    DTIC Science & Technology

    1998-06-01

    to greater compressive loads before induced shear failure occurs. Concrete columns were tested in compression to explore alter- native... columns were tested on the same day as the fiber-reinforced concrete columns . Load /deflection readings were taken with the load cell to determine the...ln) Figure 78. Ultimate load vs toughness for the different beam types tested . USACERLTR-98/81 141 £\\

  2. The effects of gypsy moth defoliation on soil water chemistry

    Treesearch

    Thomas R., Jr. Eagle; Ray R., Jr. Hicks

    1993-01-01

    Twenty-eight plots were established in oak stands along the leading edge of gypsy moth migration into north-central West Virginia. Plots were arranged in a 3-chain square grid pattern in areas of varying aspect, percent slope, elevation, site index and species composition. Soft water, gypsy moth frass and leaf fragments generated by larval feeding were collected weekly...

  3. Insights on synergy of materials and structures in biomimetic platelet-matrix composites

    NASA Astrophysics Data System (ADS)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2018-01-01

    Hybrid materials such as biomimetic platelet-matrix composites are in high demand to confer low weight and multifunctional mechanical properties. This letter reports interfacial-bond regulated assembly of polymers on cement-an archetype model with significant infrastructure applications. We demonstrate a series of 20+ molecular dynamics studies on decoding and optimizing the complex interfacial interactions including the role and types of various heterogeneous, competing interfacial bonds that are key to adhesion and interfacial strength. Our results show an existence of an optimum overlap length scale (˜15 nm) between polymers and cement crystals, exhibiting the best balance of strength, toughness, stiffness, and ductility for the composite. This finding, combined with the fundamental insights into the nature of interfacial bonds, provides key hypotheses for selection and processing of constituents to deliberate the best synergy in the structure and materials of platelet-matrix composites.

  4. Major element compositional variation within and between different late Eocene microtektite strewnfields

    NASA Astrophysics Data System (ADS)

    D'Hondt, S. L.; Keller, G.; Stallard, R. F.

    1987-03-01

    The major element composition of microspherules from all three late Eocene stratigraphic layers was analyzed using an electron microprobe. The results indicate a major element compositional overlap beween individual microspherules of different microtektite layers or strewn fields. However, multivariate factor analysis shows that the microtektites of the three late Eocene layers follow recognizably different compositional trends. The microtektite population of the North American strewn field is characterized by high concentrations of SiO2, Al2O3, and TiO2; the microspherules of an older layer, the Gl. cerroazulensis Zone, are relatively enriched in FeO and MgO and impoverished in SiO2 and TiO2; while those of the oldest layer in the uppermost G. semiinvoluta Zone are relatively enriched in CaO and impoverished in Al2O3 and Na2O.

  5. A Direct Comparison of Real-World and Virtual Navigation Performance in Chronic Stroke Patients.

    PubMed

    Claessen, Michiel H G; Visser-Meily, Johanna M A; de Rooij, Nicolien K; Postma, Albert; van der Ham, Ineke J M

    2016-04-01

    An increasing number of studies have presented evidence that various patient groups with acquired brain injury suffer from navigation problems in daily life. This skill is, however, scarcely addressed in current clinical neuropsychological practice and suitable diagnostic instruments are lacking. Real-world navigation tests are limited by geographical location and associated with practical constraints. It was, therefore, investigated whether virtual navigation might serve as a useful alternative. To investigate the convergent validity of virtual navigation testing, performance on the Virtual Tubingen test was compared to that on an analogous real-world navigation test in 68 chronic stroke patients. The same eight subtasks, addressing route and survey knowledge aspects, were assessed in both tests. In addition, navigation performance of stroke patients was compared to that of 44 healthy controls. A correlation analysis showed moderate overlap (r = .535) between composite scores of overall real-world and virtual navigation performance in stroke patients. Route knowledge composite scores correlated somewhat stronger (r = .523) than survey knowledge composite scores (r = .442). When comparing group performances, patients obtained lower scores than controls on seven subtasks. Whereas the real-world test was found to be easier than its virtual counterpart, no significant interaction-effects were found between group and environment. Given moderate overlap of the total scores between the two navigation tests, we conclude that virtual testing of navigation ability is a valid alternative to navigation tests that rely on real-world route exposure.

  6. Tools for Analysis and Visualization of Large Time-Varying CFD Data Sets

    NASA Technical Reports Server (NTRS)

    Wilhelms, Jane; VanGelder, Allen

    1997-01-01

    In the second year, we continued to built upon and improve our scanline-based direct volume renderer that we developed in the first year of this grant. This extremely general rendering approach can handle regular or irregular grids, including overlapping multiple grids, and polygon mesh surfaces. It runs in parallel on multi-processors. It can also be used in conjunction with a k-d tree hierarchy, where approximate models and error terms are stored in the nodes of the tree, and approximate fast renderings can be created. We have extended our software to handle time-varying data where the data changes but the grid does not. We are now working on extending it to handle more general time-varying data. We have also developed a new extension of our direct volume renderer that uses automatic decimation of the 3D grid, as opposed to an explicit hierarchy. We explored this alternative approach as being more appropriate for very large data sets, where the extra expense of a tree may be unacceptable. We also describe a new approach to direct volume rendering using hardware 3D textures and incorporates lighting effects. Volume rendering using hardware 3D textures is extremely fast, and machines capable of using this technique are becoming more moderately priced. While this technique, at present, is limited to use with regular grids, we are pursuing possible algorithms extending the approach to more general grid types. We have also begun to explore a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH '96. In our initial implementation, we automatically image the volume from 32 equi-distant positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation. We are studying whether this will give a quantitative measure of the effects of approximation. We have created new tools for exploring the differences between images produced by various rendering methods. Images created by our software can be stored in the SGI RGB format. Our idtools software reads in pair of images and compares them using various metrics. The differences of the images using the RGB, HSV, and HSL color models can be calculated and shown. We can also calculate the auto-correlation function and the Fourier transform of the image and image differences. We will explore how these image differences compare in order to find useful metrics for quantifying the success of various visualization approaches. In general, progress was consistent with our research plan for the second year of the grant.

