NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.
1977-01-01
A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the QCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig over-speed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test.
Advanced organic composite materials for aircraft structures: Future program
NASA Technical Reports Server (NTRS)
1987-01-01
Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.
NASA Astrophysics Data System (ADS)
Duxbury, Geoffrey; Hay, Kenneth G.; Langford, Nigel; Johnson, Mark P.; Black, John D.
2011-09-01
It has been demonstrated that an intra-pulse scanned quantum cascade laser spectrometer may be used to obtain real-time diagnostics of the amounts of carbon monoxide, carbon dioxide, and water, in the exhaust of an aero gas turbine (turbojet) engine operated in a sea level test cell. Measurements have been made of the rapid changes in composition following ignition, the composition under steady state operating conditions, and the composition changes across the exhaust plume. The minimum detection limit for CO in a double pass through a typical gas turbine plume of 50 cm in diameter, with 0.4 seconds integration time, is approximately 2 ppm.
MoSi2-Base Structural Composite Passed Engine Test
NASA Technical Reports Server (NTRS)
Nathal, Michael V.; Hebsur, Mohan G.
1999-01-01
The intermetallic compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity; and it is easily machined. Past research at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus.
Erosion Coatings Developed to Increase the Life and Durability of Composites
NASA Technical Reports Server (NTRS)
Sutter, James K.; Naik, Subhash K.; Bowman, Cheryl L.; Siefker, Robert; Miyoshi, Kazuhisa; Perusek, Gail P.
2004-01-01
Both the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) have worked to develop and demonstrate erosion-resistant coatings that would increase the life and durability of composite materials used in commercial aircraft engines. These composite materials reduce component weight by 20 to 30 percent and result in less fuel burn and emissions and more fuel savings. Previously, however, their use was limited because of poor erosion resistance, which causes concerns about safety and leads to high maintenance costs. The coatings were tested by the University of Cincinnati, and the composites were manufactured by Texas Composites and coated by Engelhard and NASA Glenn. Rolls-Royce Corporation uses composite materials, which are stronger and less dense than steel or titanium, to make bypass vanes for their AE3007 engines. These engines are widely used in regional jet aircraft (Embraer) and unmanned air vehicles such as the Northrop Grumman Global Hawk. Coatings developed by NASA/Rolls-Royce can reduce erosion from abrasive materials and from impurities in the air that pass over these vanes, allowing Rolls-Royce to take advantage of the benefits of composite materials over titanium without the added costs of increased maintenance and/or engine failure. The Higher Operating Temperature Propulsion Components (HOTPC) Project developed cost-effective, durable coatings as part of NASA's goal to increase aviation system capacity growth. These erosion coatings will reduce the number of special inspections or instances of discontinued service due to erosion, allowing aircraft capacity to be maintained without inconveniencing the traveling public. A specific example of extending component life showed that these coatings increased the life of graphite fiber and polymer composite bypass vanes up to 8 times over that of the uncoated vanes. This increased durability allows components to operate to full design life without the fear of wear or failure. Recently, Rolls-Royce completed over 2000 hr of engine testing with the coated fan exit bypass vanes. There was no loss of coating after nearly 5000 typical engine cycles. Midway through the engine tests, the coated vanes were removed from the engine during a scheduled maintenance and inspection period. The vanes were shipped back to Glenn, where they underwent further stress testing in the Structural Dynamics Lab, mimicking more extreme conditions than those typical of the AE3007 engine cycle. These vanes were then replaced in the AE3007 and subjected to another 1000 hr of engine tests. Once again, there was no loss of coating and only a minimal appearance of cracking.
Genetic engineering of a mouse: Dr. Frank Ruddle and somatic cell genetics.
Jones, Dennis
2011-06-01
Genetic engineering is the process of modifying an organism's genetic composition by adding foreign genes to produce desired traits or evaluate function. Dr. Jon W. Gordon and Sterling Professor Emeritus at Yale Dr. Frank H. Ruddle were pioneers in mammalian gene transfer research. Their research resulted in production of the first transgenic animals, which contained foreign DNA that was passed on to offspring. Transgenic mice have revolutionized biology, medicine, and biotechnology in the 21st century. In brief, this review revisits their creation of transgenic mice and discusses a few evolving applications of their transgenic technology used in biomedical research.
MoSi2-Base Hybrid Composite Passed Engine Test
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Hebsur, Mohan
1998-01-01
The intermetallics compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity, and it is easily machined. Past research'at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) Particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 Composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus. The first tasks of the materials development effort were to develop improved processing methods to reduce costs and to use fine-diameter fibers that enable the manufacturing of complex shapes. Tape-casting methods were developed to fully infiltrate the fine SiC fibers with matrix powders. The resulting composites were hot pressed to 100-percent density. Composites with cross-plied fiber architectures with 30 vol. % hi-nicalon SiC fibers and 30 vol. % nitride particles are now made routinely and demonstrate a good balance of properties. The next task entailed the measurement of a wide variety of mechanical properties to confirm the suitability of this composite in engines. In particular, participants in this effort demonstrated that composites made with Hi-Nicalon fibers had strength and toughness properties equal to or better than those of the composites made with the large-diameter fibers that had been used previously. Another critically important property measured was impact resistance. Aircraft engine components require sufficient toughness to resist manufacturing defects, assembly damage, stress concentrations at notches, and foreign object damage. Engine company designers indicated that impact resistance would have to be measured before they would seriously consider these types of composites. The Charpy V-notch test was chosen to assess impact resistance, and both monolithic and composite versions Of MOSi2 were tested from -300 to 1400 C. The results (see the following graphs) show that nitride-particulate-reinforced MoSi2 exhibited impact resistance higher than that of many monolithic ceramics and intermetallics, and that the fiber-reinforced composites had even higher values, approaching that of cast superalloys.
Process of making carbon-carbon composites
NASA Technical Reports Server (NTRS)
Kowbel, Witold (Inventor); Withers, James C. (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor); Loutfy, Raouf O. (Inventor)
2000-01-01
A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.
Code of Federal Regulations, 2014 CFR
2014-07-01
... level and passing and failing criteria for selective enforcement audits. 90.510 Section 90.510....510 Compliance with acceptable quality level and passing and failing criteria for selective... failed engine is an engine whose final test results pursuant to § 90.509(b), for one or more of the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... level and passing and failing criteria for selective enforcement audits. 90.510 Section 90.510....510 Compliance with acceptable quality level and passing and failing criteria for selective... failed engine is an engine whose final test results pursuant to § 90.509(b), for one or more of the...
accelerating or when additional power is needed, the gasoline engine and electric motor are both used to propel . The car is passing another vehicle. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the battery to the electric engine to the front wheels. Main
40 CFR 1068.420 - How do I know when my engine family fails an SEA?
Code of Federal Regulations, 2010 CFR
2010-07-01
... regulated pollutant. (b) Continue testing engines/equipment until you reach a pass decision for all pollutants or a fail decision for one pollutant. (c) You reach a pass decision for the SEA requirements when... to this subpart for the total number of engines/equipment tested. You reach a fail decision for the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... Pass Transmission, LLC, to construct, operate, maintain, and connect a new electric transmission line... Mountain National Forest, and the Army Corps of Engineers, New England District, are cooperating agencies... information on the Army Corps of Engineers' permit [[Page 21339
Witt, Emitt C.; Adams, Craig; Wang, Jianmin; Shaver, David K.; Filali-Meknassi, Youssef
2007-01-01
Nearly 4 weeks after Hurricane Katrina passed through St. Bernard Parish, the U.S. Geological Survey's (USGS) Mid-Continent Geographic Science Center and the University of Missouri-Rolla's (UMR) Natural Hazard Mitigation Institute deployed a team of scientists to the region to collect perishable environmental and engineering data. The team collected 149 samples throughout the affected area to chemically characterize the Katrina depositional sediments. Preliminary results of this effort are presented here.
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-01
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-13
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.
NASA Technical Reports Server (NTRS)
Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)
1985-01-01
A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.
Boyle, Peter A.; Christ, Norman H.; Gara, Alan; Mawhinney, Robert D.; Ohmacht, Martin; Sugavanam, Krishnan
2012-12-11
A prefetch system improves a performance of a parallel computing system. The parallel computing system includes a plurality of computing nodes. A computing node includes at least one processor and at least one memory device. The prefetch system includes at least one stream prefetch engine and at least one list prefetch engine. The prefetch system operates those engines simultaneously. After the at least one processor issues a command, the prefetch system passes the command to a stream prefetch engine and a list prefetch engine. The prefetch system operates the stream prefetch engine and the list prefetch engine to prefetch data to be needed in subsequent clock cycles in the processor in response to the passed command.
NASA Astrophysics Data System (ADS)
Cottledge, Michael Christopher
Objective of the Study: The objective of this research study was to investigate whether an association exists between teacher demographic factors (years of teaching experience and gender), 2 educational factors (certification type and certification pathway) and the percent passing rate of tenth grade African American male students on the 2010 science TAKS. Answers to the following questions were sought: 1. Is there an association between teacher demographic factors and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS? 2. Is there an association between teacher educational factors and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS? 3. Is there an association between teacher demographic factors, educational factors and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS? Status of the Question: According to the Bureau of Labor Statistics (BLS), science and engineering jobs in the U.S. have increased steadily over recent years and by the year 2016 the number of STEM (Science, Technology, Engineering and Math) jobs will have grown by more than 21 percent. This increase in science and engineering jobs will double the growth rate of all other workforce sectors combined. The BLS also reports that qualified minority applicants needed to fill these positions will be few and far between. African Americans, Latinos, and other minorities constitute 24 percent of the U.S. population but only 13 percent of college graduates and just 10 percent of people with college degrees who work in science and engineering (Education Trust, 2009). Drawing on the above information, I proposed the following hypotheses to the research questions: H01: There will be no significant statistical association between the demographic factors teacher gender and years of teaching experience and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS. H02: There will be no significant statistical association between the educational factors teacher certification type (composite or content specific) and teacher certification pathway and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS. H03: There will be no significant statistical association between a teachers' demographic factors, educational factors and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS. The researcher employed the assistance of the human resource departments of participating districts to generate a demographic report identifying the sex, years of experience, certification types and pathways of the teachers of record for African American male students who took the 10th grade Science TAKS during the 2009-2010 school year. Data ascertained from the demographic report was entered in the Statistical Package for the Social Sciences Software (SPSS). A linear regression statistical analysis was used to establish the following: 1). the degree of association between demographic factors and the percent passing rate of their African American male students on the 10th grade science TAKS , 2) the degree of association between educational factors and the percent passing rate of their African American male students on the 10th grade science TAKS, 3) the degree of association between demographic and educational factors and the percent passing rate of their African American male students on the 10th grade science TAKS Conclusion: Constantine et al (2009) concluded that although individual teachers appear to have an effect on student achievement, their study could not identify what about a teacher affects student achievement. Similar to Constatine, the researcher did not find any association between the demographic and educational factors of teachers and the science academic achievement of African American males. (Abstract shortened by UMI.)
Transpiration Cooling Experiment
NASA Technical Reports Server (NTRS)
Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.
1997-01-01
The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.
1992-04-01
Sanda, CECW-EG SOUTH PACIFIC DIVISION Mr. Jaime R. Merino, CESPD-ED-W BOARD OF ENGINEERS FOR RIVERS Mr. Jeffrey C. Cole, CESPN-PE-W AND HARBORS Mr...areas. 68 Coastal areas experiencing erosion and economic loss include: a. Sabine Pass to Rollover Pass/Highway 87. In the fall of 1989, the State... Sabine Pass. The closure was prompted by the dangerous conditions resulting from erosion along the highway. In some areas, the highway lies at the
Test Stand at the Rocket Engine Test Facility
1973-02-21
The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.
Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Cheng, Xiang; Tan, Haishu
2016-01-01
In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.
NASA Astrophysics Data System (ADS)
Srivastava, Manu; Rathee, Sandeep; Maheshwari, Sachin; Siddiquee, Arshad Noor
2018-06-01
Friction stir processing (FSP) is a relatively newly developed solid-state process involving surface modifications for fabricating metal matrix surface composites. Obtaining metal matrix nano-composites with uniform dispersion of reinforcement particles via FSP route is an intricate task to accomplish. In this work, AA5059/SiC nano surface composites (SCs) were developed. Effect of multiple FSP passes and SiC addition on microstructure and mechanical properties of fabricated SCs during underwater condition was investigated. Results reflected that the average microhardness value of base metal (BM) increases from 85 Hv to 159 Hv in stir zone of four pass underwater friction stir processed (FSPed) SC. Highest ultimate tensile strength (UTS) achieved during four pass FSPed sample was 377 MPa that is higher than UTS of BM (321 MPa) and four pass FSPed sample developed at ambient air FSP conditions (347 MPa). An appreciably narrower heat affected zone is obtained owing to fast cooling and reduced heat conduction during underwater FSP, amounting to higher UTS as compared to BM and SC at ambient conditions. Thus, it can be concluded that surrounding medium and number of FSP passes have significant impact on mechanical properties of fabricated SCs. Analysis of microstructures and distribution of SiC particles in fabricated SCs were studied by optical microscope and FESEM respectively and found in good corroboration with the mechanical properties.
Weaving multi-layer fabrics for reinforcement of engineering components
NASA Technical Reports Server (NTRS)
Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.
1993-01-01
The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.
Del Mar, P.
1993-12-28
A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.
NASA Astrophysics Data System (ADS)
Derakhshandeh-Haghighi, Reza; Jenabali Jahromi, Seyed Ahmad
2016-02-01
The wear behavior of aluminum matrix composite powder with varying concentration of nano alumina particles, which was consolidated by equal-channel angular pressing (ECAP) at different passes, was determined by applying, 10 and 46 N loads, using a pin-on-disk machine. Optical and electronic microscopy, EDX analysis, and hardness measurement were performed in order to characterize the worn samples. The relative density of the samples after each pass of ECAP was determined using Archimedes principle. Within the studied range of loads, the wear loss decreased by increasing the number of ECAP passes.
Ballistic Impact of Braided Composites With a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw; Xie, Ming; Braley, Mike
2004-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Use of a soft projectile allows a large amount of kinetic energy to be transferred into strain energy in the target before penetration occurs. Failure modes were identified for flat aluminum plates and for flat composite plates made from a triaxial braid having a quasi-isotropic fiber architecture with fibers in the 0 and +/- 60 deg. directions. For the aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate to the fixed boundaries. For the composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/- 60 deg. fiber directions until triangular flaps opened to allow the projectile to pass through the plate. The damage size was only slightly larger than the initial impact area. It was difficult to avoid slipping of the fixed edges of the plates during impact, and slipping was shown to have a large effect on the penetration threshold. Failure modes were also identified for composite half-rings fabricated with the 0 deg. fibers aligned circumferentially. Slipping of the edges was not a problem in the half-ring tests. For the composite half-rings, fiber tensile failure also occurred in the back ply. However, cracks initially propagated from this site in a direction transverse to the 0 deg. fibers. The cracks then turned to follow the +/- 60 deg. fibers for a short distance before turning again to follow 0 deg. fibers until two approximately rectangular flaps opened to allow the projectile to pass through the plate. The damage size in the composite half-rings was also only slightly larger than the initial impact area. Cracks did not propagate to the boundaries, and no delamination was observed. The damage tolerance demonstrated by the quasi-isotropic triaxial braid composites indicate that composites of this type can reasonably be considered as a lightweight alternative to metals for fan cases in commercial jet engines.
Park, Yoon Soo; Lineberry, Matthew; Hyderi, Abbas; Bordage, Georges; Xing, Kuan; Yudkowsky, Rachel
2016-11-01
Medical schools administer locally developed graduation competency examinations (GCEs) following the structure of the United States Medical Licensing Examination Step 2 Clinical Skills that combine standardized patient (SP)-based physical examination and the patient note (PN) to create integrated clinical encounter (ICE) scores. This study examines how different subcomponent scoring weights in a locally developed GCE affect composite score reliability and pass-fail decisions for ICE scores, contributing to internal structure and consequential validity evidence. Data from two M4 cohorts (2014: n = 177; 2015: n = 182) were used. The reliability of SP encounter (history taking and physical examination), PN, and communication and interpersonal skills scores were estimated with generalizability studies. Composite score reliability was estimated for varying weight combinations. Faculty were surveyed for preferred weights on the SP encounter and PN scores. Composite scores based on Kane's method were compared with weighted mean scores. Faculty suggested weighting PNs higher (60%-70%) than the SP encounter scores (30%-40%). Statistically, composite score reliability was maximized when PN scores were weighted at 40% to 50%. Composite score reliability of ICE scores increased by up to 0.20 points when SP-history taking (SP-Hx) scores were included; excluding SP-Hx only increased composite score reliability by 0.09 points. Classification accuracy for pass-fail decisions between composite and weighted mean scores was 0.77; misclassification was < 5%. Medical schools and certification agencies should consider implications of assigning weights with respect to composite score reliability and consequences on pass-fail decisions.
Damage-Tolerant Fan Casings for Jet Engines
NASA Technical Reports Server (NTRS)
2006-01-01
All turbofan engines work on the same principle. A large fan at the front of the engine draws air in. A portion of the air enters the compressor, but a greater portion passes on the outside of the engine this is called bypass air. The air that enters the compressor then passes through several stages of rotating fan blades that compress the air more, and then it passes into the combustor. In the combustor, fuel is injected into the airstream, and the fuel-air mixture is ignited. The hot gasses produced expand rapidly to the rear, and the engine reacts by moving forward. If there is a flaw in the system, such as an unexpected obstruction, the fan blade can break, spin off, and harm other engine components. Fan casings, therefore, need to be strong enough to contain errant blades and damage-tolerant to withstand the punishment of a loose blade-turned-projectile. NASA has spearheaded research into improving jet engine fan casings, ultimately discovering a cost-effective approach to manufacturing damage-tolerant fan cases that also boast significant weight reduction. In an aircraft, weight reduction translates directly into fuel burn savings, increased payload, and greater aircraft range. This technology increases safety and structural integrity; is an attractive, viable option for engine manufacturers, because of the low-cost manufacturing; and it is a practical alternative for customers, as it has the added cost saving benefits of the weight reduction.
McCrea, Simon M
2009-01-01
Alexander Luria's model of the working brain consisting of three functional units was formulated through the examination of hundreds of focal brain-injury patients. Several psychometric instruments based on Luria's syndrome analysis and accompanying qualitative tasks have been developed since the 1970s. In the mid-1970s, JP Das and colleagues defined a specific cognitive processes model based directly on Luria's two coding units termed simultaneous and successive by studying diverse cross-cultural, ability, and socioeconomic strata. The cognitive assessment system is based on the PASS model of cognitive processes and consists of four composite scales of Planning-Attention-Simultaneous-Successive (PASS) devised by Naglieri and Das in 1997. Das and colleagues developed the two new scales of planning and attention to more closely model Luria's theory of higher cortical functions. In this paper a theoretical review of Luria's theory, Das and colleagues elaboration of Luria's model, and the neural correlates of PASS composite scales based on extant studies is summarized. A brief empirical study of the neuropsychological specificity of the PASS composite scales in a sample of 33 focal cortical stroke patients using cluster analysis is then discussed. Planning and simultaneous were sensitive to right hemisphere lesions. These findings were integrated with recent functional neuroimaging studies of PASS scales. In sum it was found that simultaneous is strongly dependent on dual bilateral occipitoparietal interhemispheric coordination whereas successive demonstrated left frontotemporal specificity with some evidence of interhemispheric coordination across the prefrontal cortex. Hence, support for the validity of the PASS composite scales was found as well as for the axiom of the independence of code content from code type originally specified in 1994 by Das, Naglieri, and Kirby.
A review and empirical study of the composite scales of the Das–Naglieri cognitive assessment system
McCrea, Simon M
2009-01-01
Alexander Luria’s model of the working brain consisting of three functional units was formulated through the examination of hundreds of focal brain-injury patients. Several psychometric instruments based on Luria’s syndrome analysis and accompanying qualitative tasks have been developed since the 1970s. In the mid-1970s, JP Das and colleagues defined a specific cognitive processes model based directly on Luria’s two coding units termed simultaneous and successive by studying diverse cross-cultural, ability, and socioeconomic strata. The cognitive assessment system is based on the PASS model of cognitive processes and consists of four composite scales of Planning–Attention–Simultaneous–Successive (PASS) devised by Naglieri and Das in 1997. Das and colleagues developed the two new scales of planning and attention to more closely model Luria’s theory of higher cortical functions. In this paper a theoretical review of Luria’s theory, Das and colleagues elaboration of Luria’s model, and the neural correlates of PASS composite scales based on extant studies is summarized. A brief empirical study of the neuropsychological specificity of the PASS composite scales in a sample of 33 focal cortical stroke patients using cluster analysis is then discussed. Planning and simultaneous were sensitive to right hemisphere lesions. These findings were integrated with recent functional neuroimaging studies of PASS scales. In sum it was found that simultaneous is strongly dependent on dual bilateral occipitoparietal interhemispheric coordination whereas successive demonstrated left frontotemporal specificity with some evidence of interhemispheric coordination across the prefrontal cortex. Hence, support for the validity of the PASS composite scales was found as well as for the axiom of the independence of code content from code type originally specified in 1994 by Das, Naglieri, and Kirby. PMID:22110322
Code of Federal Regulations, 2011 CFR
2011-07-01
... level and passing and failing criteria for selective enforcement audits. 91.608 Section 91.608... with acceptable quality level and passing and failing criteria for selective enforcement audits. (a) The prescribed acceptable quality level is 40 percent. (b) A failed engine is one whose final test...
Code of Federal Regulations, 2013 CFR
2013-07-01
... level and passing and failing criteria for selective enforcement audits. 89.510 Section 89.510... Compliance with acceptable quality level and passing and failing criteria for selective enforcement audits. (a) The prescribed acceptable quality level is 40 percent. (b) A failed engine is one whose final...
Code of Federal Regulations, 2014 CFR
2014-07-01
... level and passing and failing criteria for selective enforcement audits. 89.510 Section 89.510... Compliance with acceptable quality level and passing and failing criteria for selective enforcement audits. (a) The prescribed acceptable quality level is 40 percent. (b) A failed engine is one whose final...
Code of Federal Regulations, 2014 CFR
2014-07-01
... level and passing and failing criteria for selective enforcement audits. 91.608 Section 91.608... with acceptable quality level and passing and failing criteria for selective enforcement audits. (a) The prescribed acceptable quality level is 40 percent. (b) A failed engine is one whose final test...
Code of Federal Regulations, 2013 CFR
2013-07-01
... level and passing and failing criteria for selective enforcement audits. 91.608 Section 91.608... with acceptable quality level and passing and failing criteria for selective enforcement audits. (a) The prescribed acceptable quality level is 40 percent. (b) A failed engine is one whose final test...
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.
2010-01-01
This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed
No-passing zone system: user's manual.
DOT National Transportation Integrated Search
2016-08-01
This Users Manual is intended for traffic engineers and technicians who will be either conducting passing sight distance : measurement runs in the field or processing the collected data in the office. This Users Manual includes: : - A descripti...
Divided Combustion Chamber Gasoline Engines - A Review for Emissions and Efficiency
ERIC Educational Resources Information Center
Bascunana, Jose L.
1974-01-01
Describes characteristic designs of the engine. Data for fuel economy and emission are presented. Data show that automobiles equipped with one of the engines described have passed the 1975 Federal Emissions Standards. (SLH)
Stirling cycle engine and refrigeration systems
NASA Technical Reports Server (NTRS)
Higa, W. H. (Inventor)
1976-01-01
A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.
Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman
2011-11-07
High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.
Single event upset protection circuit and method
Wallner, John; Gorder, Michael
2016-03-22
An SEU protection circuit comprises first and second storage means for receiving primary and redundant versions, respectively, of an n-bit wide data value that is to be corrected in case of an SEU occurrence; the correction circuit requires that the data value be a 1-hot encoded value. A parity engine performs a parity operation on the n bits of the primary data value. A multiplexer receives the primary and redundant data values and the parity engine output at respective inputs, and is arranged to pass the primary data value to an output when the parity engine output indicates `odd` parity, and to pass the redundant data value to the output when the parity engine output indicates `even` parity. The primary and redundant data values are suitably state variables, and the parity engine is preferably an n-bit wide XOR or XNOR gate.
Del Mar, Peter
1995-01-01
A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.
Mar, Peter D.
1994-01-01
A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.
23 CFR 650.309 - Qualifications of personnel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive... Accreditation Board for Engineering and Technology; (ii) Successfully passed the National Council of Examiners...
23 CFR 650.309 - Qualifications of personnel.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Safety Inspector under the National Society of Professional Engineer's program for National Certification in Engineering Technologies (NICET) and have successfully completed an FHWA approved comprehensive... Accreditation Board for Engineering and Technology; (ii) Successfully passed the National Council of Examiners...
Table-driven image transformation engine algorithm
NASA Astrophysics Data System (ADS)
Shichman, Marc
1993-04-01
A high speed image transformation engine (ITE) was designed and a prototype built for use in a generic electronic light table and image perspective transformation application code. The ITE takes any linear transformation, breaks the transformation into two passes and resamples the image appropriately for each pass. The system performance is achieved by driving the engine with a set of look up tables computed at start up time for the calculation of pixel output contributions. Anti-aliasing is done automatically in the image resampling process. Operations such as multiplications and trigonometric functions are minimized. This algorithm can be used for texture mapping, image perspective transformation, electronic light table, and virtual reality.
Low Temperature Cure Powder Coatings
2013-05-01
operations Minimize worker exposure to VOCs, HAPs, and hexavalent chrome Passed objective AF Engr Qual Plan = Air Force Engineer Quality Plan MIL-PRF...Inconclusive • Inconclusive • Not applicable (N/A) • Passed criteria Reduction of hexavalent chromium use • Passed objective Reduction of hazardous...compliance. The implementation of the OSHA Final Rule designating the permissible exposure limit (PEL) for hexavalent chromium is a significant
Personal Academic Strategies for Success (PASS) Tool Administrator’s User Manual
2013-12-01
Personal Academic Strategies for Success (PASS) Tool Administrator’s User Manual by Jim H. Hewson, Valerie J. Rice, and Petra Alfred ARL...SR-275 December 2013 Personal Academic Strategies for Success (PASS) Tool Administrator’s User Manual Jim H. Hewson Career Management...Associates ( CMA ) Valerie J. Rice and Petra Alfred Human Research and Engineering Directorate, ARL
NASA Astrophysics Data System (ADS)
Allan, J. D.; Alfarra, M. R. R.; Whitehead, J.; McFiggans, G.; Kong, S.; Harrison, R. M.; Alam, M. S.; Hamilton, J. F.; Pereira, K. L.; Holmes, R. E.
2014-12-01
Around 1 in 3 light duty vehicles in the UK use diesel engines, meaning that on-road emissions of particulates, NOx and VOCs and subsequent chemical processes are substantially different to countries where gasoline engines dominate. As part of the Natural Environment Research Council (NERC) Com-Part project, emissions from a diesel engine dynamometer rig representative of the EURO 4 standard were studied. The exhaust was passed to the Manchester aerosol chamber, which consists of an 18 m3 teflon bag and by injecting a sample of exhaust fumes into filtered and chemically scrubbed air, a controllable dilution can be performed and the sample held in situ for analysis by a suite of instruments. The system also allows the injection of other chemicals (e.g. ozone, additional VOCs) and the initiation of photochemistry using a bank of halogen bulbs and a filtered Xe arc lamp to simulate solar light. Because a large volume of dilute emissions can be held for a period of hours, this permits a wide range of instrumentation to be used and relatively slow processes studied. Furthermore, because the bag is collapsible, the entire particulate contents can be collected on a filter for offline analysis. Aerosol microphysical properties are studied using a Scanning Mobility Particle Sizer (SMPS) and Centrifugal Particle Mass Analyser (CPMA); aerosol composition using a Soot Particle Aerosol Mass Spectrometer (SP-AMS), Single Particle Soot Photometer (SP2), Sunset Laboratories OC EC analyser and offline gas- and high performance liquid chromatography (employing advanced mass spectrometry such as ion trap and fourier transform ion cyclotron resonance); VOCs using comprehensive 2D gas chromatography; aerosol optical properties using a Cavity Attenuated Phase Shift Single Scattering Albedo monitor (CAPS-PMSSA), 3 wavelength Photoacoustic Soot Spectrometer (PASS-3) and Multi Angle Absorption Photometer (MAAP); particle hygroscopcity using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) and monodisperse Cloud Condensation Nuclei counter (CCN); and measurements of ozone, NOx and CO2. Here we present the first results, where we explored the trends as a function of engine speed, load, exhaust treatment (an oxidizing catalytic converter), dilution factor and exposure to light.
NASA Technical Reports Server (NTRS)
Orr, James K.
2010-01-01
This presentation has shown the accomplishments of the PASS project over three decades and highlighted the lessons learned. Over the entire time, our goal has been to continuously improve our process, implement automation for both quality and increased productivity, and identify and remove all defects due to prior execution of a flawed process in addition to improving our processes following identification of significant process escapes. Morale and workforce instability have been issues, most significantly during 1993 to 1998 (period of consolidation in aerospace industry). The PASS project has also consulted with others, including the Software Engineering Institute, so as to be an early evaluator, adopter, and adapter of state-of-the-art software engineering innovations.