  7. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest.

    PubMed

    Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah

    2015-12-01

    The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities. © 2015 John Wiley & Sons Ltd/CNRS.

  8. CFD simulations of a wind turbine for analysis of tip vortex breakdown

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.

    2016-09-01

    This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.

  9. Textile inspired flexible metamaterial with negative refractive index

    NASA Astrophysics Data System (ADS)

    Burgnies, L.; Lheurette, É.; Lippens, D.

    2015-04-01

    This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

  10. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  11. Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing.

    PubMed

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-06-10

    We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4)  W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9)  W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.

  12. Imaging the density distributions at the regional scale using full waveform and gravity data inversion - Application to the Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Chevrot, Sébastien; Wang, Yi; Spangenberg, Hannah; Goubet, Marie; Monteiller, Vadim; Komatitsch, Dimitri; Seoane, Lucia; Dufréchou, Grégory

    2017-04-01

    We present a hybrid inversion method that allows us to image density distributions at the regional scale using both seismic and gravity data. One main goal is to obtain densities and seismic wave velocities (P and S) in the lithosphere with a fine resolution to get important constraints on the mineralogic composition and thermal state of the lithosphere. In the context of the Pyrenees (located between Spain and France), accurate Vp and Vs seismic velocity models are computed first on a 3D spectral element grid at the scale of the Pyrenees by inverting teleseismic full waveforms. In a second step, Vp velocities are mapped to densities using empirical relations to build an a priori density model. BGI and BRGM Bouguer gravity anomaly data sets are then inverted on the same 3D spectral element grid as the Vp model at a resolution of 1-2 km by using high-order numerical integration formulae. Solutions are compared to those obtained using classical semi-analytical techniques. This procedure opens the possibility to invert both teleseismic and gravity data on the same finite-element grid. It can handle topography of the free surface in the same spectral-element distorted mesh that is used to solve the wave equation, without performing extra interpolations between different grids and models. WGS84 curvature, SRTM or ETOPO1 topographies are used.

  13. Development of V2G and G2V Power Profiles and Their Implications on Grid Under Varying Equilibrium of Aggregated Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Jain, Trapti

    2016-04-01

    The objective of this paper is to examine the vehicle-to-grid (V2G) power capability of aggregated electric vehicles (EV) in the manner that they are being adopted by the consumers with their growing infiltration in the vehicles market. The proposed modeling of V2G and grid-to-vehicle (G2V) energy profiles blends the heterogeneous attributes namely, driven mileages, arrival and departure times, travel and parking durations, and speed dependent energy consumption of mobility trends. Three penetration percentages of 25 %, 50 % and 100 % resulting in varied compositions of battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) in the system, as determined by the consumers' acceptance, have been considered to evaluate the grid capacity for V2G. Distinct charge-discharge powers have been selected as per charging standards to match contemporary vehicles and infrastructure requirements. Charging and discharging approaches have been devised to replicate non-linear characteristics of Li-ion battery. Effects of simultaneous conjunction of V2G and G2V power curves with daily conventional load profile are quantified drawn upon workplace-discharging home-charging scheme. Results demonstrated a marked drop in load and hence in market price during morning hours which is hurriedly overcompensated by the hike during evening hours with rising penetration level and charge-discharge power.

  14. Tracking the depleted mantle signature in melt inclusions and host glass of basaltic martian shergottites using secondary ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Economos, R. C.; Schmitt, A. K.; McKeegan, K. D.

    2013-12-01

    Trace element abundances of depleted shergottite magmas recorded by olivine-hosted melt inclusions (MI) and interstitial mesostasis glass were measured using the CAMECA ims-1270 ion microprobe. Two meteorites: Tissint, an olivine-phyric basaltic shergottite which fell over Morocco July 18th 2001; and the Antarctic meteorite Yamato 980459 (Y98), an olivine-phyric basaltic shergottite with abundant glassy mesostasis have been studied. Chondrite-normalized REE patterns for MI in Tissint and Y98 are characteristically LREE depleted and, within analytical uncertainty, parallel those of their respective whole rock composition; supporting each meteorite to represent a melt composition that has experienced closed-system crystallization. REE profiles for mesostasis glass in Y98 lie about an order of magnitude higher than those from the MI; with REE profiles for Tissint MI falling in between. Y98 MI have the highest average Sm/Nd and Y/Ce ratios, reflecting their LREE depletion and further supporting Y98 as one of our best samples to probe the depleted shergotitte mantle. In general, Zr/Nb ratios overlap between Y98 and Tissint MI, Ce/Nb ratios overlap between Y98 MI and mesostasis glass, and Sm/Nd ratios overlap between Y98 mesostasis glass and Tissint MI. These features support similar sources for both, but with subtle geochemical differences that may reflect different melting conditions or fractionation paths during ascent from the mantle. Interestingly, the REE patterns for all analyses in Y98 and possibly for those from Tissint as well display a flattening of the LREE that suggests an early crustal contribution to the shergottite mantle.

  15. Fully automatic and reference-marker-free image stitching method for full-spine and full-leg imaging with computed radiography

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Foos, David H.; Doran, James; Rogers, Michael K.

    2004-05-01

    Full-leg and full-spine imaging with standard computed radiography (CR) systems requires several cassettes/storage phosphor screens to be placed in a staggered arrangement and exposed simultaneously to achieve an increased imaging area. A method has been developed that can automatically and accurately stitch the acquired sub-images without relying on any external reference markers. It can detect and correct the order, orientation, and overlap arrangement of the subimages for stitching. The automatic determination of the order, orientation, and overlap arrangement of the sub-images consists of (1) constructing a hypothesis list that includes all cassette/screen arrangements, (2) refining hypotheses based on a set of rules derived from imaging physics, (3) correlating each consecutive sub-image pair in each hypothesis and establishing an overall figure-of-merit, (4) selecting the hypothesis of maximum figure-of-merit. The stitching process requires the CR reader to over scan each CR screen so that the screen edges are completely visible in the acquired sub-images. The rotational displacement and vertical displacement between two consecutive sub-images are calculated by matching the orientation and location of the screen edge in the front image and its corresponding shadow in the back image. The horizontal displacement is estimated by maximizing the correlation function between the two image sections in the overlap region. Accordingly, the two images are stitched together. This process is repeated for the newly stitched composite image and the next consecutive sub-image until a full-image composite is created. The method has been evaluated in both phantom experiments and clinical studies. The standard deviation of image misregistration is below one image pixel.

  16. Tracking the Depleted Mantle Signature in Melt Inclusions and Residual Glass of Basaltic Martian Shergottites using Secondary Ionization Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Peters, Timothy J.; Simon, Justin I.; Jones, John H.; Usui, Tomohiro; Economos, Rita C.; Schmitt, Axel K.; McKeegan, Kevin D.

    2013-01-01

    Trace element abundances of depleted shergottite magmas recorded by olivine-hosted melt inclusions (MI) and interstitial mesostasis glass were measured using the Cameca ims-1270 ion microprobe. Two meteorites: Tissint, an olivine-­phyric basaltic shergottite which fell over Morocco July 18th 2001; and the Antarctic meteorite Yamato 980459 (Y98), an olivine-phyric basaltic shergottite with abundant glassy mesostasis have been studied. Chondrite-­normalized REE patterns for MI in Tissint and Y98 are characteristically LREE depleted and, within analytical uncertainty, parallel those of their respective whole rock composition; supporting each meteorite to represent a melt composition that has experienced closed-­system crystallization. REE profiles for mesostasis glass in Y98 lie about an order of magnitude higher than those from the MI; with REE profiles for Tissint MI falling in between. Y98 MI have the highest average Sm/Nd and Y/Ce ratios, reflecting their LREE depletion and further supporting Y98 as one of our best samples to probe the depleted shergotitte mantle. In general, Zr/Nb ratios overlap between Y98 and Tissint MI, Ce/Nb ratios overlap between Y98 MI and mesostasis glass, and Sm/Nd ratios overlap between Y98 mesostasis glass and Tissint MI. These features support similar sources for both, but with subtle geochemical differences that may reflect different melting conditions or fractionation paths during ascent from the mantle. Interestingly, the REE patterns for both Y98 bulk and MI analyses display a flattening of the LREE that suggests a crustal contribution to the Y98 parent melt. This observation has important implications for the origins of depleted and enriched shergottites.

  17. Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation.

    PubMed

    Teoh, Joanne Ee Mei; An, Jia; Feng, Xiaofan; Zhao, Yue; Chua, Chee Kai; Liu, Yong

    2018-03-03

    In 4D printing research, different types of complex structure folding and unfolding have been investigated. However, research on cross-folding of origami structures (defined as a folding structure with at least two overlapping folds) has not been reported. This research focuses on the investigation of cross-folding structures using multi-material components along different axes and different horizontal hinge thickness with single homogeneous material. Tensile tests were conducted to determine the impact of multi-material components and horizontal hinge thickness. In the case of multi-material structures, the hybrid material composition has a significant impact on the overall maximum strain and Young's modulus properties. In the case of single material structures, the shape recovery speed is inversely proportional to the horizontal hinge thickness, while the flexural or bending strength is proportional to the horizontal hinge thickness. A hinge with a thickness of 0.5 mm could be folded three times prior to fracture whilst a hinge with a thickness of 0.3 mm could be folded only once prior to fracture. A hinge with a thickness of 0.1 mm could not even be folded without cracking. The introduction of a physical hole in the center of the folding/unfolding line provided stress relief and prevented fracture. A complex flower petal shape was used to successfully demonstrate the implementation of overlapping and non-overlapping folding lines using both single material segments and multi-material segments. Design guidelines for establishing cross-folding structures using multi-material components along different axes and different horizontal hinge thicknesses with single or homogeneous material were established. These guidelines can be used to design and implement complex origami structures with overlapping and non-overlapping folding lines. Combined overlapping folding structures could be implemented and allocating specific hole locations in the overall designs could be further explored. In addition, creating a more precise prediction by investigating sets of in between hinge thicknesses and comparing the folding times before fracture, will be the subject of future work.

  18. On The Aerodynamic Heating Of Vega Launcher: Compressible Chimera Navier-Stokes Simulation With Complex Surfaces

    NASA Astrophysics Data System (ADS)

    Di Mascio, A.; Zaghi, S.; Muscari, R.; Broglia, R.; Cavallini, E.; Favini, B.; Scaccia, A.

    2011-05-01

    The results of accurate compressible Navier-Stokes simulations of aerodynamic heating of the Vega launcher are presented. Three selected steady conditions of the Vega mission profile are considered: the first corresponding to the altitude of 18 km, the second to 25 km and the last to 33 km. The numerical code is based on the Favre- Average Navier-Stokes equations; the turbulent model chosen for closure is the one-equation model by Spalart- Allmaras. The equations are discretized by a finite volume approach, that can handle block-structured meshes with partial overlap (“Chimera” grid-overlapping technique). The isothermal boundary condition has been applied to the lancher wall. Particular care was devoted to the construction of the discrete model; indeed, the launcher is equipped with many protrusions and geometrical peculiarities (as antennas, raceways, inter-stage connection flanges and retrorockets) that are expected to affect considerably the local thermal flow-field and the level of heat fluxes, because the flow have to undergo strong variation in space; con- sequently, special attention was devoted to the definition of a tailored mesh, capable of catching local details of the aerothermal flow field (shocks, expansion fans, boundary layer, etc..). The computed results are reported together with uncertainty and actual convergence order, that were estimated by the standard procedures suggested by AIAA [Ame98].