NASA Astrophysics Data System (ADS)
Jitsuhiro, Takatoshi; Toriyama, Tomoji; Kogure, Kiyoshi
We propose a noise suppression method based on multi-model compositions and multi-pass search. In real environments, input speech for speech recognition includes many kinds of noise signals. To obtain good recognized candidates, suppressing many kinds of noise signals at once and finding target speech is important. Before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Noise suppression is frame-synchronously performed using the multiple models selected by recognized label sequences with time alignments. We evaluated this method using the E-Nightingale task, which contains voice memoranda spoken by nurses during actual work at hospitals. The proposed method obtained higher performance than the conventional method.
JB-300: An advanced medium size transport for 2005
NASA Technical Reports Server (NTRS)
Debrouwer, Giles; Graham, Katherine; Ison, Jim; Juarez, Vince; Moskalik, Steve; Pankonin, Jon; Weinstein, Arnold
1993-01-01
In the fall of 1992, the TAC Team was presented with a Request for Proposal (PFP) for a mid-size (250-350 passenger) commercial transport. The aircraft was to be extremely competitive in the areas of passenger comfort, performance, and economic aspects. Through the use of supercritical airfoils, a technologically advanced Very High By-pass Ratio (VHBR) turbofan engine, a low overall drag configuration, a comparable interior layout, and mild use of composites, the JB-300 offers an economically viable choice to the airlines. The cents per passenger mile of the JB-300 is 1.76, which is considerably lower than current aircraft in the same range. Overall, the JB-300 is a technologically advanced aircraft, which will meet the demands of the 21st century.
1977-08-01
A workman reams holes to the proper size and aligment in the Space Shuttle Main Engine's main injector body, through which propellants will pass through on their way into the engine's combustion chamber. Rockwell International's Rocketdyne Division plant produced the engines under contract to the Marshall Space Flight Center.
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.
Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2018-05-01
The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.
Characteristics of aerosol particles and trace gases in ship exhaust plumes
NASA Astrophysics Data System (ADS)
Drewnick, F.; Diesch, J.; Borrmann, S.
2011-12-01
Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high-sulfur fuel, the chemical submicron aerosol fraction is mainly composed of hydrocarbon-like organic aerosol (HOA) species. These include PAHs that are adsorbed onto the high number of ultrafine particles. Nevertheless, the chemical composition, typical particle sizes as well as emitted gaseous components vary substantially dependent on the engine or ship type, engine operation condition and fuel mixture. This results in cargo vessels compared to tankers, passenger ships and river boats being the largest polluters influencing the Elbe shipping lane areas by high amounts of NOx, SO2, CO2, PAH, BC and ultrafine particulate matter. The tropospheric ozone chemistry in this area is also substantially affected particularly due to the increasing number of Elbe-passing ships. As onshore regions can be influenced by aged shipping plumes, trajectory pathways and transportation times were examined. As a consequence of the plumes' aging, variations of the organic fraction of the mass spectral fingerprints were found. Eyring, V. et al. (2010), Atmospheric Environment, 44, 4735-4771.
14 CFR 63.39 - Skill requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... simulator, or in an approved flight engineer training device, show that he can satisfactorily perform... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of...
14 CFR 63.39 - Skill requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... simulator, or in an approved flight engineer training device, show that he can satisfactorily perform... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of...
Main stage: See through car with battery, engine, generator, power split device, and electric motor the power split device to the front wheels. Main stage: See through car with battery, engine : See through car with battery, engine, generator, power split device, and electric motor visible while
46 CFR 119.430 - Engine exhaust pipe installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used for... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it passes...
46 CFR 119.430 - Engine exhaust pipe installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... prevent backflow of water from reaching engine exhaust ports under normal conditions. (d) Pipes used for... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it passes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, X.G.; Ying, T.
Nano-SiCp/AZ91 magnesium matrix composite was fabricated by stir casting. The as-cast ingots were extruded at 350 °C, then processed by equal channel angular pressing (ECAP) at various temperatures (250 °C, 300 °C and 350 °C). Grains are significantly refined after the extrusion and the ECAP. A basal fibre texture was detected by neutron diffraction after the extrusion, which inclines about 45° to the extrusion direction (ED) after the ECAP. Nano-scaled SiC particles agglomerate in the as-cast composite. After the extrusion, the agglomeration tends to form continuous or discontinuous strips along the extrusion direction. By application of the ECAP, the agglomeratedmore » SiC particles are partly dispersed and the strips formed during the extrusion tend to be thinner and broken with the increasing pass number. The yield tensile strength (YTS) and the ultimate tensile strength (UTS) of the composite are dramatically increased after the extrusion. ECAP for one pass at various temperatures further increases the strength, however, the YTS decreases with the increasing ECAP temperature and the pass number. The Orowan equations predict the maximum YTS of the composite may be up to 400 MPa providing SiC particles are homogenously distributed in the matrix. - Highlights: •Nano-scaled SiC particles were successfully added into AZ91 by stirring casting. •Agglomeration of nano-particles were improved by extrusion and ECAP. •Yield strength of the composite is 328 MPa after one pass of ECAP. •Further ECAP process with optimized parameters may fully disperse nano-particles. •Yield strength is predicted to up to 400 MPa when particles are fully dispersed.« less
46 CFR 182.430 - Engine exhaust pipe installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be so arranged as to prevent backflow of water from reaching engine exhaust ports under normal... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it passes...
NASA Astrophysics Data System (ADS)
Mijiyawa, Faycal
Cette etude permet d'adapter des materiaux composites thermoplastiques a fibres de bois aux engrenages, de fabriquer de nouvelles generations d'engrenages et de predire le comportement thermique de ces engrenages. Apres une large revue de la litterature sur les materiaux thermoplastiques (polyethylene et polypropylene) renforces par les fibres de bois (bouleau et tremble), sur la formulation et l'etude du comportement thermomecanique des engrenages en plastique-composite; une relation a ete etablie avec notre presente these de doctorat. En effet, beaucoup d'etudes sur la formulation et la caracterisation des materiaux composites a fibres de bois ont ete deja realisees, mais aucune ne s'est interessee a la fabrication des engrenages. Les differentes techniques de formulation tirees de la litterature ont facilite l'obtention d'un materiau composite ayant presque les memes proprietes que les materiaux plastiques (nylon, acetal...) utilises dans la conception des engrenages. La formulation des materiaux thermoplastiques renforces par les fibres de bois a ete effectuee au Centre de recherche en materiaux lignocellulosiques (CRML) de l'Universite du Quebec a Trois-Rivieres (UQTR), en collaboration avec le departement de Genie Mecanique, en melangeant les composites avec deux rouleaux sur une machine de type Thermotron-C.W. Brabender (modele T-303, Allemand) ; puis des pieces ont ete fabriquees par thermocompression. Les thermoplastiques utilises dans le cadre de cette these sont le polypropylene (PP) et le polyethylene haute densite (HDPE), avec comme renfort des fibres de bouleau et de tremble. A cause de l'incompatibilite entre la fibre de bois et le thermoplastique, un traitement chimique a l'aide d'un agent de couplage a ete realise pour augmenter les proprietes mecaniques des materiaux composites. Pour les composites polypropylene/bois : (1) Les modules elastiques et les contraintes a la rupture en traction des composites PP/bouleau et PP/tremble evoluent lineairement en fonction du taux de fibres, avec ou sans agent de couplage (Maleate de polypropylene MAPP). De plus, l'adherence entre les fibres de bois et le plastique est amelioree en utilisant seulement 3 % MAPP, entrainant donc une augmentation de la contrainte maximale bien qu'aucun effet significatif ne soit observe sur le module d'elasticite. (2) Les resultats obtenus montrent que, en general, les proprietes en traction des composites polypropylene/bouleau, polypropylene/tremble et polypropylene/bouleau/ tremble sont tres semblables. Les composites plastique-bois (WPCs), en particulier ceux contenant 30 % et 40 % de fibres, ont des modules elastiques plus eleves que certains plastiques utilises dans l'application des engrenages (ex. Nylon). Pour les composites polyethylene/bois, avec 3%Maleate de polyethylene (MAPE): (1) Tests de traction : le module elastique passe de 1.34 GPa a 4.19 GPa pour le composite HDPE/bouleau, alors qu'il passe de 1.34 GPa a 3.86 GPa pour le composite HDPE/tremble. La contrainte maximale passe de 22 MPa a 42.65 MPa pour le composite HDPE/bouleau, alors qu'elle passe de 22 MPa a 43.48 MPa pour le composite HDPE/tremble. (2) Tests de flexion : le module elastique passe de 1.04 GPa a 3.47 GPa pour le composite HDPE/bouleau et a 3.64 GPa pour le composite HDPE/tremble. La contrainte maximale passe de 23.90 MPa a 66.70 MPa pour le composite HDPE/bouleau, alors qu'elle passe a 59.51 MPa pour le composite HDPE/tremble. (3) Le coefficient de Poisson determine par impulsion acoustique est autour de 0.35 pour tous les composites HDPE/bois. (4) Le test de degradation thermique TGA nous revele que les materiaux composites presentent une stabilite thermique intermediaire entre les fibres de bois et la matrice HDPE. (5) Le test de mouillabilite (angle de contact) revele que l'ajout de fibres de bois ne diminue pas de facon significative les angles de contact avec de l'eau parce que les fibres de bois (bouleau ou tremble) semblent etre enveloppees par la matrice sur la surface des composites, comme le montrent des images prises au microscope electronique a balayage MEB. (6) Le modele de Lavengoof-Goettler predit mieux le module elastique du composite thermoplastique/bois. (7) Le HDPE renforce par 40 % de bouleau est mieux adapte pour la fabrication des engrenages, car le retrait est moins important lors du refroidissement au moulage. La simulation numerique semble mieux predire la temperature d'equilibre a la vitesse de 500 tr/min; alors qu'a 1000 tr/min, on remarque une divergence du modele. (Abstract shortened by ProQuest.). None None None None None None None None
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Selective Enforcement Auditing § 90... Plans for Selective Enforcement Auditing of Small Nonroad Engines,” appropriate to the projected sales...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91.608 Compliance... Selective Enforcement Auditing of Marine Engines,” appropriate to the projected sales as made by the...
A study of low emissions gas turbine combustions
NASA Technical Reports Server (NTRS)
Adelman, Henry G.
1994-01-01
Analytical studies have been conducted to determine the best methods of reducing NO(x) emissions from proposed civilian supersonic transports. Modifications to the gas turbine engine combustors and the use of additives were both explored. It was found that combustors which operated very fuel rich or lean appear to be able to meet future emissions standards. Ammonia additives were also effective in removing NO(x), but residual ammonia remained a problem. Studies of a novel combustor which reduces emissions and improves performance were initiated. In a related topic, a study was begun on the feasibility of using supersonic aircraft to obtain atmospheric samples. The effects of shock heating and compression on sample integrity were modeled. Certain chemical species, including NO2, HNO3, and ClONO2 were found to undergo changes to their composition after they passed through shock waves at Mach 2. The use of detonation waves to enhance mixing and combustion in supersonic airflows was also investigated. This research is important to the use of airbreathing propulsion to obtain orbital speeds and access to space. Both steady and pulsed detonation waves were shown to improve engine performance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Compliance with acceptable quality level and passing and failing criteria for selective enforcement audits. 89.510 Section 89.510... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing § 89.510...
additional power is needed, the gasoline engine and electric motor are both used to propel the vehicle. Go to , power split device, and electric motor visible while passing another vehicle. There are purple arrows flowing from the generator to the electric motor to the power split device to the front wheels. There are
NASA Astrophysics Data System (ADS)
Rahmatabadi, Davood; Tayyebi, Moslem; Hashemi, Ramin; Faraji, Ghader
2018-05-01
In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding (ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.
The approach to engineering tasks composition on knowledge portals
NASA Astrophysics Data System (ADS)
Novogrudska, Rina; Globa, Larysa; Schill, Alexsander; Romaniuk, Ryszard; Wójcik, Waldemar; Karnakova, Gaini; Kalizhanova, Aliya
2017-08-01
The paper presents an approach to engineering tasks composition on engineering knowledge portals. The specific features of engineering tasks are highlighted, their analysis makes the basis for partial engineering tasks integration. The formal algebraic system for engineering tasks composition is proposed, allowing to set the context-independent formal structures for engineering tasks elements' description. The method of engineering tasks composition is developed that allows to integrate partial calculation tasks into general calculation tasks on engineering portals, performed on user request demand. The real world scenario «Calculation of the strength for the power components of magnetic systems» is represented, approving the applicability and efficiency of proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploskey, Gene R.; Weiland, Mark A.; Faber, Derrek M.
This report describes a 2008 acoustic telemetry survival study conducted by the Pacific Northwest National Laboratory for the Portland District of the U.S. Army Corps of Engineers. The study estimated the survival of juvenile Chinook salmon and steelhead passing Bonneville Dam (BON) and its spillway. Of particular interest was the relative survival of smolts detected passing through end spill bays 1-3 and 16-18, which had deep flow deflectors immediately downstream of spill gates, versus survival of smolts passing middle spill bays 4-15, which had shallow flow deflectors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing § 89.510... Plans for Selective Enforcement Auditing of Nonroad Engines,” appropriate to the projected sales as made...
ERIC Educational Resources Information Center
Hanson, James H.; Brophy, Patrick D.
2012-01-01
Not all knowledge and skills that educators want to pass to students exists yet in textbooks. Some still resides only in the experiences of practicing engineers (e.g., how engineers create new products, how designers identify errors in calculations). The critical incident technique, CIT, is an established method for cognitive task analysis. It is…
Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases
Lee, Jong Suk; Koros, William J.; Bhuwania, Nitesh; Hillesheim, Patrick C.; Dai, Sheng
2016-01-12
A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure. In particular embodiments thereof, cooling water is passed through the refractory hollow fibers containing the IL-functionalized sorbent particles in order to facilitate capture of the gaseous electrophilic species, and then steam is passed through the refractory hollow fibers to facilitate release of the gaseous electrophilic species such that the composite structure can be re-used to capture additional gas.
Rathjen, L; Hennecke, D K; Bock, S; Kleinstück, R
2001-05-01
This paper shows results obtained by experimental and numerical investigations concerning flow structure and heat/mass transfer in a rotating two-pass coolant channel with engine-near geometry. The smooth two passes are connected by a 180 degrees U-bend in which a 90 degrees turning vane is mounted. The influence of rotation number, Reynolds number and geometry is investigated. The results show a detailed picture of the flow field and distributions of Sherwood number ratios determined experimentally by the use of the naphthalene sublimation technique as well as Nusselt number ratios obtained from the numerical work. Especially the heat/mass transfer distributions in the bend and in the region after the bend show strong gradients, where several separation zones exist and the flow is forced to follow the turbine airfoil shape. Comparisons of numerical and experimental results show only partly good agreement.
Conception of the system for traffic measurements based on piezoelectric foils
NASA Astrophysics Data System (ADS)
Płaczek, M.
2016-08-01
A concept of mechatronic system for traffic measurements based on the piezoelectric transducers used as sensors is presented. The aim of the work project is to theoretically and experimentally analyse the dynamic response of road infrastructure forced by vehicles motion. The subject of the project is therefore on the borderline of civil engineering and mechanical and covers a wide range of issues in both these areas. To measure the dynamic response of the tested pieces of road infrastructure application of piezoelectric, in particular piezoelectric transducers in the form of piezoelectric films (MFC - Macro Fiber Composite) is proposed. The purpose is to verify the possibility to use composite piezoelectric transducers as sensors used in traffic surveillance systems - innovative methods of controlling the road infrastructure and traffic. Presented paper reports works that were done in order to receive the basic information about analysed systems and their behaviour under excitation by passing vehicles. It is very important to verify if such kind of systems can be controlled by the analysis of the dynamic response of road infrastructure measured using piezoelectric transducers. Obtained results show that it could be possible.
Impact Behaviour of Soft Body Projectiles
NASA Astrophysics Data System (ADS)
Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana
2018-02-01
Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.
Pistons and Cylinders Made of Carbon-Carbon Composite Materials
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)
2000-01-01
An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.
2017-01-01
In the present work, an aluminum metal matrix reinforced with (Al2O3) nanoparticles was fabricated as a surface composite sheet using friction stir processing (FSP). The effects of processing parameters on mechanical properties, hardness, and microstructure grain were investigated. The results revealed that multi-pass FSP causes a homogeneous distribution and good dispersion of Al2O3 in the metal matrix, and consequently an increase in the hardness of the matrix composites. A finer grain is observed in the microstructure examination in specimens subjected to second and third passes of FSP. The improvement in the grain refinement is 80% compared to base metal. The processing parameters, particularly rotational tool speed and pass number in FSP, have a major effect on strength properties and surface hardness. The ultimate tensile strength (UTS) and the average hardness are improved by 25% and 46%, respectively, due to presence of reinforcement Al2O3 nanoparticles. PMID:28885575
ERIC Educational Resources Information Center
Armstrong, Lyn; Power, Clare; Coady, Carmel; Dormer, Lynette
2011-01-01
Since its introduction at the University of Western Sydney (UWS), Australia in 2007, the Peer Assisted Study Sessions (PASS) program has proved a very effective and popular methodology for increasing retention and enhancing student engagement. PASS is based on Supplemental Instruction (SI) which is an international program that provides peer led,…
Melt density and the average composition of basalt
NASA Technical Reports Server (NTRS)
Stolper, E.; Walker, D.
1980-01-01
Densities of residual liquids produced by low pressure fractionation of olivine-rich melts pass through a minimum when pyroxene and plagioclase joint the crystallization sequence. The observation that erupted basalt compositions cluster around the degree of fractionation from picritic liquids corresponding to the density minimum in the liquid line of descent may thus suggest that the earth's crust imposes a density fiber on the liquids that pass through it, favoring the eruption of the light liquids at the density minimum over the eruption of denser more fractionated and less fractionated liquids.
Health-Related Fitness of Youths with Visual Impairments
ERIC Educational Resources Information Center
Lieberman, Lauren J.; Byrne, Heidi; Mattern, Craig O.; Watt, Celia A.; Fernandez-Vivo, Margarita
2010-01-01
This study analyzed the passing rates on five health-related fitness items on the Brockport Physical Fitness Test of youths aged 10-17 with visual impairments. It found that the youths had low passing rates on upper-body strength, cardiovascular endurance, and body composition. (Contains 2 tables.)
40 CFR 1068.420 - How do I know when my engine family fails an SEA?
Code of Federal Regulations, 2011 CFR
2011-07-01
... fails an SEA? 1068.420 Section 1068.420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Auditing § 1068.420 How do I know when my engine family fails an SEA? (a) A failed engine or piece of... pollutants or a fail decision for one pollutant. (c) You reach a pass decision for the SEA requirements when...
Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass
NASA Technical Reports Server (NTRS)
Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)
2016-01-01
A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.
Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites
2016-06-08
AFRL-AFOSR-VA-TR-2016-0231 Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites Darren Lipomi...04-2013 to 31-03-2016 4. TITLE AND SUBTITLE Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites 5a... Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites PI: Prof. Darren J. Lipomi 9500 Gilman Dr., Mail Code #0448
1981-10-01
SOLDER FILLET. SOLD R FILET.S CURRENT TORQUE INPUT [] SCALE FACTOR SELECT RESISTOR 5NP BETWEEN PINS 10 & 11. 6 SIGNAL OUTPUT 1.UNIT WEIGHT : 200 ± 10...The engineers at Contraves Goerz Corporation have recently applied a high range IADS as a high pass compensation element in a rate table control...frequency, since at that frequency the low pass signal phase is -900 and the high pass signal phase is +90". Contraves Goerz has solved that system
electric motor provides additional power when needed, such as for accelerating and passing. This allows a at an intersection. Electric Motor: The electric motor assists the gasoline engine when additional braking into electricity and stores it in the battery. It also starts the gasoline engine instantly when
Removal of 137-Cs from Dissolved Hanford Tank Saltcake by Treatment with IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapko, Brian M.; Sinkov, Sergei I.; Levitskaia, Tatiana G.
2003-12-09
The U.S. Department of Energy’s Richland Operations Office plans to accelerate the cleanup of the Hanford Site. Testing new technology for the accelerated cleanup will require dissolved saltcake from single-shell tanks. However, the 137Cs will need to be removed from the saltcake to alleviate radiation hazards. A saltcake composite constructed from archived samples from Hanford Site single-shell tanks 241-S-101, 241-S-109, 241-S-110, 241-S-111, 241-U-106, and 241-U-109 was dissolved in water, adjusted to 5 M Na, and transferred from the 222-S Laboratory to the Radiochemical Processing Laboratory (RPL). At the RPL, the approximately 5.5 liters of solution was passed through a 0.2-micronmore » polyethersulfone filter, collected, and homogenized. The filtered solution then was passed through an ion exchange column containing approximately 150 mL IONSIV® IE-911, an engineered form of crystalline silicotitanate available from UOP, at approximately 200 mL/hour in a continuous operation until all of the feed solution had been run through the column. An analysis of the 137Cs concentrations in the initial feed solution and combined column effluent indicates that > 99.999 percent of the Cs in the feed solution was removed by this operation. PNNR« less
NASA Astrophysics Data System (ADS)
Narita, Moe; Higuchi, Mikio; Ogawa, Takayo; Wada, Satoshi; Miura, Akira; Tadanaga, Kiyoharu
2018-06-01
Yb:CaYAlO4 single crystals were grown by the floating zone method and their spectral properties were investigated. Void formation was effectively suppressed by using a feed rod of Y-rich composition with the aid of a double zone-pass technique. For the oxygen excess composition of Yb:Ca0.9925Y1.0075AlO4.00375, a void-free crystal was obtained by performing only the double zone-pass. On the other hand, for cation-deficient type of Yb:Ca0.9925Y1.005AlO4, void-free crystal could not be obtained by performing the double zone-pass. The void formation is attributable to the constitutional supercooling caused by segregation of main constituents of Y and Ca, and the congruent composition may exist in the Y-rich region with existence of interstitial excess oxide ions. The absorption cross section for σ-polarization was slightly larger than that for π-polarization, which is reasonable on the basis of the crystal structure of CaYAlO4.
Composite material application for liquid rocket engines
NASA Technical Reports Server (NTRS)
Heubner, S. W.
1982-01-01
With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.
Statistical variability and confidence intervals for planar dose QA pass rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher
Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics ofmore » various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. Results: For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. Conclusions: Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.« less
Peer Mentoring among Doctoral Students of Science and Engineering in Taiwan
ERIC Educational Resources Information Center
Lin, Yii-nii; Hsu, Angela Yi-ping
2012-01-01
This study describes the peer mentoring experience from doctoral student mentors' point of view. Twelve science and engineering doctoral students participated in this phenomenology study. The findings suggest doctoral peer mentors served instrumental, psychosocial, buffering, and liaison roles; they passed on their social, professional, and…
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Composite engines for application to a single-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Bendot, J. G.; Brown, P. N.; Piercy, T. G.
1975-01-01
Seven composite engines were designed for application to a reusable single-stage-to-orbit vehicle. The engine designs were variations of the supercharged ejector ramjet engine. The resulting performance, weight, and drawings of each engine form a data base for establishing a potential of this class of composite engine to various missions, including the single-stage-to-orbit application. The impact of advanced technology in the design of the critical fan turbine was established.
Continuous process for forming sheet metal from an alloy containing non-dendritic primary solid
Flemings, Merton C.; Matsuniya, Tooru
1983-01-01
A homogeneous mixture of liquid-solid metal is shaped by passing the composition from an agitation zone onto a surface moving relative to the exit of the agitation zone. A portion of the composition contacting the moving surface is solidified and the entire composition then is formed.
ERIC Educational Resources Information Center
García, Rolando; Morales, Juan C.; Rivera, Gloribel
2014-01-01
This paper describes a highly successful peer tutoring program that has resulted in an improvement in the passing rates of mathematics placement exams from 16% to 42%, on average. Statistical analyses were conducted using a Chi-Squared (?[superscript 2]) test for independence and the results were statistically significant (p-value much less than…
ERIC Educational Resources Information Center
Malm, Joakim; Bryngfors, Leif; Mörner, Lise-Lotte
2016-01-01
Supplemental Instruction (SI) can be an efficient way of improving student success in difficult courses. Here, a study is made on SI attached to difficult first-year engineering courses. The results show that both the percentage of students passing a difficult first-year engineering course, and scores on the course exams are considerably higher…
Systems Engineering Case Studies: Synopsis of the Learning Principles
2010-05-17
Engineering Case Study HST refers to the Hubble Space Telescope Systems Engineering Case Study TBMCS refers to the Theater Battle Management Core System...going to orbit undetected in spite of substantial evidence that could have been used to prevent this occurrence. TBMCS /1 Requirements Definition...baseline was volatile up to system acceptance, which took place after TBMCS passed operational test and evaluation. TBMCS /2 System Architecture The
De, Mriganka; Toor, Gurpal S
2016-11-01
Septic systems can be a major source of nitrogen (N) in shallow groundwater. We designed an in situ engineered drainfield with aerobic-anaerobic (sand-woodchips) and anaerobic (elemental sulfur-oyster shell) media to remove N in the vadose zone and reduce N transport to groundwater. Effluent was dispersed on top of the engineered drainfield (3.72 m infiltrative surface) and then infiltrated through the aerobic-anaerobic and anaerobic media before reaching natural soil. Water samples were collected over 64 sampling events (May 2012-December 2013) from three parts of the drainfield: (i) a suction cup lysimeter installed at the sand-woodchips interface, (ii) a pipe after effluent passed through the aerobic-anaerobic media, and (iii) a tank containing anaerobic media. In the effluent, most of the total N (66 mg L) was present as NH-N (88.8%), whereas at the sand-woodchips interface the dominant N form was NO-N (31 mg L; 85% of total N). As the effluent passed through the aerobic-anaerobic media in the drainfield, heterotrophic denitrification reduced NO-N to 5.4 mg L. In the tank containing anaerobic media, autotrophic denitrification, facilitated by elemental sulfur, further reduced NO-N to 1 mg L. Overall, 90% of total added N was removed as the effluent passed through the aerobic-anaerobic and anaerobic media within the engineered drainfield. We conclude that the use of multiple electron donors from external media (sand-woodchips and elemental sulfur-oyster shell) was effective at removing N in the engineered drainfield and will reduce the risk of groundwater N contamination from septic systems in areas with shallow groundwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Trends in the capture fisheries in Cuyo East Pass, Philippines
San Diego, Tee-Jay A.; Fisher, William L.
2014-01-01
Findings are presented of a comprehensive analysis of time series catch and effort data from 2000 to 2006 collected from a multi-species, multi-gear and two-sector (municipal and commercial) capture fisheries in Cuyo East Pass, Philippines. Multivariate techniques were used to determine temporal variation in species composition and gear selectivity that corresponded with annual trends in catch and effort. Distinct annual variation in species composition was found for five fisheries classified according to sector-gear combination, corresponding decline in catch diversity, noted shifts in gears used, and an erratic CPUE trend as a result of catch variation. These patterns and trends illustrate the occurrence of ecosystem overfishing for Cuyo East Pass. Our approach provided a holistic representation of the fishing situation, condition of the fisheries and corresponding implications to the ecosystem, fitting well within the context of the ecosystem approach to fisheries management.
Multi-Wavelength Measurement of Bus Exhausts Using a Four QC Laser Spectrometer
NASA Astrophysics Data System (ADS)
Hay, K. G.; Wilson, D.; Duxbury, G.; Langford, N.
2010-06-01
Using a portable, lightweight, four laser intra-pulse quantum cascade laser spectrometer we have measured the variation of the composition of exhaust gases emitted by diesel engined buses which are representative of the decades from the 1930's until the 1990's. The lasers and the fast detector used in the spectrometer are Peltier cooled, and the spectra are recorded using each laser in turn, in a repeated four laser cycle. The instrument is controlled via a ruggedised laptop computer. The wavelengths of the lasers used were 7.84 microns (methane, nitrous oxide and formaldehyde), 6.13 microns (nitrogen dioxide) 5.25 microns (nitric oxide and water) and 4.88 microns (carbon monoxide and carbon dioxide). The path length of the multiple pass absorption cell used was 77 m. The results we will present demonstrate the possibility of deploying this type of instrument for investigating gas emissions from a variety of sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fails the production-line testing requirements? 1048.315 Section 1048.315 Protection of Environment... fails the production-line testing requirements? This section describes the pass/fail criteria for the... the requirements that apply to individual engines that fail a production-line test. (a) Calculate your...
Code of Federal Regulations, 2010 CFR
2010-07-01
... fails the production-line testing requirements? 1048.315 Section 1048.315 Protection of Environment... fails the production-line testing requirements? This section describes the pass/fail criteria for the... the requirements that apply to individual engines that fail a production-line test. (a) Calculate your...