  19. Surface characterization of current composites after toothbrush abrasion.

    PubMed

    Takahashi, Rena; Jin, Jian; Nikaido, Toru; Tagami, Junji; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2013-01-01

    The present study was designed to evaluate the surface roughness and the gloss of current composites before and after toothbrush abrasion. We assessed forty dimensionally standardized composite specimens (n=8/group) from five composites: two nanohybrids (i. e., IPS Empress Direct Enamel and IPS Empress Direct Dentin), two microhybrids (i. e., Clearfil AP-X and Filtek Z250) and one organically modified ceramics (Admira). All of the specimens were polished with 4000-grid silicon carbide papers. Surface roughness was measured with a profilometer and gloss was measured with a glossmeter before and after powered toothbrush abrasion with a 1:1 slurry (dentifrice/tap water) at 12,000 strokes in a toothbrush simulator. There was a significant increase in the surface roughness and a reduction in gloss after toothbrush abrasion in all of the composites except Clearfil AP-X (p<0.05). Simple regression analysis showed that there was not an association between the surface roughness and the gloss (R(2)=0.191, p<0.001).

  20. Comparative study of the fluorescence intensity of dental composites and human teeth submitted to artificial aging.

    PubMed

    Jablonski, Tatiana; Takahashi, Marcos Kenzo; Brum, Rafeal Torres; Rached, Rodrigo Nunes; Souza, Evelise M

    2014-01-01

    The aim of this study was to evaluate quantitatively the fluorescence of resin composites and human teeth, and to determine the stability of fluorescence after aging. Ten specimens were built using a 1 mm thick increment of dentin composite overlapped by a 0.5 mm thick increment of enamel composite. Ten sound human molars were sectioned and silicon carbide-polished to obtain enamel and dentin slabs 1.5 mm in thickness. Fluorescence measurements were carried out by a fluorescence spectrophotometer before and after thermocycling (2000 cycles, 5°C and 55°C). One-way analysis of variance (ANOVA) with repeated measures and Tukey's test were performed at a significance level of 5%. Most of the tested composites showed significant differences in fluorescence both before and after aging (P < 0.05). Opallis was the only composite whose fluorescence was similar to that of human teeth at both periods of evaluation (P > 0.05), and was the only composite that showed comparable results of fluorescence to the tooth structure before and after thermocycling. With the exception of Filtek Supreme, there were significant reductions in fluorescence intensity for all the tested composites (P < 0.05).

  1. A geometry-adaptive IB-LBM for FSI problems at moderate and high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tian, Fangbao; Xu, Lincheng; Young, John; Lai, Joseph C. S.

    2017-11-01

    An FSI framework combining the LBM and an improved IBM is introduced for FSI problems at moderate and high Reynolds numbers. In this framework, the fluid dynamics is obtained by the LBM. The FSI boundary conditions are handled by an improved IBM based on the feedback scheme where the feedback coefficient is mathematically derived and explicitly approximated. The Lagrangian force is divided into two parts: one is caused by the mismatching of the flow velocity and the boundary velocity at previous time step, and the other is caused by the boundary acceleration. Such treatment significantly enhances the numerical stability. A geometry-adaptive refinement is applied to provide fine resolution around the immersed geometries. The overlapping grids between two adjacent refinements consist of two layers. The movement of fluid-structure interfaces only causes adding or removing grids at the boundaries of refinements. Finally, the classic Smagorinsky large eddy simulation model is incorporated into the framework to model turbulent flows at relatively high Reynolds numbers. Several validation cases are conducted to verify the accuracy and fidelity of the present solver over a range of Reynolds numbers. Mr L. Xu acknowledges the support of the University International Postgraduate Award by University of New South Wales. Dr. F.-B. Tian is the recipient of an Australian Research Council Discovery Early Career Researcher Award (Project Number DE160101098).

  2. Composite armor, armor system and vehicle including armor system

    DOEpatents

    Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.

    2013-01-01

    Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.

  3. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  4. Structure-based receptor MIMICS targeted against bacterial superantigen toxins

    DOEpatents

    Gupta, Goutam [Santa Fe, NM; Hong-Geller, Elizabeth [Los Alamos, NM; Shiflett, Patrick R [Los Alamos, NM; Lehnert, Nancy M [Albuquerque, NM

    2009-08-18

    The invention provides therapeutic compositions useful in the treatment of bacterial superantigen mediated conditions, such as Toxic Shock Syndrome. The compositions comprise genetically engineered bifunctional polypeptides containing a specific T-cell receptor binding domain and a specific MHC class II receptor binding domain, each targeting non-overlapping epitopes on a superantigen molecule against which they are designed. The anti-superantigen "receptor mimetics" or "chimeras" are rationally designed to recreate the modality of superantigen binding directly to both the TCR and the MHC-II receptor, and are capable of acting as decoys for superantigen binding, effectively out-competing the host T-cell and MHC-II receptors, the natural host receptors.

  5. Rapid adhesive bonding of advanced composites and titanium

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.

    1985-01-01

    Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.

  6. A strategic outlook for coordination of ground-based measurement networks of atmospheric state variables and atmospheric composition

    NASA Astrophysics Data System (ADS)

    Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III

    2016-12-01

    There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery of records of essential climate variables to the global research community. There are aspects of underpinning research that are needed across all of these networks, such as laboratory spectroscopy, that often do not receive the attention they deserve. The presentation will also seek to identify where that underpinning research is lacking.