Code of Federal Regulations, 2011 CFR
2011-07-01
... fails the production-line testing requirements? 1048.315 Section 1048.315 Protection of Environment... fails the production-line testing requirements? This section describes the pass/fail criteria for the... the requirements that apply to individual engines that fail a production-line test. (a) Calculate your...
46 CFR 182.425 - Engine exhaust cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if installed in compliance with §§ 177.405(b) and 177.970 of this chapter. (2) Horizontal dry exhaust pipes are permitted only if: (i) They do not pass through living or...
Information Technologies in Higher Education: Lessons Learned in Industrial Engineering
ERIC Educational Resources Information Center
Delgado-Almonte, Milagros; Andreu, Hernando Bustos; Pedraja-Rejas, Liliana
2010-01-01
This article describes a teaching experience in which information and communication technologies were applied in five industrial engineering courses at the Universidad de Tarapaca in Chile. The paper compares the performance and course pass rates of the e-learning platform and portable pocket PC platform with those of the same courses teaching in…
2012-01-01
training encom- passes several concepts, including cognitive knowledge, a performance assessment or pretest , training, a re- peat assessment or posttest ...significantly decreased mor- tality. For the lessons learned in ca- sualty care to be passed on to the next group of surgeons, the training for deployed...unpaid consultant to Athena GTX, Blackhawk Products Group , CHI Systems, Combat Medical Systems, Composite Resources, Compression Works, Creative
NASA Technical Reports Server (NTRS)
Wier, Larry T.; Jackson, Allen W.; Jackson, Andrew S.
2009-01-01
The physical activity guidelines (PAG) established by the US Dept. of Health and Human Services in 2008 is consistent with a rating of >/= 6 on the 11-point NASA Physical Activity Status Scale (PASS). Wier, et. al. developed non-exercise models for estimating VO2(sub max) from a combination of PASS, age, gender and either waist girth (WG) (R = 0.810, SEE= 4.799 ml/kg/min), %Fat (R = 0. 817, SEE = 4.716 ml/kg/min) or BMI (R = 0.802, SEE = 4.900 ml . kg-1. min -1 ). PURPOSE: to develop non-exercise models to estimate VO2max from age, gender, body composition (WG, %Fat, BMI) and PASS dichotomized at meets or does not meet the PAG (PAG-PASS), and to compare the accuracy of the PAG-PASS models with the models using the 11-point PASS. METHODS: 2417 men and 384 women were measured for VO2max by indirect calorimetry (RER >1.1); age (yr), gender by M = 1, W = 0; WG at the umbilicus; %fat by skin-folds, BMI by weight (kg) divided by height squared (m 2 ) , and PAGPASS by PASS < 6 = 0 and =/> 6 = 1. RESULTS: Three models were developed by multiple regression to estimate VO2(sub max) from age, gender, PAG-PASS and either WG (R = 0.790, SEE=5.019 ml/kg/min), %FAT (R= 0.080, SEE = 4.915 ml/kg/min) or BMI (R = 0.777, SEE = 5.162ml/kg/min). Cross-validation by the PRESS technique confirmed these statistics. Simple correlations between measured VO2(sub max) and estimates from the PAG-PASS models with WG, %Fat and BMI were 0.790, 0.800 and 0.777, minimally different from the correlations obtained with the PASS models (0.810, 0.810, and 0.802). PAG-PASS and PASS model constant errors were also similar: < 1 ml/kg/min for subsamples of age, gender, PASS and for VO2(sub max) between 30 and 50 ml/kg/min (70% of the sample) but > 1 ml/kg/min for VO2(sub max) <30 and >50 ml/kg/min. CONCLUSIONS: Non-exercise models using the combined effects of age, gender, body composition and the dichotomized PAG-PASS provide estimates of VO2(sub max) that are accurate for most adults, and the accuracy of these models are similar to previously published models using the 11-point PASS.
Assessment of Historic Landscape, Highway 45 Borrow Pit, Jefferson Parish, Louisiana
2003-10-01
Resources Survey of the Mississippi River -Gulf Outlet, Orleans and St. Bernard Parishes , Louisiana . Submitted to the New Orleans District, U.S. Army...US Army Corps of Engineers New Orleans District ASSESSMENT OF HISTORIC LANDSCAPE, HIGHWAY 45 BORROW PIT, JEFFERSON PARISH , LOUISIANA Final Report...LaFourche and Belle Pass forming the western boundary, and the Mississippi River and Red Pass forming the eastern boundary. It encompasses approximately
Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H.
2009-01-01
Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.
DMA engine for repeating communication patterns
Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard; Vranas, Pavlos
2010-09-21
A parallel computer system is constructed as a network of interconnected compute nodes to operate a global message-passing application for performing communications across the network. Each of the compute nodes includes one or more individual processors with memories which run local instances of the global message-passing application operating at each compute node to carry out local processing operations independent of processing operations carried out at other compute nodes. Each compute node also includes a DMA engine constructed to interact with the application via Injection FIFO Metadata describing multiple Injection FIFOs where each Injection FIFO may containing an arbitrary number of message descriptors in order to process messages with a fixed processing overhead irrespective of the number of message descriptors included in the Injection FIFO.
CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 4
2007-04-01
and test markets . The decision fails the review, gets marked for adjustment, or passes. • The decision gets pushed out into the world. At this point...STD- 1521, Institute for Electrical and Electronics Engineers [IEEE]-15288). Myopically focused on early correctness, systems engineering can seem to...based on Mishkin Berteig’s experiences as an agile coach, consultant or trainer to teams and management in organizations across North America. From
Validation of GPU based TomoTherapy dose calculation engine.
Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond
2012-04-01
The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) < 1. The worst case observed in the phantom had 0.22% voxels violating the criterion. In patient cases, the worst percentage of voxels violating the criterion was 0.57%. For absolute point dose verification, all cases agreed with measurement to within ±3% with average error magnitude within 1%. All cases passed the acceptance criterion that more than 95% of the pixels have Γ(3%, 3 mm) < 1 in film measurement, and the average passing pixel percentage is 98.5%-99%. The GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.
Study of the costs and benefits of composite materials in advanced turbofan engines
NASA Technical Reports Server (NTRS)
Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.
1974-01-01
Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.
Polymer, metal and ceramic matrix composites for advanced aircraft engine applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.
1985-01-01
Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.
A Real-Time Simulator of a Turbofan Engine
1989-03-01
44j~ - i ~4 10 I’ Q Wk r7S~f~fNt4 0K - 4’ lt 4 .At .t’ 4--Q to Aa l A REAL-TIME SIMULATOR OF A TURBOFAN ENGINE Jonathan S. Litt n For Propulsion...error. "as" ,,,rmisu Mnim*& The F100 engine is a high performance, twin-spool, low by-pass ratio, turbofan engine . Figure 2 shows the locations of the...FORTRAN sim- ulation of a generalized turbofan engine . To create the simulator, the original HYTESS code was revised to incorporate F1O0 specific
Schatten, Gerald; Mitalipov, Shoukhrat
2009-01-01
Genetically engineered monkeys carrying a foreign gene that is passed on to their offspring provide a potentially valuable bridge between mouse models of disease and treatment for human disorders. PMID:19478771
Bonded and Stitched Composite Structure
NASA Technical Reports Server (NTRS)
Zalewski, Bart F. (Inventor); Dial, William B. (Inventor)
2014-01-01
A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fails the production-line testing requirements? 1051.315 Section 1051.315 Protection of Environment... family fails the production-line testing requirements? This section describes the pass-fail criteria for....320 for the requirements that apply to individual vehicles or engines that fail a production-line test...
Code of Federal Regulations, 2011 CFR
2011-07-01
... fails the production-line testing requirements? 1045.315 Section 1045.315 Protection of Environment... family fails the production-line testing requirements? This section describes the pass-fail criteria for... § 1045.320 for the requirements that apply to individual engines that fail a production-line test. (a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... fails the production-line testing requirements? 1054.315 Section 1054.315 Protection of Environment... family fails the production-line testing requirements? This section describes the pass-fail criteria for... § 1054.320 for the requirements that apply to individual engines that fail a production-line test. (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... fails the production-line testing requirements? 1045.315 Section 1045.315 Protection of Environment... family fails the production-line testing requirements? This section describes the pass-fail criteria for... § 1045.320 for the requirements that apply to individual engines that fail a production-line test. (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fails the production-line testing requirements? 1045.315 Section 1045.315 Protection of Environment... family fails the production-line testing requirements? This section describes the pass-fail criteria for... § 1045.320 for the requirements that apply to individual engines that fail a production-line test. (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fails the production-line testing requirements? 1054.315 Section 1054.315 Protection of Environment... family fails the production-line testing requirements? This section describes the pass-fail criteria for... § 1054.320 for the requirements that apply to individual engines that fail a production-line test. (a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... fails the production-line testing requirements? 1051.315 Section 1051.315 Protection of Environment... family fails the production-line testing requirements? This section describes the pass-fail criteria for....320 for the requirements that apply to individual vehicles or engines that fail a production-line test...
46 CFR 10.215 - Medical and physical requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... complete annual medical exams and, unless exempt per 46 CFR 16.220, pass annual chemical tests for....215(b)(1) § 10.215(c) § 10.215(d)(1) § 10.215(e)(1) (ii) Engineering officer § 10.215(b)(2) § 10.215(c...) Titmus Optical Vision Tester. (viii) Williams Lantern. (2) Engineering, radio operator, tankerman, and...
ERIC Educational Resources Information Center
Tchibozo, Guy
2005-01-01
In France, secondary teachers are public sector employees. Becoming a STEM (Science, Technology, Engineering, and Math) teacher in secondary education is subject to passing public competitive entry examinations. Preparation for these examinations is provided in College Departments, which are essentially assessed on the basis of their success…
Effect of Continuous Assessment on Learning Outcomes on Two Chemical Engineering Courses: Case Study
ERIC Educational Resources Information Center
Tuunila, R.; Pulkkinen, M.
2015-01-01
In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning…
USDA-ARS?s Scientific Manuscript database
Two decades have passed since the commercialization in the U. S. of crops with genetically engineered (GE) traits. Today more than 80% of corn, soybean, canola, sugar beet and cotton acreage in the United States is planted to transgenic cultivars, but concerns exist regarding how best to manage the ...
Topological and thermal properties of polypropylene composites based on oil palm biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com
Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and thenmore » injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.« less
Integrated analysis of engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1981-01-01
The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.
Tactical Vehicle Climate Control Testing
2017-03-31
MIL-STD-810G CN1. The greatest care must be taken to monitor this parameter during periods where the vehicle engine is running while in the chamber...a drain plug, wire pass-through, or the gunner’s hatch that can remain closed throughout testing to prevent damaging the cables. Avoid running ...drain plug, wire pass-through, or the gunner’s hatch, that can remain closed throughout testing to prevent damaging the cables. Avoid running cables
Contributions Regarding the Aircraft Nuclear Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrica, Bogdan; Petre, Marian; Dima, Mihai Octavian
2010-01-21
The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for themore » nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.« less
Weiland, Mark A.; Deng, Z. Daniel; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, M. Brad
2011-01-01
In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS. PMID:22163918
Composition and Photochemical Reactivity of Turbine Engine Exhaust
1984-09-01
ESL-TR-84-28 Composition and Photochemical Reactivity of Turbine Engine Exhaust In IL) C.W. SPICER. M.W. HOLDREN, T.F. LYON. and R.M. RIGGIN...NUMBER 2. GOVT ACCIESION NO RECIPIENT’S CATALOG NUMmE" 4. TITLE (aid Sub•ttlC) S. TYPE OF REPORT & PERIOD COvERE0 Composition and Photochemical...involved detailed exhaust organic composition studies with two -. full-scale turbine engines utilizing three fuels. Tiask 4 investigated the
NASA Astrophysics Data System (ADS)
Bongale, Arunkumar M.; Kumar, Satish
2018-03-01
Nano Metal Matrix Composites were fabricated by a novel approach by combining powder metallurgy and equal channel angular pressing (ECAP) using aluminium alloy 6061 (Al6061) as matrix phase and 2, 4 and 6 wt% of silicon carbide nanoparticles (SiCnp) as reinforcements. Alloying elements of Al6061 in their elemental form are blended together using high energy planetary ball mill and calculated wt% of SiCnp were mixed with it. Thus formed composite powder mixture is compacted in a uniaxial compaction die and then subjected to ECAP up to three passes. Density and porosity of samples were estimated using Archimedes’ principle. Pin on disc setup is used to evaluate the wear properties of the composites under different speed and loading conditions. Tests revealed that increase in wt% of SiCnp reduces the wear rate of the composites whereas increasing the load and speed increases wear rate of the composite samples. SEM micrographs of worn surfaces indicated different types of wear mechanism responsible for wear of the specimens under different testing conditions. Also, wt% of SiCnp and the number of passes through ECAP were found to increase the hardness value of the composite material.
CCE plasma wave observations during the storm of September 4, 5, 1984. [Charge Composition Explorer
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1985-01-01
Near 0700 on September 4, 1984 a series of interplanetary discontinuities arrived at earth when the AMPTE Charge Composition Explorer (CCE) was near apogee. During the next few hours the spacecraft passed in and out of the magnetosheath. At the magnetopause boundary, the CCE wave instrument detected strong electron plasma oscillations, weaker electromagnetic waves at the electron plasma frequency, and broadband electrostatic waves. During the subsequent perigee passes on September 4 and 5, the wave observations of upper hybrid resonance emissions, continuum radiation, electrostatic noise bands and unusual low latitude auroral kilometic radiation were used to monitor significant variations in the magnetospheric characteristics as the main storm phases developed.
40 CFR 86.1912 - How do I determine whether an engine meets the vehicle-pass criteria?
Code of Federal Regulations, 2010 CFR
2010-07-01
... deficiency area or limited testing region, will not be added together to make a 30 second or longer event... section for at least 90 percent of the valid NTE sampling events, as defined in paragraph (b) of this section. For 2007 through 2009 model year engines, the average emissions from every NTE sampling event...
40 CFR 86.1912 - How do I determine whether an engine meets the vehicle-pass criteria?
Code of Federal Regulations, 2011 CFR
2011-07-01
... region, will not be added together to make a 30 second or longer event. Exclude any portion of a sampling... section for at least 90 percent of the valid NTE sampling events, as defined in paragraph (b) of this section. For 2007 through 2009 model year engines, the average emissions from every NTE sampling event...
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course outlined is the second of two designed to help a trainee acquire the knowledge and become proficient in the skills associated with the overhaul, inspection, and repair of reciprocating engines. The knowledge and skills are necessary to pass the Powerplant Theory and Maintenence section of the Federal Aviation Administration examination…
ERIC Educational Resources Information Center
Kodate, Naonori; Kodate, Kashiko; Kodate, Takako
2014-01-01
The phenomenon of women's underrepresentation in engineering is well known. However, the slow progress in achieving better gender equality here compared with other domains has accentuated the "numbers" issue, while the quality aspects have been largely ignored. This study aims to shed light on both these aspects via the lens of mentors,…
Starting apparatus for internal combustion engines
Dyches, Gregory M.; Dudar, Aed M.
1997-01-01
An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.
MOBILE GAMMA IRRADIATORS FOR FRUIT PRODUCE (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
Mobile irradiators used for the radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons are described. The irradiators are mounted on trailers and each irradiator, including the trailer, weighs 70 to 80 tons. Radiatton doses range from 100,000 to 200,000 rads. Minimum production is 500 lb of fruit per hour. Drawings are included for four types of irradiators: the single-slab twopass, double-slab one-pass, single-slab four-pass, and line-source rotary. In the single-slab two-pass system, the packages make two passes in front of the source. The length of the packages is parallel to the direction of travel. The packages are irradiated on eachmore » side. This system is light in weight, has low capital cost, and is simple to fabricate. The double-slab one- pass system is the same as the above except the source strength is doubled and irradiation time is cut in half. The same arrangement is used in the single-slab four-pass system that is used in the singleslab two-pass system except the packages make two passes on each side of the source. The rotary system combines a linear and rotary motion to provide high dosage. It uses a small Co/sup 60/ source but costs more than a single-slab twopass system. (F.E.S.)« less
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chun; Chang, Tao-Chih; Lin, Dong-Yih; Chen, Ming-Che; Wu, Weite
2007-10-01
The purpose of this study is to investigate the precipitation characteristics of σ phase in the fusion zone of stainless steel welds at various welding passes during a tungsten are welding (GTAW) process. The morphology, quantity, and chemical composition of the δ-ferrite and σ phase were analyzed using optical microscopy (OM), a ferritscope (FS), a X-ray diffractometer (XRD), scanning electron microscopy (SEM), an electron probe micro-analyzer (EPMA), and a wavelength dispersive spectrometer (WDS), respectively. Massive δ-ferrite was observed in the fusion zone of the first pass welds during welding of dissimilar stainless steels. The σ phase precipitated at the inner δ-ferrite particles and decreased δ-ferrite content during the third pass welding. The σ and δ phases can be stabilized by Si element, which promoted the phase transformation of σ→ϱ+λ2 in the fusion zone of the third pass welds. It was found that the σ phase was a Fe-Cr-Si intermetallic compound found in the fusion zone of the third pass welds during multi-pass welding.
Visualization of pass-by noise by means of moving frame acoustic holography.
Park, S H; Kim, Y H
2001-11-01
The noise generated by pass-by test (ISO 362) was visualized. The moving frame acoustic holography was improved to visualize the pass-by noise and predict its level. The proposed method allowed us to visualize tire and engine noise generated by pass-by test based on the following assumption; the noise can be assumed to be quasistationary. This is first because the speed change during the period of our interest is negligible and second because the frequency change of the noise is also negligible. The proposed method was verified by a controlled loud speaker experiment. Effects of running condition, e.g., accelerating according to ISO 362, cruising at constant speed, and coasting down, on the radiated noise were also visualized. The visualized results show where the tire noise is generated and how it propagates.
Design and Simulation of a Pressure Wave Supercharger for a Small Two-Stroke Engine
2014-03-27
Air at ambient pressure is passed through the compressor where the pressure is increased with the intended purpose of increasing the overall mass flow...rate of air to the intake manifold. For a small two-stroke engine that has little excess energy to spare for the operation of a compressor , the...exhaust gasses from the engine to drive a turbine that is linked via a shaft to a centrifugal compressor which feeds compressed air to the intake
49 CFR 173.35 - Hazardous materials in IBCs.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., cracks, cuts, or other damage which would render it unable to pass the prescribed design type test to... metal, rigid plastic, or composite IBC that is appropriately resistant to an increase in internal pressure likely to develop during transportation. (1) A rigid plastic or composite IBC may only be filled...
Quiet Clean Short-haul Experimental Engine (QCSEE)
NASA Technical Reports Server (NTRS)
Willis, W. S.
1979-01-01
The design, fabrication, and testing of two experimental propulsion systems for powered lift transport aircraft are given. The under the wing (UTW) engine was intended for installation in an externally blown flap configuration and the over the wing (OTW) engine for use in an upper surface blowing aircraft. The UTW engine included variable pitch composite fan blades, main reduction gear, composite fan frame and nacelle, and a digital control system. The OTW engine included a fixed pitch fan, composite fan frame, boilerplate nacelle, and a full authority digital control. Many acoustic, pollution, performance, and weight goals were demonstrated.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1987-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1989-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
78 FR 50052 - Chief of Engineers Environmental Advisory Board; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... environmentally sustainable manner. Discussions and presentations during this meeting will include flow management...., drivers license, state- issued photo ID, or passport), and pass through the security screening station...
Engine environmental effects on composite behavior
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Smith, G. T.
1980-01-01
A series of programs were conducted to investigate and develop the application of composite materials to turbojet engines. A significant part of that effort was directed to establishing the impact resistance and defect growth chracteristics of composite materials over the wide range of environmental conditions found in commercial turbojet engine operations. Both analytical and empirical efforts were involved. The experimental programs and the analytical methodology development as well as an evaluation program for the use of composite materials as fan exit guide vanes are summarized.
NASA Astrophysics Data System (ADS)
Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.
2012-05-01
Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.
Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.
Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V
2011-03-01
In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.
Pickering, Catherine Marina; Rossi, Sebastian; Barros, Agustina
2011-12-01
Mountain biking is an increasingly popular, but sometimes controversial, activity in protected areas. Limited research on its impacts, including studies comparing biking with hiking, contributes to the challenges for mangers in assessing its appropriateness. The impacts of mountain bike riding off trail were compared to those of hiking on subalpine grassland in Australia using a modification of a common trampling experimental methodology. Vegetation and soil parameters were measured immediately and two weeks after different intensities of mountain biking (none, 25, 75, 200 and 500 passes across slope, 200 pass up and down slope) and hiking (200 and 500 passes across slope). There were reductions in vegetation height, cover and species richness, as well as changes in species composition and increases in litter and soil compaction with riding. Riding up and down a moderate slope had a greater impact than riding across the slope. Hiking also affected vegetation height, cover and composition. Mountain biking caused more damage than hiking but only at high use (500 passes). Further research including other ecosystems, topography, styles of riding, and weather conditions are required, but under the conditions tested here, hiking and mountain biking appear to be similar in their environmental impacts. Copyright © 2011 Elsevier Ltd. All rights reserved.
Analysis of Power Generating Speed Bumps Made of Concrete Foam Composite
NASA Astrophysics Data System (ADS)
Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.
2017-03-01
This paper discusses the analysis of speed bump made of concrete foam composite which is used to generate electrical power. Speed bumps are designed to decelerate the speed of vehicles before passing through toll gates, public areas, or any other safety purposes. In Indonesia a speed bump should be designed in the accordance with KM Menhub 3 year 1994. In this research, the speed bump was manufactured with dimensions and geometry comply to the regulation mentioned above. Concrete foam composite speed bumps were used due to its light weight and relatively strong to receive vertical forces from the tyres of vehicles passing over the bumps. The reinforcement materials are processed from empty fruit bunch of oil palm. The materials were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were analyzed using a FEM-based numerical softwares. It was obtained that the speed bumps coupled with polymeric composite bar (3 inches in diameter) are significantly reduce the radial stresses. In addition, the speed bumps equipped with polymeric composite casing or steel casing are also suitable for use as part of system components in producing electrical energy.
Portable Device Slices Thermoplastic Prepregs
NASA Technical Reports Server (NTRS)
Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.
1993-01-01
Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.
Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond
NASA Astrophysics Data System (ADS)
Kim, Y.; Pham, C.; Chang, J. P.
2015-02-01
This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal-oxide-semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the materials’ full potential.
40 CFR 86.1910 - How must I prepare and test my in-use engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
.... In this case, only the post-repair test results would be used in the vehicle-pass determination as... 40 Protection of Environment 19 2014-07-01 2014-07-01 false How must I prepare and test my in-use... In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1910 How must I prepare and test my in-use...
40 CFR 86.1910 - How must I prepare and test my in-use engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... new test. In this case, only the post-repair test results would be used in the vehicle-pass... 40 Protection of Environment 20 2012-07-01 2012-07-01 false How must I prepare and test my in-use...) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1910 How must I prepare and test my...
Systems Engineering Case Studies, Synopsis of the Learning Principles
2009-08-24
TBMCS refers to the Theater Battle Management Core System Systems Engineering Case Study Peacekeeper refers to the Peacekeeper Intercontinental...primary mirror defect going to orbit undetected in spite of substantial evidence that could have been used to prevent this occurrence. TBMCS /1...The requirements baseline was volatile up to system acceptance, which took place after TBMCS passed operational test and evaluation. Approved for
Behavior of an Automatic Pacemaker Sensing Algorithm for Single-Pass VDD Atrial Electrograms
2001-10-25
830- s lead (Medico), during several different body postures, deep respiration, and walking. The algorithm had a pre - determined sensing dynamic range...SINGLE-PASS VDD ATRIAL ELECTROGRAMS J. Kim1, S.H. Lee1, S.Y.Yang2, B. S . Cho2, and W. Huh1 1Department of Electronics Engineering, Myongji...University, Yongin, Korea 2Department of Information and Communication, Dongwon College, Kwangju, Korea S T = 5 0 % x ( B + C ) / 2 S T = 5 0 % x ( A + B
2004-03-01
test is for homoscedasticity (constant variance). With a p- value of 0.86, we pass the Breusch - Pagan test for homoscedasticity of the residuals...variance). With a p- value of 0.28, we pass the Breusch - Pagan test for homoscedasticity of the residuals, since the p-value is greater than 0.05...a Breusch - Pagan calculation which results in a p-value. P-values below 0.05 indicate a failure of this assumption. Once we have completed our
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
46 CFR 56.50-70 - Gasoline fuel systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (1) Fuel supply piping to the engines shall be of seamless drawn annealed copper pipe or tubing... sharp edges. Where passing through steel decks or bulkheads, fuel lines shall be protected by close...
75 FR 51161 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... approach path indicator systems. By-pass taxiway and hold apron. Master plan update. Airfield signage... mandates. Concourse A and B. Overlay taxiway C and connectors. Engineer/design airfield signage...
Design concepts for low-cost composite engine frames
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1983-01-01
Design concepts for low-cost, lightweight composite engine frames were applied to the design requirements for the frame of commercial, high-bypass turbine engines. The concepts consist of generic-type components and subcomponents that could be adapted for use in different locations in the engine and to different engine sizes. A variety of materials and manufacturing methods were assessed with a goal of having the lowest number of parts possible at the lowest possible cost. The evaluation of the design concepts resulted in the identification of a hybrid composite frame which would weigh about 70 percent of the state-of-the-art metal frame and cost would be about 60 percent.
Embracing the Exit: Assessment, Trust, and the Teaching of Writing
ERIC Educational Resources Information Center
Eng, Joseph
2006-01-01
Historically, the Composition Program at Eastern Washington University (EWU), a comprehensive university in Cheney, WA, required a single essay sample from each composition student as the final exit exam; in practice, a student passed or failed the course based on an in-class argumentative essay, written in three consecutive class periods. Such a…
Microstructural Effects of Multiple Passes during Friction Stir Processing of Nickel Aluminum Bronze
2009-12-01
various tool steel compositions for use with aluminum, and materials such as Densimet®, a tungsten-iron composite. Additionally, various other...mixture of martensite or bainite in which Widmanstätten α ahs also formed. These features likely reflect the effect of the tool shoulder as it pulls base
High rate fabrication of compression molded components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.
2016-04-19
A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; andmore » applying molding pressure to the pre-form to form the composite component.« less
Han, Xiang-Yong; Fu, Yuan-Fei; Zhang, Fu-Qiang
2007-02-01
Bone defects in oral and maxillofacial region was a common problem. To repair the defect, bone grafts including autograft, allograft and artificial bone graft were used in clinic despite of their disadvantages. Nowadays, bone tissue engineering has become a commonly used method to repair bone defect. This paper reviewed the application of beta-TCP, collagen and beta-TCP/collagen composite in bone tissue engineering. It was concluded that beta-TCP/collagen composite was a promising materials in bone tissue engineering.
Thermal Expansion Behavior of Hot-Pressed Engineered Matrices
NASA Technical Reports Server (NTRS)
Raj, S. V.
2016-01-01
Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.
Passeport pour les deux infinis: an educational project in French
NASA Astrophysics Data System (ADS)
Arnaud, Nicolas; Descotes-Genon, Sébastien; Kerhoas-Cavata, Sophie; Paul, Jacques; Robert-Esil, Jean-Luc; Royole-Degieux, Perrine
2016-04-01
Passeport pour les deux infinis (;Passport for the two infinities;, in short Pass2i) is a French educational project aiming at promoting the physics of the infinitely small (particle physics) and of the infinitely big (cosmology & astrophysics) to high-school teachers and students. It is managed since 2009 by a small team of outreach experts (physicists and engineers) from the CNRS and the CEA. The Pass2i cornerstone is a reversible book - where each side explores one of the two infinities - and which is given for free to science high school teachers who request it, thanks to the support of French funding agencies. The Pass2i non-profit association wants to be a bridge between science and education: training sessions are organized for teachers, educational resources created and made available for download on the Pass2i website (http://www.passeport2i.fr).
Environmental and High-Strain Rate effects on composites for engine applications
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Smith, G. T.
1982-01-01
The Lewis Research Center is conducting a series of programs intended to investigate and develop the application of composite materials to structural components for turbojet engines. A significant part of that effort is directed to establishing resistance, defect growth, and strain rate characteristics of composite materials over the wide range of environmental and load conditions found in commercial turbojet engine operations. Both analytical and experimental efforts are involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.
2011-05-26
The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system formore » deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.« less
Melt-infiltrated Sic Composites for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Pujar, Vijay V.
2004-01-01
SiC-SiC ceramic matrix composites (CMCs) manufactured by the slurry -cast melt-infiltration (MI) process are leading candidates for many hot-section turbine engine components. A collaborative program between Goodrich Corporation and NASA-Glenn Research Center is aimed at determining and optimizing woven SiC/SiC CMC performance and reliability. A variety of composites with different fiber types, interphases and matrix compositions have been fabricated and evaluated. Particular focus of this program is on the development of interphase systems that will result in improved intermediate temperature stressed-oxidation properties of this composite system. The effect of the different composite variations on composite properties is discussed and, where appropriate, comparisons made to properties that have been generated under NASA's Ultra Efficient Engine Technology (UEET) Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M-D.