  7. Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions

    NASA Astrophysics Data System (ADS)

    Rocca, E.; Bourguignon, G.; Steinmetz, J.

    Since several years, lead calcium-based alloys have supplanted lead antimony alloys as structural materials for positive grids of lead-acid batteries in many applications, especially for VRLA batteries. Nevertheless, the positive grid corrosion probably remains one of the causes of rapid and premature failure of lead-acid batteries. The objective of the present study is to present a comprehensive study of the PbCaSn alloy corrosion in function of their composition, metallographic state and voltage conditions (discharge, overcharge, floating and cycling conditions). For that, four alloys PbCaSn x wt.% (x = 0, 0.6, 1.2, 2) were synthesized in two extreme metallurgical conditions and tested by four electrochemical lab-tests. Weight loss measurements and analyses by SEM, EPMA and XRD allowed to monitor the oxidation tests and to characterize the corrosion layers after the oxidation tests. The results show that the tin level in PbCaSn alloys should be adapted on the calcium concentration and the rate of overageing process, to maintain the beneficial effect of tin in service during the battery lifetime. According to our results, a Sn/Ca ratio of 2.5 gives good corrosion resistance in all potential conditions. Nevertheless, when tin level is too high, the corrosion layers can peel off from the metal, which involves a lack of cohesion between the collector and the paste, in cycling conditions. The anodic potential undergone by the metal is a second main factor determining the corrosion, especially the floating conditions and the frequency of deep discharge and overcharge. Thus the adjustment of the charge controller parameters of a battery system is a necessity to increase the lifetime of the grids and maintain a good rechargeability.

  8. Rutile TiO2 Flocculent Ripples with High Antireflectivity and Superhydrophobicity on the Surface of Titanium under 10 ns Laser Irradiation without Focusing.

    PubMed

    Pan, Aifei; Wang, Wenjun; Mei, Xuesong; Wang, Kedian; Yang, Xianbin

    2017-09-26

    We report on the formation of rutile TiO 2 flocculent laser-induced periodic surface structures (LIPSSs) with high antireflectivity and superhydrophobicity on the surface of titanium under 10 ns 1064 nm laser irradiation without focusing. The center part of the Gaussian laser beam is used to deposit flocculent structure and the edge part used to produce LIPSSs. The melt and modification thresholds of titanium were determined first, and then, the melt and modification spot-overlap numbers, several responsible for the formation of flocculent structure and LIPSSs, were introduced. It is found that both the melt and modification spot-overlap numbers increase with an increase in laser fluence and spot-overlap number, contributing to the production of flocculent LIPSSs. LIPSSs are obtained with the modification spot-overlap number above 300, and the amount of flocculent structures increases with an increase in the peak laser fluence and spot-overlap number. Then, considering that the fine adjustment of the melt and modification spot-overlop numbers in one-time line scanning is quite difficult, the composite structure, of which both LIPSSs and flocculent structures are distinct, was optimized using laser line scanning twice. On this basis, a characterization test shows the sample full of the flocculent LIPSSs represents best antireflectivity with the value around 10% in the waveband between 260 and 2600 nm (advance 5 times in infrared wavelengths compared to the initial titanium surface), and shows the no-stick hydrophobicity with the contact angle of 160° and roll-off angle of 25° because of the pure rutile phase of TiO 2 .

  9. Evaluating soil moisture constraints on surface fluxes in land surface models globally

    NASA Astrophysics Data System (ADS)

    Harris, Phil; Gallego-Elvira, Belen; Taylor, Christopher; Folwell, Sonja; Ghent, Darren; Veal, Karen; Hagemann, Stefan

    2016-04-01

    Soil moisture availability exerts a strong control over land evaporation in many regions. However, global climate models (GCMs) disagree on when and where evaporation is limited by soil moisture. Evaluation of the relevant modelled processes has suffered from a lack of reliable, global observations of land evaporation at the GCM grid box scale. Satellite observations of land surface temperature (LST) offer spatially extensive but indirect information about the surface energy partition and, under certain conditions, about soil moisture availability on evaporation. Specifically, as soil moisture decreases during rain-free dry spells, evaporation may become limited leading to increases in LST and sensible heat flux. We use MODIS Terra and Aqua observations of LST at 1 km from 2000 to 2012 to assess changes in the surface energy partition during dry spells lasting 10 days or longer. The clear-sky LST data are aggregated to a global 0.5° grid before being composited as a function dry spell day across many events in a particular region and season. These composites are then used to calculate a Relative Warming Rate (RWR) between the land surface and near-surface air. This RWR can diagnose the typical strength of short term changes in surface heat fluxes and, by extension, changes in soil moisture limitation on evaporation. Offline land surface model (LSM) simulations offer a relatively inexpensive way to evaluate the surface processes of GCMs. They have the benefits that multiple models, and versions of models, can be compared on a common grid and using unbiased forcing. Here, we use the RWR diagnostic to assess global, offline simulations of several LSMs (e.g., JULES and JSBACH) driven by the WATCH Forcing Data-ERA Interim. Both the observed RWR and the LSMs use the same 0.5° grid, which allows the observed clear-sky sampling inherent in the underlying MODIS LST to be applied to the model outputs directly. This approach avoids some of the difficulties in analysing free-running simulations in which land and atmosphere are coupled and, as such, it provides a flexible intermediate step in the assessment of surface processes in GCMs.

  10. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.

    2017-08-01

    I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars.

  11. Mean composite fire severity metrics computed with Google Earth engine offer improved accuracy and expanded mapping potential

    Treesearch

    Sean A. Parks; Lisa M. Holsinger; Morgan A. Voss; Rachel A. Loehman; Nathaniel P. Robinson

    2018-01-01

    Landsat-based fire severity datasets are an invaluable resource for monitoring and research purposes. These gridded fire severity datasets are generally produced with pre- and post-fire imagery to estimate the degree of fire-induced ecological change. Here, we introduce methods to produce three Landsat-based fire severity metrics using the Google Earth Engine (GEE)...

  12. Agent-Based Scientific Workflow Composition

    NASA Astrophysics Data System (ADS)

    Barker, A.; Mann, B.

    2006-07-01

    Agents are active autonomous entities that interact with one another to achieve their objectives. This paper addresses how these active agents are a natural fit to consume the passive Service Oriented Architecture which is found in Internet and Grid Systems, in order to compose, coordinate and execute e-Science experiments. A framework is introduced which allows an e-Science experiment to be described as a MultiAgent System.

  13. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  14. [Agricultural soil contamination from As and Cd and its responses to landscape heterogeneity at multiple scales in Guangzhou, China].

    PubMed

    Xu, Hui Qiu; Huang, Yin Hua; Wu, Zhi Feng; Cheng, Jiong; Li, Cheng

    2016-10-01

    Based on 641 agricultural top soil samples (0-20 cm) and land use map in 2005 of Guangzhou, we used single-factor pollution indices and Pearson/Spearman correlation and partial redundancy analyses and quantified the soil contamination with As and Cd and their relationships with landscape heterogeneity at three grid scales of 2 km×2 km, 5 km×5 km, and 10 km×10 km as well as the determinant landscape heterogeneity factors at a certain grid scale. 5.3% and 7.2% of soil samples were contaminated with As and Cd, respectively. At the three scales, the agricultural soil As and Cd contamination were generally significantly correlated with parent materials' composition, river/road density and landscape patterns of several land use types, indicating the parent materials, sewage irrigation and human activities (e.g., industrial and traffic activities, and the additions of pesticides and fertilizers) were possibly the main input pathways of trace metals. Three subsets of landscape heterogeneity variables (i.e., parent materials, distance-density variables, and landscape patterns) could explain 12.7%-42.9% of the variation of soil contamination with As and Cd, of which the explanatory power increased with the grid scale and the determinant factors varied with scales. Parent materials had higher contribution to the variations of soil contamination at the 2 and 10 km grid scales, while the contributions of landscape patterns and distance-density variables generally increased with the grid scale. Adjusting the distribution of cropland and optimizing the landscape pattern of land use types are important ways to reduce soil contamination at local scales, which urban planners and decision makers should pay more attention to.

  15. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  16. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to relate signal patterns in the 2D spectra and intensities of identifiable molecular moieties to variability in the temperature response of organic matter decomposition, as assessed by Q10. In conclusion, the characterization of SOM composition at the molecular level by solution-state 2D NMR spectroscopy is highly promising; it offers unprecedented possibilities to link SOM molecular composition to ecosystem processes, and their responses to environmental changes.

  17. Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Safavizadeh, Seyed Amirshayan

    The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.

  18. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams

    PubMed Central

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches. PMID:26934113

  19. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams.

    PubMed

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.

  20. Faunistic Composition, Ecological Properties, and Zoogeographical Composition of the Elateridae (Coleoptera) Family in the Western Black Sea Region of Turkey

    PubMed Central

    Kabalak, Mahmut; Sert, Osman

    2013-01-01

    The main aim of this study was to understand the faunistic composition, ecological properties, and zoogeographical composition of the family Elateridae (Coleoptera) of the Western Black Sea region of Turkey. As a result, 44 species belonging to 5 subfamilies and 19 genera were identified. After adding species reported in the literature to the analysis, the fauna in the research area consists of 6 subfamilies, 23 genera and 72 species. Most of the Elateridae fauna of the Western Black Sea region were classified in the subfamilies Elaterinae and Dendrometrinae. The genus Athous was the most species-rich genus. The species composition of the Elateridae fauna of the Western Black Sea region partially overlaps with the known Elateridae fauna of Turkey. The Western Black Sea region shares the most species with the European part of the Western Palaearctic region, including many of those in the Elateridae family, compared to other regions. Comparisons of the three geographical regions of Turkey show that fauna composition, ecological properties, and zoogeographical compositions of the Middle and Western Black Sea regions are more similar to each other than to those of the Central Anatolian region. PMID:24787627

  1. Fracture Behaviors of Sn-Cu Intermetallic Compound Layer in Ball Grid Array Induced by Thermal Shock

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhai, Dajun; Cao, Zhongming; Zhao, Mali; Pu, Yayun

    2014-02-01

    In this work, thermal shock reliability testing and finite-element analysis (FEA) of solder joints between ball grid array components and printed circuit boards with Cu pads were used to investigate the failure mechanism of solder interconnections. The morphologies, composition, and thickness of Sn-Cu intermetallic compounds (IMC) at the interface of Sn-3.0Ag-0.5Cu lead-free solder alloy and Cu substrates were investigated by scanning electron microscopy and transmission electron microscopy. Based on the experimental observations and FEA results, it can be recognized that the origin and propagation of cracks are caused primarily by the difference between the coefficient of thermal expansion of different parts of the packaged products, the growth behaviors and roughness of the IMC layer, and the grain size of the solder balls.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummon, M.; Kiliccote, S.

    Demand response (DR) resources present a potentially important source of grid flexibility however, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado "test system". We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating reserves: frequency regulation, contingency reserve, and flexibility (or ramping) reserve. There are significant variations in the availabilities of different types of DR resources, which affect bothmore » the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves.« less

  3. BOREAS Forest Cover Data Layers of the NSA in Raster Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David; Tuinhoff, Manning

    2000-01-01

    This data set was processed by BORIS staff from the original vector data of species, crown closure, cutting class, and site classification/subtype into raster files. The original polygon data were received from Linnet Graphics, the distributor of data for MNR. In the case of the species layer, the percentages of species composition were removed. This reduced the amount of information contained in the species layer of the gridded product, but it was necessary in order to make the gridded product easier to use. The original maps were produced from 1:15,840-scale aerial photography collected in 1988 over an area of the BOREAS NSA MSA. The data are stored in binary, image format files and they are available from Oak Ridge National Laboratory. The data files are available on a CD-ROM (see document number 20010000884).