2000-08-23
Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it. The results ofmore » the NaCl aerosol experiments show no discernible difference in the geometric mean diameter and geometric standard deviation of particles passing through the ejector. Similar results were found for the DOP particles. The ratio of the total number concentrations before and after the ejector indicates that a dilution ratio of approximately 20 applies equally for DOP and NaCl particles. This indicates the dilution capability of the ejector is not affected by the particle composition. The statistical analysis results of the first and second moments of a distribution indicate that the ejector may not change the major parameters (e.g., the geometric mean diameter and geometric standard deviation) characterizing the size distributions of NaCl and DOP particles. However, when the skewness was examined, it indicates that the ejector modifies the particle size distribution significantly. The ejector could change the skewness of the distribution in an unpredictable and inconsistent manner. Furthermore, when the variability of particle counts in individual size ranges as a result of the ejector is examined, one finds that the variability is greater for DOP particles in the size range of 40-150 nm than for NaCl particles in the size range of 30 to 350 nm. The numbers or particle counts in this size region are high enough that the Poisson counting errors are small (<10%) compared with the tail regions. This result shows that the ejector device could have a higher bin-to-bin counting uncertainty for ''soft'' particles such as DOP than for a solid dry particle like NaCl. The results suggest that it may be difficult to precisely characterize the size distribution of particles ejected from the mini-dilution system if the particle is not solid.« less
A high power ion thruster for deep space missions
NASA Astrophysics Data System (ADS)
Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita
2012-07-01
The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.
A high power ion thruster for deep space missions.
Polk, James E; Goebel, Dan M; Snyder, John S; Schneider, Analyn C; Johnson, Lee K; Sengupta, Anita
2012-07-01
The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.
Diffusion bonded boron/aluminum spar-shell fan blade
NASA Technical Reports Server (NTRS)
Carlson, C. E. K.; Cutler, J. L.; Fisher, W. J.; Memmott, J. V. W.
1980-01-01
Design and process development tasks intended to demonstrate composite blade application in large high by-pass ratio turbofan engines are described. Studies on a 3.0 aspect radio space and shell construction fan blade indicate a potential weight savings for a first stage fan rotor of 39% when a hollow titanium spar is employed. An alternate design which featured substantial blade internal volume filled with titanium honeycomb inserts achieved a 14% potential weight savings over the B/M rotor system. This second configuration requires a smaller development effort and entails less risk to translate a design into a successful product. The feasibility of metal joining large subsonic spar and shell fan blades was demonstrated. Initial aluminum alloy screening indicates a distinct preference for AA6061 aluminum alloy for use as a joint material. The simulated airfoil pressings established the necessity of rigid air surfaces when joining materials of different compressive rigidities. The two aluminum alloy matrix choices both were successfully formed into blade shells.
Enceladus plume density from Cassini spacecraft attitude control data
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.; Burk, Thomas A.
2018-01-01
The plumes of Enceladus are of interest both as a geophysical phenomenon, and as an astrobiological opportunity for sampling internal material. Here we report measurements of the total mass density (gas plus dust, a combination not reported before except in the engineering literature) deduced from telemetry of Cassini's Attitude and Articulation Control System (AACS), as the spacecraft's thrusters or reaction wheels worked to maintain the desired attitude in the presence of drag torques during close flybys. The drag torque shows good agreement with the water vapor density measured by other instruments during the E5 encounter, but indicates a rather higher mass density on other passes (E3, E14), possibly indicating variations in gas composition and/or gas:dust ratio. The spacecraft appears to have intercepted about 0.2 g of material, on flyby E21 in October 2015 indicating a peak mass density of ∼5.5 × 10-11 kg m-3, the highest of all the flybys measured (E3, E5, E7, E9, E14, E21).
1988-03-01
tried not to So you’ll see microphones around on the make the talks tightly integrated . You’re front tables -- I hope the speakers will pass going to...one of the most important thoroughly integrating the corn-system things that the com-systemn engineer does is engineer’s job into the rest of the design...future, we may provide " integrated on how much interruption and questions we services," where multiple types of services have ...-- data, voice, video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, K.
1974-12-06
An installation is described for the catalytic afterburning of exhaust gases in an internal combustion engine. The system includes a line by-passing the installation for the catalytic afterburning, in which is arranged a throttle valve actuated in dependence on the temperature of the installation. The throttle valve also can be actuated independently of the temperature of the installation, but in dependence of the oil pressure which continues to exist for a short period of time after turning off the engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang
Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less
Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang; ...
2016-04-23
Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less
Electrical diesel particulate filter (DPF) regeneration
Gonze, Eugene V; Ament, Frank
2013-12-31
An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.
A Compact Via-free Composite Right/Left Handed Low-pass Filter with Improved Selectivity
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Choudhary, Dilip Kumar; Chaudhary, Raghvendra Kumar
2017-07-01
In this paper, a compact via-free low pass filter is designed based on composite right/left handed (CRLH) concept. The structure uses open ended concept. Rectangular slots are etched on signal transmission line (TL) to suppress the spurious band without altering the performance and size of filter. The filter is designed for low pass frequency band with cut-off frequency of 3.5 GHz. The proposed metamaterial structure has several prominent advantages in term of selectivity up to 34 dB/GHz and compactness with average insertion loss less than 0.4 dB. It has multiple applications in wireless communication (such as GSM900, global navigation satellite system (1.559-1.610 GHz), GSM1800, WLAN/WiFi (2.4-2.49 GHz) and WiMAX (2.5-2.69 GHz)). The design parameters have been measured and compared with the simulated results and found excellent agreement. The electrical size of proposed filter is 0.14λ0× 0.11λ0 (where λ0 is free space wavelength at zeroth order resonance (ZOR) frequency 2.7 GHz).
TOPICAL REVIEW: Progress in engineering high strain lead-free piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Leontsev, Serhiy O.; Eitel, Richard E.
2010-08-01
Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The 'structural engineering' approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications.
Chemical composition of Texas surface waters, 1949
Irelan, Burdge
1950-01-01
This report is the fifth the a series of publications by the Texas Board of Water Engineers giving chemical analyses of the surface waters in the State of Texas. The samples for which data are given were collected between October 1, 1948 and September 30, 1949. During the water year 25 daily sampling stations were maintained by the Geological Survey. Sampled were collected less frequently during the year at many other points. Quality of water records for previous years can be found in the following reports: "Chemical Composition of Texas Surface Waters, 1938-1945," by W. W. Hastings, and J. H. Rowley; "Chemical Composition of Texas Surface Waters, 1946," by W. W. Hastings and B. Irelan; "Chemical Composition of Texas Surface Waters, 1947," by B. Irelan and J. R. Avrett; "Chemical Composition of Texas Surface Waters, 1948," by B. Irelan, D. E. Weaver, and J. R. Avrett. These reports may be obtained from the Texas Board of Water Engineers and Geological Survey at Austin, Texas. Samples for chemical analysis were collected daily at or near points on streams where gaging stations are maintained for measurement of discharge. Most of the analyses were made of 10-day composites of daily samples collected for a year at each sampling point. Three composite samples were usually prepared each month by mixing together equal quantities of daily samples collected for the 1st to the 10th, from the 11th to the 20th, and during the remainder of the month. Monthly composites were made at a few stations where variation in daily conductance was small. For some streams that are subject to sudden large changes in chemical composition, composite samples were made for shorter periods on the basis of the concentration of dissolved solids as indicated by measurement of specific conductance of the daily samples. The mean discharge for the composite period is reported in second-feet. Specific conductance values are expressed as "micromhos, K x 10 at 25° C." Silica, calcium, magnesium, sodium, potassium, bicarbonate, sulfate, chloride, and nitrate are reported in parts per million. The quantity of dissolved solids is given in tons per acre-foot, tons per day (if discharge records are available), and parts per million. The total and non-carbonate hardness are reported as parts per million calcium carbonate (CaCO3). For those analyses where sodium and potassium are reported separately, "recent sodium" will include the equivalent quantity of sodium only. In analyses where sodium and potassium were calculated and reported as a combined value, the "percent sodium" will include the equivalent quantity of sodium and potassium. Weighted average analyses are given for most daily sampling stations. The weighted average analysis represent approximately the composition of water that would be found in a reservoir containing all the water passing a given station during the year after through mixing in the reservoir. Samples were analyzed according to method regularly used by the Geological Survey. These methods are essentially the same or are modifications of methods described in recognized authoritative publications for mineral analysis of water samples. These quality of water records have been collected as part of the cooperative investigations of the water resources of Texas conducted by the Geological Survey and the Texas Board of Water Engineers. Much of the work would have been impossible without the support of the following Federal State, and local agencies The United States Bureau of Reclamation, U. S. Corps of Engineers, Brazos River Conservation and Reclamation District, Lower Colorado River Authority, Red Bluff Water Power Control District, City of Amarillo, City of Abilene, and City of Forth Worth. The investigations were under the firection of Burdge Irelan, District Chemist, Austin, Texas. Analyses of water samples were made by Clara J. Carter, Lee J. Freeman, Homer D. Smith, Dorothy M. Suttle, DeForrest E. Weaver, and Clarence T. Welborn. Calculations of weighted averages were made by James R. Avrett, Burdge Irelan, Dorothy M. Suttle, and DeForrest E. Weaver.
Removal of 137Cs from Dissolved Hanford Tank Saltcake by Treatment with IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapko, Brian M.; Sinkov, Serguei I.; Levitskaia, Tatiana G.
2003-04-10
The U.S. Department of Energy's Richland Operations Office plans to accelerate the cleanup of the Hanford Site. Testing new technology for the accelerated cleanup will require dissolved saltcake from single-shell tanks. However, the 137Cs will need to be removed from the saltcake to alleviate radiation hazards. A saltcake composite constructed from archived samples from Hanford Single Shell Tanks 241-S-101, 241-S-109, 241-S-110, 241-S-111, 241-U-106, and 241-U-109 was dissolved in water, adjusted to 5 M Na, and transferred from the 222-S building to the Radiochemical Processing Laboratory (RPL). At the RPL, the approximately 5.5 liters of solution was passed through a 0.2-micronmore » polyethersulfone filter, collected, and homogenized. The filtered solution then was passed through an ion exchange column containing approximately 150 mL IONSIV IE-911, an engineered form of crystalline silicotitanate available from UOP, at approximately 200 mL/hour in a continuous operation until all of the feed solution had been run through the column. An analysis of the 137Cs concentrations in the initial feed solution and combined column effluent indicates that> 99.999 percent of the Cs in the feed solution was removed by this operation. This report describes the Cs-depletion operations together with a partial analysis of the as-received solution and a more extensive characterization of the Cs-depleted solution.« less
49 CFR 173.35 - Hazardous materials in IBCs.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., cracks, cuts, or other damage which would render it unable to pass the prescribed design type test to... plastic or composite IBC may only be filled with a liquid having a vapor pressure less than or equal to... -57 portable tanks. (j) No IBC may be filled with a Packing Group I liquid. Rigid plastic, composite...
Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.
2007-01-01
Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain by previously unrecognized nonmarine strata informally referred to here as the Caribou Pass formation. This unit is at least 250 m thick and has been tentatively assigned an Albian-Cenomanian-to-younger age based on limited palynomorphs and fossil leaves. Sandstone composition (Q-65% F-9% L-26%-Lv-28% Lm-52% Ls-20%) from this unit suggests a quartz-rich metamorphic source terrane that we interpret as having been the Yukon-Tanana terrane. Collectively, provenance data indicate that there was a fundamental shift from mainly arc-related sediment derivation from sources located south of the study area during Jurassic-Early Cretaceous (Aptian) time (Kahiltna assemblage) to mainly continental margin-derived sediment from sources located north and east of the study area by Albian-Cenomanian time (Caribou Pass formation). We interpret the threepart stratigraphy defined for the northwestern Talkeetna Mountains to represent pre- (the Honolulu Pass formation), syn- (the Kahiltna assemblage), and post- (the Caribou Pass formation) collision of the Wrangellia composite terrane with the Mesozoic continental margin. A similar Mesozoic stratigraphy appears to exist in other parts of south-central and southwestern Alaska along the suture zone based on previous regional mapping studies. New geologic mapping utilizing the three-part stratigraphy interprets the northwestern Talkeetna Mountains as consisting of two northwest-verging thrust sheets. Our structural interpretation is that of more localized thrust-fault imbrication of the three-part stratigraphy in contrast to previous interpretations of nappe emplacement or terrane translation that require large-scale displacements. Copyright ?? 2007 The Geological Society of America.
Method for gas-metal arc deposition
Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.
1990-11-13
Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.
Method for gas-metal arc deposition
Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.
1990-01-01
Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.
Apparatus for gas-metal arc deposition
Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.
1991-01-01
Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.
Composites for removing metals and volatile organic compounds and method thereof
Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Reynolds, John G [San Ramon, CA
2006-12-12
Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay
2014-01-01
The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.
Human error in airway facilities.
DOT National Transportation Integrated Search
2001-01-01
This report examines human errors in Airway Facilities (AF) with the intent of preventing these errors from being : passed on to the new Operations Control Centers. To effectively manage errors, they first have to be identified. : Human factors engin...
An engineering approach for the application of textile composites to a structural component
NASA Technical Reports Server (NTRS)
Baldwin, Jack W.; Gracias, Brian K.; Clark, Steven R.
1993-01-01
An engineering approach for the application of textile composites to a structural component is addressed. The main objective is to improve impact resistance of composite blades by using some form of 3-D reinforcement. Project goals, results, and conclusions are discussed.
Aerospike Engine Post-Test Diagnostic System Delivered to Rocketdyne
NASA Technical Reports Server (NTRS)
Meyer, Claudia M.
2000-01-01
The NASA Glenn Research Center at Lewis Field, in cooperation with Rocketdyne, has designed, developed, and implemented an automated Post-Test Diagnostic System (PTDS) for the X-33 linear aerospike engine. The PTDS was developed to reduce analysis time and to increase the accuracy and repeatability of rocket engine ground test fire and flight data analysis. This diagnostic system provides a fast, consistent, first-pass data analysis, thereby aiding engineers who are responsible for detecting and diagnosing engine anomalies from sensor data. It uses analytical methods modeled after the analysis strategies used by engineers. Glenn delivered the first version of PTDS in September of 1998 to support testing of the engine s power pack assembly. The system was used to analyze all 17 power pack tests and assisted Rocketdyne engineers in troubleshooting both data acquisition and test article anomalies. The engine version of PTDS, which was delivered in June of 1999, will support all single-engine, dual-engine, and flight firings of the aerospike engine.
Structural tailoring of engine blades (STAEBL)
NASA Technical Reports Server (NTRS)
Platt, C. E.; Pratt, T. K.; Brown, K. W.
1982-01-01
A mathematical optimization procedure was developed for the structural tailoring of engine blades and was used to structurally tailor two engine fan blades constructed of composite materials without midspan shrouds. The first was a solid blade made from superhybrid composites, and the second was a hollow blade with metal matrix composite inlays. Three major computerized functions were needed to complete the procedure: approximate analysis with the established input variables, optimization of an objective function, and refined analysis for design verification.
Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads
2013-09-01
19.21, 215713. Thostenson, E. T.; Chou, T.‐W. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing ...composite structural life and the goal of the proposed research program to develop self -responsive engineered composites. Over 80%‒90% of the life of a...composite material. It is also envisaged to investigate and develop self -responsive engineered composite materials that provide an accurate health
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1978-01-01
The effect of turbofan engine overall pressure ratio, fan pressure ratio, and ductburner temperature rise on the engine weight and cruise fuel consumption for a mach 2.4 supersonic transport was investigated. Design point engines, optimized purely for the supersonic cruising portion of the flight where the bulk of the fuel is consumed, are considered. Based on constant thrust requirements at cruise, fuel consumption considerations would favor medium by pass ratio engines (1.5 to 1.8) of overall pressure ratio of about 16. Engine weight considerations favor low bypass ratio (0.6 or less) and low wverall pressure ratio (8). Combination of both effects results in bypass ratios of 0.6 to 0.8 and overall pressure ratio of 12 being the overall optimum.
DETAIL VIEW OF WINCHING ENGINE LOCATED AT THE UPPER TRAM ...
DETAIL VIEW OF WINCHING ENGINE LOCATED AT THE UPPER TRAM TERMINAL, LOOKING NORTHEAST. THE CABLE FROM THIS ENGINE LEADS DOWN INTO THE DEEP RAVINE IN FRONT OF THE UPPER TRAM TERMINAL. IT WAS PROBABLY USED TO DRAG MATERIALS UP TOWARD THE TERMINAL WHEN THE TERMINAL WAS BEING CONSTRUCTED, OR IN TIMES OF TRAMWAY BREAKDOWN. THE DRIVE ENGINE IS IN THE BACKGROUND. TWO LONG OPERATING LEVERS FOR THE ENGINE ARE IN THE CENTER FOREGROUND. AN EXTRA SPOOL OF CABLE IS ON THE GROUND TO THE RIGHT OF THE ENGINE. A WATER PIPELINE STRETCHES ACROSS THE SLOPE IN THE BACKGROUND, CARRYING WATER TO THE UPPER MINES. SEE CA-291-37 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
DETAIL VIEW OF WINCHING ENGINE LOCATED AT THE UPPER TRAM ...
DETAIL VIEW OF WINCHING ENGINE LOCATED AT THE UPPER TRAM TERMINAL LOOKING NORTHEAST. THE CABLE FROM THIS ENGINE LEADS DOWN INTO THE DEEP RAVINE IN FRONT OF THE UPPER TRAM TERMINAL. IT WAS PROBABLY USED TO DRAG MATERIALS UP TOWARD THE TERMINAL WHEN THE TERMINAL WAS BEING CONSTRUCTED, OR IN TIMES OF TRAMWAY BREAK DOWN. THE DRIVE ENGINE IS IN THE BACKGROUND. TWO LONG OPERATING LEVERS FOR THE ENGINE ARE IN THE CENTER FOREGROUND. AN EXTRA SPOOL OF CABLE IS ON THE GROUND TO THE RIGHT OF THE ENGINE. A WATER PIPELINE STRETCHES ACROSS THE SLOPE IN THE BACKGROUND, CARRYING WATER TO THE UPPER MINES. SEE CA-291-52 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Design and Testing of Braided Composite Fan Case Materials and Components
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.
2009-01-01
Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.
Experimentally-determined external heat loss of automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Meng, P. R.; Wulf, R. F.
1975-01-01
An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.
Biomimetic strategies for engineering composite tissues.
Lee, Nancy; Robinson, Jennifer; Lu, Helen
2016-08-01
The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.
2017-08-01
accessories for mounting e. Laser power supply f. TEC power supply 12. Optical filters from SEMROCK ®, THORLABS Inc., EDMUND OPTICS® a. 532-nm, laser...line filter ( SEMROCK ®) b. 550-nm, hard-coated, short-pass filter (THORLABS Inc.) c. 532-nm long-pass filter ( SEMROCK ®) d. 808-nm laser-line filter... SEMROCK ®) e. 850-nm /10-nm full width at half maximum (FWHM) bandpass filter ( SEMROCK ®) f. 980-nm bandpass filter ( SEMROCK ®) g. 976-nm laser-line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, A.; Frenkel, J.; Hopf, R.
Amyloidosis is a systemic disease frequently involving the myocardium and leading to functional disturbances of the heart. Amyloidosis can mimic other cardiac diseases. A conclusive clinical diagnosis of cardiac involvement can only be made by a combination of different diagnostic methods. In 7 patients with myocardial amyloidosis we used a combined first-pass and static scintigraphy with technetium-99 m-pyrophosphate. There was only insignificant myocardial uptake of the tracer. The first-pass studies however revealed reduced systolic function in 4/7 patients and impaired diastolic function in 6/7 patients. Therefore, although cardiac amyloid could not be demonstrated in the static scintigraphy due to amyloidmore » fibril amount and composition, myocardial functional abnormalities were seen in the first-pass study.« less
Factors affecting the strength of multipass low-alloy steel weld metal
NASA Technical Reports Server (NTRS)
Krantz, B. M.
1972-01-01
The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.
Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.
2005-01-01
An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.
Active Control of Jet Engine Inlet Flows
2007-03-31
These S-shaped ducts do not provide a direct line of sight to the compressor blades , thus hiding the engine from incoming radar waves. Also, serpentine...circumferential distortion pattern acts as an unsteady forcing function, inducing blade vibration that can result in structural fatigue and failure 3. This...shortcoming occurs when the rotor blades pass through regions of reduced axial velocity (i.e., where the total pressure is low). In these areas, since the
1983-02-01
la sells do mosures. Lair eat aspirE & 1’extdriour do la colliule A travers un filtre & poussibres, passe doe 1e conver- gent qui d~livre un dcoulemont...system, so that the spatially nonuniform , steady flow is seen as unsteady but spatially uniform.’ A single-streatube model is used for purely...in Uniform and Nonuniform Flow." Journal of Engineering for Power, Vol. 102, October 1980, pp. 762-769. 12Fabri, J. "Rotating Stall in Axial Flow
Diesel particulate filter regeneration via resistive surface heating
Gonze, Eugene V; Ament, Frank
2013-10-08
An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.
Military Free Fall Scheduling And Manifest Optimization Model
2016-12-01
engines running waiting for the next student load. The annual blade hour cost, which consists of fuel, maintenance, and personnel, is $5.6M for FY-16...tarmac with engines running waiting for the next student load (J. Enke, personal communication, 2016). The annual blade hour cost, which consists of...33 Scenario 2 Nonstandard Run #1 C-27 Two Passes per Lift .......................34 Table 9. xii THIS PAGE INTENTIONALLY LEFT BLANK xiii
NASA Technical Reports Server (NTRS)
1979-01-01
The performance test results of the final under-the-wing engine configuration are presented. One hundred and six hours of engine operation were completed, including mechanical and performance checkout, baseline acoustic testing with a bellmouth inlet, reverse thrust testing, acoustic technology tests, and limited controls testing. The engine includes a variable pitch fan having advanced composite fan blades and using a ball-spline pitch actuation system.
Composite Material Application to Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Judd, D. C.
1982-01-01
The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.
Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report
NASA Technical Reports Server (NTRS)
Stotler, C. L., Jr.; Bowden, J. H.
1977-01-01
The element and subcomponent testing conducted to verify the composite fan frame design of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft is described. Emphasis is placed on the propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing, including technology in composite structures and digital engine controls. The element tests confirmed that the processes used in the frame design would produce the predicted mechanical properties. The subcomponent tests verified that the detail structural components of the frame had adequate structural integrity.
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.;
2015-01-01
The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.
Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian
2015-10-14
In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.
Stallworth, Geraldine R.; Jordan, Helen F.
1980-01-01
The U.S. Geological Survey was requested by the U.S. Army Corps of Engineers to provide water-quality data to evaluate the potential environmental effects of (1) dredging activities in selected navigable waterways of southern Louisiana and (2) the disposal of dredged material at selected areas in the Gulf of Mexico. Areas studied from September 1976 to May 1978 included five ocean disposal sites in the Gulf of Mexico, in addition to the following waterways: Baptiste, Collette Bayou, Mississippi River at Head of Passes and Southwest Pass, Mississippi River at Tiger Pass, Bayou Black, Intracoastal Waterway (Port Allen to Morgan City), and Calcasieu River and Ship Channel. Samples were analyzed for selected chemical, physical, and biological constituents. (USGS)
ERIC Educational Resources Information Center
Busching, Herbert W.
Curricula in undergraduate engineering have not adequately reflected present usage and knowledge of composite materials (types of rock and organic matter in which structurally dissimilar materials are combined). Wide usage of composites is expected to increase the importance of this class of materials and the need for more substantive exposure to…
The nature of operating flight loads and their effect on propulsion system structures
NASA Technical Reports Server (NTRS)
Dickenson, K. H.; Martin, R. L.
1981-01-01
Past diagnostics studies revealed the primary causes of performance deterioration of high by-pass turbofan engines to be flight loads, erosion, and thermal distortion. The various types of airplane loads that are imposed on the engine throughout the lifetime of an airplane are examined. These include flight loads from gusts and maneuvers and ground loads from takeoff, landing, and taxi conditions. Clarification is made in definitions of the airframer's limit and ultimate design loads and the engine manufacturer's operating design loads. Finally, the influence of these loads on the propulsion system structures is discussed.
Improving the D2512 Lox Compatibility of Composites by Using Thermally Conductive Graphite Fibers
2005-09-01
Figure 40, Selected Carbon-Graphite Fibers 83 Figure 41, YSH50A and YSH60A Fiber Surface Metal Properties 84 Figure 42, Lab Room...ducts, and lines and exhibiting in-plane Ks comparable to those metals which regularly pass D2512, can be found which either passes or comes close to...aluminum. They are highly localized and should be effective in delivering energy to the metal . However, despite the high temperature and localization
Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T
2017-03-15
Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the matrix shrinkage, which is major problem that causes the failure of TEHV, and better maintained physiological fibroblastic phenotype in both normal and diseased HAVIC. This work marks the first report of a combination composite scaffold using 3D hydrogel enhanced by nano-micro fibrous woven fabric, and represents a promising tissue engineering strategy to treat heart valve injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
Engineering Design Handbook Short Fiber Plastic Base Composites
1975-07-31
ENGINEERING DESIGN HANDBOOK N ’~rttl SHORT FIBER PLASTIC BASE COMPOSITES l ,.. HEADQUARTERS, US ARrm MAlERIEL COIVMAND JULY 1975 DEPARTMENT OF...HANDBOOK SHORT FIBER PLASTIC BASE COMPOSITES TABLE OF CONTENTS 31 July 1975 Paragraph Page 1-1 1-2 1-2.1 1-2.2 1-3 1-3.1 1-3.2 1-3.3 1...General ............................... . Molding Short Fiber Compounds ........... . Classification of Polymer Based Composites
Correlating Engine NOx Emission with Biodiesel Composition
NASA Astrophysics Data System (ADS)
Jeyaseelan, Thangaraja; Mehta, Pramod Shankar
2017-06-01
Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.
Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps
NASA Astrophysics Data System (ADS)
Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.
2017-04-01
Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.
Investigation of Bending Test Procedures for Engineered Polymer Composite Railroad Ties
2016-12-01
Test Procedures for Engineered Polymer Composite Railroad Ties Claire G. Ball CTL Group 5400 Old Orchard Road Skokie, IL 60077 Final report...track. Per- formance criteria have been developed and published in Chapter 30 of the American Railway Engineering and Maintenance -of-Way Association’s...these ties were developed and published in Chap- ter 30 of the American Railway Engineering and Maintenance -of-Way As- sociation (AREMA) Manual for
Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.
2009-01-01
Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.
Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine
NASA Technical Reports Server (NTRS)
Lawerence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.;
2000-01-01
The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.
Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine
NASA Technical Reports Server (NTRS)
Lawrence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.
2001-01-01
The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.
1989-01-01
Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials.
Hovgaard, Lisette Hvid; Andersen, Steven Arild Wuyts; Konge, Lars; Dalsgaard, Torur; Larsen, Christian Rifbjerg
2018-03-30
The use of robotic surgery for minimally invasive procedures has increased considerably over the last decade. Robotic surgery has potential advantages compared to laparoscopic surgery but also requires new skills. Using virtual reality (VR) simulation to facilitate the acquisition of these new skills could potentially benefit training of robotic surgical skills and also be a crucial step in developing a robotic surgical training curriculum. The study's objective was to establish validity evidence for a simulation-based test for procedural competency for the vaginal cuff closure procedure that can be used in a future simulation-based, mastery learning training curriculum. Eleven novice gynaecological surgeons without prior robotic experience and 11 experienced gynaecological robotic surgeons (> 30 robotic procedures) were recruited. After familiarization with the VR simulator, participants completed the module 'Guided Vaginal Cuff Closure' six times. Validity evidence was investigated for 18 preselected simulator metrics. The internal consistency was assessed using Cronbach's alpha and a composite score was calculated based on metrics with significant discriminative ability between the two groups. Finally, a pass/fail standard was established using the contrasting groups' method. The experienced surgeons significantly outperformed the novice surgeons on 6 of the 18 metrics. The internal consistency was 0.58 (Cronbach's alpha). The experienced surgeons' mean composite score for all six repetitions were significantly better than the novice surgeons' (76.1 vs. 63.0, respectively, p < 0.001). A pass/fail standard of 75/100 was established. Four novice surgeons passed this standard (false positives) and three experienced surgeons failed (false negatives). Our study has gathered validity evidence for a simulation-based test for procedural robotic surgical competency in the vaginal cuff closure procedure and established a credible pass/fail standard for future proficiency-based training.
Michallek, Florian; Dewey, Marc
2017-04-01
To introduce a novel hypothesis and method to characterise pathomechanisms underlying myocardial ischemia in chronic ischemic heart disease by local fractal analysis (FA) of the ischemic myocardial transition region in perfusion imaging. Vascular mechanisms to compensate ischemia are regulated at various vascular scales with their superimposed perfusion pattern being hypothetically self-similar. Dedicated FA software ("FraktalWandler") has been developed. Fractal dimensions during first-pass (FD first-pass ) and recirculation (FD recirculation ) are hypothesised to indicate the predominating pathomechanism and ischemic severity, respectively. Twenty-six patients with evidence of myocardial ischemia in 108 ischemic myocardial segments on magnetic resonance imaging (MRI) were analysed. The 40th and 60th percentiles of FD first-pass were used for pathomechanical classification, assigning lesions with FD first-pass ≤ 2.335 to predominating coronary microvascular dysfunction (CMD) and ≥2.387 to predominating coronary artery disease (CAD). Optimal classification point in ROC analysis was FD first-pass = 2.358. FD recirculation correlated moderately with per cent diameter stenosis in invasive coronary angiography in lesions classified CAD (r = 0.472, p = 0.001) but not CMD (r = 0.082, p = 0.600). The ischemic transition region may provide information on pathomechanical composition and severity of myocardial ischemia. FA of this region is feasible and may improve diagnosis compared to traditional noninvasive myocardial perfusion analysis. • A novel hypothesis and method is introduced to pathophysiologically characterise myocardial ischemia. • The ischemic transition region appears a meaningful diagnostic target in perfusion imaging. • Fractal analysis may characterise pathomechanical composition and severity of myocardial ischemia.
ENGINEERING BULLETIN: IN SITU SOIL FLUSHING
In situ soil flushing is the extraction of contaminants from the soil with water or other suitable aqueous solutions. Soil flushing is accomplished by passing the extraction fluid through in-place soils using an injection or infiltration process. Extraction fluids must be recover...
49 CFR 571.131 - Standard No. 131; School bus pedestrian safety devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... purpose of this standard is to reduce deaths and injuries by minimizing the likelihood of vehicles passing... opened while the engine is running and the manual override is engaged. S6 Test Procedures. S6.1...
Heat regenerative external combustion engine
NASA Astrophysics Data System (ADS)
Duva, Anthony W.
1993-03-01
It is an object of the invention to provide an external combustion expander-type engine having improved efficiency. It is another object of the invention to provide an external combustion engine in which afterburning in the exhaust channel is substantially prevented. Yet another object of the invention is to provide an external combustion engine which is less noisy than an external combustion engine of conventional design. These and other objects of the invention will become more apparent from the following description. The above objects of the invention are realized by providing a heat regenerative external combustion engine. The heat regenerative external combustion engine of the invention comprises a combustion chamber for combusting a monopropellant fuel in order to form an energized gas. The energized gas is then passed through a rotary valve to a cylinder having a reciprocating piston disposed therein. The gas is spent in moving the piston, thereby driving a drive shaft.
Davis, Michael
2012-12-01
Judgment is central to engineering, medicine, the sciences and many other practical activities. For example, one who otherwise knows what engineers know but lacks "engineering judgment" may be an expert of sorts, a handy resource much like a reference book or database, but cannot be a competent engineer. Though often overlooked or at least passed over in silence, the central place of judgment in engineering, the sciences, and the like should be obvious once pointed out. It is important here because it helps to explain where ethics fits into these disciplines. There is no good engineering, no good science, and so on without good judgment and no good judgment in these disciplines without ethics. Doing even a minimally decent job of teaching one of these disciplines necessarily includes teaching its ethics; teaching the ethics is teaching the discipline (or at least a large part of it).
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
Aithal, S. M.
2018-01-01
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings
Williamson, Weldon S [Malibu, CA; Gonze, Eugene V [Pinckney, MI
2008-12-30
An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.
A thermodynamic study of the turbine-propeller engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irvin M
1953-01-01
Equations and charts are presented for computing the thrust, the power output, the fuel consumption, and other performance parameters of a turbine-propeller engine for any given set of operating conditions and component efficiencies. Included are the effects of the pressure losses in the inlet duct and the combustion chamber, the variation of the physical properties of the gas as it passes through the system, and the change in mass flow of the gas by the addition of fuel.
Li, Bin; Zheng, Yunxin; He, Dehua; Jiang, Ruiyao; Chen, Ying; Jing, Wei
2012-03-01
The quantity of medical equipment in hospital rise quickly recent year. It provides the comprehensive support to the clinical service. The maintenance of medical equipment becomes more important than before. It is necessary to study on the orientation and function of clinical engineer in medical equipment maintenance system. Refer to three grade health care system, the community doctors which is called General practitioner, play an important role as the gatekeeper of health care system to triage and cost control. The paper suggests that hospital clinical engineer should play similar role as the gatekeeper of medical equipment maintenance system which composed by hospital clinical engineer, manufacture engineer and third party engineer. The hospital clinical engineer should be responsible of guard a pass of medical equipment maintenance quality and cost control. As the gatekeeper, hospital clinical engineer should take the responsibility of "General engineer" and pay more attention to safety and health of medical equipment. The responsibility description and future transition? development of clinical engineer as "General Engineer" is discussed. More attention should be recommended to the team building of hospital clinical engineer as "General Engineer".
NASA Astrophysics Data System (ADS)
Sukanto, H.; Budiana, E. P.; Putra, B. H. H.
2016-03-01
The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advanced rocket engine turbopump.
Ceramic composites for rocket engine turbines
NASA Technical Reports Server (NTRS)
Herbell, Thomas P.; Eckel, Andrew J.
1991-01-01
The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advaced rocket engine turbopump.
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
NASA Technical Reports Server (NTRS)
Signorelli, R. A.
1972-01-01
The current status of development of refractory-wire-superalloy composites and the potential for their application to turbine blades in land-based power generation and advanced aircraft engines are reviewed. The data indicate that refractory-wire-superalloy composites have application as turbine blades at temperatures of 2200 F and above.
Virtual Parts Engineering Research Center
2010-05-20
engineering 10 materials. High strength alloys , composites (polymer composites and metallic composites), and the like cannot merely be replaced by...ceramics, smart materials, shape memory alloys , super plastic materials and nano- structured materials may be more appropriate substitutes in a reverse...molding process using thermosetting Bakelite. For remanufacturing the part in small quantities, machining has been identified as the most economical
NASA's high-temperature engine materials program for civil aeronautics
NASA Technical Reports Server (NTRS)
Gray, Hugh R.; Ginty, Carol A.
1992-01-01
The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges
2017-06-01
ER D C/ CE RL T R- 17 -1 8 ACSIM Technology Standards Group Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges Co ns tr...default. ACSIM Technology Standards Group ERDC/CERL TR-17-18 June 2017 Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges Ghassan... tests were con- ducted on commercially available, thermoplastic polymer composite I- beams at U.S. Army Corps of Engineers, Engineer Research and
NASA Technical Reports Server (NTRS)
1981-01-01
A device for testing composites for strength characteristics has been developed by Acoustic Emission Technology Corporation. Called the Model 206AU, the system is lightweight and portable. It is comprised of three sections. The "pulser" section injects ultrasonic waves into the material under test. A receiver picks up the simulated stress waves as they pass through the material and relays the signals to the acoustic emission section, where they are electronically analyzed.
Carbon fiber composite molecular sieve electrically regenerable air filter media
Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.
1998-01-01
An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.
OBITUARY: In memory of Vasilii Ivanovich Shveikin (4 February 1935 – 4 January 2018)
NASA Astrophysics Data System (ADS)
Krokhin, O. N.; Gulyaev, Yu V.; Sigov, A. S.; Shcherbakov, I. A.; Vasil'ev, M. G.; Duraev, V. P.; Zabrodskii, A. G.; Zverev, G. M.; Kovsh, I. B.; Krotov, Yu A.; Kuznetsov, E. V.; Marmalyuk, A. A.; Popov, Yu M.; Semenov, A. S.; Simakov, V. A.
2018-03-01
Vasilii Ivanovich Shveikin, originator of semiconductor laser research and development at OJSC M.F. Stel'makh Polyus Research Institute, doctor of engineering, professor and Lenin Prize winner, passed away on 4 January after a long, serious illness.
Engineering of obligate intracellular bacteria: progress, challenges and paradigms
USDA-ARS?s Scientific Manuscript database
Over twenty years have passed since the first report of genetic manipulation of an obligate intracellular bacterium. Through progress interspersed by bouts of stagnation, microbiologists and geneticists have developed approaches to genetically manipulate obligates. A brief overview of the current ge...
Cracking and impact performance characteristics of plastic composite ties.
DOT National Transportation Integrated Search
2012-03-01
As followup to a workshop on Engineered Composite Ties sponsored by the American Railway Engineering and Maintenance-of-Way Association and the Federal Railroad Administration, the Transportation Technology Center, Inc., in Pueblo, CO, conducted a se...
Progress in engineering high strain lead-free piezoelectric ceramics
Leontsev, Serhiy O; Eitel, Richard E
2010-01-01
Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The ‘structural engineering’ approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications. PMID:27877343
Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers
Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT
2007-01-01
Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429
Eutectic Composite Turbine Blade Development
1976-11-01
turbine blades for aircraft engines . An MC carbide fiber reinforced eutectic alloy, NiTaC-13...composites in turbine blades for aircraft engines . An MC carbide fiber reinforced eutectic alloy, NiTaC-13 and the low pressure turbine blade of the...identified that appeared to have potential for application to aircraft engine turbine blade hardware. The potential benefits offered by these materials
Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1999-01-01
An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.
Sensing the gas metal arc welding process
NASA Technical Reports Server (NTRS)
Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.
1994-01-01
Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.
Application of acoustic imaging techniques on snowmobile pass-by noise.
Padois, Thomas; Berry, Alain
2017-02-01
Snowmobile manufacturers invest important efforts to reduce the noise emission of their products. The noise sources of snowmobiles are multiple and closely spaced, leading to difficult source separation in practice. In this study, source imaging results for snowmobile pass-by noise are discussed. The experiments involve a 193-microphone Underbrink array, with synchronization of acoustic with video data provided by a high-speed camera. Both conventional beamforming and Clean-SC deconvolution are implemented to provide noise source maps of the snowmobile. The results clearly reveal noise emission from the engine, exhaust, and track depending on the frequency range considered.
Heat shield manifold system for a midframe case of a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.
A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.
Cold start characteristics of ethanol as an automobile fuel
Greiner, Leonard
1982-01-01
An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.
Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia
2012-01-01
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670
GLobal Integrated Design Environment
NASA Technical Reports Server (NTRS)
Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.
2011-01-01
The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.
Guo, Jin; Li, Chunmei; Ling, Shengjie; Huang, Wenwen; Chen, Ying; Kaplan, David L
2017-11-01
Continuous gradients present at tissue interfaces such as osteochondral systems, reflect complex tissue functions and involve changes in extracellular matrix compositions, cell types and mechanical properties. New and versatile biomaterial strategies are needed to create suitable biomimetic engineered grafts for interfacial tissue engineering. Silk protein-based composites, coupled with selective peptides with mineralization domains, were utilized to mimic the soft-to-hard transition in osteochondral interfaces. The gradient composites supported tunable mineralization and mechanical properties corresponding to the spatial concentration gradient of the mineralization domains (R5 peptide). The composite system exhibited continuous transitions in terms of composition, structure and mechanical properties, as well as cytocompatibility and biodegradability. The gradient silicified silk/R5 composites promoted and regulated osteogenic differentiation of human mesenchymal stem cells in an osteoinductive environment in vitro. The cells differentiated along the composites in a manner consistent with the R5-gradient profile. This novel biomimetic gradient biomaterial design offers a useful approach to meet a broad range of needs in regenerative medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.
1984-09-01
ambient air was drawn through Purafil beds (to remove NOx), compressed by a liquid (water) ring compressor to 100 psig, and passed successively...AD-R48 716 ATMOSPHERIC PHOTOCHEMICAL MODELING OF TURBNNE ENGINE 1/2 FUELS PHASE I EXPERI..(U) CALIFORNIA UNIV RIVERSIDE STATEWIDE AIR POLLUTION...of II Results and Disussion : t W.P.L. CARTER, A.M. WINER, R. ATKINSON, M.C. DODD, W.D. LONG, and S.M. ASCHMANN STATEWIDE AIR POLLUTION RESEARCH
Integral finned heater and cooler for stirling engines
Corey, John A.
1984-01-01
A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.
2012-08-01
pp. 4–9. 46. Ye, Liang; Tong, Ming Wei; Zeng, Xin Design and Analysis of Multiple Parallel-pass Condensers. International Journal of Refrigeration...we mean energy that has low availability to do work (low exergy ). The closer a system is to the condition of its surroundings in terms of...vehicle with a gasoline internal combustion engine loses 40% of its fuel energy through the exhaust gas, which is still at a relatively high
Electrically heated particulate filter regeneration using hydrocarbon adsorbents
Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI
2011-02-01
An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.
Electrically heated particulate filter embedded heater design
Gonze, Eugene V.; Chapman, Mark R.
2014-07-01
An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.
Performance Charts for the Turbojet Engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irving M.
1947-01-01
Charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of the pressure losses in the inlet duct and combustion chamber, the variation in the physical properties of the gas as it passes through the cycle, and the change in mass flow by the addition of fuel are included. The principle performance charts show the effects of the primary variables and correction charts provide the effects of the secondary variables.
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2013-01-01
Increasingly, carbon composite structures are being used in aerospace applications. Their highstrength, high-stiffness, and low-weight properties make them good candidates for replacing many aerospace structures currently made of aluminum or steel. Recently, many of the aircraft engine manufacturers have developed new commercial jet engines that will use composite fan cases. Instead of using traditional composite layup techniques, these new fan cases will use a triaxially braided pattern, which improves case performance. The impact characteristics of composite materials for jet engine fan case applications have been an important research topic because Federal regulations require that an engine case be able to contain a blade and blade fragments during an engine blade-out event. Once the impact characteristics of these triaxial braided materials become known, computer models can be developed to simulate a jet engine blade-out event, thus reducing cost and time in the development of these composite jet engine cases. The two main problems that have arisen in this area of research are that the properties for these materials have not been fully determined and computationally efficient computer models, which incorporate much of the microscale deformation and failure mechanisms, are not available. The research reported herein addresses some of the deficiencies present in previous research regarding these triaxial braided composite materials. The current research develops new techniques to accurately quantify the material properties of the triaxial braided composite materials. New test methods are developed for the polymer resin composite constituent and representative composite coupons. These methods expand previous research by using novel specimen designs along with using a noncontact measuring system that is also capable of identifying and quantifying many of the microscale failure mechanisms present in the materials. Finally, using the data gathered, a new hybrid micromacromechanical computer model is created to simulate the behavior of these composite material systems under static and ballistic impact loading using the test data acquired. The model also quantifies the way in which the fiber/matrix interface affects material response under static and impact loading. The results show that the test methods are capable of accurately quantifying the polymer resin under a variety of strain rates and temperature for three loading conditions. The resin strength and stiffness data show a clear rate and temperature dependence. The data also show the hydrostatic stress effects and hysteresis, all of which can be used by researchers developing composite constitutive models for the resins. The results for the composite data reveal noticeable differences in strength, failure strain, and stiffness in the different material systems presented. The investigations into the microscale failure mechanisms provide information about the nature of the different material system behaviors. Finally, the developed computer model predicts composite static strength and stiffness to within 10 percent of the gathered test data and also agrees with composite impact data, where available.
NASA Astrophysics Data System (ADS)
Early on September 28,1993 our friend and colleague, Ian Moore passed away after a brief but courageous fight with cancer. Ian was born in Melbourne, Australia. He obtained his Bachelor's degree in Civil Engineering (with honors) in 1973 and his Master of Engineering Science in Civil Engineering in 1975, both from Monash University. After completing his Ph.D. in Agricultural Engineering at the University of Minnesota in 1979, he joined the Department of Agricultural Engineering at the University of Kentucky, Lexington, as an Assistant Professor. In 1983 he returned with his family to Australia to work as a Senior Research Scientist in the Canberra Laboratory of the then CSIRO Division of Water and Land Resources as a hydrologist in the Physical Hydrology and Water Quality Program. He left the Canberra Laboratory in 1986 for an appointment as an Assistant Professor in the Department of Agricultural Engineering at the University of Minnesota, where he was promoted to Associate Professor in 1989.
Research notes : evaluation of open-graded "F" mixtures for water sensitivity.
DOT National Transportation Integrated Search
1993-12-01
In 1992, many "F" mixtures failed the Index of Retained Strength (IRS) used by ODOT to evaluate the water damage potential of asphalt concrete mixtures. Although "F" mixtures had difficulty passing the IRS test, ODOT engineers felt that the problem w...
Alaska Volcano's Latest Eruption
Atmospheric Science Data Center
2017-06-06
... the Alaskan Volcano Observatory to issue a red alert for air travel in the area. Volcanic ash can cause major damage to aircraft engines, ... On May 28, 2017, at approximately 2:23 p.m. local time, NASA's Terra satellite passed over Bogoslof, less than 10 minutes after ...
An Overview of the Beacon Monitor Operations Technology
NASA Technical Reports Server (NTRS)
Sue, Miles K.; Wyatt, E. Jay; Foster, Mike; Schlutsmeyer, Alan; Sherwood, Rob
1997-01-01
This paper summarizes the end-to-end design of a technology for low cost mission operations. Cost savings is achieved by reducing the total volume of downlinked engineering telemetry by decreasing the frequency of telemetry acquisition and the volume of data received per pass.
33 CFR 183.202 - Flotation and certification requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and certification requirements. Each boat to which this subpart applies must be manufactured, constructed, or assembled to pass...
33 CFR 183.202 - Flotation and certification requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and certification requirements. Each boat to which this subpart applies must be manufactured, constructed, or assembled to pass...
Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.
Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less
Cutting-edge platforms in cardiac tissue engineering.
Fleischer, Sharon; Feiner, Ron; Dvir, Tal
2017-10-01
As cardiac disease takes a higher toll with each passing year, the need for new therapies to deal with the scarcity in heart donors becomes ever more pressing. Cardiac tissue engineering holds the promise of creating functional replacement tissues to repair heart tissue damage. In an attempt to bridge the gap between the lab and clinical realization, the field has made major strides. In this review, we will discuss state of the art technologies such as layer-by-layer assembly, bioprinting and bionic tissue engineering, all developed to overcome some of the major hurdles faced in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electrically heated particulate filter enhanced ignition strategy
Gonze, Eugene V; Paratore, Jr., Michael J
2012-10-23
An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.
Manufacturing development of pultruded composite panels
NASA Technical Reports Server (NTRS)
Meade, L. E.
1989-01-01
The weight savings potential, of graphite-epoxy composites for secondary and medium primary aircraft structures, was demonstrated. One of the greatest challenges facing the aircraft industry is to reduce the acquisition costs for composite structures to a level below that of metal structures. The pultrusion process, wherein reinforcing fibers, after being passed through a resin bath are drawn through a die to form and cure the desired cross-section, is an automated low cost manufacturing process for composite structures. The Lockheed Aeronautical Systems Company (LASC) Composites Development Center designed, characterizated materials for, fabricated and tested a stiffened cover concept compatible with the continuous pultrusion process. The procedures used and the results obtained are presented.
Development of Specifications for Engineered Cementitious Composites for Use in Bridge Deck Overlays
DOT National Transportation Integrated Search
2016-02-01
Engineered cementitious composite (ECC) material is a high strength, fiber-reinforced, ductile mortar mixture that can exhibit tensile strains of up to 5%. ECC has a dense matrix, giving the material exceptional durability characteristics. The durabi...
DOT National Transportation Integrated Search
2013-09-01
The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. Superhydrophobic : engineered cementitious composite (SECC) is a new advanced con...
NASA Technical Reports Server (NTRS)
1975-01-01
Results of tests conducted on preliminary design polymeric-composite fan blade for the under the wing (UTW) OCSEE engine are presented. During this phase of the program a total of 17preliminary OCSEE UTW composite fan blades were manufactured for various component tests including frequency characteristics, strain distribution, bench fatigue, dovetail pull, whirligig overspeed and whirligig impact. All tests were successfully completed with the exception of whirligig impact tests. Improvements in local impact capability are being evaluated for the OCSEE blade under other NASA and related programs.
Wrought stainless steel compositions having engineered microstructures for improved heat resistance
Maziasz, Philip J [Oak Ridge, TN; Swindeman, Robert W [Oak Ridge, TN; Pint, Bruce A [Knoxville, TN; Santella, Michael L [Knoxville, TN; More, Karren L [Knoxville, TN
2007-08-21
A wrought stainless steel alloy composition includes 12% to 25% Cr, 8% to 25% Ni, 0.05% to 1% Nb, 0.05% to 10% Mn, 0.02% to 0.15% C, 0.02% to 0.5% N, with the balance iron, the composition having the capability of developing an engineered microstructure at a temperature above 550.degree. C. The engineered microstructure includes an austenite matrix having therein a dispersion of intragranular NbC precipitates in a concentration in the range of 10.sup.10 to 10.sup.17 precipitates per cm.sup.3.
ERIC Educational Resources Information Center
Dochy, Filip; Kyndt, Eva; Baeten, Marlies; Pottier, Sofie; Veestraeten, Marlies; Leuven, K. U.
2009-01-01
The aim of this study was to examine the effect of different standard setting methods on the size and composition of the borderline group, on the discrimination between different types of students and on the types of students passing with one method but failing with another. A total of 107 university students were classified into 4 different types…
Carbon fiber composite molecular sieve electrically regenerable air filter media
Wilson, K.A.; Burchell, T.D.; Judkins, R.R.
1998-10-27
An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.
Combet, Emilie; Vlassopoulos, Antonis; Mölenberg, Famke; Gressier, Mathilde; Privet, Lisa; Wratten, Craig; Sharif, Sahar; Vieux, Florent; Lehmann, Undine; Masset, Gabriel
2017-04-21
Nutrient profiling ranks foods based on their nutrient composition, with applications in multiple aspects of food policy. We tested the capacity of a category-specific model developed for product reformulation to improve the average nutrient content of foods, using five national food composition datasets (UK, US, China, Brazil, France). Products ( n = 7183) were split into 35 categories based on the Nestlé Nutritional Profiling Systems (NNPS) and were then classified as NNPS 'Pass' if all nutrient targets were met (energy (E), total fat (TF), saturated fat (SFA), sodium (Na), added sugars (AS), protein, calcium). In a modelling scenario, all NNPS Fail products were 'reformulated' to meet NNPS standards. Overall, a third (36%) of all products achieved the NNPS standard/pass (inter-country and inter-category range: 32%-40%; 5%-72%, respectively), with most products requiring reformulation in two or more nutrients. The most common nutrients to require reformulation were SFA (22%-44%) and TF (23%-42%). Modelled compliance with NNPS standards could reduce the average content of SFA, Na and AS (10%, 8% and 6%, respectively) at the food supply level. Despite the good potential to stimulate reformulation across the five countries, the study highlights the need for better data quality and granularity of food composition databases.
Composite coating for low friction and wear applications and method thereof
Besmann, T.M.; Blau, P.J.; Lee, W.Y.; Bae, Y.W.
1998-01-20
An article having a multiphase composite lubricant coating of a hard refractory matrix phase of titanium nitride dispersed with particles of a solid lubricating phase of molybdenum disulfide is prepared by heating the article to temperatures between 350 and 850 C in a reaction vessel at a reduced pressure and passing a gaseous mixture of Ti((CH{sub 3}){sub 2}N){sub 4}, MoF{sub 6}, H{sub 2}S and NH{sub 3} over the heated article forming a multiphase composite lubricant coating on the article. 1 fig.
CVD method of forming self-lubricating composites
Besmann, T.M.; Blau, P.J.; Lee, W.Y.; Bae, Y.W.
1998-12-01
An article having a multiphase composite lubricant coating of a hard refractory matrix phase of titanium nitride dispersed with particles of a solid lubricating phase of molybdenum disulfide is prepared by heating the article to temperatures between 350 and 850 C in a reaction vessel at a reduced pressure and passing a gaseous mixture of Ti((CH{sub 3}){sub 2}N){sub 4}, MoF{sub 6}, H{sub 2}S and NH{sub 3} over the heated article forming a multiphase composite lubricant coating on the article. 1 fig.
CVD method of forming self-lubricating composites
Besmann, Theodore M.; Blau, Peter J.; Lee, Woo Y.; Bae, Yong W.
1998-01-01
An article having a multiphase composite lubricant coating of a hard refractory matrix phase of titanium nitride dispersed with particles of a solid lubricating phase of molybdenum disulfide is prepared by heating the article to temperatures between 350.degree. and 850.degree. C. in a reaction vessel at a reduced pressure and passing a gaseous mixture of Ti((CH.sub.3).sub.2 N).sub.4, MoF.sub.6, H.sub.2 S and NH.sub.3 over the heated article forming a multiphase composite lubricant coating on the article.
Composite coating for low friction and wear applications and method thereof
Besmann, Theodore M.; Blau, Peter J.; Lee, Woo Y.; Bae, Yong W.
1998-01-01
An article having a multiphase composite lubricant coating of a hard refractory matrix phase of titanium nitride dispersed with particles of a solid lubricating phase of molybdenum disulfide is prepared by heating the article to temperatures between 350.degree. and 850.degree. C. in a reaction vessel at a reduced pressure and passing a gaseous mixture of Ti((CH.sub.3).sub.2 N).sub.4, MoF.sub.6, H.sub.2 S and NH.sub.3 over the heated article forming a multiphase composite lubricant coating on the article.
NEUTRON ABSORPTION AND SHIELDING DEVICE
Axelrad, I.R.
1960-06-21
A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.
Development of Engineering Data on Advanced Composite Materials
1977-09-01
O AFML-TR-77-15 1 ,* • DEVELOPMENT OF ENGINEERING DATA ON ’ ADVANCED COMPOSITE MATERIALS UNIVERSITY OF DAYTON RESEARCH INSTITUTE I - UNIVERSITY OF DA...SUMMARIZED COMPOSITE DATA 47 4.1 SP313 48 4.2 AS/3004 86 4.3 AS/4397 125 4.4 T300/F178 163 4.5 COMPARATIVE ENVIRONMENTAL BEHAVIOR 194 5 CONCLUSIONS 197...AGED INTERLAKINAR SHEAR DATA 452 vi -. -| |b. ~ - LIST OF ILLUSTRATIONS FIGURE PACE 1 Typical Cross Sections of Fabricated Composites 12 2 Heat-Up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukanto, H., E-mail: masheher@uns.ac.id; Budiana, E. P., E-mail: budiana.e@gmail.com; Putra, B. H. H., E-mail: benedictus.hendy@gmail.com
The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004,more » the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.« less
Schloesser, Donald W.; Manny, Bruce A.
1989-01-01
An extensive survey of submersed macrophytes in the St. Clair and Detroit rivers revealed statistically significant differences in the composition and density of macrophyte beds in shipping channels (used by commercial vessels passing between Lakes Huron and Erie) and non-shipping channels. Of nine common macrophyte taxa, four (Characae, Potamogeton richardsonii, Potamogeton spp. narrow-leaf forms, and Najas flexilis) were found more frequently and three (Myriophyllum spicatum, Elodea canadensis, and Heteranthera dubia) less frequently in shipping than in non-shipping channels. In general, macrophyte beds were less dense in shipping channels than in non-shipping channels. We postulate that disruption of the prevailing unidirectional current patterns and erosion of suitable substrate or breakage of plant stems by passing vessels caused the observed differences in the composition and density of macrophyte beds in shipping and non-shipping channels in the St. Clair and Detroit rivers.
Design concepts for low-cost composite turbofan engine frame
NASA Technical Reports Server (NTRS)
Mitchell, S. C.; Stoffer, L. J.
1980-01-01
Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan
2016-01-01
Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.
Unducted, counterrotating gearless front fan engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.B.
This patent describes a high bypass ratio gas turbine engine. It comprises a core engine effective for generating combustion gases passing through a main flow path; a power turbine aft of the core engine and including first and second counter rotatable interdigitated turbine blade rows, effective for counterrotating first and second drive shafts, respectively; an unducted fan section forward of the core engine including a first fan blade row connected to the first drive shaft and a second fan blade row axially spaced aftward from the first fan blade row and connected to the second drive shaft; and a boostermore » compressor axially positioned between the first and second fan blade rows and including first compressor blade rows connected to the first drive shaft and second compressor blade rows connected to the second drive shaft.« less
Autonomous grain combine control system
Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.
2013-06-25
A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.
A survey of oscillating flow in Stirling engine heat exchangers
NASA Technical Reports Server (NTRS)
Simon, Terrence W.; Seume, Jorge R.
1988-01-01
Similarity parameters for characterizing the effect of flow oscillation on wall shear stress, viscous dissipation, pressure drop and heat transfer rates are proposed. They are based on physical agruments and are derived by normalizing the governing equations. The literature on oscillating duct flows, regenerator and porous media flows is surveyed. The operating characteristics of the heat exchanger of eleven Stirling engines are discribed in terms of the similarity parameters. Previous experimental and analytical results are discussed in terms of these parameters and used to estimate the nature of the oscillating flow under engine operating conditions. The operating points for many of the modern Stirling engines are in or near the laminar to turbulent transition region. In several engines, working fluid does not pass entirely through heat exchangers during a cycle. Questions that need to be addressed by further research are identified.