  4. The Role of Persons as Organizing Categories in Social Cognition.

    DTIC Science & Technology

    1982-01-01

    person information, the observer is automatically aware of who the person is (thereby involving category descriminability ) and which person is being...four white males. These photographs were selected from Makio 1978, the Ohio State University yearbook. In addition to the overlap of racial and gender...Two of the bogus decks mimicked the racial /gender composition of High Discriminability decks and the other two, that of Low Discriminability decks

  5. Whispering gallery mode resonators based on radiation-sensitive materials

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor); Handley, Timothy A. (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators formed of radiation-sensitive materials to allow for permanent tuning of their resonance frequencies in a controlled manner. Two WGM resonators may be cascaded to form a composite filter to produce a second order filter function where at least one WGM resonator is formed a radiation-sensitive material to allow for proper control in the overlap of the two filter functions.

  6. Unlocking Short Read Sequencing for Metagenomics

    DOE PAGES

    Rodrigue, Sébastien; Materna, Arne C.; Timberlake, Sonia C.; ...

    2010-07-28

    We describe an experimental and computational pipeline yielding millions of reads that can exceed 200 bp with quality scores approaching that of traditional Sanger sequencing. The method combines an automatable gel-less library construction step with paired-end sequencing on a short-read instrument. With appropriately sized library inserts, mate-pair sequences can overlap, and we describe the SHERA software package that joins them to form a longer composite read.

  7. Transverse Momentum Distributions of Electron in Simulated QED Model

    NASA Astrophysics Data System (ADS)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  8. Derivative Analysis of Absorption Features in Hyperspectral Remote Sensing Data of Carbonate Sediments

    DTIC Science & Technology

    2002-12-30

    reflectance of carbonate sediments and application to shallow water benthic habitat classification,” Doctoral Dissertation, University of Miami. Chap.3...resolve overlapping features. A primary application has been to analyze pigment and chemical composition of leaves in order to track physiological...final absorption feature was observed at 630 nm, in a region associated with the biliprotein, phycocyanin [16,17]. As biliproteins are water soluble

  9. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  10. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    NASA Astrophysics Data System (ADS)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.

  11. Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes mediovitattus, a Dengue Competent Mosquito in Puerto Rico

    PubMed Central

    Little, Eliza; Barrera, Roberto; Seto, Karen C.; Diuk-Wasser, Maria

    2015-01-01

    Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning. PMID:21989642

  12. Less Unique Variance Than Meets the Eye: Overlap Among Traditional Neuropsychological Dimensions in Schizophrenia

    PubMed Central

    Dickinson, Dwight; Gold, James M.

    2008-01-01

    The magnitude of the overlap among dimensions of neuropsychological test performance in schizophrenia has been the subject of perennial controversy. This issue has taken on renewed importance with the recent focus on cognition as a treatment target in schizophrenia. A substantial body of factor analytic literature indicates that dimensions are separable in schizophrenia. However, this literature is generally uninformative as to whether the separable dimensions are independent, weakly correlated, or strongly correlated. Factor analyses have often used methods (ie, principal components analysis with orthogonal rotation) that preclude this determination, and correlations among factor-based domain composites and underlying measures have been reported infrequently in these studies. Current meta-analyses of reported “between-dimension” correlations for individual neuropsychological measures and for cognitive domain composite variables indicate that cognition variables in schizophrenia are correlated, on average, at a “medium” level of r = 0.37 for individual measures from different cognitive dimensions and r = 0.45 for domain composites. Because these are mean bivariate correlations, the multiple correlation of an individual measure with all the other measures in a cognitive battery is likely to be higher. Measure reliabilities of 0.80 or less also imply greater commonality among traditional neuropsychological measures. In short, there are underappreciated constraints on the amount of reliable cognitive performance variance in traditional neuropsychological test batteries that is free to vary independently. The ability of such batteries to reveal cognitive domain–specific treatment effects in schizophrenia may be much more limited than is generally assumed. PMID:17702991

  13. Dose comparison between conventional and quasi-monochromatic systems for diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Baldelli, P.; Taibi, A.; Tuffanelli, A.; Gambaccini, M.

    2004-09-01

    Several techniques have been introduced in the last year to reduce the dose to the patient by minimizing the risk of tumour induced by radiation. In this work the radiological potential of dose reduction in quasi-monochromatic spectra produced via mosaic crystal Bragg diffraction has been evaluated, and a comparison with conventional spectra has been performed for four standard examinations: head, chest, abdomen and lumbar sacral spine. We have simulated quasi-monochromatic x-rays with the Shadow code, and conventional spectra with the Spectrum Processor. By means of the PCXMC software, we have simulated four examinations according to parameters established by the European Guidelines, and calculated absorbed dose for principal organs and the effective dose. Simulations of quasi-monochromatic laminar beams have been performed without anti-scatter grid, because of their inherent scatter geometry, and compared with simulations with conventional beams with anti-scatter grids. Results have shown that the dose reduction due to the introduction of quasi-monochromatic x-rays depends on different parameters related to the quality of the beam, the organ composition and the anti-scatter grid. With parameters chosen in this study a significant dose reduction can be achieved for two out of four kinds of examination.

  14. Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D

    NASA Technical Reports Server (NTRS)

    Wolf, D. E.; Sinha, N.; Dash, S. M.