US-Europe Workshop on Impact of Multifunctionality on Damage Evolution in Composite Materials
2015-09-01
Inventions (DD882) Scientific Progress See Attachment Technology Transfer Not applicable UNIVERSITY OF ILLINOIS AEROSPACE ENGINEERING...Composite Materials PI: Ioannis Chasiotis Aerospace Engineering University of Illinois at Urbana-Champaign Talbot Lab, 104 S. Wright Street, Urbana, IL...focused on the current state of corporate research in the aerospace industry which is a major potential adopter of multifunctional composites. The two
A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring
NASA Technical Reports Server (NTRS)
Johnson, Steven A.
1990-01-01
A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.
Tong, Shi Yun; Wang, Zuyong; Lim, Poon Nian; Wang, Wilson; Thian, Eng San
2017-01-01
Regeneration of injuries at tendon-to-bone interface (TBI) remains a challenging issue due to the complex tissue composition involving both soft tendon tissues and relatively hard bone tissues. Tissue engineering using polymeric/ceramic composites has been of great interest to generate scaffolds for tissue's healing at TBI. Herein, we presented a novel method to blend polymers and bioceramics for tendon tissue engineering application. A homogeneous composite comprising of nanohydroxyapatite (nHA) particles in poly(ε-caprolactone) (PCL) matrix was obtained using a combination of solvent and mechanical blending process. X-ray diffraction analysis showed that the as-fabricated PCL/nHA composite film retained phase-pure apatite and semi-crystalline properties of PCL. Infrared spectroscopy spectra confirmed that the PCL/nHA composite film exhibited the characteristics functional groups of PCL and nHA, without alteration to the chemical properties of the composite. The incorporation of nHA resulted in PCL/nHA composite film with improved mechanical properties such as Young's Modulus and ultimate tensile stress, which were comparable to that of the native human rotator tendon. Seeding with human tenocytes, cells attached on the PCL/nHA composite film, and after 14days of culturing, these cells could acquire elongated morphology without induced cytotoxicity. PCL/nHA composite film could also result in increased cell metabolism with prolonged culturing, which was comparable to that of the PCL group and higher than that of the nHA group. All these results demonstrated that the developed technique of combining solvent and mechanical blending could be applied to fabricate composite films with potential for tendon tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Process for depositing hard coating in a nozzle orifice
Flynn, P.L.; Giammarise, A.W.
1991-10-29
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.
Apparatus for depositing hard coating in a nozzle orifice
Flynn, P.L.; Giammarise, A.W.
1995-02-21
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.
Apparatus for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1995-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
Apparatus and process for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1994-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
Process for depositing hard coating in a nozzle orifice
Flynn, Paul L.; Giammarise, Anthony W.
1991-01-01
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.
NASA Technical Reports Server (NTRS)
Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)
2003-01-01
An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.
40 CFR 86.1438 - Test run-EPA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... recall purposes. For recall program testing, in-use vehicles will be set to manufacturer's specifications... five seconds in any one excursion, except during the allowable engine-off periods. The total duration...-duty trucks. For recall testing, a pass or fail determination is made for each applicable test mode...
Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration. Change 1
2012-04-03
vehicle specification and/or the detailed test plan. This (half-round obstacle) accelerometer will be low-pass filtered ( post test ) at 30 Hz...Engineers TARADCOM Tank-Automotive Research and Development Command TOP Test Operations Procedure VDV Vibration Dose Value WBV Whole Body...
Coupled multi-disciplinary simulation of composite engine structures in propulsion environment
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Singhal, Surendra N.
1992-01-01
A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals.
NASA Technical Reports Server (NTRS)
Buckley, John D. (Editor)
1992-01-01
This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.
Biofuel Mixture Composition and Parameters of Exhaust Gases Toxicity
NASA Astrophysics Data System (ADS)
Markov, V. A.; Kamaltdinov, V. G.; Loboda, S. S.
2018-03-01
Advantages of using fuels of vegetable origin as motor fuels are shown. Possible ways of using cameline oil as a fuel for a diesel engine are considered. Experimental research of diesel engine D-245.12S functioning on mixtures of diesel fuel and cameline oil of various percentage is given. Parameters of exhaust gases toxicity of the diesel engine by using these mixtures of various compositions are analyzed.
Message passing with a limited number of DMA byte counters
Blocksome, Michael [Rochester, MN; Chen, Dong [Croton on Hudson, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kumar, Sameer [White Plains, NY; Parker, Jeffrey J [Rochester, MN
2011-10-04
A method for passing messages in a parallel computer system constructed as a plurality of compute nodes interconnected as a network where each compute node includes a DMA engine but includes only a limited number of byte counters for tracking a number of bytes that are sent or received by the DMA engine, where the byte counters may be used in shared counter or exclusive counter modes of operation. The method includes using rendezvous protocol, a source compute node deterministically sending a request to send (RTS) message with a single RTS descriptor using an exclusive injection counter to track both the RTS message and message data to be sent in association with the RTS message, to a destination compute node such that the RTS descriptor indicates to the destination compute node that the message data will be adaptively routed to the destination node. Using one DMA FIFO at the source compute node, the RTS descriptors are maintained for rendezvous messages destined for the destination compute node to ensure proper message data ordering thereat. Using a reception counter at a DMA engine, the destination compute node tracks reception of the RTS and associated message data and sends a clear to send (CTS) message to the source node in a rendezvous protocol form of a remote get to accept the RTS message and message data and processing the remote get (CTS) by the source compute node DMA engine to provide the message data to be sent.
NASA Technical Reports Server (NTRS)
Howard, D. F.
1976-01-01
The preliminary design and installation of high bypass, geared turbofan engine with a composite nacelle forming the propulsion system for a short haul passenger aircraft are described. The technology required for externally blown flap aircraft with under the wing (UTW) propulsion system installations for introduction into passenger service in the mid 1980's is included. The design, fabrication, and testing of this UTW experimental engine containing the required technology items for low noise, fuel economy, with composite structure for reduced weight and digital engine control are provided.
Process for Making Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1999-01-01
An improved. lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbo-charging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.
Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1998-01-01
An improved, lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbocharging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.
Bone engineering by phosphorylated-pullulan and β-TCP composite.
Takahata, Tomohiro; Okihara, Takumi; Yoshida, Yasuhiro; Yoshihara, Kumiko; Shiozaki, Yasuyuki; Yoshida, Aki; Yamane, Kentaro; Watanabe, Noriyuki; Yoshimura, Masahide; Nakamura, Mariko; Irie, Masao; Van Meerbeek, Bart; Tanaka, Masato; Ozaki, Toshifumi; Matsukawa, Akihiro
2015-11-20
A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering.
Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.
Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less
Understanding and manipulating plant lipid composition: Metabolic engineering leads the way
Napier, Johnathan A; Haslam, Richard P; Beaudoin, Frederic; Cahoon, Edgar B
2014-01-01
The manipulation of plant seed oil composition so as to deliver enhanced fatty acid compositions suitable for feed or fuel has long been a goal of metabolic engineers. Recent advances in our understanding of the flux of acyl-changes through different key metabolic pools such as phosphatidylcholine and diacylglycerol have allowed for more targeted interventions. When combined in iterative fashion with further lipidomic analyses, significant breakthroughs in our capacity to generate plants with novel oils have been achieved. Collectively these studies, working at the interface between metabolic engineering and synthetic biology, demonstrate the positive fundamental and applied outcomes derived from such research. PMID:24809765
Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.
2004-01-01
The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
46 CFR 194.20-19 - Piping and electrical requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or... not be installed within or pass through a chemical storeroom except as required for the chemical... Subchapter J (Electrical Engineering) of this chapter for Class I, Division 1, Group C hazardous locations. ...
Engineering Geology | Alaska Division of Geological & Geophysical Surveys
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Highway and development of avalanche susceptibility and prediction models near Atigun Pass. Alaska coastal
Beacon Spacecraft Operations: Lessons in Automation
NASA Technical Reports Server (NTRS)
Sherwood, R.; Schlutsmeyer, A.; Sue, M.; Szijjarto, J.; Wyatt, E. J.
2000-01-01
A new approach to mission operations has been flight validated on NASA's Deep Space One (DS1) mission that launched in October 1998. The beacon monitor operations technology is aimed at decreasing the total volume of downlinked engineering telemetry by reducing the frequency of downlink and the volume of data received per pass.
Cytosolic delivery: Just passing through
NASA Astrophysics Data System (ADS)
Sánchez-Navarro, Macarena; Teixidó, Meritxell; Giralt, Ernest
2017-08-01
Intracellular protein delivery has been a major challenge in the field of cell biology for decades. Engineering such delivery is a key step in the development of protein- and antibody-based therapeutics. Now, two different approaches that enable the delivery of antibodies and antibody fragments into the cytosol have been developed.
Mass erosion and forest management
R. R. Ziemer; B. R. Thomas; R. M. Rice
1982-01-01
In Japan, landslides are such a major national hazard that in 1958 the ""Landslide Prevention Law"" was passed and an extensive program for research, engineering, and control of landslides has developed. There is no comparable legislative mandate in the United States. Contrary to the situation in Japan where lives and property are jeopardized by...
Characteristics of surface modified Ti-6Al-4V alloy by a series of YAG laser irradiation
NASA Astrophysics Data System (ADS)
Zeng, Xian; Wang, Wenqin; Yamaguchi, Tomiko; Nishio, Kazumasa
2018-01-01
In this study, a double-layer Ti (C, N) film was successfully prepared on Ti-6Al-4V alloy by a series of YAG laser irradiation in nitrogen atmosphere, aiming at improving the wear resistance. The effects of laser irradiation pass upon surface chemical composition, microstructures and hardness were investigated. The results showed that the surface chemicals were independent from laser irradiation pass, which the up layer of film was a mixture of TiN and TiC0.3N0.7, and the down layer was nitrogen-rich α-Ti. Both the surface roughness and hardness increased as raising the irradiation passes. However, surface deformation and cracks happened in the case above 3 passes' irradiation. The wear resistance of laser modified sample by 3 passes was improved approximately by 37 times compared to the as received substrate. Moreover, the cytotoxic V ion released from laser modified sample was less than that of as received Ti-6Al-4V alloy in SBF, suggesting the potentiality of a new try to modify the sliding part of Ti-based hard tissue implants in future biomedical application.
Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.
Bui, Nhu-Ngoc; McCutcheon, Jeffrey R
2013-02-05
Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.
Aeronautics and Space Engineering Board: Aeronautics Assessment Committee
NASA Technical Reports Server (NTRS)
1977-01-01
High temperature engine materials, fatigue and fracture life prediction, composite materials, propulsion noise pollution, propulsion components, full-scale engine research, V/STOL propulsion, advanced engine concepts, and advanced general aviation propulsion research were discussed.
Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew
2015-04-21
For years, public discourse in science education, technology, and policy-making has focused on the "leaky pipeline" problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created "microenvironments" (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students' academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women's academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women's verbal participation in group work, which often affects learning and mastery.
What's in a name: the Vermont Genetically Engineered Food Labeling Act
McPherson, Malia J.
2014-01-01
On May 8, 2014, Vermont passed the Vermont Genetically Engineered Food Labeling Act (Act) requiring labels on certain genetically engineered foods. Once the bill takes effect July 1, 2016, all Vermont-retailed foods with more than 0.9% of their total weight in genetically modified ingredients must be labeled with language stating, “may be partially produced with genetic engineering.” As genetically engineered food are considered scientifically equivalent to their traditional counterparts and are not subject to federal labeling by the FDA, the Act presents several legal questions. Several of the legal questions have been raised in a recent lawsuit filed by the Grocery Manufactures Association that claims the Act violates the First Amendment, Supremacy Clause, and Commerce Clause. This paper will discuss why the Second Circuit could strike down the Act as unconstitutional as to each claim. PMID:27774175
A Thermodynamic Study of the Turbojet Engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irvin M
1947-01-01
Charts are presented for computing thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of pressure losses in the inlet duct and the combustion chamber, of variation in physical properties of the gas as it passes through the system, of reheating of the gas due to turbine losses, and of change in mass flow by the addition of fuel are included. The principle performance chart shows the effects of primary variables and correction charts provide the effects of secondary variables and of turbine-loss reheat on the performance of the system. The influence of characteristics of a given compressor and turbine on performance of a turbojet engine containing a matched set of these given components is discussed for cases of an engine with a centrifugal-flow compressor and of an engine with an axial-flow compressor.
Space Shuttle main engine product improvement
NASA Technical Reports Server (NTRS)
Lucci, A. D.; Klatt, F. P.
1985-01-01
The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.
Low emission turbo compound engine system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuk,; Carl, T
2011-05-31
A diesel or HHCI engine has an air intake and an exhaust for products of combustion. A pair of turbochargers receive the products of combustion in a series relationship and an exhaust aftertreatment device receive the products of combustion from the downstream turbine. A power turbine receives the output from the exhaust aftertreatment device and an EGR system of the power turbine passes a selected portion of the output to a point upstream of the upstream turbocharger compressor. A device adds fuel to the aftertreatment device to regenerate the particulate filter and the power turbine recoups the additional energy. Themore » power turbine may be used to drive accessories or the prime output of the engine.« less
Performance potential of air turbo-ramjet employing supersonic through-flow fan
NASA Technical Reports Server (NTRS)
Kepler, C. E.; Champagne, G. A.
1989-01-01
A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.
Composite Design and Engineering
NASA Astrophysics Data System (ADS)
van der Woude, J. H. A.; Lawton, E. L.
Fiberglass is a versatile and cost-effective reinforcement for composites. Many processes, resins, and forms of fiberglass facilitate this versatility. The design, engineering, manufacture, and properties of fiberglass-reinforced composite products from diverse thermoset and thermoplastic resins are described. The attributes of fiberglass-reinforced composites include its mechanical and chemical properties, lightweight, corrosion resistance, longevity, low total system cost, and Class A surface properties. Specific examples illustrate the importance of the form of the fiberglass reinforcement and of the interfacial bond between the glass fibers and the matrix resin in optimizing composite properties. In addition, recent advances are described with regard to the fabrication of fiberglass-reinforced wind turbine blades.
Present State of the Art of Composite Fabric Forming: Geometrical and Mechanical Approaches
Cherouat, Abel; Borouchaki, Houman
2009-01-01
Continuous fibre reinforced composites are now firmly established engineering materials for the manufacture of components in the automotive and aerospace industries. In this respect, composite fabrics provide flexibility in the design manufacture. The ability to define the ply shapes and material orientation has allowed engineers to optimize the composite properties of the parts. The formulation of new numerical models for the simulation of the composite forming processes must allow for reduction in the delay in manufacturing and an optimization of costs in an integrated design approach. We propose two approaches to simulate the deformation of woven fabrics: geometrical and mechanical approaches.
Metal- and intermetallic-matrix composites for aerospace propulsion and power systems
NASA Astrophysics Data System (ADS)
Doychak, J.
1992-06-01
Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.
NASA Technical Reports Server (NTRS)
Buckley, John D. (Editor)
1993-01-01
The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.
Winters, J M
1995-01-01
A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
...; --Mahtab Technical Engineering Company; --Composite Propellant Missile Industry; and --Sanaye Sokhte... entity; 0 (i) By removing the ``Country'' column for South Korea, including the South Korean entity... Technical Engineering Company;. --Composite Propellant Missile Industry; and. --Sanaye Sokhte Morakab (SSM...
Electrically heated particulate filter using catalyst striping
Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank
2013-07-16
An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.
Research on Heat Resistant Transparent Interlayers Based on the Ethylene Terpolymer.
1976-08-01
the s ; - c i v i n g machine as it is about to pass under th~ kn if’e .The block was skived into 10, 30 , and 50 rail sheets. Laminat es of glass...reviewed and is approved for publicati on. Project Monito FOR THE COMMANDER T .J ~~ EI~~~~~~JR~,C~~~~~ Composite and Fibrous Materials Branch...iated under Project No. 29lZ~, “Non—metallic and Composite Mater ia ls , ” and Task No. 03, “Structural Plastics and Composites ” . The work was
Composition for absorbing hydrogen
Heung, L.K.; Wicks, G.G.; Enz, G.L.
1995-05-02
A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.
Composition for absorbing hydrogen
Heung, Leung K.; Wicks, George G.; Enz, Glenn L.
1995-01-01
A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.
Large gas injection engine nearing completion in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, K.
1994-04-01
One of the world's largest diesel engines to be operated on methane gas under pressure injection is now nearing completion at the Chiba works of Mitsui, in Japan. The MAN B W-designed 12K80MC-GI-S engine - built by Mitsui Engineering and Shipbuilding Co., in Tamano, Japan - will develop a total of 40,680 kW when operating at 103.4 r/min. It will drive an electrical generator of 39,740 kW output to provide power to Mitsui's Chiba works. The arrangement will be such that excess electrical energy can be taken into the local electrical supply system. Since the engine will be operating inmore » an area of strict emission control, the exhaust gas from the engine will pass through a large SCR before reaching the main chimney. Low-sulfur diesel oil will be used as the pilot fuel, and will amount to only eight percent of the fuel charge at full load. The MC-GI series of engines can be used as main propulsion engines in LNG carriers or stationary power plants. 3 figs.« less
Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite
NASA Technical Reports Server (NTRS)
Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.
2013-01-01
Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the optical, chemical, and mechanical analyses performed.
Changes in the mechanism of heat transfer in passing from microparticles to nanoparticles
NASA Astrophysics Data System (ADS)
Shakhov, F. M.; Meilakhs, A. P.; Eidelman, E. D.
2016-03-01
On the basis of experimental data on thermal conduction and sound velocity in composites obtained by sintering detonation nanodiamonds with the crystallite size of 4-5 nm and diamond micropowders with a grain size of about 10 μm at a high pressure (5-7 GPa) and high temperature (1200-1800°C), mechanisms of heat transfer in such structures are suggested. These mechanisms are shown to be different in composites of micro- and nanoparticles. In composites of micrometer particles, the conventional macroscopic mechanism of phonon propagation is active. In composites with a grain size of a few nanometers, the main contribution comes from thermal resistance on grain boundaries.
Pine Island Glacier, Antarctica, MISR Multi-angle Composite
2013-11-15
NASA Terra satellite passed over the Pine Island Glacier in Antarctica around Oct. 27, 2013, just days before iceberg B-31 broke completely free. B-31 is finally moving away from the coast, with open water between the iceberg and the glacier.
Summary of the Effects of Two Years of Hygro-Thermal Cycling on a Carbon/Epoxy Composite Material
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Binienda, Wieslaw K.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael; Bail, Justin L.
2011-01-01
Composite materials are beginning to be used for structures in the fan section of commercial gas turbine engines. This paper explores the type of damage that could occur within one type of composite material after exposure to hygrothermal cycles (temperature/humidity cycles) that are representative of the environment in the fan section of an engine. The effect of this damage on composite material properties is measured. Chemical changes in the matrix material were limited to the exposed surface. Microcrack formation was identified in the composite material. This damage did not cause a significant reduction in tensile strength or impact penetration resistance of the composite material. Additional data is needed to assess the effect of damage on compressive strength.
Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization
Barnaby, R.J.; Oetting, G.C.; Gao, G.
2004-01-01
The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.
Thermal Response Of Composite Insulation
NASA Technical Reports Server (NTRS)
Stewart, David A.; Leiser, Daniel B.; Smith, Marnell; Kolodziej, Paul
1988-01-01
Engineering model gives useful predictions. Pair of reports presents theoretical and experimental analyses of thermal responses of multiple-component, lightweight, porous, ceramic insulators. Particular materials examined destined for use in Space Shuttle thermal protection system, test methods and heat-transfer theory useful to chemical, metallurgical, and ceramic engineers needing to calculate transient thermal responses of refractory composites.
Advancing sustainable forestry by using engineered wood or bio-composites
Jerrold E. Winandy
2005-01-01
As worldwide demand for timber and bio-fiber resources grows, sustainable resource management and industrial utilization must collaborate to develop a shared vision for both long-term sustainable management of forest and bio-resources and sustainable economic development. Engineered wood- and bio-composites offer a tool that can both achieve resource sustainability and...
40 CFR Appendix II to Part 1048 - Large Spark-ignition (SI) Composite Transient Cycle
Code of Federal Regulations, 2010 CFR
2010-07-01
... Transient Cycle II Appendix II to Part 1048 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY.... 1048, App. II Appendix II to Part 1048—Large Spark-ignition (SI) Composite Transient Cycle The following table shows the transient duty-cycle for engines that are not constant-speed engines, as described...
Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T
2006-10-01
A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.
High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications
NASA Technical Reports Server (NTRS)
Raj, Sai V.; Bhatt, Ramkrishna
2013-01-01
The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.
Tan, Huaping; Chu, Constance R.; Payne, Karin; Marra, Kacey G.
2009-01-01
Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAG). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications. PMID:19167750
Ceramics and composites for rocket engines and space structures
NASA Astrophysics Data System (ADS)
Upadhya, Kamleshwar
1992-05-01
The use of ceramic and other nonmetallic composites is considered for engine and structural elements of the National Aerospace Plane (NASP), the Space Shuttle, and space stations. Attention is given to the application of refractory composites with protective coatings for oxidation and hydrogen contamination to the NASP to address the high-temperature environments the vehicle is expected to encounter. Existing applications of metal-matrix composite struts and Gr-Ep cargo-bay doors on the Space Shuttle are reviewed, and the need for more data on the service life and failure modes of the materials is identified.
Fractography of modern engineering materials: composites and metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, J.E.; Au, J.J.
1987-01-01
The fractographic analysis of fracture surfaces in composites and metals is discussed in reviews and reports of recent theoretical and experimental investigations. Topics addressed include fracture-surface micromorphology in engineering solids, SEM fractography of pure and mixed-mode interlaminar fractures in graphite/epoxy composites, determination of crack propagation directions in graphite/epoxy structures, and the fracture surfaces of irradiated composites. Consideration is given to fractographic feature identification and characterization by digital imaging analysis, fractography of pressure-vessel steel weldments, the micromechanisms of major/minor cycle fatigue crack growth in Inconel 718, and fractographic analysis of hydrogen-assisted cracking in alpha-beta Ti alloys.
Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, Bernard P.; Thallapally, Praveen K.; Liu, Jian
Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magneticmore » iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.« less
30 CFR 942.817 - Performance standards-Underground mining activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) Channel lining shall be designed using standards engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 817.46(c)(1)(ii)(A) of this chapter, sedimentation ponds shall provide a...
30 CFR 942.816 - Performance standards-Surface mining activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (1) Channel lining shall be designed using standard engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 816.46(c)(1)(iii)(A) of this chapter, sedimentation ponds shall provide a...
30 CFR 942.817 - Performance standards-Underground mining activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (1) Channel lining shall be designed using standards engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 817.46(c)(1)(ii)(A) of this chapter, sedimentation ponds shall provide a...
30 CFR 942.816 - Performance standards-Surface mining activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) Channel lining shall be designed using standard engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 816.46(c)(1)(iii)(A) of this chapter, sedimentation ponds shall provide a...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2012-10-01 2012-10-01 false Specialty cable for communication and RF applications...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2013-10-01 2013-10-01 false Specialty cable for communication and RF applications...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2014-10-01 2014-10-01 false Specialty cable for communication and RF applications...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2010-10-01 2010-10-01 false Specialty cable for communication and RF applications...
46 CFR 111.60-2 - Specialty cable for communication and RF applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-2 Specialty cable for communication and RF applications. Specialty cable such as certain coaxial cable that cannot pass the... 46 Shipping 4 2011-10-01 2011-10-01 false Specialty cable for communication and RF applications...
14 CFR 91.1069 - Flight crew: Instrument proficiency check requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... aircraft under IFR unless, since the beginning of the 6th month before that service, that pilot has passed... command pilot of an aircraft under IFR unless, since the beginning of the 12th month before that service... engine-out speed, propeller and supercharger operations, and hydraulic, mechanical, and electrical...
14 CFR 91.1069 - Flight crew: Instrument proficiency check requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... aircraft under IFR unless, since the beginning of the 6th month before that service, that pilot has passed... command pilot of an aircraft under IFR unless, since the beginning of the 12th month before that service... engine-out speed, propeller and supercharger operations, and hydraulic, mechanical, and electrical...
14 CFR 91.1069 - Flight crew: Instrument proficiency check requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... aircraft under IFR unless, since the beginning of the 6th month before that service, that pilot has passed... command pilot of an aircraft under IFR unless, since the beginning of the 12th month before that service... engine-out speed, propeller and supercharger operations, and hydraulic, mechanical, and electrical...
Portable Life Support System: PLSS 101
NASA Technical Reports Server (NTRS)
Thomas, Gretchen A.
2011-01-01
This presentation reviewed basic interfaces and considerations necessary for prototype suit hardware integration from an advanced spacesuit engineer perspective during the early design and test phases. The discussion included such topics such as the human interface, suit pass-throughs, keep-out zones, hardware form factors, subjective feedback from suit tests, and electricity in the suit.
Method and apparatus for PM filter regeneration
Opris, Cornelius N [Peoria, IL; Verkiel, Maarten [Metamora, IL
2006-01-03
A method and apparatus for initiating regeneration of a particulate matter (PM) filter in an exhaust system in an internal combustion engine. The method and apparatus includes determining a change in pressure of exhaust gases passing through the PM filter, and responsively varying an opening of an intake valve in fluid communication with a combustion chamber.
Rep. Norton, Eleanor Holmes [D-DC-At Large
2010-06-16
Senate - 07/21/2010 Received in the Senate and Read twice and referred to the Committee on Environment and Public Works. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Filter desulfation system and method
Lowe, Michael D.; Robel, Wade J.; Verkiel, Maarten; Driscoll, James J.
2010-08-10
A method of removing sulfur from a filter system of an engine includes continuously passing an exhaust flow through a desulfation leg of the filter system during desulfation. The method also includes sensing at least one characteristic of the exhaust flow and modifying a flow rate of the exhaust flow during desulfation in response to the sensing.
Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew
2015-01-01
For years, public discourse in science education, technology, and policy-making has focused on the “leaky pipeline” problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created “microenvironments” (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students’ academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women’s academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women’s verbal participation in group work, which often affects learning and mastery. PMID:25848061
Hidden baryons: The physics of Compton composites
NASA Astrophysics Data System (ADS)
Mayer, Frederick J.
2016-06-01
A large fraction of the mass-energy of the Universe appears to be composed of Compton composites. How is it then that these composites are not frequently observed in experiments? This paper addresses this question, and others, by reviewing recent publications that: 1) introduced Compton composites, 2) showed how and where they are formed and 3) explained how they interact with other systems. Though ubiquitous in many physical situations, Compton composites are almost completely hidden in experiments due to their unique interaction characteristics. Still, their presence has been indirectly observed, though not interpreted as such until recently. Looking to the future, direct-detection experiments are proposed that could verify the composites' components. It is with deep sadness that I dedicate this paper to my mentor, collaborator, and friend, Dr. John R. Reitz, who passed away within days of the publication of our paper “Compton Composites Late in the Early Universe”.
Study of chloride ion transport of composite by using cement and starch as a binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armynah, Bidayatul; Halide, Halmar; Zahrawani,
This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less
Tungsten fiber reinforced superalloys: A status review
NASA Technical Reports Server (NTRS)
Petrasek, D. W.; Signorelli, R. A.
1981-01-01
Improved performance of heat engines is largely dependent upon maximum cycle temperatures. Tungsten fiber reinforced superalloys (TFRS) are the first of a family of high temperature composites that offer the potential for significantly raising hot component operating temperatures and thus leading to improved heat engine performance. This status review of TFRS research emphasizes the promising property data developed to date, the status of TFRS composite airfoil fabrication technology, and the areas requiring more attention to assure their applicability to hot section components of aircraft gas turbine engines.
Fiber-Reinforced Superalloys For Rocket Engines
NASA Technical Reports Server (NTRS)
Lewis, Jack R.; Yuen, Jim L.; Petrasek, Donald W.; Stephens, Joseph R.
1990-01-01
Report discusses experimental studies of fiber-reinforced superalloy (FRS) composite materials for use in turbine blades in rocket engines. Intended to withstand extreme conditions of high temperature, thermal shock, atmospheres containing hydrogen, high cycle fatigue loading, and thermal fatigue, which tax capabilities of even most-advanced current blade material - directionally-solidified, hafnium-modified MAR M-246 {MAR M-246 (Hf) (DS)}. FRS composites attractive combination of properties for use in turbopump blades of advanced rocket engines at temperatures from 870 to 1,100 degrees C.
NASA Technical Reports Server (NTRS)
Petrasek, Donald W.; Signorelli, Robert A.; Caulfield, Thomas; Tien, John K.
1987-01-01
Improved performance of heat engines is largely dependent upon maximum cycle temperatures. Tungsten fiber reinforced superalloys (TFRS) are the first of a family of high temperature composites that offer the potential for significantly raising hot component operating temperatures and thus leading to improved heat engine performance. This status review of TFRS research emphasizes the promising property data developed to date, the status of TFRS composite airfoil fabrication technology, and the areas requiring more attention to assure their applicability to hot section components of aircraft gas turbine engines.
Inspection system for a turbine blade region of a turbine engine
Smed, Jan P [Winter Springs, FL; Lemieux, Dennis H [Casselberry, FL; Williams, James P [Orlando, FL
2007-06-19
An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.
Chen, Qi-Zhi; Liang, Shu-Ling; Wang, Jiang; Simon, George P
2011-11-01
Poly (glycerol sebacate) (PGS) is a promising elastomer for use in soft tissue engineering. However, it is difficult to achieve with PGS a satisfactory balance of mechanical compliance and degradation rate that meet the requirements of soft tissue engineering. In this work, we have synthesised a new PGS nanocomposite system filled with halloysite nanotubes, and mechanical properties, as well as related chemical characters, of the nanocomposites were investigated. It was found that the addition of nanotubular halloysite did not compromise the extensibility of material, compared with the pure PGS counterpart; instead the elongation at rupture was increased from 110 (in the pure PGS) to 225% (in the 20 wt% composite). Second, Young's modulus and resilience of 3-5 wt% composites were ∼0.8 MPa and >94% respectively, remaining close to the level of pure PGS which is desired for applications in soft tissue engineering. Third, an important feature of the 1-5 wt% composites was their stable mechanical properties over an extended period, which could allow the provision of reliable mechanical support to damaged tissues during the lag phase of the healing process. Finally, the in vitro study indicated that the addition of halloysite slowed down the degradation rate of the composites. In conclusion, the good compliance, enhanced stretchability, stable mechanical behavior over an extended period, and reduced degradation rates make the 3-5 wt% composites promising candidates for application in soft tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ablative material testing for low-pressure, low-cost rocket engines
NASA Technical Reports Server (NTRS)
Richter, G. Paul; Smith, Timothy D.
1995-01-01
The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.
Inorganic Polymer Matrix Composite Strength Related to Interface Condition
Radford, Donald W.; Grabher, Andrew; Bridge, John
2009-01-01
Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon-coated fibers are compared using room temperature 3-point bend testing. Carbon-coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.
Modeling instructor preferences for CPR and AED competence estimation.
Birnbaum, Alice; McBurnie, Mary Ann; Powell, Judy; Ottingham, Lois Van; Riegel, Barbara; Potts, Jerry; Hedges, Jerris R
2005-03-01
Cardiopulmonary resuscitation (CPR) and automated external defibrillator (AED) skills competency can be tested using a checklist of component skills, individually graded "pass" or "fail." Scores are typically calculated as the percentage of skills passed, but may differ from an instructor's overall subjective assessment of simulated CPR or AED adequacy. To identify and evaluate composite measures (methods for scoring checklists) that reflect instructors' subjective assessments of CPR or AED skills performance best. Associations between instructor assessment and lay-volunteer skill performance were made using 6380 CPR and 3313 AED skill retention tests collected in the Public Access Defibrillation Trial. Checklists included CPR skills (e.g., calling 911, administering compressions) and AED skills (e.g., positioning electrodes, shocking within 90 s of AED arrival). The instructor's subjective overall assessment (adequate/inadequate) of CPR performance (perfusion) or AED competence (effective shock) was compared to composite measures. We evaluated the traditional composite measure (assigning equal weights to individual skills) and several nontraditional composite measures (assigning variable weights). Skills performed out of sequence were further weighted from 0% (no credit) to 100% (full credit). Composite measures providing full credit for skills performed out of sequence and down-weighting process skills (e.g., calling 911, clearing oneself from the AED) had the strongest association with the instructor's subjective assessment; the traditional CPR composite measure had the weakest association. Our findings suggest that instructors in public CPR and AED classes may tend to down-weight process skills and to excuse step sequencing errors when evaluating CPR and AED skills subjectively for overall proficiency. Testing methods that relate classroom performance to actual performance in the field and to clinical outcomes require further research.
Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H
2015-11-17
A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.
Ko, Hsu-Feng; Sfeir, Charles; Kumta, Prashant N.
2010-01-01
Recent developments in tissue engineering approaches frequently revolve around the use of three-dimensional scaffolds to function as the template for cellular activities to repair, rebuild and regenerate damaged or lost tissues. While there are several biomaterials to select as three-dimensional scaffolds, it is generally agreed that a biomaterial to be used in tissue engineering needs to possess certain material characteristics such as biocompatibility, suitable surface chemistry, interconnected porosity, desired mechanical properties and biodegradability. The use of naturally derived polymers as three-dimensional scaffolds has been gaining widespread attention owing to their favourable attributes of biocompatibility, low cost and ease of processing. This paper discusses the synthesis of various polysaccharide-based, naturally derived polymers, and the potential of using these biomaterials to serve as tissue engineering three-dimensional scaffolds is also evaluated. In this study, naturally derived polymers, specifically cellulose, chitosan, alginate and agarose, and their composites, are examined. Single-component scaffolds of plain cellulose, plain chitosan and plain alginate as well as composite scaffolds of cellulose–alginate, cellulose–agarose, cellulose–chitosan, chitosan–alginate and chitosan–agarose are synthesized, and their suitability as tissue engineering scaffolds is assessed. It is shown that naturally derived polymers in the form of hydrogels can be synthesized, and the lyophilization technique is used to synthesize various composites comprising these natural polymers. The composite scaffolds appear to be sponge-like after lyophilization. Scanning electron microscopy is used to demonstrate the formation of an interconnected porous network within the polymeric scaffold following lyophilization. It is also established that HeLa cells attach and proliferate well on scaffolds of cellulose, chitosan or alginate. The synthesis protocols reported in this study can therefore be used to manufacture naturally derived polymer-based scaffolds as potential biomaterials for various tissue engineering applications. PMID:20308112
Engineering analysis of ERTS data for rice in the Philippines
NASA Technical Reports Server (NTRS)
Mcnair, A. J. (Principal Investigator); Heydt, H. L.
1973-01-01
The author has identified the following significant results. Rice is an important food worldwide. Worthwhile goals, particularly for developing nations, are the capability to recognize from satellite imagery: (1) areas where rice is grown, and (2) growth status (irrigation, vigor, yield). A two-step procedure to achieve this is being investigated. Ground truth, and ERTS-1 imagery (four passes) covering 80% of a rice growth cycle for some Philippine sites, have been analyzed. One-D and three-D signature extraction, and synthesis of an initial site recognition/status algorithm have been performed. Results are encouraging. but additional passes and sites must be analyzed. Good position information for extracted data is a must.
NASA Astrophysics Data System (ADS)
Garber, E. A.; Timofeeva, M. A.
2016-11-01
New propositions are introduced into the technique of energy-force calculation of pinch-pass mills in order to determine the energy-force and technological parameters of skin rolling of cold-rolled steel strips at the minimum errors. The application of these propositions decreases the errors of calculating the forces and torques in a working stand by a factor of 3-5 as compared to the calculation according to the well-known technique, saves the electric power in the existing mills, and demonstrates the possibility of decreasing the dimensions of working stands and the power of the rolling mill engine.
Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading
NASA Technical Reports Server (NTRS)
Steeve, B. E.; Wingate, R. J.
2012-01-01
A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.
NASA Astrophysics Data System (ADS)
Shang, Yanliang; Shi, Wenjun; Han, Tongyin; Qin, Zhichao; Du, Shouji
2017-10-01
The shield method has many advantages in the construction of urban subway, and has become the preferred method for the construction of urban subway tunnel. Taking Shijiazhuang metro line 3 (administrative center station - garden park station interval) Passing alongside bridge as the engineering background, double shield crossing the bridge pile foundation model was set up. The deformation and internal force of the pile foundation during the construction of the shield were analyzed. Pile stress caused by shield construction increases, but the maximum stress is less than the design strength; the maximum surface settlement caused by the construction of 10.2 mm, the results meet the requirements of construction.
T/BEST: Technology Benefit Estimator for Composites and Applications to Engine Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos
1997-01-01
Progress in the field of aerospace propulsion has heightened the need to combine advanced technologies. These benefits will provide guidelines for identifying and prioritizing high-payoff research areas, will help manage research with limited resources, and will show the link between advanced and basic concepts. An effort was undertaken at the NASA Lewis Research Center to develop a formal computational method, T/BEST (Technology Benefit Estimator), to assess advanced aerospace technologies, such as fibrous composites, and credibly communicate the benefits of research. Fibrous composites are ideal for structural applications such as high-performance aircraft engine blades where high strength-to-weight and stiffness-to-weight ratios are required. These factors - along with the flexibility to select the composite system and layup, and to favorably orient fiber directions - reduce the displacements and stresses caused by large rotational speeds in aircraft engines.
The Development of Engineering Tomography for Monolithic and Composite Materials and Components
NASA Technical Reports Server (NTRS)
Hemann, John
1997-01-01
The research accomplishments under this grant were very extensive in the areas of the development of engineering tomography for monolithic and composite materials and components. Computed tomography was used on graphite composite pins and bushings to find porosity, cracks, and delaminations. It supported the following two programs: Reusable Launch Vehicle (RLV) and Southern Research institute (SRI). Did research using CT and radiography on Nickel based Superalloy dogbones and found density variations and gas shrinkage porosity. Did extensive radiography and CT of PMC composite flywheels and found delamination and non-uniform fiber distribution. This grant supported the Attitude Control Energy Storage Experiment (ACESE) program. Found broken fibers and cracks of outer stainless steel fibers using both radiographic and CT techniques on Pratt and Whitney fuel lines; Supported the Pratt & Whitney and Aging Aircraft engines program. Grant research helped identify and corroborate thickness variations and density differences in a silicon nitride "ROTH" tube using computed tomography.
Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo
2017-01-02
Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
2018-01-31
California’s NASA Armstrong Flight Research Center photographer Ken Ulbrich takes photos of Super Blue Blood Moon eclipse making a time-lapse composition of the event on January 31. The total lunar eclipse provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
Ionosphere of venus: first observations of the effects of dynamics on the dayside ion composition.
Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Cloutier, P A; Michel, F C; Daniell, R E; Donahue, T M; Maehl, R C
1979-02-23
Bennett radio-frequency ion mass spectrometers have returned the first in situ measurements of the Venus dayside ion composition, including evidence of pronounced structural variability resulting from a dynamic interaction with the solar wind. The ionospheric envelope, dominated above 200 kilometers by O(+), responds dramatically to variations in the solar wind pressure, Which is observed to compress the thermal ion distributions from heights as great as 1800 kilometers inward to 280 kilometers. At the thermal ion boundary, or ionopause, the ambient ions are swept away by the solar wind, such that a zone of accelerated suprathermnal plasma is encountered. At higher altitudes, extending outward on some orbits for thousands of kilometers to the bows shock, energetic ion currents are detected, apparently originating from the shocked solar wind plasma. Within the ionosphere, observations of pass-to-pass differences in the ion scale heights are indicative of the effects of ion convection stimlulated by the solar wind interaction.
Composite Fan Blade Design for Advanced Engine Concepts
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.
2004-01-01
The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.
The Use of Prototypes in Weapon System Development
1981-03-01
engine to minimize flameouts; experience showed that some uses of composite mate- rials were unwarranted, and other uses were proved valid; and a special... composite structure materials. The YF-16 used a single F100, an engine already developed for the F-15 program. By the time of the YF-16 first flight...lessons learned during the prototype tests led to a reduction in the use of composite materials ir the full scale F-16A program. UTTAS. Because of the
Zhao, Hewei; Yue, Yonghai; Guo, Lin; Wu, Juntao; Zhang, Youwei; Li, Xiaodong; Mao, Shengcheng; Han, Xiaodong
2016-07-01
Ceramic/polymer composite equipped with 3D interlocking skeleton (3D IL) is developed through a simple freeze-casting method, exhibiting exceptionally light weight, high strength, toughness, and shock resistance. Long-range crack energy dissipation enabled by 3D interlocking structure is considered as the primary reinforcing mechanism for such superior properties. The smart composite design strategy should hold a place in developing future structural engineering materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiple-rotor-cycle 2D PASS experiments with applications to (207)Pb NMR spectroscopy.
Vogt, F G; Gibson, J M; Aurentz, D J; Mueller, K T; Benesi, A J
2000-03-01
Thetwo-dimensional phase-adjusted spinning sidebands (2D PASS) experiment is a useful technique for simplifying magic-angle spinning (MAS) NMR spectra that contain overlapping or complicated spinning sideband manifolds. The pulse sequence separates spinning sidebands by their order in a two-dimensional experiment. The result is an isotropic/anisotropic correlation experiment, in which a sheared projection of the 2D spectrum effectively yields an isotropic spectrum with no sidebands. The original 2D PASS experiment works best at lower MAS speeds (1-5 kHz). At higher spinning speeds (8-12 kHz) the experiment requires higher RF power levels so that the pulses do not overlap. In the case of nuclei such as (207)Pb, a large chemical shift anisotropy often yields too many spinning sidebands to be handled by a reasonable 2D PASS experiment unless higher spinning speeds are used. Performing the experiment at these speeds requires fewer 2D rows and a correspondingly shorter experimental time. Therefore, we have implemented PASS pulse sequences that occupy multiple MAS rotor cycles, thereby avoiding pulse overlap. These multiple-rotor-cycle 2D PASS sequences are intended for use in high-speed MAS situations such as those required by (207)Pb. A version of the multiple-rotor-cycle 2D PASS sequence that uses composite pulses to suppress spectral artifacts is also presented. These sequences are demonstrated on (207)Pb test samples, including lead zirconate, a perovskite-phase compound that is representative of a large class of interesting materials. Copyright 2000 Academic Press.
NASA Technical Reports Server (NTRS)
Stewart, Mark E.; Schnitzler, Bruce G.
2015-01-01
This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.
Metal Matrix Composites for Rocket Engine Applications
NASA Technical Reports Server (NTRS)
McDonald, Kathleen R.; Wooten, John R.
2000-01-01
This document is from a presentation about the applications of Metal Matrix Composites (MMC) in rocket engines. Both NASA and the Air Force have goals which would reduce the costs and the weight of launching spacecraft. Charts show the engine weight distribution for both reuseable and expendable engine components. The presentation reviews the operating requirements for several components of the rocket engines. The next slide reviews the potential benefits of MMCs in general and in use as materials for Advanced Pressure Casting. The next slide reviews the drawbacks of MMCs. The reusable turbopump housing is selected to review for potential MMC application. The presentation reviews solutions for reusable turbopump materials, pointing out some of the issues. It also reviews the development of some of the materials.
Dupuy, Alton J.; Couvillion, Nolan P.
1979-01-01
From March 1977 to July 1978 the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers conducted a series of elutriate studies to determine water quality in selected reaches of major navigable waterways of southern Louisiana. Sample were collected from the Mississippi River-Gulf Outlet areas; Mississippi River, South Pass; Baptiste Collette Bayou; Tiger Pass area; Baou Long; Bayou Barataria and Barataria Bay Waterway area (gulf section); Bayou Segnette Waterway, Lake Pontchartrain near Tangipahoa River mouth; Bayou Grand Caillou; Bayou la Carpe at Homa; Houma Navigation Canal and Terrebonne Bay; Bayou Boeuf, Bayou Chene, and Baou Black, Atchafalaya River Channel, Atchafalaya Bay; Old River Lock tailbay; Red River below mouth of Black River; Freshwaer Canal; Mermentau River and Lake Arthur Mermentau River outlet; and Calcasieu Ship Channel. The studies were initiated at the request of the U.S. Army Corps of Engineers to evaluate possible environmental effects of proposed dredging activities in those waterways. The U.S. Army Corps of Engineers and U.S. Geological Survey collected 189 samples of native water and 172 samples of bottom (bed) material from 163 different sites. A total of 117 elutriates (Mixtures of native water and bottom material) were prepared. The native water and elutriate samples were analyzed for selected metals, pesticides, nutrients organics, and pysical constituents. Particle-size determinations were made on bottom-material samples. (Kosco-USGS)
Methods and compositions for removing carbon dioxide from a gaseous mixture
Li, Jing; Wu, Haohan
2014-06-24
Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.
NASA Technical Reports Server (NTRS)
Noton, B. R. (Editor); Kreider, K. G.; Chamis, C. C.
1974-01-01
This volume discusses a vaety of applications of both low- and high-cost composite materials in a number of selected engineering fields. The text stresses the use of fiber-reinforced composites, along with interesting material systems used in the electrical and nuclear industries. As to technology transfer, a similarity is noted between many of the reasons responsible for the utilization of composites and those problems requiring urgent solution, such as mechanized fabrication processes and design for production. Features topics include road transportation, rail transportation, civil aircraft, space vehicles, builing industry, chemical plants, and appliances and equipment. The laminate orientation code devised by Air Force materials laboratory is included. Individual items are announced in this issue.
NASA Astrophysics Data System (ADS)
McKnight, G. P.; Henry, C. P.
2008-03-01
Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).
PMR Graphite Engine Duct Development
NASA Technical Reports Server (NTRS)
Stotler, C. L.; Yokel, S. A.
1989-01-01
The objective was to demonstrate the cost and weight advantages that could be obtained by utilizing the graphite/PMR15 material system to replace titanium in selected turbofan engine applications. The first component to be selected as a basis for evaluation was the outer bypass duct of the General Electric F404 engine. The operating environment of this duct was defined and then an extensive mechanical and physical property test program was conducted using material made by processing techniques which were also established by this program. Based on these properties, design concepts to fabricate a composite version of the duct were established and two complete ducts fabricated. One of these ducts was proof pressure tested and then run successfully on a factory test engine for over 1900 hours. The second duct was static tested to 210 percent design limit load without failure. An improved design was then developed which utilized integral composite end flanges. A complete duct was fabricated and successfully proof pressure tested. The net results of this effort showed that a composite version of the outer duct would be 14 percent lighter and 30 percent less expensive that the titanium duct. The other type of structure chosen for investigation was the F404 fan stator assembly, including the fan stator vanes. It was concluded that it was feasible to utilize composite materials for this type structure but that the requirements imposed by replacing an existing metal design resulted in an inefficient composite design. It was concluded that if composites were to be effectively used in this type structure, the design must be tailored for composite application from the outset.
Jin, Ho; Won, Nayoun; Ahn, Boeun; Kwag, Jungheon; Heo, Kwang; Oh, Jin-Woo; Sun, Yintao; Cho, Soo Gyeong; Lee, Seung-Wuk; Kim, Sungjee
2013-07-11
We developed quantum dot-engineered M13 virus layer-by-layer hybrid composite films with incorporated fluorescence quenchers. TNT is designed to displace the quenchers and turn on the quantum dot fluorescence. TNT was detected at the sub ppb level with a high selectivity.
Writing in the Natural Sciences and Engineering: Implications for ESL Composition Courses.
ERIC Educational Resources Information Center
Braine, George
A study investigated the types of writing assignments commonly found in undergraduate natural sciences and engineering courses. The study was used as a basis for the development of composition courses for limited-English-speaking students in these fields, the most popular fields of study among foreign students. Eighty take-home assignments given…
Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues
NASA Astrophysics Data System (ADS)
Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.
2016-04-01
The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00224b
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Process of Making Boron-Fiber Reinforced Composite Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)
2002-01-01
The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.
NASA Technical Reports Server (NTRS)
Lewalle, Jacques; Ashpis, David (Technical Monitor)
2000-01-01
Transition on turbine blades is an important factor in the determination of eventual flow separation and engine performance. The phenomenon is strongly affected by unsteady flow conditions (wake passing). It is likely that some physics of unsteadiness should be included in advanced models, but it is unclear which properties would best embody this information. In this paper, we use a GEAE experimental database in unsteady transition to test some tools of spot identification, tracking and characterization. In this preliminary study, we identify some parameters that appear to be insensitive to wake passing effects, such as convection speed, and others more likely to require unsteady modeling. The main findings are that wavelet duration can be used as a measure of spot size, and that spot energy density is most closely correlated to the wake passing. The energy density is also correlated to spot size, but spot size appears unrelated to the phase angle. Recommendations are made for further study.
Chitosan Composites for Bone Tissue Engineering—An Overview
Venkatesan, Jayachandran; Kim, Se-Kwon
2010-01-01
Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed. PMID:20948907
The Study on Collaborative Manufacturing Platform Based on Agent
NASA Astrophysics Data System (ADS)
Zhang, Xiao-yan; Qu, Zheng-geng
To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.
Qualifying Examination Intended to Promote Students‧ Interest in Basic Engineering Course
NASA Astrophysics Data System (ADS)
Yamada, Kenji
In order to develop self-affirmation and confidence, all the third year students in the Department of Electronics and Information Engineering at Ishikawa National College of Technology have been assigned to take a qualifying examination : the Digital Technology Certificate Examination, which is supported by the Ministry of Education, Culture, Sports, Science and Technology. The students who have passed it have gained self-assurance, while the unsuccessful candidates need close attention. This paper discusses the effects of the examination, which was introduced as an incentive for the students to have interest in the specialized course.
Ehlers, K.W.; Voelker, F. III
1961-12-19
A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)
Silicon-Based Ceramic-Matrix Composites for Advanced Turbine Engines: Some Degradation Issues
NASA Technical Reports Server (NTRS)
Thomas-Ogbuji, Linus U. J.
2000-01-01
SiC/BN/SiC composites are designed to take advantage of the high specific strengths and moduli of non-oxide ceramics, and their excellent resistance to creep, chemical attack, and oxidation, while circumventing the brittleness inherent in ceramics. Hence, these composites have the potential to take turbine engines of the future to higher operating temperatures than is achievable with metal alloys. However, these composites remain developmental and more work needs to be done to optimize processing techniques. This paper highlights the lingering issue of pest degradation in these materials and shows that it results from vestiges of processing steps and can thus be minimized or eliminated.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender
2016-01-01
This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.
NASA Astrophysics Data System (ADS)
Adegoke, Oluwasesan; Park, Enoch Y.
2016-06-01
The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.
Bioglass® 45S5-based composites for bone tissue engineering and functional applications.
Rizwan, M; Hamdi, M; Basirun, W J
2017-11-01
Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass ® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass ® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017. © 2017 Wiley Periodicals, Inc.
Evaluation by Rocket Combustor of C/C Composite Cooled Structure Using Metallic Cooling Tubes
NASA Astrophysics Data System (ADS)
Takegoshi, Masao; Ono, Fumiei; Ueda, Shuichi; Saito, Toshihito; Hayasaka, Osamu
In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2800 K and the heat flux to the combustion chamber wall was about 9 MW/m2. No thermal damage was observed on the stainless steel tubes that were in contact with the C/C composite materials. The results of the heating test showed that such a metallic tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure (also as a heat exchanger) as well as indicated the possibility of reducing the amount of coolant even if the thermal load to the engine is high. Thus, application of this metallic tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined-cycle engine is expected.
Mohammadkhah, Ali; Marquardt, Laura M; Sakiyama-Elbert, Shelly E; Day, Delbert E; Harkins, Amy B
2015-04-01
Much work has focused on developing synthetic materials that have tailored degradation profiles and physical properties that may prove useful in developing biomaterials for tissue engineering applications. In the present study, three different composite sheets consisting of biodegradable poly-ε-caprolactone (PCL) and varying types of bioactive glass were investigated. The three composites were composed of 50wt.% PCL and (1) 50wt.% 13-93 B3 borate glass particles, (2) 50wt.% 45S5 silicate glass particles, or (3) a blend of 25wt.% 13-93 B3 and 25wt.% 45S5 glass particles. Degradation profiles determined for each composite showed the composite that contained only 13-93 B3 borate glass had a higher degradation rate compared to the composite containing only 45S5 silicate glass. Uniaxial tensile tests were performed on the composites to determine the effect of adding glass to the polymer on mechanical properties. The peak stress of all of the composites was lower than that of PCL alone, but 100% PCL had a higher stiffness when pre-reacted in cell media for 6weeks, whereas composite sheets did not. Finally, to determine whether the composite sheets would maintain neuronal growth, dorsal root ganglia isolated from embryonic chicks were cultured on composite sheets, and neurite outgrowth was measured. The bioactive glass particles added to the composites showed no negative effects on neurite extension, and neurite extension increased on PCL:45S5 PCL:13-93 B3 when pre-reacted in media for 24h. This work shows that composite sheets of PCL and bioactive glass particles provide a flexible biomaterial for neural tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Low NO[sub x], cogeneration process and system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, R.D.
1993-07-06
A process is described for low NO[sub x] cogeneration to produce electricity and useful heat, which comprises: providing fuel and oxygen to an internal combustion engine connected to drive an electric generator, to thereby generate electricity; recovering from said engine an exhaust stream including elevated NO[sub x] levels and combined oxygen; adding to said exhaust stream sufficient fuel to create a fuel-rich mixture, the quantity of fuel being sufficient to react with the available oxygen and reduce the NO[sub x], in said exhaust stream; providing said fuel-enriched exhaust stream to a thermal reactor and reacting therein said fuel, NO[sub x]more » and available oxygen, to provide a heated oxygen-depleted stream; cooling said oxygen-depleted stream by passing same through a first heat exchanger; adding conversion oxygen to said cooled stream from said heat exchanger, and passing the cooled oxygen-augmented stream over a first catalyst bed operated at a temperature of about 750 to 1,250 F under overall reducing conditions, the quantity of conversion oxygen added being in stoichiometric excess of the amount of NO[sub x], but less than the amount of combustibles; whereby the NO[sub x] is first oxidized to NO[sub 2], and then the NO[sub 2] is reduced by the excess combustibles; cooling said stream from said first catalyst bed to a temperature of about 450 to 650 F by passing said stream through a second heat exchanger; adding air to the resulting cooled stream to produce a further cooled stream at a temperature of about 400 to 600 F, and having a stoichiometric excess of oxygen; and passing said stream having said stoichiometric excess of oxygen over an oxidizing catalyst bed at said temperature of 400 to 600 F to oxidize remaining excess combustibles, to thereby provide an effluent stream having environmentally safe characteristics.« less
Brockway, Lance; Vasiraju, Venkata; Vaddiraju, Sreeram
2014-03-28
Recent studies indicated that nanowire format of materials is ideal for enhancing the thermoelectric performance of materials. Most of these studies were performed using individual nanowires as the test elements. It is not currently clear whether bulk assemblies of nanowires replicate this enhanced thermoelectric performance of individual nanowires. Therefore, it is imperative to understand whether enhanced thermoelectric performance exhibited by individual nanowires can be extended to bulk assemblies of nanowires. It is also imperative to know whether the addition of metal nanoparticle to semiconductor nanowires can be employed for enhancing their thermoelectric performance further. Specifically, it is important to understand the effect of microstructure and composition on the thermoelectric performance on bulk compound semiconductor nanowire-metal nanoparticle composites. In this study, bulk composites composed of mixtures of copper nanoparticles with either unfunctionalized or 1,4-benzenedithiol (BDT) functionalized Zn₃P₂ nanowires were fabricated and analyzed for their thermoelectric performance. The results indicated that use of BDT functionalized nanowires for the fabrication of composites leads to interface-engineered composites that have uniform composition all across their cross-section. The interface engineering allows for increasing their Seebeck coefficients and electrical conductivities, relative to the Zn₃P₂ nanowire pellets. In contrast, the use of unfunctionalized Zn₃P₂ nanowires for the fabrication of composite leads to the formation of composites that are non-uniform in composition across their cross-section. Ultimately, the composites were found to have Zn₃P₂ nanowires interspersed with metal alloy nanoparticles. Such non-uniform composites exhibited very high electrical conductivities, but slightly lower Seebeck coefficients, relative to Zn₃P₂ nanowire pellets. These composites were found to show a very high zT of 0.23 at 770 K, orders of magnitude higher than either interface-engineered composites or Zn₃P₂ nanowire pellets. The results indicate that microstructural composition of semiconductor nanowire-metal nanoparticle composites plays a major role in determining their thermoelectric performance, and such composites exhibit enhanced thermoelectric performance.
Acoustic performance of inlet multiple-pure-tone suppressors installed on NASA quiet engine C
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Schaefer, J. W.; Rice, E. J.; Feiler, C. E.
1977-01-01
The length of multiple-pure-tone (MPT) treatment required to reasonably suppress the MPT's produced by a supersonic tip speed fan was defined. Other suppression, broadband, and blade passing frequency, which might be accomplished were also determined. The experimental results are presented in terms of both far-field and duct acoustic data.
2004-04-15
The Boussard Interstellar Ramjet engine concept uses interstellar hydrogen scooped up from its environment as the spacecraft passes by to provide propellant mass. The hydrogen is then ionized and then collected by an electromagentic field. In this image, an onboard laser is uded to heat the plasma, and the laser or electron beam is used to trigger fusion pulses thereby creating propulsion.
Rep. Barrow, John [D-GA-12
2010-05-12
Senate - 12/14/2010 Placed on Senate Legislative Calendar under General Orders. Calendar No. 694. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
ERIC Educational Resources Information Center
Machovec, George S., Ed.