    1988-01-01

    Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D.

  15. Hafnium Isotopic Variations in Central Atlantic Intraplate Volcanism

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hanan, B. B.; Hoernle, K.; Blichert-Toft, J.

    2008-12-01

    Although one of the geochemically best investigated volcanic regions on Earth, almost no Hf isotopic data have been published from the broad belt of intraplate seamounts and islands in the East Atlantic between 25° and 36° N. This study presents 176Hf/177Hf ratios from 61 representative samples from the Canary, Selvagen and Madeira Islands and nearby large seamounts, encompassing the full range of different evolutionary stages and geochemical endmembers. The majority of samples have mafic, mainly basaltic compositions with Mg-numbers within or near the range of magmas in equilibrium with mantle olivine (68-75). No correlation was found between Mg-number and 176Hf/177Hf ratios in the data set. In comparison to observed Nd isotope variations published for this volcanic province (6 ɛNd units), 176Hf/177Hf ratios span a larger range (14 ɛHf units). Samples from the Madeira archipelago have the most radiogenic compositions (176Hf/177Hfm= 0.283132-0.283335), widely overlapping the field for central Atlantic N-MORB. They form a relatively narrow, elongated trend (stretching over >6 ɛHf units) between a radiogenic MORB-like endmember and a composition located on the Nd-Hf mantle array. In contrast, all Canary Islands samples plot below the mantle array (176Hf/177Hfm = 0.282943-0.283067) and, despite being from an archipelago that stretches over a much larger geographic area, form a much denser cluster with less compositional variation (~4 ɛHf units). All samples from the seamounts NE of the Canaries, proposed to belong to the same Canary hotspot track (e.g. Geldmacher et al., 2001, JVGR 111; Geldmacher et al., 2005, EPSL 237), fall within the Hf isotopic range of this cluster. The cluster largely overlaps the composition of the proposed common mantle endmember 'C' (Hanan and Graham, 1996, Science 272) but spans a space between a more radiogenic (depleted) composition and a HIMU-type endmember. Although samples of Seine and Unicorn seamounts, attributed to the Madeira hotspot track, show less radiogenic Hf and Nd isotope ratios than Madeira, their isotopic compositions lie along an extension of the Madeira trend in plots of Hf versus Sr, Nd, Pb isotopes. The new Hf isotope ratios confirm the existence of at least two geochemically distinct volcanic provinces (Canary and Madeira) in the East Atlantic as previously proposed.

  16. Finite element computation on nearest neighbor connected machines

    NASA Technical Reports Server (NTRS)

    Mcaulay, A. D.

    1984-01-01

    Research aimed at faster, more cost effective parallel machines and algorithms for improving designer productivity with finite element computations is discussed. A set of 8 boards, containing 4 nearest neighbor connected arrays of commercially available floating point chips and substantial memory, are inserted into a commercially available machine. One-tenth Mflop (64 bit operation) processors provide an 89% efficiency when solving the equations arising in a finite element problem for a single variable regular grid of size 40 by 40 by 40. This is approximately 15 to 20 times faster than a much more expensive machine such as a VAX 11/780 used in double precision. The efficiency falls off as faster or more processors are envisaged because communication times become dominant. A novel successive overrelaxation algorithm which uses cyclic reduction in order to permit data transfer and computation to overlap in time is proposed.

  17. Scheduling Results for the THEMIS Observation Scheduling Tool

    NASA Technical Reports Server (NTRS)

    Mclaren, David; Rabideau, Gregg; Chien, Steve; Knight, Russell; Anwar, Sadaat; Mehall, Greg; Christensen, Philip

    2011-01-01

    We describe a scheduling system intended to assist in the development of instrument data acquisitions for the THEMIS instrument, onboard the Mars Odyssey spacecraft, and compare results from multiple scheduling algorithms. This tool creates observations of both (a) targeted geographical regions of interest and (b) general mapping observations, while respecting spacecraft constraints such as data volume, observation timing, visibility, lighting, season, and science priorities. This tool therefore must address both geometric and state/timing/resource constraints. We describe a tool that maps geometric polygon overlap constraints to set covering constraints using a grid-based approach. These set covering constraints are then incorporated into a greedy optimization scheduling algorithm incorporating operations constraints to generate feasible schedules. The resultant tool generates schedules of hundreds of observations per week out of potential thousands of observations. This tool is currently under evaluation by the THEMIS observation planning team at Arizona State University.

  18. Application of parallel distributed Lagrange multiplier technique to simulate coupled Fluid-Granular flows in pipes with varying Cross-Sectional area

    DOE PAGES

    Kanarska, Yuliya; Walton, Otis

    2015-11-30

    Fluid-granular flows are common phenomena in nature and industry. Here, an efficient computational technique based on the distributed Lagrange multiplier method is utilized to simulate complex fluid-granular flows. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. The particle–particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEMmore » method with some modifications using the volume of an overlapping region as an input to the contact forces. Here, a parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library.« less

  19. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  20. Effects of bleed-hole geometry and plenum pressure on three-dimensional shock-wave/boundary-layer/bleed interactions

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1993-01-01

    A numerical study was performed to investigate 3D shock-wave/boundary-layer interactions on a flat plate with bleed through one or more circular holes that vent into a plenum. This study was focused on how bleed-hole geometry and pressure ratio across bleed holes affect the bleed rate and the physics of the flow in the vicinity of the holes. The aspects of the bleed-hole geometry investigated include angle of bleed hole and the number of bleed holes. The plenum/freestream pressure ratios investigated range from 0.3 to 1.7. This study is based on the ensemble-averaged, 'full compressible' Navier-Stokes (N-S) equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the ensemble-averaged N-S equations were obtained by an implicit finite-volume method using the partially-split, two-factored algorithm of Steger on an overlapping Chimera grid.

Top