1995-01-01
Explains the Common Gateway Interface (CGI) protocol as a set of rules for passing information from a Web server to an external program such as a database search engine. Topics include advantages over traditional client/server solutions, limitations, sample library applications, and sources of information from the Internet. (LRW)
A guide to structural factors for advanced composites used on spacecraft
NASA Technical Reports Server (NTRS)
Vanwagenen, Robert
1989-01-01
The use of composite materials in spacecraft systems is constantly increasing. Although the areas of composite design and fabrication are maturing, they remain distinct from the same activities performed using conventional materials and processes. This has led to some confusion regarding the precise meaning of the term 'factor of safety' as it applies to these structures. In addition, composite engineering introduces terms such as 'knock-down factors' to further modify material properties for design purposes. This guide is intended to clarify these terms as well as their use in the design of composite structures for spacecraft. It is particularly intended to be used by the engineering community not involved in the day-to-day composites design process. An attempt is also made to explain the wide range of factors of safety encountered in composite designs as well as their relationship to the 1.4 factor of safety conventionally applied to metallic structures.
Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.
2002-01-01
The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay
2018-01-01
The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.
Application of Pulse Processes in Fabrication of Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Sudnik, L. V.; Vityaz', P. A.; Il'yushchenko, A. F.; Smirnov, G. V.; Petrov, I. V.; Konoplyanik, V. N.; Komornyi, A. A.; Luchenok, A. R.
2016-05-01
Special features and advantages of metal matrix composites obtained by pulse loading are considered. Examples of effective use of metal matrix composites in various fields of engineering are presented.
Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines
NASA Technical Reports Server (NTRS)
Stephens, G. E.
1980-01-01
The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.
Metal- matrix composite processing technologies for aircraft engine applications
NASA Astrophysics Data System (ADS)
Pank, D. R.; Jackson, J. J.
1993-06-01
Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.
Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering
Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Brown, Justin L.; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Nair, Lakshmi S.; Allcock, Harry R; Laurencin, Cato T.
2009-01-01
The non-toxic, neutral degradation products of amino acid ester polyphosphazenes make them ideal candidates for in vivo orthopaedic applications. The quest for new osteocompatible materials for load bearing tissue engineering applications has led us to investigate mechanically competent amino acid ester substituted polyphosphazenes. In this study, we have synthesized three biodegradable polyphosphazenes substituted with side groups namely leucine, valine and phenylalanine ethyl esters. Of these polymers, the phenylalanine ethyl ester substituted polyphosphazene showed the highest glass transition temperature (41.6 °C) and hence was chosen as a candidate material for forming composite microspheres with 100 nm sized hydroxyapatite (nHAp). The fabricated composite microspheres were sintered into a three-dimensional (3-D) porous scaffold by adopting a dynamic solvent sintering approach. The composite microsphere scaffolds showed compressive moduli of 46–81 MPa with mean pore diameters in the range of 86–145 µm. The three-dimensional polyphosphazene-nHAp composite microsphere scaffolds showed good osteoblast cell adhesion, proliferation and alkaline phosphatase expression, and are potential suitors for bone tissue engineering applications. PMID:18517248
Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.
Hayami, James W S; Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G
2010-03-15
Herein we report on the development and characterization of a biodegradable composite scaffold for ligament tissue engineering based on the fundamental morphological features of the native ligament. An aligned fibrous component was used to mimic the fibrous collagen network and a hydrogel component to mimic the proteoglycan-water matrix of the ligament. The composite scaffold was constructed from cell-adherent, base-etched, electrospun poly(epsilon-caprolactone-co-D,L-lactide) (PCLDLLA) fibers embedded in a noncell-adherent photocrosslinked N-methacrylated glycol chitosan (MGC) hydrogel seeded with primary ligament fibroblasts. Base etching improved cellular adhesion to the PCLDLLA material. Cells within the MGC hydrogel remained viable (72 +/- 4%) during the 4-week culture period. Immunohistochemistry staining revealed ligament ECM markers collagen type I, collagen type III, and decorin organizing and accumulating along the PCLDLLA fibers within the composite scaffolds. On the basis of these results, it was determined that the composite scaffold design was a viable alternative to the current approaches used for ligament tissue engineering and merits further study. (c) 2009 Wiley Periodicals, Inc.
FísicActiva: applying active learning strategies to a large engineering lecture
NASA Astrophysics Data System (ADS)
Auyuanet, Adriana; Modzelewski, Helena; Loureiro, Silvia; Alessandrini, Daniel; Míguez, Marina
2018-01-01
This paper presents and analyses the results obtained by applying Active Learning techniques in overcrowded Physics lectures at the University of the Republic, Uruguay. The course referred to is Physics 1, the first Physics course that all students of the Faculty of Engineering take in their first semester for all the Engineering-related careers. Qualitative and quantitative data corresponding to three semesters are shown and discussed, indicating that the students that attended these lectures outperformed the students that followed the course in the traditional way: the pass rates increased, whereas the failure rates decreased. The students highly valued this methodology, in particular, the interactive and relaxed dynamics, highlighting the concern of professors to answer questions by means of new questions so as to promote reasoning. The results obtained point to a work path that deserves to be deepened and extended to other Engineering courses.
Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charron, Richard; Pierce, Daniel
2015-02-24
A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates amore » transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.« less
Internal combustion engine system having a power turbine with a broad efficiency range
Whiting, Todd Mathew; Vuk, Carl Thomas
2010-04-13
An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.
Aerodynamic and acoustic behavior of a YF-12 inlet at static conditions
NASA Technical Reports Server (NTRS)
Bangert, L. H.; Feltz, E. P.; Godby, L. A.; Miller, L. D.
1981-01-01
An aeroacoustic test program to determine the cause of YF-12 inlet noise suppression was performed with a YF-12 aircraft at ground static conditions. Data obtained over a wide range of engine speeds and inlet configurations are reported. Acoustic measurements were made in the far field and aerodynamic and acoustic measurements were made inside the inlet. The J-58 test engine was removed from the aircraft and tested separately with a bellmouth inlet. The far field noise level was significantly lower for the YF-12 inlet than for the bellmouth inlet at engine speeds above 5500 rpm. There was no evidence that noise suppression was caused by flow choking. Multiple pure tones were reduced and the spectral peak near the blade passing frequency disappeared in the region of the spike support struts at engine speeds between 6000 and 6600 rpm.
A triangular approach to integrate research, education and practice in higher engineering education
NASA Astrophysics Data System (ADS)
Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka
2017-11-01
Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is proposed. The results from the application of TA, both at the course and programme level, indicate that the approach is suitable for developing engineering education. The student pass rate for courses where TA has been used has been higher than for previous approaches, and the student feedback has been very positive. Although TA aims to take both theoretical and practical aspects of engineering as well as research and education into account, the approach concentrates mainly on activities and therefore leaves the goals of these activities as well as the values behind these goals uncovered.
Temperature measurement in a gas turbine engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul
A method and system for determining a temperature of a working gas passing through a passage to a turbine section of a gas turbine engine. The method includes identifying an acoustic frequency at a first location in the engine upstream from the turbine section, and using the acoustic frequency for determining a first temperature value at the first location that is directly proportional to the acoustic frequency and a calculated constant value. A second temperature of the working gas is determined at a second location in the engine and, using the second temperature, a back calculation is performed to determinemore » a temperature value for the working gas at the first location. The first temperature value is compared to the back calculated temperature value to change the calculated constant value to a recalculated constant value. Subsequent first temperature values at the first location may be determined based on the recalculated constant value.« less
Mathematics/Arithmetic Knowledge-Based Way of Thinking and Its Maintenance Needed for Engineers
NASA Astrophysics Data System (ADS)
Harada, Shoji
Examining curriculum among universities revealed that no significant difference in math class or related subjects can be seen. However, amount and depth of those studies, in general, differed depending on content of curriculum and the level of achievement at entrance to individual university. Universalization of higher education shows that students have many problems in learning higher level of traditional math and that the memory of math they learned quickly fades away after passing in exam. It means that further development of higher math knowledgebased engineer after graduation from universities. Under these circumstances, the present author, as one of fun of math, propose how to maintain way of thinking generated by math knowledge. What necessary for engineer is to pay attention to common books, dealing with elementary mathematics or arithmetic- related matters. This surely leads engineer to nourish math/arithmetic knowledge-based way of thinking.
Development and testing of CMC components for automotive gas turbine engines
NASA Technical Reports Server (NTRS)
Khandelwal, Pramod K.
1991-01-01
Ceramic matrix composite (CMC) materials are currently being developed and evaluated for advanced gas turbine engine components because of their high specific strength and resistance to catastrophic failure. Components with 2D and 3D composite architectures have been successfully designed and fabricated. This is an overview of the test results for a backplate, combustor, and a rotor.
Mark Hughes; Jerrold E. Winandy
2007-01-01
Engineered wood composites (EWC) offer significant potential in applications in the built environment, ranging from domestic dwellings to bridges and public buildings. Nevertheless, EWCs, which include products such as glulam, laminated veneer lumber, oriented stand-board, and plywood enjoy a relatively small market share of total wood-based material production and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Bruce G; Farrell, John T
2006-01-01
The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less
Composite Nozzle/Thrust Chambers Analyzed for Low-Cost Boosters
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
1999-01-01
The Low Cost Booster Technology Program is an initiative to minimize the cost of future liquid engines by using advanced materials and innovative designs, and by reducing engine complexity. NASA Marshall Space Flight Center s 60K FASTRAC Engine is one example where these design philosophies have been put into practice. This engine burns a liquid kerosene/oxygen mixture. It uses a one-piece, polymer composite thrust chamber/nozzle that is constructed of a tape-wrapped silica phenolic liner, a metallic injector interface ring, and a filament-wound epoxy overwrap. A cooperative effort between NASA Lewis Research Center s Structures Division and Marshall is underway to perform a finite element analysis of the FASTRAC chamber/nozzle under all the loading and environmental conditions that it will experience during its lifetime. The chamber/nozzle is a complex composite structure. Of its three different materials, the two composite components have distinctly different fiber architectures and, consequently, require separate material model descriptions. Since the liner is tape wrapped, it is orthotropic in the nozzle global coordinates; and since the overwrap is filament wound, it is treated as a monoclinic material. Furthermore, the wind angle on the overwrap varies continuously along the length of the chamber/nozzle.
Aeronautical Engineering. A Continuing Bibliography with Indexes
1987-09-01
engines 482 01 AERONAUTICS (GENERAL) i-10 aircraft equipped with turbine engine ...rate adaptive control with applications to lateral Statistics on aircraft gas turbine engine rotor failures Unified model for the calculation of blade ...PUMPS p 527 A87-35669 to test data for a composite prop-tan model Gas turbine combustor and engine augmentor tube GENERAL AVIATION AIRCRAFT
Preliminary Model Tests of a Wing-Duct Cooling System for Radial Engines, Special Report
NASA Technical Reports Server (NTRS)
Biermann, David; Valentine, E. Floyd
1939-01-01
Wind-tunnel tests were conducted on a model wing-nacelle combination to determine the practicability of cooling radial engines by forcing the cooling air into wing-duct entrances located in the propeller slipstream, passing the air through the engine baffles from rear to front, and ejecting the air through an annular slot near the front of the nacelle. The tests, which were of a preliminary nature, were made on a 5-foot-chord wing and a 20-inch-diameter nacelle. A 3-blade, 4-foot-diameter propeller was used. The tests indicated that this method of cooling and cowling radial engines is entirely practicable providing the wing of the prospective airplane is sufficiently thick to accommodate efficient entrance ducts , The drag of the cowlings tested was definitely less than for the conventional N.A.C.A. cowling, and the pressure available at low air speed corresponding to operation on the ground and at low flying speeds was apparently sufficient for cooling most present-day radial engines.
Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades
NASA Technical Reports Server (NTRS)
Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas
2012-01-01
Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.
NASA Astrophysics Data System (ADS)
Tadano, Makoto; Sato, Masahiro; Kuroda, Yukio; Kusaka, Kazuo; Ueda, Shuichi; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori
1995-04-01
Carbon fiber reinforced carbon composite (C/C composite) has various superior properties, such as high specific strength, specific modulus, and fracture strength at high temperatures of more than 1800 K. Therefore, C/C composite is expected to be useful for many structural applications, such as combustion chambers of rocket engines and nose-cones of space-planes, but C/C composite lacks oxidation resistivity in high temperature environments. To meet the lifespan requirement for thermal barrier coatings, a ceramic coating has been employed in the hot-gas side wall. However, the main drawback to the use of C/C composite is the tendency for delamination to occur between the coating layer on the hot-gas side and the base materials on the cooling side during repeated thermal heating loads. To improve the thermal properties of the thermal barrier coating, five different types of 30-mm diameter C/C composite specimens constructed with functionally gradient materials (FGM's) and a modified matrix coating layer were fabricated. In this test, these specimens were exposed to the combustion gases of the rocket engine using nitrogen tetroxide (NTO) / monomethyl hydrazine (MMH) to evaluate the properties of thermal and erosive resistance on the thermal barrier coating after the heating test. It was observed that modified matrix and coating with FGM's are effective in improving the thermal properties of C/C composite.
Apparatus and process for depositing hard coating in a nozzle orifice
Flynn, P.L.; Giammarise, A.W.
1994-12-20
The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.
Pellé, Gaëlle; Branche, Isabelle; Kossari, Niloufar; Tricot, Leila; Delahousse, Michel; Dreyfus, Jean-François
2013-09-01
Metabolic disorders, in particular weight gain, increase cardiovascular mortality risk and can cause serious problems after renal transplantation. Weight and body mass index are imprecise indicators of nutritional status. Accurate determination of the body composition of renal transplant patients is essential; therefore, a simple tool that allows appropriate patient monitoring is crucial. A new device, the Body Composition Monitor (BCM, Fresenius Medical Care, Bad Homburg, Germany), expresses body weight in terms of adipose tissue, lean tissue mass, and excess fluid. We compared the performance of this 3-compartment model with dual-energy X-ray absorptiometry (DEXA) as a reference method in determining body composition in a renal transplant population. Thirty-three clinically stable renal transplant patients were studied. Bland-Altman plots and Passing-Bablok regression were used to compare methods. Mean lean mass was 51.8 ± 12.3 kg with DEXA and 39.0 ± 9.9 kg with BCM. Despite the Passing-Bablok regression failing to find significant differences, the predictive value of BCM for DEXA was poor. Mean fat mass was 19.4 ± 9.7 kg with DEXA and 30.0 ± 16.0 kg with BCM. The slope of the regression line of BCM over DEXA significantly differed from 1. We conclude that, in this population, these methods cannot be substituted for one another. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
The "stripmeation" process for removing volatile organic compounds (VOCs) from water has been introduced and studied. An aqueous solution of the VOC is passed through the bores of hydrophobic microporous polypropylene hollow fibers having a plasma polymerized silicone ...
Tunable optical assembly with vibration dampening
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2009-01-01
An optical assembly is formed by one or more piezoelectric fiber composite actuators having one or more optical fibers coupled thereto. The optical fiber(s) experiences strain when actuation voltage is applied to the actuator(s). Light passing through the optical fiber(s) is wavelength tuned by adjusting the actuation voltage.
Index of Economic Freedom: Unrealized Pedagogical Opportunities
ERIC Educational Resources Information Center
Maier, Mark; Miller, John A.
2017-01-01
Although the Index of Economic Freedom appears in many economic textbooks, their coverage of the index misses opportunities to teach statistical and policy-related concepts important for the principles course. The standard textbook presentation passes up an opportunity to examine the statistical issues of weighting in composite index numbers and…
Kolodziej, Christopher P.; Wallner, Thomas
2017-04-01
The Cooperative Fuels Research (CFR) engine is the long-established standard for characterization of fuel knock resistance in spark-ignition internal combustion engines. Despite its measurements of RON and MON being widely used, there is little understanding of what governs the CFR octane rating for fuels of various chemical compositions compared to primary reference fuels (iso-octane and n-heptane). Some detailed combustion characteristics were measured on a highly instrumented CFR F1/F2 engine during RON testing of fuels with significantly different chemical composition. Our results revealed differences in the cylinder pressure and temperature conditions, as well as knocking characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolodziej, Christopher P.; Wallner, Thomas
The Cooperative Fuels Research (CFR) engine is the long-established standard for characterization of fuel knock resistance in spark-ignition internal combustion engines. Despite its measurements of RON and MON being widely used, there is little understanding of what governs the CFR octane rating for fuels of various chemical compositions compared to primary reference fuels (iso-octane and n-heptane). Some detailed combustion characteristics were measured on a highly instrumented CFR F1/F2 engine during RON testing of fuels with significantly different chemical composition. Our results revealed differences in the cylinder pressure and temperature conditions, as well as knocking characteristics.
Fingeret, Abbey L; Arnell, Tracey; McNelis, John; Statter, Mindy; Dresner, Lisa; Widmann, Warren
We sought to determine whether sequential participation in a multi-institutional mock oral examination affected the likelihood of passing the American Board of Surgery Certifying Examination (ABSCE) in first attempt. Residents from 3 academic medical centers were able to participate in a regional mock oral examination in the fall and spring of their fourth and fifth postgraduate year from 2011 to 2014. Candidate׳s highest composite score of all mock orals attempts was classified as risk for failure, intermediate, or likely to pass. Factors including United States Medical Licensing Examination steps 1, 2, and 3, number of cases logged, American Board of Surgery In-Training Examination performance, American Board of Surgery Qualifying Examination (ABSQE) performance, number of attempts, and performance in the mock orals were assessed to determine factors predictive of passing the ABSCE. A total of 128 mock oral examinations were administered to 88 (71%) of 124 eligible residents. The overall first-time pass rate for the ABSCE was 82%. There was no difference in pass rates between participants and nonparticipants. Of them, 16 (18%) residents were classified as at risk, 47 (53%) as intermediate, and 25 (29%) as likely to pass. ABSCE pass rate for each group was as follows: 36% for at risk, 84% for intermediate, and 96% for likely pass. The following 4 factors were associated with first-time passing of ABSCE on bivariate analysis: mock orals participation in postgraduate year 4 (p = 0.05), sequential participation in mock orals (p = 0.03), ABSQE performance (p = 0.01), and best performance on mock orals (p = 0.001). In multivariable logistic regression, the following 3 factors remained associated with ABSCE passing: ABSQE performance, odds ratio (OR) = 2.9 (95% CI: 1.3-6.1); mock orals best performance, OR = 1.7 (1.2-2.4); and participation in multiple mock oral examinations, OR = 1.4 (1.1-2.7). Performance on a multi-institutional mock oral examination can identify residents at risk for failure of the ABSCE. Sequential participation in mock oral examinations is associated with improved ABSCE first-time pass rate. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siranosian, Antranik Antonio; Schembri, Philip Edward; Luscher, Darby Jon
The Los Alamos National Laboratory's Weapon Systems Engineering division's Advanced Engineering Analysis group employs material constitutive models of composites for use in simulations of components and assemblies of interest. Experimental characterization, modeling and prediction of the macro-scale (i.e. continuum) behaviors of these composite materials is generally difficult because they exhibit nonlinear behaviors on the meso- (e.g. micro-) and macro-scales. Furthermore, it can be difficult to measure and model the mechanical responses of the individual constituents and constituent interactions in the composites of interest. Current efforts to model such composite materials rely on semi-empirical models in which meso-scale properties are inferredmore » from continuum level testing and modeling. The proposed approach involves removing the difficulties of interrogating and characterizing micro-scale behaviors by scaling-up the problem to work with macro-scale composites, with the intention of developing testing and modeling capabilities that will be applicable to the mesoscale. This approach assumes that the physical mechanisms governing the responses of the composites on the meso-scale are reproducible on the macro-scale. Working on the macro-scale simplifies the quantification of composite constituents and constituent interactions so that efforts can be focused on developing material models and the testing techniques needed for calibration and validation. Other benefits to working with macro-scale composites include the ability to engineer and manufacture—potentially using additive manufacturing techniques—composites that will support the application of advanced measurement techniques such as digital volume correlation and three-dimensional computed tomography imaging, which would aid in observing and quantifying complex behaviors that are exhibited in the macro-scale composites of interest. Ultimately, the goal of this new approach is to develop a meso-scale composite modeling framework, applicable to many composite materials, and the corresponding macroscale testing and test data interrogation techniques to support model calibration.« less
Composite containment systems for jet engine fan blades
NASA Technical Reports Server (NTRS)
Smith, G. T.
1981-01-01
The use of composites in fan blade containment systems is investigated and the associated structural benefits of the composite system design are identified. Two basic types of containment structures were investigated. The short finned concept was evaluated using Kevlar/epoxy laminates for fins which were mounted in a 6061 T-6 aluminum ring. The long fin concept was evaluated with Kevlar/epoxy, 6Al4V titanium, and 2024 T-3 aluminum fins. The unfinned configurations consisted of the base-line steel sheet, a circumferentially oriented aluminum honeycomb, and a Kevlar cloth filled ring. Results obtained show that a substantial reduction in the fan blade containment system weight is possible. Minimization of damage within the engine arising from impact interaction between blade debris and the engine structure is also achieved.
Kular, Jaspreet K; Basu, Shouvik; Sharma, Ram I
2014-01-01
The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix-related cellular processes are also reviewed.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2015-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.
Cement-based piezoelectric ceramic composites for sensor applications in civil engineering
NASA Astrophysics Data System (ADS)
Dong, Biqin
The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.
Temperature Dependent Modal Test/Analysis Correlation of X-34 Fastrac Composite Rocket Nozzle
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Brunty, Joseph A. (Technical Monitor)
2001-01-01
A unique high temperature modal test and model correlation/update program has been performed on the composite nozzle of the FASTRAC engine for the NASA X-34 Reusable Launch Vehicle. The program was required to provide an accurate high temperature model of the nozzle for incorporation into the engine system structural dynamics model for loads calculation; this model is significantly different from the ambient case due to the large decrease in composite stiffness properties due to heating. The high-temperature modal test was performed during a hot-fire test of the nozzle. Previously, a series of high fidelity modal tests and finite element model correlation of the nozzle in a free-free configuration had been performed. This model was then attached to a modal-test verified model of the engine hot-fire test stand and the ambient system mode shapes were identified. A reduced set of accelerometers was then attached to the nozzle, the engine fired full-duration, and the frequency peaks corresponding to the ambient nozzle modes individually isolated and tracked as they decreased during the test. To update the finite-element model of the nozzle to these frequency curves, the percentage differences of the anisotropic composite moduli due to temperature variation from ambient, which had been used in the initial modeling and which were obtained by small sample coupon testing, were multiplied by an iteratively determined constant factor. These new properties were used to create high-temperature nozzle models corresponding to 10 second engine operation increments and tied into the engine system model for loads determination.
NASA Astrophysics Data System (ADS)
Ignatov, D.; Zhurbina, N.; Gerasimenko, A.
2017-01-01
3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.
Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.
Han, L; Liu, P; Peng, Y; Lin, J; Wang, Q; Ma, Y
2014-07-01
The interfacial tension of rhamnolipids and their applications in enhanced oil recovery are dependent on their chemical structures and compositions. To improve their performances of interfacial tension and enhanced oil recovery, the engineered strategies were applied to produce novel rhamnolipids with different chemical structures and compositions. By introducing different key genes for rhamnolipid biosynthesis, Escherichia coli was firstly constructed to produce rhamnolipids that showed different performances in interfacial tension from those from Pseudomonas aeruginosa due to the different fatty acyl compositions. Then, the mutant RhlBs were created by directed evolution and subsequent site-directed mutagenesis and resulted in the production of the novel rhamnolipids with the different performances in interfacial tension as well as enhanced oil recovery. Lastly, computational modelling elucidates that the single amino acid mutation at the position 168 in RhlB would change the volume of binding pocket for substrate and thus affect the selectivity of rhamnolipid formation in E. coli. The novel rhamnolipids that showed the improved performances of interfacial tension and the potential different applications in enhanced oil recovery were successfully produced by engineered E. coli. This study proved that the combination of metabolic engineering and protein engineering is an important engineered strategy to produce many novel metabolites in micro-organisms. © 2014 The Society for Applied Microbiology.
A quantitative evaluation of the public response to climate engineering
NASA Astrophysics Data System (ADS)
Wright, Malcolm J.; Teagle, Damon A. H.; Feetham, Pamela M.
2014-02-01
Atmospheric greenhouse gas concentrations continue to increase, with CO2 passing 400 parts per million in May 2013. To avoid severe climate change and the attendant economic and social dislocation, existing energy efficiency and emissions control initiatives may need support from some form of climate engineering. As climate engineering will be controversial, there is a pressing need to inform the public and understand their concerns before policy decisions are taken. So far, engagement has been exploratory, small-scale or technique-specific. We depart from past research to draw on the associative methods used by corporations to evaluate brands. A systematic, quantitative and comparative approach for evaluating public reaction to climate engineering is developed. Its application reveals that the overall public evaluation of climate engineering is negative. Where there are positive associations they favour carbon dioxide removal (CDR) over solar radiation management (SRM) techniques. Therefore, as SRM techniques become more widely known they are more likely to elicit negative reactions. Two climate engineering techniques, enhanced weathering and cloud brightening, have indistinct concept images and so are less likely to draw public attention than other CDR or SRM techniques.
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan
1993-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.
Noncontact Determination of Antisymmetric Plate Wave Velocity in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1998-01-01
High-temperature materials are of increasing importance in the development of more efficient engines and components for the aeronautics industry. In particular, ceramic matrix composite (CMC) and metal matrix composite (MMC) structures are under active development for these applications. The acousto-ultrasonic (AU) method has been shown to be useful for assessing mechanical properties in composite structures. In particular, plate wave analysis can characterize composites in terms of their stiffness moduli. It is desirable to monitor changes in mechanical properties that occur during thermomechanical testing and to monitor the health of components whose geometry or position make them hard to reach with conventional ultrasonic probes. In such applications, it would be useful to apply AU without coupling directly to the test surface. For a number of years, lasers have been under investigation as remote ultrasonic input sources and ultrasound detectors. The use of an ultrasonic transducer coupled through an air gap has also been under study. So far at the NASA Lewis Research Center, we have been more successful in using lasers as ultrasonic sources than as output devices. On the other hand, we have been more successful in using an air-coupled piezoelectric transducer as an output device than as an input device. For this reason, we studied the laser in/air-coupled-transducer out combination-using a pulsed NdYAG laser as the ultrasonic source and an air-coupled-transducer as the detector. The present work is focused on one of the AU parameters of interest, the ultrasonic velocity of the antisymmetric plate-wave mode. This easily identified antisymmetric pulse can be used to determine shear and flexure modulus. It was chosen for this initial work because the pulse arrival times are likely to be the most precise. The following schematic illustrates our experimental arrangement for using laser in/air-transducer out on SiC/SiC composite tensile specimens. The NdYAG pulse was directed downward by a 90 infrared prism to the top of the specimen, but at the edge of one end. An energy sensor measured a single pulse at 13 millijoules (mJ) before it passed through the prism, which attenuated 15 percent of its energy. It also provided an output trigger for the waveform time-delay synthesizer.
Numerical Simulation of Creep Characteristic for Composite Rock Mass with Weak Interlayer
NASA Astrophysics Data System (ADS)
Li, Jian-guang; Zhang, Zuo-liang; Zhang, Yu-biao; Shi, Xiu-wen; Wei, Jian
2017-06-01
The composite rock mass with weak interlayer is widely exist in engineering, and it’s essential to research the creep behavior which could cause stability problems of rock engineering and production accidents. However, due to it is difficult to take samples, the losses and damages in delivery and machining process, we always cannot get enough natural layered composite rock mass samples, so the indirect test method has been widely used. In this paper, we used ANSYS software (a General Finite Element software produced by American ANSYS, Inc) to carry out the numerical simulation based on the uniaxial compression creep experiments of artificial composite rock mass with weak interlayer, after experimental data fitted. The results show that the laws obtained by numerical simulations and experiments are consistent. Thus confirmed that carry out numerical simulation for the creep characteristics of rock mass with ANSYS software is feasible, and this method can also be extended to other underground engineering of simulate the weak intercalations.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Wilt, Thomas E.
1992-01-01
Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.
NASA Astrophysics Data System (ADS)
Moutos, Franklin T.; Freed, Lisa E.; Guilak, Farshid
2007-02-01
Tissue engineering seeks to repair or regenerate tissues through combinations of implanted cells, biomaterial scaffolds and biologically active molecules. The rapid restoration of tissue biomechanical function remains an important challenge, emphasizing the need to replicate structural and mechanical properties using novel scaffold designs. Here we present a microscale 3D weaving technique to generate anisotropic 3D woven structures as the basis for novel composite scaffolds that are consolidated with a chondrocyte-hydrogel mixture into cartilage tissue constructs. Composite scaffolds show mechanical properties of the same order of magnitude as values for native articular cartilage, as measured by compressive, tensile and shear testing. Moreover, our findings showed that porous composite scaffolds could be engineered with initial properties that reproduce the anisotropy, viscoelasticity and tension-compression nonlinearity of native articular cartilage. Such scaffolds uniquely combine the potential for load-bearing immediately after implantation in vivo with biological support for cell-based tissue regeneration without requiring cultivation in vitro.
Pre-mixing apparatus for a turbine engine
Lacy, Benjamin Paul [Greer, SC; Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Kraemer, Gilbert Otto [Greer, SC; Yilmaz, Ertan [Albany, NY; Melton, Patrick Benedict [Horse Shoe, NC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC; Felling, David Kenton [Greenville, SC; Uhm, Jong Ho [Simpsonville, SC
2012-04-03
A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.